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ABSTRACT

Combinatorial configurations known as t-designs are studied.
These are pairs (B,[I), where each element of B is a k-subset of [,
and each t-design occurs in exactly ) elements of B, for some fixed
integers k and ). A theory of internal structure of t-designs is de-
veloped, and it is shown that any t-design can be decomposed in a
natural fashion into a sequence of '""simple' subdesigns, The theory is
quite similar to the analysis of a group with respect to its normal sub-
groups, quotient groups, and homomorphisms. The analogous concepts
of normal subdesigns, quotient designs, and design homomorphisms are
all defined and used.

This structure theory is then applied to the class of t-designs
whose automorphism groups are transitive on sets of t points, It is
shownl that if G is a permutation group transitive on sets of t letters
and § is any set of letters, then the images of § under G form a t-
design whose parameters may be calculated from the group G. Such
groups are discussed, especially for the case t = 2, and the normal
structure of such designs is considered. Theorem 2, 2, 12 gives nec-
essary and sufficient conditions for a t-design to be simple, purely in
terms of the automorphism group of the design. Some constructions
are given.

Finally, 2-designs with k= 3 and ) = 2 are considered in
detail, These designs are first considered in general, with examples

illustrating some of the configurations which can arise. Then an
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attempt is made to classify all such designs with an automorphism
group transitive on pairs of points. Many cases are eliminated or re-
duced to combinations of Steiner triple systems., In the remaining

cases, the simple designs are determined to consist of one infinite

class and one exceptional case.
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INTRODUC TION

Combinatorial configurations known as t-designs are cur-
rently of great interest in combinatorial analysis. Here a t-design is
defined to be a pair T = (B, lI), where Il is any finite set, and B is
a set of subsets of II, with the two properties

1) Each element of B contains k elements of [I for some
fixed integer k.

2) Each set of t elements of II lies in A elements of B for

some fixed integer A > 0.

The elements of Il are called '"points, ' and the elements of B are
called "blocks.' For t=2, a t-design is a balanced incomplete block
design, the subject of much study. The most important parameters of
a t-design are consistently called b, v, r, k, A where b is the number
of blocks, v is the number of points, r is the number of blocks in
which each point occurs, and k and A are the numbers referred to in
1) and 2). An automorphism of a block design is a permutation on II
and a permutation on B, which preserves incidence of points on blocks,
The set of elements in the image of a block is then the set of images of
the elements in the block. The set of automorphisms of a t-design
clearly form a group, with permutation multiplication as operation.
Much of the research accomplished in t-designs to this date
has been directed toward questions of existence and construction of
t-designs with various parameters, and to a lesser degree toward the

various groups which arise as automorphism groups of t-designs. Here



we are concerned with the internal structures of t-designs and their
relations with automorphism groups.

Chapter I outlines a theory of decompositions of t-designs
into normal subdesigns and quotient designs,which is in many ways
analogous to the theory of normal subgroups and quotient groups of groups.
The results are developed via '""regular block homomorphisms'" from
one t-design onto another, which are mappings of designs which pre-
serve incidence and also have the property that the inverse image of
any block in the image design is the set of blocks of a subdesign of the
range design. For a fixed regular block homomorphism, the set of sub-
designs which arise in this manner have disjoint block sets which ex-
haust the block set of the range design, and this property is used to
define a set of normal subdesigns. Given a set of normal subdesigns,
the point sets of the normal subdesigns form the blocks of another t-
design on the same points, called the quotient design. Itis then shown
that every regular block homomorphic image of a t-design is the quo-
tient design produced from the set of normal subdesigns which arise as
inverse images under the homomorphism. Simple designs are defined
as f-designs with no non-trivial normal subdesigns, and the results
allow the construction of '""composition series' for a t-design, the con-
cepts again being entirely analogous to those of group theory. The
hypotheses can be weakened to produce quasi-normal subdesigns, and
there are strongly simple t-designs, which have no quasi-normal sub-
designs. These also play a role in the construction of composition
series for a t-design., Some examples of the application of the theory

are given, including two 2-designs with identical parameters, each



having a doubly transitive automorphism group (on points), yet which
are non-isomorphic because one has a normal subdesign and the other
is simple.

Chapter II applies this theory to the special cases where the
automorphism group of a t-design is transitive on sets of t points of
the design. First, general permutation groups with this property are
discussed, especially in the case t=2. A necessary and sufficient
condition for such a group to be t-ply transitive is given. Then it is
shown that any permutation group transitive on sets of t points acting
upon any subset of points yields a t-design, and the parameters of that
t-design are computed from the structure of the given group. Finally,
the ""normal structure'" of t-designs admitting such groups is investi-
gated., The result of most value is Theorem 2. 2, 12, which character-
izes simple designs purely in terms of the structure of their automor-
phism groups. Some t-designs are constructed from known groups.

In Chapter III, the results of Chapters I and IT are applied to
the 2-designs with k=3 and A =2. Such designs are studied in general,
with examples showing some of the various configurations which can
arise, but most attention is spent on those designs whose automorphism
groups are transitive on pairs of points., Various cases are shown to
be combinations of Steiner triple systems (block designs with k=3 and
A =1), and the remaining cases are analyzed in terms of their normal
structure, The major result is the demonstration that any simple de-
sign not a composition of Steiner triple systems either can be con-
structed from a finite near-field of order p or p2 (where p=1, p=2

(mod 3), respectively), or is the unique design with 6 points and
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automorphism group isomorphic to LF(2,5). In the latter case, the
further assumption that the automorphism group is doubly primitive is
required.

The notations used are essentially those of Wielandt [8]:
sets are represented by capital Greek letters, functions and permuta-
tions by lower case Greek letters, points by numerals ror lower case
Latin letters. Structures, such as groups or designs, are represented
by capital Latin letters, If G is a permutation group on the set Q,

G

1: 2‘9 “« e e ) t, 1-‘ 2
and GT 1. 2 p are respectively the subgroups fixing the t points

1, 2, ..., tpoints of O, and T a subset of (, then G

1, 2, ..., t; the subgroup sending the set T' into itself.(not necessarily

fixing it pointwise), and the subgroup fixing the points 1, 2, ..., t and

sending the set T' into itself. If = is a collection of orbits of the group
G, then GE, is the permutation representation of G on=. If & is any
set or group, [@I means the number of elements in that set or group.

I T is a t-design, we write G(T) for the automorphism group of T.

We say that G is transitive, primitive, etc., if G has that property

when represented as a permutation group on T(T).



CHAPTER 1

THE NORMAL STRUCTURE OF t-DESIGNS

1.1, Homomorphism of t-designs

Let T T2 be two t-designs.

1!
Definition 1, 1, 1. A mapping a: H(Tl) - H(TZ) and B(Tl)
- B(TZ) of the points and blocks of a t-design ’I‘1 into the points and

blocks respectively of a t-design T2 is called a homomorphism if

whenever a is a point of the block & of Tl’ then a(a) is a point of the

block o (&) of TZ'

This definition appears to be too broad to be of any practical

use at this time. Of more interest are block homomorphisms and reg-

ular block homomorphisms:

Definition 1. 1. 2. A homomorphism ¢ from T1 into TZ is

called a block homomorphism if (1) V(Tl) = v(Tz), (2) of H(Tl))

= I(T and (3) a(B(T,)) = B(T

2) 3 2)-

In short, a homomorphism is a block homomorphism if it is
1 - 1 onto for points and onto for blocks, Under these conditions, we
may rewrite the blocks of 'I‘2 using the points of Tl’ so that o is in
fact the identity map on the points. From now on, we assume that this
has been done, so that ﬂ(Tl) = H(TZ) and oa(a) = 2 for any point a of

Tl' "_[‘1 and T?. are then t-designs on the same set of points, and it follows



directly from Definition 1.1, 1 that the blocks of T2 are set unions of

" blocks of Tl'

Definition 1. 1. 3. A block homomorphism ¢ from Tl onto

, is called regular if for each t-set AC H(Tz) and each two blocks &

i 1’
éz of T2 which contain A, the sets q-l(@ 1), cx,-l(@z) contain the same

number of blocks containing A.

An extremely important class of regular block homomor-
phisms is the block homomorphisms mapping t-designs onto other t-
designs with X\ = 1, In these cases the condition of Definition 1. 1. 3 is
satisfied wvacuously. However, to characterize regular block homo-

morphisms fully, we have

Proposition 1, 1. 4, Let cx,:T1 - Tz be a regular block

homomorphism, and let @, be a block of T,. Then (a_l(éo), @O) is

0 2

a subdesign of T. with parameters

1

b

b(Tl)/b(T v = k(TZ) r = r(Tl) [r(T

2! )

k

k(Tl) i B x(Tl) /X(TZ).

Conversely, suppose o(,:Tl - TZ is a block homomorphism and there
exists an integer A' = A'(a) such that for any block & € B(TZ),
(a-l(é), ) is a sub-t-design of T, with A =\'. Then g is regular.

Proof: Since o is a block homomorphism, each point of

each block in a-l(QO) lies on &,, hence a-l(éo) is a set of k(T ,)-sets
from ¢ ,. Let A be a t-setfrom ¢ ., andlet &, &,, ..., & (where
0 0 =2 s

5 = MTZ)-D be the other blocks of 'I‘2 containing A. The sets
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a-l(c'pi) are pairwise disjoint, since g is a function; and since ¢ is
regular, each set ca-l("ﬁi) contains equally many blocks containing A.
But then this number of blocks can only be }‘(Tl) /)‘(TZ)’ hence there
are )‘(Tl) /)‘(TZ) blocks in a-l(io) containing A, and (a-l(QO), @0)
is a subdesign of T, Calculation of the other parameters proceeds
identically.

For the converse, let A be any t-set of H(Tz) and suppose
AE @0, Agél, where gso and @1 are blocks of T2. By hypothesis,
(a—l(éo), %, and (a-l(g)l), §,) are subdesigns of T, with ) = A" for
each, i,e,, there are ) ' blocks in q-l(éo) which contain A, also )\'-
blocks in a—l(Q 1) which contain A, and g is then regular,

Note that here the subdesigns of T1 of the form <a—l(§)’ 3
(where  runs over the set of blc;cks of TZ) comprise a set of subdesigns

with the same parameters v, k, )}, whose block sets partition B(Tl)'

Definition 1, 1. 5. A subdesign T' of a t-design T is called

quasi-complete if B(T') € B(T) and II(T') c TI(T). Two subdesigns of a

t-design are called codesigns if they have the same parameters v, k, ).

A quasi-complete subdesign T' of T is called quasi-normal

if there is a set of codesigns including T' whose block sets partition
B(T), and denoted by T'< T. A quasi-complete subdesign T' of T is
called complete if A(T') = A(T). A quasi-normal subdesign T' of T is
called normal if I',\(T') = 3(T), and denoted by T'<« T.

Thus Proposition 1, 1. 4 merely states that a block homo-

morphism a:Tl - TZ is regular if and only if (a-l(m, 3) is a



quasi-normal subdesign of T1 for every % € B(Tz). The set of co-
designs {(a-l(é), @)]@ € B(TZ)} constructed here is called the kernel

of .

Corollary 1.1, 6. If a:T; » T, is a block homomorphism

and MTZ) = 1, then for any block & € B(TZ), TV = (a-l(ﬁ), &) is a nor-

mal subdesign of Tl'

Proof: From l.1.4, T'is quasi-normal. Since A(T,) = I,

if A is any t-set of &, every block of T. which contains A must map

1
onto &, This means that cx,-l(§) has MTI) elements which contain A,

so T! qu.

There are evenstronger relations between homomorphisms

and quasi-normal subdesigns, as will be seen next.

1.2, Factor Designs of t-designs

Proposition 1, 2,1, Let T be a t-design and suppose T S

where Tl’ TZ’ o Ts = T' are codesigns whose block sets partition

B(T). Then the pair

£ - m . S
T = ({WT)Y o, WM

is a t-design with parameters

b = s

v = v(T)

k = v(T"

A= MT)/ATYH .
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Proof: {H(Ti) }]_11 is clearly a set of s v(T') - subsets of
I{T), which has v(T) points. Let A be a t-set of [[(T). A lies in
A(T) blocks of T, but each suchblock must lie in a unique codesign T.,
Since each such Tj is a t-design and a codesign of T', each such T,
has A(T') blocks containing A. Therefore there are A(T)/A(T') co-
designs Tj containing A, i.e., A lies in A(T)/A(T") sets H(Ti).

The design T* constructed in Proposition 1, 2, 1 is called the

factor design T/T' by the codesigns T., T

17 Tor eees T . A quasi-normal

subdesign can have more than one different set of such codesigns T

1

. Ts' so in general the factor design will depend upon the particular

choice of codesigns,

Proposition 1. 2.2, I T* is the factor design T/T' by the

codesigns {Tl, cees T }, then there is a regular block homomorphism

(called canonical) g: T - T*, with kernel {'I‘l, 2 uD TS}.

Proof: Since the sets B(Ti) partition B(T), each block & in
B(T) belongs to exactly one B(Ti(q))) , so the map p:¢ - H(Ti(é)) is well-

defined and easily seen to be the desired regular block homomorphism,

Theorem 1, 2.3. I g:T ~ T is a regular block homomor -

% .

phism with kernel {Tl, 2% @ ¥ TS} , thenfor any j (1<j<s), T

identical with T/Tj by the codesigns {Tl,. g Ts} .

Proof: Let 3 be the canonical regular block homomorphism
from T onto T/'I‘j constructed in Proposition 1. 2, 2, Then it is easily

verified that for & € B(T), B(3 = a(d), so since both B and @ are onto,
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the blocks of T* and T/Tj are identical. By hypothesis the point sets
are identical, hence the two designs are the same.

Thus every regular block homomorphic image of a t-design
T is the factor design of T by the kernel of the regular block homo-
morphism, and every regular block homomorphism is simply a mapping
of blocks onto codesign point sets, The set of quasi-normal subdesigns
of a t-design thus gives complete information about the various regular
block homomorphic images possible, énd conversely. For further in-

formation on these two sets, we have

Proposition 1. 2,4, If o:T - T* is a regular block homomor-

phism, then for any quasi-complete (complete) subdesign Tl of T*,
a-l(Tl) = (a-l(B(Tl), H(Tl)) is a quasi-complete (complete) subdesign
of T with A =A(T)- MT)/MTH. ¥ T ST (T;< TY, then

a (T &7 @ Ty AT,

Proof: Consider B(T*) as the point sets of the codesigns in

the kernel of ¢ (Theorem 1. 2, 3). B(Tl) is then the point sets of a sub-
collection of codesigns of the kernel, and B' = a_l(B(Tl)) is simply the
collection of blocks in that subcollection of codesigns. Let A be a t-set
of H(Tl)' A then lies on MTl) blocks of Tl’ but since ¢ is regular,

for each such block & of T a-l(ﬁ) has A(T)/A(T*) blocks containing

1’
A (Proposition 1. 1, 4), The sets a_l(é) (where & runs over the blocks

of T, containing A) are disjoint, hence A lies on \(T)- )L(Tl) ™

blocks of B!, u-l(Tl) is then quasi-complete in T. If T1 is com-
plete in T*, then A(T,) = AMTH, so x(q'l(Tl)) = A(T) and a'l(Tl) is

complete in T, If T = T T, has a set of codesigns {Tl, ce., T 1

1 s
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whose block sets partition B(T*). But then the designs {a_l(Tl), i o
.o s q-l(Ts)} are a set of codesigns of o;_l(Tl) whose block sets par=-
tition B(T), hence a‘l(Tl)Z: T. ¥ T, < T*, then T, is complete in
T*, so from above a-l(’I‘l) is complete in T, hence normal in T,
1.3. Composition Series and Examples

These results allow the construction of composition series
for t-designs, which are helpful in constructions. We say a t-design

is simple if it has no non-trivial normal subdesigns, strongly simple

if it has no non-trivial quasi-normal subdesigns. For any block & of
a t-design T, the t-design T' = ({8}, &) is, of course, always quasi-
normal in T, but T/T' is simply T again by direct computation, and
so such one-block designs are considered trivial., A simple design
with A = 1 is strongly simple, also, because a quasi-normal sub-
design would also have )\ = 1.

Given a t-design T, let T1 =T, and for i> 1, define Ti
recursively as a maximal normal subdesign of Ti-l’ until some T

is simple, so

Proposition 1. 2. 4 and the maximality of Tj in Tj—l imply the sim-
plicity of Tj/Tj+1 for = 1; 2, 3, :s4s m-1; From Proposition 1.2, 1,
)\(Tj/Tj_i_l) = X(TJ.) /X(Tj+1) =1, so from the remark above, Tj/Tj+l is

also strongly simple. Tm is simple by construction, but not neces-

sarily strongly simple, so we may continue, letting Trn+i be a
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maximal quasi-normal subdesign of Tm 1 for 1> 0, until some

4~

strongly simple subdesign Tm is constructed, completing a compo-~

+q

sition series for T:

T = T1;>T2f>...t> TmDTm+1[>...l> Tm+q )

Again Proposition 1, 2. 4 and the maximality of Tm+i in Tm+i-l can

be used, here to show directly that Tm+i-l /Tm is strongly simple

+i
for i=1, 2, ..., 4. We have shown
1) Ti/Ti+1-is strongly simple for 1<i<m+q-1,

2) 'I‘m is a minimal normal and simple subdesign,

3) Tm+q is a minimal quasi-normal and strongly simple
subdesign,
4) MTi/Ti+1) 2 4 for lf£idmwl,

5) 1<x(Tj/Tj+1)|x(T) for m< j<m+q-1,

6) AT__, )|\,

m-+q
N KT, /T, ;) = v(T, ) for 1<i<m+q-1.

These conditions suggest the importance of normal and quasi-

normal subdesigns and imply that to construct all t-designs with a

given k and ), it is sufficient:

1) to know all simple designs with the given k and )\, and all

simple designs with A = 1 or
1) to comstruct all strongly simple designs with )A' dividing
the given A,
and 2) to be able to solve the extension problem for t-designs,

i, e., given two t-designs Tl ‘and T2 such that
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I(T,) € B(T,), conmstruct all designs T such that T 3T

1
and T/T1 = T, for some set of codesigns of T
Neither of problems 1) or 1') have been solved except under

very special circumstances, but 2) is solved completely by the follow-

ing generalization of a result of Hanani:

Theorem 1.3.1, Let T, and T, be any two t-designs such

1 2
. _ ba o :
I(T)) € B(T,). Thenif B(T,) = {3;} % (say M(T;) =2;), T) =T, and

for each i > 1 Ti‘ is a t-design with the same parameters v, k, A as

Tl’ written on the points of @i, then

T = (B(T}) UB(T,) UB(T) U... U B(T]'OZ), I(T,)>

is a t-design such that a) T, 3T, and b) T/T1 by the codesigns {T;}

is TZ' Conversely, any t-design T with properties a) and b) can be

constructed in this way.

Proof: Let A be a t-setof IT) =1(T A lies on A(T

s )
blocks of TZ’ and for each such block Qj, A lies on MTZ) blocks of

TJ'., each of which is a distinct block of T, hence A lies on

}‘(Tl) . MTZ) = A(T) blocks of T, hence T is a t-design. By con-
struction, {Ti} is a set of codesigns whose block sets partition B(T),
hence T, S T. By definition (see Proposition 1. 2. 1), T/T1 by the
codesigns {T;}l;zl is <{H(Ti)}?=21’ (DY But I{T) = H(TZ) by con-

struction, also H(Ti) = @i by construction, hence

ks
T/T, = ({@i}i_l, MLy = Ty,
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Conversely, suppose there is a t-design T* such that

T1 2 T* and T*/T1 =T, Letgp be the canonical regular block homo-
morphism from T* onto T*/T1 (Proposition 1. 2. 2). Since T*/Tl
= T,, B maps T* onto T,. Let B(T,) = {@i}l;zl, and set
T; = (5_1@1), qwi) (see Proposition 1, 1, 4). Then the construction of the
first part of the argument yields T::= again,

In particular, the problem of "extending'' T

by T, can al-

1 2
ways be solved in at least one way if H(Tl) € B(Tz), if only by letting
each T; be isomorphic to Tl, only written on the points of some other
block of TZ‘ On the other hand, the Ti' need not be isomorphic to Tl’
but since each T; is itself quasi-normal in the constructed design, this
means that the composition series for t-designs are not unique. For

example, if T; is not isomorphic to T‘; for some i and j, then the

design T would have the two non-equivalent series

P T
P T

The set of composition series is, however, an isomorphic
invariant, and this fact can be used to distinguish between non-
isomorphic t-designs with identical parameters. For example, Figure
la shows the blockls of a 2-design D with parameters v = 13, b = 52,

r =12, k=3, A\ = 2. The blocks on each line of the figure form a sub-
design D4 with b=v =4, k=1 =3, A =2, hence a normal subdesign,
since the subdesigns of the various lines are all codesigns. The quo-
tient design is shown in Figure lb. It is isomorphic to the projective

plane of order 3, hence we have the composition series for  D:
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DD D/D4,\u, PG(2, 3)

4’
(Each of D4, PG(2,3) is strongly simple).

Figure 2 shows the blocks of another 2-design, D', with the
same parameters, This design is simple, as will be shown in general
later, but not strongly simple, as the blocks in the two columns on the
left form a Steiner triple system S with parameters b = 26, v = 13,
r=6, A =1, as do the blocks in the two columns on the right., The quo-
tient design is the 2-design T with 13 points and two identical blocks

consisting of all 13 points each:

D't s D'/s =T

The two designs D and D' are then clearly nonisomorphic.



abd
bce
cdf
deg
aef
big
cgh
dhi
eij
fik
agk
bhl
aci

abj
bck
cdl
dem
aeh
bfi
cgj
dhk
eil
fim
agl
bhm
acm

aci
bdf
cek
dfl
egm
ftha
gib
hjc
ikd
jle
kmf
lag
mbh
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adj bdj
bek cek
cfl dfl
dgm egm
afh efh
bgi fgi
chj ghj
dik hik
ejl ijl
fkm jkm
akl gkl
blm hlm
aim cim
la
Figure 1
bfe dlj
cgf emk
dhg fal
eih gbm
fi1 hca
glkj idb
hlk jec
iml kfd
jam Ige
kba mhif
lcb aig
mdc bjh
aed cki

Figure 2

abdj
bcek
cdfl
degm
aefh
aefh
cghj
dhik
eijl
fikm
agkl
bhlm
acim

hkg
ilh
jmi
kaj
Ibk
mecl
adm
bea
cib
dgc
ehd
fie
git
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CHAPTER I

t-PLY HOMOGENEOUS GROUPS AND t-DESIGNS

There is a class of permutation groups closely associated
with certain t-designs. These are the permutation groups whose in-
duced representation on unordered t-sets is transitive, If a t-design T
admits such a group of automorphisms, its structure becomes much
more regular, and in particular the normal subdesigns of T can be
determined solely by examination of the group. Other relations exist

between the design and various subgroups of the group.

2,1. t-ply Homogeneous Groups
Let G be a group of permutations of the set (). Then for

3 cQ and g € G, we write
3% = {x*|x €3},

so G acts as a permutation group on the unordered k-sets of Q for any
k< IOI = n, If some union of orbits of the representation of G on
k-sets forms a t-design, then G is by definition an automorphism group

of that design,

Definition 2. 1.1, G is called t-ply homogeneous if for any

two t-sets of (3, say &, and @

1
a
@1 = &,. The subgroup sending ¢ into itself is called GTQ :

29 there exists an o € G such that
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Clearly any t-ply transitive group'is t-ply homogeneous, but
there do exist groups which are t-ply homogeneous but not t-ply tran-

sitive, for example, the group on seven letters generated by

% (abcdefyg)

y = (a)(bce)(dgf) .

Such groups are called strictly t-ply homogeneous,

t-ply homogeneous groups have been studied for some time,
e, g.; in [2]. D. R, Hughes [7] has shown that a t-ply homogeneous
group is (t-1)-ply transitive if the group is of sufficiently large degree.
A relation between t-ply homogeneous groups and t-ply transitive groups

is given by

Proposition 2, 1. 2, Let G be t-ply homogeneous on the set

Q. Then G is t-ply transitive if and only if for some t-set B C Q ,

GB A SB, the symmetric group on B,

Proof: The necessity of the condition is obvious. To show

its sufficiency, let B = {b.l}?: 1" We shall show that for any ordered
1=

t-set C = {ci}F 1 there is an o € G such that b(fc = gy for 1<i<t,
i= i - =
Since G is t-ply homogeneous, there is a B € G such that BP - C. Let
b -
bi"' = c?lt . By hypothesis, then, there is a vy € GB such that b% = bi;/
ks 1 1

o
and if ¢ is set equal to vB, bi = ¢y for 1<i<t, and G is t-ply

transitive.

For t = 2, the condition is readily applied:
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Corollary 2. 1. 3. A 2-ply homogeneous group is 2-ply

transitive if and only if it has even order,

Proof: If G has even order, there is an involution g € G:

g = {2:Pb): e
and then

{a,b} _ _ a0l
G{a’b} = {I, (a,b})} = 8 "

Y
so G is double\':‘ transitive,
Conversely, if G is double transitive of degree n, the even
number n(n-1) divides the order of G, since it is the index of the

stabilizer of two points.

Proposition 2. 1. 4, If the group G of degree n is strictly

2-ply homogeneous on (), then
i) G has rank 3
ii) G 1is primitive
iii) G, has orbits of length 1, Bl Bl
1 2 2
iv) n = 3 (4)
v) G is solvable

. - - 2 o
vi) n is a prime power p

vii) G contains a regular normal minimal elementary
Abelian subgroup N.

Conversely, any rank 3 group of odd order is strictly 2-ply homogeneous,

Proof: i) If i and j are any two distinct points of Q and a

is a third point, there exists ¢ € C‘z:{a,i]OL = {a,j} K a®¥=a, =i,
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set B =q. If a% = 3 i% = a, set B = az. Then B takes i into j and
G is transitive. If 1 € Q, we compute the orbits of Gl' For 2 € (-
{1}, set D= ZGl. T # 0-{ 1}, because G is not doubly transitive, so
we can picka j€Q-{1}-T. I TU {1} U {ij} = q, G, has those three

sets as orbits so G is of rank 3, Otherwise, there is a further point
k in Q-{1,j}-T". We wish to show the existence of an element fixing

l and carrying j into k, so G, will have the three orbits 1, T, le.

k € T, so there is no element of form

I 2y s
1 k, )

in G, hence an element taking (1, 2) into (1, k) must be of form

1 2, e e
a -
Vol g, Lo

Arguing identically on j, we get the element

1 2, .o

3 T

- L 5y enl
e

L S T

is in Gl’ hence G has rank 3.

Q2

in G, and

ii) A rank 3 group of odd order is primitive (Higman, [6]).
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iii) 16.5 of Wielandt, [8] implies the orbits of G, other than
{1} have the same length.

iv) G is transitive on unordered pairs. There are n(n-1)/2
of these. n and this number must divide ]G[ » hence both are odd, and
n =3 (mod 4).

v) Feit-Thompson.

vi) 11.5 of Wielandt, [8].

vii) 11.5 of Wielandt, [8].

Conversely, suppose G is a rank 3 group of odd order, 16,5
of Wielandt implies that the lengths of the orbits of GO are 1,(n-1)/2,
(n-1)/2 (where n is the degree of G), 3.2 of Wielandt implies that the
length of the orbit of {0,1} by G is [G:G{O, 1}] There is no element

{0,1}= “o,1° {0,137
= [C}:G0 1] = [G:GOJ- [GO:GO 1] =n- E%-l-, whichever orbitof G. 1

of G interchanging 0 and 1, so G y G hence [G:G

0
lies in, Hence G carries {0,1} into n(n-1)/2 different unordered
pairs. Since there are only n(n-1)/2 unordered pairs in all, G is 2-

ply homogeneous, and strictly so because |G| is odd.

There are many such groups, for example: Let G be the
sharply doubly transitive group of linear substitutions z - az + b (a £ 0)
in a near-field K, where K is of order pr = 3 (4). Then G has order
pr(pr-l) = 2 (4). This is twice an odd number, so G has a subgroup
G* of index 2, and G* is strictly (sharply) 2-ply homogeneous on the

points of K.



22
Z. 2. t-designs with t-ply Homogeneous Groups

Theorem 2, 2,1. Let G be a t-ply homogeneous permuta-

tion group on . Then for any ¢ € (, the pair

AT <{§’a}a e G Q)

is a t-design admitting G as an automorphism group with parameters

<
It

ol B =&G L k= e,

k k lG{l 2. t}l
= [G:G_1, 5 ITEE LIy
7 Lo ] A (t) X

H
1]

Conversely, any t-design T' admitting G as an automorphism group

is a union of designs of this form,

Proof: By definition of G as a permutation group, {@a} is
a set of k-subsets of (. [G:G@] is the length of the orbit of % under
G, hence the number of distinct sets 3% is [C}:G(§ i

Let A be a t-setof . We wish to count the number of dis-
tinct sets 3% such that Ac 8%. For any such set 3%, (@0‘)B = 3% for
any B € GQG‘ = Ct_l G@ o, so there are |G@| group elements for each
such set 3%,

We no*\x‘I count the number of group elements g such that

AE @a. But for each such ¢, AOL-1 C %, so we may count the number

t

and the image of A can be any one of them. Furthermore, for each

of group elements g such that A® c 5. But there are (k) t-sets of 3,

possible image, there are [GAI = IG{I 2 t}l group elements sending

3e v ey
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k
A into that image. Hence there are (t) . |G{1’ 2,... ,t]l group ele~

ments o in all with A C @G‘, or

(k)lG{l,z,...,t}l

: |Gl

such distinct sets 8%, Thus T is a t-design, and the value for r fol-
lows by similar computation.

For the converse, suppose G has orbits I"l, & o3 51 I‘u on
the blocks of T'. Picking arbitrary blocks B 855 -0ns & such that
@i € 1"i for 1 < i<wu, the first statement of the theorem shows that
Ti = (1“1, Q) must be a subdesign (quasi-complete) of T', and since
I"i n I"j =g if idj, T'= (liJ I‘i, Q) by construction,

The t-design constructed in Theorem 2. 2.1 is called the
action of G on &, written @G. Theorem 2. 2. 1 has many applications
to t-designs admitting such groups of automorphisms., For the re-
mainder of this chapter, let T be a t-design, and let G be a t-ply
homogeneous group of automorphisms of T,

One immediate and useful result is

¢
Theorem 2.2.2, If A(T) =1 and & is any block, then G_
== Q

is t-ply homogeneous.

Proof: Let A and B be any two t-sets of 8. There is an

o« € G such that A% = B, Alpha must then send all blocks containing A
into blocks containing B. DBut since X = 1, & is the only block contain-
ing A, also the only block containing B. Therefore g must send &

into @, so q € G@’ which is then t-ply homogeneous,
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The normal structure of t-designs with such groups is readily

determined. The following hold for any t-design:

Lemma 2, 2, 3. Let T1 and T, be two complete subdesigns

of T. Then T'= (B(T;)N B(T,), I(T,) NI(T,)) is either a trivial

pair with no blocks and less than t points, or a complete subdesign of

T.

Proof: If [I = H(Tl) n I'I(Tz) has t or more points, there is

a t-set ACI(T,) NI(T Since T; and T, are both complete, the

2)'

AM(T) blocks of T containing A are all in both T1 and TZ’ so there are
A(T) blocks in B(Tl) N B(TZ) = B. This also holds for any t-setin II,

so T' is a complete subdesign,

By simple induction and the associativity of intersections,
Lemma 2. 2, 3 can be extended to any finite number of complete subde-
signs, so for any set of complete subdesigns Tl’ TZ’ s 5iE 3 Ti’ Q Ti
= (Q B(Ti), QH(T1)>’ is always either a complete subdesign

or no blocks and less than t points.

Definition 2. 2, 4, For any t-set ACI(T), let Tl(A),

TZ(A)’ Sp— Tn(A) be the complete subdesigns of T such that

Ac H(Ti(A) ). Then the subdesign generated by A is written T(A) and

defined to be 0 Ti(A).
i

This is, of course, always a complete subdesign, because
Ach H(Tl(A) ), which then has at least t-points. Returning now to
i

the special case of a t-design with t-ply homogeneous group, the
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following results show the importance of the subdesigns of the form

T(A).

Proposition 2, 2. 5. For any o € G, [T(A) = T(AY, In

particular, T(A) is isomorphic to T(B) for any t-sets A, B c Ii(T).

Proof: Alpha sends every complete subdesign containing
A into one containing AOC, hence [T(A)]ag 'I‘(AG‘). By the same argu-
ment on T(A%), [T(A% 1% 1 5 T(4), or T(A%) o[T(4)]%, hence
T(AY) = [T(A)]%. To show the isomorphism of T(A) and T(B), let 3
be any automorphism sending A into B. Then [T(A)]B = T(AS) = T{(B).

and B3 is the required isomorphism.

Theorem 2, 2. 6. Let T1 be any complete subdesign of T

(or T itself). Thenfor any AC I'[(Tl), T(A) <T

1°
Proof: We shall show that the various distinct subdesigns
T(Ai) (Ai a t-set in Tl) are codesigns whose block sets partition
B(Tl)' From Proposition 2, 2, 4, they are all isomorphic, hence they
are codesigns. Their block sets obviously exhaust B(Tl). Suppose
now that B(T(A)) and B(T(B)) have a block & in common. But then
there would be a t-set C £ &, and since T(A) and T(B) are complete,
by definition T(C) € T(A) N T(B). Since T(C) is isomorphic to T(A),
also to T(B), the only possible conclusion is T(B) = T(C) = T(A), and
so if T(A) # T(B), B(T(A)) N B(T(B)) = ¢, and the block sets partition
B(Tl), and all subdésigns T(A) are normal in Tl'
Note that if A(T) = 1, T(A)=({8},&), where § is the single

block containing A. For A(T) > 1, T(A) must be non-trivial, and we

have
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Theorem 2.2.7. If A(T)>1, T is simple if and only if T

contains no non-trivial complete subdesigns,

Proof: Every normal subdesign is complete, so the condi-

tion is sufficient, Conversely, suppose T contains a non-trivial
proper complete sﬁbdesign Tl' Then for any t-set AC H(Tl), T(A)
o ’1"1 c T, so by Theorem 2.2.6, T(A) is a non-trivial normal sub-

design of T.

Theorem 2. 2,8, Each T(A) is simple.

Proof: Suppose Tl < T(A). Then MTI) = AMT(A)) = r(T).

If B is any t-setin H(Tl), T(B).c T1 by definition, and from Theorem
2,2,6, T(B) <1T1 <1 T(A)., Since T(B) is isomorphic to T(A) from
Proposition 2, 2. 5, we can only have T(B) = T1 = T(A). Therefore

every normal subdesign of T(A) is T(A), and T(A) is simple.

Theorem 2,2.9. If A(T) > 1, every simple complete sub-

design Tl o_f_ T is a T(A) and so is normal in T. In particular, if T

is simple, T = T(A) for every t-set A C II(T).

Proof: Let Al be a t-set in H(Tl). From Theorem 2. 2. 6
applied to Tl, T(Al) < Tl’ and since A(T(Al)) = MTl) = x(T) 5 1,
T(Al) is a non-trivial normal subdesign of Tl’ hence the simplicity of

T. implies that T

1 = T(Al)_

1

Given a design T, the subdesigns of the form T(A) are rel-
atively simple to construct: one simply takes all the blocks containing

A and all the points on those blocks, then continues the same process,
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using new t-sets from the new blocks to produce newer blocks, until
each t-set in the points produced already occurs )(T) times in the
blocks already found. However, the subdesigns T(A) can be found di-

rectly from examination of the automorphism group:

Theorem 2.2, 10. If Tl is a simple complete subdesign of

1) GH(TI) is t-ply homogeneous on H(Tl)’

2) G@ EGH(T]L) for any % € B(Tl)’ and

3) GAEGH(TI) for any t-set AC H(Tl).

Proof: 'I‘l is equal to T(A) for any t-set AC H(Tl). There-

fore any automorphism which sends a t-set AC I'I(Tl) into another t-set

B c H(Tl) also sends ’I‘1 = T(A) into T(B) = Tl' i.e., fixes Tl'

1) Let A, B be two t-sets in H(’I‘l). There is an o € G such

a
that A% = B, By the above argument T, = T so € G

1 1’ H(Tl). Since

A, B were chosen arbitrarily, GH(T ) must be t-ply homogeneous on
1

H(Tl)'
2) Let g € G(§ be arbitrary. Alpha then sends any t-set of
§ into another t-set of 3. Since & C H(Tl), these two t-sets are in
H(Tl), so the above argument applies to ¢ here, so g € GTI(T )" Since
1
o was chosen arbitrarily, G@ EGH(TI)'
3) Any ¢ € GA sends A into itself, so again by the above

argument, o € GH(T )
1
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Theorem 2, 2,11, Let T1 be a simple complete subdesign
= @GH(Tl).

of T. Then for each block & _o_f Tl’ ’I‘1

Proof: From Theorem 2.2.10, H=G is t-ply homo-

H(Tl)
geneous on H(Tl), hence by Theorem 2.2,1, T'= sH is a t-design

and a subdesign of T. We now calculate the parameters of T' from

Theorem 2. 2. 1.

v(T") = v(Tl) , since H is transitive on l'I(Tl).
k{TYH = k(Tl) by definition.

k |HAl i ;
AMTH = " where A is any t-setin I(T,).

| H, |

But from Theorem 2, 2, 10, HA = GA and H@ = G@, hence
Gyl
k | A
My = ()R = am =

|Gl

T!' is then a subdesign of Tl with the same parameters, hence must

be all of Tl.

These results lead to a converse of Theorem 2. 2. 10 and a

characterization of simple t-designs purely in terms of their auto-

morphism groups:

Theorem 2,2, 12, Let A be any t-set of [[(T), let & be any

block of T, and suppose A(T) > 1. Then T is simple if and only if G

contains no proper subgroup:. H such that
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i} G, =¥ ,
2
) Gy SH ,

3) H is t-ply homogeneous on the points in the t-sets AH.

Proof: If T has a proper normal subdesign T*, then T™

has a codesign T' containing & and so A. Since T' is also normal,
it is complete, therefore T(A) € T' is a proper simple complete sub-

design of T, and from Theorem 2.2,10, H=G satisfies 1),

I{T(A))

2), and 3). Conversely, suppose such an H exists. Then @H is a

subdesign by Theorem 2. 2, 1.
[T, | |Gl
A
M@H) = (1:) —_— = (1:) e A(T)

H
as before, so &  1is complete. But then T(A) < @H is a proper non-

trivial normal subdesign,

We can also relate the quotient designs of T to the group G:

Theorem 2.2.13. If T, is a simple normal subdesign of

T, then

v/, - [wrp]”

Proof: ’J'I‘1 = T(Al) for any t-set Al in H(Tl), furthermore,
all codesigns of Tl must also be of the form T(Ai)’ 1 < i < m. There-

fore,

/Ty = ((HTA))T L WT)
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But from Proposition 2, 2. 5, for every o € G and every i, [T(Ai) ]a
= T(A?'), so [H('I‘(Ai)):]CI = H(T(A?)), and G permutes the sets
H(T(Ai)). Furthermore, G is t-ply homogeneous, hence for each 1
|

there is an oy € G such that Al

I m
Thus the sets {[I(T,;)] }QEG are exactly the sets {Ii(T(A;))} 1

A;, so [MT(A))1% = MT(A)).

and T/T, = ETI(Tl)]G.

Theorem 2, 2, 14, Let T1 be a simple complete subdesign

of T. Then

G(T) < G(T/Tl).

Proof: Tl = T(A) for some t-set A, By Prbposition 2. 2:5;
any automorphism of T permutes the various sets T(Ai)’ hence from
Theorem 2, 2, 13, every automorphism of T permutes the blocks of
T/T,.

Note that this inequality may indeed be strict, because a
permutation on I[I(T) could permute the sets H(T(Ai) }, but not the
actual blocks of the subdesigns T(Ai). However, we do have that the
group of T/Tl is t-ply homogeneous, hence the previous analysis
applies to T/'I‘1 and G(T/Tl), and by continuation, the complete nor-
mal structure of T may be derived from the groups of the various

normal and quotient designs.

2.3. Some Constructions of t-designs from Known Groups
By Theorem 2. 2, 1, many t-designs can be constructed from
a given t-ply homogeneous group, but many of these will be trivial or

uninteresting, because the parameters b and A are exceedingly large by
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comparison with- v and k respectively. For example, the Mathieu
group M,, is quintuply transitive on 12 letters, and it is not difficult

to show that M is t-ply homogeneous for all t between 1 and 12,

12
except for t= 6. Thus @Mlz will be the trivial design of all ]@I-sets,
unless |§[ = 6, in which case @Mlz is one of the well-known few 5-
designs. Inspection of the formulae for b and A in Theorem 2,2, 1
yields the information that a design of the form @G will only have
reasonable parameters if G@ is quite large in G. In the extreme case

of @G being a symmetric design, we must have |G@[ = |G Such

ol-

subgroups appear to be quite scarce. For example, we have

Proposition 2, 3. 1. Let G be a 2-ply transitive permuta-

tion group on (), and suppose G has a subgroup H such that H is

2-ply transitive on an orbit T, and if 0, 1 are any two points of T,

|}:—I| = |G and G cH. Then v IQI = er + pr + 1 for some

OI 0,1

prime p and some integer r >0, k

i pr + 1, and G is isomor-

phic to a subgroup of LF(3, pr).

Proof: We apply Theorem 2. 2.1 to 1"G. Since Hc G

r’
b(]_"G) = [G:Gl_,] < [G:H] =w, 80 b< v, also from 2.2, 1,

2
N EN
GT is surely doubly transitive on T', so
2
\ (k -k)lcfo’l[ |H0’1] 1
) y < =
St NE R
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Since x>0, =1, G_.=H, b=+, and I‘G is a symmetric 2-design

i
with A = 1, otherwise known as a projective plane, Since the col-
lineation (automorphism) group of I‘G contains the doubly transitive
(on points) group G, I‘G must be Desarguesian and can be coordinat-~
ized by a finite field with pr elements for some prime p and integer
r > 0. The group of such a plane is LF(3, pr), and so G is by con-
struction isomorphic to a subgroup of LF(3, pr).

Some interesting 2-designs (balanced incomplete block de-
signs), can be constructed from known groups. A doubly primitive

group is one which is doubly transitive and whose subgroups fixing a

point are primitive on the remaining points.

Theorem 2.3.2, Let G be doubly transitive but not doubly

primitive, and let T' be a non-trivial block of G Then I“G is a

0

block design with )\l k-1.

Proof: Let 1 be a point of . It is well known (see,e. g. ,

(5], pp. 64-65) that G is transitive on I', and that G

0,T
of order k- IGO ll is a subgroup of G

0,159,

G

Hence the group G o
g P T T

0,T

is transitive on ', and from 2, 2, 1,

(k) |G{0,l}] _ k(k-l)|GO,1[ i (k-l)IGO,ll

Since GO, 1 € GI‘, 1 the denominator is an integer, and )\lk-l :



33

CHAPTER III

BLOCK DESIGNS WITH k=3 AND ) = 2

In this chapter we consider 2-designs (balanced incomplete
block designs) with k = 3, A = 2, especially with regard to their nor-
mal structures and automorphism groups. Let D be such a design,
and let G be its group of automorphisms. General equations on para-

meters of block designs yield

T = =l

- viv-1)
= S -

b

Thus necessarily v £ 2 (mod 3). Bhattacharya [ 1] has shown that

this condition is sufficient for the existence of D with v points by con-
structing such designs for v = 6t+ 4 and v = 6t for all t. Designs with
v=~6t+1 and v = 6t+ 3 can readily be constructed by taking each
block of a Steiner triple system on v points twice, Steiner triple sys-
tems with 6t + 1 and 6t + 3 points exist for all t (see Hall [4], pp.
237-241), Thus designs exist for all v # 2 (mod 3). However, with a

few exceptions, the automorphism groups of the known designs are

relatively small,

3.1, The Operafor T

Definition 3. 1. 1, The function 7, from the set of unordered

pairs of points of D into the set of pairs of points of D is defined for

a pair (a,b) (a#b) as follows:
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Let the two blocks of D containing a and b be

abc

abd .

Then 7(a,b) = (a,b)T = (c,d). If c¢c =d, we still consider (c,c) as a

"pair,' Tau is undefined on such pairs.

Theorem 3. 1.2, A permutation g of the points of D is an

automorphism of D if and only if g commutes with 7 on the unordered

pairs of points.

Proof: Let (a,b) be an arbitrary pair, lying on the two
blocks
abc

abd .

If @ is an automorphism of D, we have the two blocks

aG. bC(. CO’.

at B

hence (aL,‘b)TCL = (c,d)u‘ = (ca,da) = (aLO',bOL)’r = (a,b)or"r and o commutés
with 7 on the unordered pairs.

Conversely, suppose 7T = Taa on unordered pairs, We need
to show that if (a b ¢) is any block of D, then a® b* c* is also a block
of D. Let (a b d) be the other block of D containing a and b, and
let

a B 4

at b j
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be the two blocks of D containing a® and b*, Then

i, = (@%, %7 = (2,0)°%7 = (a,B)™ = (c,a)® = (¥, d%

b

hence either ¢® =i or % = j, but in either case a® B @ is a block

of D,

Thus the automorphism group of D can be computed directly
from 1. Tau has a further property of general interest: repeated
applications of 7 to pairs from a set ¥ will yield the smallest com-

plete subdesign containing :

Theorem 3.1.3. Let (D) be a set of at least two points

with the following property: If a pair (a,b) of distinct points is in %,

then (a,b)T is also in ¥. Then ¥ is the set of points of a complete

subdesign.

Proof: Let Bl be the set of blocks of D whose points are

allin ¥. We need to show that (Bl,Z) is a complete subdesign of D,
i.e., for any pair x,y € £, x4 vy, there are 2 blocks of B1 containing

x and y. But by hypothesis, (x, y)T = (a,b) is in £, so the blocks

Xya

xyb

lie in B;. Since |Z| >2, B is non-void, and (B,,%) is indeed a
complete subdesign of D.
If S satisfies the hypothesis of 3.1.3, £ is said to have

""the T-property."



36

3.2, Designs with 2-ply Homogeneous Groups

In this section, we assume throughout that G, the automor-
phism group of D, is 2-ply homogeneous on [[(D). We wish to classify
and analyze all such designs. In some cases, the problem is reduced
to a similar problem for Steiner triple systems which has largely been
solved (see M. Hall, [4]). (Inpart 4, the simple designs in the re-
maining cases are determined, with one possible exception.) Under
the assumption of a 2-ply homogeneous group, the r-function is much

better behaved, and we can readily dispose of two important cases:

Theorem 3. 2. 1. If any block of D is repeated, then D is

two copies of a Steiner triple system S, We have S D, and D/S is

the trivial b=2, v=v(D), k=v, r=2, =2 design consisting of two blocks,

each containing all points,

Proof: Suppose we have the two distinct blocks

X, Y, &

X, VYV, Z

Let (a,b,c) be any other block, We need to show that there are two
blocks (a,b,c), (a,b,c). Let (a,b,d) be the other block of D contain-
ing a and b, By hypothesis there is an automorphism ¢ carrying (x,7V)
into (a,b). Alpha must then carry

X,V & a, b, c

into
%, ¥, B a, b,d ,

so (z,2z)% = (=, y)m = (x,y)aT = (a,b)T = {c,d), thus c¢ = z% = d, and
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the block a,b,c is repeated, so all are. Trivially the set B' of
blocks consisting of one block from each such pair of equal blocks
contains each pair of points just once, hence S1 = (B!, (D)) is a
Steiner triple system. SZ = (B", (D)) (where B'" is the set of the
other blocks of the pairs of equal blocks) is another Steiner triple sys-
tem, a codesign to Sl‘ Hence D can be divided into two copies of Sl’
so S, S D. The quotient design D/S, = ({I(S;), T(S,)}, T(D))
= ({I(D), (D)}, I(D)) obviously is the design stated in the theorem.
Thus under these conditions the construction and structure
of such designs rest upon the same problems for Steiner triple sys-
tems. If D is the Steiner triple system S doubled, then any non-

normal, quasi-normal subdesign of D is a normal subdesign of S,

and any normal subdesign of D is a normal subdesign of S doubled.

We now assume that no block is repeated. A further pos-

sibility is disposed of by

Theorem 3.2.2, If G is transitive on B(D), then G is

doubly transitive. If G is intransitive on B(D), it has two orbits:

T, v:TUvy=B(D), and (T, (D)) and (y, p(D)) are quasi-normal

Steiner triple subdesigns of D.

Proof: If G is transitive on B(D),_'y_'G = D for any block §.

By Theorem 2.2.1, )(D) = )\(@G) =

() el 2 1o
|G G,
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hence necessarily 2]|G{0 1}I » SO ZIIGI and by Corollary 2. 1.3, G
is doubly transitive.
On the other hand, suppose G is intransitive on B(D). Then

by the converse statement of Theorem 2.2,1, D is the union of designs

of the form @G. Furthermore, if D = U @iG, 293Dy =23 K(i’g), so
i i i
e G G G G
the only possibility is that D = Ql ] et and )\(Ql) = )\(éz) = 1, hence
each é? is a Steiner triple system, quasi-normal in D, Setting

™ = B(@Cl}) and vy = B(ég) completes the proof.

For further study we can now assume that G is doubly tran-
sitive on [[(D) and transitive on B(D) and that no block of D is repeat-
ed. Under this last condition, (0, 1)7 is always an unordered pair of

distinct points, so that the repeated function“q—n is defined for all n > 0,

Proposition 3. 2.3. Tau is a permutation on the unordered

pairs of points, consisting of disjoint t-cycles for a fixed integer

t=t(D).

Proof: Consider the sequence

2
(% v) o x9N L (xnT I, ...

Since the set of pairs of points is finite, this sequence must repeat it-

self eventually:

=T = =97 = (w,2) (m>n) .

Setting t; = m-n, (w,z)T ~ = (w, 2)
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If (a,b) is any other pair, let g be an automorphism with (a,b)
= (w, z)%, Then (a, b)Ttl = [, z)a:[Ttl = (w, z)aTtl = (w,z)Ttld‘z (w, z)&
(a,b), so (a,b)frtl = (a,b) for all pairs (a,b).

Let t be the smallest integer > 0 such that (a.,b)'rt = (a, b)
for some pair (a,b). The above argument shows that (x, y)’rt = (x. V)
for all pairs (x,y), so 7 can be written as disjoint t-cycles of pairs.
Since 71 is so defined on all unordered pairs, it is then a permutation
on them.

In general, if D does not have a doubly transitive group of
automorphisms, 7 is not 1-1, rrt is not the identity function for any
t> 0, and T is not a permutation. For example, the designs of

Bhattacharya for v = 6t+4 each fail all these tests (example 3. 3. 4).

Corollary 3, 2.4. Let t be the order of 7+ as a permutation,

2_
Then t 4 zv s

Proof: Tau consists of disjoint t-cycles on the il

un-

o~ vE-v

2

ordered pairs, so of Y t-cycles, hence a priori t

Corollary 3. 2.5, If the automorphism g sends the pair

s
(xl,xz) into itself, then ¢ also fixes all pairs of the form (xl,xz)T .

= S s S
Proof: ((Xl, XZ)T )CL = (Xlsxz)T @ = (Xl:xz)a‘r = ((xl’ Xz)G)T

=1
- T
= (Xl’ Xz)

Corollary 3.2, 6. t=0(7) < wld .
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Proof: Suppose t> v/2. Since there are 2t points repre-
sented in the sequence

(1) (xl’xz) -L" (x3xx4) '_T' “ e _T' (th_llxzt) —T" (Xl!x2)9

at least one point must be repeated. Without loss of generality, we may
assume that x| appears in two pairs (xl,xz) and (xl,xs). Since G is
assumed doubly transitive, there is an involutory automorphism g

which interchanges % and X5

o = (Xl, XZ)(...-), “ e

From Corollary 3. 2,5, g then also fixes all pairs in the sequence (1).

(04

In particular, it sends the pair (xl,xs) into itself, i.e., x] =%y, or
:xolt = xs, each of which contradicts xolL = X,.

In some cases, simply the order of s gives a great deal of

information about D:

Theorem 3.2.7. If O(r) = 2, then every pair of points gen-

erates a normal subdesign D' with four points, If G' is the automor-

phism group of D/D', and § is a block of D/D', then GZ > Ay, the

alternating group on 4 letters.

Proof: Let (a,b) be any pair. From the sequence

(a,b) -+ (¢, d) —I» (a,b), we obtain the blocks

abc
abd

acd

bcd,
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which form a design, which in terms of Chapter 2, is T({a,b}), hence

is normal from Theorem 2, 2,5. From Theorem 2.2.9,

{a,b,c,d}
{a,b,c,d}

sitive, from Corollary 2. 1. 3 and Proposition 2. 1. 4, so must contain

Gg =G is t-ply homogeneous on ¢. It must be doubly tran-

A4.

Theorem 3.2.8. If 0(r) = 1%—12 , then G is sharply doubly

transitive on (D).

Proof: Pick o € Ga We wish to show o = 1. Since ¢

-
fixes the pair (a,b), it must either interchange the points or fix point-

wise each pair in the sequence
(1) (a,b) Lo ... o+ ... ~L»{a,b)

(Corollary 3. 2.5). The proof of Corollary 3. 2. 6 implies that all the

points appearing in the sequence (1) are distinct, This accounts for

the images of 2t

11

v-1 points, hence the one remaining point must be

fixed, and so ¢ 1. We now need

Lemma 3. 2. 9. _I{ g is an automorphism of D, 52 =1 and

p fixes u points, then there is an integer s >u-1 such that
2
u -2u+v = 2s- 0(7) .

Proof: For each unordered pair (x,y) that g fixes, g also

fixes the sequence (x,YV) . (. .)—.. .l»(x,y) pair by pair., There-
fore, the fixed pairs of g fall into s disjoint sets of t each, namely

the sets of fixed pairs in the r-sequences fixed by 8. Now g fixes
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2
u -u

—— Ppairs pointwise, and since 32 =1,

v-u i
> transpositions,

g has
Thus g fixes u_-71_1.+153 pairs in all, so

2

A =l

=+ T2 = s 000,

by counting the pairs fixed by B in two different ways. Since the points

in a T-sequence are all distinct, if 8 fixes 1, 2, ..., u, then the u-1
sequences

(L, 8 oLe s cs

(1,3) L. ..

(1,u) -L» .

are all distinct and fixed by 8. Hence s >u-1.

We now apply the lemma to ¢. Knowing 0(7) = X-%-l- , we get

u -2u+v =

25(1;) , SO

2
u - 2u+ (v-sv+s) = 0

e :(V-SV-'-S) = 1 +Vl-visv-s = 1 & v(ll—v)(l-s) .

and

a € Gy q» SO u> 2, hence u=1+y(v-1)(s-1) .

s Zu-l, so s-1 zu-Z, and we get

u> 14 Y(u-2)(v-1), or
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u-1> Y(u-2)(v-1)
(@-1° > (u-2)(v-1)

(2) w® - (v+1) u+ 2v-150.

Now we claim that if u satisfies (2) and 2 <u<v, then u=v. The

equation xz - (v+1l) x+ 2v-1 = 0 has solutions
i)
= v+l + f{(v-5)(v-1) ].

O(7) > 2 implies v > 5, but v cannot be 5 because there is no design

with v=5, k= 3, A = 2. Thus Vz_é and x2-(v+l)x+ Z2v-1 = 0 has

two distinct real roots % and Koy 1__|'.'."-. N, 7 %
Here we must have u<x; or u>x,, But
2
37 = 3(v+1l) + 2v-1 = 5 -v< 0, and
Z
(v-2) = (v-2)(v+1l) + 2v-1 = 5 -v < O,

so we certainly must have u< 3 or u>v-2, Butv=2.0(s)+1 is an
odd number, therefore if ¢ # 1, u must be odd also, as @ cannot fix
an even number of points and be an involution on an odd number of

points, Therefore u< 1l or u>v. Since o € G u>2, sou=v,

a,b?
and o= 1, i.e.; G'a b= {1} and G is sharply doubly transitive.

Remark 3, 2. 10, Hans Zassenhaus has shown [9] that a

doubly transitive group G can be faithfully represented as the set of
linear substitutions in a near-field K: G = {q:K = Kla(z) =a z+ b;
a,becK, a# 0}. K has order pr for some prime p and integer r > 0,

so G has order pr(pr-l). The Sylow p-subgroup of order pr is
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isomorphic with the elementary abelian additive group of K. The sub-

group GO is isomorphic to the multiplicative group of K. Since

2=x=(3) |G{o,1L| _3-2 ,
Gl 1G]

|G§] = 3 for any block §. There are two cases: either p =3 and

34 17-1, or p# 3 and 3| p' -1. In the first case, G@ is in the
"additive'' subgroup and is conjugate to the subgroup {1, q, a2|a(z)
=z+ 1}, and 3 can be identified with the points 0, 1, 2 in K. Then
& is a sub-near_‘ field of K, and G@ includes the linear substitutions
B, v, and §, where g(z) = 2z, «v(z) = 2z+1, §(z) = 2z+2, hence G@ is
of order 6 and ) = 1, contrary to assumption. In the second case, Gq;
is conjugate to a subgroup of order 3 in the multiplicative group, and

3 can be identified with the points of K 1, x, xz where x3 = 1 ifa K,

In this case, @G is a genuine k = 3, )\ = 2 design.

3.3. Examples

3..3. L, B(D) = 012 023 The trivial 4-point design Dy.

013 123 G(D) %54, O(t) = 2. Strongly
simple.

3. 3. 2. B(D) = 012 025 The 6-point design De.

- 013 034 G(D) ~ LF(2,5). 0O(7) = 3 =v/2.
234 135 Strongly simple,
235 124
450

451



3.3.3, B(D) =013
- 124
235
346
450
561
602
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023
134
245
356
460
501
612

One 7-point design, G(D) is
Frobenius group of order 7-6
[Linear substitutions x - a.x + b
in GF(T), a4 0]. 0(r) =3 =
(v-1) /2. Simple, but not strongly
simple. Each column of blocks
forms a Steiner triple system
S3D.

3.3.4, The designs of Bhattacharya for v = 6t+4, These exist for all

t > 0 and are generated by the base blocks

A = (»,0,3t+1)
B = (0,2t+1,4t+2)
C, = (0,1, 2t+1-) 9w T B o B
Di = (0, 2i, 3t+1+1) SO e R .
The sets {A+], Ci+j’ Di+j} for 18 06, 1,2,, s ,BH3
[B+j} for j=0,1,...,2t

(All elements taken modulo 6t+3, « fixed by all such translations) form

a block design with parameters b = (2t+1) (6t+3), v = 6t+4, r = 6t+3,

k=3, =2,

However, for each t> 0, we have the blocks

A: (o, 0, 3t+])

A+3t+2: (o, 0, 3t+2)
B+t (t,3t+1, 5t42)
Dt+3t+2.: (3t+2, 5t+2,t),

so by inspection, (O,m)T = (3t+1, 3t+2) = (t, 5t+2)T, hence 7 is not 1-1

and G(D) is not doubly transitive for any of these designs.
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3.3.5. The design of Figure la, G(D) o LF(3, 3).

3.3.6. The design of Figure 2. G(D) is the sharply doubly transitive
group of linear substitutions in GF(13) of order 156. As discussed at
the end of section 1.3, this design has the same parameters as the
design of Figure la, but the two are not isomorphic. However, each

has a doubly transitive group.

3.4, The Simple Designs Remaining

We are still left with the problem of classifying the designs

v-1

2

tive on the blocks. This problem remains unsolved, in general, but

or 0(r) = 1’-, with doubly transitive group transi-

with 2 < 0(7) < >

here the simple designs are discussed. From Chapter 2, any k = 3,
A = 2 design with doubly transitive group must contain a simple nor-
mal subdesign Dl’ and other relations on the automorphism groups of

D, D and D/Dl must be satisfied (see 2. 2, 13). Thus the deter-

1’
mination of the simple designs is a step toward the complete classi-
fication.

From now on, we assume that D is a simple design with
doubly transitive group. From Corollary 2, 2,8, D = T(A) for every
pair of points A, so every pair generates the entire design. Further-

more, from Theorem 3. 1.2, [(D) is the only set of at least two points

which has the g-property. The following lemmas are necessary:

Lemma 3. 4. 1. Ga b is a 2-group for any a,b € (D).

Proof: Suppose an odd prime P, divides the order of Ga b

Let I be the set of fixed points of g, an element of Ga of order P

, b
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We have the blocks abé, abd which, since  fixes a and b, must be
fixed pointwise, or interchanged., If they are interchanged,  con-
tains the tramnsposition (c,d): g = (a)(b)(c,d), ..., so g is of even
order, contrary to assumption. Therefore, g must fix ¢ and d.
Applying the same argument to all other pairs of points in I, we see
that I has the r-property, hence I = I(D) by 3. 1.2, so g fixes all
points and is the identity. Therefore, there can be no element of

order Py and p, cannot divide the order of Ga b

Lemma 3. 4,2, Either G is a Frobenius group or Ga b

has an orbit of length 2.

Proof: Let I be the set of fixed points of Ga be For x, vy,

any two points of I, we have two blocks of D:

Xy w

Xy z,

where case 1) w and z are both fixed by Ga,b’ or case 2) (w, z) are
interchanged by an element of Ga,b' If case 1) applies for every pair
of points of I, then I has the s-property, so Ga,b =1 and G is a
Frobenius group. If case 2) applies for some pair x, y of I, then

(w, z) is an orbit of length 2 of Ga b

We can now prove the characterization:

Theorem 3. 4. 3. There are two main types for D:

1) G is a Frobenius group. [I(D) can then be identified with

the point set of a near field k of order p or p2 (as p=1or p=2

(mod 3) respectively). B(D) is the action of the linear substitutions in
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K upon the points of a subgroup of order 3 in the multiplicative group

of K.

2} lGa bl =2*> 1., Here D can only be the four-point de-

sign D4 or the six-point design D()’ if we further assume that Ga is

primitive on the points it moves.

Proof: 1) From 3.2,10, G is the group of linear substitutions
in K, where [Ki = pr, and it only remains to show that the order of K
must be p if p =1 (mod 3) and the order of K must be p2 if p= 2
(mod 3). Theorem 2. 2, 12 applied here states that there can be no
proper subgroup H doubly transitive on the orbit T containing the
block 3 if G@ cH. Butif p= 1 (mod3) and r > 1, then k has a sub-
near-field K* of order p whose multiplicative group of order p-1
contains an element of order 3 fixing a blOCi( 3'. Hence the subgroup
of linear substitutions {z - a, z+b| a,b € K*} = H satisfies the hypoth-
eses of the converse of 2, 2, 12, and éH is a normal subdesign., If
P =2 (mod 3), and r > 2, then for pr to be congruent to 1 (mod 3),
r must be even, But then K contains a sub-near-field of order pZ and
the above argument again produces a normal subdesign. Omn the other
hand, if |K[ = p or pz respectively, there are no subgroups satisfying

2,2.12, and D is simple.

2) It remains to show that if Cra is primitive on the remaining
points, then D is the six-point design D6 (3. 3. 2) or the four-point
design D4t (3.3.1). From Lemma 3. 4. 2, we may assume that Ga,b
has an orbit of length 2., But then 18, 7 of Wielandt [8] applied to

Ga implies that Ga is a Frobenius group and has a regular normal
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subgroup of index 2, hence lGa| = (v-1). 2, Furthermore, 18,8 of
Wielandt [8] implies that the regular normal subgroup of Ga has
prime order p. Thus v-1= p, IGa| = 2p, and since Ga is not cyclic,
it must be isomorphic to the dihedral group of degree p. Then
|G| = (p+1) - p- 2, and since G_ is a Frobenius group, G has the
property that only the identity fixes three letters.

To finish the proof, we need the following theorem of Walter

Feit [3]:

Theorem 1l (Feit). Let G be a doubly transitive permuta-

tion group on v letters of order v(v-1l)q in which no non-trivial per-

mutation leaves three letters fixed. Then either G contains a normal

subgroup of order v, or v-1= p‘; for some prime Pi- In the latter

case, [S :Sé)lj < 4q2, where Sp is the Sylow p-group of G, and if

P
S:pl = {1}, there exists an exactly triply transitive permutation group
G containing G such that [GO:G] < 2.

Since our group G satisfies the hypotheses of Feit's Theorem

with g = lGa,b‘ = 2, we have the conclusion. If G contains a regular
normal subgroup, then v = p(f for some prime Py and s > 0. But

v-1l = p is a prime, hence either v = 2% and v-1 is a Mersenne prime,
or v =3 and v-1 = 2, The second case yields the trivial 3 point design
with blocks

a b c

abc

which was considered in Theorem 3. 2.1, For the first case, since G

is transitive on B(D), D = @G for any block §, thus
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2_)\—2-3-|Ga,b| _2-3-2
|G, | G, |

so necessarily 3:|G<_P| , so 3 |G]. Kv= 2%, and ‘Ga,b! o B
(Lemma 3. 4. 1), 3||G| implies 3Iv-1. v-1 is a prime p, hence
v-l=3, v =4, and D is the four-point design.

The case v-1= pi remains, We already know that v-1 = p',
however, and so anSp must have order p. Then S' = 1, and Feit's
Theorem implies that there exists a triply transitive group GO con-
taining G with [GO:G] < 2. If G = GO, D would consist ofg_l_l triples
of points from [I(D), i.e., D is the complete balanced block design
with d = 3 and ) = 2. This is none other than the four-point design

again. If [GO:G] = 2, then G, is a sharply triply transitive group on

0
v letters of order .2.v.(v-1):2 =v(v-1)+4, hence v-2=4, v = 6, and

the design must be the six-point design of example 3. 3. 2,

It should be noted that no other simple designs with k = 3,
A = 2 are known to the writer, and it is conjectured that the simplicity
of the design in some way forces the group Ga to be primitive on

(D) - {a}.
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