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ABSTRACT

PART I1:

The perturbation technique developed by Rannie and Marble
is used to study the effect of droplet solidification upon two-phase
flow in a rocket nozzle. It is shown that under certain conditions an
equilibrium flow exists, where the gas and particle phases have the
same velocity and temperature at each section of the nozzle. The flow
is divided into three regions: the first region, where the particles are
all in the form of liquid droplets; a second region, over which the
droplets solidify at constant freezing temperature; and a third region,
where the particles are all solid. By a perturbation about the equilib-
rium flow, a solution is obtained for small particle slip velocities
using the Stokes drag law and the corresponding approximation for
heat transfer between the particle and gas phases. Singular perturba-
tion procedure is required to handle the problem at points \-wvhere solidi-
fication first starts and where it is complete. The effects of solidifica-

tion are noticeable.

PART 1L

When a liquid surface, in contact with only its pure vapor,
is not in thermodynamic equilibrium with it, a net condensation or
evaporation of fluid occurs. This phenomenon is studied from a kinetic
theory viewpoint by means of moment method developed by Lees.
The evaporation - condensation rate is calculated for a spherical drop-
let and for a liquid sheet, when the temperatures and pressures are

not too far removed from their equilibrium values. The solutions are
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valid for the whole range of Knudsen numbers from the free molecule

to the continuum limit. In the continuum limit, the mass flux rate is

proportional to the pressure difference alone.
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PART I
THE EFFECT OF DROPLET SOLIDIFICATION UPON

TWO-PHASE FLOW IN A ROCKET NOZZLE
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1. INTRODUCTION

One-dimensional gas - particle flows in nozzles have been
studied by Rannie and Marble [1, 2,3]. The particles were treated as
a continuum and linearization was then effected by assuming the par-
ticle velocity and temperature lags to be small fractions of the gas
velocity and temperature. The linearization was effected about an
"equilibrium flow' in which the gas and particles moved with the same
velocity and temperature. This equilibrium flow was found to be
equivalent to the familiar one-dimensional isentropic nozzle flow of a
gas with modified thermodynamic properties. Using a well-defined
velocity equilibration length, -j\v » as perturbation parameter, the
linearized solution about this flow was then obtained. These analyses
have been able to describe the important feétures of such flows quite
well.

The particles, in the above mentioned treatments, were as-~
sumed to be small solid particles. It is possible,under a combination
of particular rocket propellants and chamber temperatures, for the
particles to be in the liquid state over part of the flow region. For
example, aluminum oxide, a typical particle constituent found in rock-
et exhausts, melts at 2313°K. If the chamber temperature is above
24000K, it is to be expected that the particles will be in the liquid state
over part of the flow through the nozzle. The question is, therefore,
would this change of state, not taken into account in previous analyses,
significantly affect flow characteristics.

The new features introduced into the problem by the existence
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of the particles in the liquid state, over part of the flow field, are
two fold. First, since the particles are in the form of liquid droplets
initially, the phenomena of droplet growth by agglomeration, and of
the deformation and breakup of droplets could be of importance.
These effects will not be considered in this treatment and will be as-
sumed to be unimportant, at least as far as the gross features are
concerned. Second, the phase transition from liquid to solid, occur-
ring over part of the flow, has to be taken into account. It is this
feature that is analyzed in detail in this study.

The particles start off initially as liquid droplets, move down
the nozzle until their temperature falls to the freezing point, and then
begin to solidify. The solidification takes place over some distance of
the flow, the particle temperature remaining at the freezing point.
Once solidification is complete, the normal gas-particle flow in a noz-
zle takes place to the exhaust. As far as the change in gas and parti-
cle exit conditions are concerned, two factors come into play: the
isothermal flow of the particles during freezing, and the latent heat of
fusion given up by the particles to the gas. Now the latent heat given
up to the gas tends to keep the flow in equilibrium, but without calcu-
lation it is not possible to predict how this energy is distributed be-
tween the kinetic and internal energies of the gas. That is, the mean
temperature and velocity of the flow increase in some unknown fashion.

It is possible, however, to make a very rough estimate of exit
temperature difference induced by the phase change. If all the latent
heat goes into the heating up of the flow, the change in exit temperature

A-rﬁ. is roughly given by:
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K he
(+K) Ef’

AT, =

For aluminum oxide particles and a typical gé.s cofnponent,
this tempe rature change is of tﬁe order of 200°K. Cleafly, this is
an over-estimate, yet this indicates that in the calculation of the par-
ticle exit temperature, for example, this effect could be of impor-

tance.
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2. ASSUMPTIONS AND GOVERNING EQUATIONS

Most of the assumptions made in the following analysis have
been discussed in deté.il by Marble [2,3]. The flow is assumed to be
one-dimensional with the gas perfect and inviscid, except for its
interaction with the particles. The particles will be treated as a con-
tinuum interacting with the gas but not interacting among themselves.
The particle Reynolds number and the molecular mean free path are
assumed small enough to permit the use of the Stokes drag law and
the corresponding approximation for heat transfer between particle
and gas. The particles will be assumed to be of a single size, spher-
ical in shape, size and shape remaining unaltered through the flow.
The particle properties will be assumed to be constant over the whole
flow region.

The equations governing the flow are, with the exception of
the energy equation, identical to those derived by Marble. For one-

dimensional motion, the equations of continuity for each phase are:
cuA = m (1)
= K m 2)

e up A (

The corresponding momentum equations follow directly:

duw dp | F
PU T = " A T .



-G

Here, F

P is the force exerted by the particles on a unit

volume of gas. From the Stokes drag law assumption:

_ D= 2 (wew) )
= my. 6me (up 5 %

where
Y m &
Ay = wmm (6)
¥ ETrs—
>tv is the velocity equilibration length of a single particle
based on the frozen speed of sound:
z s, am—
a =¥ RT (7)

The physical significance of )V has been discussed in detail
by Marble. It is the distance traveled by a particle in a gas moving
at sonic speed, while reducing its relative velocity to e-l of the
initial value. If the gas viscosity is assumed to vary as the square
root of the temperature, -j\y is a constant. This assumption shall

be made.

The energy equation for the gas can be written:

o 4
fa e g—;g = U C"{"f + /%a'#)f,- 7 &/’ (8)

The term ((J.,o-u) f';, is the work done on the gas by the
particles and QF is the heat transfer rate from the particles given,

to the same approximation as Stokes law, by
Qr = mp(E)ane*(5-T)= g &a[G0V/3,] ©

Ar = G mafamck = 2B 3, (10)
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A T+ and P-r are the temperature equilibration length and the
Prandtl number, respectively, based on the effective specific heat CP

e

and the equilibrium sound speed. >‘T and P‘r’ are assumed to be

g

constant with )V of the same order of magnitude as )-,- .

For the particle flow, the first law can be written:

lod I 5% |
g&_{ﬁ,up/@a+f up)f = - HLUp - AP (11)

Adding the momentum equation (4), this reduces to:

J;{ga,é}j -.--61,: (12).

Now the particle flow is made up of a liquid fraction Kﬂ. and a
solid fraction (/-- Kf) . Before freezing, /(g =/ ; after freezing,

Ke = Q , and takes values between 1 and 0 during freezing. Thus:
ff, = Kg f’g -+ (/"Kg)f’s (13)

We assume that the solid phase and the liquid phase have the
same specific heat, € . If freezing takes place at the temperature
~
T " and hg is the latent heat of fusion:

c, 7% - & Iv*) = /79 | (14)

Using (13) and (14), the particle energy equation takes the form:

A 7 - (Tp~T7) o &,
cuc Zr __eca Y o : (15)
P Yr % Sp <P 3, 5 4e e jor por

For the gas we have the equation of state:
The above equations are a complete analytical description of

one~-dimensional gas - particle flow with solidification.
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3. EQUILIBRIUM FLOW

The term "'equilibrium flow' designates the circumstance
where the velocities and temperatures of the two phases remain ex-
actly equal throughout the flow, i.e., there is no velocity or temper-
ature lag anywhere. It is to be shown that such a flow process is
possible.

When there are no lags, the equations describing the flow can

be rederived:

du 0o 4
(+#K Pl gm + TG = O (7]
GT+7u® +25 Kphe = constanT (18)
(1+k) puA = (1+r) pn (19)

f:: fET (20)

where: _ C}; + KC

Ep = (1+K)

It is of interest to note that the above equations can be obtained

from the general equations of the previous section by letting )tv and

= i To = T
)-,- tend to zero such that the terms -—Lf—l;—* and P-— remain
; v AT
finite for #p—»U and 7]_7 - T | This just means that when the

equilibration lengths tend to zero the flow moves towards equilibrium
flow.

The flow in the nozzle can be divided into three regions of
interest (Fig. 1). In region 1, the particles are all in the form of
liquid droplets; and region 3, all in the form of solid particles. So-

lidification takes place in region 2, station 1 designating the begin-
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ning of freezing and station 2 designating the completion of solidifica-
tion. We assume station 1 to be downstream of the throat.

The equilibrium flow has to be considered separately in each
region.
(i) Region 1.

dke

Here, K, =1 , & =© . The solution here is identical

‘to the solution obtained by Marble. The flow is equivalent to the

‘isentropic flow of a gas with effective properti‘es:

== Cpo+ K . Co+ K< —_
Ca & T ¥ = i = {1+
F P ? CV"'KC‘ F) ? ?
R= S-&_ 3! & (21)
l+ K ¥ £

The expansion takes place according to the isentropic law:

Bt
T - T - :f-) ¥ | (22)
g = e 7o

{
where the subscript o' refers to chamber conditions.
The complete solution in this region is written down for future

reference:

. i__—] |
a?__,_gc,,/,[!— /ﬂ- : (23)

E_./z'—_;_?: /4")7}9 /_ (_ﬁ)i-r e

#) . (L°)F | =
2 7.



Y
W = 257 [1- = 1 (26)
Ay = (27)

/m /
/25T (:I_"’—')?‘.-,//_ B
: 7
(ii) Region 2.

In this region, solidification takes place at the freezing tem-

I
perature, T . The variable here is the liquid fraction, KE

d ke | odp _ RT dp -
Mhd *a,; = -‘;— e == —7;-—- =t (28)
or
2T 7~
e =1t e i e

Using the values at station 1 determined by the solution in

region 1 , the solution in region 2 is given by:

4’-
* Y
aZ:_- ,?,[Q/T T)—(/I+K) gdff (30)

2[G(n-7) - £1 o é’oj,/,,/"")p]

¥
on KT

RT* -+
/}Dﬁ;‘ /T T) (1+ k) &J%_

>
l

(31)




=1 2=

At station 2, K, =0

e e
he "
i he = bt * 4 =
- * 7 r-1
_7#42 = e RrRTN or ?f—:- =2 f ,PT /7; ) {(32)
/ o

Uy = ﬁ&}/ﬂ—?“")-»;% be] | (33)

»*

=T , K=o |  (34)

The equilibrium isothermal flow in region 2 can be understood
as follows. As the flow process is an expansion, the tendency is for
the gas temperature to fall. But solidification requires the particles
to give up their latent heat, at constant temperature. The flow adjusts
itself such that the latent heat is distributed between the internal and

kinetic energies of the gas in such a fashion as to maintain 'equilibri-

um. We note that at the completion of solidification, the contribution
to the kinetic energy per unit mass is 7?57 he and the contribu-
L
2 .
tion to the internal energy is i fe . Since K is usually less

K+t
than 1 , more latent heat goes into speeding the flow than in raising

the temperature.

(iii) Region 3.
ke
Here, /(e =0 , A= =© . Here the situation is the

same as in region lexcept that the energy is increased by a constant

factor. The solution is:
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—_— K he =
-—I = I _-_Té = Ix ”i— T"' [:f— & RT*J i (35)
P " Tz T LP
e\ %
: +
i = 25 T ] _’f_ e :-r:) 2»()11 (36)
- F e £ (K+1)
- )
/74 =
__f RKT"’] v
_ mRT. | 7 €
A = (37)

Equations (22) to (37) completely describe an equilibrium flow

through the nozzle.
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4, PERTURBATION EQUATIONS FOR SMALL SLIP

It was shown in the last section that an equilibrium flow did
exist and that this corresponded to ‘-)l-y tending to zero.- When the
equilibration length is negligible compared to the length of the nozzle,
the gas and the particles are able to achieve a local equilibrium state
while tl;aversing a minute distance of the nozzle. It is natural then to
seek a perturbation about this equilibrium flow for small slip. From

-the knowledge that the flow tends to equilibrium for -j\v - O , —j-v )
seems to be the natural perturbation parameter.

Before proceeding with the perturbation analysis, the govern-
ing equations will be rewritten, following Marble, 'in terms of the
slip quantities. As suggested by the analyses of Rannie and Marble,
the pressure will be used as the nozzle variable in order to avoid the

singularity at the throat.
The slip quantities & €, 7s are defined by:
Us = UL — Up 7
e = 1— (sp/xgd | (38)
Te= T-Tp
Let ? be a dimensionless distance variable defined by:
F= =/ (39)
where X 1is the distance along the nozzle and L is the nozzle
length.

We now rewrite the equations in a form convenient for the per-

turbation analysis. First, eliminating between the momentum equa-
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tions (3) and (4) the force F; -
d« = 2p Aty
= K ecu 0
(1+K) gu o T At 4 == (40)
From the momentum equation for the particle:
u =% 2 = U )
AE ~ =, = - = (41
A5 Ah P A g Al

Eliminating the heat exchange between the two phases by combining

(8) and (15) and using (3) and (4) yields an elementary energy integral:

G(T-T) +2 e” - /7 (- k,)-;—” "+W——'%—2] (42)
Again, the use of the two energy equations leads to the following two
equations:

Z-1 dz
(T/%)/(f/f)—”:= = L, fc/, { s WP T
h, aM;fGJF
g’
ac%r+f’7gu %—;:—7}=ucf—_ﬂ%ﬁﬁ (4

With the gas pressure, 79 , as the independent variable, the

following set of equations completely describes the flow, in a manner

suitable for a perturbation treatment:

Fu A = (45)

Us + 5T & = S5 s (46)



= s

Z-F/7:7;)+-éiu2_ = b (1= 1) = 2 [o 75 + sewts - 4{:2] £y

u dp/d”)—-a“: Wl = & 0"“’/ i; -

L

et - ol s 55250

& Ta’/:»'

_ ﬁ.e a’/(efa//,'
G.T ol

(48)

(49)

o7 fop A d’ﬁ’d’f’_f;_?_ A7 _ (50)
ue zp g “ o /L / )
_._f__..
Arle F
.f = f’fT

(51)

Seeking a perturbation solution, we assume that the gas prop-

erties and the liquid fraction may be written as

i = “m+ (5‘:/._) "‘m-»'- /5»«/1- )2 0‘{2)4- ------
e = 39{0)4' (5"/‘_) ¢m+ (5.,/L.)zf'&)+ L (52)
T =

T* e 8 ) T e (T T T% -

-] — ] —_— = (2
Ky = Ko+ (i) K+ () ke '+ oeo
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Each variable has a non-vanishing 0™ order part and all the
coefficients in each of the expansions are of order unity. The slip
quantities, on the other hand, have leading terms of the first order,

since the perturbation is about equilibrium flow:
(z)

Uy = (jV/l-)usm-* {Sv/l_j‘ﬁs PR

—Es' = /—jv/l—) Tsm + {jvll-) Tsm+ e e (53)

(z)

e = (wnde” s () 575

Substitution of the expressions in (52) and (53) for each vari-
able, into the equations (45) to (51) and separation of each equation
according to powers of (Av/‘—) lead to equations giving the terms
of the perturbation expansions.

The Oth order parts of equations (45) to (51) are exactly equa-
tions (17) to (20) describing the equilibrium flow. Clearly, this is a
check on the consistency of the perturbation scheme, and on the inter-
pretation given to the parameter -AV . The 0 order quantities & ,

TIaJ f{a)
g , etc. are then given in the three flow regions by the ex-
pressions worked out in the section on equilibrium flow [equations
(22) %6 (37)]s

The continuity equations (45) and (46) lead to the e order

equations:
) 7] a - (0
S OIS A = _m (54)
f(a) Ulﬂ) ,q{.) /”.'I ,n)
(i} ) {o)
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- L)
We note that /M must be independent of the pressure.

(1] (1)
Equations (48) and (50) determine g and 7:_; algebraically,

indicating that the perturbation is a singular one:

{o) 10)

' o= == / (56)

a{o)

o
1

{:)—“ c _EI)_,L_L.M_?_{_.T{O) /P) /;g )éf 0/}& J) (57)
ASTrE:" 5. /e o lets )

Equations (47) and (51) lead to the algebraic relations:

—_ /1) fo) {1} «l ____(J /o) Gy
Cp T+t 5 fp ke = K o7+ as (58)
&+ k+i

S L+ T -0 (59)

LHs = T/t _[7° 3.,1:";,,,.]
(712)% (plp)TL 7 5 -

Expanding the exponential on the right hand side:
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RubhS, = {%/o(‘/?: cT“‘df’ Zile

7
h_‘ T d le) /74 0{/(@]011,]
_;T(-)Z df‘ C,— TI-) df

From the knowledge of the 0th order solution, the above lead

to the first order equation for the gas temperature:

I. g C_”_’z 0’”’"’ he T 7" g - h, olx” oy’ (60)
TID) f(-f'/ lo) (.. _]-fo) df E—}Tlﬂz df‘ {.;a{f

Equa.tlons (54) to (60) now give the 1% srdex corrections to the

equilibrium flow.
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5. THE SMALL SLIP SOLUTIONS

The first order perturbations to the gas and slip quantities
have now to be worked out in turn, in I.'egions 1, 2, and 3. We shall
assume that solidification starts only after the throat, i.e., the throat
is in region 1. All the problems associated with the singularity at the
throat can be considered, then, with only the liquid and gaseous phases
present.

Region 1.
The otk order solution is given by the'equilibriurn solution

o)
worked out in Section 3. K =/ and since only the liquid phase is
£ q B

present:

({P]

The first order solutions in this region are then identical to
those of Marble. Equations (56) and (57) directly yield the first order

velocity and temperature slips:

( v
asu—_- a du / _ _gf’(__l_ _q’_f) (62)
&% ¥ P AS

/ _j.:) w“ul (63)

Substitution of (62) into (55) yields the density slip:

Q) /a} o
7;'=:1-:“—(3v)_@ “Y1dp)_ L <
C/’ C/’ Av fdgn C'/,C'

- 4] _ ] | / O’f (64:)

e F oo e

5 M P of

The gas temperature is obtained by substituting (62) and (63)
into (60):



e ]

« dT
K+1 m

¥
: (f_q)%('lﬁ(f_m_ /)7(/(0)04 v 0/79
(‘ Tlo) d’/a < 70

(7 0/“ ] df

|
[

"

K+ 7
e M /_’l’_) (65)
K+ ©
where:
(66)

=~
/.Z Cp -jv
u® o ]of,o (67)

(:lda
o ) U -
G(,ﬁ) fT"" ‘-1 L F

From (59):

(n
S .- x (=) (68)
e(ﬂ K+ 7o
Equations (65), (62), and (63) substituted inti (58) yield the gas slip
velocity:
t - /
u” _ _« [F‘(ﬁi)— @/_@] 9)
a(o) e+ 1 /f—l) MIo)E o 7o

where:



I

F/-——-) (- D/ EL M/f d&’) (70)

Equations (61) to (70) give the ISt order corrections to all
the gas and slip quantities in region 1. One quantity to be determined

yet is the correction to the mass flow. From equation (54):

__02."._—- - .._'.4__- = S;-J -+ o
n;nfol A(o) f“ u"”

{o)z
- //_?--I) /__I_g/_f . 1+ (¥-1) 1M /47
vt | g PP A5 (5-1) 177 175
Partial integration of (67) gives the following expression for

G —;{‘) : oA

C-F(_./f.):: = ”PM }?li{;f 5! {”(X 'MN 2‘:‘ e (71)
¥y L

o = T/t

Substituting we get:

« 4] lo)z
1 I W . M

flp

o)z
/-l-/zr—/)M I+/§—l)f_'ZM 1 fold) ol (72)
"‘Z M(G)z M{‘J O{e O’?

.
If 79 is given as a function of §; or the inverse, bothmm
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Q)
and A are unknowns in the above equation. The key to the prob-

oo
lem lies in the fact that M is independent of pressure from con-

o)
tinuity. Then, clearly, equation (72) implies that A at the throat

* {n
is zero, giving ﬂ?‘lﬂ . Let f:ﬁ be the throat pressure. Then:

= (o>
//t?é' % ¥+ )Yt' 4 /\715 =1 ¥y

,Q'”;.f.” Candland =_ K _* Z//_,_p?[y_,)}__/
ral® k+l 7%

Tt /p
Io)?
R ol R il el ,,,) o | (74
?? N!o) c(z d

Substitution of (74) into (72) then determines the first order
perturbation to the area.

Digressing slightly, one may inquire about the procedure to
follow if the area A = A fx) is given i—a.ther than f: 73/{) . Then,
the location along the nozzle would also have to be expanded in a per-

turbation series:

(75)

x(p) = x* /70)+ = xm/f)+-...

o

Al=x) = A [-x[/lo)] =A{°)(,f)+ .?—‘.’A (,F).,...

A=) + %ﬁ-[ : ——?—"Xm(—f’)+--. (76)

i{n)

l

r
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wm '
i m :

A o L [dA) X" (p) o

) N
xp
Substituting into (72):

o (1 (1 . (i ]
mo A _om ! (O(A).I(’F) (78)
{ﬁq,o, Alo) (h'_l(") A[z(epD O(-;( -x(o)

AA e S ) :
At the throat, e = o , and M? is again given by equation (74).

Equation (78) then determines the axial location perturbation as:

- a) (e) azy | o
X' (p)= A=) K L (H@(s_,)m' — T 4

dA k".l %_— - T d{"ln}
d x (o)
- Pl
. _ Mln/z i (”
_{_i____“_______ M fo) d? dg.-{-) +I;'ﬁ._(‘;)

?ZNIO)Z I

a
This expression gives ¢ [90) everywhere except at = ft since the

the denominator vanishes at the throat. At the throat:

.ow o . w
m s U

— — - ——

x"(p) = lnit R S

Z)’dv T - (7‘(-)) (d /l)’n]

K Ap

After some algebra, assuming that exists at the throat, we

Ax=

have:
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x (28) Xt / *"ff"’)) .
At A =3 k41 5 L d?h‘:ﬁ_

4 L __f. {3.;.[?/4?_37_:) T}

/l'lJ
ﬁ ay =y
7 /7
4 (300542 df) '+/““)’7M e ) | (80)
ZY% lo) df

!

This demonstrates that the throat presents no special problems.
Region 2

In region 2, the liquid fraction is not constant, but the particle
temperature, TP =T- —l; , remains constant at the freezing temper-
ature T% . DBefore proceeding with the first order ca.lcﬁla.tion, we
note that an extra effect has to be ta.ken into account. The first order
correction to the particle temperature in region 1 causes the particle
temperature at station 1 to be higher than the freezing temperature

T i by exactly the amount Tm T Tm , to first order (see

Figure 2). The freezing of the droplet is therefore delayed, forcing
station 1 to be shifted downstream. Thus, the 0th order solution has
to be corrected, the correction being of the order —}/L. . Let
AV :]:’ be the correction to the Oth order temperature at station 1
in region 1:

5 = ~ = (}] ‘ **
Ty = T, 2;_"‘/ T+ %’ (Tlt"'_’—s“)"""“ =T  (812)
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w2 =

"T- (T - m)_ (81b)

where 1- implies that the quantities are evaluated at station 1 in

region 1. Therefore, in region 2, constant particle temperature

implies
i (o) ., ~ = ( __w ¥
'F = T-TS = 1 "+ .%!T-l— BE(T—T; >+----- =T

(82)

The shift in station 1 and the correction to the 0th order solu-

Av W and :_A_f K, inthe gas
L L
These contributions have to be in-

tion cause first order corrections

velocity and the liquid fraction.

cluded in the ISt order solutions. Define:

~ () ~
T = T + 7T (83a)
~ (11 - u i i of‘z & (83b)

Pad (ll Coes
Ke == < e -+ Ke (83C)
will be worked out in detail in

~ ifhecd ~
The corrections (&, 7T , M

the next section.
<)

Proceeding with the first order calculation, L{s is given by

(I}s 6{“ ) _ I’? T
as (a] d?’ /—’f) /o/ d‘?

_ a 7o) a 2) (84)

(56):
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(o) (85)

) — = e
o FRTT = ST

1y

Q

Equation (57) gives the first order correction to the slip temperature:

7 = be/ ) «” ol e/ oty
25’ (a) f 0{?

‘From (29) of the 0 order solution:

() K "t ’ C
ok _ RT 1 _ RT™ 1 _ e @7 1 (s6)

I/
AP B kbe P khe F k¥ be //J

a) s o)
o -l /ze/ r M”ﬁ-rk). a’’ I/a/rf
oA

/5 Ar ol
S LAl a” k¥ oA
(1+5) ) a a’O) { dp (87)
K G S ‘7’ A§
Equations (55) and (84) lead to f‘;
(1l

{r)_ B Us H{- ,__L /....{. _Q/ﬁ) : (88)

s @ r /\7 o)

u 70 d?
Noting the fact that d / = 7 in region 2, eqgn. (60)
aj
leads to the correction in the liquid fraction Kt :

(t 1 ~ __ (s ° ar
o1 C' a’/ o 50 0(7; ; l/_f(_l_o,{‘_"(.),u. A!J_ Iaw/_@fi /Ié O(Ke’ (89)
k Ty oAz ap T A
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+

al ’ (!

KE — A‘ -+ - Cf C‘\/ é(_; 0/“(0) T 2(_"_@(.’ df’ (90)
Kkhe 0(79 /7e df 7"’ e
Vil

\

7’
where A, is a constant and ﬁ is the pressure at station 1.

Substitution of (84) - (90) into (58) yields the first order gas

) m
velocity,

al _ fo) (1l 7
w' = L ST kU - K Ak (91)
#(G) {kfl) Y <'¥i k<1

Equations (81) to (91), now, formally determine the solutions

to first order in region 2:

w o= wus :f.i’/a"i«u)+ o, ('A") o ?_"&"'L....

o a9 1 v lo ., ~as
K, /(€H+ _i)_!//\’e( )+O(2) }(e’ 2"1(4: &

n

ete. (92)
Some interesting features are immediately apparent from the
o)
inspection of the equations. The slip temperature _1; and the

1))
first order gas temperature T are discontinuous across station 1.
td

Also, A, » an arbitrary constant of integration, appears in the so-
m )

lution for Kﬂ . These facts confirm the singular nature of the

perturbation scheme.

It was assumed in the perturbation analysis that -Ay/j_ was

small. This implied that the particles had time to adjust to the local
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gas motion before they moved appreciably through the region. At
stations 1 and 2, this does not hold. A sudden constraint, the parti-
cle temperature having to remain constant, placed on the system
necessitates a relaxation zone of order —jy over which the parti-
cles adjust to the change. This'smoothing out' is lost in our ''outer

solution. "'

To complete the solution, 'inner solutions'' valid near the
stations 1 and 2 will have to be worked out and matched to the outer

solutions obtained.

Region 3
!

In this region, the particles are all solid, i.e. ,Ke z=o0=Kg = Ke'
We note that in this region too, corrections to the 0th order solution
-

will cause first order corrections | ¥ U to the gas temperature and

velocity:

o = —~ ] ey {a) —v""

T= T ?TV (T+T17Y)+ O/T_‘) =T + % T % s (93a)
(o e it j * (o) S ~ (1)

u = a "" —2—"’ /u -+ u(’”)_’l_ O/"‘L—'V ':'-u -+ Z’VM e e e (93b)

The calculations are very similar to the calculations in region

1. The first order solutions are:

Us(” TP, /—!‘ i (94a)

(74

o)

1|

%I\ - \qu ‘ ~
TS

b \?i \r)
S
e
> Il:ul
s

SUN
Q:
NN

N
N

%

i /__/_ _&_{ﬁ) (94c)
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(94d)

al

u - ! X JF(7, —ﬁ_‘_"’_;-G/:f; (94e)
ﬂ(o} /f’f) /\/Ion Py / ﬂ) P ¥ Z ﬂ,) e

where:

(1/0/ lo/ i Qi
) [ f,,[( PH 7 ~ 7~ O Jotp (95)
&7 == AP

and F/f/ﬂ) is defined by (70).
We note once again the discontinuities across station 2 and the
’
existence of an undetermined constant, Az

The solution of the first order perturbation equations is now

complete.
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6. THE EFFECTS OF THE SHIFTS OF THE BOUNDARIES

OF THE ZONE OF SOLIDIFICATION

In this section, we study in detail the corrections to the 0th

order solution,:ﬁ 5 (:Z and ;{42 mentioned in the previous section.

The first order corrections to the particle temperature and liquid
fraction cause shifts of the boundaries of region 2, the zone of solidi-
fication. The shifts of stations 1 and 2 produce first order corrections
to the 0th order solutions, which have to be added to the first order
quantities. This 'feedback effect' is peculiar to this problem and is a

direct consequence of the phase change phenomenon. We consider in

turn stations 1 and 2, and the effects in the regions 1, 2, and 3.

Station 1
Station 1 is by definition the point where the particle tempera-
*
ture, T;; , first falls to the value T , the solidification tempera-

ture. From the solutions in region 1, the particle temperature at

station 1, TPI , to first order is:
' (o) '-_2' m
- e T s T Av. ( o s s R
T;I = T, Is) ;= T )

% A Qa, de /y
=T B e () - L (X ) 2 1) oo
L ¥ (P4
The bracket in the above expression is in general non-zero and
is normally positive. The temperature at station 1 will not be T un-
less it is shifted. The shift should be such that the correction to the

th . .
0™ order term cancels out the first order particle temperature at sta-
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tion 1.

Let

fo) —V . B |
ﬁ :701 -+ %—-ﬁ ‘e e e . o (97a)

(o) G
,_1; . T2, :A‘_—!']; B o o wmes (97b)

Solidification begins when T'; =1 . This corresponds to the

-pressure ﬁ

—

TR = TR e H TR

(o) - d'l';;.m ' _i wl "v u) (o)
- _r‘; (/[)I ) * (ZF ).’n) -l:- ﬂ )
_ T* (98) |

But TF“” ( /ﬁ N ) =
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This gives the first-order correction to the pressure at station

Note that the shift is determined entirely by the solution in region

1,
b order temperature at 1 is:

the correction to the 0

1. Also,
¢
T = = (T2 1%) == T (100)
! i [
Station 2

Station 2 is defined as the location where solidification is

complete, that is, where Kﬂ first vanishes. Using an argument

similar to the one used for station 1, let:
(101a)

[o> gr + )

dz = S + 2
a?. /f) - /(e[o}{f) # ';ir Z//‘:" 7+ K;H/f}]""- (101b)

fo Y ~
Ko ) + 2e 15lp) + - - -

I

Here, K /7’) is the first-order correction to the liquid fraction

in region 2 due to the shift of station 1. This will be evaluated, ex-

plicitly, later in this section. Now ﬁ is the pressure correspond-

ing to station 2.

—f{%(n/ﬁ)} P
(102)

lo) o dl(gm T 0 g Na) loy 3.
/‘/e/ ) + /dfzu';_-"’/;-f-‘_ £+ 0l Z)

Ky l2) = Ke (7) +

(

U\

But

Ke () /ﬁ {o/)
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. ~ (1) (o)
“ Ky (//5 ) (103)

e ﬁ - - (e}

a{hie)

A 8

Equation (103) now gives the first order shift to the pressure

"’6” fo) K
at station 2. Note that { ) is given by (90) and A ‘) s
Te

y (86).
It is now possible to calculate the corrections in the OJCh order

flow quantities due to the shifts of stations 1 and 2.

Re gi on 1

The shift of station 1 does not affect the region upstream of it.

Corrections have to be made only at station 1. At station 1, the gas

temperature is given by:

() 1 —~ )
T = T, + -?_!('T;-l—_r, )-1- (104a)
whe re
~ "(l) (1) §
T, = - (l. — Tg, ) (104b)

The first-order correction to the g™ order gas temperature

due to the shift of station 1 is given by:

5 /O)/ﬁ)

Il
\

*
hlU|
45
~

I
)
+1
NE N
|
ol
I
R
o
.
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To first order, therefore, the gas velocity at station 1 is given by:

(0) (!
ulz) = R EEEE)
~ — =5 (c — ()
U, = - =i C,‘:T*ﬁ = G Iy (105b)
- lo -—;: _ o
¥ U, ) 77 )] M,”

= a th
Note that T, and U-l are corrections to the O order so-

. Jution due to the shift of station 1.

Region 2
The shift of station 1 will affect all points in this region. The

shift of station 2 will be of importance only to the values at station 2

lo) 2¢

The shift of station 1 corrects the Oth order temperature, T =T,

by exactly the amount -— —];'__ » so that the particle temperature is

T to first order:

- % Y ~ [
T =T+ 2F% o 7% 2(F 27" gosa

(106Db)

where |— implies quantities evaluated in region 1 at station 1.

The correction to the e order gas velocity is given by:

WL (5 B lr BT
/o)[f 79 T_]_;.. e ’, U T] 0/

a/D Ic} a T(- )

H

/o) N A
“ o+ %"u +

U
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~ o (o) (o)
The first order corrections ¢ and A, to &4 and A,

due to the shift of station 1 are then:

- Q) - # '
[/’Z(f) = R Tp- ,Zo; i R (1072a)
Ulo)(f) l/"-’
/:]72//2) = BT | T _ b _ﬁ] (107b)
K hL ? j Ilo,

With these corrections, in region 2z

) ~ : /0) -_j‘ ~(§)
= U )t = U A
L(/f) //X <
o) -jr( i k\f ){.". _ l(k)-{- jy ~(H+ .
Ke/f)-f/’fe*-zw Ke *+ Ke = g * - By
o (o)
where (£ and /(eo are the uncorrected 0th order solutions.
The shift of station 2, however, corrects the Ot]'l order gas

velocity further by _2‘:‘_’ _(’..Lz given by:

()
u‘) .//,“’ (108)
o Z
(o)
¥z

where f is given by (103).

&,

)

Region 3

The details of the calculation for this region are exactly as in
region 2. The solutions correct to first order are:

(a)

b(/f’) = 2’/&(.{-“ *- [,(’of,, fvﬁ('+___.

H

T/f) s T4 2" /7"{“ N)+---= T AT

~

etc.

where the corrections to the Oth order solution due to shifts c_)f station
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1 and 2 are given by:

~ ’b) a7
wulp) = //’o)( =d o ) (109a)
f°’ el ,/;m 'T'*
lll)

TP = - T’"’///’)("

(109b)

T
.

{uj
7
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7. THE INNER SOLUTIONS AROUND STATIONS 1 AND 2

The small slip solutions obtained in Sections 5 and 6 do not
match at stations 1 and 2. In addition, the solutions in regions 2 and
’ ’
3 contain two undetermined constants A. and Az . As explained in
Section 5, these are a consequence of the singular nature of the per-
turbation scheme. The assumptions involved in seeking an asymptotic
solution for j\f—’-o ‘do not hold at the boundaries of the solidifica-
tion region. The sudden local changes introduce a region of non-uni-
formity of length of order —jy . Following Van Dyke [4], we seek
'inner solutions' about these points that can be matched to the existing

outer solutions.

Introduce a stretched inner variable ﬂ? defined by:

(=- o)
= for solution about X, (110a)
f? - Av )
(x—2cz) for solution about X, (110b)

Av

d/7 » 0_/_-;{ . L d? (110c)

v T,

In terms of the inner variable, the governing equations

.

CuA = m (111a)

~ - 4% K ” . 1 =
CP(T /.)'FZM ;;‘/71(1 h})—m/;z#'u%—zus (I11c)



du. 472
U oy — Qs = U gz = Agls e
___.I._@-/_?_—._E_;:_’__Lg_f:__“i_:_’_ 5.”24-0_‘3{_7; /7_0_{_/("](111)
Ty ¥ Py ket GT[Up T ely ot

= T S
7 7 Ar g
o = )oRT , _ ; (111g)
Try perturbation selutions walid dn the fumes regions of the
form:
z)
u(nz) U /r7)+ ’7“44 //?)+( ) B Ly ) 4 nvenne (1128)
o, 3 I _-—V = iz
T(m) = T”(fy)*- %—"T“/f?)ﬂh(%)'r %7)+--' . (112b)
) W (2)
U lry) = zv U (m) + / )o{; //7)+ ------ : (112c)
= @ 3TN (z)
T (m) = %"7; //?)+/—f—") (7)o (112d)
etc.
Substitution into equations (111) yields the following gk order
equations:
fo) (o) 1 + (o)
u A = mm (113a)
(o) du(a)
Eony 113
A (113b)
(Th) 7:) -f--g’-clh)?_ /‘c_-ﬁ——l_ /7 ﬂ—- /g ) = 0 (113c)



fo
__{_ T F N dﬁf‘”__ K R4 a(/\’ew (113d)
7 dmy T P dg Kert S, T ol
fo lo) fo, {o)
a’c.§+ﬁ,u’_g_g - O (113e)
4
(o) /o) {0}

//0 = f R 7 (113£)

(¢ ) o
oL E . A L e .
gol-) u/-) A(o} - fo) (114a)
I fol ()
Us + «& £ = o (114b)
al
(o) ol e ) 0(/,(6” (LYY /) a/agm
_C_(_,_ 2’(—;?- - e = O = (114c)
— ') {o) (1) ) { lo
C/', T +~ U U =+ ;-_f-_l_ he \z = ;_’7{7[:’_3 7;”-#-0( ’a_‘{"] (114d)
/ dTlI 24 ¢ O/ (11 _r_/u O/Tla) =y ar d o)
T{o) dnz - 'b_; {a) 0{/7 - o33 o, + ¥ )2
P & <4 y i " (114e)
i
_ Kk [ o . “ .
= K[| -5,25_ he Ak he T ol
G T 7oy T 5 Sz
P TC o
al
Fd dT /ﬁl w ( 7_(0] w {o)
Ue o+ he ok, L& ST L fou” Ol
e Ang A
o= s & ar (114f)
= 2" L u% 2E
AT Ny
{1 {1/ — {1
. N
= (114g)



~42 -
Equations (113) and (114) have now to be solved for stations 1 and 2
in turn.

Solution around Station 1

First consider the 0th order équations (113).,7 They just imply:

/o) @) b)
u @)= constant, 7 f’Z) = constant,}& /”Z) = constant, etc. (115)

In fact, the Oth order solution just gives constant properties.
Using this 0th order solution, the first-order inner equations (114)

simplify to: ) ,
o) 1 (1 . {1

U_ A M
/o) = —“fa) = Afol = . {a) (1163)
f’ H [m
(7 lo) ']
aj’ o+ U f; = o . (116}3)
1 {y
@ du %" o w® dus
' lop (D -l fo) @7
7 i
C}, % 80 s /95 y) kH Cls +dU & (116d)

al I — ’
T Z A"l ke AT he o ’“"“]<116e)
T oty F P Ay kA [GT oy T Z T ol

ol

o, fo 7 = (] a3
a”c ar /74/ ’/f’ﬁ A 5 Zf“; wt A" (116£)
a’ =72 5
7 4 s Az
{
7 _ ", T C (116g)
fo o fo)
79 b/ r ) T

It is of importance now to realize that something is known about
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the pressure. In the outer solution it was assumed that ,79 was given
as a function of F or X , i.e.,: 79:70/2:)

.Close to station 1, we can write:

f = f/x):f/z’,-f—i/?)
Pl + ,rrz/gfj + O(3Y

"

....f + qr7o o 2«/ )m /?-f'O/Rvj

(117)
£ fa)
Thus, to O . order, f //7) is constant (exactly as predlcted

by the inner solution) and f //7) is given by:

(1) g .
P = £+ 7 (2, e

Clearly, at f?:o , the inner solution pressure matches the
corrected upstream pressure in region 1 to first order.
It is also to be noted that the region being considered is down-

stream of station 1. The particle temperature has to remain constant

at T
" Tolm) = Ty =T () = T 4—.--{T T = T (119

-

T ) = T." () (120)

)
Substituting for KE from (11l6e) into (116f), we obtain an

equation for the slip temperature:
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_w ar
u(o)c ii{ +“Io)c‘_; 7.!0) c(n) o/"i' /h’—n) / o(?‘ (m:{ (r) If’ff
dﬂz 7 (/;7 d/? k --(a) d/’? K r 7’“,6!’/'2
Dl . o /ll
— :_’-_1__"‘_' &;a(o)-/; - a"”c a7 (121)
P anm

¢)
Simplifying and using (118) for f '

al = e /o — = o
A7 '+ o, v G a7l (K*"_%j_‘_“/_ajf (122)
d/,z 'jr % a(a} ¥ <p 7)1:,1 o5 7

This integrates immediately to:

a) = - fa) __¢o)
Tl = L) X 21 W7D (o)
2\/ v o % E

= _— {o)

A Crp A (123)
+ B, expi-K. 2. 22

A+ G U

where B, is a constant to be determined by matching.

m
Differentiate (116d) and substitute for Kp from (116e):

M(d) d“ai___“f__ O/ a1 _ :E—I C‘FT / (124)
olng K+l oAmp ¥ PP s

o
from (11l6c), results in an equation for

Substituting for 4
the slip velocity:
0{“: + (x+1) A a’ M = — (1+K) (¥t /V- (f" / (125)
0’”2 wu'® fq)

This integrates to:

(1) — lo)
- ) G a /+:<)
u, () {::, amf”/f{‘,)/ + B &—\f{ M (126)
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The first-order gas velocity is

BZ is another constant.

now obtained from (124):
an

al _ _ ".37__.’ 5 -7—/°) < !
L ) = & ?M,fff,.,/ﬁ%f)"? b e o D

(127)

Finally, the inner first-order liquid fraction is obtained from (116d),

(123), (126), and (127):

a I _ a (o @l
Ky (r7) = 7 [(c- &1 2) 7 Yp)+ vt 0"ty —

/K-fl)af“’u"”//?) '
K

fo) wy K+l lo)
. ) — K g
) - K2 )

T helT k¥ °
' _ ot (o)

= — | (5) GT [ap G T ) G | (128)
hf = = --[—g/gé-l./?-f-' -;s‘ f?)—?w %

Solution around Station 2

is now defined by:

The inner variable f?
(129)

nz - (7(_:'2’2)
Ay

order equations again give constant values for the gas

The 0F
The first order equations then simplify

and particle flow quantities.
Once again, the pressure is a known function

to equations (16 a-g) .

of ﬂ?
70/::):43/224—7,,02) o

) 3 « ~ of. Tl
B+ ..i__).!//g_, o .?1/7/;(—;;2"'0(1“)

(o) ( (1) A
3 f”//?) = A2 + /?/a—[g)z (130)

1l
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The particles are all in the solid phase in the region consid-

ered: () m
(=)
/rg') = //7) (131)
(1 ' o
Substitute for /  from (116e) into (116f) to obtain an equa-
__u)
tion for g
S ~ = — [£)] 1) {o)
Al ()% Ay G a¥ Y 0% (w0 T/l
a = = g = —_
oA S Tr © u® P F poldtE

‘which integrates to:

U)

T, () = £ v (&0 ”Mrb'/gff +

Q)
T then follows from the integration of (116e):

(] (o)

T()(”Z>=B {3’/)/ ) +—
)f /aj a/(;

From (116c,d, e):

o
u'm) = 8, %’f{ Ly f"'@q’ of46)

Y a {o} !a)

Finally, the substitution of (132) to (134) into (116d) yields the inner

gas velocity:

IHA?).______.% /7)4_‘“_.——5:_ T(”ff?)-—— ; lué?) (135)

Aol k1 @

The two inner solutions are now complete. It remains to be

shown that the inner and outer solutions can indeed be matched with a



T

7/ 7 )
proper choice of the constants A‘ ; A2 and 8,“ Bé .
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8. THE MATCHING OF THE INNER AND OUTER SOLUTIONS

We consider here the matching of the inner S_olutions obtained

-in Section 7 to the outer solutions obtained earli;er. The matching
should, while providing a uniformly valid solution, determine the un-
known constants A: and A; in the outer solution. |
Station 1

The procedure to be adopted is as follows. The solution up-

' stream of station 1 is congpleteiy defined to fifst order_., . The iilll.el‘
solution should match this solution at ﬂz =0 . For (TZ-V 20 it
should match the outer solution found in region 2 for f—f"ﬁ i

The Oth order quantities of the inner solution were all found

to be constants. Consider the gas velocity:

U el //}Z) = constant . (136)

Clearly, to match the upstream solution, the requirement is:

aM/ﬂF=D) = MIOJ/I—W%) = &f;m = &tm/ff) (137)

Now: 7
o -éf’/°)/r7) = u,m = Lo M’o’/z) (138)
7 —> o0 X X

Similarly, all the 0th order inner quantities match correctly if

they are assigned the values at station 1 as given by the outer solution.

Thus:
()

I
ﬁ'\
o

~.{
¥

T

(139a)

\m\
.\"
3
e
!
A

(139b)

Kéfo)[n?) = K =/ ' (139c)
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/o)
/?7) - (1394)

For future convenience, introduce the following notation:

&/.m- : limit as tends to -7 through region 2 (1403.)
/

A A+ 4;

fem.  :limit as tends to through region 1 (140b)
PP -+ +7

Llom. t limit as - tends to ﬁ through region 3 (140c)
P B+

z«m : limit as 7-7 tends to 7’; through region 2 . (1404d)
Pl

[{F
Now consider the slip Veloc:1ty L( //?) given by (126) . For

ﬂZ—-PO it must match L(s /7:‘) for f.-a_ﬁ_ » as given by equation
(62):

b ') = -0 BT o) . 5

fy—-v-o
a/ /,f.. dz) + B
¥ P A5 7

a /0)
f,.a,f‘__ * /7) ? 7 (14?{b)

(141a)

)

- <)
. .82 = O by the matching condition. Now try to match é{;/fy)

for n?—v 22 with the downstream solution (84):

Cm a"@d__ = u'(p) (142)
) b

] -0
The slip velocity thus matches correctly on both sides, showing
that it suffers no discontinuity across station 1. Now from (123) and

(63):
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Liin (”/7)._ (%290 Ar 7 u,’ ’“’__:,,_ + 8
i —=o K ;)y 3 a ¢’°I

% S / >
CETQ._ZL. E_?L 4‘, /_1 g(_f_) + B, (143a)
P A%

Kk A & ¥

1t

) ) = o)  fo)
/

b Ty et Dr ol L) s
P - “ N G ¥ PAFy
' (5—_ ﬁ/);. A2l u® /1 otp

& = G AP A F /A

= - £ :L/-?-—-I) Srom, L o2
¢ ¢V o’/ 7 Al

) '
For ﬂZ—-P' co —rs- /f?) should match the solution in region 2, (87):

. (t) (o)
Z/m T () = (k+1) 27‘ a / (1452)
ﬁ/}n 7;(”/7’) == /"H")._gl? am g_,iw/__l_ oty (145b)
— ~ gy s r A€ /
i 43+— / Fa

)
The density slip ?S matches without any.difficulty.

Now we note that the inner gas temperature, gas velocity, and

liquid fraction must match the corrected values (T"' T) 3 (M 2 u> 5
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and (Kz + Ke) respectively, of the outer solution.

By virtue of the matching of the slip temperature, the gas tem-

perature matches automatically:

by T ty) = ﬂ/m “/7) ,g,,,, M/f)-—- L 7_&("/7&) (1462)

7—?’0 I 70-"“4,7—
s (/4 7] . __(:/ . ~ (i

o T"t) = &m ) = Zn Gl) = doin TAP) (1asmy

m - e 9=~ co f—»%-{- P 13+

" From (127): | |

. g ()

Z/m é(“//)?) = 83 s ;% Uy,

- o N

' “ a 147

0 85=a,_+u,_:ﬂ% (147)

(1)
where a,_ is given by (69), a, is given by (105), and A{W is
given by (141b).

)
We now demonstrate that with this choice for K /’7) =0

3
for f’Z-':O

Jin ) = 5 [ & T ) # e /'7’]
-0

/ m (o)
=—|_<p T isdl U, — (Kﬂlu ulal_ (ﬁ'); uln)
/7! K K I< t

K “k

[} .t () [y o) o
= [c o, + U U, - ['“"c = (e

= o by (s%) (159)
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Thus, the matching is satisfactory at nz—_z o
_ m
It remains now only to demonstrate the matching of /{e ﬁz)
I?-—-tr""-" and evaluate the jump A‘ in the outer solution.
The matching principle requires:

bom Kylpg) = bom  Kolx) (149)

7 — co x— X+

to each order of qy/g_

Consider the outer solution in region 2 for X A7+ .

bin kel = K" + 2 60> + Of 20)

7(-—'92',+

- e Rure R bRy 2 OB,

fo fo)
N Y

From (86):
afm:) m”/ odr) - f?r"‘/_za_/ﬁ
x; kbe 730{§ K/J_g 795{? 7

’ , df= - |
im K‘/ )= [k’& /7 (151)

K X+
¥ f’l—""‘ A j-’— O(Av)

(3"") Kk he

Looking at the inner solution (128):

Lim Kyl = /(g,"” /,, cei) /r-’)_,f_f / )/?4-

,7 - ! k / b)

+ {.. }f{r_ Tm//y) /K”’ﬁ a4 B3ﬂ+.--._ (152)
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Now:
*®

- — (s —_—
(/i) (500 G T o (k+1) BT T KT
Therefore, comparing (151) and (152), the terms in /)Z match cor-

rectly. The matching will be complete provided:

A =21 _5£7;'+ (k00 478, | _ Tl RTp.
he k K Y khe

— )

:...L.___ti( s A s‘:’)_ ¥-1 RTp,

Y K hy

H

)a, ufldp) _ i R7p_ (153

hz

Thus, the unknown constant A, in the outer solution is determined
. i

by the matching. Since (a—af%) is negative, A, is positive. We now

Kc‘

check that the liquid fraction is indeed less than one in the inner re-

gion:

d kelm) _ ?‘;_f.[,c;o/?;+ 7*/__,3573]#___
drg k  oly K P AEY
s
A7

]V ){ _._C../:_.. f’z’?a
-r/(c

Since the above slope is always negative, the liquid fraction

falls monotonically and is less than 1 away from station 1. This and
the matching procedure are illustrated in Figure 3.

For completeness, some of the solutions, uniformly valid to

first order over the whole of region 2, are given below:
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REGION 1

2
L

<

___>/'P
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REGION 2

OUTER SOLUTION

[ av w ~
Ke e (K2 + Kx)

INNER SOLUTION
55 5 0

K'F)-r _L_va (n;))

) =
g +>—k{! ﬁl

FIGURE &. THE

§

INNER AND OUTER SOLUTIONS

FOR K, AT STATION 1



Ue = 2 [‘" Tg’i/“'l‘ gf)]”" oy (1553)

la)

_ o
7s = 21'/”5"{ % /3 @f u” /d’)&»y)/ g, a,” ()
P

=1
+_j /i(+_r)_ _)__7- a M’O] >]+ 0 Av (155b)
G Kk 2y ¥ 7’ oAs
‘ o 2 _q .
My = < / ) (1 ctp
4 kb jf&} L Af k(‘ 730(?‘ .
RT -—-4’-% z r B, ef,{/p{ Z__—(_';?_“M/:r-x)
/7 ¥ ‘/70/’0) kl?z ar G u: H}_r
f
f AT Wt T ol e’?# ]
K e dfg fe 0/79 T"’ ap’

Station 2

The Oth order quantities are again just equal to the quantities

in the outer solution evaluated at station 2:

(o 5
T )(f"Z) = _7—2{)= T , (156a)
flo’( ) = £ - (156b)
o (o
Ke( )/ff) = ng) = O _ (156¢)

(o)

P70 = 2 (156q)



wBbe

Using a procedure exactly similar to that used at station 1

first consider the matching of the slip quantities. From (132) and

(134): :
(u
b o) = B, (PO ET 12)_ écc”’/f) =

- o 2

L, By = 0O (157a)
U 500 8, (22,30 < 50 1 o)
ey £y = g = 2, & a:”/@“" AP NG L
a) — ©
= bom Tslp) = o) 1 [3r) a2 L o
Ak @' Adv’ ¥ 7’ Tl

: 622 @/ | dp\ (157b)
. B, = /)/ [’/2/7«901;

These then match correctly with the upstream solution

Lo % ”7) - /7: d§) fé:of(( ’/f)

17 —p=c0 s
2)

é%ijx: 02%) - (/2~;){/ ,) = b( 7 a¥§3) ;e;ﬁ,n+ ‘3§

With the slip quantities matched correctly, the matching of

the gas temperature should then completely determine the solution

over the whole flow. By the matching principle:

Lom Tim) = Lo T ) (158)
7 — e0 _ = L
to each order of jy/[_

For the outer solution in region 3:
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lim Tlx) = bim  [7%0 + 3¢ ;-f"/x)] +of2)
Vi

X, +

T{o) f,, . ;-f_" [f? /jg:‘j "’"’/,(227—1— O( )

= 2, +

I\

1"
N -~
~| %)
r--_
‘(Il?“
-.!
N
3:“
\/
~3
|

O Bs = (Pl 1 [y ad )

/I+1<)c; 1’3 C—;) Av’ ¥ 794(?2

/o)
R A
B K & ¢ P AT (160)
. ()]
.gvm T g (*o'-r) (' ol Fle
17— 00 /?Z) e Bg‘-f- T > df)ﬂ?-’"):-f—.;c‘ SZ+-
By the matching condition:
g kK < 7" _F
Az = Bs + K+ & 'sz+ = T,
" . j a/a) (o)
£ ..CZ:) -———/-—__—~) = Ve 161
=N\ & &7 ()71 7 7"“? -
~J
- Tz4

This completes the matching and the determination of the constants in

the outer solution.
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9. CALCULATIONS FOR AN EXPONENTIAL NOZZLE

In order to illustrate the application of the foregoing analysis,
a numerical calculation is considered here. It is assumed that the

pressure distribution is known as a function of distance and is given by:

¢ constant = —/
(75

As discussed by Marble in [27, this distribution approximates
the pressure distribution in a nozzle optimized for minimum particle
lag loss. The gaseous componenf will be assumed to be the same as .
in [1], with the following properties:

CF =0.5 ca.l/gmoK , B =o0.11 ca.l/gmoK s P‘r" = 0,74 ;

The chamber and exit conditions are

T, = 3500% , A2 - 6669,
TE

The particles are to be aluminum oxide (A»E,ZO3) with the fol-

lowing properties [5,67 : h£ = 26000 cal/mole = 255 cal/gm , & =
b o o

0.667 , T = 2313°k , € =0.47 cal/gm K. With this choice of

characteristics, CP = 0. 489 cal/gmoK , R =0.066 cal/gmoK ,

Y =1.155, M =100, AT =111,
- Av
First, the equilibrium flow is calculated from the results of
Section 3:
o _ gz Lo -2y Lo = ans Lo = 6649
— o "” /o
%" 7" 7" %

/=) fo?
’ ]3&/2 :3‘.9;”5335'15?

u”
/o) e __ o) o
7," = 2313 f; = 2313 K;Tz =Z/80 K
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Note that the velocity is in C. G. S. heat units. For the exponential

pressure distribution, the integrals involved in the first order cal-

culation can be evaluated in closed form. The first order results

at station 1 are:

(1) ___ o I (7 &
U 1.5+ 7 =-8s5s K ; Ig,, = 2220 K

S/ > I'si-
{e7
! __ -
ul :0-4‘24]//_ :42"(}.{-{; = . 0.05/3
o ) W/ o)
/‘h R q2
At station 2:
aq) V o
U, =15 ; Ts,. = -2400 K
‘ fﬂ’
] ~ :
. - 2 = — 3.FF
ng_ = 5:/1?' J /((Z = 04'3 J -"_7.,,
72
p e
Since to first order ﬁ, =z ﬁ °)+ %"ﬁm , station 2 will be

4 , and a pressure ratio

shifted to the nozzle exit for = > 0.1

/’Z’: 6.9 . In region 3, assuming complete solidification,
~ & 4 {n o
Tﬂ 23sK 5 A, =78 K ; T, = F40°K

1) gl N
L(S = //,2 ’ L‘IE = - 3.'?'8’ 7 &(E = - 3.3

=

Thus, at nozzle exit, taking into account the phase change, to first

order:

)

U_ = 3568 - Y. 208

=

lr~|

Upe = 3265 - Aviz.zs

A
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-I; = ZI?OOK + 21:5 Jooo" K
o 2 :;l—v °)<

—T;E. = Zlgo K 4+ = 1900

If the phase change is neglected, the calculations for region 1

apply to the whole flow; the results to first order are then:

—

“Av
= B& 83 -~ 2 o7&
Ue > 7

Uy = 3833 - A 1 46

‘ 3 .
7 = EDDDQ/( - E_" 5'76/\/
E z
- ° A o
e " Zooco K -+ e /o0/o K



=

10, SUMMARY AND DISCUSSION

To recapitulate, the major steps in the analysis are:
(1) the demonstration of the existence of an equilibrium flow

for }V—a-a » where the particles and the gas move together without

velocity and temperature lags;

(2) the calculation of the first order corrections to the equi-
librium flow for —i\/ # O

(3) the correction of the eqlllilibriﬁm solutilan to take into ac-
count the shifts in the boundaries of the zone of solidification;

(4) the matching of the solutions at the two stations, 1 and 2.

The effects of the phase change are quite noticeable in the cal-
culation of the last section. For example, the error in the particle
exit temperature, caused by neglecting the phase change, is

s o =
(l?’o . g 2“_—" f-i‘oo) I< or 225°K for %—-‘/: 0.0s5" . Comparing
only the Oth order solutions at the exit, it is apparent that 88 per cent
of the latent heat released goes into the heating up of the flow, while
only 12 per cent increases the kinetic energy.

Looking at the whole flow field, the most striking effects are
the large discontinuities across the boundaries of the zone of phase
change. The temperature slip in the zone of phase change is almost
23 times its value close to the boundaries in regions 1 or 3. The rea-
son for this is clear: the heat released during solidification has to be
transported by conduction,and so larger temperature differences are
required. The particle temperature -T;: is, of course, greater
than the gas temperature (negative slip) so that energy is carried away

'

-
from the droplets. The magnitudes of the constants A, and A,
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emphasize the importance of correct matching at the boundaries. In
this particular case, the constant /4,/ » found by the matching pro-
cedure, accounts for about 70 per cent of the first-order liquid frac-
tion at station 2. The constant A; accounts for about 80 per cent
of the first-order gas temperature throughout region 2.

It is clear from the analysis that the first order corrections
to the equilibrium flow can shift station 2 to the exit. That is, de-
pending on —?_—'—’ and the pressure ratio across the nozzle, tﬁe A
pafticles can exit with a fraction in the liquid state.r In that case, re-
gion 3 will not exist, and the analysis can then predict the liquid frac-
tion. It is to be noted that in any case, the analysis will tend to be
inaccurate for short nozzles and large particle sizes (greater than 2
microns), when the slip velocities may be large enough to invalidate
the Stokes drag law used. Corrections for Reynolds numbers much in

excess of unity can be made as suggested by Marble [7] .
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LIST OF SYMBOLS USED IN PART I

equilibrium speed of sound
nozzle area

specific heat of particles
specific heats of gas

internal energy of gas per unit mass

force exerted upon gas by particles, per unit volume

latent heat of fusion

thermal conductivity of gas

liquid fraction

length of nozzle

particle mass

mass flow rate

Mach number based on CL

number density of particles

pressure _

A e
k

mixture Prandtl number =

.

heat transferred from part'icles to gas, per unit volume

gas constant

temperature of gas

droplet freezing temperature
velocity of gas

axial distance along nozzle

ratio of specific heats for gas
X~ Xy

e (OR
Ay

inner variable; equal to =
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K= ?P/f particle density ratio

)V velocity equilibration length

a'l‘ thermal equilibration length

/( viscosity of gas

? dimensionless length variable = 'JC./L_
? density of gaseous phase

S diameter of particles

Suﬁerscripts

(°)/(').v(z) 0th order, lst order, an order, etc.

— values for equilibrium mixture

N: ISt order correction to 0th order solution
~D total first order quantity
Subscripts

E nozzle exit

P particle

s slip

't' throat

o chamber

| station 1

f— ,|+ approaching station 1 from upstream or downstream
2 . station 2

2-,2+ approaching station 2 from upstream or downstream
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II. A KINETIC THEORY INVESTIGATION OF
SOME CONDENSATION - EVAPORATION PHENOMENA

BY A MOMENT METHOD
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1.1 Introduction

Under many circumstances of technological interest, flow
fields involviné a vapor carrying a small volume fraction of its liquid
can be greatly affected by the processes of phase change. The flow
of wet vapors in power cycles utilizing alkali metals as working fluids
provides examples in both the turbine and condenser flow processes.

When the time scale of the flow is short, the dynamics of the
phase change assumes considerable importance; the vapor-pressure
equilibrium condition is not satisfied over the scale of droplet spacing.
Frequently, the question is not one of droplet nucleation but one of
increase or decrease in the sizes of droplets that generally retain
their identity throughout the flow. The radii of these.c]roplets may
range from much smaller to much larger than the local mean free
path of vapor molecules.

The mechanism and rate of transfer of vapor to and from
liquid droplets differs completely, depending upon whether the medium
is a chemically pure substance or contains an inert diluent gas. In
the latter case, only a rather small mass fraction of the diluent gas is
required to make the diffusion mechanism rate controlling. Then the
vapor molecules condensing on the liquid surface must diffuse through
the inert gaseous component and the rate is low in comparison with
molecular velocities. For such flux rates, the effects of phase change
are of similar magnitude as thermal conductivity and viscosity and, as
a consequence, do not add novel features. For a pure substance,
however, the flux rates of condensation can take place at nearly

molecular velocities; the effects become much larger and take place
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much more rapidly than those associated with diffusive mechanisms.
The new phenomena that enter the problem are associated with this
extremely short relaxation time,

At the present time, the formulation of this vapor transfer
process in a pure substance is incomplete. Figure 4 shows the
surface of a liquid at temperature 1: in contact with its pure
vapor, at ambient conditions ﬁ 5 7: . At the liquid surface,

_ molecules are incident /ﬂ/ 7: ) , reflected (40-;-} 7—;—) and
emitted from the liquid /49[_ 3 7;_) . Now, Von the one hand there .
exists the classical formula of Hertz [17] and Knudsen [ 2 ] which
is valid strictly in the free-molecule regirﬂe. It is based upon the
assumption that molecular flux from the liquid may be computed from
a Maxwellian distribution at liquid temperature T:_ and number
density corresponding to the saturation pressure ﬁ . Similarly,
the flux of molecules from the surrounding vapor to the surface is
computed from a Maxwellian distribution at the assumed vapor state

ﬁ s T, . Now since the Maxwellian mass-flux rate [1] is

f//z_n.}?-r— , the net condensation rate pér unit area is

2 A o [ e g {(’ﬁ-ﬁ) | (72-7)
- ~ g e 2’,_’_. e I
/27 R 7o J2a R, 27 73 2 —

the approximation on the right holding for small differences between

vapor and saturation states. The free-molecule restriction of this
result is clearly seen in the facts that the source of vapor molecules
is independent of the molecular flux from the surface and that no

molecules leaving the liquid are scattered back into the liquid.
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FIGURE 4 THE SURFACE OF A LIQUID IN
CONTACT WITHITS VAPOR
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On the other hand, Marble [ 3 ] has proposed a rough for-
mulation for the condensation 'from continuum flow. The Hertz-
Knuds en expha.nge is retained in the imme.diat_e vicinity of the 1iq1;11d
surface, but the state from which the vapor molecules flow is not the
continuum Sté.te of the vapor many mean free paths from the surface.
Rather this unknown state (ﬁ P 7:_) is related to the continuum

state (% 3 72) by conservation of mass, momentum, and energy.

This leads to the three equations:

i 7

A
2R T VemRT,
/ /
27 *t 7z Fe

/ . W R z>
ek T, 7o -t ferRT £ = - g (GTrE

which, under the assumption that the differences among vapor states

= - ?c.uc

I

725

are not large, gives the mass condensation rate as

& - <-7%
cpue = = (25 s ferrn (B2
c 2 Z-n";o—,:_-_—" <

The state ﬁ. P 7: , however, is not the state of the remote vapor,

since the former is moving toward the surface and the latter is
stationary. As a consequence, the state % ,7; is connected to

the remote vapor state through an isentropic expansion fan, giving

the pressure difference

A=A 4
7 7 @-




w T ls
where Qg = m is the sound speed in the remote vapor.

Then, eliminating the state 70(- , > under the assumption of

small state changes, the final form of the condensation mass flow is

=1
For = 5—/3 ' il

; / — SR~ A
m = O.?O?}—‘E_ﬁ‘/Z?TR/o ( ’—f:———-

Among several facts concerning this result, two are of special

I :

° 8 _ ;"_ﬂ

m = —- (f = =7 2 \|f./enkle (————"70
ZF s o l4_, AL é—:_a—: N (]

interest. First, the condensation rate depends upon the difference
between the pressure and the saturation pressure, not upon the
corresponding temperature difference; this is in distinct contrast
with the Hertz-Knudsen formula. Secondly, and somewhat more
surprising, the coefficient relating the mass condensation rate

to the pressure difference is within 10 percent of that which occurs
in the Hertz-Knudsen formula. These two observations suggest that
the transition from free-molecule to continuum range has mainly the
effect ofl suppressing flux caused by temperature difference.

Such conclusions at this state of development may, however,
be somewhat dangerous, not only because theoretical investigations
of this transition regime have not been done, but because the con-
tinuum calculation of Marble is based upon a physical model rather
than deduced directly from kinetic theory. There are questions,
therefore, about the nature of intermediate vapor st'ates near the w.a.ll
and of the process of ''patching' the expansion fan to the quasi-steady

continuum solution. Furthermore, the extension from a plane
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surface to a spherical droplet is not at all obvious. Clearly, the
expansion wave plays a different role, if any, since the corresponding
wave would attentuate at least as the reciprocalv rad.iﬁs frc;m the
sphere.

It is the aim of the present work to analyze this problem of
condensation from the kinetic theory fundamentals, as nearly as is
- possible, over the range from free-molecule to continuum flow. The
-moment method of Maxwell will be employed. Even with the
recognized limitation of tl;e technique, it offers the most tractable
approach to a problem of this degree of complexity. Furthermore,
the method permits a general treatment for all Knudsen numbers and
thus may be checked against existing results in the asymptotic limits.
Moreover, the resulting condensation rates may be computed for
different numbers of moments, the relative insensitivity to these

moments providing further confidence in its accuracy.

1.2 Some General Assumptions

(i) Regarding the governing equations. - We shall be con-

cerned only with the vapor, the liquid making itself felt only through
the boundary conditions. It shall be assumed that the governing
equation is the Maxwell-Boltzmann equation for the one-particle
distribution function, tf

d F Df

..—a_{—+ g-VJC-*—.h:nﬂ‘vff‘ = (-87.: Cotl. o

where g is the vector in the molecular velocity space, __F is the
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external force field, and (a{'/bt)cc._... represents the co‘llision
integral (1) . For the as sulnpt-ions involved in the derivation of the
équation, its ré.nge of validity, etc., we r;af.el"the reader to Grad-'s
[ 4] article. This equation will be solved approxﬁnately by the
Maxwell moment method using Lees' [ 5] approach, This will be
described in the next section.,

(ii) Regarding the nature of the vapor. - It shall be con-

venient to treat the vapor as a pure monatomic gas_,' with equation of
state f: fl?r . Further, in view of the immense simplification
of the analysis, an inverse fifth power law force between the mole-
cules will be assumed. Since at moderate temperatures the
rotational and vibrational energy exchanges between molecules will
be small, the results should not be too bad for non-monatomic gases
at moderate temperatures away from the critical point.

(iii) Regarding the boundary conditions. - In the present

analysis, the accommodation coefficient will be taken to be unity.

This means that every molecule hitting the surface will be absorbed
by it; it will be assumed, further, that the molecules are re-emitted
with a Maxwellian distribution corresponding to the liquid temperature
with zero mean velocity. Since very little is actually known about

the complex interactions which take place at the liquid surface,

these restrictions seem justified for a first step in understanding

the phenomena,
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1.3 A Brief Description of the Maxwell Moment Method

The kinetic theory treatment of the vapor phase involves the
solution of the Maxwell-Boltzmann equation. Unfortunately, the
difficulty in solving this integro-differential equation forces us to
consider approximate indirect approaches, e.g., assume approximate
forms for the collision integral, or solve the equations of transfer
rather than the Maxwell—Bqltzmann equation itself, etc. Here the
Maxwell moment method as developed by Lees will be used. A.-brief
description of the method follows; the reader is referred to Lees'

[ 5,67 original papers for details.

Often, in fluid mechanics, one is not particularly interested
in ti’le velocity distribution function itself, but in certain lower
moments of it, such as mean velocity, mean temperature, etc. In
such cases, instead of seeking exact solutions of the Maxwell-
Boltzmann equation, one can solve the transport equation for the
lower moments. In this way one satisfies the Maxwell-Boltzmann
equation 'in some average sense.

The general transport equatioh can be deri\}ed in a number
of ways, either directly or from the Boltzmann equation. Let Q_(?b)
be any function of the velocity components of a particle. The general
equation for the rate of transport of Q,. can be obtained directly
by considering the various sources of change in the amount of €L
in a fixed volume. The rate of increase of Q per unit volume,

%/& (E.)DC(Z’, fl i—)olf must equal the sum of:

(i) the rate of change due to the flux of particles crossing the
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bounding surface of the volume, — V’T . [[f}? &O(_EJ L

(ii) the effect of external forces and curvature of the coordinate

system on particle acceleration, given by

JHE - (aas)]-Veads

(iii) the effect of collisions given by:

49 = (02 9) 54| 5,- Flatgats, babete e

The resulting equation is Maxwell's integral equation of

transfer:

=) o
a“z—'/m £+ 7. [frads

- ﬁ{ﬁi_(g,\g)}.\@ao{f + A8

This is the basic equation for the present investigation.

(164)

We

note that the gas dynamic conservation equations are obtained by

setting a to be successively the collisional invariants of mass

{&:ﬂn) , momentum {Q.—:ﬁ?’z ?‘_) , and energy (&: m ?72) 3

for which Aa = 0.

The procedure then is as follows:

(i) Represent the distribution function j((r/ f/ ?f’) by M
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arbitrary functions Fr; (Z P t-) of space and time, selected in
such a way that the essential physical features of the problem are
preserved. |

(ii) Take 4 appropriate choices of a in equation (164) to
derive M moment equations,

(iii) Substitute f:: J[{F,; /,'_7: ZL), E} and solve the I

first order partial differential equations for the unknown functions
F (£ | 5 .
(iv) Once the boundary and/or initial conditions are satisfied
one can hope that f{F;1 (‘I" {-)’ f} represents _7[/_'7_", f, f)
in soﬁc fashion; more important that the lower moments such as
e, «, _/_; derived from J[Zf/:;’; f} are approximations to
those derived from the correct distribution function, j[

It is clear that this procedure is similar to the integral
methods used for boundary layers. Rather than satisfying the
Maxwell-Boltzmann equation point by point, one satisfies it in 'some!’
undefined average sense. Though it is hard to make any definite
statement in advénce, it would seem that 'better' solutions would be
obtained by using more moments (larger M 's).

The choice of the arbitrary functions F,-q is not rigid, One
is guided by the basic requirements for the distribution function to
be emplpyed in the moment method: (i) it must have the 'two sided'
character essentiall to rarefied flows, (ii) its form must be such that
the boundary conditions are easily applicable, (iii) it must be capable

of providing a smooth transition from rarefied flow to the Navier-
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Stokes regime.

The above requirements are well satisfied, for the present
investigation, by Lees' 'two-stream' Maxwellian (Fig. 5) . In
body coordinates all outwardly directed particle velocity vectors

lying within the '"'cone of influence" (region 1 in Fig. 5) are described
by f: _7{ where:
&
f= _m (4 [§-u(r)]
= . -
[27,-:? 7,‘/2’,#)] % 2 RT,(x,+)

(165a)

and region 2 (all other E ) by:

m, (r,+) %79{— [f—*_l;lz [‘T’H]z (165b)

2 RT, (7, t)

where M, , mz, 77, 7:? " i‘f, and -L—‘z are ten initially undeter-
mined functions., (It is not necessary to use all ten functions.) With
the correct choice of these functions the free molecule limit can be
described exactly for diffuse re-emission. The boundary condition

and transition requirement are also satisfied.

2. The Steady State Spherical Droplet

2.1 Formulation of the Problem

Consider a spherical liquid droplet of radius T, , temperature
To in equilibrium with its pure vapor. Then, neglecting surface

energy corrections, the vapor would be at a temperature -T:: and
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pressure ﬁ , Wwhere ﬁ is the saturation vapor pressure
corresponding to _': . Now suppose, for instance,; that the
temperature of the droplet is suddenly changed to —r,;_ £ Te .
Now we ask, is there a steady state condition with net condensation
on to or evaporation from the droplet? We shall neglect the growth
of the droplet and the latent heat effects, i.e., the mathematical
problem will be a droplet with a straw to suck out the condensing
fluid. This model will be a good one if the calculated growth rate
is small compared to the radius Yo .

In order to keep the formulation as simple as possible, we
choose to describe the distribution function JC for the vapor

molecules by a two stream Maxwellian with four unknown functions.

Referring to Fig. 6a:

=i in 1

[zﬁm—‘h,)] z RT,(v)

flr,£)=< - 166)

fo_meto_, {5 e
[21:‘1? T (—r)] 2R ()

fo o [ fees s
I

The four unknown functions 11, , T, P m, , T:; are
functions of 7Y only because of spherical symmetry and the

assumed steady state.
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The ''cone of influence' and regions 1 and 2 are defined
precisely through Figs. 6a and 6b, At the physical point - -
position vector 7 , the molecular velocity vector . g - has
components (F_r’ EG, §¢> where:

£ = Scoo
-
€y = §<mo Coo T (167)
: ~Zen T
S = S
When the direction of E is in the outward cone it is in

region 1, That is, if (-g:- a() is the angle between the radius

vector T to I and the rays defining the cone at P

0<a < L«

2 defines region 1

(168)
—éT-r-- o <o~ < T defines region 2
and  Cog of = Yo T | (169)
Equation (166) can then be rewritten:
]C- ('T' F) oo < B e
[ 4 = 2
IF(Y' 'E‘) = (170)

Jél{7j Sf) ;;-o<‘<6“ <
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With the distribution function defined in this fashion the
various mean quantities like density, temperature, stress, etc., can
be evaluated in terms of the four unknown functions. One notes that

the volume element in velocity space can be written:

AdE = d§, oS50 § — AT (§ode) (§tinool)

e Bt a= ol Esteulee -

Then if a (ﬁ) is any function of the velocity components, the

mean value, <@> (‘r‘) , can be written:

<8 () :[&fo(f

e

el Z‘ )
ff [@jc E’Ama’d?o(cr'df 7
+//fGJC § ‘a0 of Folaol -

T_o) ©
For example from the kinetic theory definition (Appendix

I) of density, ?
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o(r) = [mfds =

('T" d) 27
f] /mmm a[__gi_]g;wmx
[z RT,(r)] = —
iy ()
// /[ RT() | W[ZRT (1]$mrx (173)
-——ol x{dfa(rd’l')

S’{Y) = _fém_ [m,(‘}’)(l-fda-nd) + mz{-r)(l+<zajnd)] (174)

For future convenience define:

Mno($ /- ..75_? — x('r) - . (175)_
—rz .

Thus:

o) = ._’;[—m.h) (1= +/n2/7’)(l+x)] (176)

All other flow quantities can be similarly evaluated in terms

—

of ml,mz,Tl_; /2
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2.2 The Moment Equations

In the absence of external forces the time independent moment

equation with spherical symmetry takes the form:

T2 Ar 7 . donl

: I . . 3
- (ﬁaﬁ S+ E;fa)ae¢7d€

— A Q (177)

L d fyerg s 4 L oo /chg)o(?_

where Q is any function of the components of the particle velocity
and A& is the rate of change of & produced by particle
collisions, For Maxwell particles it can be shown [5] that:

A&:O. fo“r &=ﬂn§, 2

7/

(178)

A&_—: ifdk fo'r &zﬂ"lf‘.f'?k

X

4f3(9-=';igfzc-é? qg'f-é;j7§k—£ﬂﬁ;7 Jé;, 69 = N 53- fﬁié
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where ﬁk = /7DK 4= 735"( . %,/u, % are
the thermodynéznic pressure, viscosity éoéffic_ient and the heat flﬁx
vector respectively. |

Since we have four arbitrary functions /77, /’7') . 7/—/'7') 5
mz (‘)’) and 7; /’7’) defining the distribution function we need
to use four moment equations: the three conservation equations plus
one higher moment, In this case it'seems appropriate to use the
moment corresponding to the radial heat flux. Thus, setting
a = &, m Er , M F‘z/z and M E,- gZ respectively

the following four moment equations are obtained:

a _..0_[_. '7’2 ;O/F:
(2) e ][ﬂﬂ 7 i o

I o 2 re / B e _
e 22 72L& mds —;/f[$a+§j’,,]nno(f_o

?2
(179)

72 d»r

@ L o /72 m & EAE - [Jc Jm £ 1535
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where Y/ 1is the mean radial velocity, It is easy to show from the
kinetic theory definitions (App. I) that (179a, b, c) are just the

equations of mass, radial momentum, and energy conservation:

() 5‘; (%)

, olv / .
® Pr o =d7 B + /2 99—/5,,) (180)

(c) d‘j{/?’z/%, +—23—fV~V/37 *""'aif'"g) = O

Equations (179a, b, c, d) are then our required moment

equations,

2.3 Boundary Conditions

For the steady state problem that we are considering, the

gas far from the sphere should be uniform with:

T — Io
for T 0 (181)

f — 'fo

Under the assumptions made regarding the accommodation
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coefficient, surface energy, etc., all that is known at the droplet
surface is the outward part of the distribution function. The
molecules from the droplet are at the temperature of the droplet
TL. ; their number density is assumed to be equal to the number
density mL corresponding to the equilibrium condition at -T‘-_ -
We note that mL and -TI_ do, indeed, constitute two boundary
conditions for the vapor; for a given T,_ the value of (M_ will
depend on the liquid concerned. This boundary condition is
particularly easily represented by the assumed form of the

distribution function:

iyl = T
ai_ T =7

(182)

2.4 The Linearized Problem

Equations (179a, b, c, d) together with the boundary conditions
(181) and (182) will provide the solution to the problem. However, in
order to get an analytically tractable solution for small deviations |
from equilibrium, a perturbation solution is attempted. We can

write:



_g8-
m = (z)
ml ('Y) = mo [_, -+ A Nl (T)-&-} NI (—r>+-...]

T(r) = Te [l + A L',m["') + X t:m{"f)‘*”' ]

m,(r) = M. [l + A N:'(-r) +TN:)(T)+——'] | (183)

Ta {’7’) = I [l + A 't,':)(’f)+}2'tr)(7)+ .- ]

Here ‘A is a perturbation parameter to indicate non-
equilibrium: when ’A = O 2 m| = mz = My and
‘r" =T, = Te to give the required steady state Maxwellian.
The mean flow quantities can now be evaluated to all orders of A

It is convenient to introduce the following notation:

L) a1 a) (v (n 0
N, ()= N+ N, 5 NO =N, - N,
i (1) ) (184)
. 't‘“('f) —_ t’ ‘ Z{‘z

- et 5

-and similarly for the second order quantities. For brevity, the
complete list of flow quantities to second order has been left to an

appendix, with only a few presented here:

- ) L8
0§25 [+ [N 2N
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v = BE gt o 2]

ZiTT
- (Nin+-2'-,-f_.m> (_ZLNH)_ .ZN:”) "
4 ( a:m N“%” + ) ‘f&?

(185)

|
“1

X

\.‘

(c) .70

)
Y
~Pr.

e T

——

n|
=

|
NI

Z

+
N -

m () ol
' e L =g
-+ 2 =

= 2
- (I-'xz) s 4 al () yyCrl
+ ) - (N_ +'E t— )+ --—-é—* N‘ &‘ +

6T
i, M (=) (z)
14 | x
+(Zx)N L, IN"- 2N+

where ‘3 = [T RS | (186)

We note that when 3:"—0, V=zo , §=§¢ . j’:%

etc, The scheme is therefore consistent,

2.5 First Order Solution

Using the perturbation scheme of the previous section, the

moment equations (179a, b, c, d) to order ) reduce to:
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' (1) (1]
@) N_ + —é— £ = A

iy » () . o)
) N, + t+ = C

+
(187)
. {1 , (2
@ 22%_=n"= B
(1 ' )
(d) Tf—(—gf_}):——?iﬁg
51 & ‘F//’o T

These equations are identical to those obtained in [6].

The boundary conditions (181) and (182) to first order become:

aj '
(@) For ¥t Ly —=o s Ny—o
(188)
@ T -Te T
) For =7 i 5 BB AT
AT Ts
Nm _ m_-Ms _ _m
] '— 'A Mo 2/’10
We note that:
Yofo = 1o RTs U S N (189)
gds  # bm

——t— T f
Fz/bﬂ: (o7t T2 [ A zjiT%)z
n

where [a is the undisturbed mean free path and Km is the

Knudsen number based on the droplet diameter. Integrating
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) .

| . .
@ I ) = (4 ALt 8‘”) sl T gU T
L

& Jo »
a
(b)f(’?’) ) 8(’)7’
Jo £ =
. | 190
AN = (ZAD L) mm
16 o & =
(1
@N, () = - . xr g"
30 S . ._;;_.
I = e\ AT
m (""‘""“ “—)—_ - 2T ) 20
AL 4 s 7\12+(2+T§-7)'2m
N (191
(_1+ 3 T |
2 20 L.
Ba; o
— AP
(2 = - (192)
s £ | 7
Y — AP AT 45 m
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.

From (185b) the evaporating mass flux is given to first order Ey:

oV = //-— =2). A (N Z P L)

= _f_‘?é A /lm(_'_r:
=

ad

Thus at the surface of the droplet to first order:

f’V (7’::72)

(/ 2 7;)47‘ (/ 2 7 ém
RIznrT, “+ 15 &)7; z " iE 6,

3
h

i

Z 7 (, 2 7 >
L S — S
2 Zco bs

%% ) (193)

This is precisely the result that was sought: given T:
% and A7 and A70 the mass evaporation or condensation
rate is determined for all Knudsen numbers. We note that all the
formulas seem to hold for both positive and negative Af ; X T,
i.e., the problem seems to be well formulated for both evaporation
and condensation,

In Fig, 7 the dependence of the coefficients of A/P/4%

and AT/‘T; on the ratio 'Té/fo is shown. The coefficient
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of Af/ﬁ changes little with Yo /{o but the coefficient
of A T/'T; . vanishes for (%/[.)-—p— c©® . The two limiting

cases are to be noted:

(i) Free molecule limit (l(m = e -—':-OO)
=

£2 1‘( ‘;_\'—,—)
=% ) .. AP £L (194)
?V (T ) v ZT¥ Z2 v 5B T

This agrees exactly with the Hertz~Knudsen formula,

|
%

(ii) Continuum limit (Km ﬂ’ )

{195)

fV/‘T: Y,)——P- ;Fif?i‘g %_—: 0./42ﬁ 2R,

A

Thus in the continuum limit the mass flux is proportional
to the difference in pressure alone!

These two cases will be discussed in detail later,

2.6 The Solution to Second Order

The first order solution of the previous section gives us most

of the information that we seek. The reasons for carrying out the
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calculation to higher order are twofold: (i) to demonstrate the
consistency of the perturbation scheme and (ii) to see how the
mass flux depends on products like (Af)z s APAT , etc.
This will enable us to see the difference in behavior between
evaporation and condensation,

From equations (179a, b, ¢, d) the moment equations for

the second order quantities are:

(@)

ta) (N_[z>+—é‘-‘t£2))+.2-{-(t\l:” (li mb(”).._l[é-mz ma) A

i 1 1£2)
(z) (= W, m w _?—_).. u-z- 1z -
(5)(N_z+-g"t_ : +;—(N| L-l"Nz tx«:)""8 /l—l éz ) B

(196)

gy

2 2 =) Gat,
(c)_o_‘.-[N‘ LN D P )N B NG
adr L *

__.Ij = (1- x"')(\l +‘t‘ +Nmtm ‘“bu) = 0

(=) -(2) z)
@ ﬁ/gz_—a[\/&) N w2 . - .?xslf__ +
g/ aAr
17, (17 iz
# 3)(2le ‘ )+

i) e+ E7) [ 4



e

(z) {Z) fig, (1) )
_4_:”-3—_:’.: 7@/"2:(/« "D[N +3L +3NLL,+3/\/2(HI€2 -+
| = B
+_éj-; é‘{”z f_;”zj

/ (2N —?M(O-gf,é/.xﬂ/?i('—'a/v
ELEG T (NE NE )+ T (L )

2
/ " Ié-([[ z/le)N(” S-_Z_(f) l/3 xB)é[” N
+N-+z—-)"z" “TE W TElETR
(=) (z)
/
4_._,.(/%z & = AL ‘)
<

o BE DYt £ (3N ff-ogjj
2w

()
In the above equations the four unknowns are N, s

(2) (=) (2) (
-/:I " /\/2 , and 'Z:.‘. . The first order quantities N, s

i.l'] ; ;
/ , etc. are known functions of Y  from (190). It is to be
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noted that the change of viscosity with temperature was taken into

account in deriving (196d). The boundary conditions for the second

order quantities are:

(z) (=)
@ Fovr V—w oo : tz-—?-o , g O
(197)
(z) (=)
m At r=m : b =e s Nit=e

The details of the simple but tedious calculation are given in

Appendix III. For the present purposes the only important result is

(2)
the value of the constant A -

6 %) 2> I5 L7 [aum 53) Amz
— e —_— e — 4
(‘4’ 5T A sz 15 g lize = 7 +

+ J (77‘ 43\, & -n
.3 R TA A izg " 7%, 225‘[

+Z2) [ a"s®

! § T.;(ls’ﬂ‘ 15‘)
L PR T L L g P
+ Ilzg 1s 0.\ sz

2
8 -r° (37— 2/ 4 B‘”z
1

zzs p= ioza 67/ 3375 47

(198)
0n) ()

where A and B

are defined by (191, 192). We note that the
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solution is again good for the whole range of Knudsen number. To

second order the radial mass flux is:

f‘/: Eﬁp?f")/a r + A /4/2) :] (199)

2o
Yo
From (198) and (191), in the continuum limit -"‘"e —— 0
(-]

al $ 4P () o
A g A/ + B 5 . (200)

(=) 4!7T 5'3)/? ‘3T, U zso _
A £ 125" 7) 225 s/iz 32

33?: ﬂf)] (7’1’0

From (199), (200) and (201) the mass flux at the droplet surface, in

(201)

the continuum limit, to second order is:

. A P |B A
m = f’l//'r_-_-);, ;—E‘-—P-oo) S ’f’f Olé'-}/ )]202)

Thus the mass flux in the continuum limit dépends only on

A/P, to second order., Also the asymmetry in Af says that for

a given ,A/FI more fluid will evaporate than condense. Thus the
difference between evaporation and condensation arises in the second

order.
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3. The One Dimensional Transient Problem

3.1 Formulation

'Every steady state phenomenon is, in actual fact, the
asymptotic limit, for large time, of some transient phénomenon.
In the steady state solution obtained for the droplet, we implied
uniform conditions far from the droplet. In actual fact pressure
(and other) waves generated by sudden changes at the surface travel
outward. But in a spherical geoxnretry' these waves die off at least as |
fast as 'Y'_| , and become infinitesimally weak far away. In order
to understand this better, it is of interest to consider a transient
problem. In order to avoid the mathematical complexity of the
spherical geometry, the plane one dimensional problem will be
considered.
Consider an infinite, plane sheet of liquid at temperature
—[; , in equilibrium with its pure vapor at temperature T. and
pressure 7?_, , the equilibrium vapor pressure at -7: . At some
instant the temperature of the liquid is suddenly changed to
7; == T . This is the transient problem to be studied.
Let the distribution function _f(l;f, S_’I 'é') of the vapor

molecules be defined (Fig. 5b) by the two stream Maxwellian:

= ___(n_'_(_‘.d_i_‘_t»)—_-a-——- %F - gz
[z RTi(s]™ 2R T (45

'f(‘.:f, g,*): (203)

2
')C: m, (4, ) ) 9”'/’[: s .. £<o
e [ewRTlye)]" 2 E T )
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where (N, ,_r‘-, mz ’ Tz are four unknown functions of

: gl

The mean flow quantities are now given by:

(RUEIS (4,0 - f@fa?

j(f&fdsxcw,ozg 4

#__ and

+ J j[&fzdi’d?jdg(zolﬂ

For example: —ed -0 -
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3.2 The Exact and Linearized Equations and Boundary Conditions

In the absence of external forces, the general moment

equation (164)> for the present geometry takes the form
O [rQodf + 2 [f5QdFf = A8
— 3 e e Yy L = (206)
ot f oY f

Setting & to be equal to the three collisional invariants
= .
m o, M ?; and M ?/z and equal to n"ﬂ_?j g'./z for the heat

flux moment, we get the equations:

oFf = =
(a) L2 el o
> e (ev)
v Qv SR
(b) S—’—-—-at_ +=eV a-———j 3;" O

(207)

The first three are again just the familiar continuum
conservation equations.

The initial and boundary conditions are:



-102-

(@) Faor 7)0,5’50 . T=T‘:’.ff__'ﬁ’/ V=0

(b)Fa"yj—-p—ﬂO/@éft: T—?nlf-?-ﬁlv—#o (208)

(c) For ‘j-—" o, fos ¢ Tiludl=T , m,ly )= M,
The second condition states that all flow quantities approach
the ambient state far from the liquid surface, The third condition
implies diffuse re-emission from the liquid at a known temperature
and number density (or pressure).
For small changes in conditions, we seek a perturbation

solution:

(& m, (‘j,f) = M,y [_I-l-] N, (4, + O(}Z)]

(b) My (‘jf't) = fHOE+ ANy, t) + O(hz)]

. (209)
o T let) = To1«At s+ 03]

@ T, (lj,{-) = Tg [l +)i‘z(td¢%) + O (Az)]

where )\ is again a perturbation parameter to specify non
equilibrium. Only first order quantities will be considered, with the

superscripts left out. The mean flow quantities (Appendix IV) can
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then be evaluated; for example:

@ o= lieN g e T
weve SE[AIN w2t ] ]
opepRT= [ i it Jo]
@ 9 = zjg[q {;t_-zN_}+___.]

Clearly for } = O we get equilibrium as desired.

(210)

Substituting these into the moment equations (207):

at/N] = j =z N._ +i‘] =0
. [;N+t] 2,,79 [N++f+]=o
2y
2 6 2 s 1
)at[?/\/++3f'+]+__ﬁ:‘ay[;w\l__+éll‘] o

(211)
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@ S. 4N’+éé] 5N’+mé]
ot z 2y

The above four moment equations are identical to those

?t zw]

obtained in [ 7] . The boundary conditions (208b, c) are now:

.(a)F;ry—t’oo : N+('j,£')—v—o " t+/9,f) —v O

(212)
Npw e BT M, -meo
(b)A‘t’.’g:o,":>0-‘t,= 5_7,; = >N|: -_;_f—":—n‘fwm

For future convenience we non-dimensionalize the variables:

the, | ... T I (213)
£ 0 7 g T+ A

where ’Z;__ is the mean free time.

In dimensionless form the pertinent moment equations are:

a [ /V] N+é_]
”at +27_ay

%Z;N_-Ft]_}- é’—a—g[/\/_’_-f-i__l_]zo
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(214)
) 5’% SN, +3Z:_]+ = éay' 4N +51L._]-_-_~ o

T -~
(d)._@_Z.qlN-péf]-;-E-a—y— SN, +Ioi‘] ?Z:QN_]

= O

3.3 A Solution by the Method of Laplace Transforms

The Laplace transform [ 8 ] technique is particularly
suitable for the solution of the system of linear, first order partial
differential equations (214), with boundary conditions (212), Define

the Laplace transform with zero initial conditions:

F{rf= F-= fe—stao(z,@o’f

e m ~ | _
SAC ARSI
T4

Z
@ Ply,t) = — e’ (4,5)s

XY= tloo

where B/ is the largest real part of all singularities.
Applying the transform to equations (214), the transformed

equations are:
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(@) A ZN_+Zﬁ]+27TSN+_—_o
Y '

(b)-—~[/\/+f]+s[2/\/+z? -

(216)
e [4-/\/ +éf]+37r$[/\/+é]
~ o 7 —~ b <z o~ _
(d)c—{gi;"/é—/\{{_ + /o ZL+]+ /?S"E-)N_ 4+ 64 S + T)t__
Assume solutions to these linecar equations in y of the
form:
~ _ = S | wy
N,(y D= Alw)e sN.=BbGwe
(217)

~ WYy~ w
‘Li/gf,s): Cls,w)e ;tls)=Dl0)e

Substituting (217) into (216):
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2TS 2 o o ' A
o £S5 7S s B
el
2TS  4eo  BTS 6L c =
5 W (gs_-) 1003 25+%‘—‘ D
The determinant for 4) can be rewritten:
2TS (@) @) (7
(@) o (75 s
= O
1
o - % 3Ts o e
-5wW (-168—9“- o (—-Jos-—-——

+ y/a .
L —2775@54——;—’—)@2-;--5‘?—— s¥(4s —;—-F)zo (220)
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The quadratic in wz is easily solved to give four roots:

6\),’2

- (A /éﬂ 2
= - 77’5/ +2_s‘) / = ) (221)

3.4

(4

s + TS r /!” 32 (zzz;.
= + [ws(F+rs) 2 L5+ ) /
I'4 7

The positive roots &.)3 and 6‘)4 are rejected by the

boundedness condition (212a), for Y —s= 20 ,

For each (2 equations (218) can be solved to give:

@ B(s) = b(s). AlS) = — 5w+ 27S (ES (P A (s

w//1,5+ Z

0 C(s)=cls)A)= |3 + =fe ”(ﬂ]Afs) (223)

3TS

(c) 3/5): d(S)A[S) = — 26-35 b = b(s) A (S)
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From (217) and (223) the transformed variables are:

~ e, 4 “e dJ
(a) +(‘_4,S'>ZA,6 .—1—Aze '
~ 4\);_‘_1_ "‘-722
e N_(gs)=bAe “,bAc€
~ “w, Y Y (224)
(<) t+/g,s) =chA € +c A€
‘ ~ ‘J:'__g e Y
@ £ (Y4s)= oA € “+ol A, C
We need to solve, now, only for A, [S) and /42[5‘) .
From the boundary conditions (212b) at the liquid surface (Y =0 ):
@2t (y=o) = E, (4=) +1_(y=0o) .
< G
= (C, +Ol|)A| + (Cz +d2>A2 = '_"—S'—" (225)
(b)ZN, [j=°) = f'\T_‘_('jro)_;- f'\\']__ (3—’?‘3) "
= +8)A; + (166,34 = =%
where:
= A 3 N, = 20 (226)

i A7+ M.

- Solving for A, (S) and AZ (S)
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—S?- [t’,L (1+£)-N, (c +d2)]

@ A, (s) =
(C‘, +°’r)ﬁ“‘ ‘{-’z)" (e +elz ) (1+ 6,

(227)

) A (s) = -—E—[i‘.,_ /l+_b.)— N, (c +d«)]
(Cz+dz)(’+bt)—(cf+o"{)(’+/"z>

By substituting (221) and (223) into (227), the transformed
varigbles (224) can be written down simply as functions of S ,
g " tL and N/L . In principle then these can be inverted
to give the solutions for all time. However, our interest lies mainly
in the wave pattern and mass flux rates for large time. We therefore
seck solutions in the large time limit,

By inspection the origin is the singularity with the largest

real part. For fixed Y , large time corresponds to S small
[ 8] ; one therefore expands the transformed variables in power
seriesin § . Keeping only highest order terms:

@)  £J,(s) :—f-—zfﬂs— + o(f)-
3

(228)
m) o, (s) = - _45__7:5+ o(s)



L,y . - ,“;«"f;_f_f
Since c —_— & = this

transform 1eads_ to a solution that is diffusive in character. But

Lz Y - -;:H_S Y
c - = gives a shift of the form:

[t-/Fs] = [+ /Z 2]

= _..L[t-_._?___]._ __'_.I'_t-_ _5_]
% JerTol A,
d 3K £
where 0,, = /35-1?7; is the isentropic speed of sound. This is

exactly as in [7]

(229)

Similarly by neglecting higher order terms:

bls) = ZEVF + - -

£

(2)

® G(s) = =1 +--

©) dy(s) = —J3 /s +--- -

&

@ b, (s) = Ly R | (230)

2 dosass

3

w
—
I
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- A IS
a3 a,z/s) ARV ArY ,+

(g)/q {s)_.. 2. [(, :”_.K;—n—) u.'"(s ‘/ZE:T:)N.J+
e R )Gl

' N,L
m A (s) = 2 [t'- >

AN

From equation (210b, c) we have to first order:

f/s)_.f/-——qf—nzf—— [, E‘iﬁ;}ﬂL]

/ (+a) “ (1+¢) “x?
://%'?*2 YA e + (1194 e (231)
z

<

Vis) = 2_5 N
._.é. (1::+'d)Ae '_,_ ([, +0’=)A€ ’7(232)

2
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The relevant inversions are:

4
a
. c S
E & — ' (233)
(7 )"

= (o] -fcrr o < tcga
T .(23_4)

|- -FW 'é>a

Thus for large time the solutions are:
61
) Sor oLt < [T 4

f:’/%f): (235)
pli+a] 4~ > /L4

3z Wz/_w‘zg’} o<t </EY

(1 &) VIZ_'Z_T

vlo,e) = 3 T o
J: _Ter, 5. > [
7r £y FZofes 2> /E

where
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5 z QL (237)
3

(238)

z 7[5 Am__( .?_i_’:,i')é_‘—
I R
2~ zr Z (_f__,__?]f/_—f:)
3 sV 67

s < 4
5‘ — __.--@ . li 3 = _-f
3 67 S Qi
2 (’é"""’é‘f\/g?‘) 7%

(239)

It is clear from the above equations that the large time
solution is composed to two parts - a diffusive part and a wave part.’
The diffusive part vanishes rapidly away from the plate, leaving a
purely inviscid solution. On the other hand, the pure wave

2R,
travelling at the isentropic sound speed Qg = <1 ® never dies
out. From (235), it is seen that the pressure is composed only of
the wave part. For z—-—v =

, the evaporation-condensation

rate at the liquid surface is given by:
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= K Jerkts °r LD
s
($+2Z/2) *

= Q.14 % rT. 2F (240)
R/jerer 27

Comparing with (195) for the spherical droplet, we see tl'1at
in the continuum limit the mass fluxes are almost the same both in
form (N A»f/»ﬁ, ) and magnitude (0.148 compared with 0.142).
Detailed discussion will be left to the last section.

The large time solutions obtained here are valid only when

Y is Leld fixed. For solutions near the wave front one would have
to use the method of steepest descent or the method due to
Whitham [1959, Comm. Pure Appl. Math., 12 ] . This is not

necessary for our purposes. In the next section we examine a

'quasi~steady state solution'.

4, One Dimensional Quasi-Steady State Solution

4,1 Formulation

We saw in the last section that the large time solution, for
the one dimensional problem, was essentially composed of a
uniform steady state and a pure inviscid wave that never really

died out. We ask ourselves, can we solve the steady state moment
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equations, patch on a wave and get the same result as the transient
sqlut1011? It is not really obvious that this can be done, since we
do not know the details of the transient solution or of the wave.

To bring up a point that will be discussed later, one cannot be sure
that this can be done for both evaporation and condensation.

In order to investigate this possibility the following
programme is suggested:

(i) Solve the 'steady state' mo1nént equ‘ations w'it‘h known
boundary conditions at the liquid surfaée but will:h uniform (pressure
= ﬂ , temperature = 7c. )bqt unknown conditions far away.

(ii) Patch on a pure wave to connect the 'steady solution' with
the known uniform conditions, ﬁ and 7o at infinity. Thus 7% ;
—TC-._ , A7D , A T and the evaporation rate will be connected to

% and 7o through the wave.

If the above scheme yields the answer for large time of the
transient problem, we will have gained a better understanding of the
phenomenon.

As in the previous section, the two stream Maxwellian
defined by (203) with four initially unknown functions 77, (ﬁ) 3

T, ('-j) , M, [H) , '_rz. (H) will be used. Dropping out the
time dependence from equations (207) we have the required moment

equations:

@ L (lpv) =0

°/
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of
(b) fvgf—%—gi._o

(241)

A z g° _ _ B
(d) 0—,—2—-(071% ’{’)Cd§ - f[s%*‘/ﬁy]

The first three of the above equations can be integrated

immediately to give the usual conservation equations:
(a) 39 vV = CZG?L&JtEM@t

2 W
SV - Ry =

(b) (242)

@ v (3prezag) - By = coleat

Equations (24la, b, ¢, d) can therefore be reduced to a
single first order non-linear equation for one of the functions M), {‘J),

T:(:j), etc, However, we shall again seek a perturbation solution
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for small disturbances from equilibrium.

We canv_vrite:
f(?): (/+)fm zf'(z)-:- >
(z
(b) f/j) = f//"')f e )77 & ) (243)

(c) V(Z:f) = F /2\/ + 4 \//2”4.,«.-. )

etc.
where the superscripts refer to the orders of the quantities., Of
) o) (D] wy
course f , -7’ , etc, are functions of l\) (5’} t, (‘J )

etc. as given in Appendix IV or equations (210), e.g.:

7 Q) (1) (1)
(@) g?llz——'-N+=wé‘—(N,+Nz>
(244)

(l _ / (u I I [ (r{’_ «al Z_ru le
(b) f - —2— ) Z A/I 2 )

Now by direct substitution of (243) into the conservation

equations (242), it is easy to show ( App. V ) that:

] Iz}

Gme s 3 2ppv e e

v

i.e., the heat flux is zero to first order and to second order is as

given above. This result will be used later,
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The boundary conditions, for the steady state solution are:

| V ai 'T;;,-‘I_;_ AT " @ m, - M.
‘a’ﬂfj—"'—o : ZL, = Zn " an o= ;,mn =

(b) Fﬂy——v—m : f—""fc , V—= Vo

We note that 7@_ and VC are the uniform pressure and

velocity behind the wave.

AM

AM,

(246)

The linearized moment equations for the problem, derived

from (241), are to first order:

(a) __-d-[ZN_-f—t.,]
“Y

(b) ;;“(‘[N+ + f+]

1
V)

I
0

(c) &—%«F N_—z—-;é_].-:o

(247)

(d) %Z;M++:of+]= -~ —éz—_fﬁ_[’.zf_—z N,]

7z
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The first three equations state that to first order the velocity,
pressure, and heat flux are constant, These can be integrated

immediately to give:

(a) 2 N__ -+ t;_ = Bl

® N, +ty = B
(248)

(@ -N-+Zt. = Bs

@ SN, +r0l, = Bg —3? ik

From (248d) we note that B.B: O for finiteness, i.e., the
heat flux must be O to first order. This leaves three constants

13, . 82 ; 84_ to satisfy four conditions (246), i.e., the problem

seems overspecified. |

At this juncture it is instructive to examine the simple one
dimensional heat convection problem. This is treated in detail in
Appendix VI. It can be seen there that e0 is a singular point for
the equations and that a perturbation solution will break down. The
singular perturbation can be treated by the method of inner and outer
expansions [97.

The equations (241) that we are dealing with here are very
similar to the continuum heat convection equations. It seems
reasonable to expect that, as in the continuum case, an 'inner-

outer' expansion technique will overcome the difficulties encountered.
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Equations (247a, b, ¢, d) are then taken to be the inner equations.

Equations (248) are then the inner solution:

@ Z2N_{) + t_ ) = B,
) N, (y) + ti(y) = B
(249)

@ - N_(g) + Ztly=0

@ N, (4)+ 10 t, (q)= By

4,2 Steady State Outer Solution and Matching

Let fp be the outer variable defined by:
f)z = A y o, ) -8 (250)
- * dj - df?
Assume, again, perturbation expansions of the form:

= (=)

m,(m) = m. (l+)tl\l,‘"(nz)+3 N, /"2)+--")

(251)

Tlm) = To (14 A o)+ Xt e+ D

etc.

Noting that the algebraic equations should be identical to the

inner equations by the matching condition, the outer equations are:



-122-

@ 2 N_(m) + T_(p) = B,
) N, () + t, (m) = B,
(252)
” k- =
@ =~ N_lo) + ZL lng) = ©
1 ge” o —_2g7
@ 7 = 5 [SN (r»z)+m‘(,L (f*z)_—] =%

But from (245)

%"= -2ppv [ermes"]

epve[ze-n] e
Vv () ?

where = a_‘;”: ) / , is the velocity perturbation. Thus

(252b, d) and (253) yield:

Aty _ 47 f‘/”[é -2 5 ) 254)
S

Integrating we have the outer solutions:

@ 7, (m) = =B, +C &\1:{47_ 3 ”Z}

4“ %Vm

(b)N(ﬂz)___ ., — C &sep /"°/§ﬂz
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(255)

1l

1
Ry W=

e (opd

5,
@ N_ () 3,

To the above outer solution we apply the boundary conditions
(246b):
For M —~00 ’P_'P"ﬁ‘- y Vi Ve
R = z (- £) (256)
i =4
A P

B = T (257)
j - '2 (5
We also note from (255a) that for the finiteness of the
temperature field we require:
IC
Vv : < o Sl

This means that the 'steady state' problem is properly posed
only for condensation, The solution obtained above is now clearly
like the convection solution (Appendix VI). The velocity has to
oppose the temperature gradient to maintain a finite temperature
infinitely far away.

To proceed with the solution, the inner and outer solutions
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will match completely (,éﬂ”' W(“f) =nzé-mo¢/ﬂ2)) provided:
-

y_v 2=}

i o+ | A 259)
C =64 - = Ba (
The boundary conditions (246a) can be applied to the inner

solution. At ‘Ij = O

a -
. _ | Y . ZzAa7
@ 2L ly=0) = g B+ By - B = 2
) = / zZAam Ll
) 2 N, (y=°)=;;/3,—-5_-34+282: ——i—r‘n’;
Thus:
76 ‘(= /’7% z (261)

Or using (95) and (96):

9 gnve _ 2(f-p) _z2Ge-R)_ 2(7-AR)
/16 4. A2 AP A
TR

(262)

This is the constant mean velocity to first order in the steady

solution. Now \é and ﬁ are the uniform velocity and pressure

" behind the wave.
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4,3 Completion of the Solution with the Wave

The transient solution sl'lowed that for large time the solution
was composed o;f a steady part and a pure undiminished wave, The
'steady' solution of the last subsection, showed by comparison with
the convection problem that to first order, viscous effects would not
be important. Further the steady solution was seen to be valid only
for condensation.

One can now conjecture that the transient condensation
problem is similar to the piston-tube problem in gas dynamics [10] .
Lowering the liquid temperature and vapor pressure is like pulling
a piston away from stationary gas in a tube. The kinetic effects take
place close to the liquid surface but a pure expansion fan propagates
into the undisturbed medium. In the analogy the piston speed would
be equal to the velocity of condensation. Assuming such a picture to
be true, the relationship between ﬁ ; Vc and ﬁ would be given

by the corresponding relationships in a pure expansion fan [10 ,

pg. 791 :
2%
=1
e 2 /, L tfc) i
790 < Qo

: o : = S
Linearizing and noting that Y= ‘3”

o S Iof"Vc (264) .
= A+ £ S.R,T) i+ /F%)

But from equation (262)
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_ & (R-7)_ 2 [z AP _ [fo7
vc-—-—-*-ﬁ ..ﬂ__?”[%ﬂ 3l/

. 3 G (265)

Thus to first order the condensation mass flux rate predicted

by this 'quasi-steady state' approach is:

&

——ar

2T *
\/::g:_— ﬂ4)
" [ ] 7
‘/5,—_
——Fﬁ[g a7 ﬂ;‘] f (266)

This is indentical to the result (240) obtained in the transient

nh(:j:c’) = §V= 5
' [+

problem. One is therefore encouraged to have some belief in the

'quasi-steady' picture for condensation. This approach does not work
for evaporation; this point will be discussed later.

We now note that the expansion fan will become infinitesimally



e
weak in the case of the droplet, This is because in a spherical
geometry the inviscid waves go like jc("l"—-ﬁf)/'r’and die out for
large “¥ . The solution obtained for the droplet is therefore the

correct solution for large time.

5. The Effect of Higher Moments

So far, all the calculations have been made using four initially
unknown functions to represent the distribution function and thenl |
using four moment equations. In an integral method such as the
present one, one's confidence is greatly increased if it can be shown
that the gross features are changed little, by the use of higher
moﬁents. In an attempt to see the effect of higher moments, we seek
a six moment solution for the one dimensional problem.

Let the distribution function for the one dimensional case

(Fig. 5b) be represented by the two stream Maxwellian:

m (y,€) t'-;z-e- E;-f- [_-'ﬁj.- V, (4,6)]
;- oo {25 L
[znRT, (4] 2R (y, )

fly,5,6)= | é2)

2 2
o om | eteg[5-n ]
* [ewRT60] 2 RT2(y,1)

where m.q(g,t) ’—T“;Z (9,'&'), V,lz (‘d,f.‘) "are six

initially undetermined functions, This is the most obvious

extension of the four-function approach, since it is the y velocity
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that we are trying to calculate. The reason for not using five
moments is that it is not clear which five functions would be most
suitable.

The mean flow quantities can now be determined in terms of
the six unknown functions m" z _r,-'z i \/'.2 . The integrations
are now complicated by the presence of V, and V, in the
exponentials and lead to error functions, exponentials, etc.

However, we are only going to solve the linearized problem. It .

therefore proves advantageous to evaluate the mean flow quantities

after linearizing M, , M, , etc.:

m, = m. [+ AN, (g, )+ ]
T To [l + A '[I,(‘d,'l‘) 4-—] 268)
s [255 fre ]

etc.

Rt
1

\/l and Vz have no Oth order parts since they vanish at
equilibrium. Now the exponentials in (267) can be linearized

before integrating, e.g.:

e p {"" £ 5o+ [ 5- A+

(269)
2RTe [1+ AL, +--]

£
= fis3. 22 ;wom*)]c’ #r

KTe
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Then, for example, the density is given to first order by:
elyt) = fm*acdf .
o9 - s o

= J [Im‘fa "{Fnd?‘fc{fv’f +[( mﬂdﬁdgd(?zo)

-0 o -0 —#0 -0~ "0
2 e aftm g 00)]
whe_:re: N+= N|+Nz ., U = .U: = )/; 5 etey, ) (271)

Appendix IV lists all the necessary mean flow quantities to

first order; a few are given here:

(a)'f:: ﬁ}jl+){%f\l++2):}+-...]

® §V = %TEI'_ A {N_+—é e +1Ty;_}4...]
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We note that the introduction of V, and V, permit
the stress tensor to be non-isotropic (79_-;{_— - P‘dﬂ) ; also when
’A = @ equilibrium is obtained. B
The six moment equations to be used, COl‘l‘@Spénding to
@:ﬂn,mf;,ﬂn?z/z ,Imfxz,é-mlgg'?zand m§',3 , are

from equation (206):

o2 £ D (€ E S L)-Zq . J
()5'5-[”"%27[0{?"'5}{” ‘?\/Z]f r=2 7 %*VE

- D “+
(f)%[[m ‘s?fo(f +é§fm 'S?y fo(f

- f[@»‘wﬁy-? l @“”f"{—f]
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Equations (273a, b, c, e) are of course identical to those
' 3
used in the four moment problem. Since A Q for Q= Fy is
not given in [ 5 ] , this is derived here in Appendix VII,

The boundary conditions for the transient problem are:

(@) For 7""”””’ T T, P, Viow o

(274)
At y=o, tyo « M=m ,T=TL v, =0

One can now solve the linearized problem, by Laplace
transforms exactly as in section 3, to obtain solutions for large time,.
Since the details are complicated, but not instructive, they are given
in Appendix VIII.

The solution turns out to be composed of a diffusive part and

a wave-like part, as before, plus a wave damped exponentially in #

For t-—;—- e3 , the mass flux at the liquid surface is given by:

. A
i1 = fy/y:o>=ffﬁ[ = qwz/—“‘-"'] f

4
s g+3 [=F

z

= (0.143 ﬁ/.? _,ﬁ‘;) (275) .
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Comparing with (240) it seems that the four moment solution
is relna;'ltablylgood considering its crudeness. It seems as though
the extra moments only give greater detail but do ﬁot change the
magnitudes of the mean qt.;antities appreciably. This reSult; again,
gives one confidence in the present approach.

The 'quasi-steady' approach to the condensation problem again

gives exactly the same result (275) for condensation (Appendix VIII).

6. Discussion

Summary of the Results

For ease in comparison, we present, here, in brief, the
main results of the calculations. If the ambient vapor temperature
and pressure are _T;, and ,ﬁ , and the liquid temperature is

-TL , then the net evaporating or condensing mass flux !Tl.'l, at
the liguid surface, is given to first order by:

(i) For a Spherical Droplet (4 Moments): )
AT 2 7o) am
e (R (R )R

27 RTo - /5 é Te 15 &

zr | (4}{_3_’_@4)
2  Zo ¥

(ii) For an Infinite Plane Liquid Sheet (4 Moments):

.3

- 677—"‘

m = ¢ (zrR7 .__f 0/4}19/5____{

) *
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(iii) For an Infinite Plane Liquid Sheet (6 Moments):

,. Af
Zﬂfe [/;_.; P sr] 0’4"3fﬂ
F+3 /-‘f_’:

Yo is the radius of the droplet

m =

where:

po is the mean free pat?h at ﬂ,-’;
AT:T:_'—‘T-O SAP—:'ﬁ—% ')Am:ml_—mo
af - BT, AM
fa 7o /1o
Py o

6:

R7s

We note first of all that the one dimensional problem has no
natural length scale or Knudsen number associated with it. In this
case '"free molecular flow' takes place for small time and continuum
flow for large time. The droplet, on the other hand, has a natural
length, its radius., Yo - One would expect that in the continuum
limit, (Yo /[,) — @3 , the Knudsen layer would be so thin that the
evaporation or condensation rate would be close to the value for the
one dimensional problem. This is so: comparing the two four

moment calculations:

x o D
(M (sphere, 2 > o0 ) = 0.142 @ [Zz7RTs i 5

Z. o )
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(M (one dimensional) = 0.148 <A J21iRTo .‘?’gf
[~]

The s_ligﬁt difference in the answers comes about from the
continuum part of the flow field, and not from the Knudsen layer.
(One cannot obtain one dimensional heat convection by letting '!’0-4»0.'1
in three dimensional heat convection. )

By letting (‘7"‘,/[°>.~p- Oorecd , the limiting solutions for the
droplet are: 7
c_ BE 1 [parp_ aT

-’: . 2 e—
Free molecule (?: —~0): (M g Z £, T

[

Continuum (--gf- __.:,...c\()) - m = _-_@’_E .f-. A’f

where @' = VZWRTo . Thus in one limit the mass flux depends
only on Af) and in the other limit the ratio of the coefficients of Aaf
to 87 is 2:1.

Referring to Fig. 4 this can be understood in the following

fashion (with no reflected molecules in our case). From elementary

kinetic theory:

' 72 ¥ i
m (-—-—— et BEELSS
VT VT
In the free molecule limit the pressure and temperature of the

incoming molecules is exactly % . 7; the pressﬁre and

temperature far away, i.e. ﬁ = fo ) 7: = 75 . And

for small temperature, pressure differences:
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4 . A //+ﬁrfi N ,_I_‘_-(I]-’--r')
o vE z 7
m o« Do [z B _ AT

B V7o 7% 7o

On the other hand, in the continuum limit the pressure is

approximately constant up to the Knudsen layer, i.e. % e ﬁ .

But now the temperature jump across the thin Knudsen layer is -
negligible, i.e. -T: a~ I .
.o Mo« -
_. Vi V7

o( % . é__/f.. to first order,
T

This explains the form of the two limiting cases. One notes
that actual formula is valid over the whole range of Knudsen numbers.

In- the one dimensional problem for small time, ﬂ = ﬂ ¥
7:- = 7o , i.e., the molecules coming in have not yet known
the change in the liquid temperature. Thus for small time /t—v o) ’
the flow is ''free molecule' , nr,.q & (ZA«P-— AT). For large time
the flow becomes 'continuum'' and fY;'l of AzP ,

From the general second order solution for the droplet, it

was shown that in the continuum limit
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= RE | 232 . 0 unl2)s..
2T 7 P 2.

Since the sign of the second term is always positive, for a
given ldf’ ; fn." is greater for evaporation than condensation,
Therefore the difference between condensation and evaporation arises
in the second order.

One of the interesting consequences of the study of the one
dimensional problem is that the transient condensation problem can
be treated by a quasi-steady approach. The effect of a mass flow
towards the liquid surface, by say lowering its temperature, is
comparable to pulling a piston in a tube away from the stationary gas.
Kinetic effects take place close to the liquid surface, a spatially
increasing steady region is formed away from the surface and an
inviscid expansion fan propagates into the vapor. On the other hand
evaporation cannot be treated by such a simple quasi-steady picture,
Raising the liquid's temperature, say, causes .a 'weak shock' to
propagate into the‘ gas; however, even for large time the flow behind
the wave cannot be treated as steady. In order to say anything more
definite one would have to study the transient solution close to the
wave front; perhaps, another nonsteady region is needed for the
evaporation case. We note once again that in the spherical geometry
- the propagating waves decay inversely as the radius. The 'steady!'

solution obtained is therefore a valid one in that sense.
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It is remarkable that the crude four function splitting of the
distribution function leads to soilutions that show the transition from
free molecular to continuum flow regimes. | Th_e correction in the
mass flux due to the six moment formulation is just anut 2 percent
in this case. Such a small correction increases one's confidence in
the present approach,

In conclusion we note some of the limitations of the present
approach. The solutions obtained are strictly valid for a monatomic
vapor with an inverse fifth power repulsion betiveén the molecules.
Still the results should not be too bad for non monatomic gases, not
too close to their critical point and at moderate temperatures. A
possible way of correcting for non monatomic gases is suggested in
[ 6 7 . In the boundary conditions, an accommodation coefficient
of unity was assumed in order to simplify the analysis. This

restriction could be lifted.
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LIST OF SYMBOLS USED IN PART II

a, isentropic speed of sound
relative molecular velocity, f - Y
molecular velocity distribution function

external force on a single particle

im0

Boltzmann constant

m Knudsen number

~ X

mean free path

mass of molecule

3.

net evaporation or condensation rate

particle number density, per unit volume

Am mg - m,

/f) thermodynamic pressure = mlL 2

5P R-R

- stress tensor

ﬁj equals P“j for £ :f-'j ; equals E: +73 for €= j
% heat flux vector

6), arbitrary function of molecular velocity components
A e change in &, produced by collisions

Y (%,4,%)

r(1.6¢)
T radius of liquid drop

position vector

k

as constant of vapor = —
g P m

o
s Laplace transform variable

time
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absolute temperature

1. -1

_‘

mean velocity vector

T or g component of mean velocity

Y/

< Iv D>

K= X{T) equals e X = vi- (52 /)
«,65,2 angles defined by Fig. 6a,b

ey \/—2-77' RTJ

ratio of the specific heats

outer variable = 25

= T R/ppe = /4 Kn
perturbation parameter

viscosity coefficient
accommodation coefficient

vector in molecular velocity space
density

mean free time

$ﬂ\41m§4\\§ MWES X ™

Superscripts

(0),(‘):(2) Oth order, e order, an order, etc.

Subscripts

c steady condition behind wave

L incident on liquid surface

L corresponding to Maxwellian from liquid
T reflected from liquid surface
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ambient condition

corresponding to the two parts of the two-stream Maxwellian

sum or negation of corresponding parts of two-stream Max-
wellian, e.g., t,. = L+ &

t_ = t,"' tz
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APPENDIX I. Kinetic Theory Definitions

The following is a. partial list of uéeful kinetic theory
definitions:
1. ]({Z’ §, t ) » the molecular velocity distribution function,
is so defined that:
fl, §4)r, oL E
is the number of molecules which , at time _t- , have '_
pbsitions lying within a volume element d_?_’ about V'T and velocities

lying within a velocity space element ch about _§_: .

2., f’ (-T; i") , the mass density, is given in terms of the

distribution function _7( by

ple, ) = [m flx, £8) A5

where /7n is the mass of a molecule.

3. /T, f) , the mean velocity, is given by:

uUlrt) = /””ffdf'_ [mfEott

fonf X E £(z,¢)

L, _C (2’; f /75) » the intrinsic, or relative particle velocity is

defined:

& = §-u

- —

5. __’_D ( ?, f') , the stress tensor in any locally orthogonal

coordinate system, is defined:

f?j = - mzqc*jj[olf
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One can also write:

2
i
I
3
.
)
D
\l\
R
I

, ¢#g
. Bn T(’Z‘/?f‘ ) , the mean temperature, is defined:
<
c
=

where R is the gas constant.

T(rt) -

T 7’ {’J_"’{") s the heat flux vector, is defined:

Q7 t) - fm/E  EFdE
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APPENDIX IT. The Linearised Flow Quantities For A Spherically

Symmetric Geometgx.

Let the distribution functionj[ for a spherically symme-

tric geometry be represented by the two stream Maxwellian:

2
= ___@{1?_———— exp 94— o<s<{I_ .
! [ % ZRTM)| =
| zwﬁ‘l‘,f*r)] .
f= - (2-1)
= mzﬁr) o ....___F EW:“’(<°—<T
2
[zrR T )] 2R

Linearise the four arbitrary functions:

(G 2 ¢
7 = s (/-/* ;'N/ i ) NJ?]—*"'““) (e-2 a)
T, = Ta (/4— b A 2 IO ) (2-2 D)
) (z)
my = m (7+ AN+ VN2 (2-2 <)
= (2)
= = s //+ A fzw W B e ) (2-2 a)
Define:
(C}] n (¢} () N (1
N__’_ = N, 'f'Nz P N_ = Nl -+ Nz (2-3)
=) ( ¢ (=)
N‘_‘_[z‘: N'(z)+ sz J Nﬁ2)= le)— Nz

ete.
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Then to 2nd order the mean quantities are:
O] al = (2)
SD = _S_ Z + '){Nﬁt-—'x/\/‘ +] N, -:rN --[(2-4 a) -
z 3

L R CIGELPR

zn
(1, Gl a1, m m m a @
_,__"( E =~ AL é)_.al{!\/_-.«-s’lf‘_ )/l\g—xf\ﬁ +
z) . _
+ I\V_ .,L--’- Z.l_z i, el e s
o (2-k4 b)

=z a y o) w
(m)fﬁo(f'—" —":,@ 2+J{N,—x?N_”+f+—x3lt,
-+ )2{(/—2:3) /VImLL M-}- (-J-x?)f\/ mé e

+ N > o N(sz o ’Z‘(Zf ](21”9

m

ffmjf?sdf 43’/;+}\[f/v Lt IIN 4 £,
_‘,/,_. T 3x)t_m

2 0,
+} {(/—§x+éxg)M )l;”-,l_

01, @) (z)
3o _ tx3 N LL + NV -+
-+ ﬁ—f-é_x > ) +

-JL(_Zi-:i:?—E':c)N_

(2
+(—z£x3- x) - )} ] (2-k @)

=) t f?)
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Pr=- £
¥r & = J=5 ( w a :
! z &+ A {Né-o NSt 3t

+‘)2- (1_1 mL_m ” xg)N;{;lé';()n
(i 'x?)( i f—_(”)

( (.
+ N, DN 53t 2 ] (2- e)

= ||+ ) A mﬂﬂi 7] (1 /
7D 7f) ! {fz NG ¥ N_ 4—2%:i; - X Zi']Z-L

z
4 A {(____ __)Nmé_m (_2_/ . _23—) N?mé(n_
(/—- Z) (N / é—(fl).z (2-4 )

4 (2) (=)
-+ — X (=) (z1
z ﬁ«; -z V- -+E§ é; _.ggt; :g4~-:]

> 73/ ¢ { Lx(=2IN" 4 £ /xa,)f—/JZ

+) {(I-—x )/N ,l_m -/--—-S?:/x I)/V(”[L(”

[{
- X )N Y0

2 (=
+g(le)/v_‘ L 220l ’f+] |
(2-4 g)



renfie etz e e
({mi‘s"fol?— l/ 2)/{’ L

2
DR 2NN o (474,
+ N t(Z)} B

(2-4 1)

2 = 5 P 1] {1}
[W:FFY $olf =4"/;7@/3 2”"){ - N{+ELL - zx 32f“?+

.]-;] {{/_ s)( ’VmZLm Zruz —f-ﬂu-xa){? nz_zm.'_

Z',{” 2 3

-l-M_ -—I N(Z}—I-?Z-KIZJZZBZL__(Z).F_;.._..:]
(2-4 3)

+X (’"Eg st NG L)+
+(/+.2.5';,_- JXB)(Nmém é”’z "

(2 f 2 =
+ N, % a2z (AN f”)} ‘

+.’.'- ]
- (2-k k)
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q"r - ﬁ,ngl;f /a {.,;Z ZL.(ii j N_”sz -
—F;l?{il /N, ﬂ/[_/ni Nzﬂ.vz(z(hy . .L;L /Cl,ﬂff_nu)-l—

+(Nm f lf'm)é-?(w I)Nlu S_é(l)
z(—'—x _,_xs)t{"

e ]
2-4 1

Note that:

* _=
= = gdemed = P —:55’; 3 F: ‘/ 27w R 7T (2-5)
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APPENDIX III. Some Details Of The 2nd Order Calculation

For The Droplet.

From the moment equations, the four 2nd order equations

when simplified are:
wrz mz (v, () m w
N L1t A +——-(f -t, ) - ( t,-nN,t )(3-1a)

()

2) 1(2) nz iz Wy il+ b
N +-3- t( {i t ) {N‘ :-Nz t;’) (3-1 b)
[) 2 (2) {2) 12, £
i[Nz i‘{) 3.9_{_/_\_/_-4_963_0‘0_(_;{:_[,_7;);0_:/,\,’4

AT Ar

a (
+ (e )2 NG -
——-_ N(z-)f—zf_(zj - ——[ ( m w szzm - (Z_mz zr:)z)]+

(‘7’-—7"2) 6( (2) (z) (t(-'zz mz

>3 0(7' N Z(Mﬂ, ,(u ul (t?]
- '_;__- '_zt:_ :;_fez' Bu .I N‘”) { (N(u q ‘”ﬁn)-}—
L ' £EENE) ¢ (71‘(—2N(z’)} { 5 i‘ +

3/2

2 :..'_ az (2) ay
L) (TTf / N+ (sx->*)T } {3

—rz
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(z) /(z)
In the above equations /% and = are as yet

I{}) (n
undetermined constants, vhile A~ , B and all the first
order functions are knowm. Since in (3-1 c, d,) the right hand sides

are known functions of 7V , the problem then reduces to two quadratures,

vhich are straight forward but tedious.

From the two algebraic equations (3-1 a, b):

: t(Z): ]3,122_ (z) -‘,—;'» /Ll',m-z Z;:(uz) _ /N,'(U[—,ﬂ'j— /VZn"Lam) (3-2 a)

2 %(é,mi i;wz) (3-2 b)

VA Lo L
Ve b

(3-—1 c) integrates to:

%
N(z{‘_ (2)= (zJ (N ml_m "'{;'")4 G (.,_.1>+
-+ -+ . ?, 47—4-
7o
o2 EEEVESIYY Ly
¥ %Er= £7 + (3-3)
(z)
where. C is a constant and
£ o L B /_.{,4“’@”;_/ 3”’*) o (3-k)
5 EIA < &

Next equation (3-1 d) integrates to:
(2) (=) (z) 1y (y a1 m= —)
275; = D +cC {z(N, ,+le;)+/,+é“)_

36, L ZaD 5 fag

/
. 3 ZTZ/"Z)?‘
= ’7u
afe : =50 Jz_
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4r7* T
ol % }4_
BH> e
¥
(i, (n = = -
+ 4A L (7"5)+__§_c¢a-7’§+
“+rT. &k : '
3
+ 3 (72 %) v (2%
& g S e (3-5)

()
where D is the fourth arbitrary constant and H, and H2

are defined by:

(1)2 47 (0} (t)_. 5 ('22]
H, = ,4 'Z:}" A ey ] &
= (7N ()= (3-6)
//Z _ ¥ 4 [.. P A(JG IJ_ 5 b
3o b,

(z) (z) (2 (2
Equations (3-2), (3-3) and (3-5) for N__ . t g N+ 4 ‘LL+
(2) 1(2) (z) ()
involve four arbitrary constants A 5 B 3 C 5 D]
The four boundary conditions are:

(=) (=) o () (=) -
AT T EW, t+ + {‘_— = o N+ + N =2 (3'7 a)

(2] (Z) ‘Z)
Fer T =o0: t_.."'b- R N_,_—l\,_{z)-::o
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<
Applying these 4 conditions the 2nd order mass flux A( )

can be obtained: )
| v [ 417 5'3) (1=
— — —_ =2 — e ==
(41“5' e )A T (Izsv /6 ]A o+

+ _Z+__I_‘__ _;3[+g_§)+9 ’n 31-4__;1)}{
32 U5 g\ 1zem [é zzs = \ 512 32

¢ a)

xAVB

Lo T [13T |5)+9 E(Sﬂ zr)
1zg- 15 ¢, V512 64! zzs 6% \lezq &%

3

(12
4 & B.l

T ga7s —!F (3-8)

are given by the first order solution

L 1)
Where A ang B

aAMm

in © s of a L
in terms o an _— .
To

o
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APPENDIX IV. The Linecarised Mean Quantities For The

One Dimensional Problem

Let the distribution function for the one dimensional

problem be represented by:

£= m, (4 t) "”ﬁ’{- §:+;=:+/§~;-\4(y,&)) €50

3
[21.- r?'r,(y,t)] % z RT(y,t)
2 = | g
f m, (y,t) A A G & <o
- [er T, (9,6] % 2 R T2(y,€)
Linearise the six arbiltrary functions m,,a, _T:.‘_ , and

\/a ,2 as follows:
()]

m o, = M, [1 | N"7 /7,*) . N"izj(gfg)+-__..]

T;:z = —To l] -+ ) 'l‘:l'l: [7‘{) _}_)7 t:)(y,f) N ] (4-1)

B D o, © o+ Xy ) ]

\/l,'Z = Z
vhere ﬁ = \/Z_I—r?'f;— . Define:
(11 Y () Qa) a) (P
N-i- o Ni + Nz p N_ = Nn —Nz
: h.2) .
a) ) ) () l ) ( )

. o= Y -

ete.
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Then, leaving out the superscripts to dencte first order

quantities, the mean flow quantities to first order are given by:

o= fieafan e ] —ry
v - 25_5[3 fhewglrmnfa ] (h3)
R = = R[1+ Af 202t +a2fuer ] s
Ry = —R//+ 2 LN, +2—’c‘;+m}+...] <ln-sa>-
P - ,/;;,[+ ) —ZLN++E’ZL++-;_‘JJ;}4.-.] (53 o)
T=T[ie2{dtevgtnfe. ] osn

Y, = }géé['){?i‘__—aN_}_;_-.,.] (43 &)

P
3
<My
‘-.‘.ﬁ
N8
Wi
"
‘&
R
)
e
<
+
W
AN
i
‘i’
'g
L~\:
M
=
o
v
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/ﬂn +fdf ;é'/gJ-J[(s/v +61, +/4yf ](h31)
//m fgzic:fdf= 7/;4—;]2(/\/ +2l, 44V} ](43111)'.
[/’"’ § £/d% = fﬁ:,u}{s/\/ e +24V] ](th)
[,m

/;;—V)B,J[a(f = ﬁﬂé :] -z N- 4311_._]4--] (,-l*"‘3 o)
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APPENDIX V. The Perturbation Of The Conservation Equations

The quasi-steady state one dimensiona;l j;roblem involves a
singular perturbation. The 'outer solution' it turns out requires a
Xnowledge of the 2nd order heat flux, %(z)_ The purpose of this
appendix is to show that the second order heat flux is very simply
related to the first order quantities. This relationship comes about

from the conservation equations.

The first three moment equations, which are just the equa-

tions of conservation of mass, 5 momentum and energy, are:

PV = conalant (5-1 a)

2
TV= gy = conelot (5-1 b)

=

¢V (3’79V+ 2 9;) - f5y = consdat (5-1 c)

The flow quantities S) , V¥V etc. can be linearised as follows:

oag (e ar® T ) -
f"ﬁ//”‘“ A"+ APk ) (5-2 b)

v =g /) e AT ) (5-2 c)
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By = (1o AB LB beo

(5-2 e)

C}/y = /) @M-}- ;)1%{2}4- SR )

Substituting the above into (5-1):

- f;le[]v”%_ 2?/1/‘/2" “ "’) ] GWW(SZ’:&)

._f[/+3yj+) ,,+? ;;”]

= Ca’)méa‘—-vf_
, (5-3 b)

pv (spv +29,) -
Y LN T T T P e Py
vz f A4 e X ey e v ]
— 7 f1-228," T 5= ’)+2 /a 5872 A

= W , _
(5-3 ¢)

From (5-3) it follows that:

V “ = Od?bd/&'m/t

(5-4 &)



/
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v e e o conadond (5-1 b)
() (=) - 7

(3) =2 T f] 1 =

7 - L /f“V”iﬁ—z\/“l/()) = Conoland (5.4 a)
o
)

% = Consla ‘ : (5-k e)
3ﬁ7)°/32 /2 " ”’V (z)+ f)(u‘/n/a_,_?o(u V(//z) (5-4 1)

f P4 = (. -
4+ V()q/(.jzﬁﬁ + ’2% @73):: Corala

Algebraic manipulation of the above leads to the result:

%(z)= - E”i %/g ‘/('Z;'f e "f {”_74— W (5-5)
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APPENDIX VI. The Perturbation Solution Of The Continuum

Heat Convection Equations

In order to explain the nature of the singular perturbation
arising in the one dimensional problem, we consider here the perturba-
tion solution of the heat convection equations. Specifically the
problem considered is that of an infinite porous plate at a tempera-
ture different from the ambientv temperature. The governing contj;nuum

(Navier-Stokes) equations are:

d (S>v)=o (6-1 a)

0(7::. (6-1 b)

ovE ﬁ_V%ﬁ:A%(;Jrf/(ﬁg)z (63 <]

If the G%ﬁ and dissipation terms are neglected i.e. for

small velocities, it is easy to show that:

T=7Z+/7;—72) 6,»:70{ 'chg‘?{ (6-2)

where —l;- is the temperature of the plate and n’ﬂ:fVis the
constant mass flux. This result implies that the mass flux has to
be towards the plate, for there to be finite temperature far from it.

If the temperature gradient and the mass flux are in the same
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direction, an infinite amount of energy will be carried to infinity,

causing infinite temperatures there. Equation (6-2) also shows that

if linearisation is effected for IT+7fv—€) > the linear temperature

distribution will not be able to satisfy the ambient conditions for

J{ —> ©@ ., This is the nature of the singular perturbation.

In order to attempt a systematic perturbation solution for

small temperature differences and small velocities, let:.

i

Vv ]vm-f-vok()z)
¢= € (+Ag” AT
p= (1227 TPl

-

1

T+ AT AT Ty

(6-3 a)

(6-3 b)

(6-3 ¢)

(6-3 a)

Substitution into (6-1) leads to the first order solutions:

(6-k4 a)

(6-4 b)
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T = Ag+ Ar y (6% ¢)

We note that the linearised boundary conditions are:

) Ll)-_ TP W [ (”—' fh:'l
\Aé Jg=er 1= ATs 3 Vo= £ (6-5 a)
Fhf 7 —p 3 T @ o ,Pm = O (6-5 bj

It is clear that the above boundary conditions cannot be

satisfied by (6-4).

Define an 'outer varisble' {7 by:
/JZ:: 27 J d/7 & )dﬂ‘{ (6-6)

In terms of the outer variable the first order equations

are:

i

V",{pz) = WM 5, (6-7 a)

73‘”/,7) = Conaddat = B, (6-T b)

ay on

o) AT //7) — A, AT ) (6-7 ¢)
£V e —am Az
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(6-T ¢) integrates to:

(] 5 fZ‘E;lC? - ’
T () = By + By &)(73{ - ./72} o
From the boundary conditions at infinity:
Bl Lo , 83 = 2 / Bz sl (6-9)

Again since Eg,'<f9 , solution is valid only for

suction at the plete. From the matching condition:

to all order of :A , it is clear that:

Al=615A2=132=o;/44=°)/43=84_ (6-10)

From the boundary conditions at the plate:

77 P
B = — ! A - ¥ £ =
’ 5= 5 N

(6-11)

Thus, to first order, the uniformly valid solution for the

temperature distribution is:
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_ (1) £, _m.
To e MG e (R )]
(6-12)

;T+(TT)W(MCF>

This is identical to the result (6-12). The conditions at
T : :
- infinity require that the 2nd order term f"/é%% be kept in the

equations. This is precisely what the outer equations do.

In the spherical geometry of course, infinity is an ordi-

nary point, and the linearised equations are sufficient.
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§_>3
APPENDIX VII. Collision Integral for @a = /M 5=

Ref: GALCIT, HRP Memo. 51, Lester Lees, pp. 27-31.

We need to evaluate:

o [[£6 7L aE

T = f [(@'.,@) ot ol A

From the Memo:

£/ & v (5 5L os"( %)+ £ [ (7] aatems
V:__: [E,;— F)"" . ("':;' f); + (?; - ?);'.

2

where

i
In the integral for J— » terms in the expression (&" &)proportional

3
to Cami€ and Cs3 € will vanish. With these terms discarded:

= (;5;_ §?):cr.r‘/-§’)+3 F;z(i - ﬁ.)&ﬂ?/s/z) +
+ S l5 - g Yeal)r Livie 5. £ Y fon '
e {5 (5.m )eri(D] |

2T

T
fo(é::zw " {cngde‘:ﬁ*
©

(<]
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- rﬂn[[/&‘-’ £ Yeu (08) 65, (-5 )
¢ F{VE SRl ede st
+6€C/ﬁx—£)0"4/§ ]"(O(d

Now 4 . g
46y __ 2/8 & 20

Coo é—) = colz)- =
The expression for T~ can now be rewritten:

o0

{

.-—"__' 3 6 9’
7—J:ﬂ_;7J—2/F £.) a’”/)aza/oe-;-
+6(F 5. ??)fwz/ﬁ)c(de( +
+4_‘§/ﬁx-‘¢'x){/‘%— + (%, - F)}f&ﬁ/sjdm 29l 4
+[—:§ S (§.-8)+3 x{/s,-f,) ' /ﬁz-g)}]x
[Mzg'gc{a( ;

o
The first two lines in the above expression do not contribute to A a

because:

(15 (5.-8.Yt55,
[ [l s

= O
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([:F‘JC;{?x E.xz" ?lx €xz>d§0(._?[ =.O |

(((%’,x— Ny {(?,,,— )+ (Sz- EJEH, Af ol F

:ﬂ[ﬁ;(fyig‘:) £ (555, §_6,6)+

4 2(fe s §.- 55 f)]ffoff’d?

= )
od
Now: i
A, = Trf,dz(mzﬁ . o of ot
2z
0

LT

— —

=
-EAZ =/ /{ /‘4/’7

>

Substituting into the expression for A & ;

28 = -2 225 fo (23" (555

- (- &Y [ [f§ A58,
Now if

c=- fF- € -F = Ci- G

2

= ;@ﬁ[f(qu- u,‘)zr (5 'Cx) y- )
e e
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Note that: fq j('d_? =
" AR , Z—Iﬁ".mﬁ/ max/[zcx— ]J[o(f“ X
+ M /Cx [zai-c2- ;]fa/f_]

= —f/— 2 ..__-?. x3 df’]
= SU A + z//mc% 5
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APPENDIX VIII. Some Details of the Six-Moment

One-Dimensional Calculation

The Transient Problem

The six moment equations are:

ot ay
v v _ DR
(b) § 5% she W 9;14 a;u
() %‘f"‘-—a—a/fw) = --32-’%’2_ i iy 53-‘—’
’ J ’ 7 (8-1)
(d) E—/ﬂ"g?olf+% ﬁ"lgicafo/’fziﬁx
/M

The corresponding linearized equations to first order are:

(a) é—?— N, +2V:]+_€ %[zN_»f—ZL_ +?7r'u_;] ot i

EH

(8-2)

(b)a?ft— ZN_ +T_ +27n3;]_,_ Zife D /\Q_+Z:+4J2".]= o

B
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(c) 5—35!;/\/-* +S’d_:,_+?}i F? 2 4/\/ + 4L +.5"7U/’] e
. ray | -

a) &£ [}\/ +t +2)f] ___———-[N +Sé -a‘-?u)J~ _f_y‘ = )

(e) £ [4N +éZL +s*r)f] 55/5/\{&*"5&“’24#*

4/_% 7&‘,—2/\]_,‘7:

(ﬂ Z;'N +5’i— +3/1))'] ﬁgﬂ[l\/ +6i— -!-Ié)f]
-’-/if_ -'zN_]:
Z

PDefine:

o y _ T S _
—‘fzt/@ ""3:‘@"2;: ’rz:}*a?'-f. {521

After some algebraic manipulation, the equations (8-2) can be simpli-

(8-2)

fied to:

2 o . 5
(a) ___.. /\" 4+ C. +2 (8-4)
31 /N + 22T / 2 +;

af
X

I
0
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2o mﬁ ool

The Laplace transformed equations are:

() C?Q-{— 2/\/ +t +2/(}/"]+‘277’S/N -i-?)f] = o

(b) --—-[N + ++41J']+ S‘/;N +Z,L +2/rD'] (8-5)
_(C) -—-—-—[/\/ +}:’-'ZL_ T,U'] /;W5+I]Jf o
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L Z]-#—TSZ? il
a’g[” PR B e & FE

(e) d‘:; 3/\/+‘HJ‘}+S‘/;H\/+S'TJJ‘}+—-/2N (f] 5-5)
a(_/—'v [~ ~7 —r~ g
f s - 7 _

Now assume solutions of the form

N+ = A e N_ = 5 e -

~ Y ~ 64.)‘.;1 s
t = Cc 8 I = De 8=
~ oy ~ ray

2};_ = E e y- = ~ &

Substituting into (8-5), one obtains the following relations between

the coefficients:
4 O

P e 2L
( ++

E- A0 T'(“*’)]

' 2
(c) B ..
C_ ol [ é" F_ coD ;

- 377.5‘[4-/451‘5)5—%’—3 +4—ch7

(a) B,z—g‘j)'*'

(8-7)

B
o
i

T
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4 772 ?773 2 232 2 s 3”2
({cﬂTS' -+ -é‘S-f--g:)&) +67'S 4S+}—s+;/

f -7
6eo(zs + %’T)[aoz— WS({? +§7_r)] B

Thus, the coefficients A, 8, C} L and E can be ex-
pressed in terms of the coefficient -

The determinant for &) is:

2Ts 2w o w 27 2mTs
oW 2.5 &3 ) 2TS 4 o (8-8)
2
o e o e me ()
== )
7
§is
O fe) ms o o -7
23-w (25+1r) - T 3TS 4w
4 5
ZT Qm X
(@) —(2.54":1_*') & -(38-!--&:) o 4+

Adding and subtracting columns and rows, the above deter-

minant reduces to:



w5

25 (23 O O o O
o o Lo o o (mssT)
(8-9)
o) s o »; W @Wsﬂ)__
(55+12.T) o - (S'+;_-I) - S Zeo O
_(4S+§r) O {25+;—5;—_1{) ."(4S+?£—> o 4w

<
Expanding the determinant, the following cubic in {2 1is obtained:
(3
| % &0 +a(€)a3"’+ b(s) ™ + c () =o (8-10)

where

/s =
@) QLS =~ I87 _ 457 o  oaxs®

& z

-7
(b) A/S') %’Z S‘+3i’7r$ v BOTTS S 4 17T T (8-11)

6 + 4 5
() ©(S) = _37 g3 ‘_?/_‘"’71‘5:5.* SgT S — 48T

<

Examinihg (8-10) for S—e O, it is possible to show that the roots of

the equation to leading orders are:
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(a) J

— 5’7:'" I ol oty ___.]
LT — V A5'7 5‘4- ) :
b) CJ, & = /—[+ 2_,_ L ] (8-12)

S A

Retaining only the negative roots for finiteness for y——w—- co

the transform for S —= (O can be written:

~ <, Y L Yy iy
N+ = AI & -+ Az < + ’43 €

(8-13)
~ W, Y o Y &g Y

i

B e "+ Be T+8 ¢
etc.

Now all the coefficients A o E can be written in terms of F;

define:

etc.

From (8-14), (8-12), and (8-7), for S—=0:

(2) &, :-—-5—/-'-/ = + O(s)
v b = - EE[E + OFE) (8-15)




(c)

(d)

(e)

(£)

(g)

(h)

(i)

(3)

(k)

(4)

(m)

(n)

(o)

gé% + O{E)
4 + Of)
= |
..,._{,é-f- O(S)

FZ S
s7</z | L O /S—' %)
<ty s*%
JE !
= 7= g O(f-ST)
- 577 1 4L ofs")
F& 5%
S7TE 1 . ols)
54 -

(8-15)
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From the boundary conditions at the liquid surface (y.:.- o )

@ 2Y = Y+ T = (§+1)F + (@e)F+ E+DE = o

(8-16)
2L, =L+ = (Gra))F + (Grel )Et (Gr oy DR
= 2&a7T L
: i ~ ~ : : q—i_; S
(2N, = Nyt N_= (a4 8D+ (@t b)E +(a,, 6> F,
= Ea&m 1
s
Define: AMe
o 2L N, = Am (8-17)

L ?.T'o ? nma

Then solving (8-16) for F,-, F- and F-'g :

2k, (&+1)(ay+5)— (E+0)(Gs+65) |
(a)Fl_-': =

22
-+ 2 Nic (62'*0((‘3”0(.?) N [f.'?‘”) (G +etz)
=, A
| (8-18)
(b) F; = Zt;t. (€/+l)(634 3)__ (53_,_[) (a’—"é’i]_,_
o A

22N | (G (G eat) = (€1) (e +at2)
s A
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(c) /?3; et 2[‘!7:. /%—H)(C?n‘é,)-— (‘3-4"/)(02-*52)_74;
_ S i
—+ .?N;L[(ti’,+:)(c*2+dz)_ (f_:?;;,) /C,+d,)]
S
A
where:

AN = (C’/'“) {(cz+d2)[63+é_;,)— /G?"b"‘)-/%*d;)}*_
D N O R Y
+ (g+1) {(C(+at,)(az+ba) - (G, +4) /Cz—l-dZ)}

Substituting (8-12) and (8-15) into (8-18), we have for S—= Q :

(8-19)

3
ST (s

(2) Fl-: _ 144 VT tL(|+Z§f§f§+O(S)>+
S{K,Hrzfsuo@)}

N, (1+iETE o@]

(8-20)

o f = 2 [{( [ )

S{K + K r-;-O(S):'I

N f2 - BN (250
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571‘2 ,‘? _E‘_)
F = ‘3—? ’+3 ST -b"_
(e) firelz 06

+M4}NEE+O$%

W

{+HFE+O@%

where:

@ K, = 2T 5-{ 9/5—,7—} /“{4”7-[,}]

(8-21)

a "Z’i‘?‘f’"[{”-ﬁf e 1 5 °°’Tf]

Now, the gas velocity is given to first order by: -

ETEF [’) {N_+ Lt +1r>iz " o(A“)j
ﬁ [] . O(Az)_]. | | (8-22)

or:

o L 2/\/+i‘_+2772/_,‘_]

(8-23)
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0,y

o |
Y= a7 {21"”"*2"?5’:}5 e %,

| @,y -
Yo {2524'0(24'27‘—5}-} FC + r—
Wz Y
J 3 Y
-LZ?‘_ ZIDS+O(3+2W€3}Féf

From (8-12), (8-20), and (8-24), for S-+= O :
J(s,y) S
{ o TF'?[ ?4S*O($]
= - C
4T {K«"- K, J5 + o(s)}
_J=ma e foes2) (SR A3 02E )
[ (20 BRI 0O
X &P[ rr("' S+O(S)>lj] (8-25)
s (e fE+ 06)) N

TS /6;( gfs:r)[( N..)“"ﬁfg(}?"t&*/\/u)%-offjx

S (Kﬁ- Ko (s + O(§)>

X F’ﬂ’/P[ F (’ -——s+o(sz))_5_¢]
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Note that for large time the solution exponentially damped in g will

not contribute to the velocity. Thus, for large tlme (i‘ > y )
Kc Y Irz

Yo, € &rfc 2/__-?“4-5’\/15'— -+
3

# Gl = G ]
(£ -/Zy)"

(8-26)

where:

288 I

N 3002E) V5 (2 5

@G = - 5"’2“"[,L{//+ YW ACE/C) S

(8-27)
(b)C - E:I_T_f _fﬁ_{__g_’_z__) [t_u_"'Nu_]
z Ze¢/sm 3@" =
Kl
(c) Cg = JE (—22 tn_"’ Nu_) - —‘E—T‘ /t‘-u. + N,,__)]

For large time:

V—-————EF—- constant — CZ
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The evaporation - condensation rate at the liquid surface is there-
fore given to first order by:

m :‘A/@fzcz
g5

1l

(”’ }%/%)E Ap
[:5-‘//%/5)@(4*”@)] 7
= B¢ ' | A (8-28)
TR T ey /p

L 57 £+5 [ ]

The Quasi-Steady State Solution for Condensation

The six linearized, steady moment equations to first order are:

(2) 2N,+_b_ +2'rr)/_; :B,

(b) N, + £, +41= = B

() 7l- -2N- = 25, (8-29)

A & i
(d) oy zN- + 3 b +217V_‘,_] = 3 M

(e) %[5N++/ot++24y:] ” 27_’— 2/\/_-—75_]

T
(£) 0( 3N, +6LL -f/é){] :‘Z/ZN_—Z‘_]

The boundary conditions are:



(2) 4)-“5’72 p V —= V¢ for 7-—-1?-"0
() e
R - D R ¢ o
: (8-30)
)
(c) N‘ - m, - Mo — _4_3___(_"__ at 7:.—0
:;‘ mo gma o
g
w ¥, = O
Note that § , -2 , and . are the steady conditions

behind the wave.

Equations (8-29) can be integrated immediately to give:

@ L. =28 + By enp (- L[y )+ Beonp(T/Ty)

3 a " s sz
Z*.};—J%[B‘f &‘7”/'47 —;g)+55&vf/+4 Es'ri")]

(8-31)

I\

(b) M-

3

) N_ = ;—Z‘LJ:_—B

(d) -b+

Il

’ 4
L. By ""'L:[—";EBB'Q*B&]"?M

i

) Ny B.-t, - 4

/
@ e = Z7 [8,_é,—2N_]
where 84 5 85, and 86 are constants. Now if one tries to apply

the boundary conditions (8-30), one finds that there are an insufficient

N

number of constants. The perturbation is again singular.

Define the outer variable :
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= ) o _ o (8-32)
i q & ,?m =

The first order equations in terms of the outer variable are:
@) 2 N_(m) + t_(g) + zw vy (m) = A,

(b) Ny () + Eolep) + 422 () = Az

(c) Fllm)-=z N () = Az

(d) 2. (m) = o _——

d { z
(e).a—/—é[S_/\_/,_@)+/oé+//7)+24){@ﬂ:_zﬂi¢;%—%/)
() 2 N_(m) - t_ () = o

From Appendix V:
{1

%(z)_ / %ﬁ Y (13[379 7 5")’:"”_7

= -3z

1 w3 (8-34)
= -F AU L F LM m
Thus, (8-33b,e,d) lead to: ' ' |
d_ < s ’
or.
i_ : > e w
+/ff)= g_—A2+ Ay €xp 5 = %”Zf (8-36)

()
Note that VZ has to be negative, i.e., solutidon is valid only

for condensation.
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Matching the inner and outer solutions:

A =B, ; A=B, ; Ag=Bs=0 ; Bg=o°

3 T - .
: (8-37)
-3 =~ =
From the boundary conditions at infinity:
- VL
A= 2 M ;3 A = Tk (8-38)

A f B A

Now satisfying the boundary conditions at the liquid surface:

B, = (94'3\/'3"2?'";) zap 5.2
(F+#/Z) L 7
47 Ve /9+3@§)

T - 2a8p ZKﬁ'%)) (8-40)
6 [s7
@ (—Z?--I'_;‘__;" —2—) 2% gfo

Now, across the expansion fan we have, to first order:

R(ie L) = 2 (17 ) o

Substituting into (8-40), the condensation velocity is given by:

(8-39)

/ A’f (8-42)
ST
/‘ T 1z 'z'] iz
$+3 /ST ,
P=4

This is identical to (8-28) of the transient solution.




