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ABSTRACT 

Recent theoretical developments in the reggeization of 

inelastic processes involving particles with high spin are incorpo-

rated into a model of vector meson production. A number of features 

of experimental differential cross sections and density matrices are 

interpreted in terms of this model . 

The method chosen for reggeization of helicity amplitudes 

first separates kinematic zeros and singularities from the parity-

conserving amplitudes and then applies results of Freedman and Wang 

on daughter trajectories to the remaining factors. Kinematic con­

straints on helicity amplitudes at t = 0 and t = (M - M )
2 

are also 
6. 

considered. 

It is found that data for reactions of types nN ~ VN and 

l1N -• V6 are consistent with a model of this type in which all kinematic 

constraints at t = 0 are satisfied by evasion (vanishing of residue 

functions) . As a quantitative te.st of the parametrization) experi -

mental differential cross sections of vector meson production reactions 

dominated by pion trajectory exchange are compared with the theory . It 

is found that reduced residue functions are approximately constant) 

2 
once the kinematic behavior near t = (M - M

6
) has been removed. 

The alternative possibility of conspiracy between amplitudes 

is also discussed; and it is shown that unless conspiracy is present) 

some amplitudes allowed by angular momentum conservation will not contri-

bute with full strength in the forward direction. + An example) yp ~ n n 

in which the data for dcr/dt indicate conspiracy, is studied in detail. 
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Chapter 1 

INTRODUCTION 

Reggeization of vector meson production (rrB -; VB, rrB - > V6) 

+ r eac tions and the related pion photoproduction reaction y p ~ n n has 

traditionally presented a number of .problems. These may be divided 

into: 

(a) Problems of principle, caused by unequal masses and the presence 

of high spins, and 

(b) Problems of practice, among which we note especially the 

following: 

i) The data for forward production of p mesons appear to be 

dominated by pi exchange at all energies despite the fact 

that them and A
2 

trajectories have larger a (t)'s. 

ii) m production differential cross sections and density 

matrices a t sma ll t bear scant resemblance to those pre-

dieted on the basis of p trajectory exchange, although 

this is the only well established trajectory which could 

contribute. 

iii) For reactions such as p and f
0 

product ion, in which n 

exchange seems to dominate, a rapidly vary ing residue 

function is necessary to fit both the data and the known 

2 
couplings at t = mrt. 

iv) Standard reggeization techniques for various trajectories 

lead to the conclusion that there should be a dip in the 
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forward photoproduction cross section. It is well known, 

however , that at low energies the cross section has a 

peak at O~ and there are experimental data at 2 05° cm 

which indicate this is s till probably true at the highest 

energies measured (2-3 GeV/c = k ). y 

Recent developments in the Regge pole theory of unequal 

mass scatteringl) and the construction of helicity amplitudes free 

of kinematical singularities
2

) now make possible a straightforward 

parametrization of inelastic reactions in which the particles have 

arbitrary spins and masses.
3

) Within this framework, the Regge 

asymptotic form of a helicity amplitude is3 ) 

ft 
cd; ab 

[ l±e -irra(t) J e 1r...-µ I 
= sin na(t) K(t) (sin 2t) (cos 

e l"-+µj . a -M 
t - (s ) 2) y(t) ;o 

where 

/... = a-b µ = c-d M = max (jf...j, jµj) o 

Here, K(t) is a known function of t containing kinematic singularities 

of the amplitude, and y(t) is a smooth function of to 

This par~~etrization essentially solves all problems of 

principle, with the exception of relations among helicity amplitudes 

required by kinematical constraints at particular points (such as 

t = O, thresholds, etc.). A method is now known for determining all 

1 . . 4) suc1 constraint equations. Hence there are no longer fundamenta l 

mathematical obstructions to a thorough investigation of the applica-

bility of Regge pole formalism in these reactions. 
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The purpose of this study is to demonstrate that the 

formalism outlined (i) provides an adequate basis for description 

of the particular reactions nN -4 VN, nN -4V6, yp -4 n+n, and (ii) 

allows solution in a natural way of many practical problems, including 

those listed above. 

Chapter 2 is devoted to a discussion of the theoretical 

advances in reggeization of unequal mass processes, and processes 

containing high spin particles, which are applied in the rest of the 

work. In Chapter 3, a parametrization for reactions of the form 

nB -4 VB, nB -4V6 is developed and properties of this parametrization 

are related to features of the experimental density matrices and 

cross sections. Section 3.2 is devoted to the reggeization of pi 

exchange in these reactions; it is shown that the rapidly varying pi 

trajectory residue needed to fit differential cross section data can 

be understood as a kinematic rather than a dynamic phenomenon. 

The analysis of Chapter 3 provides a great deal of evidence 

that conspiracy between trajectories is not important in vector meson 

production reactions. Nevertheless Chapter 4 is devoted to a theo­

retical examination of conspiracy relations in order to complete the 

kinematic discussion. It is demonstrated that the option of conspiracy 

plays an important role by allowing all angular-momentum conserving 

s-channel amplitudes to contribute in principle in the forward direc­

tion. As an example of a related reaction in which conspiracy does 

seem necessary to account for experimental observations, the reaction 

yp -4 n+n is discussed in Chapter S. 
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Chapter 2 

BASIC THEORY 

2.1 Method of Reggeization 

For elas tic scattering of spinless particles, the contri-

bution of the leading Regge pole, obtained from a Sorranerfeld-Watson 

transformation on the amplitude, takes the form 

-incx(t)] 
~(t) [_l_±_ e __ _ 

sin ncx(t) 
( k ) a (t) 
qt t (II .1) 

where 

s + 

2 2 
t - 2 (m + m ) 

a c 
(n .2) = 

Ass ~ oo , (qt kt)a (t) Pa (cos et)~ s a (t). Thus, in this case, those 

trajectories with the highest a (t) should dominate, regardless of the 

value of (negative) t. 

For process es in which the external masses at a single 

vertex are unequal (Fig. II.l), 

c os et 
2 2 2 2 2 2 

Zt (s - m - m ) + (t + m - m. ) (t + m - md ) a c a o c 

(II .3) 

At t = t . , cos et= -1. Within a region about t . , often referred 
min min 

to as the forward cone, !cos etl is small and the replacement of 

a 
Pa (cos et) by (cos et) is no longe r justified. In other words, when 

the external masses at a single vertex are unequal, it is no longer 
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Figure II .1 

Labeling of Particle Kinematics 
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clear which term in the expansion in powers of s of 

(qt kt)o:(t) Po:(cos et) dominates at low t. The ambiguity has been 

resolved in the spinless case by the work on daughter trajectories, l) 

which demonstrates that those terms in the expansion which are singu-

lar at t = 0 will be cancelled by the contributions of the daughters. 

Hence the so:(t) behavior of the Regge pole contribution is preserved, 

and the resulting amplitude contains only singularities of a dynamical 

nature. 

When the external particles have spin, some care must be 

used in applying the above method. In order to carry through the 

procedure, it was necessary to write the invariant amplitude for the 

process in the form of a dispersion integral with the location of the 

cuts and the discontinuities across them determined solely by the 

dynamics of the process. Thus a major problem in the case with spin 

is to determine which pieces of the physical amplitude can be ex-

pressed in this manner. It is most convenient to find expressions 

closely related to the t-channel helicity amplitudes, as the differ-

ential cross section and the density matrices can all be expressed 

simply in terms of these. It has been found
2

) that if f d b is the 
c ; a 

t-channel helicity amplitude for the problem, defined by 

= i 
-1/2 

( 2 ~)4 O(p + p _ p _ p ) f (p 0 pbO p 0 p OJ 
c d a b cd;ab a · c d 

(II .4 ) 

and 



f cd;ab = f I cd; ab 

-7-

. et) IA.-µj ( et) l""-+µj 

(
sin ~ cos ~ 

2 2 

where A. = a-b, µ = c-d, then 

-t 
f cd; ab 

± ft 
-c-d; ab ' 

(II.5) 

(II 06) 

where K(t) is determined by methods discussed in the following 

""'+ 
section, and f-(s,t) is analytic except for dynamical singularities. 

f may then be written in the form of a dispersion integral and the 

application of methods similar to those used in the case of unequal mass 

spinless scattering yields an asymptotic form.5 ) The result is that 

f takes the form 

[ 1 ± e -irrO:(t)] 

sin rra:(t) 

where M = max (IA. I, 
-+ 

lµl)and y-(t) is expected to be a smooth function 

of t. Hence the s-dependence of each f d b arises from two sources: 
c ; a 

(i) the factor f, in which the sO:-M behavior is preserved by contri-

butions of daughter trajectories; and (ii) the kinematic factors 

(sin e /2) IA.-µ I (cos e /2) IA.+µ I 0 At large t, these kinematic factors 
t t 

"b h . . M b . h II II 1 h" h contri ute t e remaining s , ut in t e cone at ow t t is growt 

is suppressed when the masses are unequalo 

To place these conclusions for helicity amplitudes on the 

same intuitive basis as those for spinless scattering, it is helpful 

to examine some of the details involved in the replacement of 
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± ft by 
-c-d; ab 

for a particular exchange. Because of the action of the parity 

operator on helicity states
6

) 

(II. 7) 

a Regge pole of parity P will couple to the particular linear combi-

) J+l ) nation of vector-pseudoscalar meson states IJ,~1~2 + (-1) PIJ,-~1-~2 
(where Pis either (-l)J or (-l)J+l). Thus its contribution to the 

partial wave amplitude obeys T~c-d·ab(t) = P(-l)J+l T~d·ab(t), and 

' ' 
hence for exchange of a spin J object 

ft ± ft 
cd;ab -c-d;ab 

= L: TJ 
J cd; ab 

d~ (e) 

± (II .8) 

Expansion of the d: (8) in powers of cos e shows that a given Regge 
~µ t 

pole contributes with maximum strength to only one of the amplitudes 

(II.8); its contribution to the other amplitude is proportional to a 

smaller power of s. For large s, therefore, if the contribution is 

-t -t 
mainly to the ( ±) amplitude, f d b ~ ( ±) f d b• To determine c ;a -c- ;a 
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whether the important amplitude is the sum or the difference, it is 

convenient to use the properties 

d~µ(e) = (-l)A.-µ d~(e) = (-l)A.-µ d~A.-µ (8) (II .9) 

to obtain 

dJ = 
i<pl J dJ 

i <p2 J e dA. A. (8) ; = e dA. ..,.,_ (e) A.µ 1 2 A.-µ 
3 4 

where cp
1

, cp
2

, and the A.i 's are defined by the requirement that 

~l + A.. 2, A..1 -A.2, A.
3

+A..
4

, and A.
3

-A.
4 

all be greater than or equal too. 

For dJ functions in which the indices have this property, 
A.lA.2 

= 

hence, 

A.. -A.. 

(sin :t) 
1 

J 

± ft 
-c-d;ab 

= I: TJ 
J cd;ab 

± p (-l)J+l 

(A.. -A. . , A..+A..) 
p l. J l. J (cos et) 

J-M ; 

(II.10) 

(II.11) 

and the amplitude with the most important contribution has sign (±) 

i < c+>z -cpl) J+ 1 
if e (-1) P is (±). 

Systematic application of the method of Ref. 5 shows that 

y±(t) contains functions of a(t). These are not important except at 

those places where they require the amplitude to vanish; in general, 

an amplitude derived from d~µ must vanish for all integer J smaller 

than IA.I or lµI• In vector meson production at low negative t, this 
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means tha t all P = (-1) 3 
exchanges (which have jµj = 1, M > 1 as 

shown in Section 3 .:Q must vanis h at a: = Oo Because a: = 0 occurs 

for 
2 0.5 GeV for the p, m, and A

2 
e x changes cons idered here, 

this effect may be considered independently of forward kinematic ef-

fects and is not of central interest to this study. 

form 

For our purposes, the important thing to notice is the 

f = g(t) 
cd;ab 

e IA.-µ I e I}-.+µ I 
(sin f) (cos /) · 

a:(t)-M 
s 

(IL12) 

lowest physical iti for the s-channel process, cos e t - -1, At the 

e t 
cos 2 - o. Also, (d cos et)/ds ~ 0 as t ~ 0 for any unequal mass 

process. For such low jtj, therefore, the s-dependence of the 

amplitude is reduced by the maximum helicity in the t-channel, M. 

If for some reason the trajectory with largest a:(t) cannot have 

M = O, a lower trajectory may account for the observations at small 

jtj. This is exactly what happens in vector meson productiono 

In order to distinguish between the simple cone effect 

(jcos e tl ""1) due only to unequal masses, and this effect (which 

depends also on a particular treatment of the spin kinematics), the 

reduction in power of s will be referred to as spin suppression. 

2.2 Identification of Kinematic Singularities and Zeros 

""+ 
The discussion above assume d that amplitudes f-(s,t), 

analytic except for dynamical singularities, could be obtained by a 

particular procedure. In the following paragraphs, this procedure 
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+ 
is justified and the method used to obtain K-(t) is explainedo 

Helicity amplitudes ft contain various "kinematic" zeros 

and singularities, which are fixed by angular momentum requirements. 

Once these are identified and factored out, the remaining factors 

will have only dynamical singularities, with resulting simplifications 

in the representation of Regge residues. The first step in this 

direction was taken by Ge ll-Mann et al.;) who isolated the kinematic 

zeros which occur at forward and backward scattering angles in the 

t-channel. For 

e j>-.-µj 
ft =(sin 

2
t) 

cd;ab 

e l>-.-µI 
the kinematic factor (sin 

2
t) 

l>-.+µj 
-t 
f 
cd; ab 

vanishes like e l>-.-µI 
t 

(II.13) 

in the 

forward direction; this expresses the fact that conservation of 

angular momentum along the direction of forward scattering requires 

helicity conservation, >-. 

Similarly, the kinematic 

(cos 

= µ (otherwise, the amplitude must vanish). 

factor 

e l>-.+µj 
_!) 
2 

vanishes like <n - e )l>-.+µI in the backward direction; this expresses 
t 

the fact that conservation of angular momentum along the direction of 

backward scattering requires the helicity to reverse sign, >-. = -µ. 

The remaining factor ft has the partial wave expansion 

-t 
f 
cd;ab (II.14) 
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where 

M = maximum of ( J "- J, J µ J) 

and PJ-M is a Jacobi polynomial. Since the remaining cos et dependence 

in ft is a sum over polynomials which are non-singular at finite 

cos et, and are not all zero at the same cos et,
7

) and since 

[2 s t + t
2 

- t ~ m.
2 + (m 

2 
i l. a 

(II .J.5) 

is linear in s, ft has no further kinematic singularities or zeros in 

cos et ors. 

-t 
The remaining problem is to factor out of f the kinematic 

singularities and zeros in the other variable, t. We know there are 

such singularities from any of the following methods: 

(i) study of Feynman diagrams; 

(ii) study of behavior at t-channel thresholds; 

(iii) relating ft to fs by cros~ing, and noting that fs has 

kinematic singularities in cos e (i.e., in t) and that the 
s 

crossing matrix has further singularities in t. 

Hara8 ) studied the singularities by a combination of all 

three methods, while Wang
2

) used the crossing method exclusively. In 

either case, it proved most convenient to consider the "parity-

conserving" combinations · ftd b + ft and Hara and Wang split 
c ;a - -c-d;ab' 

+ 
these into a kinematic factor K- and a dynamical factor f: 
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+ 
f
-t -t 

± f 
cd; ab -c-d: ab = K~d·ab(t) , 

+ 
giving a prescription for K-o 

"'+t 
f - (t, s) 

cd;ab 

In detail, the crossing method makes use of 

f~ = 
l. 

·S 
E X .. f. 
j l.J J 

' 
(II.16) 

(Ilol 7) 

where the subscript i stands for the set of helicity states cd,ab, 

and X . . is the crossing matrix explicitly given by Trueman and Wick.9 ) 
l.J 

The corresponding relation for the f's is 

-t 
EX •• 

-s 
f. = f. 

l. j l.J J 
(II .18) 

where 

e IA.'-µ I I e IA.'+µ' I 
x . . (sin s ) (cos s ) 

X .. 
l. 2 2 = IA.-µI jA.+µj l.J 

et €\ 
(sin 2 ) (cos ) 

2 

(II.19) 

and A. ' andµ' are the incoming and outgoing helicities in the s-

channel center-of-mass system. The kinematic singularities and 

zeros of ft in t are all in the explicitly known X, since fs has 

none. Thus by careful examination of x, Wang was able to obtain a 

prescription for the kinematic singularities which is, as far as we 

+ 
know, complete. Wang's prescription for the K- is used throughout 

this work; this is all that is needed for the discussion in 

Section 2.1. 

"'+ 
The amplitudes f-(s ,t) identified in Eq. (IIo6) are, however, 

subject to further kinematic constraints. This is because the 
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program outlined, as implemented by Hara and Wang, was not completed; 

kinematic zeros remain in linear combinations of f's. 4 ,lO,ll) For 

""t 
example, if one takes Wang's singularity-free amplitudes f. for 

1. 

NN ~ NN, it turns out they are not all linearly independent at t = 0 

2 
and t = 4M • Thus there are linear combinations of the f~ which 

1. 

have kinematic zeros at these points. In terms of the equation 

""t 
f. 

1. 
= X . . f~ 

1.J J 
(II .20) 

this implies that the different rows of X .. are not all independent; 
1.J 

i.e., the determinant of X . . has zeros and the linear combinations 
1.J 

"'t 
of f. which vanish are the eigenvectors associated with the zero 

1. 

eigenvalues of X. The reason Wang's study is incomplete, then, is 

that it is not enough to locate the singularities and zeros in each 

row of the matrix X . . ; one must also locate the extra zeros of the 
1.J 

determinant of X ... 12
) 

1.J 

Of course, one can work out the determinant of X by hand 

and locate its zeros explicitly in any particular case, but it would 

be much more convenient to have a general prescription for the answer. 

FoxlO) has given such a prescription for the class of reactions in 

which at least two particles are spinless. More recently, 

Cohen-Tannoudji, Morel, and Navelet
4

) have pointed out that at zeros 

"' "" 1 of <let X, elements of the inverse matrix X- which appears in 

-s 
f. = 

1. 

,.,. -1 "'t 
I: x.. f . 
j l.J J 

(II.21) 
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will have poles, and it is easier to locate poles than to form a 

determinant.13 ) If the matrix elements of i .:1 
have the form 

l.J 

c .. ,.,,, -1 
X .• = t~~ + (terms regular at t

0
) 

0 ' 
(II .22) 

l.J 

then the condition 

""t 
I: c . . f. (t) = 0 

l.J J 0 
(II .23) 

j 

must hold, since neither f~ 
l. 

"' t 
nor the individual elements f. have 

kinematic singularities or zeros at t = t • 
0 

J 

The physical nature of the additional kinematic zeros may 

be guessed from NN scattering . In this example, the conditions at 

t = 4M
2 

are those expected at threshold due to the dominance of 

3 3 = J+l) J this point. 14) the Ce = J-1) over Ce states at For meson 
J 

production reactions studied here, the additional kinematic zeros again 

have the physical interpretation of threshold and pseudothreshold 

d . . t -- ( + )2 - ( + )2 con iti.ons at ma - ~ , t - me - md • It is these extra 

threshold and pseudothreshold zeros which provide the relations used 

in discussing pion exchange (Section 3.2). 

Kinematic conditions also occur at t = O; these "conspiracy 

relations" are especially important to the study of forward scatter-

ing processes. In the example of NN scattering, a physical interpre-

tation may be given the relation by noticing that t = 0 coincides with 

e = 0° • At this point the vanishing of s-channel amplitudes 
s 

fs like ti~'-µ' 1
12 for~· = a'-b' , µ 1 = c'-d' due to 

c'd';a'b' 

angular momentum conservation yields directly through crossing the 
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well-known conspiracy relation ft -ft = ft -++;-++ -++;-- +-;+-
When the masses in either or both the initial and final states of 

the t-channel reaction are unequal, the point t = 0 is no longer 

physical (except in the limit s -+ oo). It is thus less easy to see 

intuitively that additional conditions should exist, although 

Bardakci and Segre
15

) have given a method by which the additional 

synunetry at t = 0 in these reactions can be displayed from a 

physical point of view. Application of the method of Cohen-Tannoudji 

et al. leads, however, in a natural fashion to conspiracy conditions 

~t t 
on the f comparable to those on the f found in equal mass 

processes (see Appendix A). Physical consequences of these are 

discussed in Chapter 4 for the reactions in question. 
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Chapter 3 

APPLICATION TO DATA OF THE NO-CONSPIRACY PARAMETRIZATION 

FOR JIN ... VN, JIN - V6. 

3.1 Parametrization of the Reactions 

The purpose of this section is to examine the qualitative 

effects which kinematic factors may produce at small It! in differ~ 

ential cross sections and density matrix elements of vector meson 

production reactions. Three different types of factors are considered: 

half-angle factors, the Wang K(t), and additional powers of t suggested 

by physical considerations such as factorization of Regge residues. 

For all cases of importance (see below), the factors found this way 

for single trajectory exchange have the t = 0 behavior required by an 

evasive solution to the conspiracy relations listed in Chapter 4; 

thus this may be considered a study of the no-conspiracy case. 

A Kinematic Peculiarity of Vector Meson Production 

Application of the parity operator to a pion-vector meson 

helicity state gives 

IJ m; A.o > = 
J+l 

(-1) jJ m; - A. 0 > (III. l) 

Thus the state in which the vector meson has helicity 0 can couple 

only to systems with "unnatural parity," P = (-l)J+l. (This will be 

true for the production by pseudoscalar mesons of any system with 

"natural" parity, P = (-1) 8). Hence, M = 1 is the smallest value of 

M possible for exchange of a Regge trajectory with p = (-l)J. 16) 



-18-

Due to the form of the reggeized amplitude (Eq. 

et 
t behavior of the half angle factors cos z- and sin 

II.12) 

et 
2 

and the low 

, exchanges 

with P = (-1)
3 

will effectively be suppressed by at least a power of 

s in the forward direction. This means that in any reaction where 

the pi trajectory is the P = (-l)J+l exchange with highest a, its 

contribution can dominate the cross section at large s and sufficient-

ly small t despite the possibility of natural parity exchanges with 

higher-lying trajectories. More generally, the effect will enhance 

the relative importance of M = 0 amplitudes in the forward direction 

even in 

the sin 

cases where 

et 

2 
and cos 

J known exchanges have P = (-1) • For larger t, 

et 1/2 z- terms are proportional to s ; thus for 

large enough t and s, the normal hierarchy of trajectories should be 

seen. 

Effects of i(t} 

Without examining the other pieces of the amplitude in 

detail, we have pinpointed a possible explanation for the experi-

mental observation that pseudoscalar exchange tends to dominate the 

most forward directions in any vector meson production reactions in 

which it is possible, while natural parity exchanges become more 

important at larger t. 17 ) The (sine /2) 1~-µ1 (cos e /2)1~+µ1 
t t 

pieces contain, of course, only a portion of the t-dependence of the 

amplitude. To be able to say that natural parity exchanges are 

kinematically suppressed at low t, one must make certain that K(t) 

does not tend to cancel the half angle effects. To this end, K(t) 

has been listed for the cases of interest. (Table III.l) 
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Table III.l 

Kinematic Factors K(t) for Helictty /\rnplitudes 

K(t) Solely From From Factorization 
~ ~ Crossing Matrix of Residues Net 

P=(-l)J+l 

J P=(-1) 

P=(-l)J+l 

J P=(-1) 

0 0 

1 0 

0 1 

1 1 

0 0 

0 1 

0 2 

1 0 

1 1 

1 2 

1 0 

1 1 

1 2 

_ _1. -1 
t 2 T 1CV t(1C trajectory) 

2 1 _l 
(t-4M )2 t 2 t(1C trajectory) 

(t-4M2 )"~t -t 
1 

(t-4M2)2 

t 

All Factors Come from Crossing Matrix 

T1CV-l[t - (M+M6)2)-l[t - (M-~)2)-! 

t-! [t - (M+M
6

)2J-! 

T [t - (M-M ) 2 Jt t-l 
1CV 6 

t-t [t - (M+M ) 2J~t 
6 

[ t - (M+M >2] -t 
6 

2 1 _l 
T [t - (M-M) )2t 2 

1CV 6 

.1. -1 
t2 T J(v 

1 2 1 
t2(t-4M ) 2 

2 1 _1 
(t-4M )2 t 2 

1 
(t-4M2)2 

T 1CV 
1 

t2 T 1CV 
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Clearly, all threshold factors and the vector-pseudoscalar 

pseudothreshold ([ t-Cnv-m
1
r)

2
] 112 ) factors will be smooth enough in 

the region of small negative t to be absorbed into y(t) o The only 

portions of K(t) which might be important at low t are factors of 

t
112 

and of [t-(~-Mt) 2 J 112 • From Table III.l, one sees that the 

dominant amplitudes for both types of parity exchange contain the 

2 -1/2 
same N6 pseudothreshold factor, [t-(M-Ml,) ] • Hence this factor 

can be neglected in the study of relative enhancement; the only parts 

of K(t) which might compete with the spin suppression effects are 

powers of t 112 • Most of those listed in Table III.l fall into three 

categories: 

i) Factor of t 112 in the rt exchange~= 0,µ = 0 amplitude for 

JtB ~VB found by factorization of residueso 

At first glance, one might expect this to be comparable to 

the cos et/2 terms which appear in natural parity exchanges. How­

ever, the rt exchange amplitude is strongly affected by the rt pole, 

so that the overall behavior at small t may be approximated by 

.ft/t-µ2 which suppresses the amplitude only for jtj< 0.02 GeV2 o 

In contrast, the poles for natural parity exchanges do not 

have much effect on the amplitudes, and the effects of spin suppresion 

are appreciable out to jtj ~ Oo2 GeV2 • lB) Hence, for the range 

0.02 ~ jtj ~ 0.2 GeV
2

, the rt exchange can be expected to dominate 

natural parity exchanges.19) 

ii) Factors of t-l/2 in rtB ~ V6. reactions. 

In reactions where the masses are related as in 1tB - V6., 
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sin et/2 behaves near t 

e /2 ~ 1/-{2 near t 
t 

= 0 like -ft • (In contrast, for rcB __. VB, 

sin = O.) Because of this behavior, each parity-

- -
combination f d b ± f d b c ; a -c- ; a 

has a kinematic factor conserving 

max ( I A.-µ j , I A.+µ I ) • 2' 8) 

It happens, however, that when cross sections are formed 

in a single Regge pole model, these amplitudes contribute only the 

factor (sin et/2)
2
s', wheres'= min(jA.-µj, jA.+µj). Thus in order 

to remove kinematic zeros in the cross section, it is necessary to 

have only a kinematic factor of t-s'/2 from each of the amplitudes. 

This is the factor which appears in Table III.l. It follows from 

the above discussion that these factors do not make the amplitude 

increase at small t (because they are cancelled by the t = 0 zero 

in (sin e /2), neither do they cancel the zero in cos et/2 due 
. t 

to the cone effect. 

iii) Factors of t
112 

in the P = (-l)J, IA.I = 1, jµI = 1 and 

p = (-l)J+l, lµj = 1, A. = 0 amplitudes for rcB ~VB. 

These are implied by the factorization condition when the 

kinematic singularity (lfft)min(IA.-µI, IA.+µI) justified in (ii) is 

used for the rcrc ~ VV amplitude. 

Hence, for single Regge pole models, none of the kinematic 

factors in K(t) will cancel the spin suppression effect in the region 

2 20) 
0.02 ~ ltj ~ 0.2 GeV • The t 112 factors are the kinematic 

factors which have the greatesteffect on the behavior in the region 

of interest; thus, for purposes of fitting, the amplitudes may be 

approximated by the form 
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.!. [ - i no:< t ) J e I >-. -µ I e I >-. +µ I O:(t)-M 

z 1 +e t t ( ss
0

) . h(t) f(t ) ~in nO:(t) (sin z-) (cos z-) 

(III .2) 

1 

where f(t2 ) is found in Table III.l, and h(t) is more slowly varying. 

A number of corrnnents about this parametrization are in 

order: 

a) In both types of reactions considered, the product of kinematic 

factors K(t) (sin et /2)jA.-µj(cos et/2)jA.+µJ, when evaluated in the 

physical region of the s-channel,- has the same phase (up to a sign) 

for all helicity amplitudes corresponding to a given trajectory. 

This means that relative phases between helicity amplitudes are de-

terrnined solely by the y(t)'s. 

b) 
a:- M 

The entire residue takes the form K(t) ( Pnv PNN') y(t). 

each ferrnion-antiferrnion threshold, it is observed to have the 

behavior (Ref. 3, footnote 8) 

2 L . 
(t-4~) l. or 

2 L. 
( t- (M+M ) ] l. 

ts. 

Near 

where L. is the smallest perrnissable orbital angular momentum for 
l. 

the parities and spins involvedo 

2 
Near the pseudothreshold t = (M-M6 ) it has the behavior 

L' 
2 

[t- (M-M6 ) ] where L' is the lowest possible orbital angular 

momentum for a pair of fermions with intrinsic parity +o In other 

words, the pseudothreshold behavior is the same as threshold behavior 

for a particle with negative mass and opposite parity to one of the 

fermions . 
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The behavior at the boson threshold is normal and is identi-

cal to that at the pseudothreshold. Presumably this is because the 

antibosons have the same parities as the bosons. 

c) As we are approximating all amplitudes by Regge poles, the 

- a-M 
residues K(t)y(t) (Pnv PNN,) must obey the factorization condition. 

This places additional constraints on the analytic pieces y(t).3 ) 

The additional powers of t discussed above are the minimum required 

by the comparison 

[ 
rtN --. VNJ 2 

I\.,µ = 

(p d h f (l / 't)min (IA.-µ 1, IA.+µ I) rovide t e actor f'Ji is used in computing 

nn --. VV) h" "d · f · 1 O 11 h ~ • T is provi es in ormation on y at t = , as a t e 

residues automatically have the proper behavior at thresholds. 

d) The kinematic factors obtained from crossing matrix and factor-

ization considerations agree with those found by considering all 

21) 
perturbation theory graphs for the exchange. 

e) The kinematical factors in Table III.l are (with the exception 

of the IA.I = 1, µ = 0 amplitude of nB ~VB, as explained in Ref. 21)) 

those which would apply in the case of a single Regge pole exchange, 

i.e., when only one parity-conserving helicity amplitude is important 

to highest power of s. This situation may be characterized by the 

requirement that all subsidiary conditions4 ) imposed on the helicity 

amplitudes by kinematics at t = 0 are satisfied by the vanishing of 

individual regularized helicity amplitudes at this point, rather than 

by conspiracy between amplitudes. 
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Removal of this requirement would allow the amplitudes for 

nB ... V6. and nn ... VV to have a singularity of order (l/../t)A/+Iµ/; 

also, the additional t's listed for some nB ... VB amplitudes would not he 

required. The coefficients of the singular terms would in this case 

have to satisfy conspiracy relationshipso In the s-channel physical 

region, the resulting singularities of the jAj = jµj helicity ampli-

tudes would cancel the spin suppression dip due to half angle factors, 

and there would be no kinematic reason for P = (-l)J+l dominance of 

the forward peak (see Chapter 4). However, all the . experimental 

evidence to date on vector meson production is consistent with the 

no-conspiracy hypothesis; hence, we conclude that any contributions 

actually containing the additional singularities are small enough to 

be neglected in these reactionso This is the point of view taken in 

the analysis in the following sectiono 

Relations between the amplitudes at points other than 

t = 0 (thresholds and pseudothresholds) have not been considered in 

this sectiono 

Application to Data 

For the purpose of illustration, we consider only the 

reactions 1tN ... u:iN, :nN ... pN, :nN ... o::b., and :nN ... p6. because the 

number of possible exchanges in these is sharply limited by G 

parity and isospin. Identical kinematic statements can be made 

about the processes KN ... K*N, KN -. K*6. ; the density matrices and 

differential cross sections for these reactions have the same 

qualitative behavior as those for p production.
22

) 
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The differential cross section for production of p mesons, 

both with and without an isobar, possesses a well-defined diffraction 

peak at all energies in the range 2.5 - 8 GeV/c incident pion mo­

mentum.23,24,25) The spin density matrices of the p's produced 

closely resemble those for elementary one-pion exchange (p
00 

= l; 

Re p
10 

= O, p
1

_
1 

= 0) at the lowest physical t, but as t increases 

h 1 f d d h f . 25) Th" t e va ue o Poo ecreases an tat o p
1

_
1 

increases. is 

makes the density matrices look somewhat more like those expected 

from elementary vector meson exchange (p
00 

=Re P
10 

= 0). 

Trajectories which may be exchanged in this reaction are 

re, A
2

(R), and m (in non-charge-exchange nN ~ pN). As the A
2 

and m 

have natural parity, it is expected that they will be suppressed at 

small t and that the forward peak is produced by re exchange. In fact, 

the region 0.05 $ jtj $ 0.4 Gev
2 

agrees fairly well with an ampli-

tude of the form 

rtN ~ VN 
-llra (t) a (t) 

.ft g(t) (1 + e n ] (s/s ) n /sin rta (t) 
0 1( 

, 

-ina (t) a (t) 
i(t) (1 + e n ] (s/s ) n /sin ~a (t) 

0 1( ' 

(III .3) 

over the experimental range of s (see Section 3.2). Deviations from 

this at larger t become more pronounced at the higher energies, as 

expected (the region over which suppression is appreciable decreases 

as the energy increases).l8, 26) 
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In contrast, the differential cross section for production 

of m mesons is quite flat as a function of t at all energies mea-

d 23,24,27) 
sure • Among well-known trajectories, only the p can 

contribute, but none of the differential cross sections show the 

2 28) 
expected dip at t = -0.5 GeV • Furthermore, the density matrix 

elements consistently disagree with p exchange dominance: pure p 

exchange implies p
00 

= O, but the measured values average to one­

half; and a reasonable model of the p-nucleon-isobar vertex29, 3o) 

predicts 6 density matrix elements which also disagree with the 

data.31 ) 

This behavior is at least plausible in the light of the 

above kinematic separation. The p exchange is suppressed at the 

lowest t by kinematics and at t = -0.5 GeV
2 

by a zero in the ampli-

tude. It is not surprising, therefore, that it should be entirely 

masked by background effects, such as the possible exchange of a B 

meson (aB ~ ap -1).
32

) If these are the only causes of suppression, 

the p trajectory contribution should rise above the background at 

large t and s. This would probably produce a small bump in the 

2 
differential cross section above t e -0.5 GeV • 

A further indication that spin suppression factors play a 

major role is provided by comparing the cross section for rt+N+~ o.:N*++ 

with that for rt+N+ ~ rt0 N*++ at the same energy. Both reactions are 

+ + 0 *++ expected to be dominated by p exchange, but whereas rt N ~ rt N 

differential cross sections consistently show a forward peak and a 

dip at a = o, 23124) the rt+N+ ~ o.:N*++ distribution int is flat as 
p 
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mentioned above. Plots of cos et versus t for the two reactions 

show that the region over which spin suppression might affect 

rtp ~ rtN* is considerably smaller (jtj ~ OoOS GeV2) than the compar-

* * able region for rtN ~ a:N , and that much of the p peak for rtp ~ 1tN 

falls within the "suppressed" region for m production. 

The shapes of the density matrix elements near t = 0 are 

also strongly influenced by the suppression factors. In the co-

33) ordinate system in which these are normally measured, the density 

matrix elements can be expressed entirely in terms of t-channel 
. . k 2 

helicity amplitudes, pij = ;_ TiA TJA/~k,AjT Al (i, j refer to the 

helicity of the particle under consideration, A runs over all sets 

of other helicities in the problem). Unless a particular model is 

used, the behavior of the pij as a function of t is quite complex. 

However, the behavior for the lowest possible t is easily found 

(Table III .2). 

These general results replace, in a Regge pole model, 

the expectations for pure rt or vector meson exchange obtained from 

field theory. The elements p
1

_
1

, p
31

, and p
3

_
1 

are predicted to 

have a definite shape near the lowest t regardless of the parity 

* . 34 22) exchanged; this shape can be seen most clearly in K production. ' 

Additional assumptions must be made to obtain values for the constants 

which multiply these low t shapes, or to find the shapes at larger 

t.35) 

It is interesting to note that the suggested shapes strong-

ly resemble the behavior near t = 0 of density matrices obtained on 
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Table III. 2 

Behavior as t -4 t . of density matrix elements . Each expression may be 
min 

multiplied by an arbitrary constant 

:JTB -4 VB 

Parity of 
Exchanged 

Poo plO pl-1 Trajectory 

(-1) J+l I si: 
e lsin:etl 1 t 

s 

(-l)J 0 0 lsin2etl 

:JTB -4 Vt::. 

Poo P10 pl-1 P33 P31 p3 - l 

I sin et l 1·::>1 I sin et 
. ze 

(-1) J+l l... 
sin 

1 t 

s .ft 2 .ft s 2 
s ts 

. ze rin e . ze 
(-l)J 

sin sin 
0 0 t 1 t t 

t .ft t 
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the basis of the absorption model.
36

) This b ehavior agrees with the 

bulk of data to date. The agr eement of shape at low t between 

experiment and the two theor ies should thus not be viewed as a 

triumph of a particular dynamical model, but simply as an indication 

that the kinematical constraints have been h andled properly in both 

theories. Until recently, it was not clear how to incorporate these 

into a Regge pole model. Hence the agreement in the density matrices 

provides a great deal of support for the methods of References 1 

and 3. 

The spin suppression effect is also expected to occur in 

tensor meson production . + Because 2 mesons have natural parity, the 

helicity 0 state (and hence any M ; 0 amplitudes) can be populated 

only by unnatural parity exchange. As in vector meson production, 

unnatural p arity exchanges should thus dominate others in the forward 

peak. 

Although rel a tively little data are available on the produc-

tion of tensor mesons, the work of the British-German collaboration 

a t 4 GeV/c provides some indications that spin suppression effects 

may explain features of these processes also. Consider, for example, 

- + the reactions rt p ~ f
0
n, and TI p - A

2
µ . In TI p ~ f

0
n, the rt and A

2 

exchanges are allowed. These are the same contributions expected in 

-n p ~ p n· it is found experimentally that the cross sections for the 
0 ) 

t wo reactions have sharp forward p eaks indicating n dominance.37 ) In 

contrast, the A
2 

production differential cross section is rel atively 

fl t bl . l f d . 23 ) a , resem ing t1at or ill pro uction. A
2 

production is like m 
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p~oduction in that the only well-accepted trajectories which can 

contribute (p and f
0 

to rtN - A
2

N; p to rtN -mN) have natural parity. 

Discussion 

A. Careful treatment of kinematic effects and the use of 

daughter trajectories are only two elements of a complete Regge pole 

model of these reactions. There is no reason for them to completely 

determine the relative importance of various exchanges, particularly 

at lower energies. Other well-known explanations of pi dominance in 

such reactions as rtN - pN include: (a) nearness of the pi pole to the 

s-channel physical region in t, and (b) the relatively large strength 

of couplings at the vertices. These facts certainly play an impor­

tant role. The kinematic effect described here is quite distinct, 

however, and is by no me ans confined to pi exchange. 

B. It is e x tremely difficult to obtain purely theoretical 

estimates of the magnitudes of Regge pole couplings. Some of the 

couplings can be obtained at the partic le pole by comparison with 

Feynman graphs, but their variation with t cannot at present be pre­

dicted. For those couplings which vanish at the particle pole, there 

is no known way to theoretically estimate magnitudes at any t. 

Because of the difficulty, it is felt that a least squares 

fitting program would be premature. In particular, it is essentially 

impossible to compare (for example) the magnitude of p and B ex change 

in m production processes. Until such a comparison can be made, one 

cannot be certain how much of the suppression of natural parity ex­

change is due to the spin suppression effect discussed in this section. 
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Within the present Regge formalism, however, the 

(sin et/2)IA-µj(cos et/2)iA+µjsa-M dependence will continue to play 

an important role. 

3.2 Reggeization of Pi Exchange in Production Processes 

38 39) . 
It has been found ' that in production reactions where 

rt dominance is suspected, rapid variation of y with t is required to 

fit the data at t < 0 
2 

and the known pole strength at t = mrt • In 

this section a study is made of reggeization of the pion, including 

both the Wang prescription for kinematic singularities and further 

kinematic relations at the ~ pseudothreshold. It is found that the 

rapid variation of y(t) is caused by these further kinematic effects, 

rather than by dynamics. These considerations suggest a model for 

y(t), which is then applied to several processes. The agreement with 

experiment is comparable to that obtained in the one pion exchange 

model with absorptive corrections. 

Threshold Behavior 

The factors provided by Wang were obtained, we recall, by 

a rather abstract crossing argument (Eqs. II.18 and II.19) . As noted 

in Section 3.1, they can be checked by less abstract arguments based 

on the threshold behavior of partial-wave helicity amplitudes with 

definite parity. Since the threshold argument increases one's confi-

dence and will be used extensively in the following sections, it is 

appropriate to work out an example showing how it goes at pseudo-

thresholds as well as thresholds. 
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The example will be reN - PA, or rather the t-channel re-

action NA --. pre. 
t · t 

We take the amplitude (f0 0 . 1 ~ + f 0 O·-l _i) which 
, 22 ' 2 2 

is purely P = (-l)J+l and is therefore contributed to by N6 - re - pre. 

The Wang prescription for this amplitude is 

f~ O·l l + f~ 0·-l 1 = K~ O· l l(t) 
J2 2 , 2 -2 12 2 

, (III.4) 

where2) 

1 

2 2 
(t-(m +m) )(t-(m -m) ) p :T( ~ p :T( 

Now, what factors in 

-t 
f 

cd; ab 
= E (2J+l) FJ (t) p< it..-µ,, IA.+µ I (cos et) 

J cd;ab J-M 

could explain these fixed singularities in t? 

(i) 

where 

(ii) 

J Jin 
At a threshold, F (t) contains the usual factor qin 

~(t-(mA~)2) (t-(mA-~)2) 
2 .ft 

PJ-M is a polynomial in 

2 2 
2 s t + t - t E m. + 

l. 
cos et = 4 t 

, 

(III.S) 

(III.S) 

(III.6) 

(III. 7) 

(III.8) 
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-t 
The combination of these factors may give f an overall singularity 

2 
or zero at either of the two thre sholds t = (m

6 
+ ~) and 

. 2 
t = (mp + m:rc) • 

To see how to obtain the overall singularity at 

-consider£ . = O. 
in 

For this orbital state, the N6 

system has or 2-. Since the particular amplitude we are 

considering has P (-l)J+l, the N6 system must have JP= 2 For 
£ J p -

= 0 there is no qin in factor from F ; for J = 2 (and with 

M = 0 for our particular example), 

p<1~-µ 1 , l~+µl)(cos e) = P(O,O)(cos et) is a second-order poly-
J-M t 2 

nomial in cos e with leading singularity q . - 2 ~ [t-(m +m__) 2 )-l 
t in 6 N 

(Eqs. (III.6) and (III.8)). This agrees with Wang's result, 

Eq • (III .S). For arbitrary £in' 
FJ picks up an additional factor 

£ in 
the singular part of PJ-M picks a compensating q but most up 

-£in 
factor q , so the overall singularity is unchanged . The key 

steps in this argument are tabulated in Table III.3, together with 

the corresponding steps which explain the factor at t = (m + m )
2

• 
P re 

Next we consider singularities at the pseudothresholds. 

2 
It is helpful to think of the pseudothreshold t = (m

6 
- ~) as a 

threshold involving the "antiparticle state,"~= -~· Exactly 

the same arguments can be applied as above, except that the intrinsic 

parity of the "antiparticle state" is reversed relative to the 

particle state for a fermion (and not reversed for a boson). Thus, 

for£ . = 0 the "N"6 system has JP= l+ or 2+, and since the parti-
in ' 

cular amplitude we are considering has P = (-l)J+l, only JP = l+ 
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Table III .3 

Threshold factors in the amplitude 

at -t 
_.!_) for N6 -+ pn o O·l 1. + fo 0· - 1. 0 '2 2 ' 2 2 

Possible Allowed J 
p 

p with Threshold J for 
(-l)J+l Threshold Lowest .e Lowest .e p = Factor 

(m6~)2 0 2 -1 
t .e . = 1 2 2 [t-(m6~) ] 

l.Il ' 
2 

0 l+ l+ 2 - 1. 
t = (mp +mrc) .e = [ t-(m +m ) ] 2 out P re 

2 l+ l+ 2 _1 
t = (mp-m:rr) .e = 0 [t-(m -m) ] 2 out p :rr 

2 l+ 2+ l+ 2 _ 1 
t = (m6-~) .e . = 0 [t-(m -m ) ] 2 

l.Il 
, 

6 N 
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contributes. 
J .e. 

= 0 and J = 1, F gives no qin in factor and 

-1 
PJ M gives q . - in 

which agrees with Wang's result, 

Equation (III.5). Again, the argument is sununarized in Table III.3, 

together with the corresponding argument at t = (m -m )
2

• Note that p 1{ 

because of the parity change for fermions, the singularities are of 

2 
different order at t = (m

6 
+ ~) 

2 
of the same order at t = (m +m ) p 1'( 

and t 

and t 

whereas they are 

The type of argument sketched above agrees with Wang's 

prescription in all cases checked.
4

0) At this time, no corresponding 

physical argument for the behavior at t = 0 is known. 

The additional kinematic zeros described by Fox, lO) 

Cohen-Tannoudji et al.:) and others can also be interpreted in terms 

of threshold effects
41

) (except for the relations at t = O). We 

have already mentioned how this works out for NN - NN (see Ref. 14). 

In meson production reactions, the corresponding relations are quite 

complicated, but simplifications occur in the special case of pure 

JP = 0- exchange which is relevant to the study of pion exchange. 

For example, at t = (M
6 

- ~)2 
in rcN - V6, the method of 

4) 
Cohen-Tannoudj i et al., yields one condition connecting the r. = O, 

µ = 0 amplitude to other helicity amplitudes, and other conditions 

not involving r. = O, µ = O. In the special case of pure JP = 0-

2 
exchange, the first condition simplifies to fµ=O,r.=O(t= (~-~) ) = O. 

The physical reason for the simplification is that a spin zero 

exchange couples exclusively to the r. = O, µ = 0 amplitude, so that 

the threshold conditions can only provide the r. = O, µ = 0 amplitude 
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with extra zeros in this case rather than relating it to other ampli-

tudes. Similar behavior occurs at the other pseudothresholds and 

thresholds. 

Elementary pion exchange is a familiar case in which the 

extra zeros of pure 0- exchange appear. It is represented by a 

Feynman diagram which automatically satisfies all the kinematic 

relations. The amplitude for elementary pion exchange in 1tN - p6 

has the form 

(III.9) 

where K+(t) has been given in Equation (III.5). Evaluation of the 

Feynman diagram gives 

Yep, (t) = c 

(III .10) ; 

with the constant fixed by the known strength at the pole. The extra 

zeros provided by the workings of the kinematic relations for 0 

exchange are evident in (III.10). 

To understand from an angular momentum point of view why 

the kinematic factors in 0- exchange, as exemplified by elementary 

+ pion exchange, differ from the Wang K , we observe that the kinematic 

factor K+ can be obtained by setting P, = 0 and finding the corres­

ponding JP, whereas to obtain the elementary pion amplitude one must 

p -set J = 0 and find the corresponding£. For example, at 
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t = (m6~)
2 

the intrinsic spin-parity of N6 is 1 or 2-, so to reach 

p - p 
total J = 0 requires an orbital state£. = 2. Then in the J = 0-

in 

"b . ft FJ=O "' 2 d contri ution to , qin an PJ-M = P0 = constant, so 

ft= (K- ye11t-m/) "'qin
2 "'[t-(m6~)

2 ]. This implies that yel 

picks up a factor [t-(m6~)
2 ] 2 , in agreement with Equation (III.10). 

A resume of the analogous arguments at the other thresholds is given 

in Table III .4. 

Repeating the same arguments for, say, an elementary 2 

particle, one sees that it would not have a rapidly varying y(t) in 

the f... = O, µ = 0 amplitude. The reason in the present language is 

that it can couple to N6 or np in both £ > J and £ < J states, and the 

contribution to y(t) from the lowest£ does not vanish at threshold. 

Equivalently, one can say that a 2 particle couples to several 

helicity amplitudes, and satisfies the threshold conditions by 

relations among these amplitudes rather than zeros in the f... = o, 

µ = 0 amplitude. The same is true for any particle on the sequence 

42) 
The rapid variation of ye

1
(t) for the pion, 

then, is a special feature of JP = 0 , which can couple only to 

f... = o, µ = O, and £ > J, and therefore has extra threshold zeros in 

the f... = O, µ = 0 amplitude . 

Models for nN -. p6 

In this section we consider in succession three different 

models for pion exchange in nN -. p6 . The experimental density 

matrices for nN ~ P6 in the forward peak indicate that the non­

helicity change amplitude withµ= 0 =A dominates.
43

) It therefore 
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Table III .4 

Threshold factors in the elementary pion exchange contribution to 

the amplitude (ft0 0 .l l +ft O·-l _i) for Nf;. ~pre. 
12 2 0 , 2 2 

Intrinsic 
.R, Needed 

Spin and 
To Make Factor for Factor for 

Threshold JP Parit:y JP K Yre Yre Alone 

2 - .R,. 
2 2 2 

t = (m6~) 0 1 ,2 = 2 [t-(m.o.+~)] [t-(m6~) J in 

2 l+ .R, 1 J t- (mp +mre) 2 
2 

t (m +m ) 0 = (t-(mp+mre) ) p re out 

2 
0 l+ .R, 1 Jt-(m -m ) 2 2 

t = (mp -mre) (t-(m -m ) ) out p re P re 

2 - l+ 2+ Jt-(m6-~)2 2 
t = (m6-~) 0 .R,. = 1 (t-(m6-~) ) , in 
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makes sense to focus our attention on this amplitude, which is the 

one dissected in the previous section. 

Of the two possible µ = 0 = A amplitudes 

t + ft ) (f0 0 .i l - 0 O·-l 1 , the - combination vanishes on account of 
J 2 2 J 2 - 2 

parity conservation. The + combination (Eq. (III .4)) is purely 

p = (-l)J+l. ""t 
Writing the Regge representation for f

0 
O·l l ' 

J 2 2 

approximating it by the pion trajectory, and keeping only the lead-

ing power at large s, one obtains 

0 · l l + f ~ 0 . -l - -21 ) J 2 2 , 2 

a,/t) 

K~ O;! !(t) y11 (t)(:
0

) 

(III . 11) 

+ where K was given in Equation (III.5) and y is the reduced residue 

function. 

The first model is a straight line trajectory with constant 

dynamical coupling factor: 

a (t) 
1{ 

= -0.02 + _t __ 

(GeV)
2 

y
11
(t) = constant 

, (III.12) 

(III .13) 

The constant is determined from the known strength of the pole at 

t = m
2

, and S is chosen ass = z.Jm..,.m m..mA = 0.74 (GeV)
2 

(similar 
1{ 0 0 .. p,NLl. 



-40-

results would be obtained with the conunonly assigned value 

2 
s = l(GeV) ). The resulting forward peak (Fig . III.lb, curve (iii)) 

0 

is much too sharp, falling far below the experimental cross section . 

The predicted cross section remains too low for models with flatter 

trajectories, as long as y~ is held constant. 

The second model is elementary pion exchange, as calculated 

from the Feynman diagram. The amplitude for this model, and the 

coupling ye
1
(t), have already been given in Equations (III.9) and 

(III.10). Ast goes negative, ye
1
(t) is a rapidly rising function, 

which more than offsets K(t) and produces much too large a cross 

section (Fig. III.la, curve (i)). The t-dependence of yel is crucial 

-2 
here; even if we revert to the straight line a~ with slope l(GeV) , 

the cross section remains too large as long as we retain ye
1
(t) 

(Fig. III.la, curve (ii)). 

One way of viewing the failure of elementary pion exchange 

is in terms of unitarity in the s-channel. The elementary pion 

exchange term does not include the influence of other channels, and 

even exceeds the unitarity bound in some low partial waves, so ab-

sorptive corrections must be made. This approach has been used in 

the report of the Aachen-Berlin-CERN collaboration;
24

) it produces 

theoretical results quite near the data (Fig. III.le, curve (vii)). 

The reggeized pion exchange of our first model, however, lies well 

below the data, so it is certainly below the unitarity bound. Some 

approach other than absorptive corrections is needed to improve the 

Regge model. 



-41-

Another way of viewing the failure of t hese first two 

models is in terms of the t-channel threshold effects discussed at 

the end of the previous section . The first model ignores these ef-

fects completely. The second model, on the other hand, incorporates 

p -
the special effects of J = 0 exchange even at thresholds where the 

Regge a is far from O. These faulty approximations contrast with 

what is presumably the actual situation: 

(i) The rt trajectory couples mainly to the A = o, µ = 0 amplitude, 

with the special threshold behavior of the elementary pion, at a 

pseudothreshold or threshold where art(t) is near enough to zero so 

that most of the contribution comes from the ~ = 0- state. 

(ii) When a is far from zero, the trajectory couples to various rt 

helicity amplitudes, and the threshold conditions are satisfied by 

relations among helicity amplitudes rather than by zeros in the 

A = O, µ = 0 amplitude. 

The third and final model attempts to incorporate kinematic 

effects into the A = O, µ = 0 amplitude more realistically, by taking 

y(t) variable but using the extra zeros of elementary pion exchange 

only at pseudothresholds and thresholds where art is near zero. For 

simplicity we again confine our attention to the A = O, µ = 0 ampli-

tude. This, of course, restricts the validity of the model to small 

t (say, itl :S 2 
0.2 GeV ), but that is the region where rt exchange is 

.most prominent anyway. 

We again take the straight line approximation 

-0.02 + t/(GeV)
2

• The locations of the thresholds and 
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-pseudothresholds for N6 -. prr, and the corresponding values of arr, 

2 
are listed in Table III .5. At t = (m6 -~) , arr is only 0 .07 and the 

Regge amplitude projects heavily onto the 0- partial wave. Thus the 

Regge amplitude has a 0 part (probably dominant) which vanishes at 

t = (m
6

- ~)2 , and another part (the projection onto other partial 

waves, probably rather small) which does not vanish. It is plausible 

to represent the net effect by a (t-b) contribution to yR , where 
egge 

b is somewhat shifted from (m6-~)
2 • At t = (mp+mrr )

2 
and (m6+ ~) 2 , 

arr is large, the projection onto higher partial waves whose coupling 

does not vanish at threshold is probably large, and there is no com-

pelling reason to introduce another zero into yR • The point 
egge 

t = (mp-mrr)
2 

is intermediate and it is less clear what to do here. 

These considerations lead to the approximate form 

yRegge = c(t-b) where b is small, and c is determined from the known 

2 
strength at t = mrr. The c ross sections computed in this way with 

2 2 . 
b = 0.09 (GeV) and with b = -0.005 (GeV) are compared with experi-

ment23, 24) in Figures III.lb and III.le. The fit with b = (m6-~) 2 
= 

2 
0.09(GeV) (curve (v)) afready represents a great improvement over the 

simple Regge model with constant y (curve (iii)). For smaller b, the 

fit becomes comparable to that obtained with absorptive corrections to 

elementary pion exchange (Fig. III.le). 
2 

By taking b < mrr' the "hook" 

in the experimental cross section is also obtained (curves (iv) and 

(vi)), although b < m~ admittedly departs from the spirit in which the 

model was derived. 

Although this "hook" appears regularly in experimental data 

presented for rrB ~ V6, there is a possibility that it is spurious --
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Table III .5 

Location of thresholds and pseudothresholds of N6 ~ np, and corres­

ponding values of an(t) = -0.02 + t/(Bev)
2

• 

Threshold t in (BeV)
2 a 

1( 

t = (m6-~) 
2 0.09 0.01 

2 0.37 0.35 
t = (m -m ) p 1( 

2 
0.79 t = (mp -+m1() 0.77 

t = (m6~) 
2 4.75 4.73 
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an effect caused not by nature but by the method of 

analysis chosen. This is because for large t, all 6 and V events 

within a mass band of width ...., 100 MeV are counted in determining the 

cross section. For very small t, the heavier 6's and V's will not 

be counted 

(as t . min 

2 2 2 2 
(my -mrc ) (m6 -~ ) ( 1 ) 

=- +o -s 2 
s 

will be larger than some reported t for these large mass values); 

hence the cross section will appear to decrease. If this be the 

case, the "hook" should disappear when the differential cross sections 

44) 
are plotted against angle. Until this experimental question is 

resolved, it should be borne in mind that fits to dcr/dt can be made 

with b on either side of m; • 

Comparison of the Model with Other Reactions 

The purpose of this section is to show that the model 'of 

pion residue f unctions developed for 1tN ~ p6 above also fits the 

* 0 differential cross sections for 1tN ~ pN, KN ~ K 6, 1tN ~ f 6, and 

rcN - fON at small t. 

First, some connnents whi ch apply both to 1tN ~ P6 and to the 

reactions considered in the present section: 

(i) A complete study of residue functions would involve a great 

deal more than comparison of differential cross sections. One would 

first separate the contributions of different helicity amplitudes to 

the cross section on the basis of density matrix elements and s and t 

dependence. Then individual residue functions for various exchanges 

could be isolated and studied. Some work along these lines has been 

38) 
done by Thews. The purpose of this section, however, is only to 
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indicate dominant features of the situation and such a detailed 

study has not been undertaken. 

(ii) For all reactions considered here, the density matrix elements 

and s-dependence at small t are compatible with the assumption that 

pion exchange in the~= O, µ = 0 amplitudes dominates. The graphs 

below show that the t-dependence of dcr/dt can also be understood on 

the basis of this assumption . The comparison with data must be 

confined to small t, however, because the assumption is expected to 

fail at !ti ~ 0.2 (GeV)
2 

on. both theoretical and e xperimental grounds. 

. 25 45) 
Experiments ' on the density matrices of produced p's, for 

e x ample, show that for !ti ~ 0.2 (GeV)
2 

a large percentage of the 

vector mesons produced are transversely polarized, which implies 

µ ~ O. Thus the model developed above for the ~ = O, µ = 0 amplitude 

will be judged successful if it approx imately fits dcr/dt for 

2 2 
! t i ::;; 0.2 (GeV) and tends to fall below the data for !ti ~ 0.2 (GeV) , 

leaving room for other amplitudes. 

(iii) To specify the model somewhat more fully than was done above, 

let us discuss the various terms in some detail. Under the assumption 

that f~=0,µ=0(1( exchange) (Eq. (III.11)) dominates the forward peak, 

the differential cross section can be written as 

r(a 1(+t) (2a1(+1) 

r(a1(+1) 

(III .14) 

2 
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where m
1 

and m
2 

are the masses of the incident pseudoscalar and 

baryon for the reaction under consideration. The factor 
a::n: 

r(a::n:~)/r(a::n:+l) is a coefficient of s in the asymptotic expansion 

of Pa:(cos et); the variations of these r functions and (2a::n:+l) over 

the small range of t considered is not extremely important . The 

kinematic factor K(t) for each reaction is taken from Wang213 ) and 

listed in Table III.6; for reactions of type :n: + N ~ (P or fO) + N 

it includes the factor t which Wang derived3 ) from the factorization 

condition (see Section 3.1). A straight line with slope 1 (GeV)-2 

has been used to approximate a::n: (t). The reduced residue function 

Y:n:(t) suggested by considerations above h as the form y = constant 

(t-b) for the reactions involving an N6 vertex; a similar consider-

ation of the reactions involving an NN vertex yields the form 

y = constant, since in this case the nearby pseudothreshold has 

2 
moved to t = (~-~) = 0 and yel :n:(t) has no zeros at t = O. The 

2 
value of each Y:n:(t) at t = m:n: is known from the experimental coupling 

0 * strengths for p:n::n:, f :n::n:, K K:n:, NN:n:, and 6Nrt. These values are listed 

in Table III.6. The remaining parameter b has been treated as a 

variable, and we discuss below some of the values which give good 

fits. Finally, the scale factor s
0 

has been chosen as 2 ~m1m2m3m4, 

which is not far from 1 GeV
2 

for all cases considered. This choice 

is not crucial; fits with similar b's could be obtained for a wide 

2 2 
range of s (O.S GeV < s < S GeV ). 

0 ,..., O"' 

With this background, one can quickly determine the peculi-

arities of individual reactions. 
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Table III . 6 

The Wang kinematic factor K(t), and t he strength of the dynamical 

residue function yrt(t) at t = mrt
2

, for pion trajectory exchange 

i n various reactions. The symbol T . . denotes 
l.J 

2 2 l 
[(t - (m .+rn . ) )(t- (m. -m. ) ).]2 

l. J l. J 

Reaction K.(t) 

rt+ p -. po 6++ T 
-1 

prt 
- 1 

T'NC, [J t - (~+rnL:-)2] - l 

- 0 ..ft - 1 rt p -. p n T prt 

K+p * 6++ - 1 -1 J- 2 - 1 .... K TKK* TN,0,. [ t-(~+rn6) ] 
0 

rtN -. f 0 N Jt - 2 
T rtf 

rt+p -. f 0 6++ - 2 - 1 J 2 - 1 
Trtf TN6 [ t-(~+m6) ] 

2 l 
yrt(t=mrt ) I (mb) 2 

4.5 GeV6 

9.9 GeV
2 

2.5 GeV6 

67.2 GeV4 

30.5 GeV
8 
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n+p - p0 6++: The cross section for b = (m6-~)
2 = 0.09 Gev2 is 

shown in Figures III.lb (curve (v)). The best fit, which gives the 

"hook" visible in the 8 GeV/c data in Figure le, as well as at lower 

energies, 43 ) is given by b = -0 . 005 Gev2 (curves (iv) and (vi)). 

- 0 n p - p n: The cross section of form (III.14) with Kand Yn taken from 

Table III.6, fits the data 46 ) quite well (Fig. III.2) without 

additional parameters. 

K+p - K ~·( 6++. The differential cross section for this reaction in 0 • 

the extreme forward direction is not well known at present. As a 

result, there are two solutions of the form indicated above which 

f . h d . 47 ) 1 . . h b 0 045 G 2 d h it t e ata points -- one so ution wit = • eV an t e 

2 other with b = 0.001 GeV • They are both plotted in Figure III.3. 

nN - f 0 N: As in the analogous reaction nN - p 0 N, the cross section4s, 49) 

can be fit quite well by use of a constant residue function with the 

2 
kinematic factor and Yn (t = mn) of Table III.6 (Fig. III.4). 

n+p - £
0 

6++: Fitting this reaction with a linear residue function 

0 
we find, as in the case of nN - p 6, that the zero must fall at 

t < 0 (b = -0.015) in order to reproduce the "hook" at low t (Fig. 

III.5). Again a fit to the magnitude outside the hook region can be 

obtained with a zero at the N6 pseudothreshold. 

Discussion 

A. Mandelstam50) has noticed a difficulty which arises in the formal 

reggeization of processes involving particles with higher spins. 

Normal methods of continuation in angular momentwn produce, for 
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example, contributions to the Regge residues for nN - VN from 

P, = -1 states. This is in contrast to the arguments above, in 

which only physical orbital angular momenta P, > 0 to the t-channel 

have been considered. 
50) 

Mandelstam has also demonstrated, however, 

that the contributions from unphysical P, may be cancelled by other 

terms, if all of the external particles involved lie on Regge tra-

jectories. Thus the restriction to physical orbital angular momenta 

conforms to the result one presumably obtains by consistently 

reggeizing all hadrons both internal and external. 

B. Dashen and Frautschi
29

) have predicted from static model boot-

strap calculations that 

~ const (III.15) 

This relation has been tested in various contexts
51152

) and found to 

be in agreement with vector meson production data. It is interesting 

to note that Equation III.15 would not be consistent with p's deduced 

purely from kinematic factors, but is roughly consistent at negative 

t with the behavior we have found from angular momentum considerations, 

PTINL;, ~ (t-B)/~-(m6-~)2 • 

c. Kinematic conditions affect the couplings of all trajectories. 

The existence and detection of the very rap id variation of yn(t) in 

TIN -+ p6, however, depends on the c lose conjunction of: 

(a) the pole with large residue at t = mn
2

, 

(b) the pseudothreshold with kinematic zero at t = 
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2 
0.09 GeV , and 

(c) the physical r e gion where the resulting residue variation 

can be observed at t < O. 

This close conjunction of all three effects is a unique feature of 

re exchange • 
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Figures III.lb 

Comparison of the same data with: (iii) reggeized OPE with constant 
residue; kinematic factors from crossing matrix; (iv) reggeized OPE 
with linear residue (b = -0.005 GeV2 ), kinematic factors from crossing 
matrix; (v) same model as (iv) with b = 0.09 Gev2. 
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1T +p - p 0 .6. * ( 8 Gev I c) 

0 . 1 0 .2 0.3 0 .4 

6 2 (Gev 2 ) 

I 
l 
0 .5 

n+p ~p0 6-t+ at 8 GeV/c . The data are from the Aachen-Berlin-CERN 
collaboration (Ref. 24) . The curves represent: (vi) reggeized OPE 
with linear residue (b = -0 . 005 Gev2), kinematic factors from crossing 
matrix; and (vii) absorbed OPE (calculat i on in Ref . 24) . 
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K p - K 6 at 3 GeV/c . The data are that of the CERN- Brussels col -
laboration (Ref . 47) . The curves r epresent two possible fits with 
reggeized OPE) kinematic factors from crossing matrix) and linear 
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The same reaction and models as 3a, at 5 GeV/c. 
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rt+p -• £0 6++ at 8 GeV/c. The data are from the Aachen-Berlin-CER.J.~ 
collaboration (Ref. 24). The curve represents reggeized OPE with 
kinematic factors from crossing matrix, linear residue (b=-0.015 Gev2). 
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Chapter 4 

ROLE OF CONSPIRACY IN THEORY OF VECTOR MESON PRODUCTION 

Application of the methods of Chapter 2 yields two con-

53) 
spiracy relations at t = 0 for 1tN ~ VN: 

(IV.l) 

.ft .f
0
t - -2i.J t ft O·l-l - O O·l l 

'2 2 1 2 2 
(IV.2) 

For all four parity-conserving amplitudes involved here, the Wang 

-l 
kinematical factor K allows at 2 behavior at t = 0 (Table IV.lA). 

The additional kinematic conditions imposed by Equations (IV.l) and 

(IV.2) can be satisfied in either of two ways: a) each of the two 

amplitude s involved in an equation can have an additional factor of 

t from f; in this case each side of the equation would vanish sepa-

rately like t (no conspiracy), or b) each amplitude can retain the 

-l 
singular t 2 behavior at t = O; in this case the two sides of the 

equation must approach the same constant (conspiracy) . For example, 

one conspiracy solution behaves like 

(IV.3) 

near t = O. 
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For the reaction rtN .,.. VD., the t = 0 conditions obtained by 

the methods of Chapter 2 (see Appendix A) are: 

t f + f = -t f - f 3/2 [-t -t J 3/2 [-t -t ] 
10;3/2-t -10;3/2-t 10;3/2-t -10;3/2-t (IV.4) 

t (IV.5) 

t (IV.6) 

-t -t 
In each of these amplitudes f d b ± f d b the Wang kinematic c ; a -c- ; a 

factor K (Table IV.lB) allows a maximum singularity (.ft)-jc-dj-ja-bj 

at t = 0 -- just enough to cancel the explicit factors of t in 

Equations (IV.4) and (IV.6). Again the t = 0 conditions can be 

satisfied either by having each side of the equation vanish separate-

ly like t, or by conspiracy between the coefficients of the singu-

larities. 

The discussion in Chapter 3 demonstrated that presently 

available data on vector meson production can be understood within 

the framework of the no-conspiracy (evasive) solutions. To obtain 

an understanding of the entire range of behavior allowed by kinematics, 

however, one must also examine the consequences of conspiracy. 

General properties of the conspiratorial solutions are discussed in 

this chapter; application to the particular case of photoproduction, 

where they appear to be needed, is made in Chapter 5. 
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Conspiracy and Angular Momentum Conservation in the Forward Direction 

It has been known for some time that in NN scattering, the 

double spin flip amplitude f~ 1 . 1 1 is non-zero in the forward 
2 2, - 2 -2 

direction only when conspiracy occurs, despite the fact that angular 

momentum conservation places no restrictions on this amplitude. The 

purpose of this section is to demonstrate that conspiracy has the 

same role in unequal mass reactions: that of restoring the contri-

butions of double flip amplitudes to full strength in the forward 

direction. 

As discussed in Chapter 2, although cos et/2 and sin et/2 
1 

are large and proportional to s 2 for larger t, they are constrained 

to approach 0 and 1 respectively ate = 0° (t = t . ). This means 
s min 

that all amplitud·es 

ft 
co;ab 

(IV. 7) 

with (c+a-b) ~ 0 vanish in the forward direction of the s-channel. 

For (c+a-b) = O, the forward amplitude does not vanish but the fast 

drop in drop in 

less ft for 
co; ab 

sine / 2 toward t = t . tends to suppress it. Un-
t min 

(c+a-b) = 0 compensates by growing like t-x with 

appropriate x, the suppression will greatly decrease f t near 
co;ab 

t = t . • 
min 

It is instructive to view these same phenomena from the 

point of view of the s-channel amplitudes. As shown in Appendix B, 

at e = 0° the crossing relations reduce to the form 
s 
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ft 
co; ab = ± fs 

-ca; ob (B .5) 

The vanishing of all ft b with c + a-b ~ 0 at e = o0
, t hen, is 

co; a s 

simply a manif estation of angular momentum conservation along the 

direction of forward scattering in the s-channel. The suppr ession of 

ft with (c+a-b) = 0 at e = o0
, however, is not requir ed by 

co; ab s 

angular momentum conservation. Therefore it is to be expected that 

ft can have the compensating factor t-x needed to restore the 
co; ab 

normal size of the angular momentum conserving amplitudes at e 
s 

= 00. 

For reactions such as rcN ... Vt:::., sin e t/2 ~.../ts at high s; 

the forward suppression i s caused by the .ft fac tor. Hence if 

ft - (l/.ft)jc-a+bj we see from Equation (IV.7) that the amplitudes 
co; ab ' 

allowed by angular momentum conservation will contribute with full 

strength in the forward direction. This is exactly the maximum 

singularity allowed by the Wang formalism. As shown (Eqs. (IV.4) -

(IV.6) and Table IV.lB), the amplitudes will have this maximum singu-

larity only if they conspire at t = O. 
l l 

For rcN - VN, sin e t/re - t 4 s2 at high s; the forward s up-
1 

pression is caused by the t4 factor. Hence, for this case, the t = 0 

behavior necessary to ensure full contribution of the angular-momentum-

-t - l jc-a+bj 
conserving amplitude is f b - (t 4 ) • Again we see from 

co; a 
-t 

Table IV.l that the relevant amplitude f_ 1 O· l -l' is allowed just the 
, 2 2 

- l I c-a+b j - l right singularity (t 4) ~ t 2 in the Wang formalism, but (in 

view of Equation (IV.l) can achieve it only through conspiracy. 
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Hence we conclude that the conspiracy relations play a very 

similar role in equal and unequal mass reactions . In both cases non-

conspiring flip-flip amplitudes vanish at t = O; the main difference 

is that t = 0 corresponds exactly to forward scattering in the equal 

mass case, but is only approached asymptotically by forward produc-

tion in the unequal mass case. 

Conspiracy relation (IV.2) is in a separate category, since 

the A = µ = 0 amplitude is not multiplied by half angle factors and 

thus is not subject to quite the same suppression in the forward 

direction. In the no-conspiracy case, however, it does contain a 

.ft, which along the curve e = 0° contributes an effective suppression 
s 

-1 
"" s • In the case of conspiracy, Equation (IV.2) equates ft 

0 0 .1.. l.. 
'2 2 

-l.. -t 
to (i/2) f 0 0 .1.. 

0:-l -1.. 
-l..' which grows likes t 2. Since t 2 ~ s along the 

12 2 
t 

fo O·l.. 
'2 

boundary curve, 1 will grow like so: at e 
2 s 

00 
' i,.e., 

~piring singularity contributes full strength to the A = µ = 0 

amplitude along the forward direction. 

a con-
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Table IV.lA 

Amplitudes for RN ~ VN 

Extra Factor 
Dominant Kinematic in No-Con-

Amplitudes u f... Paritv Factor spiracv Case 

t 0 0 (-l)J+l lNt t foo -1.. l.. 
'2 2 

-t 0 1 (-l)J+l l/.ft t fOO·l -l.. 
'2 2 

i -t -t (-l)J flO · l l.. + f 1 0 1 
-10 . +.l- +.l-

' 2 2 ' 2 2 

-t -t 1 0 (-l)J+l l/.ft t flO· l l.. - f-10·# # 
' 2 2 ' 2 2 

-t -t 1 1 (-l)J+l 1 flO·l - l.. + f -l -10· # 
'2 2 , 2 2 

-t -t 1 1 (-l)J l/.ft flO· l - l.. - f - l t -10·# 
'2 2 , 2 2 . 

i 
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Table IV.lB 

Amplitudes for 1tN - V6 

!Dominant 
Extra Factor in 

Kinematic No-Conspiracy 
Amplitudes u A. I Paritv Factor Case 

t 0 0 (-l)J+l 
fOO· l l.. 1 

1 2 2 

-t (-l)J+l l/.ft £00;3/2 l.. 0 1 
2 

-t 0 2 (-l)J+l l/t £00;3 /2 - l 
2 

-t (-l)J+l l/.ft fOO·l -.l. 0 1 
12 2 

-t ft (-l)J lNt flO·l .1. + -10·.l. l.. 1 0 
1 2 2 , 2 2 

-t -t (-l)J+l l/.ft flO· l .1. - f 1 0 -10 . .1. .1. 
1 2 2 1 2 2 

-t -t (-l)J+l l/t flO·l - .l. + f - .l. 1 1 t -10·.l. 
1 2 2 12 2 

-t -t (-l)J l/t £10·.l. - .l. - f 1 -l 1 1 t 
12 2 -10; 2 2 

-t -t (-l)J+l l/t £10;3/2 1 + f 1 1 1 t 
2 -10; 3 /2 2 

-t -t (-l)J l/t £10;3/2 1 - f 1 1 1 t 
2 -10;3/2 2 

-t +ft (-l)J+l l/t3/2 
£10; 3/2 -.l. -10·3/2 - l 1 2 t 

2 1 2 

-t -t (-l)J l/t 3/2 
£10;3/2 -£ -l 1 2 t -l -10·3/2 2 1 2 
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Chapter 5 

CONSPIRACY IN THE REACTION yp -• re+ n 

Because yp -• ic+n is a special case of the class of reactions 

j'lN _,. VN, time reversed, the forward dip displayed by Equation (II.12) 

and discussed in Section 3.1 should again apply to all amplitudes 

withµ=/: 0 if there is no conspiracy . But photoproduction has the 

special feature that there is no amplitude with µ = h -h = O; 
1( y 

therefore, the dip should show up directly in the cross section and 

does not have to be disentangled from a dominant non-flip contribution 

in the usual fashion. 

Due to this special feature, photoproduction is an especially 

favorable reaction for establishing whether conspiracy exists. At 

present, there are three strong indications that conspiracy does exist 

in photoproduction. 

i) Halpern
54

) has noted that the invariant amplitude conventionally 

55) 
labeled A

1 
vanishes a t t = 0 unless there is conspiracy. But the 

low energy data, as discussed by Adler and Gilman56 ) and by Halpern54, 

indicate that A1 does not vanish at t = O. 

ii) Evaluation of Feynman diagrams for the s - channel nucleon pole57 ) 

leads to A
1 
(t = 0) =/: 0 at s M

2
• For this (s,t), no other diagram 

can cancel the pole; hence we can conclude that conspiracy is indeed 

present. 

iii) Finally, there is the above point that the differential cross 

· ld 1 ·b· f a a· h · 58) section wou ex 1i it a onvar ip were t ere no conspiracy. 

The absence of a forward dip at low energies59) agrees with the con-
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clusion of i) and ii). Our t-channel analysis in terms of Regge 

poles is, however, more relevant to high energy data. At the highest 

energies measured, the differential cross section for y + p -~ rt+ + n 

59) 
(Fig. V.l) appears to be rising as one approaches small angles, 

strongly suggesting conspiracy. As explained below, measurements of 

the o0 cross section at high energy should settle the question 

definitively. 

Kinematics of Photoproduction 

The four independent combinations of helicity amplitudes 

needed to describe photoproduction, and the kinematic factor K for 

each of them, are listed in Table V.l. In evaluating K, there are 

special problems associated with the zero mass of the photon, and 

the K listed in Table V.l is the limit as - 0 of K evaluated for 

the amplitudes with ~ ~ O. The reasons why this choice has been 

made are given in Appendix c. 

It is also straightforward to express the four invariant 

amplitudes A. of BallSS) in terms of the t-channel helicity ampli­
i 

tudes ft This is done in Table V.2. 

Now as t - O, let each helicity amplitude behave like the 

corresponding kinematic factor K(t) listed in Table V.l. The effect 

of this behavior of the A. is easily deduced from Table V.2. One 
i 

finds that all Ai can be non-zero at t = O. A2 will have a l/t 

singularity, however, unless the coefficient of the l/t term satisfies 

the condition 
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-t 
(fo1 ·J- i 

'2 2 
ft ) = -i 

01· - .!..-.!.. 
(V .1) 

' 2 2 

(this relation can also be found by the techniques of Section 2.2). 

Equation ~.1) can be satisfied in either of two ways: 

i) By conspiracy among the different types of Regge trajectory (or 

cuts or fixed poles in angular momentum) involved in Equation (V.l). 

This has been studied by Halpern, 54
) Mitter, 6

0) and Sawyer.61
) 

ii) By individual vanishing (~t) of the Regge residues on the left 

and right-hand sides of Equation (V.l). The extra factors oft in 

this "no-conspiracy" solution are indicated by the * in Table V .1. 

Note that in this case, with (f~1 . .!.. .!.. - f~l·-l _.!..) and 
'2 2 ' 2 2 

-t -t .!.. - .!.. 
(f01 . .!.. - .!.. + f 01 ._.!.. .!..) behaving like t2 instead of t 2, the amplitude 

'2 2 ' 2 2 

A1 in Table V.2 vanishes at t = O. As stated above, this is the 

basis of Halpern's arguments for the existence of conspiracy in 

photoproduction. 

The equations written thus far have referred to helicity 

amplitudes; this is all one needs to establish the properties of 

forward photoproduction discussed below. To express the conspiracy 

relations in terms of Regge trajectories, however, a partial wave 

expansion of the helicity amplitudes is necessary. In the form 

J 
~ (2J+l) T d b(t) 
J c ,a 

p<J~-µJ, J~+µJ)(cos e ) 
J-M t ' 

(V .2) 

partial wave amplitudes with definite parity are 



TableV.l 

Kinematic Singularities and Partial Wave Expansions of the Helicity Ampli tudes for Photoproduction 

Dominant 
Amplitude IA. I Iµ I K(t) Partia l Wave Expansion _ Parity 

-t ft 
fo1 i i+ o1·-l -l 

;2 2 ' 2 2 

-t 
£01·1- t 

·' 2 

-t 
fOl;-! -! 

ft + ft 
Ol·l -l 01·-l l 

12 2 ' 2 2 

-t -t 
f - f 1 01· l - l 01·-- l 

' 2 2 ' 2 2 

* 

0 

0 

1 

1 

1 

1 

1 

1 

2 
(t-µ ) 

(t-4M
2

) ! 
1 * 

t2 

2 
(t-µ ) * 

1 
t2 

(t-4M2 )°~-

E(2J+l) bJ+ P~=ll) cos et) 

E(2J+l) bJ- P~=ll) (cos et) 

E(J+.l-)fa -(P~2>0)_p(0,2))+ a +(P(2,0)+ p(0,2))] 
2 LJ J-1 J-1 J J-1 J-1 

~(J+l-)[a +(P(2,0)_P(0,2))r a -(P(2,0)+ P(0,2)~ 
2 J J-1 J-1 J J-1 J-1 ~ 

In the absence of conspiracy, these amplitudes should be multiplied by an extra factor t. 

(-l)J 

(-l)J+l 

(-l)J 

(-l)J+l 

I 
-...J 
I-' 
I 
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Table V.2 

Relation Between Invariant Amplitudes A. 
1 

and t-Channel Helicity Amplitudes 

2 2 t fOl· l l + fOl·-l -l - ZM~t fOl·l -l+ fOl·-l l 2 .f2 M [ (-t -t ) r (-t -t j~ 
(4M -t) (t-µ ) ' 2 2 ' 2 2 1 2 2 1 2 2 

2 .fz M 
2 2 

(t-4M )(t-µ ) 

- l + 0.Jt fOl·l l-fOl· -l -l ) 
J~ (-t -t ) l 

2 1 2 2 , 2 2 

2M 
- Jt -l J 

2 2) 

.f2M [ t 
A3 = 1 2 2 f Ol;-

2
1 :.._

2
1 -f~l · - l i] 

·.J t-4M (t-µ ) 1 2 2 

A4 = 2 2 
(4M -t)(t-µ ) 

2 .f2 M 
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± J + TJ aJ - TOl· 1 - .1 - 01· -1.. 1.. ' , 2 2 , 2 2 
(V .3) 

bJ 
± J + TJ - TOl· 1 1 - 01·-1.. -1.. , 2 2 , 2 2 

(V.4) 

Here, amplitudes with+ supersciprts have P = (-l)J, and amplitudes 

J+l + with - superscripts have P = (-1) , so that aJ + -and bJ refer to NN 

in the 3 J±lJ state, aJ to the 
3
JJ state, and b-J to 

1 
the JJ state. 

-t 
The first two combinations of amplitudes f in Table V.l, 

(V .5) 

are then easily expressed in terms of the b's, while the last two 

combinations in Table V.l, 

{T~l·l '2 

.L; (2J+l) 
J 

p(0,2) 
-1.. J-1 2 

± p(2,0)} 
J-1 ' 

(V .6) 

can be expressed in terms of the a's. The results are listed in 

Table V. l. Finally, by inserting the appropriate partial wave 

expansions in Equation (V.l) we obtain 

.L; (2J+l) bJ p(l,l) (cos et)= -i.L: (J + -21 ) 
J-1 

(P(2, 0) 
J-1 

p(0,2)) + + (P(2,0) + p(0,2)] 
J-1 aJ J-1 J-1 

(V. 7) 
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This is the familiar form of the conspiracy relation, from which one 

can deduce ratios of the residues of the various conspiring trajec-

tories. 

Consequences of Conspiracy for the Photoproduction Cross Section 

The differential cross section for photoproduction by un-

polarized initial beams can be written 

2 
16rt sp. 

i 

L: 
abed 

(V .8) 

where n, pi' and pf represent the solid angle, initial momentum, and 

final momentum, all in the center of masso Using the relations be-

tween ftd b and ft d b provided by parity conservation to reduce c ,a -c- ,-a-

the number of amplitudes, we can rewrite (V.8) as 

lf~l · l 1. + 

2 

-t( ft -ti + lf~1 - 1.1. -
ft 

01·-l 01·-l I J 2 2 ' 2 '2 2 ' 2 

dcr 
an = 2 

16rt sp. 
i + lf~l - 1. 

'2 

t 
-1. + fOl· 

2 , tl
2 

+jf~l-1. ft I -1. - 1. - 01 · - 1. 1. 
2 12 2 , 2 2 

(V .9) 

Most of the t-dependence of dcr/dn near t = 0 should be 

determined by the half-angle factors (sin et/2) jA-µj(cos e t/2)IA+µI, 

the kinematic factors K(t), and the extra zeros which appear in 

2 

. ~ft . th b f . certain in e a sence o conspiracy. ""t 
The remaining factors in f 

are dynamical and are expected to vary only slowly at small t ' [one would ,. 
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expect the pion exchange pole to provide an exception, but because 

-1 . ~t lµI = 1, the pion pole (sin n an) is cancelled in f by a factor 

an (see Appendix C). 
~t 

Thus, all f are smooth functions below the Zn 

2 
threshold at t = 4mn .] 

In order to study the difference in t-dependence between 

the situations with and without conspiracy, then, we approximate the 

dynamical factors by constants at small t. With this approximation, 

the helicity amplitude~ ft take the forms listed in Table V.3(a). 

-t t 
Relating f to f and squaring, we obtain the contributions to dcr/dD 

(V.9) given in the right-hand colunms of Table V.3(a). In Table V.3(b) 

the variation of these contributions at the sample energy k = 3 BeV/c 
y 

is indicated by a numerical evaluation at t = -0.02 Bev2 (i.e., a point 

outside the dip region), t = -0.003 BeV
2 

(i.e., at center-of-mass 

angle B = 2.8°, which is near the most forward point measured at 
s 

t) d t t (where B = 0°). presen , an = min s 

The numerical evaluation at k = 3 BeV/c works out as 
y 

follows. In the absence of conspiracy, all kinematic factors in 

Table V.3 ( i , ii, iii, iv, and v) tend to decrease from t = -0.02 to 

t = -0.003, which corresponds to the most forward region measured by 

Buschhorn et al.59) The decrease by a factor · of 100 between t = .003 Bev2 

and t . ~ 0 is even more striking . Thus, in the absence of conspiracy, min 

there should be a sharp drop in dcr/dn in the forward direction ( B less 

than 2 .5° in the center of mass). This drop is already well-known for 

pion exchange, and our derivation shows it occurs independently of the 

particle exchanged. 



Table V .3 (a) 

The low t behavior of each photoproduction he licity amplitude, with and without conspiracy, when the 

dynamical factors and (t-4M2) are approximat ed by constants c .• The contribution of each helicity 
1 

amplitude in this approximation to da/d0 [the relation of cos et tot is given by 

2 2 2 2 2 2 2 
cos e = t (2s+t-2M -µ ) /(t-µ ) (t-4M )] • 

t 

Amnlitude 

-t -t 
fOl·l l + fOl· 1 1 )2 2 ,-2 - 2 

-t -t 
fOl·l 1 - fOl· 1 1 

'2 2 '-2 -2 

-t . -t 
fOl·l -l + fOl·-l l 

12 2 ' 2 2 

-t 
fo1;t -~ ft 1 1 

Ol;-2 2 

Behavior 
Without 

2 c
1 

(t•µ ) 

c2 .ft 

c
3 

.ft (t-µ2) 

C4 

Behavior 
With 

2 c
1 

(t-µ ) 

c2 / .ft 

2 
c
3 

(t-µ ) 

.ft 

C4 

2 
161! s p. 

Contribution to i da 
dil 

Without Consnirac 

jcl j2 

4 

jc2j2 

4 

2 
2 

2 
(t-µ ) sin e t 

. 2e t sin t 

2 
jc3j ·2 2 2 
-4- t(t-µ ) [ l+cos e t] 

2 
jc4 j 2 

+ -4- [ l+cos et] 

* l 2 - Re c
3 

c
4 

t2(t-µ ) cos e t 

pf 

With Consnirac 

jclj2 

4 

lc212 

2 2 
(t-µ ) 

sin 2e 
t 

. 2e sin t 

4t 
2 

lc3I 2 2 2 
~ (t-µ) [l+cos e t] 

2 
jc4 j 2 

+ - 4- [l+cos e ] 
. t 

* 
Re c3 c4 (t-µ2) cos et 

1 
t2 

I 
-...J 

°' I 



i) 

ii) 

~ fi ) I 

iii) 

iii)' 

iv) 

v) 

V) I 

Table V .3 (b) 

Sample Values of Kinematic Factors for k = 3 BeV/c 
y 

2 t=-0 .003 Bev2 
Factor t=-0 .02 BeV (2.8° cm) 

2 
2 

2 
- (t-µ ) sin et o. 72 Bev 4 0.11 Bev 4 

. 28 t Sl.Il t 9.2 BeV2 0.64 Bev 2 

sin 
2
et/t 

4 - 2 2.3 x 10 Bev 4 - 2 7.1 x 10 Bev 

2 2 2 
- t Ct-µ ) [1 +cos et] 

-2 6 
1.4 x 10 BeV 

- 4 6 
3.3 x 10 Bev 

1 2 2 2 - t Ct-µ) [1 +cos et] 36 .1 BeV 2 36.2 Bev 2 

2 
[ 1 + cos et] 460 214 

.1. 2 
it2 Ct-µ ) cos e tl 

-1 3 1.2 x 10 Bev - 2 3 1.8 x 10 Bev 

1 2 I i Ct-µ ) cos e tl 6 BeV 6 Bev 
t 2 

t = t . 
myn (0° cm 

0 

0 

0 

-9 6 7.8 x 10 BeV I 
....i 
....i 

72 BeV
2 

I 

2 

-s 3 6.6 x 10 BeV 

6 Bev 
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Kinematic factors (ii)', (iii)', and (v)', which replace (ii), 

(iii), and (v) in the presence of conspiracy, tend to show the forward 

rise indicated by experiment as eCM decreases to 2.5°. At still smaller 

angles, the difference between the cases with and without conspiracy 

become more dramatic; (v)' is constant, (iii)' remains essentially 

constant from eCM = 2.5 to eCM = 0.5° before doubling at eCM = 0°, and 

0 0 
(ii)' remains essentially constant from eCM = 2 .5 to e CM ~ 0.5 before 

plunging to zero at eCM = 0°. Thus the deep forward dip predicted by 

standard techniques for reggeizing individual exchanges should be absent 

if conspiring trajectories dominate the cross section.
62

) 

The same qualitative features apply at energies below 3 BeV. 

While the dip which distinguishes the no-conspiracy from the conspiracy 

case becomes , less striking at low energies, the depth being of order 

10 (E /BeV)
2

, the effect persists below 1 Bev.
63

) Thus, for example, 
y 

the measurements at E = 800 MeV by Beneventano et al.,
59

) who find 
y 

dcr/dn rising as eCM is decreased by steps of 2° from 10° to o0
, are 

relevant and strongly favor conspiracy. The measurements down to 5° 

by Ecklund and Walker at somewhat higher energies, and down to 2 .5° 

by Buschhorn et al. at 1.2 to 2.9 BeV, support the same conclusion. 

If this pattern is corroborated by extension of the higher energy mea­

surements to o0
, the existence of conspiracy will be firmly established.fA) 

It should perhaps be emphasized that the expansion of the 

differential cross section in terms of t-channel amplitudes is correct 

at all energies, as is the assignment of kinematic factors to the 

t-channel amplitudes. Thus the above discussion depends in no way 
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upon conspiracy between Regge trajectories; it requires only conspiracy 

between t-channel amplitudes. As mentioned above, a conspiracy of 

exactly this type is provided by the s-channel nucleon pole in Born 

approximation
57

); likewise the "absorptive corrections" to one pion 

exchange, which are made by adding several low partial waves in the 

direct channel, remove the dip which the unmodified one pion exchange 

would exhibit at t = O. It is therefore entirely possible that the 

exciting possibility of conspiracy between trajectories is not realized . 

+ in yp ~ rt n, and that the conspiracy indicated by experiment is just 

an old theory in disguise. 
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CONCLUSIONS 

This study indicates that the experimental differential 

cross sections and density matrices of reactions of the form 1CN - > VN, 

~N ~ V6 can be understood on the basis of a Regge pole model provided : 

a) The half-angle factors in t-channel amplitudes are treated as 

kinematic factors and evaluated explicitly. 

b) The results of Freedman and Wangl) are assumed to apply to the 

regularized t-channel parity- conserving helicity amplitudes. 

c) Kinematic constraint equations at thresholds and pseudothresholds 

are taken into account, where necessary. 

d) The contraint equations at t = 0 (conspiracy equations) are 

satis f ied by evasion, at least f or the dominant exchanges. 

Further, the data seem to indicate that the residue functions are 

approximately constant once kinematic behavior has been removed. 

This model cannot explain presently available photoproduction 

data. Published results and preliminary data at very small t indicate 

that conspiracy between helicity amplitudes occurs in this case . It 

is not clear whether the data can .be explained solely b y Re gge pole 

ex change; other singularities in the angular momentum plane may have 

to be invoked. 
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APPENDIX A 

Cohen-Tannoudji et al., found that in reactions (such as 

rrN ~ V6.) with unequal masses in both t-channel states, the technique 

described in Section 2.2 does not lead to any conspiracy relations 

between different f~d·ab's· It does, however, lead to relations be­
' 

tween different parity-conserving amplitudes.
65 ) If the amplitudes 

are dominated by Regge poles, different poles will dominate different 

parity-conserving amplitudes; thus the relations obtained are of a 

non-trivial nature. For this reason the simple derivation is presented 

in detail. 

For each individual amplitude ftd b in reactions where the 
c ; a 

masses are related as in TIN ~ V6., the Wang kinematic. factor at t = 0 

allows a maximum singularity (l/.ft)jA-µI, where A= a-b, µ = c-d. 

-t -t 
Thus f d b and f have different maximum singularities unless 

c ;a -c-d;ab 

at least one ofµ and A vanishes. The parity-conserving combinations 

-t -t 
(f d b ± f d b) are allowed the larger of the two singularities, c ; a -c- ; a 

i.e., (l/.ft)(jA j+jµj )• Hence if P = j jµj-jAj j, Q = jµj+jAj and f~d;ab 
is the individual amplitude which is only allowed the smaller singu-

larity, we have 

and 

-t 
f 
cd;ab (A.l) 

= 1 [<f-t + -t ) + (-t -t ~ 
2 cd;ab f-c-d;ab fcd;ab - f-c-d;ab~ (A. 2 ) 
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To make (A . 2) consistent with (A .I), c
1 

+ c
2 

must have a zero of order 

r: Q- P 0 ('' t) a t t = 0. As with a ll t = constraint equations t his can 

e ither be satisfied by conspiracy (c
1 

and c
2 

non-vanis hing and corre­

l a ted) or non-conspiracy (C1 and c2 separately vanishing like 

(.ft) Q-P). 66) 

This derivati on does not make explicit use of the c r ossing 

matrix, but it is easy to verify that conditions of t ype (II.23) do 

arise i f one works with parity-conserving amplitudes, and lead to the 

same t = 0 relations as described above . 

As a particula rly simple example of this type of conspiracy, 

consider the s-channel reaction n:rc __,. yy. The relations can be derived 

as in Equ ations (A.l - A.2), or f rom the invariant amplitudes for 

this case., but it is instruc tiv e to work through the crossing method 

of Cohen-Tannoudji et al. The crossing relations for the helicity 

amplitudes are 

ft 
+O;+O 

ft 
+0;-0 

fs 
+ -;00 

s 
f++· 00 

) 

Rewriting Equation (A.3) in t erms of f's one finds 

-t 
f+O;+O 

-::t 
r+O· -0 = , 

(sin e )2 
s 

1 

-s 
f+ -;00 

-s 
£++· 00 , 

(A.3) 

(A.4) 
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which can be re-expressed in terms of s and t: 

-t 
f 
+0;-0 

2 2 
- (t-µ ) 

2 
4s(s-4µ ) 

2 2 
-Ct-µ ) 

st 

-s 
f+ -;00 

fs 
++;00 

(A.5) 

. 2,8) h f-s h By standard reasoning, t e - ave no kinematic singularities or 

zeros in t. Thus it follows from the crossing relations (A.5) that 

constant at t = 0 and ft - t - 1 • Th 1 . d +O;-O e amp itu es 

a = 
1 -t 

2 2 f+O;+O 
(t-µ ) 

(A.6) 

t -t 
2 2 

f 
(t - µ ) +0;-0 

b = 

are therefore free of kinematic singularities of zeros at t = o.67 ) 

The counterpart of Equation (II . 21) for this case is 

fs 4s 
2 

0 
+ - ;00 

(s-4µ ) a 

= (A. 7) 

-s 
0 b f++· 00 s 

' 

which, analyzed by the procedure of Equations (II.22-23) gives no 

t = 0 relations. This is in agreement with the conclusions of Cohen-

Tannoudji et al. about the lack of conspiracy between different 

-t 
f d h's. But if we turn to parity-conserving combinations 

c ; a 
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(f
-t -t -t -t 

0 
+ f 0 0 ) and (f 0 0 -f_0 .+0), the reasoning following 

+o; + - ; + + ; + , 

Equation (A.5) indicates that both parity-conserving amplitudes 

-1 
"' t at t = O, and that in this case the amplitudes which are free 

f k . . . . 1 . . 0 b . 68) o inematic singu ar1t1es or zeros at t = can e written 

ft(+) 
+0;+0 

""t ( - ) 
f+O;+O = 

(note that 
-t 
f 

-0;+0 

t 

2 2 
(t-µ ) 

t 
2 2 

(t-µ ) 

-t -t 
(f+O·+O + f-0·+0) , , 

-t -t 
(f+O·+O - f-0 · +0) 

} , 

"'t - s 
Working out the crossing matrix connecting f to f , we find 

fs 
+-;00 

-s 
f++·OO , 

2 2 
-2s (s-4µ ) -2s(s -4µ ) 

t t 

-s/2 s/2 

'ft(+) 
+0;+0 

""t( -) 
f+O;+O 

(A.8) 

(A.9) 

For this matrix, _ the procedure of Equations (II .21-23) gives the 

condition 

r-t -t J 
t lf+O;+O + f -O;+o· -t f -f [

-t -t 1 
+0;+0 - 0;+0 

(A.10) 

at t = O. As usual this relation can be satisfied either by separate 

zeros in both parity-conserving amplitudes, or by conspiracy between 

them. 
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APPENDIX B 

Crossing Relations in the Forward Direction 
For Unequal Mass Reactions 

The Trueman-Wick9) crossing relations between t-channel and 

s-channel helicity amplitudes may be put in the form2 ) 

= 

(B .1) 

where 
2 m .Jcp(s, t) 2 m .Jep(s, t) 

sin x 
a sin x 

c = = a t s c t s 
ab ac cd ac 

(B .2) 

2 ~ .Jcp (s, t) 2 md.Jcp (s,t) 
sin ~ = sin xd = 

tab sbd tcd sbd 

(B .3) 

s .. 
1.J 

<p (s,t) 

(B .4) 
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and ~ vanishes on the boundary of the physical region. 

For those cases where the masses are unequal in either the 

final or the initial state of the t-channel, ~ = 0 does not coincide 

with t = 0 at finite s. At ~ = O, therefore, the sines of all the 

crossing angles vanish; hence, these angles must assume the values 0 

or n, When these values are substituted into the crossing matrix, it 

is easily seen that each s-channel helicity amplitude crosses to only 

one t-channel amplitude along the curve ~ = o, and that this crossing 

is such that each helicity index in the amplitude either remains the 

same or changes sign. 

It has been shown by Shepard
69 ) that a) for the particles at 

a t-channel vertex connecting unequal non-zero masses, both helicities 

flip (don't flip) if the mass of the particle whose line is reversed 

under crossing is less (greater) than the mass of the uncrossed 

particle; b) at a vertex connecting equal non-zero masses, both 

helicities flip (don't flip) if (for the unequal mass pair at the 

other vertex) the mass of the particle which gets crossed is greater 

(less) than the mass of the uncrossed particle. Hence for the 

s-channel reactions nN -~ VN and nN ~ Vb. the crossing relations along 

the curve ~ = 0 take the form 

ft 
co; ab 

= ± fs 
-ca; ob 

(B.5) 
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APPENDIX C 

Kinematic Singularities and External Photons 

The K listed in Table V.l were obtained by taking the compa-

rable f a ctors from the amplitudes for nB ~ VB and forming lim K • 
"\r ~ 0 

Note that two of the K in Table I contain a factor (t-µ
2

) and the 

other two do not. 

Study o f the explicit crossing matrix for photoproduction 

evaluated directly at m = O, on the other hand, gives a factor 
y 

(t-µ
2

) in the K for all f our helicity amplitudes. An analogous dis-

crepancy has been found by Horn
67 ) in the reaction yy ~ nn. Thus the 

determina tion of kinematic singularities from crossing matrix consider-

ations must be re-examined when one or more of the external particles 

has zero mass. 

In order to decide which prescription for K is more suitable 

the limit as ~ ~ 0 of K calculated from the crossing matrix for 

~ ~ O, or K calculated directly from the crossing matrix for ~ = O -­

let us turn to the reggeization of pion ex change. If we reggeize 

parity-conserving helicity amplitudes in the manner discussed in 

Chapter 2, the dynamical pion . pole contributes only to the particular 

parity-conserving amplitude 

-t 
fOl · .1. i 

' 2 2 
= ~ (2J+l) bJ-(t) p(l,l)(cos et) • 

J-1 
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Because reggeization of P(l,l)(x) leads to a term proportional to 
J-1 

0:-1 as , the contribution of pion trajectory exchange to amplitudes 

ft d ft assumes the form 
Ol·l 1 an 01·-l - l 

' 2 2 ' 2 2 

ft ~ (sin et/2)(cos 
Ol;A.lA.l 

e I 2 ) J--;-;:;. 
t .ft 

y(t) O:sa -l (l+e-ina) 

sin no: 

where we have inserted K(t) from Table V.l. As first noticed by 

Zweig, lO) the pion pole in this expression emerges in a curious way. 

The dynamical contribution is proportional to a /sin n a , which 
1( 1( 

contains no pole at ari: = O. However, the kinematic factor 

introduces a pole at t 

2 
cos et 

2 
= µ because 

2 2 2 -1 -2 
= t [ 2 s + t - 2M - µ ) ( t -4M

2
) ( t -µ 

2
) 

Thus the pion pole arises kinematically when the K of Table V.l is 

used. 

The alternative K, obtained by working directly with the 

crossing matrix at m = O, has an additional factor t-µ
2 

y 
If this K 

were used in the above formalism, it would cancel the t=µ
2 

pole from 

the half-angle factors, and the resulting amplitude would have no 

pion pole. This would contradict gauge invariant perturbation theory, 

where ft does have a pion pole, and the experimental observation that 

such a pole is necessary to fit charged photoproduction data. Hence, 
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we feel that the K listed in Table V.l are to be preferred. 71 ). 

When the kinematic factor listed in Table V.l is used for 

J+l 2 
a non-pion P = (-1) exchange, a spurious pole at t = µ will ap-

·pear. Residues of these exchanges should include a dynamic zero of 
2 

form q.K -- (t-µ ) t 1 th" 1 72> 
2 

o cance is po e. 
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