
Incremental Control Synthesis for Robotics

in the Presence of Temporal Logic Specifications

Thesis by

Scott C. Livingston

In Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

California Institute of Technology

Pasadena, California, USA

2016

(Defended 23 November 2015)

ii

c© 2016

Scott C. Livingston

All Rights Reserved

iii

Dedicated to the memory of my mother,

Diane Gurulé Livingston

iv

Acknowledgments

I have had the joy of being mentored by Richard M. Murray and Joel W. Burdick,

both of whom have repeatedly provided me with good ideas, insight, and feedback.

Their styles of working are refreshingly distinct. As my official adviser, Richard main-

tains an unusual (well, perhaps usual at Caltech) multi-disciplinary group that has

allowed me to easily and simultaneously pursue such diverse topics as code genera-

tion for flight software at the Jet Propulsion Lab and lab automation in synthetic

biology. Since I arrived at Caltech in 2010, I have met many interesting members

of Richard’s group, Joel’s group, and others in Control and Dynamical Systems, the

CMS Department, and Caltech broadly. Many of these encounters have led to on-

going collaborations, all of which I joyously acknowledge. Within the scope of this

dissertation, I want in particular to thank Pavithra Prabhakar and Eric M. Wolff

for inspiration and discussion. Ioannis Filippidis provided me with several useful

comments about organization and preliminaries.

I also wish to thank Gerard J. Holzmann and Pietro Perona, who served both on

my candidacy and thesis committees, and who have provided thorough and useful

criticism of my work, as well as good ideas for future work.

Funding was provided in part by the Boeing Corporation; and separately by

United Technologies Corporation and IBM, through the industrial cyberphysical sys-

tems (iCyPhy) consortium.

v

Abstract

This thesis presents methods for incrementally constructing controllers in the pres-

ence of uncertainty and nonlinear dynamics. The basic setting is motion planning

subject to temporal logic specifications. Broadly, two categories of problems are

treated. The first is reactive formal synthesis when so-called discrete abstractions

are available. The fragment of linear-time temporal logic (LTL) known as GR(1) is

used to express assumptions about an adversarial environment and requirements of

the controller. Two problems of changes to a specification are posed that concern the

two major aspects of GR(1): safety and liveness. Algorithms providing incremental

updates to strategies are presented as solutions. In support of these, an annotation of

strategies is developed that facilitates repeated modifications. A variety of properties

are proven about it, including necessity of existence and sufficiency for a strategy to

be winning. The second category of problems considered is non-reactive (open-loop)

synthesis in the absence of a discrete abstraction. Instead, the presented stochastic

optimization methods directly construct a control input sequence that achieves low

cost and satisfies a LTL formula. Several relaxations are considered as heuristics to

address the rarity of sampling trajectories that satisfy an LTL formula and demon-

strated to improve convergence rates for Dubins car and single-integrators subject to

a recurrence task.

vi

Contents

Acknowledgments iv

Abstract v

1 Introduction 1

1.1 Advent of verification and formal synthesis for robotics 1

1.2 Topics and contributions of the thesis 4

1.3 Novelty and related work . 9

2 Preliminaries 12

2.1 Formal languages . 12

2.2 Linear-time temporal logic . 14

2.3 The basic synthesis problem . 16

2.4 The modal µ-calculus . 17

2.5 Reactivity, games, and another basic synthesis problem 19

2.6 Finite representations of dynamical systems 22

3 Patching for Changes in Reachability 24

3.1 Introduction . 24

3.2 The game graph of a GR(1) specification 24

3.3 Problem statement . 26

3.4 Strategy automata . 26

3.5 Synthesis for GR(1) as a fixed-point computation 32

3.6 Annotating strategies . 33

vii

3.7 Reachability games . 37

3.8 Game changes that affect a strategy 40

3.9 Algorithm for patching between goal states 42

3.9.1 Overview . 42

3.9.2 Formal statement . 43

3.10 Algorithm for patching across goal states 44

3.11 Analysis . 50

3.12 Numerical experiments . 52

3.12.1 Gridworlds . 52

3.12.2 Random graphs in Euclidean space 56

4 Patching for Changes in Requirements of Liveness 61

4.1 Introduction . 61

4.2 Problem statements . 62

4.3 Adding goals . 64

4.3.1 Overview . 64

4.3.2 Algorithm . 67

4.3.3 Results . 70

4.4 Removing goals . 73

4.4.1 Overview . 73

4.4.2 Algorithm . 74

4.4.3 Results . 75

4.5 Numerical experiments . 76

4.5.1 Gridworlds . 77

4.5.2 Random graphs in Euclidean space 77

5 Cross-entropy Motion Planning for LTL Specifications 82

5.1 Introduction . 82

5.2 Control system model and problem formulation 83

5.2.1 Dynamics and labeling of states 83

5.2.2 Problem statement . 83

viii

5.3 The basic CE-LTL algorithm . 84

5.3.1 Brief introduction to the cross-entropy method 85

5.3.2 Representation of trajectories 87

5.3.3 Deciding feasibility of trajectories 88

5.3.4 Algorithm . 90

5.4 Relaxations of the basic method . 91

5.4.1 Incrementally restrictive LTL formulae from templates 92

5.4.2 Incrementally restrictive ω-automata 94

5.5 Numerical experiments . 96

5.5.1 Dynamical systems and representations 96

5.5.2 Comparisons among the basic method and relaxations 100

5.5.3 Comparison with related work 105

6 Conclusion 108

6.1 Summary and limitations . 108

6.2 Future work . 110

A Time semantics for two-player games 112

B Probability theory 115

C Implementation details 117

C.1 Introduction . 117

C.2 Incremental control for GR(1) games 117

C.2.1 Code for an example . 119

C.2.2 Representing variables of other types as atomic propositions . 119

C.3 CE-LTL and relaxations . 120

Bibliography 122

1

Chapter 1

Introduction

1.1 Advent of verification and formal synthesis for

robotics

A relatively new theme of research in control and dynamical systems is the use of

temporal logics to precisely express complex specifications. The new notation goes

beyond traditional state and input constraints by providing history dependence and

the ability to precisely express sophisticated kinds of behavior like liveness (informally,

that a condition repeatedly becomes satisfied) and fairness (informally, if something is

repeatedly requested, it is eventually served). Such requirements cannot be captured

by traditional notation, and thus describing them has historically involved (and in

much industrial practice, still involves) the application of English restricted with spe-

cial keywords like “shall” and given as lists of bounds on parts of the design. Notori-

ously, requirements represented in this way can have inconsistencies or be incomplete,

perhaps owing to the informal language (English). Besides describing requirements,

another challenge that traditional notation did not solve is methodology for the im-

plementation. While languages for process and task description have been around

for at least 25 years, the implementation itself has until recently only admitted some

code generation for low-level feedback control loops. Otherwise, humans have had to

manually design compositions of components, to achieve switching among component

controllers by manually using conditional expressions in an implementation language

2

such as C, etc.

New notation is not progress unless there are significant theoretical results or

practical tools that use it. For computer-aided verification, there have been in both

respects. During the past 30 years, there has been great progress in the characteriza-

tion of fundamental problems, e.g., determinacy of parity games, in the development

data structures and methods for verifying concurrent software systems, e.g., ordered

binary decision diagrams and techniques for SAT solving, and in the available tools

for verification, e.g., the Spin model checker. A brief summary of the history of

verification and formal logic until around the year 2003 can be found in [55].

While methods of verification demonstrate certain properties about a given sys-

tem, methods of synthesis construct new systems that realize desired properties. In

the context of theoretical computer science, “synthesis” tends to refer to the construc-

tion of finite-memory policies of action selection for finite transition systems (defined

in Chapter 2), which are often regarded as modeling concurrent software processes,

especially those that are non-terminating [4]. An early formulation of several syn-

thesis problems in terms of predicates on input and output sequences was given in

1962 by Church [14]. However, it is only recently that practically useful algorithms

have begun to be proposed and that specification languages admitting tractable de-

cision procedures or good heuristics have been presented. In control theory, the

term “synthesis” is less common, but one of the basic themes is exactly that of con-

structing controllers that cause trajectories of a dynamical system to meet certain

constraints and be robust or optimal according to some objective. In contrast to the

setting studied in theoretical computer science, these systems may have state spaces

that are differentiable manifolds and may have uncountable time domains (so-called

continuous-time systems).

Systems exhibiting aspects that include both of these two broad categories of

dynamics are known as being “hybrid.” There are definitions that subsume all cases,

e.g., transition systems that may have uncountable state sets [58] and transitions

defined as solutions of a differential equation, or unified hybrid control systems [11]

that can jump, have guard sets, and provide many other potential features expected

3

of hybrid dynamics. Despite the presence of unified or common notation, hybrid

systems can exhibit behaviors that are absent in purely discrete or continuously-valued

systems. Therefore new methods of analysis for verification and control have been

developed for various kinds of hybrid systems [10, 25]. In summary, hybrid systems

are especially challenging to control, and many negative results of undecidability or

intractability have been proven [9, 35]. Much current research in the theory of hybrid

systems is devoted to finding hybrid dynamics and specification languages that are

interesting and have tractable control problems or approximations thereof. As well,

developing notions of equivalence, reductions, and simulations are important topics

of current work toward synthesis of controllers for difficult problems in this area.

At the same time as the aforementioned developments were made, there has been

much progress in robotics research for motion planning. The basic problem concerns

moving a rigid body from one point to another in a space among obstacles while

avoiding collisions. Solving it precisely is known to be intractable [52]. As such,

algorithms that provide exact solutions tend to rely on special structure, such as

polygons with single-integrator dynamics navigating among a set of other polygons.

In the presence of nonlinear dynamics and, in particular, nonholonomic constraints as

occurring in car-like models, techniques of geometric control theory have yielded fast

planners. While the point-to-point motion planning problem only requires particu-

lar trajectories, practical issues like measurement noise and actuation disturbances

have motivated methods based on reference trajectory tracking or potential functions.

Another broad and important category that has practically been a great success is

sampling-based methods, e.g., Probabilistic Road-Map (PRM) or Rapidly-exploring

Random Trees (RRT) [36, 38]. Recently, sampling-based point-to-point kinodynamic

planners have been proposed that are optimal, in a probabilistic convergence sense

[29, 33].

All of these variations of solutions and problems basically involve planning motion

from one point to another point. There are potentially many details that make

this challenging, such as arising from multi-fingered robotic hands, moving obstacles,

constraints on allowed inputs, or uncertainty about pose. However, the ambitions of

4

the motion are relatively simple when considered as being part of some task or mission.

For example, a surveillance robot must repeatedly move around a building, providing

a certain amount of coverage, and respond to surprise requests, while periodically

stopping at a battery-charging station, subject to hard time constraints because the

battery must not become empty before reaching the station. Part of realizing this task

involves solving point-to-point motion planning problems. Solutions for the task itself

have historically been the product of manual design by humans, sometimes following

templates for robot architectures. Algorithms for planning from research in artificial

intelligence may be used at more abstract levels, such as A* for navigating a semantic

map of the building, e.g., a graph where vertices represent rooms. However, the

composition of various planning modules or the relation of outcomes from trajectory

generation and tracking to the finite-state machine that guides task completion have

historically been manually designed without techniques of formal verification, with

which this section began, being applied.

Motivated by more automation while providing guarantees about correctness for

task performance and completion, since around 25 years ago [12, 45, 51, 59], and

beginning more intensely 9 years ago (e.g., [6, 16]), attention has been devoted to

formally verifying robot architectures and synthesizing solutions to tasks. It should

be apparent that this essentially recovers problems of verification and synthesis for

hybrid systems, but now with an orientation toward systems and tasks that are of

particular interest in robotics.

1.2 Topics and contributions of the thesis

Chapter 2 is dedicated to introducing preliminary background material in preparation

for the main work of the thesis. Some detail can be found there about terms used

here to summarize the topics and contributions.

Despite theoretical progress in methods for synthesis of controllers from specifi-

cations involving robotics and hybrid systems in general, practical realizations are

rare. This observation is especially salient because experiments and practical demon-

5

strations are widely valued in the robotics community. Anecdotal interactions by

the author of this thesis with people who work on other topics of robotics indicate

skepticism of the actual significance of publications about so-called formal methods

for robotics. The importance of the ambitions is usually easily recognized. How-

ever, there have been very few meaningful physical experiments, and most proposed

methods rely on strong assumptions, e.g., control for systems that have trivial single-

integrator dynamics, the absence of actuator uncertainty, or perfect knowledge of

global position. With enough of these assumptions, it is possible to exactly recover

the setting already treated in theoretical computer science, allowing the disappointing

occurrence of papers that do little more than re-hash old ideas in a new venue.

Two important features of most problems in robotics are uncertainty and dynam-

ics. These span the (artificial but often made) boundary between perception and

control. Uncertainty essentially causes two fundamental problems in mobile robotics:

mapping and localization. More broadly, uncertainty manifests from sensor noise, in-

put disturbances, actuator failures, clock drift, lossy communication channels, object

detection and tracking, among many other examples. Dynamics can be thought of as

a feature of many problems in robotics because motion is always occurring or soon

to occur, and the interplay of mechanics with software control is endemic. Obviously

these features are not separate, e.g., disparity between a simplified model of dynamics

and the physical hardware can be a source of uncertainty.

Addressing uncertainty and dynamics demands limiting or removing assumptions

like perfect position information, known and fixed workspaces, and trivial dynamics.

It is a premise of the thesis that they are important targets for research in formal

methods for robotics. A sketch of the proposed program of research is to revisit

previously well-studied cases of uncertainty in robotics, both in terms of specific

sources like sensor noise and in terms of specific problems like localization, in the

context of formal synthesis. Similarly, methods should specifically address the various

major kinds of dynamics that are well known in robotics: differential drive, car-like

dynamics, multi-link arms, dexterous manipulation, etc.

In this thesis, methods for synthesis of controllers are presented that address

6

C P
1

2

3 4

5

Figure 1.1: Illustration of the form of controllers developed in this thesis, shown in
the context of a basic feedback loop. The arrows connecting the boxes are indicative
of relationships and the directions of signals. They do not correspond exactly with
inputs and outputs.

both of these features. Two problem settings are considered, each involving a broad

category of synthesis: reactive and non-reactive (or closed-system). The first set-

ting is essentially formulated as a game for which a finite-memory strategy must be

constructed so as to ensure that a specification is satisfied despite an adversarial en-

vironment. The specification is written in a fragment of linear-time temporal logic

(LTL) referred to as GR(1). The game and strategy are finite structures, i.e., can be

regarded as finite directed graphs together with a semantics of execution, turn-taking,

and labels of atomic propositions. The problem of synthesis in this setting relies on

the existence of a finite representation of a continuously-valued or hybrid dynamical

system. Thus the winning strategy that is thought to realize the GR(1) specification

is only one part of a controller that also generates trajectories of a plant, as illustrated

in Figure 1.1. The relationship between plays in the GR(1) game and trajectories

of the plant is made precise using a bisimulation, which is also referred to here as a

discrete abstraction to emphasize that one side of the bisimulation equivalence is a

transition system with finitely many states.

In the first problem setting, uncertainty as manifested in the GR(1) game is

treated. Besides conditions that determine feasible initial states, the two main aspects

of specifications are safety and liveness (cf. §2.5). The notion of safety manifests in

the game as transition rules, so that from any state, only certain states can be tran-

7

sitioned to, and the subset of these transitions that are safe depend on the current

move of an adversarial environment. The first major contribution of the thesis is to

present algorithms for modifying strategies in the presence of changes to transition

rules, i.e., changes to reachability in the GR(1) game. The problem and proposed

solutions are described as incremental control synthesis because the changes are re-

garded as occurring sequentially, and so the modifications to strategies so that they

are winning with respect to the sequence occur incrementally. As part of the de-

velopment of solutions in Chapter 3, an annotation for strategies in GR(1) games is

presented that is crucial in ensuring that the results of patching are winning (i.e.,

correct with respect to the modified GR(1) specification). A variety of properties

about the annotation is proven, and it is expected to be of interest independent from

the incremental synthesis algorithms presented in the thesis.

Part of Chapter 3 is based on [43]. The basic idea of “patching” to recover cor-

rectness after a change in workspace reachability was first presented in [42]. The

algorithm developed there treats GR(1) synthesis as an opaque subroutine that is

invoked to solve restricted specifications based on a subset of the state space and in-

cluding the changed transition rules, which imply changes to reachability. Solutions

of these are modified and then used to patch the original strategy. The methods

in Chapter 3 rely on solving a game of lower computational complexity than GR(1)

and so are favored to the algorithm of [42]. Though not developed further here, the

opaque approach to patching is potentially easily extended to other classes of specifi-

cations because the corresponding synthesis algorithms do not need to be revised or

decomposed.

The second major contribution of the thesis concerns the other major kind of

property expressed by temporal logic specifications: liveness. In Chapter 4, which is

based on [41], algorithms are presented for modifying a strategy to be winning after

additions to or removals from the sets of game states that must be repeatedly visited.

These “sets. . . to be repeatedly visited” can be thought of as goal sets in a chain of

motion planning problems. However, the setting of Chapter 4 is more challenging

because it is an adversarial game, and plays are of infinite duration.

8

The problems posed in Chapters 3 and 4 all begin with a GR(1) formula ϕ that

is modified to yield a new GR(1) formula. The basic practical motivation is that ϕ

is known ahead of time and thus can be solved without significant time constraints.

However, details may be missing or the model of motion at the abstract level of the

game may have errors. During execution, observations from sensor data or news from

a human operator that affects the task can imply modifications to ϕ. Taken together,

the solutions presented in Chapters 3 and 4 are sufficient to handle all substantial

respects in which ϕ (and correspondingly, the game) could thus change, with the

exception of changes to assumptions about environment liveness. The only other

part of the GR(1) formula template is the initial conditions. Modifications to initial

conditions do not affect the play currently in progress (recall the motivation of online

changes occurring), and in any case, new initial states are easily handled as solutions

to reachability games that are introduced in Chapter 3.

The methods for incremental control synthesis amidst changes to GR(1) formu-

lae address more than uncertainty in task specifications. Recall that the synthesized

strategy is interpreted as being part of a controller that drives a plant, possibly in-

volving hybrid dynamics. In practice, the GR(1) game is not only an expression of

desired behavior but also constraints among reachable regions, which in turn depend

on a cell decomposition of the state space, or on the capabilities for trajectory gener-

ation for driving a vehicle among cells. As such, refining the partition can manifest

as new transition rules in the GR(1) formula, at which level the presented algorithms

are relevant.

Studying reactive synthesis for GR(1) specifications, compared to other specifi-

cation languages, is well motivated because despite superficially appearing simple,

GR(1) is quite expressive [46]. Adding more expressiveness can cause much greater

computational complexity [31], and thus it represents a good practical trade-off. Basic

synthesis algorithms for GR(1) are amenable to the use of binary decision diagrams

(BDDs), a representation for sets of states that can be substantially smaller than an

enumerative data structure. By comparison, while other fragments have been intro-

duced with specific motivation for problems in robotics, e.g., [64], it is not obvious

9

how to leverage BDDs with them.

The second problem setting studied in this thesis is that of non-reactive (or open-

loop) trajectory generation for nonlinear systems. Whereas in previous chapters the

problem setting requires finite decompositions and the existence of discrete abstrac-

tions, Chapter 5 presents methods for stochastic optimization of trajectories of a

nonlinear system that satisfy an LTL formula and minimize an objective function, all

without construction of an abstraction. Furthermore, the labeling of states (in terms

of which satisfaction of LTL formulae is defined) does not need to be expressed as

unions of polytopes. The proposed algorithm is based on the cross-entropy method.

As with any technique for stochastic optimization, obtaining good convergence per-

formance is a key challenge, and to that end, several relaxations (heuristics) of the

basic algorithim are also given. Chapter 5 is based on [44].

1.3 Novelty and related work

The methods of Chapters 3 and 4 treat GR(1) specifications. Nonetheless, the salient

features are expected to be available for any µ-calculus specification because the reach

annotation (defined in §3.6) essentially arises from counting chains of intermediate

subsets of fixed-point computations and could be generalized accordingly. Pursuing

this is a topic of future work. With that potential relevance of specification languages

in mind, a distinguishing aspect of the solutions proposed in those chapters is that

the synthesized controller is changed online, as changes to the specification are given.

When the specification encodes workspace reachability, as is common in the applica-

tion of the techniques of formal synthesis in robotics, tolerance to changes is indeed

critical. To the best of the author’s knowledge, the first paper addressing incremental

control for changing temporal logic specifications is [42] (the author’s own work, but

which is not presented here). The closest category of problems and solutions treated

in prior work is robustness, which broadly aims to synthesize controllers that operate

correctly in the presence of some class of uncertainties, or that gracefully degrade in

the presence of violated assumptions [7]. The controller is made to be robust and not

10

modified during execution, so is conservative in the sense that not all disturbances

may occur.

The broad notion of incremental or on-the-fly methods for synthesis is certainly

not novel, and it also occurs in the context of model checking [5, 22, 24, 56, 60].

However, the interpretation of the terms “incremental” and “on-the-fly” is in ref-

erence to construction of the transition system that is to be controlled. Usually a

method is called “on-the-fly” if the solution can be obtained without constructing

the transition system entirely, whether symbolically (i.e., in a representation in terms

of sets of states) or enumeratively (i.e., in a representation in terms of individual

states). Solutions for the reachability games introduced in §3.7 could be obtained in

an “on-the-fly” manner.

Methods for so-called strategy improvement are relevant insofar as it follows the

present theme of incrementally modifying a game strategy. As suggested by “im-

provement,” problems in that area of work concern optimization with respect to

an objective. Roughly, the solutions are obtained in steps by beginning with some

winning strategy and then modifying particular moves taken under it so that cost

is reduced while remaining winning in the original parity game [54] (and references

therein). The game itself does not change, and a strategy continues to be winning

independently of the cost function.

Analogous to strategy improvement in the literature on theoretical computer sci-

ence is so-called anytime algorithms in the AI and planning literature. The basic

theme of anytime planning algorithms is to quickly present a feasible plan (or tra-

jectory, or path, in the context of robotics) and then to improve it as much as time

allows [34, 39]. Again, there is no change to the space of feasible solutions. However,

there is some relevance in analogy, e.g., if the cost function is slowly changing during

time, an anytime algorithm might be able to track the changes.

For control schemes that involve a discrete abstraction, as relied on in Chapters 3

and 4, there could be some choice in the level of abstraction. Thus it is in principle

possible to choose a sufficiently coarse abstraction so that uncertainty in the under-

lying physical system does not appear at the level of satisfaction of an LTL formula.

11

Obviously this does not solve the problem but merely translates it to a different level.

The abstraction thus provides a crucial interface, and there are methods for refining it

as needed based on counter-examples [1]. Such work is relevant insofar as it provides

a way to cope with uncertainty by preventing its inclusion in the abstracted system.

It can thus also be regarded as complementary to the methods in Chapters 3 and 4.

Recently there has been work in robotics considering formal synthesis for specifi-

cations expressed in LTL and GR(1) and in the presence of uncertainty or incremental

controller construction [23, 53, 61, 65, 67]. A broad organization of this work is pos-

sible according to whether it is reactive (in the sense of a game; cf. §2.5) and where

uncertainty occurs: in the dynamical system modeling the robot, in the environment

or workspace, or in the temporal logic formulae providing the task specification. Ob-

viously there is some overlap among these, and indeed, a question for research is how

to trade-off uncertainty among them, possibly as a design choice using abstraction

refinement as suggested above.

The algorithm and relaxations presented in Chapter 5 address optimal control for

nonlinear systems subject to LTL specifications. There are only two prior works that

are comparable. First, Karaman and Frazzoli described a sampling-based motion

planner that operates similarly to RRT* [30] and produces trajectories that satisfy

deterministic µ-calculus specifications. Second, Wolff and Murray develop a proce-

dure for expressing and then solving the problem as mixed-integer linear programs

[63]. Nonlinear is a broad class of systems, so perhaps unsurprisingly both of those

methods and that presented in Chapter 5 have several parameters that can be tuned

in particular scenarios. As such, direct comparison is difficult, but an attempt is

made in §5.5.3.

12

Chapter 2

Preliminaries

In this chapter, preliminary developments are made in preparation for the main work

of the thesis. Besides fixing notation, this chapter also serves to very briefly provide

background material appropriate for a general audience who is broadly familiar with

control and dynamical systems but not necessarily with the specific topics prerequisite

for this thesis. Additional preparatory notes for a more general audience are given in

the appendices.

Before beginning, some basic notation is introduced. The set of real numbers is

R (it is also sometimes referred to as the real line), the set of integers is Z, and the

set of positive integers is Z+. The natural numbers begin at 0 (and thus are equal as

a set to the nonnegative integers) and are denoted by N. Let A and B be sets. The

set of all subsets of A is denoted by 2A. The set of elements in A but not in B (i.e.,

the set difference) is A \B.

A closed interval of the real line is denoted by [a, b], where a ≤ b and a and b are

known as endpoints. An open interval with the same endpoints is denoted by]a, b[.

2.1 Formal languages

Let Σ be a finite set. A finite string of Σ is a function σ : {0, 1, . . . , n} → Σ, where

n ∈ N. When there is no ambiguity about the set Σ, we simply refer to σ as a

finite string. The cardinality of the domain of a string is referred to as its length; for

example, the length of σ is n+ 1.

13

Let α : {0, 1, . . . , n} → Σ and β : {0, 1, . . . ,m} → Σ be strings. Define an

operation, denoted by αβ (i.e., by juxtaposition) and called concatenation, that is

defined as the function

αβ(t) =

 α(t) if 0 ≤ t ≤ n

β(t− n− 1) otherwise,
(2.1)

where 0 ≤ t ≤ n + m + 1. It is immediate that αβ is a finite string and has length

n+m+ 2. The set of all finite strings of Σ is denoted by Σ+. A language is a subset

of Σ+.

After adding an empty string to Σ+ (as an identity element under the concatena-

tion operation, and thereby obtaining the Kleene closure Σ∗), we have the basis for

studying regular languages, context-free grammars, etc., which are outside the scope

of this preliminaries chapter. Interested readers should begin at [26].

Most of the specifications considered in this thesis are for nonterminating systems,

i.e., having trajectories of infinite duration. As such, we are also interested in strings

that have countably infinite length. An infinite string of Σ is a function σ : N → Σ.

When there is no ambiguity about the set Σ, we simply refer to σ as an infinite string.

The set of all infinite strings of Σ is denoted by Σω. When the distinction between

infinite or finite string is without consequence, or if a property holds in both cases,

we simply write string. Concatenation as in equation (2.1) is defined between finite

strings and infinite strings, in that order, where they are also referred to as prefix and

suffix, respectively.

Let σ be a string. A substring of σ is a string obtained by restricting the domain

of σ and shifting indices to begin at 0. Precisely, let I be an interval of the form

[a,∞[or [a, b], where a, b ∈ N, 0 ≤ a ≤ b, and b is less than the length of σ if σ is a

finite string. Define σI(t) = σ(t+ a), where if I = [a, b] then t can take value at most

b− a (in which case, σ[a,b] has length b− a+ 1).

14

2.2 Linear-time temporal logic

Since its introduction as a formalism for specifying properties of programs by Pnueli

in 1977 [49], linear-time temporal logic (LTL)1 has enjoyed widespread adoption and

has been the subject of and used in much research. There are many variants and

details that can be considered [20], but only the basic propositional construction is

used here. General introductions can be found in [4, 15].

As for any specification language, LTL is defined in two parts. First, the syntax

determines the notation by defining the formulae that can possibly be written. Sec-

ond, the semantics are defined in terms of string containment, thus determining when

a sequence can be said to satisfy an LTL formula. Before beginning, we introduce the

main device of labelings. Let AP be a set of atomic propositions. For readers who

are familiar with programming languages like C++ and Python, atomic propositions

can be thought of as variables of type bool and are thus able to take one of two

values: true or false. More generally, they are the basic (indivisible, i.e., atomic)

units of truth-value. States of a dynamical system are labeled according to whether

each atomic proposition in AP is true or false at that state. The labeling is given or

otherwise chosen and thus not usually a part of the control synthesis problem; rather,

synthesis is described as a problem about realizing certain sequences of truth-values

of atomic propositions.

In this thesis, the set-theoretic style is used, wherein each subset B ⊆ AP is

interpreted as an assignment of true and false to atomic propositions according

to presence in or absence from B, respectively. Explicitly, p is true if and only if

p ∈ B. Because subsets correspond to assignment of values, they are also referred to

as states. (Thus, B ⊆ AP is a state, and 2AP is a set of states.) In terms of variables

taking values on finite domains, development in terms only of atomic propositions is

without loss of generality because any such variable admits a binary representation;

cf. §C.2.2.

The syntax of LTL is described as a context-free grammar. In Backus-Nauer form,

1LTL is also known as “linear temporal logic.” Here the former is preferred to emphasize that
linearity refers to time and not a property of functions on vector spaces as elsewhere in the thesis.

15

the production rules are

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ©ϕ | ϕU ϕ (2.2)

where p ∈ AP and ϕ is a nonterminal. The first three productions provide the

familiar propositional (non-temporal) logic, sometimes called Boolean logic. The

other productions introduce temporal operators. (The meaning of “temporal” will

become apparent with the semantics as defined below.) From these, the following

operators are syntactically derived:

• true ≡ p ∨ ¬p

• ϕ ∧ ψ ≡ ¬ (¬ϕ ∨ ¬ψ)

• ϕ =⇒ ψ ≡ ¬ϕ ∨ ψ,

• ϕ ⇐⇒ ψ ≡ (ϕ =⇒ ψ) ∧ (ψ =⇒ ϕ),

• �ϕ ≡ trueU ϕ,

• �ϕ ≡ ¬ �¬ϕ,

• false ≡ ¬ true.

Before proceeding to semantics, notice that among the productions in (2.2) there are

no parentheses, i.e., the symbols (and). They are not considered a part of the syntax

of LTL, but rather, they are used to emphasize precedence. As is conventional, an

expression in parentheses is evaluated before any expression containing it. Parenthe-

ses are applied to remove ambiguity about parsing an LTL formula, i.e., ambiguity

about the sequence in which productions from (2.2) are applied, which affects the in-

terpretation of the formula because the semantics are defined inductively on grammar

productions.

Let ϕ be an LTL formula (having the syntax defined above). Let σ be an infinite

string of 2AP, and let t ∈ N. The satisfaction of ϕ by σ beginning at time t, denoted by

16

σ, t |= ϕ, is defined inductively on the parse tree of ϕ (i.e., the grammar productions

that yield ϕ) as follows.

• σ, t |= true;

• σ, t |= p if and only if p ∈ σ[t,∞[(0) (which is equivalent to p ∈ σ(t));

• σ, t |= ¬ϕ if and only if σ, t |= ϕ is not true, which is written σ, t 6|= ϕ;

• σ, t |=©ϕ if and only if σ, t+ 1 |= ϕ;

• σ, t |= �ϕ if and only if for all τ ≥ t, σ, τ |= ϕ;

• σ, t |= �ϕ if and only if there exists τ ≥ t, σ, τ |= ϕ;

• σ, t |= ϕU ψ if and only if σ, t |= ψ or there exists j > 0 such that σ, t + j |= ψ

and for all 0 ≤ i < j, σ, t+ i |= ϕ.

If σ, 0 |= ϕ (i.e., t = 0), then we simply write σ |= ϕ. Several of the definitions

are redundant but included for clarity, e.g., σ |= �ϕ could be obtained using σ |=

trueU ϕ, following the syntactic derivation given earlier.

2.3 The basic synthesis problem

Having introduced LTL as a language for expressing specifications, we need only

introduce a structure that admits some notion of control in order to be able to pose

a synthesis problem. A transition system is a tuple T = (S, I,Act,→, L,AP) where

S is a set of states (not necessarily finite), I ⊆ S is a set of initial states, and

→⊆ S × Act×S is a relation. States are labeled with the function L : S → 2AP.

This sketch of transition systems follows the literature [4, 58]. Precise problems are

formulated in later chapters, but it is useful to provide a sketch of a basic synthesis

problem here.

Problem 1 (sketch). Let ϕ be an LTL formula in terms of the atomic propositions

AP. Find a partial function C : S+ × N → Act such that all state sequences of the

transition system T under C have labeling satisfying ϕ.

17

2.4 The modal µ-calculus

A more expressive language than LTL, which was introduced in §2.2, is µ-calculus. In

this section it is briefly introduced with a focus on only those parts relevant for this

thesis. Applications and research involving µ-calculus are rich, and readers who are

generally interested in it should consult [21, 55]. The primary motivation to introduce

µ-calculus, despite working primarily with specifications that can be expressed in

LTL, is that it readily admits so-called fixed-point algorithms that provide one basis

for strategy synthesis. In particular, intermediate values provide sequences of sets of

states that may be useful for reachability computations, as in §3.5.

Let AP be a set of atomic propositions, and let Var be a set of variables. A Kripke

structure is a triple K = (S,R, L) where S is a finite set of states, R ⊆ S × S is a

relation, and L : S → 2AP is a function that labels each state with a set of atomic

propositions that are true in that state. An execution of K is a sequence of states

s : N → S such that (s(t), s(t + 1)) ∈ R for all t ≥ 0. The trace of an execution

s is the function w : N → 2AP such that w(t) = L(s(t)) for t ≥ 0. An initial state

could also be defined as part of the Kripke structure, but it is not needed here. A

transition system, as defined in §2.3, in which there are no control actions available

is equivalent to a Kripke structure (after defining initial states).

Let X ∈ Var be a variable, and let Q ⊆ S be a set of states of the Kripke

structure K. Define the new Kripke structure KQX = (S,R, L′) over the set of atomic

propositions AP′ = AP∪{X} and where

L′(s) =

{
L(s) ∪ {X} if s ∈ Q

L(s) otherwise.

The syntax of µ-calculus is defined by the following grammar productions.

φ ::= p | X | φ ∨ φ | ¬φ | �φ | �φ | µX .φ | νX .φ

Analogously to the relationship of LTL and infinite strings, µ-calculus semantics are

18

defined on Kripke structures. Observe that a trace of a Kripke structure is just

an infinite string of 2AP, so the semantics of LTL can as well be defined on Kripke

structures. Proceeding inductively on the syntax, we have

[[p]]K = {s ∈ S | p ∈ L(s)}

[[φ ∨ ψ]]K = [[φ]]K ∪ [[ψ]]K

[[¬φ]]K = S \ [[φ]]K

[[�φ]]K = {s ∈ S | ∀s′ ∈ S. (s, s′) ∈ R =⇒ s′ ∈ [[φ]]K}

[[�φ]]K = {s ∈ S | ∃s′ ∈ S. (s, s′) ∈ R ∧ s′ ∈ [[φ]]K}

Consider the recursion on subsets of S defined by

Q0 = ∅

Qk+1 = Qk ∪ [[φ]]KQkX
.

It turns out that there is some k∗ where Qk∗+1 = Qk∗ , i.e., it is a fixed-point under

the function defined by [[φ]]KQX
. [[µX . φ]]K is defined to be this set. Similarly, [[νX . φ]]K

is defined inductively by

Q0 = S

Qk+1 = Qk ∩ [[φ]]KQkX
.

When writing µ-calculus formulae, the formatting convention will be used where

states are lowercase latin letters, e.g., x, sets of states are uppercase, e.g., X ⊆ S, and

variables are written with a calligraphic style, e.g., X ∈ Var. The µ-calculus is not

used extensively and thus the convention suffices, especially as a suggestive notation

relating the variables with sets of states, the latter being of practical interest.

19

2.5 Reactivity, games, and another basic synthesis

problem

The adjective “reactive” is commonly used in robotics to refer to a style of control

that, informally, lacks much foresight or planning. Instead, actions are selected based

on superficial interpretations of sensor measurements. A small example is a thresh-

olding routine that stops all motion if any range finder values are too small (and pre-

sumably are indicative of potential collisions). The basic paradigm is demonstrated

in the robot architectures broadly categorized as being behavior-based [13].

Following instead the convention in the theoretical computer science literature

[50, 55], throughout this thesis the term reactive is used to indicate the presence of

an adversary that selects values for some of the inputs. This is analogous to the notion

of disturbance in robust control theory [18, 27]. However, using LTL as introduced

in §2.2, we can express a time-varying dependence between disturbances (adversarial

or uncontrolled inputs) and the states that should be reached by the controller. This

situation can be described as a turn-based game, and the objective is to ensure that

an LTL formula is satisfied, despite all possible adversarial strategies.

The intuitive sketch above is now made precise. Let AP be a set of atomic propo-

sitions, and partition it into APenv and APsys. The former set contains atomic propo-

sitions that take truth-value according to the choice of an adversary, i.e., they are

uncontrolled and thus always present the possibility of the worst-case. The latter set,

APsys, has propositions that we are able to control. Note that the control (assignment

of values to) APsys may only be indirect, e.g., after driving the state of the underlying

dynamical system into some polytope, as described in §2.6.

The reactive synthesis problem for LTL is as follows. Let ϕ be an LTL formula in

terms of APenv ∪APsys. For any infinite string σenv of 2APenv
, find an infinite string

σsys of 2APsys
such that the combination, defined as

σ(t) = σenv(t) ∪ σsys(t)

20

for t ≥ 0, and being a string of 2APenv ∪APsys
, satisfies ϕ. While this problem formula-

tion is attractive because it is consistent with the perspective of systems as functions

of entire input sequences to entire output sequences, there are obvious practical dif-

ficulties.

Example 1. Let APenv = {p}, and let APsys = {q}. The reactive LTL specification

q ⇐⇒ � p

has only solutions that are not causal. Intuitively, the right-side of the formula is

satisfied if for all time p is true. However, the left-side is satisfied if q is true at the

initial state. Thus, this instance of the reactive synthesis problem requires a controller

that can predict the value of p. Since the adversary decides the truth-value of p and

has no constraints, this is practically impossible.

The reactive synthesis treated in this thesis is for a fragment of LTL known as

GR(1) (generalized reactivity of rank 1, or generalized Streett[1]) [31]. Together

with some conditions determining initial states (given below), GR(1) is syntactically

defined by the formula template

� ρenv ∧

(
m−1∧
j=0

� �ψ
env
j

)
=⇒ � ρsys ∧

(
n−1∧
i=0

� �ψ
sys
i

)
, (2.3)

where each subformula is defined in terms of atomic propositions as follows. All of ψenv
j

and ψsys
i are formulae in terms of APenv ∪APsys and without temporal operators. ρenv

is a formula in terms of APenv ∪APsys and can only contain the temporal operator

© in direct application to atomic propositions of APenv, i.e., only as subformulae

© p where p ∈ APenv. Finally, ρsys is a formula in terms of APenv ∪APsys and can

only contain the temporal operator © in direct application to atomic propositions of

APenv ∪APsys, i.e., only as subformulae © p where p ∈ APenv ∪APsys. The left-side

of the implication in (2.3) is commonly referred to as the “assumption,” and the

right-side as the “guarantee.”

21

A play is an infinite sequence of subsets of APenv ∪APsys, i.e., a function σ : N→

2APenv ∪APsys
, where at time t ≥ 1, σ(t) is determined in two steps:

1. the environment selects a subset e ⊆ APenv;

2. given e, the system selects a subset s ⊆ APenv,

and then σ(t) = e ∪ s. This interpretation of turn-taking is known as a Mealy time

semantics (cf. Appendix A). Keeping this in mind, a play σ is simply an infinite string

of Σ = 2APenv ∪APsys
, and as such, the notation defined in §2.2 for satisfaction of an

LTL formula can be used, e.g., σ |= ϕ, where ϕ is of the form (2.3).

A GR(1) game is a pair G = (ι, ϕ) where ϕ is of the form (2.3), ι ∈ Σ is the

initial state. A play σ is said to be initial if σ(0) = ι. An environment strategy is

a function g :
(
2APenv ∪APsys)+ → 2APenv

. A (system) strategy is a partial function

f :
(
2APenv ∪APsys)+ × 2APenv → 2APsys

. A play σ : N → 2APenv ∪APsys
is said to be

consistent with environment strategy g and system strategy f if for all t ≥ 0,

σ(t+ 1) = g(σ[0,t]) ∪ f(σ[0,t], g(σ[0,t])). (2.4)

By the Mealy time semantics, the presence of g(σ[0,t]) as an argument of f is well-

defined. A system strategy f is said to be winning if and only if for every environment

strategy g and for every initial play σ that is consistent with f and g, σ |= ϕ.

Problem 2 (GR(1) synthesis). Let G = (ι, ϕ) be a GR(1) game. Find a system

strategy f that is winning, or decide that one does not exist.

If a winning strategy exists, the GR(1) game G is said to be realizable. In this

case, a winning strategy f is said to realize G. When the initial state does not need

to be distinguished, for brevity we may only refer to a GR(1) game directly as the

LTL formula ϕ.

Because (ι, ϕ) can be thought of as specifying requirements for a controller given

assumptions about its environment, the term GR(1) specification may be used instead

of game. These terms are interchangeable, although “specification” seems popular in

engineering practice.

22

While Problem 2 is in terms of a single initial state, there are several possibilities

for deciding the initial states and, together with ϕ, thereby defining the set of winning

plays. The distinction is not crucial for this thesis. For completeness, three common

choices are outlined here, all of which can be represented using the single initial state

formulation given above, possibly after an appropriate modification to the transition

rules. Let Init ⊆ 2APenv ∪APsys
.

1. Plays can begin at any state in Init. The (adversarial) environment can arbi-

trarily select it.

2. Plays begin at some state, which can be chosen along with the system strategy.

3. For each assignment of APenv (chosen by the environment), the system strategy

must choose an assignment of APsys such that the combined state is in Init.

The definition of the GR(1) synthesis problem relies on the interpretation of plays

as infinite strings. However, if a state transition occurs in which ρenv or ρsys is violated,

then the play is decided (winning if the former is violated; not winning otherwise), and

the remaining infinite string suffix is not relevant. In particular, a winning strategy

could be one that forces the environment to violate ρenv. Such winning strategies will

not be addressed in this thesis. Indeed, because the suffix of a play is not relevant,

a different problem can be posed as finite-time reachability, which is subsumed by

reachability games that are posed and solved in §3.7.

The basic synthesis procedure for GR(1) is crucial for some of the development in

§3 and is outlined there in §3.5.

2.6 Finite representations of dynamical systems

One way to bring formal languages to bear on deciding properties about trajectories

of hybrid systems is to discretize particular trajectories of the system and then la-

bel the sequence of states using a given function, e.g., which demarcates regions of

interest like goals and obstacles in the state space. This essentially is the approach

23

taken in Chapter 5. Alternatively, a finite transition system may be constructed that

preserves appropriate aspects of the original system, i.e., the physical system that we

actually want to control. The relationship between these two systems is a simulation

or bisimulation [2, 4, 40, 58]. There are many possibilities for achieving this, and

indeed, construction of and control for abstractions is a topic of current research. Im-

portant extensions have also been proposed, including probabilistic and approximate

bisimulations.

Basic ingredients are illustrated by the approach taken in [66], where in summary

the state space for a piecewise linear system is partitioned into finitely many polytopes

that refine labeling of states in terms of atomic propositions. Abstraction construction

involves checking, for each pair of cells, whether it is possible to reach one from

any state in the other, using a fixed or varying number of states and allowing for

disturbances. Because regions are polytopes and the dynamics are linear, it is possible

to pose this as feasibility checking in a linear program. The existence of a feasible

point implies the existence of a control sequence from one cell to another. The abstract

system is then a directed graph with vertices corresponding to polytopes and edges

corresponding to the existence of feasible points, i.e., of input sequences from one cell

to the other.

Formal synthesis is then on the finite transition system, and the result is guaran-

teed to yield trajectories on the original system because of the bisimulation. In this

setting, a controller has at least two components: the strategy produced for the finite

transition system, and the control method that produces trajectories in the physical

system corresponding to transitions of the abstract system. A precise definition is not

given here because it is not needed. However, note that the methods of Chapters 3

and 4 are applicable to hybrid systems by way of discrete abstractions.

24

Chapter 3

Patching for Changes in
Reachability

3.1 Introduction

A fundamental problem for dynamical systems is determination of the reachable state

space. The construction and analysis of controllers essentially involves controlling the

reachable states and the manner in which they are reached, e.g., manifesting for linear

systems as basic parameters like rise and settling times [3].

The intuitive setting for this chapter is one in which we have already considered

the reachable state space and constructed a controller that satisfies an objective in

it. A game is being played against the environment and so the controller is, in part,

a strategy that is winning in terms of that game. If some of the possible transitions

in the game are changed, what can we do with the nominal strategy that we already

have? Obviously it is always an option to discard it and construct another strategy

de novo, but in some situations we can do better. This sketch is made into a precise

problem in this chapter, and a solution for it is developed. Parts of this chapter are

based on joint work with Prabhakar [43].

3.2 The game graph of a GR(1) specification

Let ϕ be a GR(1) formula as in (2.3), where the set of uncontrolled (environment)

atomic propositions is APenv and the set of controlled (system) atomic propositions is

25

APsys. For conciseness, let Σ = 2APenv ∪APsys
. Throughout the chapter, elements of Σ,

i.e., subsets of APenv and APsys, will be written as lowercase letters such as x. This

convention is to emphasize the perspective of assignments of truth-values to atomic

propositions as states.

Here and in the next chapter, it will be useful to think of plays in terms of infinite-

length walks on a graph obtained from the safety subformulae, ρenv and ρsys, of ϕ.

Before defining the graph obtained from ϕ, the notation for satisfaction developed

for LTL in §2.2 is extended slightly to provide for transition rules. Let x, y ∈ Σ. For

ρ ∈ {ρenv, ρsys}, define (x, y) |= ρ as the predicate: for every infinite string σ of Σ

such that σ(0) = x and σ(1) = y, σ |= ρ. Intuitively, (x, y) |= ρ holds if and only if

every infinite string that has first element x and second element y satisfies ρ. This is

useful because, as defined in §2.5, the only temporal operator that can appear in ρ is

©, and it can only be in a subformula of the form © p for an atomic proposition p.

Thus, satisfaction of it by any infinite string can be decided using only the first two

elements. Similarly, for a formula without temporal operators θ, define x |= θ if and

only if σ |= θ for every infinite string σ of Σ such that σ(0) = x. (The restriction of

θ lacking temporal operators could be removed, but the generality is not needed.)

Define the graph Gϕ = (Σ, Eenv
ϕ , Esys

ϕ), where Σ is as defined earlier, and for x ∈ Σ

and y ⊆ APenv,

Eenv
ϕ (x) = {z ⊆ APenv | (x, z) |= ρenv} , (3.1)

Esys
ϕ (x, y) = {z ⊆ APsys | (x, y ∪ z) |= ρsys} . (3.2)

Gϕ is a directed graph in that Eenv
ϕ and Esys

ϕ together provide an edge set, namely

(x, y) ∈ Σ × Σ is an edge if and only if y ∩ APenv ∈ Eenv
ϕ (x) and y ∩ APsys ∈

Esys
ϕ (x, y ∩ APenv). This definition deviates from the usual definition of game graph

in which there are controlled and uncontrolled vertices instead of edges as used here.

For completeness, a graph of that form is provided in Appendix A. The motivation

for expressing the two transition rules through edges is to facilitate studying the

relationship with strategies on it and changes to the game.

26

3.3 Problem statement

Recall the template for GR(1) formulae (2.3) from §2.5,

� ρenv ∧

(
m−1∧
j=0

� �ψ
env
j

)
=⇒ � ρsys ∧

(
n−1∧
i=0

� �ψ
sys
i

)
.

Problem 3. Let ϕ0, ϕ1, . . . be an infinite sequence of GR(1) formulae that all have

the same subformulae ψenv
j , j = 0, . . . ,m− 1, and ψsys

i , i = 0, . . . , n− 1, but possibly

distinct transition rules, i.e., the sequence of GR(1) formulae is characterized by a

sequence of pairs of formulae

(ρenv
0 , ρsys

0) , (ρenv
1 , ρsys

1) , (3.3)

Find a sequence of strategies f0, f1, . . . such that fk realizes ϕk, the formula having

ρenv
k and ρsys

k .

The statement as given does not address causality, i.e., whether the entire sequence

of specifications is known at once or given incrementally. Practically motivated, we

consider the latter, but the proposed solution could as well be used for the former.

3.4 Strategy automata

The definition of strategy given for reactive synthesis allows, in general, dependence

on the entire history of a play (cf. §2.5). For GR(1), a finite-memory suffices [31].

In this section, the particular form of finite-memory strategy used in this thesis is

defined. (Because only finite memory is required, these strategies are also generically

referred to as “finite-state machines.” To avoid confusion with the many variants of

usage for that term, it is avoided here.)

Let ϕ be a GR(1) formula as in (2.3), and let Σ = 2APenv ∪APsys
. A strategy

automaton for ϕ is a tuple A = (V, I, δ, L), where V is a finite set (the elements of V

are called nodes), I ⊆ V is a set of initial nodes, L : V → Σ is a labeling of nodes with

27

game states, and δ is a function that determines successor nodes in A given inputs

from the environment, i.e., valuations represented as subsets of APenv, so that state

transitions are consistent with ρenv and ρsys. The domain of δ is

⋃
v∈V

{v} × Eenv
ϕ (L(v)),

and for every v ∈ V , e ∈ Eenv
ϕ (L(v)), L(δ(v, e)) ∩ APenv = e and (L(v), L(δ(v, e))) |=

ρsys (so, L(δ(v, e))∩APsys ∈ Esys
ϕ (L(v), e)). Intuitively, the domain of δ ensures that a

transition exists for each possible move by the environment from each state that can

occur in A, and the game state labeling the node that is obtained after the transition

is required to be consistent, i.e., the uncontrolled part of the state (in APenv) is the

same as that which enabled the transition leading there, and the labels of node and

predecessor together are feasible among available system (robot) moves.

Example 2. Let APenv = {door open, door reached} and APsys = {goto door}.

Consider the GR(1) formula having

ψenv
0 = (goto door→ door reached)

ρsys = (door open→© goto door) ∧ ((goto door ∧ ¬door reached)→© goto door)

ψsys
0 = door reached,

which encodes the task of going to a door whenever it becomes open. (The left-side

of each equality corresponds with a subformula of (2.3).) If the door is detected as

open (as in the left subformula of ρsys), then the robot transitions into the mode of

goto door. It cannot leave that mode until the door is reached, which is indicated

by the atomic proposition door reached. The environment can declare when it is

reached and when it is open. The only liveness condition assumed to be satisfied by

the environment, � � (goto door→ door reached), can be thought of as providing

a fairness assumption. If the robot continues to try to go to the door, eventually it

will be reached.

A strategy automaton realizing the specification is shown in Figure 3.1.

28

7;
(0, 1)

{}

0;
(0, 1)

door_open

6;
(0, 1)

goto_door

2;
(0, 0)

door_reached, goto_door

4;
(0, 1)

door_open, goto_door

1;
(0, 0)

door_open, door_reached, goto_door

5;
(0, 0)

door_reached

3;
(0, 0)

door_open, door_reached

Figure 3.1: A winning strategy automaton for the GR(1) game of Example 2. Each
node has three rows. The first row contains an integer that uniquely identifies the
node. The second row is a pair of values that is part of a reach annotation for the
strategy (defined later in §3.6). Third is the set of atomic propositions that are true

when execution reaches that node; this corresponds to the L-value of the node. The
initial node is indicated by the arrow with no predecessor (shown near the top of the
figure). An expression of the specification that can be passed to the tool gr1c is given
in Appendix C.

29

In §2.5, GR(1) games are defined as having a single initial state. Therefore,

it suffices to always consider a strategy automaton with a singleton set of initial

nodes, I = {v0}. As discussed there, other interpretations of initial conditions can be

recovered with appropriate modification of the set of states Σ or the transition rules

ρenv and ρsys. Other initial conditions could be treated by having more initial nodes

in the strategy automaton, without having to construct an equivalent game with one

initial state.

Let A = (V, I, δ, L) be a strategy automaton. The graph associated with A has

edge set E(A) determined by enumerating possible adversarial inputs from each node,

i.e.,

E(A) = {(u, v) ∈ V × V | ∃x ⊆ APenv . δ(u, x) = v} . (3.4)

As a directed graph (V,E(A)) the usual notation can be applied. For any node

v ∈ V , the set of successors of v is denoted by Post(v) = {u ∈ V | (v, u) ∈ E(A)},

and similarly the set of predecessors of v is denoted by Pre(v). An execution of A

is a function r : N → V such that (r(t), r(t+ 1)) ∈ E(A) for t ≥ 0, and r(0) ∈ I.

The trace associated with the execution r is the function L(r) : N → Σ defined by

L(r)(t) = L(r(t)) for t ≥ 0. The restriction of the domain of an execution to a

bounded interval is called a finite execution. Since V is finite, an execution is just an

infinite string, in the terminology of §2.1. Thus, a finite execution is a finite substring.

Notice that a trace of A is an infinite string of Σ, i.e., an infinite sequence of

assignments of values to the atomic propositions APenv ∪APsys. Thus a trace can be

said to satisfy or not the GR(1) formula ϕ, i.e., whether L(r) |= ϕ for an execution r.

The strategy automaton A is said to be winning for a GR(1) game (ι, ϕ) if ι = L(v),

where I = {v}, and every trace of A satisfies ϕ. To be justified, this definition of

winning should constructively imply the existence of a winning strategy in the form

given for GR(1) synthesis (Problem 2). While this follows from finite-memory be-

ing sufficient and the synthesis procedure outlined in §3.5, an explicit construction

is given here in preparation for later results. Before doing so, observe that the def-

inition of δ requires that transitions are safe. If the environment takes a move not

30

in Eenv
ϕ (L(v)) during an execution that reached node v, then δ is not defined. How-

ever, the play is immediately winning, so the strategy automaton can be ignored.

Furthermore, from the definition of strategy automaton, it is not possible to reach a

state where Esys
ϕ (L(v), e) is empty, i.e., where there are no safe system (robot) moves

from the node v given the permissible environment move e. Such a strategy could

not be winning because there would be at least one play in which the environment

(adversary) drives the game to an unsafe state. Besides these reasons, encoding safe

transitions directly into the definition is well motivated because it aligns with the

parity game perspective, in which the safety (transition) formulae ρenv and ρsys are

represented instead as edges in a game graph (cf. §3.2 and Appendix A).

Definition 1. Let (ι, ϕ) be a GR(1) game, and let A = (V, {v0}, δ, L) be a strategy

automaton for it. Let ./ be an arbitrary object that is not a node of A (i.e., ./ /∈ V).

For any g : N→ 2APenv
, define the function r̂g : N→ V ∪ {./} inductively as

r̂g(0) =

 v0 if ι = L(v0) ∧ g(0) = ι ∩ APenv

./ otherwise

r̂g(t+ 1) =

 δ(r̂g(t), g(t)) if r̂g(t) ∈ V ∧ g(t) ∈ Eenv
ϕ (L(r̂g(t)))

./ otherwise

for t ∈ N. Equivalently, define the function r̂ :
(
2APenv)+ → V ∪{./} as r̂(g[0,t]) = r̂g(t).

Finally, denote the projection of a string σ of 2APsys ∪APenv
onto APenv by

σenv(t) = σ(t) ∩ APenv

for t ≥ 0. Then, the strategy induced by A is the function fA :
(
2APenv ∪APsys)+ ×

2APenv → 2APsys
such that for σ ∈

(
2APenv ∪APsys)+

and e ∈ 2APenv
,

fA(σ, e) =

 L(r̂(σenve)) ∩ APsys if r̂(σenve) 6= ./

∅ otherwise.
(3.5)

Using this definition, the next theorem asserts that a winning strategy automaton

31

yields a strategy winning in the GR(1) game. Thus, it is enough to verify that a

given strategy automaton is winning in order to solve a GR(1) game. (This result

motivates the repeated use of “winning.”)

Theorem 1. Let A be a strategy automaton that is winning for a GR(1) game (ι, ϕ).

Then the strategy induced by A is winning.

Proof. Let A = (V, {v0}, δ, L) be a winning strategy automaton for the GR(1) game

(ι, ϕ). Let fA be the strategy induced by A. Let g :
(
2APenv ∪APsys)+ → 2APenv

be an environment strategy. The initial play σ consistent with fA and g is defined

inductively by

σ(0) = ι

σ(t+ 1) = g(σ[0,t]) ∪ f(σ[0,t], g(σ[0,t]))

for t ≥ 0. In Definition 1, r̂ is defined on any finite string of 2APenv
. Thus, from

equation (3.5), fA is defined on any finite string of 2APenv ∪APsys
and subset of APenv.

Denoting projection of σ onto APenv by σenv as in Definition 1, we have that r̂(σenv
[0,τ]) =

./ if and only if there is a positive T ≤ τ such that r̂σ
env

(T) = ./ and r̂σ
env

(t) ∈ V for

t < T . (Observe that σ(0) = ι and L(v0) = ι by hypothesis, hence r̂σ
env

(0) 6= ./ and

T > 0.) Therefore, σ(T − 1) ∩ APenv 6∈ Eenv
ϕ (L(r̂σ

env
(T − 1))), i.e., the environment

move does not satisfy ρenv by definition of Eenv
ϕ . Because r̂σ

env
(t) ∈ V for t < T ,(

L(r̂σ
env

(t)), L(r̂σ
env

(t+ 1))
)
|= ρsys for t < T − 1 by the definition of transitions (δ)

in strategy automata. Thus, the play satisfies ϕ. For the other case, i.e., r̂(σenv
[0,τ]) 6= ./

for all τ ≥ 0, r̂σ
env

is an execution of A, so σ = L(r̂σ
env

) is a trace of A. By hypothesis

A is winning, hence σ |= ϕ.

The definition of strategy automaton is distinct from the edge-oriented definition

sometimes used for Mealy machines. The motivation for labeling nodes with game

states will become apparent when an annotation is introduced in the next section.

32

3.5 Synthesis for GR(1) as a fixed-point computa-

tion

The basic method for synthesis outlined in this section is not a contribution of this

thesis, e.g., it has been described earlier in [31] (and later as [8]), albeit with different

notation. Nonetheless it plays a crucial role in the remainder of this chapter, so we

are motivated to discuss it.

Before beginning, the setting is informally sketched. Intuitively, one manner of

constructing a strategy that realizes (2.3) is to pursue states that satisfy ψsys
0 and from

which it is possible to reach states satisfying each of the other liveness subformulae,

ψsys
1 , . . . , ψsys

n−1. When this is not possible, there must be some way to block liveness of

the environment, i.e., to eventually begin an infinite sequence of states in which ψenv
j

is not satisfied, for some j ∈ {0, . . . ,m − 1}. Provided environment liveness, upon

reaching a state that satisfies ψsys
0 , attention shifts to pursuing a state that satisfies

ψsys
1 , and the process continues. Because this superficially resembles a sequence of

reachability problems on a finite graph, one may guess that a solution is obtained by

repeated predecessor computations as familiar for shortest paths problems. However,

an important difficulty is that each transition depends on the environment. In other

words, the reactivity in this process is the presence of an adversary that, at each time

step, can select an arbitrary valuation for part of the state. Thus, the solution is a

strategy (not merely a walk on a graph), and the predecessor sets must quantify over

possible moves by the environment.

The above sketch is now made precise. Let ϕ be a GR(1) formula as in (2.3), and

recall the definition of the associated graph Gϕ given in §3.2. Let X ⊆ Σ. The set of

controlled predecessors of X is defined by

Preϕ(X) =
{
y ∈ Σ | ∀z1 ∈ Eenv

ϕ (y).∃z2 ∈ Esys
ϕ (y, z1). z1 ∪ z2 ∈ X

}
. (3.6)

The winning set is the subset of Σ from which there exist winning system strate-

gies. For the GR(1) formula, this set is called Wϕ, and as proven in [31], it can be

33

found using µ-calculus formulae

νZi.

(
µY .

(
m−1∨
j=0

νXj.
(
(ψsys

i ∧ Preϕ(Zi+1)) ∨ Preϕ(Y) ∨
(
¬ψenv

j ∧ Preϕ(Xj)
))))

,

(3.7)

where the subscript addition of Zi+1 is modulo n (the number of system liveness

subformulae in (2.3)), and where i ∈ {0, 1, . . . , n − 1}. That is, the entire formula

Wϕ is a chain of subformulae, one (3.7) for each value of i. As outlined in §2.4,

Wϕ = [[Wϕ]] is obtained using a fixed-point computation. Moreover, at the fixed-

point, Wϕ = Z0 = [[Z0]] = Z1 = · · · = Zn−1, and Wϕ = Preϕ (Wϕ).

Let i ∈ {0, 1, . . . , n − 1}. An intermediate value of the fixed-point computation

used to obtain Wϕ is a finite sequence of sets

Y 0
i ⊂ Y 1

i ⊂ · · · ⊂ Y k
i = Wϕ, (3.8)

for some k, where Y 0
i is a set of states in Wϕ that satisfies ψsys

i . Furthermore, for

each l ∈ {1, 2, . . . , k}, from every state x ∈ Y l
i , for all z ∈ Eenv

ϕ (x), at least one of the

following holds:

1. there exists y ∈ Esys
ϕ (x, z) such that z ∪ y ∈ Y l−1

i , or

2. there is a strategy blocking one of the environment liveness conditions, ψenv
j ,

that remains within Y l
i .

Details about construction are given in [8, 31].

3.6 Annotating strategies

To facilitate adaptation (incremental synthesis) to a repeatedly changing task formula,

in this section a novel annotation for strategies is introduced and several important

properties of it are proven. The basic idea is that some extra information can be saved

during synthesis of a nominal strategy and used later to guide local modifications

34

(patches). Note that the following definition was initially given in [41] and is modified

from the earlier version of [43].

Let ϕ be a GR(1) formula as in (2.3). A state x ∈ Σ is said to be an i-system

goal if x |= ψsys
i . Recall that Σ = 2APenv ∪APsys

.

Definition 2. A reach annotation on a strategy automaton A = (V, I, δ, L) for a

GR(1) formula ϕ is a function RA : V → {0, . . . , n − 1} × N that satisfies the

following conditions. Write RA(v) = (RA1(v),RA2(v)).

1. For each v ∈ V , RA2(v) = 0 if and only if L(v) is a RA1(v)-system goal.

2. For each v ∈ V and u ∈ Post(v), if RA2(v) 6= 0, then RA1(v) = RA1(u) and

RA2(v) ≥ RA2(u).

3. For any finite execution v1, v2, . . . , vK ofA such that RA2(v1) = · · · = RA2(vK) >

0, there exists an environment goal ψenv
j such that for all k ∈ {1, . . . , K}, L(vk)

does not satisfy ψenv
j .

4. For each v ∈ V and u ∈ Post(v), if RA2(v) = 0, then there exists a p such

that for all r between RA1(v) and p, L(v) is a r-system goal, and RA1(u) =

p. Specifically, if p < RA1(v), the numbers between p and RA1(v) are p +

1, . . . ,RA1(v)− 1, and if RA1(v) ≤ p, then the numbers between p and RA1(v)

are p+ 1, . . . , n− 1, 0, . . . ,RA1(v)− 1.

An illustration of a strategy automaton with a reach annotation on it is given

in Figure 3.2. It realizes a deterministic (without adversarial environment) game.

The strategy automaton shown earlier in Figure 3.1 as part of Example 2 provides a

slightly more complicated demonstration of a reach annotation.

Remark 2. During basic synthesis, a reach annotation can be constructed using the

indices of the intermediate values (Y l
i in (3.8)) of the fixed-point computation on

(3.7) and thus does not affect asymptotic complexity of the basic GR(1) synthesis

algorithm. (It affects the multiplicative constant.)

35

(1,1)

(1,0)

(0,1)

(0,2)

g0

g1

v0

v1

v2

v3 v4

v5

(0,1)

(0,0)

Figure 3.2: Illustration of a deterministic (without adversarial environment) specifi-
cation, a strategy automaton that realizes it, and a reach annotation. The task is
expressed as � � g0 ∧� � g1.

In other words, we can obtain an initial reach annotation on a nominal winning

strategy at no extra (asymptotic) cost. This is significant because global synthesis

is already difficult, scaling exponentially with the number of atomic propositions

APenv ∪APsys.

Theorem 3. Let A = (V, {v0}, δ, L) be a strategy automaton for the GR(1) game

(ι, ϕ), where L(v0) = ι. If RA is a reach annotation on A for ϕ, then A is winning.

Proof. Let A = (V, {v0}, δ, L) be a strategy automaton for the GR(1) game (ι, ϕ),

where L(v0) = ι, and let RA be a reach annotation on A. Let r : N → V be an

execution of A. Writing RA(v) = (RA1(v),RA2(v)) for each v ∈ V , two infinite

sequences are obtained from function composition with the execution: RA1 ◦r and

RA2 ◦r. The former is a function from N to the finite set {0, . . . , n − 1} and thus

presents two cases. First, suppose there is some K ≥ 0 such that for all t ≥ K,

RA1 ◦r(t) = RA1 ◦r(K), i.e., RA1 ◦r is eventually constant. From Definition 2, this

can happen only if at least one of the following occurs. If RA2 ◦r(t) = 0 for all t ≥ K,

then L(r)(t) satisfies ψsys
0 ∧· · ·∧ψ

sys
n−1, i.e., every state reached after time t is an i-system

36

goal, for all i. Otherwise (possibly in addition to the previous), there is some T ≥ K

such that RA2 ◦r(t) = RA2 ◦r(T) > 0 for t ≥ T . This follows from the monotonicity

of RA2 when RA1 is not changing, and by definition, one of ψenv
j is not satisfied for all

t ≥ T . Therefore if RA1 ◦r is eventually constant, the corresponding trace satisfies ϕ.

Second, suppose that for every t ≥ 0, there is a τ > t such that RA1 ◦r(t) 6= RA1 ◦r(τ),

i.e., RA1 ◦r is not eventually constant. From Definition 2, for every t ≥ 0 where

RA1 ◦r(t) 6= RA1 ◦r(t+1), RA2 ◦r(t) = 0, which by the definition implies that L(r(t))

is a RA1 ◦r(t)-system goal. The definition also requires that L(r(t)) is a p-system goal

for all p between RA1 ◦r(t) and RA1 ◦r(t+ 1). Since this range of numbers is strictly

increasing modulo n, it follows that all of ψsys
0 , . . . , ψsys

n−1 are satisfied infinitely often.

Therefore L(r) |= ϕ. Because the execution was arbitrary and every trace is from

some execution, therefore A is a winning strategy automaton.

Recall from Theorem 1 that a winning strategy automaton indeed wins the GR(1)

game. Taken together with Theorem 3, to verify that a strategy automaton realizes a

GR(1) specification, it is enough to present a reach annotation on it. This observation

will be used later to demonstrate that modifications yield new winning strategies,

thereby solving Problem 3.

Theorem 4. There exists a winning strategy automaton for a GR(1) game (ι, ϕ) if

and only if there exists a winning strategy automaton with a reach annotation for ϕ.

Proof. The converse is trivial. For the other direction, suppose there exists a winning

strategy automaton A = (V, {v0}, δ, L), where L(v0) = ι. The proof proceeds by

constructing a new strategy automaton that is winning and by presenting a reach

annotation for it. Let ψsys
0 , ψsys

1 , . . . , ψsys
n−1 be the system liveness subformulae in the

GR(1) formula ϕ (cf. (2.3)). Define the tuple Â = (V̂ , {(v0, 0)}, δ̂, L̂), where V̂ =

V × {0, . . . , n− 1}, L̂((v, i)) = L(v) for all (v, i) ∈ V̂ , and

δ̂((v, i), e) =

{
(δ(v, e), i+ 1 mod n) if L(v) |= ϕsys

i

(δ(v, e), i) otherwise

37

for all (v, i) ∈ V̂ , for all e ∈ Eenv
ϕ (L̂((v, i))). Clearly Â is a strategy automaton. It

is also winning, because there is a bijection between executions, and hence traces, of

Â and A. Now define RA : V̂ → {0, . . . , n − 1} × N as follows. For each (v, i) ∈ V̂ ,

RA1((v, i)) = i, and

RA2((v, i)) =

{
0 if L(v) |= ϕsys

i

1 otherwise.

Combining these as RA((v, i)) = (RA1((v, i)),RA2((v, i))), it follows that RA is a

reach annotation on Â. Furthermore, L̂((v0, 0)) = L(v0) = ι. By Theorem 3, Â is

winning.

The construction of a new strategy together with reach annotation in the proof

of Theorem 4 implies the following.

Corollary 5. Given a winning strategy automaton A = (V, {v0}, δ, L), a winning

strategy automaton A′ (possibly equal to A) together with a reach annotation on A′ can

be constructed in time O(n(|V |+ |E(A)|)), where E(A) is defined by equation (3.4).

3.7 Reachability games

The final preparation before introducing algorithms that solve Problem 3 is to pose

a game that can be regarded as a restriction of GR(1) games. The synthesis problem

posed here is smaller (easier to solve, in a precise sense) than GR(1). A solution

procedure is described, and strategies for it are shown to admit an annotation similar

to that introduced in Definition 2. These strategies are used later as modifications

(patches) to a given strategy automaton.

As in previous sections, let Σ = 2APenv ∪APsys
, which is referred to as the set of

(game) states. For a set of states Q ⊆ Σ, the characteristic formula is the Boolean

(non-temporal) formula χQ that has support of (is satisfied precisely on) Q, i.e., for

each x ∈ Σ, x satisfies χQ if and only if x ∈ Q.

Let Q,F ⊆ Σ be sets of states, and let ϕ be a GR(1) formula (cf. (2.3) in §2.5).

The reachability game from Q to F , denoted by Reachϕ(Q,F), is the reactive LTL

38

formula

χQ ∧� ρenv ∧

(
m−1∧
j=0

� �ψ
env
j

)
=⇒ � ρsys ∧ �χF , (3.9)

for which the semantics are extended slightly from those introduced in §2.2 to allow

satisfaction in finite time. For a finite string α : [0, T]→ Σ, α |= Reachϕ(Q,F) if and

only if α(T) ∈ F and ασ |= Reachϕ(Q,F) for some infinite string σ : N→ Σ. (Recall

that ασ is the result of concatenation, as defined in §2.1, and thus is itself an infinite

string of Σ.)

Using the same time semantics as for GR(1) and further allowing plays to be

finite, a game is obtained from Reachϕ(Q,F). A system strategy is a partial function

f : Σ+× 2APenv → 2APsys
, and an environment strategy is a partial function g : Σ+ →

2APenv
. A string σ (possibly finite) is consistent with strategies f and g if

σ(t+ 1) = g(σ[0,t]) ∪ f(σ[0,t], g[0,t]),

which is just (2.4) of §2.5. (Consistent strings may also be called plays, follow-

ing terminology for GR(1) games.) A system strategy f is said to be winning for

Reachϕ(Q,F) if, for every environment strategy g and for every σ that is consistent

with f and g, σ |= Reachϕ(Q,F).

The problem of synthesis (i.e., finding a strategy that is winning) for Reachϕ(Q,F)

will be referred to as a reachability game. A method for synthesis is now given as

a µ-calculus formula based on that used for solving GR(1) games. Let F ⊆ Σ, and

define

Localϕ(F) = µY .

(
m−1∨
j=0

νX .
(
χF ∨ Preϕ(Y) ∨

(
¬ψenv

j ∧ Preϕ(X)
)))

, (3.10)

which is obtained by removing the outermost fixed-point operators, νZi, in (3.7) and

replacing (ψsys
i ∧ Preϕ(Zi+1)) with χF . As such, the solution procedure is entirely

similar except for reaching states in F , in which case the strategy can terminate, i.e.,

reach a node without outgoing transitions.

Solution strategies are defined as follows. A reach strategy automaton for the

39

reachability game Reachϕ(Q,F) is A = (V, I, δ, L), where V and L are defined as for

strategy automata (cf. §3.4), I is a set of initial nodes such that, for each x ∈ Q, there

is precisely one v ∈ I such that L(v) = x, and δ is defined as for strategy automata

except that a node v is not necessarily in the domain of δ (i.e., v can have no outgoing

transitions) if L(v) ∈ F , in which case v is called a terminal node. An execution r of

A is a string (possibly finite) of V such that r(0) ∈ I, for each t ≥ 0, there is some

e ∈ Eenv
ϕ (L(r(t))) such that r(t + 1) = δ(r(t), e), and r is finite only if L(r(T)) ∈ F ,

where r has length T + 1.

A partial reach annotation RA on a reach strategy automaton A for a reachability

game Reachϕ(Q,F) is a function RA : V → N that satisfies the following conditions:

1. For each v ∈ V , RA(v) = 0 if and only if L(v) ∈ F .

2. For each (u, v) ∈ E(A), if RA(u) 6= 0, then RA(u) ≥ RA(v), where E(A) is

defined by equation (3.4).

3. For any finite execution v1, v2, . . . , vK of A such that RA(v1) = · · · = RA(vK) >

0, there exists an environment goal ψenv
j such that for all k ∈ {1, . . . , K}, L(vk)

does not satisfy ψenv
j .

Comparing with Definition 2, a partial reach annotation is entirely similar to a reach

annotation as defined for GR(1) games if n = 1 (i.e., if there is one system liveness

requirement). Accordingly, proofs for the following are entirely similar to those given

in §3.6, with the extra details of beginning at every state in Q and of treating finite

plays that occur when a terminal node is reached.

Theorem 6. Let A = (V, I, δ, L) be a reach strategy automaton for the reachability

game Reachϕ(Q,F). If RA is a partial reach annotation on A for Reachϕ(Q,F), then

A is winning.

Theorem 7. There exists a winning reach strategy automaton for a reachability game

Reachϕ(Q,F) if and only if there exists a winning reach strategy automaton with a

reach annotation for Reachϕ(Q,F).

40

Remark 8. A partial reach annotation can be constructed using the indices of the in-

termediate values (Y l
i in (3.8)) of the fixed-point computation on (3.10) and thus does

not affect asymptotic complexity of the basic reachability game synthesis algorithm.

For brevity and when the meaning is clear from context, reach strategy automata

are also called substrategies.

3.8 Game changes that affect a strategy

Let (ι, ϕ) be a GR(1) game, let A be a strategy automaton that is winning for it,

and let RA be a reach annotation on A. Recall from Theorem 4 that being realizable

implies that we can find a winning strategy automaton with a reach annotation. For

Problem 3, consider the second GR(1) formula ϕ′ that occurs (ϕ being the first in the

sequence). It is possible that A is winning for ϕ′ without modification. For example,

if ϕ describes assumptions and requirements for an entire building, yet a controller

realizing it is able to keep the robot in a single room (and be correct), then changes

to ϕ that affect assumptions about a different room can be ignored.

Recall the game graph Gϕ associated with ϕ from §3.2. The change to a new

GR(1) formula ϕ′ can be interpreted as a modification to the edge set Gϕ. There are

two conditions in which the strategy automaton needs to be modified in order to be

winning for ϕ′.

1. New moves are available for the environment at one of the states that can be

reached in a play consistent with A, i.e.,

Cond1(u) = Eenv
ϕ′ (L(u)) \ Eenv

ϕ (L(u)) 6= ∅. (3.11)

2. One of the control (system) actions that may be taken by the strategy automa-

ton A is no longer safe, i.e.,

Cond2(u) = ∃e ∈ Eenv
ϕ (L(u)) : δ(u, e) /∈ Esys

ϕ′ (L(u), e). (3.12)

41

Both of these are predicates on the set of nodes in the strategy automaton. They are

used below to concisely enumerate nodes that are affected by the change to the GR(1)

formula ϕ. Let n be the number of system liveness (goal) subformulae ψsys
0 , . . . , ψsys

n−1

in ϕ and ϕ′; these do not change in the sequence of GR(1) formulae presented in

Problem 3. For each i ∈ {0, . . . , n− 1}, define

Ui = {v ∈ V | (RA1(v) = i) ∧ (RA2(v) 6= 0) ∧ (Cond1(v) ∨ Cond2(v))} , (3.13)

which is called the set of affected nodes for goal mode i. Recall from Definition 2 that

RA2(v) = 0 implies that L(v) satisfies ψsys
RA1(v), for v ∈ V . The definition of Ui can

thus be equivalently expressed in terms of satisfying ψsys
i .

Observe that there are only two other ways in which Gϕ′ can differ from Gϕ.

First, Eenv
ϕ (L(u)) \ Eenv

ϕ′ (L(u)) 6= ∅ for some u ∈ V . But then from the state L(u),

the environment has fewer moves available in the GR(1) game ϕ′ than in ϕ, and thus

from that state the strategy automaton A is still correct (but conservative). Second,

for some u ∈ V and some e ∈ Eenv
ϕ (L(u)), Esys

ϕ′ (L(u), e) \ Esys
ϕ (L(u), e) 6= ∅. But

then from the state L(u) and given the environment move e from there, the system

has more moves available in the GR(1) game ϕ′ than in ϕ, so again the strategy

automaton is still correct. Therefore, the two predicates Cond1 and Cond2 defined

above fully characterize the effect of changing the GR(1) formula as in Problem 3 on

a given strategy automaton.

Let Affected = {u ∈ V | Cond1(u) ∨ Cond2(u)}, and observe that
⋃n−1
i=0 Ui is not

necessarily equal to Affected (but is obviously a subset). The problem is now solved

by decomposing it into two cases. First, an algorithm is presented for the case of⋃n−1
i=0 Ui = Affected, i.e., when all of the affected nodes are between goal states, in

§3.9. Second, an algorithm is presented for the other case in §3.10.

42

3.9 Algorithm for patching between goal states

3.9.1 Overview

For the first algorithm, it is assumed that for each i ∈ {0, . . . , n − 1} where Ui 6= ∅,

the nodes v in the strategy automaton A where RA(v) = (i, 0), i.e., where L(v) is

an i-system goal state, are not affected. Under this assumption, the basic effort in

modifying A is to find a new way to reach one of these surviving i-system goal states.

For this, a reachability game is solved and then patched into A. An algorithm for the

other case is given in the sequel, §3.10.

The main steps of the algorithm are outlined as follows. A subset of states N ⊆ Σ

is given; it should be sufficiently large to contain all states that label nodes in ∪iUi.

In practice this can be a norm ball of game states around a physical position at which

the requirements or assumptions about reachability have changed. In summary, for

each i with nonempty Ui:

1. Create the set Ni of nodes of A that have label in N and goal mode i (i.e., RA1

value of i).

2. Create the set Entryi of labels of nodes in Ni that can be entered from outside

Ni in the original strategy. Also include in this set the current state of the play

(assuming the algorithm is being used online, we must address how to move

from the current position).

3. Compute the minimum RA2 value (related to the reach annotation yielded by

the automaton) over all nodes in Ui ∪
(
L−1(Entryi) ∩ RA−1

1 (i)
)
, and call it m∗.

4. Create the set Exiti of states of nodes v in Ni with RA2(v) less than m∗.

Precisely,

Exiti = {L(v) | v ∈ Ni,RA2(v) < m∗} .

5. Compute a winning strategy Ai for the reachability game Reachϕ′(Entryi,Exiti).

If it cannot be realized, then fail (cf. discussion below about completeness of

43

the algorithm). Otherwise, use it to mend the original strategy A by replacing

nodes in Ni with the nodes in Ai, and adding appropriate edges corresponding

to the edges into the entry states and the edges from the exit nodes in A.

Intuitively, the construction of the sets Entry and Exit is guided by the values of

the reach annotation to ensure that, if a local strategy is found from Entry to Exit,

then the reach annotation values must have decreased. The monotonicity provides

for correctness of executions in the modified strategy automaton A′, in particular

avoiding the creation of a cycle that provides a trace of A′ that does not satisfy ϕ′.

Finally, after having applied patches to obtain a strategy automaton A′, a new

reach annotation is constructed for it. This is performed by scaling some of the exist-

ing RA2 values of the given reach annotation on A, and then using the annotations

from the solutions of the reachability games after adding an offset value depending on

the lowest node from the original A at which the patch is attached. Thus presenting

a reach annotation RA′ on A′ for ϕ′, correctness follows from Theorem 3, and the

same algorithm can be applied again on A′ and RA′, etc.

3.9.2 Formal statement

A precise statement is presented in Algorithms 1 and 2. Several clarifications are

the following:

• N ⊆ Σ is a precondition asserting that a set of neighborhood states is given.

Note that N can be defined by a predicate on APenv ∪APsys.

• Line 11: Plays can begin at the initial node v0, which corresponds to the state ι.

Thus, if v0 is in Ni, ι must be included in Entryi independent of predecessors

of v0.

• Line 14 of Algorithm 1: The reachability game Reachϕ′(Entryi,Exiti) is solved

from a fixed-point computation on the µ-calculus formula Localϕ′(Exiti), as

defined in (3.10). It is described as local because the controlled predecessor

44

Algorithm 1 Find local strategies

1: INPUT: GR(1) formula ϕ, strategy automaton A = (V, {v0}, δ, L), reach annota-
tion RA, modified formula ϕ′, neighborhood N ⊆ Σ

2: OUTPUT: set of triples (Ai,Entryi,Exiti) with partial reach annotation RAi

3: Patches := ∅
4: find affected node sets U0, U1, . . . , Un−1 //equation (3.13).
5: for all i such that Ui 6= ∅ do
6: Ni := {v ∈ V | L(v) ∈ N ∧ RA1(v) = i}
7: if Ui \Ni 6= ∅ then
8: error — Ni is too small.
9: end if
10: Entryi := {L(v) | v ∈ Ni ∧ ∃u ∈ V \Ni : (u, v) ∈ E(A)}
11: if v0 ∈ Ni, then Entryi := Entryi ∪{L(v0)}
12: m∗ := minv∈Ui∪(L−1(Entryi)∩RA−1

1 (i)) RA2(v)

13: Exiti := {L(v) | v ∈ Ni ∧ RA2(v) < m∗ ∧ ∃u ∈ V \Ni : (v, u) ∈ E(A)}
14: if Entryi * [[Localϕ′(Exiti)]] then
15: error — local problem unrealizable.
16: else
17: synthesize Ai for Reachϕ′(Entryi,Exiti) with partial reach annotation RAi

18: Patches := Patches ∪
{((

Ai,Entryi,Exiti
)
, Ni,RAi

)}
19: end if
20: end for
21: return Patches

operation Preϕ′ can be constrained to N , thereby reducing the size of the set of

vertices reachable in the game graph.

• Line 19 of Algorithm 2: Find the minimum positive integer such that the dis-

tance between the Entry and Exit sets (i.e., m∗ − m∗) is greater than the

maximum partial reach annotation value mlocal on the local strategy Ai.

3.10 Algorithm for patching across goal states

A limitation of the algorithm presented in the previous section is that nodes in A

corresponding to goal satisfaction cannot be removed. When some of the goals

ψsys
0 , . . . , ψsys

n−1 depend on the position of the robot, it can occur that a wandering

obstacle transiently covers goal states that would be reached under A, or that a

new static obstacle that intersects a goal region is discovered. An ambition of this

45

Algorithm 2 Merge local strategies into the original

1: INPUT: GR(1) formula ϕ, strategy automaton A = (V, {v0}, δ, L), reach an-
notation RA, modified formula ϕ′, neighborhood N ⊆ Σ, and Patches from
Algorithm 1.

2: OUTPUT: Strategy automaton A′ for ϕ′ with reach annotation RA′

3: for all
(
(Ai = (V i, I i, δi, Li),Entryi,Exiti), Ni,RAi

)
∈ Patches do

4: for all s ∈ Entryi do
5: find u ∈ I i such that Li(u) = s
6: for all v ∈ V \Ni such that (v, u′) ∈ E(A) for some u′ ∈ Ni with L(u′) = s

do
7: replace edge (v, u′) of δ by (v, u)
8: end for
9: end for
10: m∗ := maxv∈L−1(Exiti)∩RA−1

1 (i) RA2(v)

11: for all u ∈ V i such that RAi(u) = 0 (equivalently, Li(u) ∈ Exiti) do
12: let v ∈ Ni such that RA2(v) < m∗ and L(v) = Li(u)
13: change all outgoing edges from v to be outgoing from u
14: end for
15: mlocal := maxv∈V i RAi(v)
16: for all v ∈ V i do
17: RAi(v) := RAi(v) +m∗
18: end for
19: α := mink∈Z+,k(m∗−m∗)>mlocal

k
20: for all v ∈ V with RA1(v) = i do
21: RA2(v) := α · RA2(v)
22: end for
23: V := (V \Ni) ∪ V i

24: remove edges from δ which intersect with Ni

25: add all edges from δi to δ
26: extend L to include nodes in V i

27: A′ := (V, {v0}, δ, L) and RA′ := RA.
28: end for

section is to achieve robustness against more types of uncertain moving obstacles.

Furthermore, the development here provides a certain monotonicity with respect to

approaching global re-synthesis as the portion of A that is mended increases.

For any node v ∈ V , the first element RA1(v) is said to be the goal mode of v.

Intuitively, upon reaching the node v, automaton A is pursuing a state that satisfies

ψsys
RA1(v). Whether it is actually making progress toward that goal is indicated by the

second element RA2. If RA2 decreases across an edge (u, v) in A (i.e., RA2(v) <

46

RA2(u)), then strict progress is made. Otherwise one of the environment liveness

conditions ψenv
0 , . . . , ψenv

m−1 in (2.3) is not being satisfied. When the goal ψsys
i of the

current mode i being pursued is reached, the goal mode is incremented (modulo n)

until an index j is found such that ψsys
j is not satisfied at the current state. Such a

transition corresponds to an edge (u, v) ∈ E(A) where RA1(u) = i and RA1(v) = j.

In order to study the structure of plays under A in terms of reaching goal states,

first partition the set of nodes according to goal mode, i.e.,

Vi = {v ∈ V | RA1(v) = i} , (3.14)

and then define an edge set over this partition by

Ê = {(Vi, Vj) | i 6= j ∧ ∃u ∈ Vi, ∃v ∈ Vj : (u, v) ∈ E} . (3.15)

Note that Ê is well-defined because V0, V1, . . . , Vn−1 are mutually disjoint. From

Definition 2, it should be clear that edges in Ê correspond to satisfaction of task

goals ψsys
0 , . . . , ψsys

n−1 because across any such edge, the mode RA1 changes.

Consider the directed graph
(
{V0, V1, . . . , Vn−1} , Ê

)
, which is obtained from (2.3)

and a winning strategy automaton equipped with reach annotation RA as described

previously. It turns out that this graph is a chain for many tasks in robotics, as is now

shown. By construction of RA, if the goal mode changes by more than 1, then more

than one goal must be satisfied upon reaching that node during any play. Precisely

this is expressed as

Remark 9. If there exists an edge (u, v) ∈ E such that

|RA1(v)− RA1(u) mod n| > 1,

then there exist goal indices i, j such that [[ψsys
i]] ∩ [[ψsys

j]] 6= ∅.

Typically the goals in a robot task are disjoint. For a small example, consider

surveillance of several locations in an office building. The robot cannot simultane-

ously occupy multiple locations at once, and therefore the corresponding goal con-

47

ditions ψsys
0 , . . . , ψsys

n−1 in (2.3) are disjoint. This remains true even if variables not

corresponding to physical positions are introduced into the task formula ϕ, provided

that position variables are combined with the other variables by conjunction, e.g., go

to that room and capture a photograph. In Boolean logic notation, this property is

expressed by

ψsys
i ∧ ψ

sys
j ≡ false for all i 6= j, (3.16)

or in terms of sets of states, [[ψsys
i]] ∩ [[ψsys

j]] = ∅ for all distinct pairs of indices i, j.

Therefore, for any robot task satisfying (3.16), it follows from Remark 9 that the

graph
(
{V0, V1, . . . , Vn−1} , Ê

)
can only have edges of the form (Vi, Vi+1) or (Vi, Vi−1),

where index arithmetic is modulo n. Thus, any cycle either has length 2 or n. (It

is immediate from the definition of Ê in (3.15) that there cannot be self-loops, i.e.,

cycles of length 1.) Without loss of generality, we can assume that system goals are

pursued in order, as appearing in the task formula ϕ. To justify this, notice that

mode i only concerns pursuit of a particular goal ψsys
i —satisfaction of a different goal

ψsys
j , j 6= i, en route will not affect the current mode. Combining this with previous

observations, the following lemma is proven.

Lemma 10. The graph
(
{V0, V1, . . . , Vn−1} , Ê

)
is a subgraph of a chain.

Note that the lemma states “subgraph of a chain” because a winning strategy

automaton can block one of the environment liveness conditions ψenv
j of (2.3), possibly

causing a node Vi to have no outgoing edges. A practical example is a strategy in

which the robot blocks the doorway, thus preventing the door from closing, as may

have been assumed to always eventually happen.

The extension to the patching algorithm of §3.9 can now be presented. Let A =

(V, {v0}, δ, L) be a strategy automaton that is winning for the GR(1) game (ι, ϕ). Let

N ⊆ Σ be a set of discrete states, e.g., corresponding to a ball in the robot workspace,

over which the strategy from A must be changed. A change is required because a new

task formula ϕ′ was obtained due to modification of the transition rules, i.e., one step

in an instance of Problem 3. As in the previous section, using the inverse of the node

labelling function L, we can find sets of nodes that must be replaced and partition

48

them according to goal mode. For each i = 0, 1, . . . , n− 1, define

Ni = {u ∈ V | L(u) ∈ N ∧ RA1(u) = i} .

Clearly, Ni ⊆ Vi, and indeed, this set is equivalently expressed by Ni = L−1(N) ∩

Vi. Regarding the sets N0, N1, . . . , Nn−1 as vertices in a graph, a new edge set ÊN

is constructed similarly to Ê in (3.15). Since each Ni is a subset of Vi, an edge

is in ÊN only if it is in Ê. Therefore it follows from Lemma 10 that the graph(
{N0, N1, . . . , Nn−1} , ÊN

)
is also a subgraph of a chain.

There are three possibilities for each part of this graph. We treat them separately

and summarize the steps for modifying the automaton A to recover correctness with

respect to the modified task formula ϕ′ by changing behavior over the states in N .

A formal statement is given in Algorithm 3. Before examining the three possibilities

for
(
{N0, N1, . . . , Nn−1} , ÊN

)
, observe that any edge in ÊN corresponds to a robot

goal being reached, i.e., (Ni, Ni+1) corresponds to an action by the automaton A in

which a ψsys
i -state is visited and the goal mode is incremented, modulo n. The first

possibility is that this graph is itself a chain; this is equivalently stated as the case

where there is transition into a goal state for each of the goals. Motivated by practical

rarity, in this case we simply perform global re-synthesis of the strategy automaton

A for the modified task formula ϕ′.

For the remaining two possibilities, the graph
(
{N0, N1, . . . , Nn−1} , ÊN

)
is not

itself a chain. However, recall that it is a subgraph of a chain, and therefore each

of the sets Ni is either isolated (i.e., without ingoing or outgoing edges) or part of

a finite sequence of edges of the form (Ni, Ni+1) , . . . , (Ni+κ−1, Ni+κ). An example of

this is given in Figure 3.3. In the former case, the nodes of A in Ni can be replaced

without changing the goal mode i. As such, the algorithm of the previous section can

be applied.

In the latter case, let I be a subset of {0, 1, . . . , n − 1} indexing the nodes Ni

that form a finite sequence of edges in ÊN . We create a new substrategy by solving

a sequence of reachability games. To begin, let the initial index in I be i, so that

49

Figure 3.3: Example of the graph
(
{N0, N1, N2} , ÊN

)
of sets of affected nodes, over

which patching will occur. The workspace is shown above this graph, with a light
blue circle indicating states over which re-planning should occur. In this case, there
are three system goals: ψsys

0 , ψsys
1 , ψsys

2 , which correspond to positions g0, g1, and g2,
respectively, in the workspace. Note that the curves indicate possible paths, whereas
A is actually a strategy and thus could lead to many different paths. Nodes in A
that correspond to pursuit of ψsys

2 -states are not affected by the change set N in
this example. Thus, N2 = ∅, and the N2 vertex is isolated in the above figure. By
contrast, there is an edge from N0 to N1, indicating that a goal state is reached by
an edge affected by the change set N . Thus, in terms of Algorithm 3, the index set
I0 will have two elements, and the substrategy corresponding to that edge will reach
a ψsys

0 -state en route to the Exit set.

I = {i, i + 1, . . . , i + (|I| − 1)}, where index arithmetic is modulo n. The sets of

nodes EntryI and ExitI are created in a manner similar to that in the previous

section, except that EntryI ⊆ L(Ni) and ExitI ⊆ L(Ni+(|I|−1)). Beginning at the end

of this sequence, first solve Reachϕ′([[ψ
sys
i+(|I|−1)−1]],ExitI). This method terminates

either when [[ψsys
i+(|I|−1)−1]] is obtained, or when a fixed-point occurs. In the former

case, let Bi+(|I|−1)−1 := [[ψsys
i+(|I|−1)−1]], and in the latter case, let Bi+(|I|−1)−1 be the

intersection of the fixed-point with [[ψsys
i+(|I|−1)−1]]. Note that, having been obtained

from Reachϕ′(), it is possible to reach ExitI from any initial state in Bi+(|I|−1)−1.

Now another reachability game is solved: Reachϕ′([[ψ
sys
i+(|I|−1)−2]], Bi+(|I|−1)−1). As in

the previous step, store the result to Bi+(|I|−1)−2. This process is repeated until Bi

50

is computed. If EntryI ⊆ Bi, then strategies for each of the reachability games

are chained together so that the resulting strategy automaton can drive the actual

game, which is governed by transition rules in ϕ′, from any initial state in EntryI

to some state in ExitI , while visiting robot goals ψsys
i , ψsys

i+1, . . . , ψ
sys
i−(|I|−1)−1 en route.

Otherwise, the algorithm aborts with failure.

In terms of Algorithm 3, if substrategy construction succeeds for each element Iκ

of the partition of indices, then the resulting substrategies in Patches can be patched

into the original automaton A′ in an entirely similar manner as for singleton Iκ in the

algorithm of §3.9.

3.11 Analysis

Several remarks and a theorem concerning correctness of the combination of Algo-

rithms 1 and 2 are given in this section. Analysis of the method of Section 3.10 is

not presented because it is quite similar to that of Chapter 4, as well as that given

below.

Remark 11. For each i ∈ {0, . . . , n−1}, Exiti (cf. definition on Line 13 of Algorithm 1)

does not share any states with Entryi or L(Ui). Precisely,

Exiti ∩
(
Entryi ∪L(Ui)

)
= ∅.

Recall from §3.2 that a graphGϕ = (Σ, Eenv
ϕ , Esys

ϕ) associated with the GR(1) game

of ϕ can be constructed. It is equivalent in that the synthesis problem can be posed as

controlling transitions on Gϕ and ensuring that sets of vertices are repeatedly visited

(system liveness satisfaction) or persistently avoided (environment liveness violation).

In the analysis below, changes to ρenv and ρsys are considered, which is equivalent to

changes in the edge functions Eenv
ϕ , Esys

ϕ .

Suppose that N ⊆ Σ is chosen such that the patching problem is feasible, i.e., the

algorithm terminates producing a modified strategy automaton A′ = (V ′, {v0}, δ′, L′).

51

Theorem 12. The output of Algorithm 2, A′ and RA′, is such that A′ is a strategy

automaton for ϕ′ and RA′ is a reach annotation on A′ with respect to ϕ′. Therefore,

A′ is a winning strategy automaton for (ι, ϕ′).

Proof. To show that A′ = (V ′, {v0}, δ′, L′) is a strategy automaton with initial node

labeled as ι, proof of the existence of an infinite execution is given by induction on the

graph structure of A′, such that any dead-end implies the play would be automatically

winning because ρenv is not satisfied by the move of the environment (other player).

The constructed execution is called r, and corresponds to a play from the labeling

L(r).

The base case is r(0) = ι. First, observe that there are two possibilities concerning

the initial node v0 of A. First, if it is in Ni for some i, then ι is in Entryi (cf. Line 11 of

Algorithm 1). For there to have been some A′ and RA′ returned, the algorithms must

have returned without error. Thus, the reachability game involving ι as labeling

v0 must have been solved, and therefore there is some node in A′ that is labeled

with ι and which we again call v0. (If v0 ∈ Ni, then it is deleted at Line 23 of

Algorithm 2, so it can instead be identified with the replacement v0 that is from V i.)

Let e ∈ 2APenv
. If e /∈ Eenv

ϕ′ (ι), then any suffix to the play is winning for the system.

Otherwise, since v0 has successors according to the reach strategy automaton that

solves Reachϕ′(Entryi,Exiti), there must be some u ∈ V ′ such that (v0, u) ∈ E(A′),

L′(u) ∩ APenv = e, and L′(u) ∩ APsys ∈ Esys
ϕ′ (ι, e). Take r(1) = u. The second

possibility is that v0 is not in Ni for any i, hence that v0 is not in Ui for any i. It

follows from the hypothesis that A is a strategy automaton for ϕ and that v0 must

have successors in A′ that are labeled with the same states as in A that there is some

u ∈ V ′ such that (v0, u) ∈ E(A′), L′(u) ∩ APenv = e, and L′(u) ∩ APsys ∈ Esys
ϕ′ (ι, e).

In this case, take r(1) = u.

For the induction step, let k > 0, and let e ∈ 2APenv
. If e /∈ Eenv

ϕ′ (L′(r(k))), then

any suffix to the play is winning for the system (so construction of r can stop or

proceed arbitrarily). Otherwise, there are two cases to consider. First, if r(k) ∈ V i

for some i, i.e., it is a node that occurs as part of a substrategy Ai used to solve

the reachability game Reachϕ′(Entryi,Exiti), then either there is a u ∈ V ′ such that

52

(r(k), u) ∈ E(Ai) and Li(u) ∩ APenv = e, or r(k) is a terminal node in Ai and thus

can be identified with a node of A that has state label in Exiti. For the former, by

definition of the reachability game Li(u) ∩ APsys ∈ Esys
ϕ′ (L′(r(k)), e), and thus, take

r(k + 1) = u. For the latter, r(k) /∈ Ui for any i, hence an appropriate u ∈ V must

exist by hypothesis from the original edgeset E(A). For the second case, i.e., r(k)

is not in V i for any i, r(k) must not be in Ui for any i, so the preceding argument

applies, and again we can take r(k + 1) = u. Therefore, by induction A′ has an

infinite execution r corresponding to any sequence of inputs that satisfy ρenv at each

transition, i.e., δ′ is well defined, and A′ is a strategy automaton.

It remains to show that RA′ is a reach annotation on A′ with respect to ϕ′, from

which it follows by Theorem 3 that A′ is winning for ϕ′. By hypothesis, the original

strategy automaton A has a reach annotation RA and each patch automaton Ai such

that (Ai,Entryi,Exiti) has partial reach annotation RAi. If describing a strategy

automaton, a partial reach annotation may be regarded as a reach annotation with

constant RAi
1. From these observations, it suffices to consider the transitions from A

into Ai, and Ai into A. Lines 10–22 of Algorithm 2 ensure that RA2 is nonincreasing

across these transitions. It follows that RA′ is a reach annotation on A′.

3.12 Numerical experiments

Toward practical validation of the proposed algorithms for patching a strategy after

changes to reachability in a GR(1) game, in this section experiments are performed

using random instances of two motion planning problems on graphs. In both cases,

the same basic steps are followed: generate an instance, solve it, modify reachability

in that instance, and then attempt to solve it using the methods of this chapter and,

separately, using global re-synthesis (no patching).

3.12.1 Gridworlds

An old problem domain in AI and path planning research is gridworlds. In the sim-

plest form, a gridworld is a 4-connected undirected graph in which some of the vertices

53

0 5 10 15 20 25 30

0

5

10

15

20

25

30

Figure 3.4: Example of a random gridworld with size 32× 32 and a block density of
0.2. The initial position is (0,11), which is in matrix-style notation of (row,column).
There are 5 randomly placed goal cells that are indicated by small red stars in the
plot, and two moving obstacles restricted to the gray regions.

are considered unsafe or blocked. The term 4-connected signifies that all vertices have

4 neighbors, except vertices along the boundary that have 2 or 3 neighbors depending

on whether or not it is a corner. The term “grid” emphasizes that the arrangement

of vertices is on a uniform grid, e.g., a bounded rectangle in Z2. For control synthe-

sis subject to temporal logic specifications, the setting of gridworlds is justified by

invoking a discrete abstraction to realize physical trajectories among cells; cf. §2.6.

As practical motivation, consider that a widely used device for mapping is the oc-

cupancy grid, which usually is a uniform grid in which each cell has an associated

likelihood of being occupied. Applying a threshold to these likelihoods results in a

gridworld because cells likely to be occupied are simply treated as static obstacles,

and other regions are regarded as free for motion. Obviously more sophistication

can be used, e.g., incorporating likelihoods from the occupancy grid as part of cost

for planning motion through the map, but the salient features of gridworlds are still

present. Furthermore, slowly moving indoor mobile robots, which usually can rotate

in place, easily allow uniform grids for discrete abstractions.

54

Gridworld generation for each trial is achieved in two parts. First, randomly

generate realizable gridworlds of size 32 × 32 and block density of 0.2, having one

initial cell and 5 goal cells, along with 2 moving obstacles. This forms the nominal

GR(1) game, i.e., ϕ0 in Problem 3. An example of a gridworld thus sampled is shown

in Figure 3.4. Each moving obstacle is constrained to motion in a subgrid of size 3×3,

and must always eventually return to the center of the subgrid. This assumption of

returning to the center prevents arbitrary blocking of the robot and is represented

in the GR(1) formula as one of the ψenv
j subformulae. After a nominal realizable

gridworld is sampled, a new static obstacle is introduced by blocking a cell that is

• not a static obstacle, i.e., not already an unreachable position;

• not a goal cell, the blocking of which would cause the modified GR(1) game to

be unrealizable;

• not the initial cell, the blocking of which would again cause the modified GR(1)

game to be unrealizable;

• visited under some play of the strategy.

The final qualifier ensures that the game change actually affects the original strategy

automaton in the sense of §3.8. After the location (cell) of the new static obstacle is

selected, then the trial proceeds:

1. synthesis for the nominal GR(1) formula is performed;

2. the new static obstacle is introduced;

3. global re-synthesis is performed;

4. patching is performed (separately from the global re-synthesis).

Patching is attempted over subsets of states in progressively larger ∞-norm balls

centered at the newly blocked cell and beginning with radius of 1 and continuing to

5 until success. Note that patching may fail for all attempted radii of norm balls.

Times required for the different methods are shown in Figures 3.5 and 3.6.

55

0 20 40 60 80 100 120 140 160
Global re-synthesis duration (s)

0

20

40

60

80

100

Pa
tc

hi
ng

 d
ur

at
io

n
(s

)

0.1
0.2
0.3

Figure 3.5: Scatter plot of global re-synthesis times against patching times for block
densities of 0.1 in 52 trials, 0.2 in 16 trials, and 0.3 in 71 trials. The solid black line
has unity slope.

0.10 0.15 0.20 0.25 0.30
Block density

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

at
ch

in
g

to
 re

-s
yn

th
es

is
 d

ur
at

io
ns

Figure 3.6: Mean values and standard deviations (as error bars) for ratios of patching
time to global re-synthesis, plotted with respect to block density. Numbers of trials
are 52 trials for density of 0.1, 16 trials for density of 0.2, and 71 trials for density
of 0.3.

56

3.12.2 Random graphs in Euclidean space

The numerical experiments on gridworlds described in the previous section have good

practical motivation for robots that have mostly trivial dynamics and are restricted

to planar workspaces, e.g., slowly moving outdoor rovers or indoor wheeled service

robots. Aerial vehicles and other dynamical systems for which simple kinematic

models are not sufficient may require discrete abstractions that are partitions of many

polytopes among which having shared facets is not enough to declare existence of

transitions. In robotics, workspaces may be discretized using cell decompositions

based on the locations and shapes of obstacles, which can be quite different from

a uniform, 4-connected grid [37]. The experiment described in this section is an

attempt to capture several salient features of discrete abstractions obtained in these

challenging settings.

In each trial, an undirected graph is constructed by uniform sampling of n points

in the rectangle [−10, 10]d ⊂ Rd. Call the resulting set of points V . Edges are created

between any two vertices that are within a distance of γ of each other, according to

the 2-norm (also known as the Euclidean norm),

Eγ = {(u, v) ∈ V × V | ‖u− v‖2 ≤ γ} .

A GR(1) game is defined by regarding the vertices as states and the edges as transition

rules. In the implementation, vertices are numbered and a single variable represents

the current vertex. Edges are expressed as implications, e.g., in the syntax of gr1c

(cf. Appendix C), an example of an LTL representation of three outgoing edges is

[](v=0 -> (v’=0 | v’=32 | v’=10))

which has the intuitive interpretation that, from the vertex 0 (which is a point in

Rd), the controller may select actions to transition to vertices 0, 32, or 10 (again, all

of which are points in Rd). Next a subset of vertices g ⊂ V is designated as goals

to be visited repeatedly, and a vertex ι ∈ V is the initial game state. Finally, the

environment is able to transiently declare certain vertices as being unreachable; it

57

10 5 0 5 10
10

5

0

5

10

Figure 3.7: Example of a random graph in R2 with 30 vertices and a maximum
connection distance of 4, using the 2-norm. All points are sampled on the rectangle
bounded by ±10 on both axes.

can choose from among the set M ⊂ V . Intuitively, the GR(1) specification thus

constructed can be thought of as a game of moving a token on a graph. At each

time, the controller chooses the next vertex on which to place the token from among

the available outgoing edges. The token must be placed on several of the vertices

repeatedly, and certain vertices can become unavailable according to the choice of an

adversary.

Examples of random graphs with vertices in R2 are shown in Figures 3.7 and 3.8.

While it is not studied here, it is an interesting direction of future work to explore

percolation behavior of these random graphs as recently studied in the context of

sampling-based motion planning [29]. Note that gridworlds from the previous section

are a special case of these random graphs, except in terms of moves that are available

to the adversary. Indeed, let V be the intersection of Z2 and [0, c− 1]× [0, r− 1], and

let the maximum connection distance γ = 1. This yields a 4-connected grid with r

“rows” and c “columns.” Removing vertices is equivalent to adding static obstacles.

Random trials were performed as described above, varying the number of vertices

(n), the number of vertices that the environment can block (|M |). To cause a change in

reachability in the GR(1) formula, a vertex is randomly selected for removal, provided

58

10 5 0 5 10
10

5

0

5

10

Figure 3.8: Example of a random graph in R2 with 100 vertices. Compare with
Figure 3.7.

0 2 4 6 8 10
Global re-synthesis duration (s)

0
1
2
3
4
5
6

Pa
tc

hi
ng

 d
ur

at
io

n
(s

) 10 vertices in M
20 vertices in M
30 vertices in M
40 vertices in M
50 vertices in M

Figure 3.9: Scatter plot of global re-synthesis times against patching times. For every
trial, the graph has 200 random vertices. The number that can be adversarially
disabled (i.e., the size of M) varies, as indicated in the plot. The maximum distance
for edges is γ = 4. The number of trials per condition 70 trials for |M | = 10, 82
trials for |M | = 20, 65 trials for |M | = 30, 78 trials for |M | = 40, and 75 trials for
|M | = 50. The solid black line has unity slope.

59

10 20 30 40 50
Number of adversarially available vertices

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

at
ch

in
g

to
 re

-s
yn

th
es

is
 d

ur
at

io
ns

Figure 3.10: Using the same data presented in Figure 3.9, mean ratios of time re-
quired to perform patching to that required for global re-synthesis (i.e., discarding
the nominal strategy). Error bars indicate 1 standard deviation. The numbers of
trials are listed in the caption of Figure 3.9.

that it is not a goal (which would render the modified specification unrealizable), it is

not the initial vertex, and that the state (vertex) is visited in some play of the nominal

strategy automaton. (This conditions for selecting a state to make unreachable are

entirely similar to those of the previous section, §3.12.1.) In all cases, points are in

R2 and the maximum distance for edges (γ) is 4. In each trial, neighborhoods for

patching are determined by finding all states (vertices) in a norm ball with center

at the newly removed vertex and progressively larger radii, from 0.1 to 10, using 20

steps in total including endpoints. Running times are shown in Figures 3.9 and 3.10.

60

Algorithm 3 Patching with goal states

1: INPUT: GR(1) formula ϕ, strategy A, reach annotation RA, modified formula
ϕ′, neighborhood N ⊆ Σ

2: OUTPUT: set of tuples (Aj,Entryj,Exitj, Ij) with partial reach annotation RAj

3: Patches := ∅
4: for all i = 0, 1, . . . , n− 1 //Sort by goal mode do
5: Ni := {u ∈ N | RA1(u) = i}
6: end for
7: ÊN := {(Ni, Nj) | Ni ×Nj ∩ E 6= ∅}
8: κ := 0
9: I0 := {0}
10: for all i = 0, 1, . . . , n− 1 //Partition indices do
11: if (Ni, Ni+1 mod n) ∈ ÊN then
12: Iκ := Iκ ∪ {i+ 1 mod n}
13: if i = n− 1 then
14: I0 := I0 ∪ Iκ //Merge first and last index sets
15: κ := κ− 1
16: end if
17: else
18: κ := κ+ 1
19: end if
20: end for
21: for all j = 0, 1, . . . , κ do
22: B := Exitj

23: set Aj to nil

24: set i such that Ij = {i, i+ 1, . . . , i+ |Ij| − 1} mod n.
25: for all offset = |Ij| − 2, |Ij| − 3, . . . , 0 do
26: C := [[ψsys

i+offset]] ∩ [[Localϕ′(B)]]
27: if C = ∅ then
28: abort //Failed to find a substrategy
29: end if
30: compute strategy AjC→B to reach B from C.
31: merge AjC→B into Aj.
32: B := C //Prepare for next loop iteration
33: end for
34: if Entryj * [[Localϕ′(B)]] then
35: abort //Failed to find a substrategy
36: end if
37: compute Aj

Entryj→B to reach B from Entryj.

38: merge Aj
Entryj→B into Aj.

39: Patches := Patches ∪ (Aj,Entryj,Exitj, Ij)
40: end for
41: return Patches

61

Chapter 4

Patching for Changes in
Requirements of Liveness

4.1 Introduction

In the previous chapter, a problem was studied in which a GR(1) game was incre-

mentally changed by modifying transition rules. That is, the safety aspect of the

game changed, and thus the set of reachable states that are winning was modified.

Algorithms were presented for adjusting (patching) a nominal strategy automaton in

response to these changes and thereby obtaining correctness (i.e., a winning strategy)

for the sequence of GR(1) formulae. In this chapter, incremental modifications to the

other major aspect of the GR(1) formula are addressed, namely the system liveness

requirements (or “system goals”):

n−1∧
i=0

� �ψ
sys
i .

Remember one of the salient properties of liveness compared to safety: a certificate of

violation of liveness cannot be provided as a finite sequence of states (a finite string,

using the terminology of LTL from §2.1 and §2.2). Thus, in contrast to the problem

setting of the previous chapter, the nominal strategy does not need to be patched

immediately. Instead, we can wait and modify the strategy automaton later. This

implies a great versatility in applications of the methods for adding and removing

62

system liveness conditions that are presented in this chapter.

In this chapter, an objective function on discrete states is used as a measure of

distance, specifically as part of the algorithm in Section 4.3.2. This could arise, for

instance, from a discrete abstraction on the workspace and continuous robot dynam-

ics. Since in the scope of the present work, nothing else is needed from the underlying

dynamical system, the construction of a discrete abstraction is not presented (but cf.

§2.6 for how one may be constructed). Instead, throughout the chapter reference is

made only to “discrete states.”

4.2 Problem statements

Before beginning, an important observation can be made about initial conditions and

the form of winning strategy automata.

Theorem 13. Let (ι, ϕ) be a GR(1) game that is realizable. There exists a winning

strategy automaton A = (V, {v0}, δ, L) such that for every execution r of A, r(t) 6= v0

for t > 0.

Proof. Let A = (V, {v0}, δ, L) be a winning strategy automaton for the GR(1) game,

which must exist by hypothesis (by definition of realizability). Suppose that the

desired property does not hold (otherwise A can be used as is), i.e., that for some

execution r of A, r(t) = v0 for some t > 0. Notice from the definition of executions

of strategy automata, r(0) = v0. Define a new strategy automaton A′ = (V ∪

{v′0}, {v′0}, δ′, L′) where for v ∈ V ∪ {v′0}

L′(v) =

{
L(v0) if v = v′0

L(v) otherwise,

and for all v ∈ V ∪ {v′0}, e ∈ Eenv
ϕ (L′(v))

δ′(v, e) =

{
δ(v0, e) if v = v′0

δ(v, e) otherwise.

63

It follows that A′ is a winning strategy automaton and that for all executions r of A′,

r(t) 6= v′0 for t > 0.

By the above theorem, it is without loss of generality that the strategy automaton

is taken to have an initial node that is not in a strongly-connected component. In

other words, for at least the node from which all executions begin (and possibly

others), there is always a finite prefix of game states after which those nodes of the

strategy automaton can never be returned to, under any play. Besides being useful

in theory, in practical implementations of synthesis algorithms it is always possible to

ensure that such a prefix of nodes is present. However, there is also usually a practical

motivation to produce small strategies, and one technique to do so is by avoiding a

separate initial prefix subgraph of the strategy. Throughout this chapter, we assume

such a compression has not been performed. This assumed form of the given strategy

automata is crucial for correctness results proven in Sections 4.3.3 and 4.4.3.

Recall the template of GR(1) formulae (2.3) from §2.5,

� ρenv ∧

(
m−1∧
j=0

� �ψ
env
j

)
=⇒ � ρsys ∧

(
n−1∧
i=0

� �ψ
sys
i

)
.

Throughout the chapter, “goals” or “robot goals” refer to subformulae ψsys
i appearing

on the right-side of the above. As in the previous chapter, specifications for which

the only feasible solutions drive the environment to a dead-end are not considered

here. Besides not being well-motivated generally, as argued in §2.5, such cases clearly

do not involve liveness (being finite strings) and therefore are not relevant for the

problems treated in this chapter.

We are now ready to state the problems solved in this chapter. Let (ι, ϕ) be a

GR(1) game, as in (2.3), and let A = (V, {v0}, δ, L) be a strategy automaton that

realizes ϕ.

Problem 4. Given a Boolean formula ζ, defined over the same atomic propositions

APenv ∪APsys as ϕ, find a strategy automaton realizing ϕ′, the modification of ϕ that

includes � � ζ as a requirement, or determine that ϕ′ is not realizable.

64

Problem 5. Given an index i ∈ {0, 1, . . . , n−1}, find a strategy automaton realizing

ϕ′, the formula obtained by deleting � �ψ
sys
i from ϕ, or determine that ϕ′ is not

realizable.

4.3 Adding goals

Problem 4 is a precise statement of the intuitive situation where, after having already

been given initial safety and liveness requirements about the behavior of a controller,

a new set of goal states is declared, and it must be repeatedly visited in addition to

original requirements. Practically this could occur because a new region of interest

is discovered in a long-running surveillance task. In contrast to Problem 3, only

a single modification (addition) occurs to the original GR(1) game. However, the

general problem of incremental addition of a sequence of new goals ζ1, ζ2, . . . is easily

obtained by iterating the statement of Problem 4.

As for the case of a change in reachability, obviously it is possible, upon receiving

the new request ζ, to perform global re-synthesis for ϕ′ from scratch, and discard

the original strategy automaton without attempting modifications. However, in some

cases we can reduce the time and amount of computation required, as demonstrated

empirically in §4.5.

4.3.1 Overview

Before presenting the algorithm, the major concepts and steps are described. Let

ϕ be a GR(1) formula with n system goals, i.e., having ψsys
0 , . . . , ψsys

n−1, and let

A = (V, {v0}, δ, L) be a winning strategy automaton for it. Let ζ be a Boolean

(non-temporal) formula in terms of APenv ∪APsys, as in the statement of Problem 4.

Omitting the transition rules, which are unchanged from ϕ, the new formula describ-

ing assumptions about environment liveness and the requirements of system (robot)

goals is
m−1∧
j=0

� �ψ
env
j =⇒

(
n−1∧
i=0

� �ψ
sys
i ∧� � ζ

)
. (4.1)

65

Recall that, by Theorem 4, we can suppose without loss of generality that there

is a reach annotation RA on A. (If there were not one for this particular A, we could

find a winning strategy automaton that has one.) Informally, the first value RA1 can

be thought of as the index of the goal currently being pursued by the strategy. As

such, for a node v ∈ V , RA1(v) is referred to as the goal mode at v. The motivation

for this terminology is that, by Definition 2, RA1 can only change value when a node

where RA2 is zero is reached, and this corresponds to a i-system goal state. Provided

fairness of the environment (i.e., satisfaction of the liveness conditions assumed for

it), a state satisfying ψsys
RA1(v) will eventually be reached because A is winning. Upon

reaching the goal state, the goal mode is incremented modulo n. Call the set of nodes

where a state satisfying ψsys
i is reached intentionally Gi. The strategy automaton can

thus be regarded grossly as moving among sets Gi, for i ∈ {0, 1, . . . , n− 1}, in which

system (robot) goals from ϕ are reached, again provided a fair environment. The

basic idea of the presented algorithm is to identify which of these sets is most near

states that satisfy the new goal ζ and then to pose and solve two reachability games

so that ζ-states can be reached and then the original strategy can be returned to.

The major steps of the algorithm are as follows.

1. Let Dist() be a function of pairs of discrete states to real numbers. (The name

“dist” is suggestive of “distance,” but as discussed later, it does not need to

be.) Apply Dist() to ζ-states pair with each of original system goal states:

ψsys
0 -states, ψsys

1 -states, etc. Choose i∗ ∈ {0, . . . , n− 1} achieving the minimum.

2. Find all nodes in the strategy automaton that intentionally reach states satis-

fying ψsys
i∗ and ψsys

i∗+1 (index addition is modulo n). This “intention” is made

precise in the presented algorithm using the reach annotation. Call these sets

of nodes Gi∗ and Gi∗+1, respectively. Note that the sets G0, . . . , Gn−1 are not

necessarily mutually disjoint. Also, for a winning strategy, it is still possible

that some Gi = ∅, because a winning strategy could involve one of the assumed

environment liveness conditions eventually being persistently not satisfied.

3. Solve two reachability games in sequence, first from Gi∗ (or rather, states with

66

0
1

0 1 2 3

0
1

0 1 2 3

Figure 4.1: Illustrative deterministic (without adversarial environment) example for
Algorithm 4. In both panels, a 2× 4 grid is shown. The original task is to visit cells
(0, 0) and (0, 3) repeatedly. In both panels, solid black circles are shown to indicate
locations where there is a node of the strategy automaton reaching a desired state. In
the top panel, the nominal strategy is indicated with solid curves between the nodes
to indicate possible trajectories by the underlying dynamical system, e.g., a double-
integrator. The star in cell (1, 1) is introduced as a new region to be repeatedly
visited. In the bottom panel, one of the nominal trajectories is deleted and new
(dotted) curves illustrate the patch.

which strategy nodes inGi∗ are labeled) to ζ-states, and then from those ζ-states

that were reached to Gi∗+1.

4. Delete existing nodes and edges in A that lead to Gi∗+1 from Gi∗ . Append

strategies for the two reachability games of the previous step, thereby obtaining

the patched strategy automaton A′.

A small example intended to illustrate the algorithm for handling new goals (Prob-

lem 4) is shown in Figure 4.1. The example is deterministic because there is no

adversary; motion by the robot is simply based on adjacency, as in a 4-connected

grid. Recall that the availability of a discrete abstraction (cf. §2.6) is assumed, and

thus motion among cells is concretely realized using some other controllers that are

known to exist as part of the abstraction. The curves in the figure illustrate physical

trajectories. The original task, as a GR(1) game, is to visit cells (0, 0) and (0, 3)

67

repeatedly. (Coordinates follow the common matrix convention of row, column.) Let

v0 be the node of the strategy automaton corresponding to occupancy of cell (0, 0),

and let v1 be the node corresponding to cell (0, 3). Notice that there may be multiple

nodes labeled with cells (0, 1) and (0, 2) because the action to take from those states

depends on history, or rather, the current goal mode. For this example, the algorithm

proceeds as follows.

1. Using the Euclidean distance between centers of cells for Dist(), the goal cell

(0, 0) is closer to the new goal (1, 1) than the other original goal cell (0, 3). As

such, take i∗ = 0.

2. Clearly G0 = {v0} and G1 = {v1}.

3. The reachability game to go from L(G0) = {(0, 0)} to the set of ζ-states, i.e.,

{(1, 1)}, is solved by a simple finite strategy moving down and to the right.

4. A similar strategy drives the robot from (1, 1) to (0, 3), thereby solving the

second reachability game to L(G1).

5. The solutions for the two reachability games are merged into the original strat-

egy automaton, and nodes that would drive to (0, 3) from (0, 0) are safely

deleted.

4.3.2 Algorithm

The method providing a solution for Problem 4 is presented in Algorithm 4. Ex-

planations of several details are as follows.

• Line 3: Despite the suggestive name, Dist() does not need to be a metric or

otherwise provide some formal notion of distance. Instead, it can be thought

of as an objective function to be used when deciding where to insert solutions

for the reachability games in which ζ-states are visited. Correctness of the

algorithm is not affected by this, and thus when no meaningful Dist is known,

it can simply be a constant (then the choice of i∗ is arbitrary).

68

Algorithm 4 Append a new goal ζ

1: INPUT: strategy automaton A = (V, I, δ, L), reach annotation RA,
distance function Dist, Boolean formula ζ

2: OUTPUT: augmented automaton A′ and reach annotation RA′

3: i∗ := argmini=0,1,...,n−1 Dist (ψsys
i , ζ).

4: Gi∗ := ∅
5: for all v ∈ V do
6: for all u ∈ Pre(v) do
7: if

(
RA1(u) < RA1(v) ∧ RA1(u) ≤ i∗ ∧ RA1(v) > i∗

)
∨
(

RA1(u) > RA1(v) ∧ (RA1(u) ≤ i∗ ∨ RA1(v) > i∗)
)

then
8: if RA2(u) = 0 then
9: Gi∗ := Gi∗ ∪ {u}
10: else
11: Gi∗ := Gi∗ ∪ {v}
12: end if
13: break //Skip to next iteration of outer for-loop
14: end if
15: end for
16: end for
17: construct the set Gi∗+1 in an entirely similar manner to Gi∗ , but for mode i∗+ 1.

18: if Reachϕ′(Gi∗ , [[ζ]]) is realizable then
19: synthesize strategy automaton Ai∗→ζ for reachability game Reachϕ′(Gi∗ , [[ζ]]).
20: else
21: abort
22: end if
23: set Gζ to all nodes in Ai∗→ζ that do not have outgoing edges.
24: if Reachϕ′(Gζ , Gi∗+1) is realizable then
25: synthesize strategy automaton Aζ→i∗+1 for Reachϕ′(Gζ , Gi∗+1).
26: else
27: abort
28: end if
29: V := V \ RA−1

1 (i∗ + 1)
30: V ′ := V ∪ Vi∗→ζ ∪ Vζ→i∗+1

31: set L′ and δ′ consistent with appending Ai∗→ζ and Aζ→i∗+1 to A.
32: define RA′ on V ′ so that it agrees with RA on V , RAi∗→ζ on Vi∗→ζ , and RAζ→i∗+1

on Vζ→i∗+1.

• Lines 4–16: Informally, Gi∗ is the set of nodes that satisfy the system goal ψsys
i∗

and where that was the intent of the strategy automaton. The motivation for

using the word “intent” is the pattern of values in the reach annotation that led

to the ψsys
i∗ -states, which is expressed by the complicated conditional statement.

69

Consult Definition 2 from §3.6 for details.

• Lines 21, 27: If one of the reachability games does not have a solution, then

abort. Note that patching here may fail despite the modified GR(1) game being

realizable. Discussion about completeness is given in §4.3.3.

• Line 29: Delete nodes from the original strategy that are no longer used because

solutions from the reachability games are used instead. Note that deleting old

paths in A between nodes reaching goal ψsys
i∗ -states and nodes reaching ψsys

i∗+1-

states is easily achieved since it suffices to delete original nodes annotated with

mode i∗ (and we are given RA, which provides this information).

• Lines 29–32: The final steps produce a new strategy automaton A′ and a reach

annotation RA′ on it by patching to the original the substrategies Ai∗→ζ =

(Vi∗→ζ , Ii∗→ζ , δi∗→ζ , Li∗→ζ) and Aζ→i∗+1 found in the algorithm when solving the

reachability games. The new labeling L′ : V ′ → Σ is built directly from the

components,

L′(v) =

L(v) if v ∈ V,

Li∗→ζ(v) if v ∈ Vi∗→ζ ,

Lζ→i∗+1(v) otherwise,

(4.2)

for v ∈ V ′. Notice that the node sets for the component strategies are disjoint

from each other and that of the original strategy automaton, i.e., V ′ is a disjoint

union of V , Vi∗→ζ , and Vζ→i∗+1. RA′ is defined similarly:

RA′(v) =

RA(v) if v ∈ V,

RAi∗→ζ(v) if v ∈ Vi∗→ζ ,

RAζ→i∗+1(v) otherwise.

(4.3)

Details for the creation of δ′ are entirely similar to those given in the previous

chapter, in particular Algorithm 2, and thus are omitted here.

70

4.3.3 Results

Correctness of Algorithm 4 is proven in this section. As part of the theorem, it is

also shown that the output provides a reach annotation, which is of separate interest

because it follows that the same algorithm or the others in this chapter or the previous

chapter can be used again, iteratively as reachability or liveness requirements change.

The section concludes about completeness.

Theorem 14. Let A = (V, {v0}, δ, L) be a strategy automaton that is winning for a

GR(1) game (ι, ϕ), and which has a reach annotation RA. Let ζ be a Boolean formula

over the same variables as ϕ, and let ϕ′ be the modification of ϕ to include � � ζ as

a requirement. If Algorithm 4 returns a strategy automaton A′ = (V ′, {v0}, δ′, L′) and

a map RA′, then they are correct with respect to ϕ′, i.e., A′ realizes ϕ′ and RA′ is a

reach annotation on A′ for ϕ′.

Proof. The proof proceeds in two steps, first showing that all plays under A′ are

infinite, and then showing that RA′ is a reach annotation, from which correctness

follows by Theorem 3 from §3.6. First, observe that ϕ′ has the same initial conditions

and transition rules as ϕ. We prove by induction on the graph structure of A′ that

all plays are infinite. For any initial state of ϕ′ (which corresponds exactly to initial

states of ϕ) we can select an initial node v0 such that L(v0) is equal to this initial

state. Furthermore, by assumption of the form of A described in §4.2, this same node

is preserved during the construction of A′ from A because it occurs in a prefix of A

(i.e., can occur at most once in any play). Since the transition rules are unchanged

in ϕ′, the hypothesis that A realizes ϕ implies that, for any environment move from

the state L(v0), there is an outgoing edge (i.e., a robot move) from v0 consistent

with the transition rules of ϕ′; otherwise, there would be a play in A that is finite,

contradicting the hypothesis of its correctness with respect to ϕ. For the induction

step, let vk be a node in A′ reached under a play σ0 · · ·σk (so that L(vk) = σk) that

is consistent with the initial conditions and transition rules of ϕ′ (which are the same

as those of ϕ). From Algorithm 4, this node is either a node originating from A, or

from one of the substrategies Ai∗→ζ or Aζ→i∗+1. In the first case, by hypothesis of A

71

realizing ϕ, for every possible environment move from σk, there is an outgoing edge

from vk consistent with the transition rules of ϕ′, leading to a node vk+1 in A′. In the

latter case, the definition of reachability games Reachϕ′ (cf. §3.7) ensures that every

possible move by the environment under ϕ′ from the state L(vk), and thus also under

ϕ, has a corresponding outgoing edge in Ai∗→ζ from node vk. Mutatis mutandis for

Aζ→i∗+1. Therefore by induction we conclude that all plays of A′ are infinite.

Next we show that RA′ is a reach annotation for A′ with respect to task formula

ϕ′. Let i∗ be the index of the goal immediately following which the substrategy

reaching ζ-states, Ai∗→ζ , is used. While not done explicitly in Algorithm 4, to fully

conform with the definition of reach annotation (cf. Definition 2 from §3.6) we adjust

all goal indices (modes) as follows. Define ψsys
n := ζ, and let ξ be the permutation of

{0, 1, . . . , n− 1, n} defined by

ξ(̂i) =

î if î ≤ i∗

n if î = i∗ + 1

î− 1 otherwise.

(4.4)

The robot goals can now be expressed in the usual form, as part of ϕ,

n∧
î=0

� �ψ
sys

ξ(̂i)
. (4.5)

Then RA′ is a reach annotation using the modes according to (4.5), i.e., as provided

by the permutation (4.4). Explicitly, define the function RA′′ to coincide with RA′

on the second part, i.e.,

RA′′2(v) = RA′2(v)

for all v ∈ V ′, and to use permuted modes from RA′ on the first part, i.e.,

RA′′1(v) = ξ−1(RA′1(v)). (4.6)

Finally, Algorithm 4 appends substrategies for entire modes, i.e., all original nodes

72

with mode i∗ + 1 are deleted, and the substrategies Ai∗→ζ are Aζ→i∗+1 are always

followed in sequence, and their nodes have modes n and i∗+1, respectively. Therefore,

RA′′ is a reach annotation for A′ with respect to ϕ′. Since RA′ is the same as RA′′

up to a permutation of goal modes, we have that RA′ is also a reach annotation for

A′. From Theorem 3, it follows that A′ must be winning, hence it must realize ϕ′,

concluding the proof.

The addition of a distinct system goal, i.e., where ζ 6≡ ψsys
i for all i, results in

a GR(1) game that is harder than the original in that a winning strategy for the

new game is necessarily winning for the original, but the converse does not hold.

Intuitively this is true because visitation of ζ-states can simply be ignored when

reasoning about correctness for the original game. In summary, we have

Remark 15. Any play that is correct with respect to ϕ′ is correct with respect to ϕ.

In terms of formal language inclusion, L(ϕ′) ⊆ L(ϕ).

Theorem 16. Algorithm 4 is not complete.

Proof. Consider the directed graph G having set of vertices {s1, s2, s3, s4, s5}. The set

of edges is that which minimally satisfies the following. (s1, s2) and (s1, s3) are edges.

The subgraphs induced by {s2, s4} and {s3, s5} are complete. (Cf. Figure 4.2). Let

the vertices of G be identified with atomic propositions, and consider the formula ρsys

defined such that precisely one of s1, . . . , s5 is true at each time. Take as initial state

{s1}. Now, defining ψsys
0 = s3 ∨ s4, a GR(1) game is obtained that lacks adversarial

environment and has one system liveness requirement (robot goal). Clearly a winning

strategy is to move from s1 to s3 and then remain in the subgraph induced by {s3, s5}.

Consider a new liveness requirement ζ = s2. Patching of the original strategy is not

possible. Since the strategy is fixed before ζ is known, this situation cannot be

avoided.

It should be apparent that the counter-example is not special to Algorithm 4

and could serve to demonstrate that other methods for incrementally adding liveness

73

s1

s3 s2

s5 s4

Figure 4.2: Depiction of the graph used in the proof of Theorem 16.

properties are not complete. However, the extent to which this is a practical limitation

in mobile robotics is not apparent (the counter-example seems contrived).

4.4 Removing goals

The inverse of goal addition is goal removal, and accordingly Problem 5 can be thought

of as a complement to Problem 4. However, removal of a system liveness requirement

(goal) results in a task that is easier because, as made precise later (§4.4.3, the

same strategy can continue to be used, unaltered in the new game. Nonetheless, for

long-running or indefinite tasks that involve many instances of Problems 4 and 5,

not pruning unnecessary parts of a strategy would allow it to grow without bound.

Moreover, the computational complexity of patching algorithms in this chapter and

the previous scale with the size of the strategy automata—another reason to prune if

possible. Algorithm 5 solves Problem 5 by deleting unnecessary parts of the strategy.

4.4.1 Overview

Before presenting the algorithm, a conceptual overview is given. Let ϕ be a GR(1)

formula with n system goals, i.e., having ψsys
0 , . . . , ψsys

n−1, and let A = (V, {v0}, δ, L)

74

Algorithm 5 Remove an existing goal ψsys
i

1: INPUT: strategy automaton A = (V, I, δ, L), reach annotation RA, goal index i
2: OUTPUT: pruned automaton A′ and reach annotation RA′

3: construct the sets Gi−1, Gi+1 in an entirely similar manner as in lines 4–16 of
Algorithm 4.

4: synthesize reach strategy automaton Ai−1→i+1 for the reachability game
Reachϕ′(Gi−1, Gi+1).

5: V := V \ (RA−1
1 (i) ∪ RA−1

1 (i+ 1))
6: V ′ := V ∪ Vi−1→i+1

7: define L′, δ′ consistent with previous line.
8: define RA′ to agree with RA on V and RAi−1→i+1 on Vi−1→i+1.

be a winning strategy automaton for it. Let i be the index of the goal to remove, as

in the statement of Problem 5. Omitting the transition rules, which are unchanged

from ϕ, the new formula describing assumptions about environment liveness and the

requirements of system (robot) goals is

� �ψ
sys
0 ∧ · · · ∧� �ψ

sys
i−1 ∧� �ψ

sys
i+1 ∧ · · · ∧� �ψ

sys
n−1. (4.7)

Recall from the discussion in Section 4.3.1 that without loss of generality there

is a reach annotation on A. Furthermore, the first part of it, RA1, indicates the

goal mode for each node, which intuitively is the index of the liveness requirement

currently being sought. Thus, in order to remove any behavior in pursuit of ψsys
i by

the given strategy, it is enough to delete those nodes have RA1-value of i and then to

patch the strategy with the solution of a reachability game between goals i − 1 and

i+ 1 (modulo n).

4.4.2 Algorithm

The presented solution for Problem 5 is Algorithm 5. Several details are as follows.

• Line 4: This reachability game always has a winning system strategy. Expla-

nation is given in §4.4.3.

• Line 5–8: The process of patching with the strategies from reachability games

is described in the previous chapter, in particular Algorithm 2.

75

4.4.3 Results

In this section, correctness and completeness are presented for Algorithm 5, and the

output is shown to provide a reach annotation. As was the case for the results about

Algorithm 4 for adding goals (cf. §4.3.3), producing a reach annotation is useful to

not only verify that the modified strategy automaton is winning but also so that

the other methods in this and the previous chapters can be applied, incrementally

correcting a strategy as the game changes in various ways.

In contrast to the first problem, unnecessary nodes in a strategy automaton do

not need to be pruned after a liveness requirement is removed. Compare the following

with Remark 15.

Remark 17. Any play that is correct with respect to ϕ is correct with respect to ϕ′.

Lemma 18. The reachability game Reachϕ′(Gi−1, Gi+1), appearing on line 4 of Al-

gorithm 5 is always realizable, i.e., there is at least one substrategy solving it under

the transition rules of ϕ′

Proof. Recall that the removal of a robot goal from the task does not alter transition

rules, nor initial conditions, nor environment liveness assumptions. Therefore, if a

state s can be driven by some (finite) strategy to a state t under formula ϕ, then it can

also be done under formula ϕ′ using the same strategy. By hypothesis, the original

automaton A realizes ϕ and in particular reaches Gi+1 from Gi−1, or else blocks an

environment liveness condition ψenv
j , and therefore A itself provides a feasible solution

to Reachϕ′(Gi−1, Gi+1).

Theorem 19. Let A be a strategy automaton realizing ϕ with reach annotation RA.

Let i ∈ {0, 1, . . . , n−1} be the index of the goal ψsys
i to be deleted from ϕ, yielding the

new task ϕ′. Then A′ returned by Algorithm 5 on these inputs realizes ϕ′, and RA′ is

a reach annotation.

Given its similarity to Theorem 14, only a sketch of a proof is given. First, observe

that all plays are infinite, i.e., there are no dead-ends in the automaton A. This is

true because the original automaton A has infinite plays from hypothesis, only nodes

76

labeled (via RA) for the deleted goal mode and its successor are removed from A,

and the nodes that temporarily have no outgoing edges are connected by a solution

of a reachability game that is guaranteed by Lemma 18 to exist. Since all plays are

infinite, the second step is to verify that RA′ is indeed a reach annotation. This can

be shown in a similar manner to that used in the proof of Theorem 14, but now

instead of a permutation of modes, we use an injection to account for the gap in the

sequence of goal modes due to deletion.

Theorem 20. Algorithm 5 is complete, i.e., if ϕ′ is realizable, then Algorithm 5 will

find a strategy automaton A′ realizing it.

Proof. It is enough to ensure that Algorithm 5 will terminate with some automaton

A′, because then, by Theorem 19 A′ must be correct. This is immediate because

Algorithm 5 contains nothing more than for-loops and a reachability game a solution

for which always exists by Lemma 18.

Though using Algorithm 5 for pruning is practically motivated by maintaining

succinct strategies, there is no guarantee of optimality. Indeed, a cost function was

not introduced in this chapter. However, the existing strategy A, which is valid for

the modified GR(1) formula ϕ′ by Remark 17, provides an upper bound on size.

Nonetheless, intuitively Algorithm 5 should produce strategies that are smaller when

there are shorter paths from states satisfying ψsys
i−1 to ψsys

i+1. Indeed, the usual imple-

mentation of GR(1) synthesis finds a path to goal states in a typical repeated graph

predecessor set computation, as outlined in §3.5.

4.5 Numerical experiments

Toward practical validation of the proposed algorithms for patching a strategy after

changes to liveness requirements in a GR(1) game, in this section two experiments are

performed. These are exactly the two settings used for experiments of the previous

chapter in §3.12, but with a few modifications for the present problems of goal addition

and removal.

77

4.5.1 Gridworlds

Similar to the experiment described in §3.12.1, random gridworlds are generated and

GR(1) formulae are created to express requirements of visiting certain cells repeatedly

while avoiding collisions with adversarial moving obstacles. Recall the example given

in Figure 3.4.

For all trials, the gridworlds have size 32×32. There is one initial cell, from which

the robot begins all plays, and there is 1 or 2 moving obstacles that are constrained to

a subgrid of size 3×3 that is randomly placed. The block densities, i.e., the proportion

of cells that are randomly chosen to be static obstacles, are 0.2 and 0.3. Each trial

is performed as follows. Gridworlds are randomly generated until a realizable one is

found with the previously described parameters and 10 randomly placed goals cells

that are to be visited infinitely often. Then, 9 of the goals are temporarily removed to

create a problem instance having only one goal cell (i.e., one position in the gridworld

to be repeatedly visited). This is solved to create the original GR(1) formula ϕ of

Problem 4 and a winning strategy automaton together with reach annotation on it.

Then, a sequence of applications of Algorithm 4 and global re-synthesis are performed

as each of the 9 goals is added back to the problem, where each addition in turn is ζ

of Problem 4.

Mean times with standard deviation bars are shown in plots of Figures 4.3, 4.4,

4.5, showing cases of 1 or 2 moving obstacles and block densities of 0.2 and 0.3. Means

of ratios of patching to global re-synthesis times are plotted in Figure 4.6, again with

bars showing standard deviation.

4.5.2 Random graphs in Euclidean space

Motivated to address some limitations of gridworlds as models of practical applica-

tions, in this section an experiment is described in which random graphs are created

in R2. The definitions are the same as those of the previous chapter in §3.12.2. How-

ever, the game created in each trial is analogously created to those of the previous

section: the randomly created realizable instance has g goals; all but one of these

78

1 2 3 4 5 6 7 8 9
Index in sequence of new goals

0

5

10

15

20

Du
ra

tio
n

(s
)

global re-synthesis
appending (patching)

Figure 4.3: Run-times (durations) for applying Algorithm 4 and global re-synthesis
(i.e., discarding the original strategy) for the case of 1 moving obstacle and block
density of 0.2. Data are from 10 trials. Points are mean values, and error bars are 1
standard deviation.

1 2 3 4 5 6 7 8 9
Index in sequence of new goals

0

20

40

60

80

100

120

Du
ra

tio
n

(s
)

global re-synthesis
appending (patching)

Figure 4.4: Run-times (durations) for applying Algorithm 4 and global re-synthesis
(i.e., discarding the original strategy) for the case of 2 moving obstacles and block
density of 0.2. Data are from 12 trials. Points are mean values, and error bars are 1
standard deviation.

79

1 2 3 4 5 6 7 8 9
Index in sequence of new goals

0

20

40

60

80

100

120

Du
ra

tio
n

(s
)

global re-synthesis
appending (patching)

Figure 4.5: Run-times (durations) for applying Algorithm 4 and global re-synthesis
(i.e., discarding the original strategy) for the case of 2 moving obstacles and block
density of 0.3. Data are from 21 trials. Points are mean values, and error bars are 1
standard deviation.

1 2 3 4 5 6 7 8 9
Index in sequence of new goals

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

at
ch

in
g

 to
 re

-s
yn

th
es

is
 d

ur
at

io
ns 1 troll, density 0.2

2 trolls, density 0.2
2 trolls, density 0.3

Figure 4.6: Ratios of run-times for applying Algorithm 4 vs. global re-synthesis. Data
for each case are as presented separately in Figures 4.3, 4.4, 4.5; in summary, there
are 10 trials for 1 moving obstacle (“troll”), block density 0.2; 12 trials for 2 moving
obstacles, block density 0.2; 21 trials for 2 moving obstacles, block density 0.3.

80

1 2 3 4 5 6 7 8 9
Index in sequence of new goals

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

Du
ra

tio
n

(s
)

global re-synthesis
appending (patching)

Figure 4.7: Run-times (durations) for applying Algorithm 4 and global re-synthesis
(i.e., discarding the original strategy) for the case of 20 vertices that can be adver-
sarially disabled (i.e., the size of M), out of the graph of 200 random vertices in Rd.
The maximum distance for edges is γ = 4. Data are from 150 trials.

are removed to obtain the original problem, and then each is added back in turn,

resulting in a sequence of goal additions (each being an instance of Problem 4).

Mean times with standard deviation bars are shown in plots of Figures 4.7 and 4.8,

and ratios of times are shown in Figure 4.9.

81

1 2 3 4 5 6 7 8 9
Index in sequence of new goals

0
2
4
6
8

10
12
14

Du
ra

tio
n

(s
)

global re-synthesis
appending (patching)

Figure 4.8: Run-times (durations) for applying Algorithm 4 and global re-synthesis
(i.e., discarding the original strategy) for the case of 50 vertices that can be adver-
sarially disabled (i.e., the size of M), out of the graph of 200 random vertices in Rd.
The maximum distance for edges is γ = 4. Data are from 150 trials.

1 2 3 4 5 6 7 8 9
Index in sequence of new goals

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

 o
f p

at
ch

in
g

 to
 re

-s
yn

th
es

is
 d

ur
at

io
ns 20 vertices in M

50 vertices in M

Figure 4.9: Ratios of run-times for applying Algorithm 4 vs. global re-synthesis. Data
for each case are as presented separately in Figures 4.7 and 4.8.

82

Chapter 5

Cross-entropy Motion Planning for
LTL Specifications

5.1 Introduction

In the previous two chapters, the problems and solutions have been entirely in terms

of systems that can be described by finitely many states. Practically this requires a

discrete abstraction, or rather, bisimulation in order to apply the synthesized con-

troller to the actual dynamical system. While there are methods for constructing

abstractions, e.g., as in the case of piecewise linear systems as shown in §2.6, in some

situations this is not tractable or not possible. Motivated by nonlinear dynamics and

labelings of state spaces that cannot be expressed as (nor usefully approximated as)

unions of polytopes, in this chapter control is achieved using stochastic optimization

for sampling-based trajectory generation.

The methods presented in this chapter build on the cross-entropy (CE) method

[17]. The basic CE-LTL algorithm that is presented first is essentially a generalization

of the CE motion planning methods introduced by Kobilarov [33]. Parts of this

chapter are based on joint work with Wolff [44].

83

5.2 Control system model and problem formula-

tion

5.2.1 Dynamics and labeling of states

Consider the discrete-time control system defined by the difference equation

x(t+ 1) = f(x(t), u(t)), (5.1)

where x(t) ∈ X are states, u(t) ∈ U are control inputs, and t ∈ N. A state x0 ∈ X is

designated as the initial state. Let AP be a set of atomic propositions. Together with

the dynamics, a labeling L : X → 2AP is given that assigns a set of atomic propositions

to each state, thus indicating which are true at that state (as in previous chapters). A

trajectory of system (5.1) is a pair (x,u) of sequences of states and inputs, x : N→ X

and u : N→ U , such that for t ≥ 0, x(t+ 1) = f(x(t),u(t)) and x(0) = x0. The trace

of a trajectory is the sequence of state labels

L((x,u)) : N→ 2AP

t 7→ L(x(t)).

Notice that, while u is considered to be a part of the trajectory, control inputs are

not labeled and thus do not directly affect the trace. The treatment given here can

easily be extended to the case of labeled inputs.

5.2.2 Problem statement

Let J be a cost function that maps trajectories (state and control input sequences)

to nonnegative reals.

Problem 6. Let ϕ be an LTL formula, and let x0 ∈ X be the initial state. Find a

trajectory (x,u) that minimizes J(x,u) subject to L((x,u)) |= ϕ.

Though concise and general, this problem statement presents several difficulties.

84

No assumptions have been made on the difference equation (5.1) nor on the cost

function. Thus, with the trivial LTL formula true (for which every trajectory is

feasible, independently of the labeling on states), finding an optimal trajectory at

least requires solving an infinite horizon optimal control problem for a nonlinear

system. To proceed toward any solution for Problem 6, it is necessary to impose

assumptions about the representation of trajectories. From there, particular cases of

f and J can be treated.

5.3 The basic CE-LTL algorithm

The first proposed solution is a generalization of the basic CE motion planning al-

gorithms introduced by Kobilarov [33]. The basic insight here is that the feasibility

requirement of trajectories not being in collision with obstacles can be generalized to

satisfaction of an arbitrary LTL formula. The case of avoiding obstacles and reach-

ing a goal region is captured by the LTL formula �¬Obstacle ∧ �Goal, provided a

modification to the LTL semantics to permit the trajectory to end (thus produce a

finite trace) upon reaching a state in Goal. LTL is interpreted on infinite strings, and

thus a representation for trajectories is chosen that provides traces of infinite length

and is amenable to model checking.

Before beginning, the major steps of the basic CE-LTL are listed in summary.

Broadly interpreted, these are the basic steps characteristic of any procedure for

stochastic optimization [57].

1. Initialize a sampling distribution.

2. Sample until N trajectories that satisfy ϕ are found.

3. Order these according to cost J .

4. Adjust the sampling distribution toward the ρN lowest cost trajectories.

5. Repeat until an appropriate termination criterion is met.

85

5.3.1 Brief introduction to the cross-entropy method

One way to find trajectories that satisfy an LTL formula and minimize an objective

function, and thereby solve Problem 6, is to first find a probability distribution over

trajectories that has support precisely on the optimal set. If this could be achieved,

then obtaining an optimal trajectory is simply a matter of sampling from that dis-

tribution. While it may seem that this approach leads to a problem that is more

difficult than the one that we originally wanted to solve, the probabilistic approach

has the advantage that it more readily admits approximation and, in principle, the

well-known methods for learning parametric distributions can be brought to bear in a

general manner, instead of relying on special structure of enumerations of trajectories

for a particular dynamical system.

In this chapter, the major steps of optimization essentially follow those of the

cross-entropy method [17]. In this section a brief introduction to it is given in order

to provide some motivation for Algorithm 6, which is stated later in the chapter.

The original motivation for the cross-entropy method is estimation of rare events.

In the context of optimization, the “rare event” is the random sampling of values of

the problem variables that achieve the minimum. More precisely, let θ be a random

variable taking values in Θ, and let J : Θ → R be an objective function that maps

values of θ to positive real numbers. Let p(·, v̄) be the optimal probability density

function over Θ. For example, this could be a mixture of Gaussian (normal) distri-

butions. Let γ > 0. The estimation problem is then to find the probability that θ

randomly sampled according to p(·, v̄) is such that J(θ) ≤ γ, i.e., to find

l = Pv̄(J(z) ≤ γ) = Ev̄
(
I{J(θ)≤γ}

)
,

where Pv̄ is the probability measure corresponding to the density p(·, v̄), and Ev̄ is

the corresponding expectation. An approximation of this is

l̂ =
1

N

N∑
i=1

I{J(θi)≤γ}
p(θi, v̄)

p(θi, v)

86

where θ1, . . . , θN are independent and identically distributed samples from p(·, v),

which is called the importance density. Since the desired distribution of optimal values

is rare, l̂ will practically be zero because samples will rarely occur in the support of the

indicator function. This rarity is addressed in the cross-entropy method by beginning

instead with an arbitrary initial density function parameter v0 (practically chosen

to represent any prior information) and a cost bound γ1 that is sufficiently large

such that Pv0(J(θ) < γ1) is not too small. Using this initial distribution, N samples

θ1, . . . , θN are produced and then the best (i.e., lowest cost in terms of J) among

those are chosen and used to modify the probability density toward them, yielding

a new density parameter v1. Then the process repeats. This yields a sequence that

converges in the sense of the Kullback-Leibler (KL) divergence (or the cross-entropy)

to an optimal density parameter for importance sampling.

In some more detail, let ρ < 1 be a small scalar value, e.g., 0.1. Sample θ1, . . . , θN

from the distribution defined by p(·, v0). The level γ1 is obtained by sorting the

sampled values so that J(θs(1)) ≤ · · · ≤ J(θs(N)) for some permutation s of {1, . . . , N}

and assigning γ1 := J(θs(dρNe)). The elite set E1 is the set of samples with cost at

most γ1, i.e., {θi | J(θi) ≤ γ1}, which has at least dρNe elements by construction.

The density parameter for the cost level γ1 is then approximated by

v∗1 = arg max
v∈V

1

N

N∑
i=1

I{J(θi)≤γ̂1} ln p(θi, v).

To avoid overfitting, the new parameters are taken to be a weighted sum of the best-fit

(above) and the density parameters of the previous iteration, i.e.,

v1 = αv∗1 + (1− α)v0,

where 0 < α < 1. These steps are repeated until samples meeting some termination

criterion for the original optimization problem is met, e.g., if γj does not change much

during several iterations.

87

5.3.2 Representation of trajectories

An infinite string σ : N→ 2AP is said to be eventually periodic if there exist τ , T > 0

such that for every t > τ , σ(t) = σ(t+ T), in which case T is called the period, σ[0,τ]

is the prefix and σ[τ+1,τ+T] the periodic suffix. Another common notation to express

infinite repetition of the finite suffix string after the prefix is σ[0,τ]

(
σ[τ+1,τ+T]

)ω
= σ.

Let ϕ be an LTL formula in terms of the atomic propositions AP. The set of strings

that satisfy ϕ is nonempty if and only if it contains a string that is eventually periodic.

Motivated by this fact and practical considerations, all trajectories generated by the

forthcoming algorithm are eventually periodic. This is restrictive in that there may

be optimal trajectories satisfying an LTL formula that are not eventually periodic.

The author is not aware of any examples at the time of writing, but one could begin

with a line of irrational slope on the torus where states are labeled according to a

uniform grid. It is an interesting direction of future work to find examples of this in

practical scenarios.

Let x : [0,M] → X, u : [0,M] → U , where M is a positive integer, and let

τ ≥ 0. Suppose that x(t+ 1) = f(x(t),u(t)) for 0 ≤ t ≤M − 1, and that x(τ + 1) =

f(x(M),u(M)). The triple (x,u, τ) determines an eventually periodic trajectory

(x̂, û) with period T = M − τ by taking

x̂ = x[0,τ]

(
x[τ+1,M]

)ω
û = u[0,τ]

(
u[τ+1,M]

)ω
,

where the notation of infinite string repetition is used (cf. §2.1). The trace of (x,u, τ)

is then defined as L((x,u, τ)) = L((x̂, û)), and the cost as J((x,u, τ)) = J(x̂, û).

Because of this construction, triples (x,u, τ) satisfying the above properties will be

regarded themselves as eventually periodic trajectories, without an explicit reference

to (x̂, û).

To be a candidate solution, a pair of sequences (x,u) must be feasible in two

respects. First, it must satisfy the dynamics (5.1), i.e., it must be a trajectory of the

control system. Second, the corresponding sequence of labels L((x,u)) must satisfy

88

the LTL formula ϕ. Directly sampling a trajectory, i.e., a set of values in X and U ,

will be practically impossible because the equality constraint that is the difference

equation (5.1) corresponds to an event of measure zero. Therefore, sampling is instead

from a parameter space, and each parameter vector uniquely determines a trajectory

that is dynamically feasible by construction.

In more detail, let Θ be a manifold on which a parametric probability density

function p(·, v) is defined. Suppose there is a subroutine GenTraj that is given and

can produce trajectories that are eventually periodic from points in Θ, i.e.,

(xθ,uθ, τθ) = GenTraj(θ).

The details of this subroutine depend on the dynamics under consideration. Details

for the case of Dubins car and the single-integrator are given later in this chapter

in §5.5. Two common approaches in practice are piecewise-constant control inputs,

and waypoints in the state space. For the former, a trajectory is easily constructed

by integrating (5.1) and then solving a two-point boundary value problem back to

form a repeating suffix of the trajectory. For the latter, a sequence of boundary-value

problems must be solved.

5.3.3 Deciding feasibility of trajectories

Given a sampled parameter vector θ, let (xθ,uθ, τθ) be the eventually periodic tra-

jectory generated from it, as described in the previous section. Let T be the period.

Then the trace is

L((xθ,uθ, τθ)) = L((xθ,uθ, τθ))[0,τθ]

(
L((xθ,uθ, τθ))[τθ+1,τθ+T]

)ω
,

which is an infinite string of 2AP. Let ϕ be an LTL formula. The problem of decid-

ing whether L((xθ,uθ, τθ)) satisfies ϕ is well-studied, and there are many algorithms

for doing so. Like the trajectory construction from a parameter vector, this is an-

other part of the algorithm for which an interchangeable subroutine is invoked. In

89

this section, several possibilities are described. Only the first, checking satisfaction

by a deterministic Rabin automaton that recognizes ϕ, is considered in the numer-

ical experiments presented in §5.5. The relaxation presented in §5.4.2 later in this

chapter focuses on Büchi and Rabin automata, but the principles can be applied for

ω-automata having other types of acceptance.

One of the most important approaches to checking whether a string satisfies an

LTL formula is by constructing an ω-automaton equivalent to the LTL formula and

then checking whether that string is in the language of (i.e., is accepted by) that au-

tomaton [62]. Equivalence is defined as equality of language, where the language of an

LTL formula is the set of all strings satisfying it. For finite automata on finite strings,

determinism does not affect the class of languages recognized. For ω-automata, which

are defined for infinite strings, determinism can affect the expressiveness, notably for

Büchi acceptance. Thus, in applying automata-based model checking in the present

work, we must consider the exponential cost in size of deterministic automata com-

pared to nondeterministic automata that recognize the same language, and this must

be compared to the increased time complexity of checking whether a string is accepted

by a nondeterministic automaton. In the sequel, feasibility of trajectories is checked

using a deterministic Rabin automaton (defined next) because the exponential size

complexity can be incurred ahead of time, and in trade, the time required for checking

each trajectory is only that required to deterministically produce the corresponding

path in the automaton (as a directed graph).

A deterministic Rabin automaton A is a tuple (Q, q0, δ,F ,Σ), where Q is a finite

set, q0 ∈ Q, and δ : Q × Σ → Q. F = {(F0, B0), . . . , (FK , BK)}. A run of A is a

function r : N → Q where r(0) = q0 and for t ≥ 0, there is some a ∈ Σ such that

δ(r(t), a) = r(t+ 1). An infinite string σ : N→ Σ is said to be accepted by A if there

is some run r : N→ Q such that for t ≥ 0, δ(r(t), σ(t)) = r(t+ 1), and there is some

k such that Inf(r) ∩ Fk 6= ∅ and Inf(r) ∩Bk = ∅, where

Inf(r) = {q ∈ Q | ∀t. ∃τ > t. r(τ) = q}. (5.2)

90

Algorithm 6 CE-LTL

1: INPUT: LTL formula ϕ, cost function J , initial state x0, initial sampling distri-
bution p(·, v0), number of trajectories per iteration N , quantile ρ < 1, threshold
cost γ

2: OUTPUT: parameters θ∗ of best trajectory found
3: j := 0 //Iteration counter
4: repeat
5: for all i = 1, . . . , N do
6: repeat
7: θi ∼ p(·, vj)
8: (xθi ,uθi , τθi) = GenTraj(θi)
9: until L((xθi ,uθi , τθi)) |= ϕ
10: end for
11: sort θ1, . . . , θN according to cost, J((xθ1 ,uθ1 , τθ1)) ≤ · · · ≤ J((xθN ,uθN , τθN))
12: j := j + 1
13: vj := Update(vj−1, θ1, . . . , θdρNe)
14: until J((xθ1 ,uθ1 , τθ1)) < γ
15: return θ1 //Parameters of a trajectory with least cost

The set of strings accepted by A is denoted by L(A).

Since nondeterministinc Büchi automata are not used here, the details of deciding

acceptance are not presented, but note that a search must be performed because there

can be many possible paths for the same string (being nondeterministic).

5.3.4 Algorithm

The basic CE-LTL method is presented as Algorithm 6. Usage of the qualifier “ba-

sic” is motivated by clearly distinguishing Algorithm 6 from the extensions presented

later in this chapter in §5.4. Several details to supplement reading of the algorithm:

• Line 7: The parameter vector θi is sampled according to the distribution with

probability density function p(·, vj). Note that besides finding parameters θ∗

that provide a minimum cost trajectory, a distribution that is likely to sample

optimal trajectory is also being estimated, consistent with the basic operation

of the cross-entropy method (cf. §5.3.1).

• Line 8: Recall from §5.3.2 that trajectories are not sampled directly, but rather,

parameter values from which trajectories can be constructed are sampled. The

91

details of GenTraj(θi) depend on the dynamical system.

• Line 9: Consult §5.3.3 for discussion about deciding feasibility of a trajectory.

• Line 13: Intuitively, adjust the parametric probability density function (by

adjusting vj) to make it more likely to sample the best dρNe trajectories found

during this iteration, while keeping some variance to avoid over-fitting. The

Update subroutine is implemented as in §5.3.1. Other methods for learning

a parametric density function could be applied here, e.g., EM (expectation-

maximization).

• Line 14: The algorithm terminates when the minimum cost found is below a

threshold. Two other common termination conditions are upon a fixed number

of iterations and when the minimum cost has not changed much during several

iterations. These and others are described in standard books on stochastic

optimization, e.g., [57].

The part of the algorithm in which N feasible trajectories are sampled (lines 7–9)

is trivially parallelizable, i.e., an arbitrary number of concurrent processes can be

used to find the N trajectories and no coordination among them is needed. As

an implementation detail, it is important to take care that pseudo-random number

generators used in each thread have independent state, but this does not constrain the

amount of concurrency. This capability is a very attractive feature of the algorithm

(and the CE method in general) because randomly sampling trajectories that satisfy

an LTL formula is challenging, and motivates the techniques developed in the next

section.

5.4 Relaxations of the basic method

Without a good prior for the sampling distribution, it is a rare event to obtain a

trajectory that satisfies an LTL formula. During the first several iterations, most

time is passed sampling and discarding trajectories that are not feasible. Overcoming

92

this key difficulty of the initial conditions is thus well motivated for practical appli-

cations of CE-LTL planning. It is important to observe that this is not a special

difficulty encountered for CE-LTL. Any stochastic optimization algorithm that seeks

to randomly find sequences that satisfy an arbitrary LTL formula will encounter this

difficulty. Though not explored more carefully here, this should not be surprising

because the problem is essentially that of deciding whether certain trajectories exist

in an arbitrary dynamical system, which is known to be intractable or undecidable

[9]. As usual for such fundamental complexity barriers occurring for general state-

ments of stochastic optimization problems, better performance can be achieved by

exploiting special structure available for certain classes of specifications and dynami-

cal systems. In this section, several relaxations are proposed that provide heuristics

shown empirically to improve performance of CE-LTL.

5.4.1 Incrementally restrictive LTL formulae from templates

Let ϕ be an LTL formula as in the statement of Problem 6. The feasible set of tra-

jectories over which an optimum is sought is described entirely by satisfaction of ϕ.

Of course, the trajectories themselves must be dynamically feasible (i.e., satisfy the

difference equation (5.1)), which is guaranteed by construction from the subroutine

GenTraj for creating trajectories from parameter vectors (cf. §5.3.2). Since satisfac-

tion of the LTL formula ϕ is challenging when constrained to search over dynamically

feasible trajectories, even if simpler dynamics are considered, direct manipulation of

ϕ is a good choice to increase the size of the feasible set. This increase can be trivially

achieved by using the constant true formula instead. In that case, all trajectories

are feasible (all strings satisfy true by definition; cf. §2.2). While sampling for the

modified specification is (trivially) easier, we are still interested in solving the original

problem, i.e., we want an optimal trajectory that satisfies ϕ. Thus something between

the extremes of ϕ and true is desired.

The basic idea of the heuristic proposed in this section is to create a sequence

of LTL formulae that converges to the original specification ϕ by beginning with an

93

(relatively) easy formula and then incrementally restricting it until the original LTL

formula is obtained. Let ϕK , ϕK−1, ϕK−2, . . . , ϕ0 be LTL formulae such that ϕ0 = ϕ

and

L(ϕk−1) ⊆ L(ϕk) (5.3)

for k ≥ 1. Thus, for any infinite string σ : N → 2AP, σ |= ϕk−1 implies that

σ |= ϕk, but the converse may not hold. The notion of being restrictive is thus made

precise here in terms of language containment. As we are in the setting of optimal

control, satisfaction is by trajectories, so the sequence of LTL formulae provide that

if L((xθ,uθ, τθ)) |= ϕl for some trajectory (xθ,uθ, τθ), then L((xθ,uθ, τθ)) |= ϕk for

all k ≥ l. The LTL formulae thus provide a sequence of feasible sets of trajectories,

each being a subset of the previous, which implies that

Pv(L((xθ,uθ, τθ)) |= ϕk) ≥ Pv(L((xθ,uθ, τθ)) |= ϕk−1),

where Pv(·) is the probability measure corresponding to the probability density func-

tion with parameter v. Using this observation, the heuristic proposed is to perform

one iteration of the CE-LTL algorithm for ϕK and update the parametric probability

density using the lowest cost feasible trajectories found (as part of that single itera-

tion). Then perform the CE-LTL algorithm for ϕK−1 initializing the density function

with v found from the previous iteration (in which feasibility was with respect to ϕK).

Repeat this until ϕ0 = ϕ (the original LTL formula) is obtained.

To employ this heuristic, a procedure for producing a sequence of LTL formulae

that are related as in (5.3) must be presented. In motion planning for robotics, there

are templates of important problems that provide a basis for this. For example, an

LTL formula that captures the essential reach-avoid task is

� �ψ1 ∧� �ψ2 ∧ · · · ∧� �ψn ∧�¬φ, (5.4)

where φ is satisfied precisely on obstacles in the workspace, and the other subformulae

ψ1, . . . , ψn correspond with subsets that are to be repeatedly visited. Among the

94

experiments described later in §5.5, each ψi is just an atomic proposition that labels

an axis-aligned rectangle in R2 that is regarded as a goal, and φ is the formula

pn+1 ∨ · · · ∨ pn+m, where each of pn+1, . . . , pn+m is an atomic proposition uniquely

labeling an axis-aligned rectangle that is regarded as an obstacle.

Decomposing formula (5.4) into a sequence consistent with the relation (5.3) is

achieved by first removing all subformulae except that of a single goal, then adding

a second goal, etc., until all goals have been appended, and finally obstacles are

included. Explicitly,

ϕn+1 = � �ψ1

ϕn = � �ψ1 ∧� �ψ2

...

ϕ1 = � �ψ1 ∧� �ψ2 ∧ · · · ∧� �ψn

ϕ0 = � �ψ1 ∧� �ψ2 ∧ · · · ∧� �ψn ∧�¬φ,

where the final formula is the actual one with respect to which an optimal trajectory

is desired.

5.4.2 Incrementally restrictive ω-automata

The basic idea of the previous section can be generalized to sequences of ω-automata

that each recognize a more restrictive language, ending in an ω-automaton that rec-

ognizes precisely the actual desired LTL formula ϕ.

Let A = (Q, q0, δ,F ,Σ) be a deterministic Rabin automaton as defined in §5.3.3,

with acceptance sets F = {(F0, B0), . . . , (FJ , BJ)}. A sequence of sets is constructed

beginning with F0 = {(F 0
0 , B

0
0), . . . , (F 0

J , B
0
J)} := F and following the recursive iter-

ation

F k+1
j := Pre(F k

j) ∪ F k
j , (5.5)

where Pre is defined by using edges available from δ with endpoints in Q (so, regarding

A as a directed graph), and where j ∈ {0, . . . , J} is the index of the acceptance.

95

This recursion is guaranteed to terminate for all of the acceptance pairs (F j
k , B

j
k) ∈

F because A has finitely many states. Let KF be the smallest integer such that

FKF+1
j = Pre(FKF

j) ∪ FKF
j for all j, i.e., it is an iteration of (5.5) sufficiently large

to include fixed-points for all of the acceptance pairs. Notice that the Bj sets do not

change in this part of the sequence. Thus continue the sequence by beginning with

k := KF and applying the recursion

Bk+1
j := Post(Bk

j) ∩Bk
j , (5.6)

where Post is defined by regarding transitions from δ as edges. Again fixed-points will

necessarily be reached. Let K be the smallest integer such that BK
j = Post(BK

j)∩BK
j

for all j. Summarizing the above, a sequence of acceptance sets have been ob-

tained: FK ,FK−1, . . . ,F0. Denote by AK ,AK−1, . . . ,A0 the Rabin automata ac-

cepting these, respectively. The final one, A0, recognizes precisely strings that satisfy

ϕ and thus can be used to decide feasibility of trajectories for the original problem.

Furthermore, it follows that

L(A0) ⊆ L(A1) ⊆ · · · ⊆ L(AK),

hence

Pv(L((xθ,uθ, τθ)) |= ϕ) = Pv(L((xθ,uθ, τθ)) ∈ L(A0))

≤ Pv(L((xθ,uθ, τθ)) ∈ L(A1))

...

≤ Pv(L((xθ,uθ, τθ)) ∈ L(AK)).

Therefore, having obtained a sequence of ω-automata that are incrementally more

restrictive in the sense of language containment, we can perform one iteration of

CE-LTL for each k ≥ 1 using Ak to check feasibility of sampled trajectories. The

parametric probability density is adjusted following the application of each automa-

96

ton, analogously to the sequence of LTL formulae proposed in §5.4.1. Observe that

a Büchi automaton is equivalent to a Rabin automaton with one acceptance pair of

the form (F0, ∅), and thus the preceding construction is applicable.

Note that performing the CE-LTL algorithm for satisfaction on intermediate Ra-

bin automata solves a different (arguably, more general) problem than Problem 6

because the ω-automaton might not accept a language corresponding to any LTL

formula. The issue is one of expressivity for languages of infinite strings and is po-

tentially a subtle consideration. However, the ambition of this section is to propose

a heuristic (relaxation) to improve convergence rates of CE-LTL in some cases, so

using an automaton instead of an LTL formula for intermediate steps toward solving

the optimal control Problem 6 is reasonable.

5.5 Numerical experiments

Provided that the feasible set is not empty, CE-LTL converges to a local minimum,

but this is an asymptotic guarantee analogous to the probabilistic completeness of

the motion planning algorithm RRT. Practically it is also very useful to know how

quickly it will converge. Convergence rate is still an open question for CE-LTL, as it

is for the CE method. Indeed, the situation is not any better for most stochastic opti-

mization algorithms [57]. Furthermore, because of so-called “no free lunch” theorems,

universally good performance cannot be achieved. Thus we are motivated to study

performance empirically for particular cases. In this section, results are presented of

experiments involving Dubins car and the single-integrator with LTL formulae of the

reach-avoid template.

5.5.1 Dynamical systems and representations

The original paper by Dubins was not concerned explicitly with vehicles but rather

optimal motion generally with constraints on curvature and constant velocity norm

[19]. While many results in that paper are for arbitrary dimensional Euclidean spaces

Rn, the crucial results characterizing optimal curves are for the case of n = 2 (i.e.,

97

for planar motion). These have been of lasting importance in control theory because

problems of steering vehicles that are nonholonomic are of fundamental interest, aris-

ing practically in cars and aerial vehicles. The basic unicycle model gives rise to

variants with smooth steering as well as half-cars, trailers, etc. that are used for plan-

ning and control [37]. The Dubins car model is defined by the differential equation

ẋ1(t) = cos x3(t)

ẋ2(t) = sin x3(t)

ẋ3(t) = u(t),

where t is a nonnegative real number and u is the control input (also referred to

as turning rate). It is common to instead refer to the state variables as (x, y, θ) to

emphasize that it is a point in R2 × S1, i.e., in SE(2). However, for consistency of

notation in this chapter, x(t) = (x1(t), x2(t), x3(t)) is used instead. Note that this is

a differential equation where time t ∈ R. A zero-order hold can be used to obtain a

discrete-time system from integration. Explicitly, for constant input ω = 0 during a

duration of h seconds, we have

x1(t+ h) = h cosx3(t) + x1(t)

x2(t+ h) = h sinx3(t) + x2(t)

x3(t+ h) = x3(t),

and for constant input ω 6= 0,

x1(t+ h) =
1

ω
(sin(x3(t) + hω)− sinx3(t)) + x1(t)

x2(t+ h) =
1

ω
(cosx3(t)− cos(x3(t) + hω)) + x2(t)

x3(t+ h) = hω + x3(t).

Recall from §5.3.2 that the space of trajectories over which optimization is performed

is defined using parameters θ ∈ Θ. In Algorithm 6, the subroutine GenTraj(θ)

98

deterministically produces from the parameter vector θ the eventually periodic tra-

jectory (xθ,uθ, τθ). Trajectory representation and generation for Dubins car are as

follows. Let N be a positive integer. The parameter space Θ ⊂ R2×N is of matrices

defining piecewise constant inputs and durations, written explicitly as matrices of the

form T1 T2 . . . TN

ω1 ω2 . . . ωN

 , (5.7)

where T1, . . . TN ≥ 0 are nonnegative durations, and elements in the second row are

turning rates, which are bounded absolutely by 1, i.e., |ωj| ≤ 1. Though θ ∈ Θ is

a matrix, it is referred to as a vector to emphasize that Θ is contained in a vector

space. Let θ be of the form (5.7). An eventually periodic trajectory (xθ,uθ, τθ) is

constructed from it as follows. Let m be a nonnegative integer that determines the

resolution of the discretized trajectory. (It can be regarded as an implementation

detail.) The finite state sequence xθ : [0, (N+1)(m+1)−1]→ R2×S1 is constructed

in three steps. First fix the initial state xθ(0) = x0, which is given as part of this

instance of Problem 6. Then, integrate for a total time of T1 applying constant input

ω1 in m+1 steps (so, time increments of T1
m+1

), using the discrete-time equations given

above, thus obtaining xθ(t) for t ∈ {0, . . .m+ 1}. Repeat for the remaining piecewise

constant inputs, using the N columns of (5.7). The final parameter τθ determines the

size of the suffix, i.e., the index at which xθ connects back to itself, which is τθ +1 (cf.

§5.3.2). While this could be considered to be a part of the trajectory parametrization

and thus randomly sampled, it was not found empirically to be necessary. Indeed, the

segment durations (the first row of (5.7)) are already being randomly sampled and

thus the period in terms of physical time during the loop of the suffix is determined

by the estimated probability density. In the implementation, the tie index τθ + 1 is

fixed as 1/10 of the discrete length of generated trajectory before closing the loop

(explicitly, it is
⌊
N(m+1)+1

10

⌋
). The trajectory construction is completed by solving the

two-point boundary value problem between xθ(τθ + 1) and xθ(N(m + 1)), which is

easily achieved by computing the several possibilities admitted as Dubins curves. The

control input sequence that is part of the generated trajectory is obtained as part of

99

the steps described above, first being piecewise constant following (5.7) and then to

realize a Dubins curve.

The second system considered is the single-integrator, which is defined by the

ordinary differential equation

ẋ(t) = u(t),

where x(t), u(t) ∈ Rn. This system essentially has no dynamics (i.e., is trivial) be-

cause velocity is directly controlled and motion in any direction is possible without

constraint. Nonetheless it is interesting here because solving optimal control on it

subject to an LTL formula specification emphasizes other aspects of Problem 6 be-

sides dynamics. Single-integrators can still be of practical interest for slowly moving

indoor mobile robots and in other situations as a rapid source of coarse trajectories

for tracking. Trajectories of the single-integrator are parameterized (analogously to

that of Dubins car) as a piecewise constant input but now allowing for arbitrarily

many output dimensions, i.e., Θ ⊂ R(n+1)×N and θ ∈ Θ is of the form
T1 T2 . . . TN

u1,1 u1,2 . . . u1,N

...

un,1 un,2 . . . un,N

 , (5.8)

where T1, . . . TN ≥ 0 are nonnegative durations. The trajectory generation procedure

GenTraj(θ) is entirely similar to that of Dubins car described above, except that

the two-point boundary value problem to make the trajectory eventually periodic is

trivial; it is merely linear interpolation between the two end-points.

Note that an alternative parameterization for all of the systems presented in this

section is sampling states directly, i.e., θ is a finite sequence of states. Trajectories are

then generated by solving a sequence of two-point boundary value problems between

each column of θ.

100

10 5 0 5 10
10

5

0

5

10

p1

p2
p3

p4

p5

Figure 5.1: Example of a random problem instance for a workspace in R2. The task
is to repeatedly visit the regions labeled p1, p2, and p3, while avoiding p4 and p5.
The initial state is at the origin of the state space of the dynamical system, which
has output to the origin in this plot, (0, 0).

5.5.2 Comparisons among the basic method and relaxations

The basic algorithm (cf. §5.3.4) and the two heuristics based on relaxations of the

original problem (cf. §5.4) were implemented and run in the trials described in this

section. Details of the implementation are given in Appendix C. A summary of ma-

jor features is that the implementation is in C++ and relies on the libraries Eigen

for matrix representation and operations and Boost for multi-threading and pseudo-

random number generation. Some supporting infrastructure is in Python, including

C++ code generation for a function that checks acceptance by a deterministic Ra-

bin automaton that recognizes a given LTL formula. Time required to generate the

C++ code, compile it, and then dynamically link against the main program (without

re-compiling the main program itself; i.e., only the acceptance function implemen-

tation is re-compiled per trial) is included in the listed run-times. Scripts providing

visualization and statistics of results are in Python. For conciseness, the basic CE-

LTL algorithm is referred to simply as CE-LTL, the relaxation described in §5.4.1 is

referred to as relax-formula-CE-LTL, and that described in §5.4.2 is referred to as

relax-automata-CE-LTL.

Let AP = {p1, . . . , pn, pn+1, . . . , pn+m} be a set of atomic propositions. Consider

101

10 5 0 5 10
10

5

0

5

10

p1

p2
p3

p4

p5

Figure 5.2: Several feasible trajectories of Dubins car for the problem instance de-
picted in Figure 5.1. The dark blue curve is the best found using CE-LTL. Notice that
the trajectory is eventually periodic with a short prefix segment near the origin.

0 5 10 15 20

0

5

10

15

p1 p2

p3p4

p5

p6

p7

Figure 5.3: Best trajectories found during the 58 iterations of a single trial. The best
(lowest cost) trajectory is depicted with dark blue. The sequence of costs are shown
plotted in Figure 5.4. � � p1 ∧ � � p2 ∧ � � p3 ∧ � � p4 ∧ �¬ (p5 ∨ p6 ∨ p7) is
the LTL formula.

102

0 10 20 30 40 50 60
Trial number

38

40

42

44

46

48

50

52

Co
st

Figure 5.4: An example execution for the workspace shown in Figure 5.3. The cost
for each iteration is the lowest among the feasible set found in that iteration.

the output space R2 in which axis-aligned rectangles are uniquely labeled, each with

precisely one of the atomic propositions in AP. Thus there are |AP| rectangles total.

These regions may be overlapping. An example is shown in Figure 5.1. Consider LTL

formulae following the reach-avoid template of (5.4), for which the regions labeled

{p1}, . . . , {pn} are to be repeatedly visited (i.e., infinitely often), and the regions la-

beled {pn+1}, . . . , {pn+m} are unsafe and must never be reached. An example solution

from CE-LTL for Dubins car is shown in Figure 5.2. The cost function is path length,

which is equal to trajectory duration (as a sum of the prefix and suffix parts) for

Dubins car with unit speed as is used here. In addition to the lowest cost trajectory

during the entire trial, several trajectories are shown that were of least cost among

those found for particular iterations; recall that any such trajectory satisfies the LTL

formula. An example is shown in Figure 5.3, and the cost of each iteration is plotted

in Figure 5.4.

In all trials, the initial state is the origin. n + m squares of side length 3 have

centers randomly chosen in [−10, 10]2. All algorithms are run with 8 simultaneous

threads performing trajectories sampling. Convergence to a solution is declared if the

change in lowest cost found between two iterations is less than 0.5.

While the running times provide some suggestion of absolute performance, cau-

tion is necessary because they are only for particular dynamical systems simulated

103

0 100 200 300 400 5000
2
4
6
8

10

re
la

x-
au

to
m

at
a-

CE
-L

TL
0 100 200 300 400 5000

2
4
6
8

10

CE
-L

TL

0 100 200 300 400 500
time (s) until convergence

0
2
4
6
8

10

re
la

x-
fo

rm
ul

a-
CE

-L
TL

Figure 5.5: Histogram of run-times for 13 trials of the setting of Dubins car for tasks
with 3 goal regions and 1 obstacle.

0 100 200 300 400 5000
2
4
6
8

10

re
la

x-
au

to
m

at
a-

CE
-L

TL

0 100 200 300 400 5000
2
4
6
8

10

CE
-L

TL

0 100 200 300 400 500
time (s) until convergence

0
2
4
6
8

10

re
la

x-
fo

rm
ul

a-
CE

-L
TL

Figure 5.6: Histogram of run-times for 65 trials of the setting of Dubins car for tasks
with 4 goal regions and 1 obstacle.

104

0 100 200 300 400 5000
2
4
6
8

10

re
la

x-
au

to
m

at
a-

CE
-L

TL
0 100 200 300 400 5000

2
4
6
8

10

CE
-L

TL

0 100 200 300 400 500
time (s) until convergence

0
2
4
6
8

10

re
la

x-
fo

rm
ul

a-
CE

-L
TL

Figure 5.7: Histogram of run-times for 35 trials of the setting of Dubins car for tasks
with 4 goal regions and 2 obstacles.

3g
1o

4g
1o

4g
2o

4g
3o

0.0

0.5

1.0

1.5

2.0

Ra
tio

 o
f t

im
e

to
 C

E-
LT

L

relax-
automata-
CE-LTL
relax-
formula-
CE-LTL

Figure 5.8: Ratios of times until convergence for relax-formula-CE-LTL,
relax-automata-CE-LTL against the basic CE-LTL. Points are mean times, and error
bars are 1 standard deviation. Data for 15 trials of the case of 4 goal regions and 3
obstacles are shown. For the other cases, counts of trials are as listed in the captions
of Figures 5.5, 5.6, 5.7.

105

on a particular hardware configuration, and moreover, there are algorithm options

like N , the number of trajectories to obtain per iteration CE-LTL, and ρ, which

determines the size of the elite set (of lowest-cost trajectories; cf. §5.3.1). The tun-

ing of these can affect performance and would need to be considered separately in

practical deployments of the methods presented in this chapter, as is usual among

applications of stochastic optimization algorithms [57]. However, the absolute times

are indeed promising given the generality of Problem 6. Trends indicated by other

aspects of the data, such as ratios of times, are not expected to depend on particular

details of the examples and thus provide good indication of the relative strengths

of the various methods CE-LTL, relax-formula-CE-LTL, relax-automata-CE-LTL.

Comparison with related work is made in §5.5.3.

Except in obvious cases such as an obstacle region being randomly placed over

the initial state, it is not easy to decide whether the feasible set is nonempty, i.e.,

whether there is some solution. All algorithms can be terminated before returning

any solution if a user-configurable timeout occurs. While timeouts occurring suggest

that the problem may not be feasible, we cannot reliably conclude this. Though this

is made more difficult by the presence of an LTL formula, deciding when to terminate

is generally difficult in stochastic optimization (because the global optimum is usually

not known), and a variety of possibilities is worth considering in practice [57].

5.5.3 Comparison with related work

In this section, performances of the proposed CE-LTL method and relaxation-based

heuristics are compared with an algorithm proposed by Karaman and Frazzoli for

motion planning subject to deterministic µ-calculus specifications [30]. Note that

there are several errors and missing details in their publication. Furthermore, a

reference implementation was not available, so the author of this thesis created one.

The algorithm with corrections is referred to here as RRG*. The implementations of

the basic CE-LTL algorithm and relaxations are the same as was used in the previous

section with the exception that random problem instances never have a point that

106

0 100 200 300 400 5000

2

4

6

8

10

RR
G*

0 100 200 300 400 500
time (s) until convergence

0

2

4

6

8

10

re
la

x-
fo

rm
ul

a-
CE

-L
TL

Figure 5.9: Comparison of convergence times between relax-formula-CE-LTL and
RRG* in 16 trials for Dubins car in random trials of 3 goal regions and 1 obstacle.
Each trial proceeds first with relax-formula-CE-LTL that has termination condition
of 0.5 change in cost. The lowest cost found is then scaled by 1.5 to obtain an
absolute threshold for RRG*, i.e., if a trajectory is found with at most that cost, then
it terminates.

is in all goal regions simultaneously (i.e., the intersection of all goal regions must be

empty). This is related to a constraint to have “distinct subsets” (mutually disjoint)

as the labeled regions when applying RRG* as in the original papers [28, 30]. The

current implementation of RRG* permits mutual intersections but when it includes all

goals. Also consult Appendix C for details about the implementation.

In Figure 5.9, convergence times to the same cost are compared between RRG*

and relax-formula-CE-LTL. The dynamical system is Dubins car, and the LTL

formula follows the reach-avoid template described in the previous section. Each

trial has 3 random goal regions and 1 static obstacle. A similar plot is shown in

Figure 5.9 for the single-integrator and a formula having 4 goals and 2 static ob-

stacles. While in the previous section the same termination condition was used for

all algorithms, that approach was not appropriate here because RRG* frequently has

sequences of iterations during which cost is only slightly improved, interleaved with

jumps. Thus, with a termination condition based on change in best cost between iter-

ations, RRG* may terminate early with a high cost (relative to that found by CE-LTL)

107

0 100 200 300 400 5000

2

4

6

8

10

RR
G*

0 100 200 300 400 500
time (s) until convergence

0

2

4

6

8

10

re
la

x-
fo

rm
ul

a-
CE

-L
TL

Figure 5.10: Comparison of convergence times between relax-formula-CE-LTL and
RRG* in 18 trials for the single-integrator system in R2 in random trials of 4 goal
regions and 2 obstacles. Each trial proceeds first with relax-formula-CE-LTL that
has termination condition of 0.5 change in cost. The lowest cost found is then scaled
by 1.5 to obtain an absolute threshold for RRG*, i.e., if a trajectory is found with at
most that cost, then it terminates. A timeout of 300 s (5 minutes) was used for RRG*.

solution. To address this, each trial for comparison is performed in two parts. First

relax-formula-CE-LTL is applied to the problem instance using a termination con-

dition of change in best cost between iterations is less than 0.5. Upon completing,

the optimum found is scaled by 1.5 (as a tolerance) to obtain an absolute threshold

for RRG*.

108

Chapter 6

Conclusion

6.1 Summary and limitations

Though the foundations of robotics remain to be described, it is clear that a cru-

cial aspect of any nontrivial robot architecture is planning and control. This may

be considered in at least two respects: task strategy synthesis and execution, and

trajectory generation and tracking. Each of these can be regarded as a kind of con-

trol synthesis, where the precise meaning of controller and synthesis depends on the

particular problem considered. An architecture can simultaneously involve multiple

notions of control synthesis and interaction among component controllers. In this

thesis, two kinds of control synthesis are studied: discrete reactive synthesis, and

open-loop trajectory generation. The former is formulated as a game with an ad-

versarial environment (cf. §2.5) and has solutions that are expressed as finite-state

machines, which are precisely defined as strategy automata in §3.4. The latter kind of

control synthesis is based on a stochastic optimization algorithm with which low-cost

open-loop trajectories are randomly sampled and constructed from piecewise constant

inputs or solutions to two-point boundary-value problems, as presented in Chapter 5.

These notions of control are distinct. They could be used together in different parts

of the same architecture, or in certain applications one may be a more appropriate

model than the other. In both cases, requirements are expressed using linear-time

temporal logic. The main algorithms proposed in the thesis have in common that

they are incremental. For the first kind of control synthesis, this is used to cope

109

with uncertainty as manifested in a changing GR(1) game. Methods are proposed

for modifying strategies to be winning despite changes to reachability or liveness re-

quirements of the game. For the second kind of control synthesis, the rare event of

sampling a trajectory of a nonlinear system that satisfies an LTL formula is addressed

by proposing two relaxations that involve sequences of incrementally restrictive LTL

formulae or ω-automata that converge on the desired LTL formula.

Considerations about completeness, limitations, and practical applications are

given in earlier chapters where relevant. Several salient issues are summarized here.

For the work presented in Chapters 3 and 4 to be applicable to systems with state

spaces of infinite cardinality, a discrete abstraction must be given. Presenting one

for large practical systems is potentially a challenging first step before the presented

methods for control synthesis can be applied. Deciding realizability can require a

large amount of time (approaching that of global re-synthesis) and thus, it is not

done as part of the algorithms presented in Chapters 3 and 4. As such, it may be

discovered that patching is not feasible after attempts at many different sizes of local

reachability games, leading to an overall computation time that is greater than if re-

alizability had been checked directly. This seems unavoidable unless special structure

in certain games is exploited to predict whether patching or global re-synthesis will

succeed. As a topic of future work, current performance could be improved by re-

using intermediate values obtained when solving reachability games for a particular

neighborhood. The intuition is that attempting patching for monotonically larger sets

of states (ordered by the subset relation) may correspond to a sequence of reachabil-

ity games (ordered by substrategy). A key limitation of the treatment in Chapter 5

is that it does not include noise, disturbances, or other models of uncertainty about

the dynamics. Nonetheless, for a practical deployment, trajectory tracking is a good

option, and errors in tracking can be accounted for when ensuring feasibility with

respect to the LTL formula by contracting or expanding labeled regions. The above

mentioned limitations are motivations for future work because it is not known yet

whether they are manifestations of fundamental barriers.

110

6.2 Future work

The methods and results of Chapters 3 and 4 are entirely for GR(1) games, which

capture many sophisticated behaviors that are of both theoretical and practical inter-

est. However, most of the development in this thesis is in terms of or can be reduced

to intermediate sets from the fixed-point computations performed during synthesis.

The salient structure seems to be the inner µ-ν alternation (cf. §2.4), and as such,

future work is motivated toward extension of definitions like reach annotation and

algorithms that use it to a fragment of µ-calculus that is larger than GR(1). Relat-

edly, the question of relevance to reactive synthesis for specification languages with

distinct semantics, like metric temporal logic (MTL), is open.

The incremental modifications to strategy automata presented in Chapter 3 are

performed around nodes that require changes without considering the impact of the

change with respect to some cost function. As such, while computation time may be

accordingly small, the patched strategy may cause trajectories that are correct but

high-cost. Similarly, static obstacles may be added or removed from the workspace of

the robot during long-running missions, which would imply that states can become

unreachable and eventually reachable again. Because the patches on a strategy au-

tomaton are not specially marked (i.e., the result of patching is just another strategy

automaton), and because newly reachable controlled states do not affect the strat-

egy (cf. §3.8), incremental synthesis for a long-running controller could accumulate

degradation of the original strategy as local avoidance behaviors are added but not

later removed, despite becoming unnecessary. Incorporating some notion of cost min-

imization into the patching process and tracking and pruning patches that become

unnecessary are topics of future work.

A separate method was presented in §3.10 for the case of changes to reachability

that affect certain goal states. An alternative method for this case is obtained using

the algorithms of Chapter 4 by removing and then adding back the affected system

liveness conditions. Future work will elaborate this alternative and include a detailed

analysis of and comparison with the method presented in §3.10.

111

As should be apparent from discussion in §5.3.3 and §5.4.2, deciding feasibility in

the basic CE-LTL algorithm can be regarded as a subroutine that is readily replaced

for specification languages besides LTL. For example, the treatment of Chapter 5

is essentially unchanged for MTL because sampled trajectories already have timing

information. With an appropriate cost function, temporal logics that represent ro-

bustness of satisfaction are also applicable.

An important program of research is to identify useful and tractable (or less in-

tractable) fragments of LTL and other temporal logics, as well as to propose speci-

fication languages that have distinct expressivity from existing ones. Some of these

languages and fragments are defined using templates, e.g., GR(1). An ongoing direc-

tion of future work is to explore decompositions of these templates as a relaxation

method for CE-LTL, analogous to the treatment of reach-avoid templates presented

in §5.4.1. Exploring these relaxations can occur empirically by trying different de-

composition patterns in an ad hoc fashion. Decompositions could also be informed

by the dynamics and relative positions of labeled regions in the output space. For

example, goals that are progressively farther from the initial state could be incre-

mentally added, motivated by the expectation that that order corresponds to a good

(low-cost) set of feasible trajectories.

112

Appendix A

Time semantics for two-player
games

This appendix is primarily intended as a supplement to Chapters 3 and 4 by providing

additional background material on notions of time and game graphs.

In the introduction to GR(1) games of §2.5, turn-taking is said to follow a Mealy

time semantics. The basic idea is that the output depends on the current state and

the input. This is in contrast to so-called Moore time semantics, where the output

can depend only on the current state. The names refer to the authors of papers

that considered finite-state machines with these respective notions of dependency

[47, 48]. The definition of strategy automaton in §3.4 differs slightly from others

by including labels of entire states on the nodes and by lacking of explicit sets of

“inputs” and “outputs.” Nonetheless, there is equivalence, which should be apparent

if, for each node v of a strategy automaton, the incoming edges are modified to

be labeled by an output L(v) ∩ APsys. Since the edges (defined by the transition

function δ) are already dependent on the input, i.e., the subset of APenv provided by

the adversarial environment, we thus obtain a finite-state machine wherein inputs are

read and outputs are given in response during the transitions. With this modification,

the labels of nodes (provided by L) can be dropped. This still follows the Mealy time

semantics because the output depends on the node from which the edge originates as

well as the input.

The graph introduced in §3.2 is referred to as a game graph to emphasize that

113

one following the standard definition can be easily obtained. Before showing this, the

standard definition is introduced. A game graph G is a graph (V0 ∪ V1, E), where V0

and V1 are disjoint (i.e., V0 ∩ V1 = ∅), together with a set Win ⊆ V ω of infinite plays,

where an infinite play is an infinite string on V = V0 ∪ V1 that is consistent with the

edge set, i.e., for every p ∈Win, (p(t), p(t+ 1)) ∈ E for t ≥ 0. A strategy for Player 0

is a partial function f0 : V +V0 → V that maps finite plays to some vertex. A play

p is said to conform to the Player 0 strategy f0 if for every t such that p(t) ∈ V0,

p(t + 1) = f0(p(t)). Intuitively, a play of G proceeds according to the motion of a

token. If the token is on a vertex v in V0, then Player 0 selects the next vertex on

which to place the token among the successers (according to E) of v. Otherwise (i.e.,

when the token is on a vertex in V1), Player 1 selects the next successor. A synthesis

problem can then be posed as follows: let v ∈ V . Find a strategy f for Player 0 such

that for every play p with p(0) = v and conforming to f , p ∈ Win. Notice that no

constraint is placed on transitions from vertices in V1. We could instead introduce

Player 1 strategies and then pose the problem against the presence of any Player 1

strategy, motivating description of it as adversarial. The set Win may be expressed

using various winning conditions. E.g., an important class is parity games, in which

a function c : V → N is given, from which winning is defined as

Win = {p | (max Inf(c ◦ p)) = 0 mod 2} ,

where Inf is defined in (5.2) in §5.3.3. Intuitively the winning condition requires that

the maximum of the repeatedly occurring c-values is even, i.e., is divisible by 2.

The equivalence is shown constructively as follows. Let ϕ be a GR(1) formula as

in (2.3), where the set of uncontrolled (environment) atomic propositions is APenv and

the set of controlled (system) atomic propositions is APsys. Let Gϕ = (Σ, Eenv
ϕ , Esys

ϕ),

where Σ = 2APenv ∪APsys
, be the graph associated with ϕ as defined in §3.2. Let

V0 ⊆ 2APenv ∪APsys×2APenv
, V1 ⊆ 2APenv ∪APsys

, and E ⊆ (V0 ∪ V1)2 be the smallest sets

such that

1. ι ∈ V1,

114

2. if x ∈ 2APenv ∪APsys
, e ∈ Eenv

ϕ (x), then (x, (x, e)) ∈ E , and

3. if x ∈ 2APenv ∪APsys
, e ∈ Eenv

ϕ (x), and y ∈ Esys
ϕ (x, e), then ((x, e), y) ∈ E.

For a play p : N→ V0 ∪ V1 with p(0) = ι, let the associated trace be

L(p)(t) = p(2t) for t ≥ 0.

It follows from the definitions of E and V1 that L(p) is a string on 2APenv ∪APsys
. Thus,

we can finally take Win to be all plays p with p(0) = ι and such that L(p) |= ϕ.

Remark 21. (V0 ∪ V1, E) is bipartite. Every play of the GR(1) game (ϕ, ι) satisfying

the transition rules ρenv and ρsys corresponds to a walk on G.

115

Appendix B

Probability theory

This appendix supplements Chapter 5, which presents novel stochastic optimization

algorithms for control subject to LTL specifications. The contributions build on the

cross-entropy method, which is briefly introduced in §5.3.1.

The probability density function of the normal distribution with mean µ ∈ Rd

and covariance matrix Q is

f(x, v) =
1

(2π)
d
2 det(Q)

1
2

exp

(
−1

2
(x− µ)TQ−1(x− µ)

)
,

where v = (µ,Q) is the parameter vector, which is thus written to be consistent with

the notation used in Chapter 5 and to emphasize that we only need some parametric

density function, not necessarily that of the normal distribution. A Gaussian mixture

model is a weighted combination of normal distributions, so using f above, it would be

g(x, v) = α1f(x, v1) + · · ·αkf(x, vk), where the coefficients (weights) are nonnegative

and α1 + · · ·+αk = 1, and the density parameter is a tuple containing the component

parameters together with coefficients. The experiments reported in §5.5 use a normal

distribution, but the same implementation already supports using a Gaussian mixture

model instead.

In each iteration of CE-LTL (and the CE method in general), the density param-

eter is adjusted “toward” the elite set, i.e., the dρNe lowest cost trajectories found

in that iteration (all of which are feasible, i.e., satisfy the LTL formula). While a

general statement for this in terms of the parameter space V is provided in §5.3.1,

116

the case of normal density functions is provided here explicitly. Let Ne = dρNe, and

let θ1, θ2, . . . , θNe be the sampled trajectory parameter values of lowest cost (possibly

after re-ordering of subscripts). (Beware that “parameter” can by now be referring to

three different objects: the trajectory parameters, the density function parameters, or

the algorithm parameters, e.g., N . Which is intended should be clear from context.)

Then, the best-fit density parameter is

µ∗ =
1

Ne

Ne∑
j=1

xj

Q∗ =
1

Ne

Ne∑
j=1

(xj − µ∗)(xj − µ∗)T .

117

Appendix C

Implementation details

C.1 Introduction

The ambition of this appendix is to provide details about the implementations on

which results are reported. These are mostly tangential to the main work of the

thesis and so are better placed outside the main text. In summary, all dependencies

are free, open source software, as are the implementations used to produce experiment

results in this thesis. However, at the time of writing, several of the implementations

of particular methods presented here have not been released yet, especially in the

case of Chapter 5 and in particular the implementation of RRG* that is used in §5.5.3.

The authors of the original papers about the related work [28, 30] are being consulted

before releasing the new reference implementation, to allow discussion about the

corrections and elaboration of details that were made while creating it.

C.2 Incremental control for GR(1) games

The algorithms presented in Chapters 3 and 4 are provided through the application-

programming interface (API) of gr1c (http://scottman.net/2012/gr1c) and via

the command-line program gr1c patch. Specifically, goal appending can be achieved

using

gr1c patch -f PHI [...]

http://scottman.net/2012/gr1c

118

where PHI is an arbitrary state formula (i.e., without temporal operators), which

is parsed using the same syntax as for GR(1) specifications. Also, the switch -m

can be included in the above command to indicate that some variables are integer-

valued and can be included in the computation of a norm (regarding the variables

as elements in a vector), from which the Dist function is obtained; otherwise Dist is

taken to be constant. Goal removal can be achieved using gr1c patch -r i, where

i is the index, corresponding to removal of the system liveness (goal) subformula ψsys
i

(following the statement of Problem 5). As is the case of the theoretical results, the

implementation is entirely general in the context of GR(1) games. Note that gr1c is

not restricted to atomic propositions, which can be regarded as Boolean (or binary)

valued variables. Integer domains are also available. A manner of obtaining them

from atomic propositions is described in §C.2.2.

The expression of changes to reachability is somewhat more complicated than

changes to liveness. The approach taken in gr1c is to define a separate file type

known as an “edge set change file.” These files consist of two parts: first a list of

states considered to be in the neighborhood N (cf. §3.8 and §3.9); and second, a

sequence of restrict, relax, or blocksys commands that . As in other files for

working with gr1c and following the convention of Python and UNIX shell scripts,

comments begin with #. For example, if there are two atomic propositions p and q,

and we have declared that N = {∅, {q}, {p, q}}, and we wish to change the game

graph by removing the controlled edge from ∅ to {q}, then the file would be

0 0

0 1

1 1

restrict 0 0 0 1

The experiments on gridworlds reported in §3.12 and §4.5 use TuLP, the temporal

logic planning toolbox (http://tulip-control.org) for gridworld representation

and for profiling that is used to obtain the synthesis reported synthesis times. TuLiP

has an interface to gr1c, which indeed is the default GR(1) solver used by it.

http://tulip-control.org

119

C.2.1 Code for an example

The game of Example 2 in §3.4 is expressed by the following gr1c specification.

gr1c -n ONE_SIDE_INIT strategyautillust.spc

ENV: door_open door_reached;

SYS: goto_door;

ENVGOAL: []<>(goto_door -> door_reached);

SYSINIT: True;

SYSTRANS:

[](door_open -> goto_door’)

& []((goto_door & !door_reached) -> goto_door’);

SYSGOAL: []<>door_reached;

C.2.2 Representing variables of other types as atomic propo-

sitions

Throughout the thesis, properties are expressed and checked in terms of atomic propo-

sitions, e.g., using the propositional linear-time temporal logic (cf. §2.2). Atomic

propositions can be regarded as Boolean variables taking the values true or false.

This restriction of attention is motivated primarily by providing a concise treatment

of the theory. However, it is without loss of generality because any variable that takes

values on a finite domain can be encoded using Boolean variables. The construction

is sketched here for the case of variables that can be assigned integers. Let x be an

integer variable with domain {0, 1, . . . n}, where n ≥ 1. Let

k = dlog2(n)e

120

and create k atomic propositions xbit
0 , xbit

1 , . . . , xbit
k−1. As the names suggest, these are

interpreted as bits encoding the value of x. E.g., x = 5 (supposing that n ≥ 5) would

be represented by the state {xbit
0 , xbit

2 }. Since n might not be a power of 2, several

states need to be precluded in order for the domain of x to be correctly represented.

In GR(1) formulae, this is achieved by adding restrictive subformulae to ρsys if n < k,

� (¬χx=n+1 ∧ ¬χx=n+2 ∧ · · · ∧ ¬χx=k) ,

where χx=k is the characteristic formula for the state of x = k, which is actually a

conjunction of the atomic propositions xbit
0 , xbit

1 , . . . , xbit
k−1, some negated; e.g., if k = 3,

χx=5 = xbit
0 ∧ ¬xbit

1 ∧ xbit
2 .

C.3 CE-LTL and relaxations

The implementation of the CE-LTL algorithm and relaxations of it that are presented

in Chapter 5 (and used in the experiments described in §5.5) is in C++, along with

some infrastructure in Python, and builds on the GCOP library by Marin Kobilarov,

which provides a basic implementation of the cross-entropy method along with several

dynamical systems and manifolds, e.g., multi-link bodies and SE(3). However, the

single-integrator and Dubins car, including generation of Dubins curves to create

periodicity in sampled trajectories, are implemented de novo. Matrix representation

and operations are achieved with Eigen http://eigen.tuxfamily.org. The Boost

libraries (http://www.boost.org) for multithreading and pseudo-random number

generation are used. Algorithm timeouts are implemented by registering a POSIX

alarm; it is hard interruption, i.e., the iteration in progress is not permitted to finish,

which is motivated because in the case of the sampling part of the CE-LTL algorithm,

an arbitrarily large amount of time could be required. Observe that a nonempty

feasible set ensures that the iteration will finish with probability one, but no general

rate is known.

http://eigen.tuxfamily.org
http://www.boost.org

121

Checking of feasibility of trajectories with respect to an LTL formula is achieved

using a deterministic Rabin automaton (cf. §5.3.3). This is obtained using LTL2DSTAR

(http://www.ltl2dstar.de) [32]. The output of LTL2DSTAR is in a tool-specific

format. It is parsed by a Python program created as part of the CE-LTL implemen-

tation that generates C++ for checking acceptance of trajectories that are eventually

periodic. The C++ code for the dynamical systems and the basic CE-LTL algorithm

is compiled once. Acceptance criteria (i.e., the LTL formula with respect to which

satisfaction is checked) are changed by separately compiling the generated C++ code

as a dynamically linked library, to which the main programs link. During initial

compilation, they are linked against a vacuous acceptance-checking function, which

prints a warning message if accidentally used.

Tools for visualization and statistics are in Python using standard scientific Python

packages including NumPy, Matplotlib, and NetworkX.

The relaxation heuristics described in §5.4 use the same external tool (LTL2DSTAR)

that produces deterministic Rabin automata (DRA) from LTL formulae, and the same

routine for C++ code generation is used with the following additional details. The

method described as relaxation of the recognizing ω-automaton (cf. §5.4.2)) is imple-

mented by generating the sequence of Rabin automata from the initial one produced

by LTL2DSTAR. These are assigned levels that correspond to the subscript numbers

of F0,F1, . . . presented in §5.4.2. An acceptance-checking function in C++ is then

automatically generated for each DRA and wrapped in a namespace dedicated to

that automaton. The client code selects a particular acceptance function by calling

a mutex function (that is also automatically generated) that in turn calls the appro-

priate acceptance-checker given an integer level. Using level 0 provides satisfaction

checking for the original LTL formula.

The method described in §5.4.1 as relaxing based on templates of LTL formulae

proceeds in a similar fashion, except that each DRA level is produced from an LTL

formula. Again, a C++ mutex function is automatically generated to switch among

available acceptance criteria.

http://www.ltl2dstar.de

122

Bibliography

[1] R. Alur, T. Dang, and F. Ivanc̆ić. Counter-example guided predicate abstraction

of hybrid systems. In Proceedings of TACAS, 2003.

[2] R. Alur, T. A. Henzinger, G. Lafferriere, and G. J. Pappas. Discrete abstractions

of hybrid systems. Proceedings of the IEEE, 88(7):971–984, July 2000.

[3] K. J. Åström and R. M. Murray. Feedback Systems: An Introduction for Scien-

tists and Engineers. Princeton University Press, 2008.

[4] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

[5] M. Barbeau, F. Kabanza, and R. St.-Denis. A method for the synthesis of con-

trollers to handle safety, liveness, and real-time constraints. IEEE Transactions

on Automatic Control, 43(11):1543–1559, November 1998.

[6] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas.

Symbolic planning and control of robot motion: Finding the missing pieces of

current methods and ideas. IEEE Robotics & Automation Magazine, pages 61–

70, March 2007.

[7] R. Bloem, K. Chatterjee, K. Greimel, T. A. Henzinger, and B. Jobstmann. Ro-

bustness in the presence of liveness. In Proceedings of Computer Aided Verifica-

tion (CAV), Lecture Notes in Computer Science, pages 410–424. Springer Berlin

/ Heidelberg, 2010.

[8] R. Bloem, B. Jobstmann, N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of

reactive(1) designs. Journal of Computer and System Sciences, 78:911–938, May

2012.

123

[9] M. S. Branicky. Universal computation and other capabilities of hybrid and

continuous dynamical systems. Theoretical Computer Science, 138:67–100, 1995.

[10] M. S. Branicky. Multiple lyapunov functions and other analysis tools for switched

and hybrid systems. IEEE Transactions on Automatic Control, 43(4):475–482,

April 1998.

[11] M. S. Branicky, V. S. Borkar, and S. K. Mitter. A unified framework for hybrid

control: Model and optimal control theory. IEEE Transactions on Automatic

Control, 43(1):31–45, January 1998.

[12] R. W. Brockett. Formal languages for motion description and map making. In

Robotics, Proceedings of Symposia in Applied Mathematics, volume 41, pages

181–193. American Mathematical Society, 1990.

[13] R. A. Brooks. Elephants don’t play chess. Robotics and Autonomous Systems,

6:3–15, 1990.

[14] A. Church. Logic, arithmetic, and automata. In Proceedings of the International

Congress of Mathematicians, pages 23–35, Stockholm, August 1962.

[15] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press,

1999.

[16] D. C. Conner, H. Kress-Gazit, H. Choset, A. A. Rizzi, and G. J. Pappas. Valet

parking without a valet. In Proceedings of the 2007 IEEE/RSJ Int’l Conference

on Intelligent Robots and Systems (IROS), pages 572–577, 2007.

[17] P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the

cross-entropy method. Annals of Operations Research, 134:19–67, 2005.

[18] J. C. Doyle, B. A. Francis, and A. Tannenbaum. Feedback control theory. Macmil-

lan Pub. Co., 1992.

124

[19] L. E. Dubins. On curves of minimal length with a constraint on average curva-

ture, and with prescribed initial and terminal positions and tangents. American

Journal of Mathematics, 79(3):497–516, July 1957.

[20] E. A. Emerson. Handbook of theoretical computer science (vol. B): formal models

and semantics, chapter Temporal and modal logic, pages 995–1072. MIT Press,

1990.

[21] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the µ-calculus

and its fragments. Theoretical Computer Science, 258:491–522, 2001.

[22] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic

verification of linear temporal logic. In Proceedings of the Fifteenth International

Symposium on Protocol Specification, Testing and Verification (PSTV), pages

3–18, Warsaw, Poland, June 1995.

[23] M. Guo, K. H. Johansson, and D. V. Dimarogonas. Rivising motion planning

under linear temporal logic specifications in partially known workspaces. In

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA), pages 5010–5017, Karlsruhe, Germany, May 2013.

[24] M. Hammer, A. Knapp, and S. Merz. Truly on-the-fly ltl model checking. In

Tools and Algorithms for the Construction and Analysis of Systems (TACAS),

volume 3440 of Lecture Notes in Computer Science, pages 191–205. Springer-

Verlag Berlin Heidelberg, 2005.

[25] T. A. Henzinger. The theory of hybrid automata. In Proc. of the 11th An-

nual Symposium on Logic in Computer Science (LICS), pages 278–292. IEEE

Computer Society Press, 1996.

[26] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages,

and Computation. Addison-Wesley, 1979.

[27] R. Isaacs. Differential Games. Wiley, 1965.

125

[28] S. Karaman and E. Frazzoli. Sampling-based motion planning with deterministic

µ-calculus specifications. In Proceedings of the 48th IEEE Conference on Decision

and Control (CDC), pages 2222–2229, Shanghai, China, 2009.

[29] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion

planning. International Journal of Robotics Research, 30(7):846–894, 2011.

[30] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion

planning with deterministic µ-calculus specifications. In Proc. of the American

Control Conference (ACC), pages 735–742, Montréal, Canada, June 2012.

[31] Y. Kesten, N. Piterman, and A. Pnueli. Bridging the gap between fair simulation

and trace inclusion. Information and Computation, 200:35–61, 2005.

[32] J. Klein and C. Baier. Experiments with deterministic ω-automata for formulas

of linear temporal logic. Theoretical Computer Science, 363:182–195, 2006.

[33] M. Kobilarov. Cross-entropy motion planning. Int. J. of Robotics Research,

31:855–871, 2012.

[34] S. Koenig and M. Likhachev. Incremental A*. In Advances in Neural Information

Processing Systems 14 (NIPS), 2001.

[35] G. Lafferriere, G. J. Pappas, and S. Sastry. O-minimal hybrid systems. Mathe-

matics of Control, Signals, and Systems, 13:1–21, 2000.

[36] S. M. LaValle. Rapidly-exploring random trees: A new tool for path-planning.

Technical Report TR 98-11, Computer Science Dept., Iowa State University,

October 1998.

[37] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[38] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Interna-

tional Journal of Robotics Research, 20(5):378–400, May 2001.

126

[39] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun. Anytime dy-

namic A*: An anytime, replanning algorithm. In Proceedings of the International

Conference on Artificial Intelligence Planning Systems (ICAPS), 2005.

[40] J. Liu and N. Ozay. Abstraction, discretization, and robustness in temporal

logic control of dynamical systems. In Proc. of Hybrid Systems: Computation

and Control, pages 293–302, April 2014.

[41] S. C. Livingston and R. M. Murray. Hot-swapping robot task goals in reactive

formal synthesis. In Proceedings of the IEEE 53rd Annual Conference on Decision

and Control (CDC), pages 101–107, Los Angeles, CA, USA, December 2014.

[42] S. C. Livingston, R. M. Murray, and J. W. Burdick. Backtracking temporal

logic synthesis for uncertain environments. In Proceedings of the 2012 IEEE

International Conference on Robotics and Automation (ICRA), pages 5163–5170,

Saint Paul, Minnesota, USA, May 2012.

[43] S. C. Livingston, P. Prabhakar, A. B. Jose, and R. M. Murray. Patching task-

level robot controllers based on a local µ-calculus formula. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA), pages

4573–4580, Karlsruhe, Germany, May 2013.

[44] S. C. Livingston, E. M. Wolff, and R. M. Murray. Cross-entropy temporal logic

motion planning. In Proceedings of the 18th International Conference on Hybrid

Systems: Computation and Control (HSCC), pages 269–278, Seattle, WA, USA,

April 2015.

[45] V. Manikonda, P. Krishnaprasad, and J. Hendler. A model description language

and a hybrid architecture for motion planning with nonholonomic robots. In

Proceedings of the IEEE Int’l Conference on Robotics and Automation (ICRA),

pages 2021–2028, 1995.

127

[46] Z. Manna and A. Pnueli. A hierarchy of temporal properties. In (PODC ’90)

Proceedings of the ninth annual ACM Symposium on Principles of Distributed

Computing, pages 377–408, 1990.

[47] G. H. Mealy. A method for synthesizing sequential circuits. Bell System Technical

Journal (BSTJ), 34(5):1045–1079, September 1955.

[48] E. F. Moore. Gedanken-experiments on sequential machines. In Automata Stud-

ies, number 34 in Annals of Mathematical Studies, pages 129–153. Princeton

University Press, Princeton, New Jersey, USA, 1956.

[49] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on

Foundations of Computer Science (FOCS), pages 46–57, November 1977.

[50] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In Proceedings

of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’89, pages 179–190, New York, NY, USA, 1989. ACM.

[51] P. J. G. Ramadge and W. M. Wonham. The control of discrete event systems.

Proceedings of the IEEE, 77(1):81–98, January 1989.

[52] J. H. Reif. Complexity of the mover’s problem and generalizations. In IEEE

20th Annual Symposium on Foundations of Computer Science, pages 421–427,

October 1979.

[53] S. Sarid, B. Xu, and H. Kress-Gazit. Guaranteeing high-level behaviors while ex-

ploring partially known maps. In Proceedings of Robotics: Science and Systems,

Sydney, Australia, July 2012.

[54] S. Schewe. Synthesis of Distributed Systems. PhD thesis, Universität des Saar-

landes, 2008.

[55] K. Schneider. Verification of Reactive Systems: formal methods and algorithms.

Springer, 2004.

128

[56] S. Schwoon and J. Esparza. A note on on-the-fly verification algorithms. In Tools

and Algorithms for the Construction and Analysis of Systems, volume 3440 of

Lecture Notes in Computer Science, pages 174–190. Springer Berlin / Heidelberg,

2005.

[57] J. C. Spall. Introduction to Stochastic Search and Optimization: Estimation,

Simulation, and Control. John Wiley & Sons, Inc., 2003.

[58] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.

Springer, 2009.

[59] J. G. Thistle and W. M. Wonham. Control problems in a temporal logic frame-

work. International Journal of Control, 44(4):943–976, 1986.

[60] S. Tripakis and K. Altisen. On-the-fly controller synthesis for discrete and dense-

time systems. In World Congress on Formal Methods, 1999.

[61] A. Ulusoy, M. Marrazzo, and C. Belta. Receding horizon control in dynamic

environments from temporal logic specifications. In Proceedings of Robotics:

Science and Systems, Berlin, Germany, June 2013.

[62] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic pro-

gram verification. In Proc. First IEEE Symp. on Logic in Computer Science,

pages 322–331, 1986.

[63] E. M. Wolff and R. M. Murray. Optimal control of nonlinear systems with

temporal logic specifications. In Proc. of Int. Symposium on Robotics Research,

2013.

[64] E. M. Wolff, U. Topcu, and R. M. Murray. Efficient reactive controller synthesis

for a fragment of linear temporal logic. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), pages 5018–5025, Karlsruhe,

Germany, May 2013.

129

[65] K. W. Wong, R. Ehlers, and H. Kress-Gazit. Correct high-level robot behavior

in environments with unexpected events. In Proceedings of Robotics: Science

and Systems, Berkeley, USA, July 2014.

[66] T. Wongpiromsarn. Formal Methods for Design and Verification of Embedded

Control Systems: Application to an Autonomous Vehicle. PhD thesis, California

Institute of Technology, 2010.

[67] T. Wongpiromsarn, A. Ulusoy, C. Belta, E. Frazzoli, and D. Rus. Incremental

temporal logic synthesis of control policies for robots interacting with dynamic

agents. Technical report, March 2012.

	Acknowledgments
	Abstract
	Introduction
	Advent of verification and formal synthesis for robotics
	Topics and contributions of the thesis
	Novelty and related work

	Preliminaries
	Formal languages
	Linear-time temporal logic
	The basic synthesis problem
	The modal -calculus
	Reactivity, games, and another basic synthesis problem
	Finite representations of dynamical systems

	Patching for Changes in Reachability
	Introduction
	The game graph of a GR(1) specification
	Problem statement
	Strategy automata
	Synthesis for GR(1) as a fixed-point computation
	Annotating strategies
	Reachability games
	Game changes that affect a strategy
	Algorithm for patching between goal states
	Overview
	Formal statement

	Algorithm for patching across goal states
	Analysis
	Numerical experiments
	Gridworlds
	Random graphs in Euclidean space

	Patching for Changes in Requirements of Liveness
	Introduction
	Problem statements
	Adding goals
	Overview
	Algorithm
	Results

	Removing goals
	Overview
	Algorithm
	Results

	Numerical experiments
	Gridworlds
	Random graphs in Euclidean space

	Cross-entropy Motion Planning for LTL Specifications
	Introduction
	Control system model and problem formulation
	Dynamics and labeling of states
	Problem statement

	The basic CE-LTL algorithm
	Brief introduction to the cross-entropy method
	Representation of trajectories
	Deciding feasibility of trajectories
	Algorithm

	Relaxations of the basic method
	Incrementally restrictive LTL formulae from templates
	Incrementally restrictive -automata

	Numerical experiments
	Dynamical systems and representations
	Comparisons among the basic method and relaxations
	Comparison with related work

	Conclusion
	Summary and limitations
	Future work

	Time semantics for two-player games
	Probability theory
	Implementation details
	Introduction
	Incremental control for GR(1) games
	Code for an example
	Representing variables of other types as atomic propositions

	CE-LTL and relaxations

	Bibliography

