APPENDIX C

RELEVANT SPECTROSCOPIC DATA

Figure C.1. ¹H NMR spectrum of **5a** in C_6D_6 .

Figure C.4. ¹H NMR spectrum of **6a** in C_6D_6 .

Figure C.7. ¹H NMR spectrum of **7a** in C_6D_6 .

Figure C.10. ¹H NMR spectrum of 8a in C₆D₆.

Figure C.13. ¹H NMR spectrum of 5-(tert-butyl)-1,3-diiodo-2-(4-nitrophenoxy)-benzene in CDCl₃.

Figure C.14. ¹³C{¹H} NMR spectrum of 5-(tert-butyl)-1,3-diiodo-2-(4-nitrophenoxy)benzene in CDCl₃.

70 180 170 180 150 140 130 120 110 100 90 80 70 80 50 40 30 20 10 0 -

Figure C.15. ¹H NMR spectrum of 1,3-bis(2'-bromophenyl)-2-(4'-nitrophenoxy)-5-tertbutyl-benzene in CDCl₃. Note: Residual CH₂Cl₂ present.

Figure C.16. ¹H NMR spectrum of 1,3-bis(2'-bromophenyl)-2-(4'-aminophenoxy)-5-tertbutyl-benzene in CDCl₃. Note: Residual CH₂Cl₂ and Et₂O present.

Figure C.17. ¹H NMR spectrum of 1,3-bis(2'-bromophenyl)-2-(4'-dimethylaminophenoxy)-5-tert-butyl-benzene in C_6D_6 . Note: Residual Et₂O present.

Figure C.18. ¹H NMR spectrum of **1c** at 25 $^{\circ}$ C in C₆D₆.

Figure C.19. ¹³C{¹H} NMR spectrum of 1c at 25 °C in C_6D_6 .

Figure C.20. ³¹P{¹H} NMR spectrum of 1c at 25 °C in C_6D_6 .

Figure C.22. ¹H NMR spectrum of 1,3-bis(2'-bromophenyl)-2-phenoxy-5-tert-butyl-benzene in CDCl₃.

Figure C.23. ¹³C{¹H} NMR spectrum of 1,3-bis(2'-bromophenyl)-2-phenoxy-5-tertbutyl-benzene in CDCl₃.

Figure C.25. ¹H NMR spectrum of **1d** at 25 °C in C₆D₆.

Figure C.26. ¹³C{¹H} NMR spectrum of 1d at 25 °C in CDCl₃.

Figure C.28. ³¹P{¹H} NMR spectrum of 1d at 25 °C in C_6D_6 .

Figure C.31. ³¹P{¹H} NMR spectrum of **1d** at 70 °C in C₆D₆. (Note: Referenced to solvent lock.)

Figure C.34. ${}^{31}P{}^{1}H$ NMR spectrum of 10d in C₆D₆.

Figure C.37. ${}^{31}P{}^{1}H$ NMR spectrum of 11d in C₆D₆.

Figure C.40. ³¹P $\{^{1}H\}$ NMR spectrum of **12c** in C₆D₆.

0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.

Figure C.42. ¹³C{¹H} NMR spectrum of 13d in C₆D₆.

Figure C.43. ${}^{31}P{}^{1}H$ NMR spectrum of 13d in C₆D₆.

Figure C.51. ³¹P{¹H} NMR spectrum of 19a at 25 °C in C_6D_6 .

where hit and the production of the contraction of the production																			
5	70	65	60	55	50	45	40	35	30	25	20	15	10	5	0	-5	-10	-15	-20 -2

Figure C.52. ¹³C{¹H} NMR spectrum of 19a at 70 °C in C₆D₆.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

Figure C.53. ³¹P{¹H} NMR spectrum of **19a** at 70 °C in C_6D_6 .

Figure C.54. ¹H NMR spectrum of 1,3-bis(2'bromophenyl)-5-tert-butyl-benzene in CDCl₃. Note: Residual CH₃OH present.

Figure C.55. ¹H NMR spectrum of 1e in C₆D₆.

Figure C.58. ¹H NMR spectrum of 23a in C₆D₆.

Figure C.59. ¹³C $\{^{1}H\}$ NMR spectrum of 23a in C₆D₆.

Figure C.60. ${}^{31}P{}^{1}H$ NMR spectrum of 23a in C₆D₆.

Figure C.61. ¹H NMR spectrum of 24a in C₆D₆.

Figure C.64. ¹H NMR spectrum of 5-(tert-butyl)-1,3-diiodo-2-(methoxymethoxy)-benzene in CDCl₃.

Figure C.65. ¹³C{¹H} NMR spectrum of 5-(tert-butyl)-1,3-diiodo-2-(methoxy-methoxy)benzene in CDCl₃.

Figure C.66. ¹H NMR spectrum of 1,3-bis(2'-bromophenyl)-5-tert-butyl-2-(methoxymethoxy)benzene in CDCl₃.

Figure C.68. ${}^{31}P{}^{1}H$ NMR spectrum of **1f** at 25 °C in C₆D₆. Note: Referenced to solvent residual.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

Figure C.71. ³¹P{¹H} NMR spectrum of **1f** at 70 °C in C₆D₆. Note: Referenced to solvent residual.

Figure C.70. ¹³C{¹H} NMR spectrum of **1f** at 70 °C in C₆D₆.

Figure C.73. ${}^{13}C{}^{1}H$ NMR spectrum of 26a in C₆D₆.

Figure C.74. ${}^{31}P{}^{1}H{}$ NMR spectrum of 26a in C₆D₆.

Figure C.76. ${}^{13}C{}^{1}H$ NMR spectrum of 27a in C₆D₆.

Figure C.77. ³¹P{¹H} NMR spectrum of 27a in C₆D₆.

Figure C.78. ¹H NMR spectrum of 28a in C₆D₆.

Figure C.79. ¹³C $\{^{1}H\}$ NMR spectrum of **28a** in C₆D₆.

Figure C.80. ${}^{31}P{}^{1}H$ NMR spectrum of 28a in C₆D₆.

Figure C.81. ¹H NMR spectrum of **29a** in C₆D₆. Note: Residual 1,5-cyclooctadiene present.

Figure C.82. ¹³C $\{^{1}H\}$ NMR spectrum of **29a** in C₆D₆. Note: Residual 1,5-cyclooctadiene present.

Figure C.84. ¹H NMR spectrum of **32a** in C₆D₆. Note: Residual toluene present.

Figure C.85. ¹³C{¹H} NMR spectrum of **32a** in C₆D₆. Note: Residual toluene present.

Figure C.88. ${}^{13}C{}^{1}H$ NMR spectrum of 32b in C₆D₆.

Figure C.91. ${}^{13}C{}^{1}H$ NMR spectrum of 33a in C₆D₆.

Figure C.94. ${}^{13}C{}^{1}H$ NMR spectrum of 34a in CD₃CN.

5 70 65 60 55 50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -2

Figure C.97. ¹H NMR spectrum of 35a in C₆D₆.

Figure C.100. ¹H NMR spectrum of **36a** in C₆D₆.

Figure C.101. ${}^{13}C{}^{1}H$ NMR spectrum of 36a in C₆D₆.

Figure C.103. ¹H NMR spectrum of 37a in C₆D₆.

Figure C.106. ¹H NMR spectrum of 38a in C₆D₆.

Figure C.107. ¹H NMR spectrum of 46 in CDCl₃.

Figure C.108. ¹H NMR spectrum of 46 in C₆D₆.

Figure C.109. ${}^{13}C{}^{1}H$ NMR spectrum of 46 in C₆D₆.

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1

Figure C.110. ¹H NMR spectrum of 44 in CDCl₃.

Figure C.111. ¹H NMR spectrum of 45 in CDCl₃.

Figure C.112. ¹³C{¹H} NMR spectrum of 45 in CDCl₃.

Figure C.114. ${}^{31}P{}^{1}H$ NMR spectrum of 57 in CD₂Cl₂.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure C.116. ¹H NMR spectrum of 58 in CD₃CN.

Figure C.115. ${}^{13}C{}^{1}H$ NMR spectrum of 57 in CD₂Cl₂.

Figure C.117. ${}^{31}P{}^{1}H$ NMR spectrum of 58 in CD₃CN.

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Figure C.119. ¹H NMR spectrum of **59** in CD₃CN.

Figure C.120. ${}^{31}P{}^{1}H$ NMR spectrum of 59 in CD₃CN.

Figure C.121. ${}^{13}C{}^{1}H$ NMR spectrum of 59 in CD₃CN.

Figure C.122. ¹H NMR spectrum of 60 in C₆D₆.

Figure C.123. ¹³C $\{^{1}H\}$ NMR spectrum of 60 in C₆D₆.

Figure C.127. ${}^{31}P{}^{1}H{}$ NMR spectrum of 62 in C₆D₆.

Figure C.128. ¹H NMR spectrum of 1-(2)-diisopropylphosphino)phenyl-2methoxymethoxy-3,5-di-tert-butylbenzene in C₆D₆.

Figure C.129. ¹³C $\{^{1}H\}$ NMR spectrum of 1-(2'-diisopropylphosphino)phenyl-2methoxymethoxy-3,5-di-tert-butylbenzene in C₆D₆.

Figure C.130. ${}^{31}P{}^{1}H$ NMR spectrum of 1-(2'-diisopropylphosphino)phenyl-2-methoxymethoxy-3,5-di-tert-butylbenzene in C₆D₆.

Figure C.133. ${}^{31}P{}^{1}H$ NMR spectrum of 65 in C₆D₆.

Figure C.134. ¹H NMR spectrum of **66** in C₆D₆. Note: Residual tetrahydrofuran present.

Figure C.135. ${}^{31}P{}^{1}H{}$ NMR spectrum of 66 in C₆D₆.

Figure C.136. ¹H NMR spectrum of 68 in CDCl₃. Note: Residual Et₂O and acetone present.

Figure C.139. ¹H NMR spectrum of 70 in C₆D₆. Note: Residual (Pr)₂PCl present.

Figure C.140. ³¹P{¹H} NMR spectrum of **70** in C₆D₆. Note: Residual $({}^{i}Pr)_{2}PCl$ present.

Figure C.145. ¹H NMR spectrum of **72** in C_6D_6 . Note: Residual toluene and tetrahydrofuran present.

ABOUT THE AUTHOR

Guy Anthony Edouard was born in Boston, MA, on August 28, 1987, son of Marise Valbrun Edouard and Guy Milhaud Edouard, who met in their hometown of Cap Haïtien, Haiti. He was raised in Brockton, MA, with his two brothers, Rudy and Alan. In Brockton, he attended St. Edward's School and Cardinal Spellman High School. After high school, he graduated from Harvard College with a B. A. in Chemical and Physical Biology in 2010, where he performed research in the laboratory of Prof. Ted Betley. His Ph. D. studies were completed in the laboratory of Prof. Theo Agapie at the California Institute of Technology. In 2016, he left Pasadena to begin work as an engineer with Intel at their research and development facility in Hillsboro, OR. Guy's interests have long included but are not limited to: high school and college Mock Trial competitions and trial advocacy, Haitian food, standup comedy, playing basketball, and rooting for the Celtics and Patriots. "When I picture him heading south in his own car with the top down, it always makes me laugh. Andy Dufresne... who crawled through a river of ---- and came out clean on the other side. Andy Dufresne... headed for the Pacific."

Red, The Shawshank Redemption (1994)