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ABSTRACT 

A method is developed for calculating the electromagnetic 

fiela scattered by certain types of bodies . The bodies consist of 

inhomog eneous media whose constitutive parameters vary only with the 

aistance from some axis or point of symmetry. The method consists in 

a n extension of the invariant imbedding method for treating wave 

p roblems. This method, which is familiar in the case of a one­

dimensional inhomogeneity, is extended to handle special types of 

two and three-dimensional inhomogeneities. Comparisons are made with 

other methods which have been proposed for treating these kinds of 

problems . Examples of applications of the method are given, some of 

which are of interest in themselves. 
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INTRODUCTION 

This report is an exposition of a method which has been developed 

for treating the effect on plane, time-harmonic, electromagnetic waves 

of two particular types of inhomogeneous media. The two types consist 

of media in which the constitutive parameters, namely the dielectric 

constant £ and the permeability µ vary, in one case only with the 

distance from an axis of symmetry, and in the other case only with the 

distance from a point of symmetry. It is assumed that the constitutive 

parameters are scalars . It is also assumed that these medium parameters 

become constant at a finite distance from the axis or point of symmetry. 

This last assumption makes it meaningful to treat the problem as a 

"scattering proble~" in the usual sense, the total field in the constant 

parameter region being made up of an incident wave of simple form , and a 

scattered wave, which is produced by the inhomogeneity and is to be cal­

culated. In particular we are primarily interested in the f orm of the 

scattered wave a great distance from the scattering region. 

When, in the future, we wish to refer to the first configuration 

de scribed above, we will speak of the cylindrical case. In this case 

we will take as our incident wave one whose propagation vector is per­

pendicular to the axis of symmetry. Two independent polarizat ions o f 

the incident wave, namely those with electric and magnetic vector 

parallel to the axis, will be considered. In the spherical case, of 

course, there is really only one polarization. 

Even with the large amount of symmetry which is assumed in the 

scattering region, the inhomogeneous nature of the problem makes a 

--
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certain amount of numerical computat ion inevitable except for special 

cases where the variation of the constitutive parameters with radius is 

a :function of very simple form . The method which we put forth is based 

on an attempt to incorporate as much theory as possible into the formu­

lation in order to minimize this numerical work. Formulas are developed 

by which only the reflection coefficients of the cylindrical or spheri­

cal modes are calculated. This statement will be explained in detail 

later, but the point here is that many needless computations are avoided 

by concentrating on the scattered field alone. In particular, evalua­

tion of the field at each point within the inhomogeneity is bypassed. 

This calculation of only the reflection coefficients is sufficient since 

in experimental and practical situations the only quantities of interest 

are the scattered fields at a great distance from the scatterer. 

The formulation arrived at bears a certain resemblance to others 

which have been used in the past for similar problems. Because of the 

desirability of a complete discussion of the present method, the second 

section contains a summary of work which has been done previously along 

similar lines, for purposes of comparison later on. This section also 

introduces (in their simplest form) some ideas which are used later. 

In particular, Section 2A treats the method of separation of 

variables as it applies to our special cases of symmetry. This serves 

partly as a detailed introduction to the p roblem and its points of 

difficulty . It also provides a fair amount of completeness, and the 

data which may be obtained for certain simple constitutive parameter 

:functions based on calculations using this method, are valuable in 

checking results obtained by the method proposed in this report. 
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Section 2B deals with another previous way of treating our 

symmetrical inhomogeneities. This is a straightforward method of 

dividing the cylinder or sphere up into many thin shells in which the 

constitutive parameters are assumed constant. For each angular mode 

a radial wave function of general form, involving two arbitrary con­

stants, is assumed in each shell and the boundary conditions on the 

electric and magnetic fields are invoked at each shell boundary. This 

procedure results in a large set of equations involving the constants 

multiplying the wave f'unctions in all the layers. One reason this 

method is mentioned is because one of the lines of development of the 

method which is proposed in this report starts with the concept of a 

thin uniform shell within which there are two independent wave func­

tions for each angular mode. Another reason for the inclusion of this 

subsection is to demonstrate the reduction in necessary calculations 

when the problem is reformulated so that only desired quantities are 

computed . 

Subsection 2C is the most important of Section 2 . It treats 

the method of invariant imbedding as it applies to the calculation of 

scattering from a medium which has constitutive parameters varying 

along only one axis of a three-dimensional Cartesian system. Thus 

we are able to explore the ideas and details of the method in this, 

the simplest problem in wave propagation to which it may profitably 

be applied . The method of the present report is essenti a lly that of 

part 2C extended to cylindrica l and spherical geometries with some 

modifications for more conveni ent calculation in these special sym­

metries. 
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The third section constitutes the main work of the report. As 

far as the algebra goes, we concentrate mostly on the cylindrical case. 

T~e point of this is to keep the ideas as unobscured as possible by a 

mass of formulas, the cylinder being better than the sphere for this 

purpose . The necessary extra discussion for the spherical case is 

given, including the final equations, but the bulk of the algebra for 

the spnerical case is omitted . In spite of this the remaining formulas, 

even in their final forms, are rather bulky. Their justification lies, 

not in their mathematical elegance or their transparent physical inter­

pretation, neither of which they possess, but in the relatively small 

amount of additional calculation necessary for any particular case 

fitting one of the geometries treated . There are many objects with 

these types of symmetry which are currently of interest, both theoreti­

cally and practically. 

In Section 4 the work of the preceding sections is combined. 

Compari sons of the proposed method are made with previous work both as 

a n improvement on past methods of treating cylinder and sphere problems, 

and as an extension of preceding work on invariant imbedding in the 

inhomogeneous one-dimensional case. Again it is emphasized that the 

method of invariant imbedding reduces the calculations necessary in a 

problem by restricting attention to only those quantities which are of 

interest in a practical situation. 

The fi~h section consists of a number of applications and 

examples of the methods developed. Calculations are checked with work 

published recently on scattering from cylindrically symmetric inhomo­

geneities. Another comparison is with what may be termed a cylindrical 
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Luneberg lens which has been the subject of a study by H. Jasik. 

Further comparisons are made with scattering calculations for inhomo­

genieties simple enough for their reflection coefficients to be readily 

evaluated. Other examples are given for which no comparisons may be 

easily made, simply to demonstrate the wide applicability of the method 

and in the hope that they may be of use to those engaged in similar 

studies. 

In the concluding remarks a general evaluation of the method as a 

practical tool is made. Also a short summary is made of certain points 

of secondary but interesting nature which present themselves or are used 

as examples throughout the analysis. In addition, a discussion is given 

of the possibilities for the extension of the methods to other problems 

not previously discussed. 



A. Seuaration of Variables 
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Section 2 

BACKGROUND 

The specific scattering probl ems which are dealt with in this 

report may be treated by the method of separation of variabl es . There 

is a discussion in Section 4 of some of the difficulties inherent in 

too straightforward an appl i cation of thi s met hod. However , a formul a -

tion of our p r oblems in this manner will prove useful as a detailed 

introduction to the problems and a l so f o r the very purpose of later 

comparisons . 

Figure 1 is a picture of the coordinate s ystem which will be 

used throughout for t he cyli ndrical case . The axis o f symmetry of the 

medium parameters will be t aken t o be the z axis so t hat E and µ 

are functions of p only . The entire inhomogeneity of the medium is 

containe d within the space p < pc fo r some p • 
c 

For 

and µ are independent of position and will be denoted E 
c 

and 

E 

The incident waves are assumed to travel in the positive x direction 

(¢ = 0 direction) . For the E polarization problem the onl y components 

which the incident fields possess are and Hine (Figure lA) . 
y 

Si mila rly for the H polarization problem the only components which the 

incident fie l ds possess are and Einc 
y 

(Figure lB) • From the 

solutions to probl ems with these t wo polarizat i ons, the sol ution to 

the problem with an incident wave propagating perpendicular to the 

axis of symmetry and with arbitrary polarizat ion may be determined . 
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The derivation of the equations required by the separation of 

variables method for the cylindrical case will start directly from 

Xaxwell's equations for an assumed harmonic time dependence. That is 

to say, assuming 

E_(!_,t) = 

~(!_,t) = 

Q(!_, t) = 

!!_(!_, t) = 

l11axwell ' s equations, with no 

v x £(£) = 

v x !:!.(£ ) = 

v . Q(!_) 

v . ~(!,.) 

Re ~(£) 

Re ~(!,.) 

Re Q(!_) 

Re !i. (£) 

source 

i w~( !,.) 

- iwQ.(£) 

= 0 

= 0 

- iwt 
e 

- iwt e 

-iwt e 

- iwt 
e 

become : 

(2. 1) 

(2 . 2) 

(2 . 3) 

(2.4) 

( 2 . 5) 

(2.6) 

(2 . 7) 

(2 . 8) 

The medium is assumed to be one for which a scalar dielectric constant 

and permeability constant may be defined , although these 11 c onstants 11 

may be functions of position. Using this assumption 

Q.(£) = 

~(!,.) = 

Using 2.7, 2.8, 2.9, 2 . 10 

v . £(£_) 

hence, 

d!_) ~(£) 

µ (£) !!.(£) 

~(£) = v . µ (£) H(!,.) = 0 

(2.~/) 

(2.10) 

( 2.11) 



v • §.(,!'.) - -
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Ve:(E_) • E(!:) 

d.!:_) 

Vµ(.!:_) • B_(.!:_) 

µ (.!:_) 

Also, taking the curls of 2.5 and 2.6 and using 2.9 and 2.10 

which, using vector identities may be written 

V'V • E - v2
E = iw[Vµ x H + µV x B_] 

(2.12) 

(2.13) 

Again, employing 2.5, 2.6, 2.12 and 2.13, the above equations may 

be put in the form 

V(~ • H) 
µ -

Defining 

n2E __ Vµ x (V x E) 
v iw [ - iw µ E: §.] 

iwµ 

n2H -- Vi:: x (V x B_) 
v -iw [ + iw µ E: !i_] 

-iwr:: 

and using f'urther vector identi-

tities, the above equations may be put in the following form, which is 

useful for further calculation. 
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[ii+ 2 ( Vµ • V) (~ V) ~- v{~ . Vµ 
k (!:)] ~(!:) - ~ = . E + 

\J \J E: \J 

[V2+ k2( r) J .£!h:) (2.£ • V) H = (!!_ • V) Ve: v {21:!. • H + 2.£ - --
E: E: \J E: 

Now in the cylindrical case with E polarization, 

E • Vµ = E • Ve: = 0 and the z component of equation 2.14, since 

does not vary with z , becomes 

2 2 [ V2µ(e_) ] [V2 + k (r)]E (Q) - • v2 E (p) 
- z µ(_e) z -

= 0 

where 
a a 

e - + e 
-x ax -y Cly 

. ~} 
(2.14) 

. !!_} 

(2 .15) 

E 
z 

(2 .16) 

(2.17) 

Similarly for H polarization in the cylindrical case equat i on 

2.15 become~ 

0 (2.18) 

For the cylindrical geometries considered V
2

µ and v
2

e: have 

only radial components so with the use of the p,¢,z coordinate 

system diagrammed in Figure 1, 2.16 and 2.17 may be written more expli-

citly as 

l Cl ClE ( p ,¢) 
p Clp (p . z ) 

Clp 

and 

a2E (p,¢) 1 z 
+ ------

p2 302 

1 

\J ( p) 

dµ ( p ) 
dp 

( 2 .19) 
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1 a 
p Clp (p 

1 de:( p) Cl H (p,¢) z 
+ 

£( p) dp Clp 

+ k2(p) Hz(p,¢) = 0 (2 . 20) 

for the E and H polarization cases respectively. Herea~er the z 

subscript on E and H will be omitted. 

Since ¢ is a physical s pace variable E and H are periodic 

in ¢ . This justifies an assumption of Fourier series expansions of 

E and H in the form 

00 

im¢ 
E(p,¢) = l E (p) e (2.21) m m=-oo 

00 

im¢ 
H(p,¢) = I H ( P) e (2.22) m m=- oo 

Substituting these expansions in 2 .. 19 and 2 . 20 and using standard 

Fourier series methods, 

iE ( ' ( 1. - _l_ dµ ( p ) 
dE (p) 

2 m2 n PJ 
+ ) m + (k (p) - - ) E ( p) = 0 (2.23) 

dp2 p )J ( p) dp 2 m dp p 

iH (p) 
+ (1. - _ l_ de:( p)) 

dH (p) 
+ (k2(p) 

2 
m m ~) H (p) 0 (2.24 ) = 

dp2 p e:( p) dp dp 2 m p 

For the remainder of this subsection only the E polarization case will 

be dis cussed, since it is clear that the fUrther development of the H 

polarization case will follow a completely analogous line. 

Now for p > p , 
c 



d µ ( p ) 

dp 

a nd with an obvious notation 
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= 0 

2.23 a nd 2.24 both reduce to Bessel's equation. 

In this constant k region it is possible to write 

where, since 

Ei nc(p,¢) 
ik cp cos ¢ 

= E e 
0 

co 
eim¢ = E I ·iill J (k ) 

0 m cp 
m=- co 

it is clear that 

= 
m 

E i Jm(k p) 
0 c 

(2.25 ) 

. Emscat(p) and where, since must represent the m component of an out-

going wave for p + co , it is also clear that 

E i~ H (k p) 
o m m c 

in which R is some, as y e t undetermined, constant (R = R ) which 
m m - m 

may be termed the model reflection coefficient. This coefficient will 

be required frequently in the following. It should be noted that in 

the above equat i on, and for the rest of this report, a nugatory super-

script on the Hankel fUnction symbol will be omitted; that is to say , 

H (x) = H(l) (x) 
m m 
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If a solution to e~uation 2.23 which remained finite at p = O 

were known for p < pc , the solution 2.25 must be the continuation of 

this solution into the region p > pc Let the correct solution for 

p < p be denoted by F (p) then 
c m 

F (p ) = E im [J fk p ) + RH (k p )] 
m c o m· c c mm c c 

dFm(p)I --
E imk [J'(k p )+ R H'(k p )] 

dp p=p o c m c c m m c c 
c 

Rearranging, 

c (p ) 
JI (k p ) - -1... dFm(p) I . 

m c m c c k dp 
R = c p=Pc 

m 
--1.dFm(p)I • F ( p ) HI (k p ) -

m c m c c k dp c p=p 
c 

which, it should be noticed, is homogeneous in 

J m(k P ) c c 

H (k p ) 
m c c 

F m 

} 

Having determined the R , we may write the scattered field in 
m 

the explicit form, for P > Pc : 

E 
0 

00 

m=-oc 

im¢ e 

Using the asymptotic forms of the Hankel functions, the scattered 

field for large p assumes the form: 



-14-

i (k p- n/4) oo 

I 2e c · \ "' E V:-- l e: R cos m)U 
o nkcp m=O m m 

(2.26) 

where e: = l 
0 

e: = 2 , 
m 

m ~ l . Defining a "scattering width" 

and using 2.26 

l - Re 
2 

l - Re 
2 

2 
k 

c 

J E:cat 
scat 

H"* pd¢ 
L 

Einc H*inc 
z y 

(2 . 27) 

As an example of the above formalism one may take the "two-

dimensional Luneberg lens" configuration studied by Jasik (1). For 

that case 

µ(p) = µ(p ) 
c 

e: ( p ) = j2 - p~ E: 
c p 

c 

allowing us to write the equation for · F in the form: 
m 

of which the solution is 

2 
!!L) F (P) = 
P2 m 

0 



F ( p) 
m 

= A "m 
m" 

kp2 
2p 

c 
e 

where A is a constant. 
m 
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For late r comparison we note that Jasik considers the far field 

of a line source at the boundary and so sums: 

~nk~p -i(kcp - :;I-) 
e '-+ = Iwµ 

4 

00 H (k p ) 
m c c 

£ R - ----- cos 
mm m 

( i ) 
l 

m=O 

where I is the current in the line source . 

Of course, equation 2. 23 may be integrated in terms of well-· 

studied functions for other particul ar cases of p variation of the 

medium parameters . For example if 

then 

µ(p) 

F' 
F" + __!!!. + 

m P 

= 

= 2 2 
£(p ) P /a 

c 

2 
!!!..__) F 

2 m 
p 

of which the solution is 

and again A 
m 

k p2 

F =AJ (c) 
m m m/2 2p 

c 

is an arbitrary constant. 

= 0 

m¢ 

In general , however, equation 2.23 must be integrated numerically . 

The point of Section 3 of this report is to reduce the numerical work 

which would result from a straightforward application of the formalism 

of this section. 
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A formalism si~ilar to that given above carries through for the 

spherically stratified case. The situation in that case is complicated 

by the fact that when an incident plane wave · excites waves in the 

sphere , these waves are analogous to a combination of the two polariza-

tions treated above . More about this will be said in Section 3. Our 

purpose here has merely been to explore how far the separation of vari-

ables method could take us in the simplest case of interest. 

B. Thin Shell Approximation 

We turn now to another standard method of solving stratified 

inhomogeneity problems. 

The basic assumption in the "thin-shell" approximation is that 

the stratified inhomogeneity may be conceived of as being made up of a 

large number of shells of uniform thickness, although the thickness 

may vary from shell to shell. The parameters of the medium are assumed 

not to vary within each individual shell. 

We continue, as in the latter part of Section 2A, to speak only 

of the E polarization case for the cylinder. The situation is 

diagrammed in Figure 2 , for which the only component of electric field 

is E (p,¢), and in which the (N+l)st medium is identified with the 
z 

exterior region . 

As in the previous section, an incident wave is assumed; for 

instance the plane wave 

Einc ( r11) z p,YJ = E 
0 

00 

l E imJ (k p) cos m¢ 
m m c 

0 

In each of the shells the equation which Ez(p,¢) satisfies is simply 
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y 

Fig. 2 . Cross- section of a 
cylindrically symmetric inhomo­
geneity as treated by the thin 
shell app roximation 

p 

x 
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the Helmholtz equation with the k appropriate to that shell. 

(2.28) 

Taking into account the angular variation of the incident wave 

we may write the solution of 2.28 in the form 

00 

E l 
0 m=O 

[A~ J (k.P)+ R~ (k P)] cos m¢ 
J m J J m z 

j = 1, · · · N+l, 

where, to satisfy the condition of finiteness at the origin we must put 

and to conform with our partial knowledge of the field in the e xterior 

region we must have 

m 
AN+1 = 

.m 
E: l. m· 

Now using the orthogonal properties of the trigonometric functions 

and the continuity of the tangential components of the E and H field s 

at each boundary between shells, we may write 

(2.29) 

µjkj+l { m J = A. 1J 1 (k. lpj )+ R1:1 1H 1 (k. 1p.) 
J+ m J+ J+ m J+ J 

kjµj+l 

j = 1, • • • N (2. 30) 
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For the H polarization case equations exactly analogous to these 

are obtained in which is replaced by in the factors 

multiplying the right hand side of equation 2.30. 

Equations 2.29 and 2.30 are 2N equations in the 2N unknowns: 

Am 
1 

Arr: Rr:1 
J J 

(j = 2,3, " · 'N) 

m 
RN+l 

A fairly simple method of solution of equations 2.29 and 2.30 is 

the following . 

First solve these equations for RJ.+l' A ·+1 ,J 
in terms of R. and 

J 

A. . Then use the Wronskian relations for Bessel fUnctions to reduce 
J 

these equations to the form 

m r.f1 'j r.f1 'j Ar:1 Aj+l 

( ~j 
AR 

) J 
= (2.31) 

m ~,j Rr:1 Rj+l RR J 

where 
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. .m ,j 
MRR = - 2~Pj f .k.+lH (k.pj)J ' (k +lp.) - k . JJ.+lH'(k.p.)J (k,+lp.J 

iµ. J J m J m m J J J m J J m J J 
J . 

Now equations 2.31 may be used to calculate consecutively the 

coefficients in terms of Am 
l 

and Rm 
1 

Since 

Rm = 0 
1 

we temporarily assume 

Am = 1 
l 

and calculate 

(M111'N • ivfl,N-1 • • . ivf1•2 • ~·l) 
( lo ) 

Since this equation is linear in ~+l ' R;+l the modal reflec­

tion coefficient for substitution in such equations as 2.26 may be 

calculated simply by the formula 

R 
m 

= 

Rm 
N+l 

A_m_ 
-°TI+l 

(2 . 32) 

One difficulty with this method is that of calculating the matrix 

elements of equation 2.31 with any accuracy . This is because of the 

subtraction of f'unctions which are almost equal when \Pj+l - pj I 

becomes small . 

A further difficulty is that of establishing the correctness of 

the limiting solution which is obtained by this method as the number 

of shells is increased and max IPj +l - pj I + . 0 . The entire reflec­

tion process i n the above approximation is due to the discontinui ties 
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of k while in the actual case k may be continuous. 

We will see in the third. section how these difficulties are over­

come in the reformulation of the problem which is made there . 

The method of Section 2B carries through completely for the 

spherically stratified medium. As in Section 2A, our purpose here has 

been merely to exhibit a method of computation in it s most transparent 

form. 

C. Invariant Imbedding in Plane Stratified Me dia 

This subsection is a short exposition of the method of invariant 

imbedding, as it applies to wave problems, using as an example the 

simplest interesting case for which the method is useful; that of the 

plane stratified medium . 

The purpose of this, for by now the applications of the method 

in the plane case are well known, is to exhibit the simplicity of the 

basic ideas of the method, unadulterated by the cumbersome formulas 

which arise in the cylindrical and spherical stratified media. 

The concept of"invariant imbedding", which is not a very 

enlightening title, is a generalization of a principle originally 

enunciated by Ambarzumian (2) in connection with the diffuse reflection 

of light by a foggy medium . The first form of Ambarzumian's principle 

was that the intensity distribut i on of light emerging from a semi­

infinite foggy medium, or of incident light reflected by this medium, 

is unchanged by the addition of a small extra layer of fog at the sur­

face. This is clear in Ambarzumian's case, since using the concept of 

optical length the stratified medium in the optical intensity 
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approximation may be reduced effectively to a homogeneous medium. For 

a homogeneous medium the small additional layer may be thought of, 

alternatively, as a coordinate transformation which cannot change the 

emerging intensity. 

Since Ambarzumian 's work, principles of invariance have been 

formulated which allow a similar treatment of reflection of light by a 

slab of foggy medium of finite thickness. These extensions have been 

largely due to Chandrasekhar (3) . 

The name "invariant imbedding" for this type of problem seems to 

have been popularized by Bellman (4,5) who conceived of the method as 

that of associating the problem of which we want the solution to a 

large class of similar problems. If we restrict our desire to calculat­

ing some particular parameter (or functional, in slightly more 

mathematical language) of the solutions, we may be able to prescribe a 

method of calculating this parameter for a large number of cases 

without obtaining the complete solution in each case. 

For example, Ambarzumian ' s method in the language of invariant 

imbedding would be as follows. We wish t o obtain the reflection coef-

ficient of a particular semi-infinite foggy medium. To do this we 

imbed our particular foggy medium i n a large class of similar media 

distinguished by the particular plane in space at which they start. We 

now obtain an equation for the rate of change of reflected light as we 

change some parameter labeling the medium giving that amount of reflec­

tion. This is the main point of the method, and it turns out that it 

is often quite straightforward, u sing physical arguments to derive the 

equation. In the foggy medium case, one--but by no means the only--way 
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of deriving it is by invoking Ambarzumian's invariance principle. Once 

this rate of change equation has been formulated with an appropriate 

initial condition, it may be used to calculate the parameter desired in 

a large number of cases; for example, the reflection coefficient O·f 

slabs of a foggy medium of various widths. Since in many situations 

of technical importance it is just this variation of some parameter as 

we change the physical set-up which is interesting, a great deal of 

computation has been avoided completely by concentrating solely on the 

parameter of interest. 

Because of the usefulness of invariance principles in formulating 

the rate-of-change equation, the principles of invariance and those of 

invariant imbedding have sometimes been confused. It is hoped that the 

above will help alleviate this confusion of language. In summary, 

invariant imbedding is an approach to physical problems almost too 

general to be useful, while principles of invariance are important 

enough tools to make the invariant imbedding approach of practical use . 

The first application of principl es of invariance to wave prob­

lems appears to have been made by Papas (6) when he calculated the 

reflection coefficient of a plane inhomogeneous dielectric slab when 

an electromagnetic wave is incident. We will now give what, essen­

tially, is a summary of Papas' approach, with the problem slightly 

generalized to include non-uniform permeability. 

Subsequently we will give other derivations of the rate of change 

equation, demonstrating the logical distinction between principles of 

invariance and invariant imbeddi ng. 
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We consider the situation of Figure 3 in which a plane electro-

magnetic wave is normally incident, from a region in which the 

constitutive parameters are uniform onto a semi - infinite region in 

whi ch these parameters vary only in one direction and become again 

uniform at some depth, s~ z = b . That is, we have 

£ = £1 µ = µl z < 0 

£ = £2 µ = µ2 z > b 

£ = £ ( z) µ = µ ( z) b > z > 0 n n 

where £ and µ are not necessarily continuous at z = 0 and z = b . 

To talk about this problem in the l anguage of invariant imbedding 

we consider it as being one of a class of problems, each of which has 

the same £ and µ as a fUnction of z for z > a , where b > a > 0 

and where £ (z) = £(a) and µ (z) = µ(a) for z < a 
a a 

Now a plane electromagnetic wave with components E 
x 

and H 
y 

assumed to be incident from the left in each problem distinguished by 

the label a . That is to say , we have 

where 

Ea 
x 

Ha = y 

z = a 

k = a 

e 

1 
z 

ik z -ik z 
a + R 

a 
e 

a 

ik z -ik z 
(e 

a 
R 

a ) e 
a 

a 

/µ(a)/da) 

w /µ(a) da) 

is 
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e(z) 

µ.(z) 

b 

Fig . 3, A one-dimensional inhomo­
geneity problem treat ed by the 
method o.f invariant imbedding 
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I 
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ZN+I ZN b 

Fig . 4. A one-dimensional inhomo . ....: 
g enei ty problem treated by the 
thin slab approximation 
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The primary interest in this case is in the reflection coeffi-

R 
a 

In particular we would like to calculate R but if a 
0 

rate of change equation can be derived for R we will obtain, with 
a 

no additional effort, the reflection coefficients of a large class of 

inhomogeneous slabs which may be of interest. 

To derive this rate of change equation we use the notion, 

easily acceptable on physical grounds, that to go from the situation 

for which a=a+il 
l 

to that for which a = a
1 

we merely change the 

constitutive parameters for z < a
1 

from those associated with 

a
1

+ ti in the final configuration to those associated with a
1 

. 

If the increment il is small the effect of the above change on 

the reflection coefficient may be taken into account by considering 

only the first few reflections which one calculates when applying the 

"method of multiple reflections" to this problem. 

In particular 

(2.33) 

where R
1 

is the reflection which occurs due only to the interface at 

z = a
1

, R
2 

accounts for that field which is transmitted at z = a
1 

but reflected (with reflection coefficient R . ) 
a+ ti 

1 
then is retransmitted through the interface. 

at and a
1

+ il 

Similarly R
3 

accounts for three internal reflections in the incremental slab. 

Now we define r(x,y) as the reflection coefficient when a 

wave is incident from a medium with constitutive parameters correspond-

ing to position · z = x in our final problem, on a medium with these 



- 27-

parameters corresponding to the position z = y in the final problem. 

Using the definition 

Z(z) = 

one may show by solving the elementary boundary value problem involved 

that 

r(x,y) (Z(x) - Z(y)) 
Z(x) + Z(y) 

r(y,x) = - r(x,y) 

(2.34) 

With a definition of transmissi on coefficient t(x,y) similar to 

that for r(x,y) it is also easy to show that 

t(x,y) = 1 + r(x,y) 

t(y,x) = 1 + r(y,x) 

Now, bearing in mind the paragraph immediately following equation 

2.32, it is clear that 

by which we mean that 

R1 = lim r(a1 - E, a 1+ ~ - E) 
E ~ 0 

This l i miting process takes into account the fact that E(z) and 

µ(z) may be discontinuous from the le~. Also, it is clear from the 

above definitions that 



= t ( a
1 

- 0 , a
1 

+ ti - O ) e 
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ik ti 
a+ti - 0 

1 

ik A 
0 

ti 
a +u -

1 
i k A 

0 
ti 

a + '-' -1 n ~ 2 (2.35) 

Because of the recur s ion relation 2.35 , it i s possible to sum the 

whole s e r i es impli cit in equat i on 2.33 i n the form: 

(2 . 36) 
r(a - O, a + ti - 0) + e 

1 1 

1 + r ( a
1 

- 0 , a
1 

+ ti - 0 ) 

This equation is of i nterest mai nl y when ti -+ 0 so that we have 

r(a - O, a
1

+ 0) + R 0 1. al + 
R = a - 0 

1 1 + r(a - o, a
1

+ 0) R 
1 a

1
+ 0 

Retur ning to our expressions for t he f i r st f ew reflections and 

expanding these to first order in ti , s i nce ti is a small quant i ty, 

we obtain 

z I (al) 
ti 

Rl -+ + 
2Z(a

1
) 

R2 
-;.. R + R' ti + 2i k(a

1
) R 

a l al al 

R3 -+ R2 z ' (al ) ti 
a

1 
2Z 
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These results can be combined with equation 2.33 to give 

(2.38) 

Equation 2.38 is a Riccati equation which may be integrated 

with ease, numerically. The integration starts with a= b and the 

initial condition is 

~ = r(b - O, b + 0) 

If there are a finite number of discontinuities in the medium, 

equation 2.37 may be employed at each one as the integration proceeds 

backwards in a Thus any discontinuity at a = 0 is automatically 

included in the integration in the same manner as any jump in parameters 

within the slab. 

Non-normal incidence may be treated in a manner exactly 

analogous to that given above but it would seem more usef'ul for an 

understanding of the method to demonstrate other ways of deriving the 

rate of change equation 2 . 38. 

One way of proceeding would be to consider the situation 

diagrammed in Figure 4. In this figure the inhomogeneity is consi-

dered to consist of a large number of thin homogeneous slabs . By 

employing the procedure described in Section 2B and by applying some 

transformations to the equation analogous to 2.31 which results, one 

may derive the equation which we now obtain by a shorter route. 

Referring to Figure 4 we now wish to derive the reflection 

coefficient at plane z 
1 

(assuming the medium to the lef't of this 
n+ 
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plane is homogeneous) from the reflection coefficient at plane 

which is assumed to be known. 

z 
n 

This is a straightforward boundary value problem and we obtain, 

of course, in agreement with equation 2.36 

e 
2ik (z -z 

1
) 

n n n+ Z - Z 2ik (z - z ) 
n o n n n+l :: + e z + z 
n o 

R 
n 

where k ,Z are the propagation constant and impedance associated with 
n n 

the slab between z 
n 

and while z 
0 

is the impedance of the 

homogeneous medium on the le~. 

Now , in approximating a medium whose constitutive parameters vary 

continuously, we may take a large number of slabs and use the approxima-

tions : 

z - z 
n o 

z + z 
n o 

R 
n 

.Z I ( z ) 

2Z(z ) (zn- zn+l) 
n 

R + (z - z ) R '(z ) 
n n+l n 

R 

Substituting these approximations in the preceding equation and 

then letting z 
n 

we again obtain equation 2.38. 

Of course the above method is quite similar to the previous one. 

It merely avoids the use of multiple reflections in order to demonstrate 

that the method is not inherently connected to the method of invariant 

imbedding. Both these methods, however, are well connected with 
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physical ways of reasoning, and that is a most important point about 

the method of imbedding--that physical reasoning can often derive 

easily the basic rate-of-change equation involved. 

As a contrast with this we will now demonstrate a purely formal 

way of deriving equation 2.38. The following cannot be recommended as 

a method in other problems, since so little of an intuitive nature is 

involved, but it does show that everything in the invariant imbedding 

method is built into the basic differential equations of the problem. 

All that is required is sufficient ingenuity to make the "right " 

transformations. 

First we note from equation 2.14 that for the present problem, 

using E 
x 

as our dependent variable, the differential equation which 

must be solved is : 

_2 2 1 d ( ) dE (z) 
d. 

2 
Ex(z) + k (z) E (z) - -- µ z x = o 

dz x µ(z) dz dz 
(2.39) 

We also note, as may easily be shown from the definitions of 

k(z) and Z(z), that 

1 dµ(z) 
µ(z) dz = 1 dk(z) 

k( z) dz + 
1 dZ(z) 

Z(z) dz 

Now let us consider the function 

ik(z) E ( z) 
·x 

F(z) = 
ik(z) E (z) 

x 

By direct differentiation 

_.LE(z) 
dz x 

+.LE (z) 
dz x 

(2.40) 

(2.41) 
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d
2

E dE dE 
1 x 1 2 1 dk 1 x -- (- -2-) - ---­

Ex dz2 - E dz k dz E dz 
= - 2ik ~~----';__~~~x~~~~~~~~-x~~~ 

l dE 2 
(ik - - -2-) 

E dz x 

Substituting from 2.39 for the second derivative term, and 

employing 2.40, one can show, after some algebraic manipulation that 

dF( z) 
dz 

Z' 2 
2z (1 - F (z)) - 2ik F(z) (2.42) 

Equation 2.42 is of the same form as equation 2.38 and since, 

from an examination of equation 2.41, the fUnctions F and R sat is-

-f'y the same boundary condition at z = b , we may identify F(z) with 

and state that F(O) = R . 
0 

Also, by fUrther work with equation 

2.41, one can obtain an equation analogous to equation 2 . 37 which is 

applicable when there are discontinuities in the medium. 

It should be noted in passing that if it is desirabl e to calcu-

late transmission coefficients as well as reflection coefficients, 

there are two paths one can follow. One method is to calculate the 

reflection coefficient for a wave incident from the right on our 

layered medium (this will be denoted by R ) 
a 

as a function of posi~ 

tion , and then to employ the equations 

dT(z) 
dz 

= (1 + H) Z'(z) T(z) + ik(z) T(z) 
·z 2Z(z) 

T(O-) = l 

then the coefficient we desire is T(a) • 
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With the second method we integrate the equation for T in the 

same direction as that for R so that both integrations may be carried 

out simultaneously on a computing machine. The equations to be used 

in this case are 

dT( z) 
dz 

= + Z'(z) (1 - R) + ik(z) T(z) 
2Z( z) z 

T(a+) = 1 

and the number we want is T(O-) . 

Both the above equations may be derived in a straightforward 

manner using the multiple reflection method. Obviously the second 

method is more appropriate if waves are incident only from one direc-

tion. 

The method of treating discontinuities is also a straightforward 

result of the multiple reflection method and may be stated in the forms 

T(z + 0) = 
n 

T(z - 0) = 
n 

2Z(z + 0) T(z - 0) 
n n 

+ 
[Z(z +O) + Z(z - O)]-[Z(z +0)-Z(z - O)] R _ O 

n n n n z 
n 

2Z(z + 0) T(z + 0) 
n n 

[ Z ( z + 0) + Z ( z - 0)] + [ Z ( z + 0) - Z ( z - 0)] Rz + O n n n n 
n 

for the first and second methods, respectively, where z is the 
n 

position of a discontinuity in the medium. 

We also note here, as a matter of interest, that via some alge-

braic manipulation on equation 2.39 it may be shown that if the phases 

of the transmission coefficients in each direction are properly 
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chosen, a simple relation exists between them. More explicitly, we 

write 

E (z) 
x 

z > b 

for a wave incident from the le~ of the form 

write 

+ 
E (z) = T x z < 0 

for a wave incident from the right of the form 

ik
1

z 
e , and f'urther we 

-ik z 
2 

e 

Now if ¢1 and ~2 are two particul~r solutions of equation 2.39 it 

can be shown by direct differentiation that 

= 0 
dz µ 

Now let ¢
1 

represent the wave incident from the left and 0
2 

represent the wave incident from the right which we have described 

above. The value of the expression within the braces in the above 

equation may then be evaluated both to the le~ and to the right of 

the inhomogeneity, and these two numbers equated. The two expressions 

are equal because, by the above equation, the quantity within the 

braces is independent of z • In this manner we obtain the equation 

= (2 . 43) 

This is true even · if k is complex, representing a lossy layer. 

We now return to equation 2 . 38 and point out a few properties 

which will be of use in the next section also, and that make its inte-

gration a little easier in some cases. 
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In equation 2.38 let us make the substitut i on 

a 
-2i f k(z)dz 

R 
0 D(a) = e a 

and obtain 

a a 

( e 21 
f k( z) dz -2i J k(z)dz 2 ) 

dD(a) Z' (a) 0 o D (a) (2 . 44) - - 2Z(a) - e 
da 

From this equation it is clear that , even if k is a function of 

position, if Z is a constant throughout the inhomogeneity there will 

be no reflected wave . 

But equation 2.44 is also useful in i ts own right, in that for 

h i gh frequencies D(a) will vary much less rapidly than R , so in 
a 

any numeri cal integration scheme larger increments can be t aken, reduc-

ing the computation time required for any particular constitutive 

parameter profil e . 

If, in equation 2 . 44, we substitut e D(a) 

another use fUl form: 

a 
dA(a) 

da 
= Z'(a) sinh (A{a) + 2i J k(z)dz) 

Z(a) 
0 

- A(a) . = e , we obtai n 

There are many other transformations and substitutions that have 

been used in obtaining equations equivalent to 2.38 (10) . In conclud-

ing this section we merely make note of two which are analogous to two 

which will prove most useful in the next section . These are the sub-

stitutions 

R = 
ik - x 
ik + x 



and 

R = 

from which we obtain 

X' + k2+ x2 

Y' - k2Y2 -

-36-

ikY - 1 
ikY + l 

L - x 
µ 

1 +Ly 
µ 

= 0 (2.45) 

0 (2.46) 
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Section 3 

REFLECTION TREATMENT OF CYLINDRICALLY AND 

SPHERICALLY STRATIFIED MEDIA 

We return now to our discussion of scattering by axiall y sym-

metric inhomogeneities . Our intention is to apply to this problem 

the method of invariant imbedding, whose usefulness in the one-

dimensional case was brought out in Section 2C. It is not clear at 

the outset that it is feasible to use this method. However, if we 

allow ourselves to be guided by the application of the method to the 

one- dimensional scattering problem it turns out that our intention may 

be carried out in a fairly straightforward manner, although the algebra 

involved becomes cumbersome at times . 

The configuration in which we are interested is that depicted in 

Figure lA. That is to sa:y, a wave in which the only component of the 

electric field is that parallel to the axis of the cylinder is inci-

dent on an axially symmetric inhomogeneity. It was seen in Section 2A 

that the case in which the magnetic fiel d was parallel to the axis ma:y 

be obtained from simple transformations in the formulas which we shall 

derive in this section. 

It should also be recalled from Section 2A that it is convenient 

for the problem under discussion to write all fields in an angular 

Fourier series whose coefficients vary with radius . In other words, 

we write in the external region 

00 

E(p,¢) = E ( p) 
n 

p > p (see Figure lA) 
. c 

i n \ll e (3 .1) 
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where 

E (p) = A' J(k p) + B' H (k p) 
n n c n n c 

(3.2) 

Now we shall assume that any incident wave of interest to us has 

no singularities for p < pc • This assumption allows us to write the 

incident wave in the form 

00 

Einc (p ,¢) = l A J (k p) 
n n c 

in¢ e (3.3) 

where the coefficients A are known. For example, if the incident 
n 

wave is a plane wave incident from the negative x-axis 

( l.
. )n A = 

n 

while if the incident wave is that due to a line source of current I 

and at position (p ;rr) 
0 

W)l I 
A - - _

4
c H (k p ) 

n -n c o 

Now we use the condition that the scattered field must have the 

form of an outwardly traveling wave as p ~ 00 to write the field for 

in the form 

E(p ,¢) = 
00 

\A [ J (k p) + RH (k p)] ein¢ 
l n n c n n c 

-"" 

where the only unknowns are the R , which we will call the modal 
n 

reflection coefficients. 

Proceeding as in Section 2A, other forms may be derived such as 
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Escat(p,¢) 
+ J ni~ p 

ik p 
c F(¢) (3.4) e 

p + 00 c 
where 

00 

in~ F(¢) = l A R e 
n n 

-co 

Because of the linearity of the problem we may calculate the R 
n 

by assuming an incident wave consisting of only one angular mode . That 

is to say, we have to solve the basic problems in which the fields in 

the exterior regions are 

[J (k p) + R H (k p)] 
n c n n c 

in¢ 
e n=O ,:t_l ,2:_2, • • • (3.5) 

Now, due to the axial symmetry of the inhomogeneity, it may be 

readily shown that for an· incident wave of the form 

the fields inside the inhomogeneity also vary as in¢ 
e 

neglect the angular variable in our basic problems • . , · 

so that we may 

It should be remembered from Section 2C that it was useful in 

the one-dimensional case to define an elementary reflection coefficient 

r(x,y) . This is our motivation for the definitions we now introduce 

for the cylindrical problem. 

The incoming elementary modal reflection coefficient 

~ (b ,a) 
n 

is. defined as the modal reflection coefficient when an nth mode wave in 
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an infinite medium,whose parameters are those of position b in the 

final problem, is incident upon a uniform cylinder whose parameters 

correspond to position a in the final problem, and is of radius "a". 

Similarly, we may define a transmission coefficient 

t (b,a) 
n 

which is the coefficient of the elementary solution in the interior 

region of the above problem. That is to say, we have 

E (p) = J (k(b)p) +; (b,a) H (k(b)p) 
n n n n P > a 

E (p) = t (b,a) J (k(a)p) 
n n n 

P < a 

Imposing the condition of continuity of the tangential E and 

H fields at p = a on the above fields, we obtain 

J (k(b)a) + ; (b,a) H' (k(b)a) 
n n n 

-+ = t (b,a) J (k(a)a) n n 

J' (k(b)a) + ; (b,a) H(l)' (k(b)a) = µtb~ 
n n n µ a 

Solving these equations we obtain 

; (b,a) = 
n 

Z(b)J' (k(a)a)J (k(b)a) - Z(a)J (k(a)a)J ' (k(b)a) 
n n n n ( 3.6) 

Z(a)H(l) '(k(b)a)J (k(a)a) - Z(b)J' (k(a)a)H(l) (k(b)a) 
n n n n 

and 
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J (k(b )a) 
t (b ,a) = _n ____ + ~ (b , a) 

n J (k(a)a) n 
n 

(3.7) 
J (k(a)a) 

n 

As in Section 2C , these expressions will be of most use when 

b = a + 0 when there is a jump discontinuity in the parameters of the 

medium at p = a When the medium is continuous at a , the above 

expressions will be primarily of interest when b = a + /::,. where 

/::,. << a . In this approximation, and where the medium parameters are 

evaluated at a in the following expressions, we obtain to first order 

in l::i. • 

- J" (ka) J (ka)) } 
n n 

(3 . 8) 

t (a+l::i.,a) = 1 + nk~l::i.{ iH(l)(ka) J'(ka) + ka(J'(ka) H(l)(ka) 
n . 21 · Z n n n n 

(3.9) 

In the above equations 

. 
[ d ~] z = 

dP e: ( P) p=a 

k = [ ~P (w Jµ(p ) <{p) )L=. 
and 



JI (ka) 
n 

-42-

= [:ix Jn (x)1 
x=ka 

, etc. 

It should also be noted that the derivation of equations 3.8 and 

3,9 consists in a straightforward first order expansion about b = a 

Of equatioris 3. 6 and 3. 7 with a few applications of the Wronskian 

relation, 

nx (H(l) (x) .J' (x) - J' (x) H(l) (x)) = 
2i n n n n 1 

In addition to the modal transmission and reflection coeffici-

ents defined above, it will be found useful in the following to define 

coefficients calculated by assuming a source on the axis of a homogene-

ous cylinder . Again the parameters of the cylinder are those of 

position a in the final configuration, while those of the infinite 

homogeneous external space are those of position b . That is , we 

assume the field is of the form 

E (p) = H(l)(k(a)p) +-; (b,a) J (k(a)p) , 
n n n . n 

p < a 

E (p) = t (b,a) H(l)(k(b)p) 
n n n P > a 

The usual boundary conditions may now be applied to obtain 

-; (b ,a) 
n 

Z(b) H(l)(k(a)a) H (k(b)a) 
n n = 

Z(a) H(l)(k(b)a) J (k(a)a) 
n n 

- Z(a) H(l)~k(b)a) H(l)(k(a)a) 
n n 

Z(b) H(l)(k(b)a) J'(k(a)a) 
n n 

(3 . 10 ) 

and 
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+ 
J (k( a)a) 

t (b,a) = 
n 

H (k(a )a) 
~n~~~- + r (b ,a) 
H (k(b )a) n 

n 
(3 . ll) 

n 
H (k( a )a) 

n 

Again , t hese expressi ons may be expanded about b = a to f i rst 

or der i n the forms 

-+ Tika • 6 • { _t H(l) 
1 
(ka) H(l) (ka) + k a (H( l )' (k a) H(l)'(ka) r (a+ti ,a) = n 2i Z n n n n 

- H( l ) (ka) 
n 

H( l )" (ka) ) 
n } (3.12) 

. 
H(l)' (ka) + ka ( H ( 1 ) 

1

( ka ) t (a+6,a) Tika • 6 . { z J ' (ka) = l + Z J n (ka) n 2i n n n 

- J (ka) H(l)"(ka)) } 
n n 

(3.13) 

Bearing in mi nd the above relations we now return to the calcula-

tion of the R of equation 3.5 by considering the change in R as a 
n n 

small additional l ayer is added to the cylinder consisting of the 

portion of the cylinder we are i nterested in which lies inside the 

radius p = a • The situation is diagrammed in Figure 5. The small 

additional l ayer is assumed to be uniform and to have the parameters 

corresponding to radius a , while for p > a+6 , the parameters are 

those of position a+~ We write these intermediate values of t he 

reflection coefficient in the form R (x) where x is the size of 
n 

the intermediate cylinder. Our object is to calculate R = R (p + 0) . 
n n c 

In other words if, for p > a+6 , we write the fiel d i n the form 
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o- (a+ .6.), e (a +.6. ), µ(a +.6.) 

Fig. 5. Notation used in the 
invariant imbedding treatment of 

, cylindrical inhomogeneities using 
the method of multiI?le reflections · 
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E (p) = J (k(a+6)p) + R (a+6) H (k(a+6)p) 
n n n n 

then by using a method of multiple reflections appropriate for 

cylindrical coordinates and employing the elementary reflection coeffi-

cients we have previously·defined, it is clear that 

R ( a+6) 
n 

+ + + = r (a+6,a) + t (a+6,a) R (a) t (a+6,a) n n n n 

Summing this series we may write 

R ( a+6) 
n 

t (a+6,a) t (a+6,a) R (a) 
= ; ( a+6 'a) + _n _____ n _____ n __ 

n 
1 - R(a) ;· (a+6,a) 

n 

(3.15) 

However, for the moment we stick with expression 3.14 which we 

expand for small 6 , using equations 3. 8, 3. 9, 3 .12 and 3 .13 in the 

form 

- J ." (ka) J (ka)) } + R(a) 
n n 

. 
+ R(a) TI~: 6 {ka J~(ka) H~(ka) + ~ (Jn(ka) H~(ka) 

+ H (ka) J'(ka)) - ka(J (ka) H"(ka) + H (ka) J"(ka)) f 
n n n n n n ' 

+ R~(a) TI~~ 6 {~ Hn (ka) H~ (ka) + ka(H~ (ka) H~ (ka) 

- H (ka) H"(ka)} + 0(6
2

) 
n n 

(3 .16) 

In writing the above equation we have implicitly assumed that the medium 
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is continuous at p=a by using 3.8, 3.9, 3.12, 3.13. If this is not true 

we may, for a step discontinuityinthe medium, write a"jump condition" in 

the form: 

R ( a+O) 
n . 

+ 
= r ( a+O ,a) + 

n 

-)- + 
t ( a+O, a) t ( a+O , a) R (a) 

n n n 

-+ 
1 - R (a) r (a+O,a) 

n n 

However, for regions in which the medium is continuous we 

assume the validity of equation 3.16, divide it by 6 and allow 

6 -+ 0 , obtaining 

(3 . 17) 

2i F.. (a) 
TI n = ka {[-ZZ Jn(ka) J'(ka) +ka(J'(ka) J'(ka)-J (ka) J"(ka) )J 

n n n n n 

+ R2 (a)[~Z H (ka) H' (ka) + ka(H' (ka) H' (ka) - H (ka)H"(ka)) J} n n n n n n n 

+ ka R (a) {-zz (Jn(ka) H' (ka) + H (ka) J' (ka)) 
n n n n 

+ ka(2H'(ka) J'(ka)-J (ka) H"(ka) -H (ka) J"(ka))} 
n n n n n n 

(3.18) 

The above equation may be simplified somewhat. Assuming the 

argument of all Bessel fUnctions in the following equation to be ka 

equation 3.18 may be manipulated into the form 

2i 
nka 

dR (a) 
____.;n'----= ka {(J' + R (a) H')

2
- (J + R (a) H )(J"+R (a) H")} 

da n n n n n n n n n 

+ ~ (J + R (a) H )(J' + R (a) H') 
Z n n n n n n (3 .19) 

Although we need further development to attain a practical 

method of calculation , it can be seen.that in principle we have already 

accomplished our object. That is to s~, we m~ integrate equation 
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3.19 numerically if we so desire, using equation 3.17 at any points of 

discontinuity of the medium. In employing equation 3.17 we must use the 

definitions 3.8, 3.9, 3.12 and 3.13. The integration of 3.19 starts at 

a = 0 with 

R (0) = 0 
n 

and proceeds to a = pc at which 

R = R (p + 0) 
n n c (3.20) 

The coefficients calculated according to equation 3.20 may then 

be substituted in equations such as 3.4 to calculate various field 

quantities of interest . 

If a table of R (a) is kept as the i ntegration of equation 3.19 
n 

proceeds, it can be seen that we have information as to the fields in 

the external region which pertains to a whole class of inhomogeneous 

cylinders. 

However, it is inadvisabl e to stop at equation 3.19, as that 

equation is extremely cumbersome and a lot of computer time would be 

wasted if it were used directly. But be fore any further algebra is 

indulged in, there are a couple of interesting physical facts which may 

be brought out by studying equation 3.19 directly . 

If the impedance of the medium does not vary with position, i.e. 

if 

Z(a) = Z(p ) 
c 

or Z(a) = 0 

then equation 3.19 becomes 
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2i . 
-R 
Tika n 

= ka {(J' + R H 1
)
2

- (J +RH )(J" +RH")} 
n n n n n n n n n (3.21) 

From this equation it can be seen that even though Z does not 

vary with position, there .is, in general, a reflected wave, unlike the 

one-dimensional case discussed in Section 2C. 

However, there is one interesting fact associated with the 

constant impedance case. We recall that the H polarization case may be 

handled in a manner precisely analogous to that given so far in this 

section. The only change will be to interchange E(p) and µ(p) I t 

is obvious that this interchange has no effect on equation 3.21. This 

means, for example, that for the constant impedance case the differen-

tial scattering width of the inhomogeneous cylinder for a wave incident 

perpendicular to the cylinder axis is independent of the polarization 

of the incident wave . 

In any case we see that the H polarization problem may be handled 

by replacing Z/Z by -Z/Z on the right hand side of equation 3.19. 

From this it is clear that if we change polarizations and at the same 

time interchange the dependence of £ and µ on the radius) the scat-

tering pattern remains the same . 

There is one other special case of 3 .19 which may be of interest~ 

that is) the one in which one of £ , µ is independent of position. For 

example if we have E polarization and µ constant, 3.19 becomes 

2 l
. dR ( a) ( J + RH ) ( J ' + RH' ) 

__ n __ =ka{(J'+RH 1 )
2-(J+RH)(J"-RH")- n n n n 

nka da n n n n n n n n n ka } 



-49-

in which the explicit dependence on Z drops out. 

It should be noted that the forms we have obtained so far of the 

rate-of-change equation for the modal reflection coefficients are 

analogous to equation 2.44 . in that they are suitable for numerical 

integration even for high values of k as long as the derivative of 

the parameters with radius is of reasonable size. It is clear that 

this is true from an observation that the right hand side of equation 

3.19 reduces to zero in a constant parameter region. This result has 

been achieved directly by means of the original definition of R 
m 

implicit in expression 3.5 A definition more in line with the work of 

Section 2C would be to write the field for p > a > p in the form 
c 

[

J (k(a)p) R* H(l)(k(a)p)] . r1. 
n + n n in~ 

Jn(k(a)a) H(l)(k(a)a) e 
n 

The calculation could then be carried through to obtain an equation 

analogous to equation 3.19 for 

removing the rapid variation of 

R* • 
n 

R* 
n 

A subsequent transformation 

could bring us back to 3.19, but 

this has all been avoided. There is one other difference with the one 

dimensional case which should be brought out. We have, in the cylin-

drical case3 what is essentially a standing wave incident on the 

inhomogeneity , while in the one-dimensional cas e we had a traveling 

wave . 

The two differences mentioned above in conjunction with the 

asymptotic form of expression 3.5 
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p -+ 00 

lead to the conjecture that there might be some correspondence between 

R in the cylindrical case and 
n 

1 -2i(k p - n2TT - fr) . 
(e c R - 1) 

2 
(3. 22) 

where R is some one-dimensional reflection coefficient de~ined by 

some equation such as 2.38 . 

We now examine this conjecture in more detail. First we note that 

for k > -k/a , the arguments of the Bessel functions in equation 3 . 19 , 

namely k(a)a , are monotonically increasing fUnctions of a • If k 

is fairly large then, beyond a certain radius the Bessel functions may 

be replaced ' by their asymptotic forms 

J (x) 
n 

H (x) 
n 

and similar expressions for J ' J" H(l)' (l)" 
n ' n ' n • Hn • 

Substituting all these in equation 3.l9 we arrive at the 

equation 
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. - 2ia 
2 . 2ia (l n i n + e --e -----+ 
nka 2 

a n = nn n 
k(a)a - - - -2 4 

Now introducing the substitution suggested by expression 3.22 

!_ + R (a) 
2 n 

= 
-2ia 1 n 2 e un (a) 

and simplifying, the asymptotic form of the equation becomes 

u = 2ik u n n 
Z (1 - u2) 
2Z n 

(3.23) 

( 3. 24) 

which is seen to be identical in form to equation 2.38 . The equation 

itself is independent of n and the ·u (a) 
n functions differ for dif-

ferent values of n 

are not the same. 

only because their initial values at some u (a ) 
n o 

Now it is known from the theory of the Riccati equation that if 

we have three particular solutions of equation 3.24, say X(a) , Y(a) 

and Z(a), then the general solution may be written in the form 

u (a) = 
n 

Y(X - Z) - C Z(X - Y) 
n 

(X - Z) - C (X - Y) 
n 

(3 . 25) 

where en is some arbitrary constant which is to be determined by the 

value of u (a) at some starting point. n 
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For example, suppose it is decided that the asymptotic form of the 

equations is sufficiently accurate for 

three particular solutions of 3.24 for 

X(a ) = 0 
0 

Y(a ) = 1 
0 

Z(a ) = -1 
0 , 

a > a Then we only need 
0 

a > a , say those for which 
0 

then it is clear. from a substitution in 3.25 that 

c = n 

1 - u (a ) 
n o 

(3 . 26) 
1 + u (a ) 

n o 

Our program would then be to use 3,19 to calculate the R (a) 
n 

out 

to a 
' 

then to use 3 . 23 , 3.26 and 3.25 in turn, to calculate u (a) 
0 n 

for any a > a for which we have calculated X(a), Y(a) and Z(a) 
0 

Employing equation 3.23 a second time will then give us R (a) for all 
n 

relevant values of n with much less computational effort than using 

3,19 . for all n and a . It is to be understood here that we have in 

mind a reduction of calculation time in a digital computer. 

There are, of course , other means of reducing computat i onal time 

and of further reducing the time required for the above scheme . We 

wish to discuss here two in particular . One involves manipulating 

the right hand side of equation 3.19 into forms which a.re more easily 

evaluated numerically without changing the basic equation. The second 

method of reducing calculation i s to make a transformation of the inde-

pendent or the dependent variables in equation 3 , 19 so that it assumes 
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a simpler form. An example of this is in the above transformations to 

u for the asymptotic form of the equation, but there are also useful 
n 

changes to be made directly in 3.19. 

First, however, we discuss a few of the possible manipulations 

of the Bessel functions in the rate of change equation. The purpose of 

these transformations is to cast equation 3.19 into the form for which 

numerical evaluation of the right hand side is easiest. There are two 

things to keep in mind in trying to attain a fa$t computational form. 

The first is that the Bessel functions are most easily obtained using 

their difference equation: 

and the second is that the derivatives of Bessel functions in equation 

3.19 may be replaced by functions of different order using 

J (x) 
n = 

From these facts it is clear that the form we desire is that in which 

no derivatives of Bessel functions occur, but any number of orders may 

occur. This is clear because in calculating the Bessel functions we 

have to calculate many orders in any case . The easiest way to state 

the final form of these transformations is to rewrite equation 3.19 as 

~i R = ka {[~Jn J~ + ka(J~ J~ - J~ Jn)] 

+ R2 (~ H H' +ka(H'H' - H H")J} 
Z n n n n n n 

+ ka R (_zz (J H' + H J')+ka(2J'H' -J H" - HJ")} l n n n n n n n n n n 
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and then note the equivalent forms 

J J' = J J 2n J2 
n n n-1 n x n 

(J _ 2n J ) (J 2n-l 
2 

J' J' J" J = - --J n) + J2(1-n ) 
n n n n n-1 x n n-1 x n 2 

x 

and two similar expressions with H 
n 

replacing J , and the equation 
n 

2J' H' 
n n 

J H" 
n n 4n)(J H + Jn-lHn) x n n-l 

4n 6 2 
+ (2 - - + ..E__) J H 

x 2 n n x 

Of course many other forms of the above equations may be easily 

written down, but the ab~ve expressions involve the least computation 

that one can achieve without any transformation of variables in equa-

tion 3.19. 

We now turn to the last subject of the present section involving 

a cylindrical inhomogeneity , i.e. that of simplifying equation 3.19 by 

transforming the variables. 

We define a new variable ¢(a) by the equation 

R (a) = 
n 

~ ( a) J ( ka) - J ' ( ka) 
n n n 

H' (ka) - ¢ H (ka) 
n n n 

from which we may calculate the expressions 

J(ka) + R (a) H (ka) = 
n n 

2i 
1Tka 

1 
H (ka) - ¢ (a) H (ka) n n n 

(3. 27) 
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¢ (a) 
n 2i 

J' (ka) + R (a) H' (ka) = 
n n n nka H' (ka) - ¢ (a) H (ka) 

n n n 

J"(ka) + R (a) H"(ka) - (J"H' -J'H")+ ¢ (a)(H"J -J"H ) 
n n n n n n n n n n n n 

= 
2 1-n 

(ka)2 
2i 

2 n(ka) 

Substituting all these in equation 3.19 and calculating the deri-

vative on the le:ft hand side in terms of ¢ we obtain 

= z 1 ¢ (- - -) 
n Z a 

(3.28) 

In this equation all the dependence on Bessel functions has been 

eliminated. Equation 3.28 is analogous to equation 2 . 38 in that neither 

contains the "natura.J!' variation of the dependent variable . That is to 

say, even in a constant parameter, region ¢ may change rapidly, 

whereas R will not change. In spite of this drawback, however, equa-

tion 3.28 is to be preferred to equation 3.19 when the inhomogeneity 

is small enough; that is, when pc/Ac is fairly small (less than 2 or 

3), simply because all the calculation of Bessel functions has been 

avoided. 

In using equation 3 . 28 one should be a little careful . Although 

for physical reasons R will be bounded, there is no such guarantee 
n 

for ¢n • In fact '/Jn can become very large at many discrete points. 

This difficulty can be overcome, however, by considering a second 

variable, in addition to ~ ~n , 
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ljin = 1/¢ 
n 

whose equation is 

= 
. n2 lji2 

1jJ (!. - ~) + k(l + 1ji2 )- ___ n k* . 
n a Z n jkaj2 

(3.29) 

In our numerical calculation we integrate equation 3.28 or 3.29 , 

simply choosing the smallest of ¢n and ,,, 
'l'n as our dependent varia-

ble . A switch from one to the other may be carried out at any 

intermediate point in the integration for which our variable becomes 

greater than unity. 

There are two other minor points which are evident from a 

closer examination of equation 3.28 and 3,29, The first of these is 

that the starting values which must be chosen so that 

are 

¢ (a) 
0 

1jJ (a) 
n 

+ 

+ 

ka 
2 

ka 
n-1 

as 

R (0) 
n 

is zero 

a + 0 

The second point to remember is that in integrating across a discon-

tinuity in the medium we must use "jump conditions" which evidentl y 

may be written in the form 

¢ (a + 0) = Z(a+O) 
¢ (a-0) } n Z(a-0) n 

(3 . 30) 

1jJ (a + 0) = Z(a-0) 
1jJ ·(a-0) n z(a+O) n 

A computer code was written, based on the above scheme of cal-

culation. The details of the code appear in an appendix, while some 
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of the results obtained with it are described in the fifth section. 

The remainder of the present section is devoted to a brief sum-

mary of the results for spherical inhomogeneities. 

For the treatment of spherically symmetric inhomogeneities we 

first represent the incident waves in terms of their multipole expan-

sion. For example, for an incident plane wave traveling in the posi-

tive z direction and which is linearly polarized, it is possible to 

write (7) 

co 

( (1) n (1)) E. = E ikz 
E l .n 2n+1· 

i e e = 1 
n(n+l) !!!o1n --'l. -x 0 0 

n=l 
-eln (3.31) 

E E 00 

(m ( 1) + n(l)) H. 
0 ikz 0 I .n 2n+l 

i = e =- - 1 z-e n(n+l) --'l. --y z -eln -oln 
c n=l 

where 

(1) 
m 
-01n 

e 

j (k r) 
= + n c 

sin g P'(cos Q) 
n 

cos 
sin 

()p I 

VJ e _ j (k r) n sin ¢ 
-g n c aQ cos ~ 

(1) 
m = 
-oln 

n(n+l) j (k r) P'(cos g) 
k r n c n 

sin ¢ 
cos 

e -r 
+ ..l:._ [k r J )k r)] ' 

k r c n c 
e c c 

x 

cos 
x ¢ e sin -q; (3.32) 

Now each multipole has either a zero radial electric field or 

a zero radial magnetic field (E or H) • The E fields, for example , 

have 
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~ = - iH m 
(l) 

-0 
errm 

-0 
emn 

~ = ZH m 
(1) 

-0 -0 
emn emn 

From these and the representations of the incident field it is 

clear that it is only necessary to calculate the reflection coefficients 

of each elementary multipole wave. This is most easily done by consi-

dering the tangential fields rather than the radial fields which are 

usually of prime importance when discussing multipole expansions. 

For example we consider the 

the external region in the form 

E mode. 
mn 

F ( G , ¢) [ j ( kr ) + RE h ( kr) ) 
nm n n n 

By writing, say, Hg 

it follows from a step by step analogy with the calculations for the 

cylinder, using the continuity of t .he tangential component of E at 

each boundary and the equation 

that : 

E = 
V x H 

- iwE 

- L RE(a) = {£ j (ka)(ka j (ka)]'+ ka[ka(j'j' - j j")- j j']} 
ka n E n n n n n n n n 

in 

+ RE(i_[h (ka j )'+ j (ka h )']+ka[ka(j'h'-j h") - j h'] 
n 1E n n n n n n n n n n 

+ ka[ka(h' j' - h j") - h j']} n n n n n n 

+ RE2{£ h [ka h J '+ ka[ka(h'h'- h h " ) -h h']} n E n n n n n n n n 
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where the dot denotes differentiation with respect to a while the 

prime indicates differentiation with respect to ka • By some manipu-

lation it is possible to write the above equation in the simplified 

form, quite similar to 3.19 

+ (j + REh "l-}-i (j +RE h )(j' +RE h') (ka) 2 
n nn Zn nn n nn (3.33) 

From this it is clear that the equation for 

same as the one above with -Z/Z replaced by Z/Z • 

from the above equation that if µ/£ = µ /£ 
c c 

then the 

is exactly the 

It also follows 

E and H 

modes will have exactly t he same reflection coefficient. When this 

fact is used, together with equation 3.31 and the limiting form of 

equation 3.32 as Q ~ n , a short calculation suffices to convince one 

that the scattered field in the direction opposite to the incident 

direction is zero. The fact that the back-scattering cross-section of 

a sphere with constant µ/£ is zero was proved recently by another 

method (8). 

There are, of course, s i mplifications and transformations of 

equation 3,33 that could be demonstrated. However , it is felt that 

these, for the most part , would not be too instructive, since almost 

all of them have analogies which have already been discussed in con-

nection with the cylindrical case. 

Further geometries are briefly discussed in the conclusion of 

this report. 



-61-

Section 4 

SURVEY AND COMPARISONS 

The object of the present section is to look back over the 

fairly messy computations of the last section and observe what really 

has been accomplished. An additional purpose is to compare the method 

of Section 3, in various aspects, with those discussed in the second 

section . 

The first point that should be made is that what has been 

derived in the last section is primarily a practical computational 

method. There were certain statements of·a general or theoretical 

nature that we were able to make from observations of the various 

forms of the rate-of-change equation, but these were of secondary 

importance. For example, to take the most recent case, although it is 

interesting that the radar cross-section of a spherically symmetric 

object with constant "impedance" is zero, it is not really very impor­

tant. However , a means of rapidly calculating the cross section of an 

arbitrary spherically or cylindrically symmetric object is of practical 

importance for certain studies of present interest such as reflection 

from a nuclear fireball or meteor trail. 

It is well to realize that although many of the computations 

of the last section a.re cumbersome and ugly, the main results can be 

summarized in a few equations . For the cylinder these equations a.re 

the first rate-of-change equation derived, equation 3 . 19, along with 

certain of its simplifications for the far field, resulting in equa­

tions 3.23 and 3.24 . The various other forms of the rate-of-change 
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equation, for example the one usefUl for smaller cylinders written as 

equations 3 .28 and 3.30, are not as important. Although these other 

forms are necessary in making the method practically useful, they are 

all just transformations of the basic equation. 

Another point which should be stressed concerning the work of 

the last section is that , although the .work is rather involved, the 

principles are fairly simple. We merely wish some method of calculat­

ing the change in reflection coefficient for some particular mode as 

our inhomogeneity receives a small additional layer . The so-called 

method of multiple reflections with which we obtained this equation is 

not the only way our object could have been attained. For example, we 

could solve a complete boundary value problem for reflection from a 

cylinder, with some arbitrary reflection coefficient, onto which is 

attached an additional uniform layer of finite thickness. An examina­

tion of the behavior of the total reflection coefficient of this 

structure as the thickness of the extra layer tended to zero would again 

give us the rate of change equation . It seems, however, that the method 

used in the last section is the most appealing from a physical stand­

point. In addition, it bears the closest resemblance to methods used in 

previous applications of the method of invariant imbedding, such as 

reflection from a foggy medium , etc. 

There are some additional remarks which should be made in relat­

ing the work of the second and third sections. 

As opposed to the method of separation of variables, there are 

two general comments which should be made in favor of the method of 

Section 3 . The first of these is that the method of separation of 
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variables results in a second order equation for the field strengths. 

Numerically this is intrinsically more difficult to solve than a first 

order equation in the sense that it takes approximately twice as much 

time. In addition, for slightly more complex geometries there might be 

some difficulty in recognizing the correct initial conditions for the 

field equation. For example, in elliptical geometries, and even in the 

circular one, the correct value for the initial first derivative is not 

very easy to recognize . On the other hand, the fact that there should 

be no reflection when the scatterer disappears is always obvious, and 

this is sufficient as far as initial conditions for the rate-of-change 

equation is concerned . 

The second comment which should be made about the method of 

separation of variables is that it is not as easy to state the correct 

boundary conditions in some cases (for example when we choose a depen­

dent variable such as /µE in order to simplify our differential 

equation, or when we are concerned with reflection from a moving 

medium). It is always a straightforward, although perhaps lengthy, 

matter, using the basic physical equations, to build the correct 

boundary conditions into the rate-of-change equation approach. This 

is shown, for example, in the moving medium case by the work in refer­

ence (9). 

The reasons for which the rate- of-change method is to be pre­

ferred to the thin-shell approximation are numerous. One is that the 

rate-of- change method results immediately in an explicit calculational 

recipe. The thin shell approximation, as it is usually applied, 

results in a matrix equation which must be inverted. Although, because 
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of the form of this matrix there are certain simplifications which may 

be made resulting in an explicit calculation of the type exhibited in 

equation 2.31, this is essentially a two-step procedure for obtaining 

an approximation to the results of the one-step rate-of-change derivation. 

However, there is an additional and more serious objection to be 

made to the procedure of approximating the inhomogeneous problem by 

several thin shells. This is that there is some doubt as to the cor-

rectness of the reflection coefficients calculated by such a method as 

the thickness of the shells approaches zero. This can be seen from an 

examination of the one-dimensional case and in particular, equation 

2 .'36: 

(2.36) R = 
a -0 

1 2ika + 6 _ 0 6 
1 

At first sight it would seem from equation 2.36 that as the layer 

thickness vanishes, the reflection coefficient remains constant, since 

This is, of course, not true, since what we are calculating with 

equation 2.36 is merely the change in reflection coefficient as our 

reflecting surface changes by ~ · But the facts that the right hand 

side of equation 2.36 vanishes with vanishing 6 and that the thin 

shell approximation is based on equations similar to 2.36, imply that 

as the shells become thinner what we are effectively doing with this 

method is differentiating numerically with a differentiation scheme 
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based on a very small interval. The. gross numerical inaccuracies of 

such a calculation are well known. On the other hand, for rate-of­

change equations such as equation 2.38, the differentiation is done 

analytically, so this entire problem is circumvented . 

Before concluding this section we would like to recall to atten­

tion the close analogy between the one-dimensional case and the 

cylindrically symmetric case as treated by the method of "invariant 

imbedding". This is especially clear when one compares the large 

cylinder approximation, equation 3.24, with equation 2.38. It seems 

that a similar treatment of an elliptical or other boundary can be made 

to yield similar simplifications. 

Finally, we wish to emphasize that the method is primarily a 

computational method. It achieves its usefulness by restricting atten­

tion to the fields in the exterior region. In addition to being a 

rapid method of calculating the field scattered from a particular 

cylinder, the method can, with no additional effort, be used to compute 

the fields scattered from a whole class of similar cylinders (or 

spheres, or other geometrical shapes for which the rate-of-change 

equations can be derived). 

In the next section a few examples of application of the method 

are exhibited. 
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Section 5 

EXAMPLES OF CALCULATIONS FOR THE CYLINDRICAL CASE 

Using the method of Section 3, calculations have been made for 

three particular types of inhomogeneous cylinder with various types of 

incident wave. The computer program by which these calculations were 

made is described in the Appendix. 

The first set of data with which comparisons were made was that 

of Jasik (1) . In 1954 Jasik published the results of his calculations 

concerning the exact theory of the two-dimensional Luneberg lens. 

A two-dimensional Luneberg lens is an axially symmetric inhomo-

geneous dielectric cylinder whose dielectric constant varies with 

radius according to the relation 

e:(p) = £ 
0 

If the ray-optical approximation is emp'loyed to calculate the far 

field of a line source at the boundary of a cylinder with the above 

variation of dielectric constant, it is found that the far field as a 

function of angle has a delta-function peak in the forward direction. 

A closer approximation in which ray optics is used only to calculate 

the magnitude of the field in a plane tangent to the front edge of the 

cylinder, and then a Kirchhoff integral is used to calculate the far 

field, leads to a far field as a f'unction of angle in the form 

F(~) a: 

J 314 (ka sin Q) 

ka sin Q 
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Jasik (1) exhibits a curve for the far field for the case when 

ka = 8, which is identical with Figure 6a. He discusses also the 

validity of the optical approximations with regard to the far fields 

they predict. The intere~ting point is that the physical optics 

approximation is so accurate, even at fairly low ka numbers. 

Figure 6 is entirely based on computations employing the method 

of invariant imbedding . Jasik did not obtain any exact results for 

the higher ka numbers for which curves 6b and 6c are plotted. As 

stated above, his results and the present ones agree as closely as t he 

curves can be read for the case shown in Figure 6a. 

Another study which was made with regard to the two-dimensional 

Luneberg lens was that of gradually stepping the line source away from 

the edge of the cylinder . The results of this investigation are 

exhibited in Figures 7, 8 and 9 , In these f ·i gures R is the distance 

of the line source from the center of the cylinder, while in each case 

ka = 8 None of these results have been reported before . 

The final numerical investigation concerning the Luneberg lens 

was that of computing the scattered field when a plane wave is incident 

The far field in this case is shown in Figure 10 for three particular 

magnitudes of the incident propagation vector. It is ·interesting t o 

note that these curves also conform to what one might expect from ray 

optical considerations . 

In all parts of the Luneberg lens study the electric field was 

parallel to the axis of the cylinder . 
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Fig. 6. Far field of a line 
source at the edge of a two­
dimensional Luneberg lens for 
various frequencies 
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ka = 8 
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R= 

R = 1.2 
Fig . 7 . Far fi e ld of a l ine 
source at the edge of, and 
sli ghtly away from a t wo ­
dimensional Luneberg lens (radius 
of l e n s is 1 , k is 8 ) 
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R = 1.4 

R = 1.8 

Fig. 8. Far field of a l ine 
source at short distances from 
a Luneberg lens (radius of lens 
is 1 s k is 8) 
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R = 2.5 

R = 3.0 

Fig . 9. Far field of a line 
source at · a distance __ R from the 
center of a two-dimensional 
Luneberg lens (radius of lens is 
1, k is 8) 
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ko = 4 

ko = 8 

ko • 12 

Fig. 10. Scattering patterns of 
a two-dimensional Luneberg lens 
at various frequencies 
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There are two other types of inhomogeneous cylinders which were 

examined using the method of this report. The first of these, studied 

mainly because of the availability of results to check the computer 

code for the case when the scattering cylinder has a complex dielect ric 

constant, is that reported in reference (11). That is to say, a per-

mittivity variation of the form 

t.( a(>..) = e: 
0 

where the e: are complex constants, is assumed. 
2n 

Part of the results 

of this investigation are shown in Figure 11. Figure 11 is a plot of 

the log of the backscatter, where 

RM 

versus the plasma frequency, normalized to the frequency of the inci-

dent wave 

= 

while v is the collision frequency relative to the frequency of the 

incident wave. These parameters are chosen in agreement with the 

notation of Reference 11. Figure 11 represents the results for the 

special case when e: = 0 , n > 0 , and it is in agreement with the 
2n 

results of reference (11), (Figure 2), except for certai n minor dis-

crepancies near f2 = 1 . 
1! 
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0 a= 1.0 
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Fig. 11. Back scatter of a homo­
geneous p l asma cylinder under a 
" . " . coll ision frequency approxima-
ti.on 



-75-

The last type of cylinder studied was that of an inhomogeneous 

plasma with the electron density profiles shown in Figure 12. These 

profiles are of interest since they are semi-empirical results showing 

the approximate density profiles in the trail behind a rocket, at 

certain distances behind the rocket. The curves were obtained from 

the Douglas Aircraft Company. 

In Figure 13 the field .scattered from profile A is plotted for 

the case when the incident wave number (k) is six. Both electric and 

magnetic polarizations are included. Figure 14 consists of similar 

plots for a different magnitude of the incident wave number. Figures 

15 and 16 contain the results for profile B • 
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Fig . 12. Typical electron 
density profiles behind a rocket 
at certain distances 
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A 

.249 

E- POLARIZATION 

B 

.34 

H- POLARIZATION 

PROFILE A , k=G , fc/f=.14 

Fig. 13. Differential Scattering 
widths for Profile A, Fig . 12. 
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.034 

E- POLARIZATION 

.04 

H- POLARIZATION 

PROFILE A, k=IO, fc/f=.14 
Fig. 14. Differential scatter­
ing ·widths for Profile A, Fig.12 
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.476 

E- POLARIZATION 

.85 

H- POLARIZATION 

PROFILE B , k• 2 , f /f " .14 

Fig . 15 . Different i al scattering 
widths for Profile B , Fig. 12 . 
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.015 

E- POLARIZATION 

H - POLAR l·ZATI ON 

PROFILE B, k=G, fc/f= . 14 
Fig . 16. Differential scattering 
widths for Profile B, Fig. 12 

1.52 

1.53 
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Section 6 

CONCLUDING RE~ARKS 

As mentioned before, the main point of this work is the practical 

calculational method that is offered. The method is particularly effec­

tive when it is necessary to compute certain data (the far field, for 

example) for a whole class of problems. That is to say for instance, 

if one wanted to compute the field scattered from a large group of 

homogeneous cylinders which differed only in their radius , the method 

would be the ideal tool for the job. However, even if one only desires 

information about a particular inhomogeneous cylinder, the method 

still has advantages. One of these advantages is that the time for 

obtaining an accurate numerical solution of a' linear second order dif­

ferential equation has been eliminated by reformulating the problem. 

In the reformulation there arises a certain nonlinea~ first order equa­

tion. As far as numerical solutions on a digital computer are concerned, 

the linearity or nonlinearity of the equation is immaterial and there is 

a definite saving of time from the reduction of the order of the equa­

t·ion. 

The advantages the method offered in this report has over those 

methods which have been put forward in the past are discussed in more 

detail in the fourth section. Here i t should be said, however) that 

the main differences between the present approach and what might be 

called the "multi-layer" approach are those of numerical accuracy and 

a confidence that the limiting form of the numerical solution is truly 

the quantity which is to be calculated . 
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There is one other advantage of the present method over the multi­

layer approach which should be mentioned; that is, with the analytical 

forms of the equations inherent i n the equation-of-change approach, 

certain transformations which simplify the calculations for certain 

parameter values are perhaps a little more transparent. This can be 

seen, for example, in the approximations leading to equation 3.24. 

From the strictly numerical thin-shell approach, these simplifications 

might never have presented themselves. 

Although the main line of this report was the development of a 

calculational method, there were certain other interesting points that 

have occurred during the course of the analysis. It is perhaps desir­

able to give a brief summary of some of them in order that they may 

not be completely forgotten. 

One minor point of this nature is the discussion in the second 

section of the various terminologies that have been used in discussing 

problems of this type arid the fact that words such as "invariant 

imbedding", "equation-of-change" , etc . have sometimes overlapping but 

not equivalent meanings . 

Another point,more important perhaps, is the various forms that 

the equation-of-change can take under certain transformations. Some 

of these (10) are more suitable than others for particular applica­

tions . Their suitability depends upon the rate-of-change of the 

medium parameters, the form in which the boundary conditions are known, 

etc. 

~ithin this group of subjects it is worth whi le to point out 

the compact demonstration of the relation between the transmission 
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coefficients in each direction for a one-dimensiona inhomogeneity. 

This relation is given by equation 2.43 for a general (i.e., conducti­

vity and permeability as well a s permittivity) variation of the medium 

parameters . 

Finall y, the re is the interesting case of a constant ratio of 

permeability to permittivity to be examined. In the cylindrical geo­

metry this leads to a scattering pattern which is i ndependent of the 

polarization of the incident plane wave, while in the spherical geometry 

this variation leads to a backscattering cross-section of zero (as in 

the one-dimensional case). 

There are, of course, certain other points that could be men­

tioned, but a line must be drawn somewhere . These other points will 

become evident on a close reading of Sections 2 and 3. 

This report would be incomplete without a discussion of possible 

extensions of its method. The first of these extensions could be to 

other geometries. The case of an elliptical, cylindrical inhomogeneity 

looks straightforward, while that of an ellipsoidal inhomogeneity may 

be possible for certain of the incident modes. A second area of 

extension is that of attempting to get a rate-of-change equation for 

t he whole scattered field at once for some three-dimensi onal problem . 

An example of this nature which may or may not be possible, is t hat of 

trying to get the change in the field of a.dipole above a stratified 

half-space as the position of the dipole recedes from the surface of 

the half space. 

A third , and most i mportant way in which the methods presented 

here could be extended is in a discussion of more general 
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inhomogeneities than those described by a simple statement of dielectric 

constant as a function of position . An interesting case of this sort 

is contained in a recent paper (8) discussing the reflection of electro­

magnetic waves from a slab with a laminar velocity profile. Perhaps a 

method of treating a turbulent half- space, or slab, could be developed 

with the inv~riant-imbedding approach. 



-85-

Appendix 

COMPUTER CODE 

This appendix is a description of a typical computer code for 

calculating scattered fields using the method of Section 3. In parti-

cular, the following code was used in the computation of most of the 

data displayed in the fi~h section . 

For convenience we divide the following brief descriptions into 

sections based on the programs into which the code itself is divided. 

CYL 

This is the main program. It reads in and writes out the data 

and juggles the various subroutines. It consecutively 

1. Sets up commons 

2. Reads: exterior region parameters (k . , k , number of k's); min max 

3 , 

desired field angle data (min. and max. ~. number of ~ 's ); 

data concerning number of modes, number of discontinuities, 

number of integration points per region, number of addi-

tional properties which will be fed in, and the initial 

radius data . 

positions of discontinuities 

additional properties used for miscel laneous calculations 

type of source, polarizations radius of source, if a line, 

real and imaginary parts of source strength ~ if a line . 

Sets up loop of varying k 
c 

4. Calls subroutine COEF (description later) 

5, Determines starting unknowns 
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6. Calls CONT up to first discontinuity in the medium 

7, Calls PARA for nth and n+lth regions and then HOP 

8 . Determines whether the last region has been reached, and if 

not, calls CONT, etc. 

9, Calls REF and SUM 

10. Writes out titles, some identifying data, and the far field 

for various angles 

11. Sets formats . 

The computations are based on the scheme embodied in equations 

3.28 and 3 , 29. The subroutines mentioned in the above description are, 

in order : 

· · coEF 

This subroutine calculates the modal coefficients of the incident 

wave in two often-used cases, namely 

(a) plane wave 

COR + COI = 1 + iO 

= (-l)n/2 n even 

- (n/lnl) ( - l)(n-1)/2 n odd 

(b) line source at po,n of strengtb R + iI 

c = (R + iI)(J (k p ) + iY (k
1

p )) 
0 0 0 0 0 0 

c = (R + iI)(J (k p ) + iYn (kop o) )(-1 )n n n o o 

BEGIN 

This routine gets the program off the ground at small radius by 

using the small argument expansions for the impedance-admittance variable . 
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z
1 

= -kP/2 U(l) = 0 

Z = kp/(n-1) 
n 

U(n) = 1 

Note that the U variable determines whether we are using equation 

3.28 (U=O) or 3.29 (U=l) • 

PARA 

This routine supplies the medium parameters of the particular 

inhomogeneity under study. In general, 

(a) 

where a = a/wt. 

z Ii+ ()2 (b) z X+ iY = c ( IM+l + i IM-1) where M = = 
./2M" 

( c) k = k ff ( IM+l + i IM-1 
c 2 

In the particular case of the lossless, cylindrical Luneberg lens, 

these reduce to 

. 
z 
z = 

p 
2 2 

p . - p 
c 

z = 
z 

c 

For H-polarization, because of the set-up of the program 

Z/Z 
. 

-+- - Z/Z 

z -+- l/Z 
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CONT 

This routine integrates numerically using Heun's method (12) 

equation 3.28 or 3,29, within regions in which the medium is continu-

ous. 

HOP 

This is a simple routine which, from the impedances of the plus 

and minus regi ons and the impedance-admittance in the minus region, 

computes the impedance-admittance in the plus region according to 

formula 3. 30. 

REF 

This subroutine calculates the reflection coefficients from the 

impedance-admittance ¢n , using the formula 

or 

R = n 

R 
n = 

H(l) I - ¢ H(l) 
n n n 

J - ¢ J' n n n 
¢ H(l) I - H(l) 

n n n 

depending upon whether the indicator variable U(n) is zero or one, 

respectively . We use the. formulas: 

J' = n 

l.(H(l) 
2 n-1 

J. ) 
n+l 

and so obtain for the two cases, if ¢n = R + iX 
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RJ + J - iX J 
0 l 0 

U(n) = 0 R = 
0 

- J - iY - (R + iX) (J + iY ) 
l l 0 0 

J n-1 - J 
n+l) (RJ - + iX J 

n 2 n 
R = n 

J - J y y 
n-1 n-1 -( n+l) + i( n+ l) - ( R + iX) ( J Y ) 

2 2 n-1 n 

J + (R + iX) Jl 
U(n) l R 0 = = 

0 -(R+iX)(J
1

+ iY ) - J - iY 
l 0 0 

J - J 
J - (R + iX) ( n-1 n+l) 

R n 2 = n J - J y - y 

(R+iX)( n-1 n+l i n-1 n+l) _ J - iY 
2 

+ 
2 n n 

SUM 

This subroutine calculates the far field .as a function of 

angle, using the reflection coefficients of the individual modes and 

the modal coefficients of the incident wave, i.e., we do the sum 

E,H = A R 
0 0 

+ 

In addition to the above codes, use is made of a CIT library sub-

routine for calculating Bessel functions. 
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