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Abstract 

The subject under investigation concerns the steady surface 

wave patterns created by small concentrated disturbances acting on 

a non-uniform flow of a heavy fluid. The initial value problem of a 

point disturbance in a primary flow having an arbitrary velocity 

distribution (U(y}, 0 , 0) in a direction parallel to the undisturbed free 

surface is formul ated. A geometric optics method and the clas -

sical integ ral transform method are employed as two different 

methods of solution for this problem. Whenever necessary, the 

special case of linear shear (i. e . U(y) = U (1 + ey) ) is chosen for the 
0 

purpose of facilitating the final integration of the solution. 

The asymptotic form of the solution obtained by the method of 

integral transforms agrees with the l eading terms of the solution 

obtained by geometric optics when the latter is expanded in powers 

of small Er. 

The overall effect of the shear is t o confine the wave field on 

the downstream side of the disturbance to a region which is smalle r 

than the wave region in the case of uniform flows. If U(y) 

vanishes, and changes sign at a critical plane y = y (e . g . 
er 

ey = -1 for the cas e of linear shear), then the boundary of this 
er 

asymmetric wave field approaches this c ritical v e rtical plane . On 

this boundary the wave crests are all p e rpendicular to the x-axis, 

indicat i ng t hat wave s are reflect e d a t t his bounda ry. 
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Inside the wave field, as in the case of a point disturbance in 

a uniform primary flow, there exist two wave systems. The loci of 

constant phases (such as the crests or troughs) of these wave sys-

terns are not symmetric with respect to the x -axis. The geometric 

optics method and the integral transform method yield the same 

result of these loci for the special case of U(y) = U (1 + E y ) and for 
0 

large K r ( E r « 1 « K r ) . 

An expression for the variation of the amplitude of the waves 

in the wave field is obtained by the integral transform method. This 

is in the form of an expansion in small Er. The ze r oth order is 

identical to the expression for the uniform stream case and is thus 

not applicable near the boundary of the wave region because it be-

comes infinite in that neighborhood. Throughout this investigation 

the viscous terms in the equations of motion are neglected, a reason-

able assumption which can be justified when the wavelengths of the 

resulting waves are sufficiently large. 
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I. INTRODUCTION 

In oceanography, the effects of strongly sheared ocean cur­

rents on the propagation of ocean waves present problems of consider­

able interest. Another example of water waves in shear flow is the 

ship waves propagating in the wake and near the stern of a ship. A 

steady wave pattern of surface wave is produced by a concentrated 

stationary disturbance located either on the surface or submerged 

within a steady primary shear flow. This class of problems 

is of basic academic interest as well as of great importance in ship 

hydrodynamics because it can predict the main features of the system 

of waves accompanying a ship moving through a sufficiently deep water . 

There exists an extensive literature concerning the special 

case when the primary flow is uniform. The classical method of 

solution i s discussed in Lamb's Hydrodynamics (Ref. 7) where applica ­

tion is made to gravity waves (Kelvin's ship wave-pattern) in § 256 and 

to capillary and combined capillary-gravity waves in §272. The ex­

tension of this c lassical. method to disturbance s of variable or pulsat­

ing strength and following an arbitrary path in a uniform primary flow 

may be found in Wehausen and Laitone (Ref. 18) and Stoke r (Re f. 14). 

In contrast, the problem is much more difficult when the 

primary flow is non-uniform. Several papers treating the problems 

of disturbances in a rotational flow are limited to two dimensional dis -

t u r banc e s in parallel s h e ar flows without free surface s. The vortex 
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lines in these flows are straight, remain parallel to one another, and 

are not stretched during the motion. Hence they are relatively 

easy to treat. 

When the disturbance is three-dimensional, even though the 

undisturbed flow may still be unidirectional and does not possess a 

free surface, the stretching and bending of vortex lines must play an 

important role . Certain outstanding papers on the theory of these 

flow s have appeared. 

A basic theorem that two-dimensional disturbances become 

unstable a t a lower c ritical Reynolds number than three -dimensional 

disturbances has been given by Squire (Ref. 12 ). 

Squire and Winter (Ref. 13) have investigated steady three­

dimensional disturbances to a parallel shear flow with no free surface 

by the so-called "secondary flow" method. In this treatment, no 

restriction is placed on the disturbances but there is an assumption 

that the undisturbed stream is weakly sheared. The shear is usually 

taken to be linear though this is not an essential limitation to the 

method. A difficulty arising in the application of this theory is that 

the secondary flow disturbance due to the presence of an obstacle falls 

off more slowly with distance than does the primary flow disturbance . 

This limits the validity of the solution to the region near the obstacle . 

In an effort to clear up this difficulty Lighthill (Ref . 9) has 

studied the fundamental solution of a small steady thr ee -dimensional 

disturbance in a two-dimensional parallel shear flow wit hout a free 

surface . Denoting the velocity field by (U(y ) + u, v , w), he has shown 
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that the small perturbation theory based on neglecting the squares of 

the perturbation velocities u, v and w is valid fa r from the obstacle 

and overlaps the region where the secondary flow solution is valid. 

The asymptotic behavior of this solution for large r shows that a 

source in a shear layer produces in a region of uniform flow outside 

the shear layer a disturbance equivalent to a source of different 

strength at a diffe r ent position. The strength of the equivalent source 

can be predicted by an image method in which the shear layer is 

rega:rded as a superposition of layers of piecewise uniform flows. The 

displacement ineffective position is of the order of the width of the shear 

layer. It is expected that such modification of source strength and 

position will no longer b e so simple in the presence of a free surface. 

In fact, in the presence of a free surface, the difficulties of 

treating the stretching and b ending of the vortex lines are further en­

hanced. If the undisturbed flow contains a vortex sheet i . e. a dis -

continuity in velocity, perpendicular to the free surface, any disturb­

ance rnay produce wave motions both in the free surface and in the 

vortex sheet . Development of a theory de scribing the interaction be -

tween the waves and these free surfaces is a difficult mathematical 

tas k. For primary flows having a continuous horizontal velocity 

distribution, the free surface waves produced by an obstac l e will de­

finitely be affected by the vorticity of the primary flow . 

In spite of the difficulties described above, Ursell (Ref. 17) 

has investigated the problem of steady wave patterns on a non -uniform 

steady fluid flow . By assuming that the primary non-uniform flow is 
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irrotational and does not vary rapidly with distance, h e has developed 

a theory, for the steady wave pattern, based on the following assump-

tions: 

(i) The streaming velocity component normal to a 

wave crest is equal to the phase velocity based 

on the local wave length; 

(ii) the separation between consecutive crests is 

equal to the local wave length. 

The purpose of the present study is to develop systematically 

a theory for steady surface wave patterns due to a small concentrated 

disturbance in a primary parallel rotational flow. In the construction 

of the phase curves by Ursell (reference 1 7) it was assumed that the 

phase velocity relative to a si.ightly non-uniform stream of variable 

depth can be adequately approximated by the phase velocity obtained 

from constant depth theory. The validity of this implicit assumption 

of adopting the original dispersion relationship for uniform flows of 

constant depth for rotational non-uniform primary flows is not im­

mediately obvious. Indeed, our theory shows that if terms other 

than the two lowest orders are kept, this is no longer valid. 

By discarding the squares of the perturbation velocities u, v 

and w of the velocity field (U(y) + u, v, w), we shall first formulate 

the problem for an arbitrary primary parallel shear flow U(y} with 

an undisturbed free surface at z = 0, in Chapter II. 

A method based on the notion of group velocity and geometric 

optic s argument, as developed by Landau and Lifshitz (reference 8), 
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by Keller (reference 6) and by others, is applied to the problem of a 

small stationary concentrated surface disturbance on a primary 

parallel shear flow U(y) in Chapter III. In section 1, U(y) is kept 

arbitrary but in sections 2 and 3, solution for the special case of 

U(y) = U (1 + e y) is carried out while no restriction is placed on e 
0 

It is believed that the true behavior of the flow far from the disturb-

ance must be obtained from the full equations with the squares of the 

disturbance n egl ec t e d. Such an approach results in a 11 small-

perturbation11 solution. The region of validity of this result is at 

large distances from the disturbance and overlaps the region near the 

disturbance where a ' 1small- shear 11 solution is valid . This over-

lapping holds in the sense that the asymptotic behavior of the 11 small 

shear 11 solution is sim:.lar to the asymptotic behavior of a perturba-.-

ti on expansion of the 11 small-perturbation11 solution for small er. 

This is, indeed, indicated by comparison of the results of 

Chapter III, section 3, and Chapter IV. 

The geometric optics method of Chapter III fails at the bound-

ary of the wave region. For the special case of uniform primary 

flow, Ursell (reference 16) has determined the behavior of the waves 

near the boundary of the wave region by a modification of the prin-

ciple of stationary phase. Thus showing that for dispersive waves, 

the integral transform method is the fundamental one. The refore, 

in Chapter IV, we shall modify the classical integral transform 

method to treat a weak submerged source of constant str e ngth in a 

primary linear shear flow, i.e. U = U
0

(1 +e y). By following the 
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11 secondary flow'' method, we take the "primary flow" to coincide 

with that in which the undisturbed stream is uniform and the 

"secondary flow" to be a perturbation of the primary flow by allowing 

a small shear ( e small) in the undisturbed stream. The resulting 

"small shear" solution, obtained by applying the method of 

stationary phase to evaluate the inverse transform, is valid for 

1 
large r (<-) . However, a more elaborate asymptotic technique 

E 

will have to be applied in order to deduce a solution valid near the 

boundary of the wave region. 

Although the velocity distribution U (1 +e y) considered in 
0 

Chapter III and Chapter IV may seem somewhat artificial, it never-

theless provides some insight to the problem of arbitrary U(y) as 

well as a first approximation to the horizontal velocity distribuUon 

of the ocean near the shore-line. In the present treatment, surface 

tension and viscous terms in the equations are neglected. This is 

known to be permissible except near the critical region where U(y) 

is zero. Accordingly the theory developed here is limited to a region 

in which U(y) is nowhere zero. 
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II. GENERAL FORMULA TI ON 

1. Co-ordinate system and convention 

The problem in question concerns the propagation of surface 

waves in a body of heavy fluid, of infinite depth, initially having a pre -

scribed non-uniform horizontal velocity distribution, due to a station­

ary disturbance. The fluid is taken to be inviscid and incompressible, 

of constant density p. The resulting flow will be generally rotational; 

the disturbance is however assumed to be so small that a linear theory 

can be applied. Consider a right-handed rectilinear co-ordinate sys -

tern such that (Fig. 1 ) 

(i) the z -axis points vertically :ipward, with z = 0 

coinciding with the undisturbed free surface, and the grav­

ity acting in the negative z -direction; 

(ii) the x-axis is in the direction of the undisturbed stream 

which is taken to be a function of y only; and 

(iii) the y-axis completes the system. 

The x, y, z-components of the velocity vector q are denoted by u, v, 

w, the pressure by p, the density by p and the gravitational accel­

eration by g. Other notations will be defined in the text as needed. 

2. Equations of motion 

The primary flow is unidirectional and has a prescribed shear 

given by 

q
0 

= (U(y), 0, 0) 

Po = -pgz 
(2 .1) 
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where U(y) is an arbitrary function of y and is assumed to be at 

least twice differentiable. With q,:, and p>:, representing the total veloc-

ity vector and pressure respectively, the momentum equation for an 

inviscid, incompressible flow is 

8q,:c 
~ + (q,:: \i' )q >!, 

The continuity equation is 

\i' P,:, 
= - -- -Y'gz 

p 

'V·q ,;, = Q(x, t), 

where Q(x, t) represents a source in the fluid. 

3. Boundary conditions 

(2. 2) 

(2. 3) 

The boundary conditions on the free surface of the heavy fluid 

can be stated as follows. Let the free surface be Sf: z - t; (x, y, t) = 0 

wher e t;, (x , y, t) is the vertical displacement of the free surface meas -

ured from z = 0. The dynamic condition of constant pressure at the 

fr ee surface required 

= 0 on z=t;,(x,y,t) (2. 4) 

The kinematic condition for the particles on the free surface is 

z=t;,(x,y,t) (2 . 5) 

On solid surfaces with specified shapes S(x, y, z, t) = 0 the boundary 

c o ndition is 

on S(x,y,z,t)=O (2 . 6) 
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4. Linearization 

T he flow field maybe considered as a combination of the p r ima-

ry shear flow (q
0

, p
0

} and a per turba t ion (q , p ) so that 

q,:, = q
0 

+ q = (U(y ) + u,v , w} , (2 . 7) 

p ... = p + p = - pgz + p .,, 0 

If the departure from the primary flow i s small, then by neg l ecting 

the squares and products of u,v,w and their derivatives, Eqs . (2.2), 

(2. 3) can be linearized to give 

Du+ U' (y}v + a: { ~) = o ' 

Dv + ~( E. ) = 0 ay p , 

Dw + a: { ~) = 0' 

au 
+ av + 

8w = Q (x, t) ax ay 8Z 

- a where D = 8t a 
+ U (y) ax' 

8 
and in the seque l D' = U' (y) ax a n d 

(2 . 9 ) 

(2. 1 0 ) 

(2. 11 ) 

(2 . 12 ) 

D" :: U" (y ) 
0
: The l inearized free sur face condit ions can b e readily 

shown to be 

-pgw + Dp = 0 (2 . 1 3) 

Ds = w 

whereas the boundary condition on solid surface remains unchanged . 

Elimination of p by cross differen tiations of (2. 9), (2. 10) and (2 . 11) 

gives 
a 

oy Du = 
av 8 

D 8x - 8y (U' (y }v) (2 .1 5 ) 
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a 
oy Dw 

av 
= D az (2.16) 

Although from (2 . 12), (2 . 15) and (2.16) a single equation for any 

component of the perturbation velocity q = (u, v, w} can be obtained, 

the equation w ith v as the dependent variable is preferred. By 

e liminating u and w, we obtain 

[ DV'2 
- D"] v = 0~ DQ(x, t) (2. 1 7) 

Equation (2. 1 7) is the basic equation of motion. When v has been 

solved together with appropriate boundary conditions, u and w may 

be deduced from (2. 16) and the continuity equation. To obtain w, the 

lower limit in the y-integral may b e taken as either +«:> or - oo since 

the disturbance s are assumed to vanish at both limits. The result 

obtained using either limit is the same . In integrating the continuity 

equation with respect to x to obtain u, however, the lower limit 

must be -oo because it is possible that the fluid at +«:> in which 

r eg i o n the vorticity may be permanently changed after the fluid has 

passed the disturbance, may n o t have zero disturbance velocity i. e . 

we shall only assume all disturbances vanish farup stream (at x = -oo ). 

The appropriate condition on the free surface for v can be 

derived by differentiating (2. 13) giving 

-g ~ Dw + ~ D2 
{ E.) = 0 oy By p (2.18) 

Eliminating w from (2. 18) and (2. 16), we obtai n a fter som e manip -

ulation 
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- g 8
8
z Dv + D

2 8~ ( ~) + 2DD' ( ~) = o 

By using (2. 10) in the second term and integrating the resulting equa-

tion once, we have 

- g ov - D2 v + 2D'( E.) = 0 
8z p 

(2. 19) 

Recalling D' = U'(y) :x, Eq. (2.9) can be used to eliminate(~), 

yielding 

+ g ~~ + D2v + 2U 1 (y)(Du + U '(y )v ) = 0 (2 .. 20) 

Finally,dividing(2.20)by U'(y) , differentiatingitwithrespectto y, then 

using (2 . 15) to eliminate u, we obtain the free surface boundary 

conditi on as 

{ 
z 8v} a Dv+gaz e 

8y U I (y ) = - 2 8x Dv on z=O • (2.21) 

With appropriate initial and boundary conditions, v can be solved from 

(2 . 17)and(2.21). Sofarnorestrictionhasbeenplacedon U(y). They 

are linear partial differential equations with variable coefficients 

which depend on y in such a complicated manner that it is quite dif-

ficult to obtain an analytical solution for the general case of arbitrary 

U(y). In Chapter III a geometric optics method will be developed for 

the case when the variation of U(y), otherwise arbitrary, is as -

sumed small. In Chapter IV an integral transform method will be 

applied to solve (2 . 17) and (2. 21) for v for a particular, although 

s omewhat artificial U(y), name ly that of linear shear , 

u (y) = u ( 1 + ~y) 
0 

(2.22) 
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It is obvious that this type of undisturbed parallel velocity distribution , 

if exists at all , is rar e . Nevertheless the solution may give some in-

sight to the much harder problem of arbitrary U(y). 

5. Review of steady wave pattern in a uniform stream 

The treatment of a stationary point source of str e ngth m, sub-

merged in a uniform primary flow, by double Fourier transform and 

asymptotic evaluation of certain integrals based on the principle of 

stationary phas e illustrates the characteristic difficulties involved 

(Ref.18 ). We shall review this method briefly to fix ideas as well as 

for discussion and comparison of the results with the case in which the 

primary flow is non-uniform. 

Let rectangular cartesian co-ordinates (x, y, z) be chosen with 

the z -axis perpendicular to the undisturbed free surface, the x-axis 

paralle l to the stream velocity U, 
0 

and the y-axis completing the 

system. The gravity acts in the negative z-direction, with gravitation-

al acceleration g . . The origin is taken so that the point of disturbance 

is at (0, 0, - h). Polar co-ordinates (r, a, z) are defined by 

x = r cos a, y = r sin a. Our problem is to find the velocity potential 

cp (x, y, z) based on the linearized theory that in the flow field z < 0, 
0 

cf> satisfies the Laplace equation 
0 

\72cp = 0 
0 

except at (0,0, -h) 

and the boundary condition at the free surface z = 0 tha t 

(z = 0) 

(2. 23) 

(2 . 24) 
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where K = g/U 2 is a characteristic wave number. We further write 
0 

m 1 ......, 
q, o (x' y' z ) = - 4n R + cf> (x' y' z) ' 

l 

where ¢' is a harmonic function , regular in the region z < 0, and 

Rz = xz + yz + (z+h )z 
l 

For the condition at infinity we requir e 

lim grade/> = 0 
0 z-+ -oo 

lim grade/> = 0 
(\ 

x-> - oo 

Applying the double Fourier Transform,defined as 

J{c/>) = s oo dx s oo dy ;i(ax+f3 y )cf> o 
. -IX> - 00 

(2.25) 

(2. 26) 

(2. 27) 

(2. 28) 

to (2. 23 ), we obtain a second order ordinary differential equation with 

z as the only indepe ndent variable. The coefficients in the solution of 

this transformed equation a r e determined by the transform of the bound-

ary conditions . The details of the method of solution can be found in 

Havelock (Ref. 4 ) and e l sewhere and will not be repeated here. With 

the notatic:n 

a = k cos e 
(2. 29) 

f3 = k sine 

the result is as follows : 
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cb (x, y, z) 
0 

m 1 m 1 
= - 4TI" R + 4ir R 

1 z 

'IT 

+Re 1 (' 
2 

dB s 00 
dkeikr cos(B-a)ek(z-h) mK secie , 

2'ITZ j 'IT o k-K secZB 

(2. 3 0) 

where Rz = xz + yz +(z-h)z and "Re" denote s 11 the real part of". The 
z 

physical significances of the terms on the right-hand side of (2. 30), 

are respectively, the point source, its reflection into the plane z = 0, 

and thE.: disturbance due to the free surface effects, including the sur -

face waves . By evaluating the k ·-integral along an appropriate path, the 

i ntegra l in (2. 30), for cos(B-a) > 0, yields in the final r e sult of cb a 
0 

term of the following integral representation 

e 
i j' · 7 da e irK secze cos(B-a) K seczB(z-h} za Re 17 e mK s ec 17 

'IT e 

where 

e and for O" ~ 0 

+ O" 

This integral is in suitable form for the application of the method of 

stationary phase. F or large Kr and for each particular a, the sta-

tionary points are given by the roots of 

~ [ secze cos (B-a )] = 0 

or 

2tan8 cos (B-a) - sin(B-a) = 0 (2. 3 1) 
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tan e = 
± 
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and e + ' given by 

-1± J 1 -8 tan2cr 
4 tancr 

(2. 32) 

The asymptotic form of the wave part of cf> 
0 

for large Kr fo llows from 

the principle of stationary phase to give 

{ 
2. _1T4} c/>

0
= - A(8+)sin rKsece+ cos (8+-a)+ 

-A(8_)sin+K sec2 8_cos (8_-a) - ~} (2.3 3 ) 

where 

[.

-·- ( 1+4 tan 2 8±) 1/4 

A(8 ) - _z_ e ± _ rn mK sec ± I 
( 1- 2 tan2 e ±)1 

2. 

(2. 34) 

with 8 given by (2. 32 ). The above results show that the resultant 
± 

wave pattern of a subrnerged source is the superposition of two sys -

terns of wave which are confined in the wedge bo'..1 nded by two vertical 

planes a = ± a_._, a_,_ = 19. 5°. The gene r a l features of the c urves of .... ~ .. ,~ 

constant phase are shown in Fig. Sb. 

The variation of the amplitude is indicated by Eq . (2 . 34 ). The 

above express i ons (2. 33 ) and (2. 34) break down when the second deriv-

ative of the phase function sec2 8 cos (8-cr) w ith respect to e vanishes; 

this occurs at the boundary a = ±a,:, of the wave region. By a more 

elaborate asymptotic method, Ur sell ( 16) has shown that the leading 
1 

term of cf> 
0 

is of o rder O(Kr )-3 in the region near la I = I a,:, I. I n 

this region, the m e thod of geometric optics to be discussed in Chapter 

III, too, fai l s . For dispersive systems , the method of stationar y 
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phase therefore s e ems more fundamental. But it can be seen that 

this integral transform method, without modifications, fails when the 

primary flow is non-uniform because Eqs. (2. 23) and (2. 24 ) are re­

placed by Eqs. (2 . 17) and (2 . 21) which have variable coefficients. We 

shall show in Chapte r IV, how this integral transform approach can be 

modified in a special case to overcome this difficulty . 
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Ill. METHOD OF GEOMETRIC OPTICS 

1 . Unsteady problem 

The method of geometric optics has been developed and applied 

to problems involving wave motions in anisotropic and dispersive 

media by Landau and Lifshitz ( 8 ), Lighthill ( 10), Whitham ( 20), 

Keller ( 6 ), and by others. The basic assumption necessary for sue-

cessfu1. application of this method is that the non-uniformity in the 

dispersive medium in which the wave propagates does not chang e sig-

nific antly ove r distances comparable to the typical wave-length under 

consideration. In our present problem of gravity waves, in a parallel 

shear stream with free stream velocity U(y), this assumption may be 

interpreted as 

u 2 I gP. « 1 
0 

where U 
0 

is a c haracteristic constant velocity, U 
0

2 I g , is the typical 

wave l ength, and l is a characteristic length over which the primary 

paralle l shear flow velocity, changes appreciably. For example , l 

may be chosen to be U I (mean value of !du I dy I ). In this section, the 
0 

problem of a point disturbance applied on the surface of the fluid at 

x = 0, y = 0 for t > 0 is fir st formulated. The steady wave pattern 

due to a stationary point disturbance on the surface is then deduced 

quite readily. 

We consider here a general distribution of ve locity U(y), 

U(y) = U + U (y) 
0 l 

(3. 1 ) 

subject to the restriction that U (y) is a slowly varying function and is 
l 
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small compared to U . When the variations of U(y) are smooth, we 
0 

can keep a clear separation between the phase of a surface wave and 

its amplitude . Thus we may write 

~ ~ i</> (x t) ~ 
v(x, t) = A(x, t)e ' = A exp{i</>(x, t) + L(x, t)} 

0 
(3. 2) 

where 

L(x, t) = log[ A(;, t)/ A ] 
0 

and A is a reference amplitude, A(x, t) is the amplitude function, 
0 

which is assumed to be slowly varying in x and t. The function 

<f>(x t) in general may be complex, its imaginary part is determined by 

the differential equation goverr..i~g v. To represent a surface wave, 

the real part of cf> as sum es the for:rri 

Re{cf> (;, t)} = k l\J (;, t) = k '1r(x, t) - wt 
0 0 

(3 . Za) 

where k is a constant reference wave number appropriate to the wave 
0 

motion in question, w = w(x, t) is the circular frequency, and the real 

function '1r(x, t) is the so-called eikonal function, which defines the 

surfaces of equal phase . 

For the geometric wave approximation we next introduce the 

basic assumption that the characteristic wavelength Zn /k is assumed 
0 

to be small compared t o the distance 1 over which U(y) changes ap-

preciably. Hence, if x is referred to l , and t to k l/w , as the 
0 0 

basic units, then from the above assumption it follows that the deriva-

tives of <P and L w ill assmne the order of magnitudes: 
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[gradcp I = O(k .l) 
0 

(3. 3) 

lgr_ad LI = 0(1) 

and the higher order derivatives of cf> with respect to x and t are 

clearly also of order (k i). Since the geometric wave approximation 
0 

requires k I. to be large, the differential equations for cf> and L can 
0 

be derived by substituting v into the basic equation of motion (2. l 7) 

and the boundary condition (2. 21 ), then expanding the equations for 

small (1/k 1). Consequently, the terms in (2. 17) have the following 
0 

orders of magnitude: 

IU 11 v I = O(IU"vl(k 1) ) x 0 

where the prime denotes differentiation with respect to y, as before. 

Hence, up to the first two leading terms for k 1 large, we have 
0 

which holds true for arbitrary U(y) provided the variation of U(y) is 

smooth, a factor of error 

equation being under stood. 

[l+O(k l)-
2

] for the l eft side of the above 
0 

This equation can be integrated once, giv-

ing "V2 v = f(x - Ut), f (x) being an arbitrary function of x; but this 

function must be zero since '\flv is required to vanish as y 2 + zz.-+ oo 

in the flow field . Whence 

\lz.v = 0 (3. 4) 

valid for the first two leading orders. The free surface condition (2. 21) 

becomes 
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(3. 5) 

It may be noted that the two terms on the left hand side of (3. 5) may be 

regarded to be of the same order since the parameter gl/ U ~ , which 

is the factor multiplying v 
z 

in the dimensionless form of the equation, 

can be very large. It is also noted that the terms on the right hand side 

of (3. 5) enter in the calculation of the second order term. 

By substituting (3. 2) into (3. 4) and retaining only the two lead-

ing orders, we obtain 

and 

2 ( ocb o L + ocb o L -1.. ocb o L) + o2
:/J o2

ef> 
ox ox oy oy · az oz axz. + oyz. 

From (3. 6), 

i oc/l 
az 

(3. 6) 

= 0 (3. 7) 

(3. 8) 

H ence we observe that if the partial derivatives of cp with respect to 

x and y are real, as is required by the solution representing a sur-

face wave propagating in the x-y plane, then oc/>/oz will be purely 

imaginary so that v will vary exponentially with respect to z. In 
1 

(3 . 6), an appropriate branch of the function (cf> z +</> 2
)2 is chosen to 

x y 

satisfy the boundary condition that v --+ 0 as z --+ - oo. By differentiat-

ing (3. 6) with respect to x, y, z, and by some substitutions, we find 

ocp aq, o2 cp + ( ocp } 2 o2
cp } 

ox oy oxB y oy oyz 
. (3. 9) 
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By making use of (3 .8 ) and (3.9), (3. 7) may be written as 

ClL i oL az =ax 

1 
+ 2 

eq, 
aL ay 

+ ay [l~~I' +!~tJ')t 

{ 
acf> )z. ezq, - 2 
ax a z. 

(3 . 10) 

We also note that if A. A. L , and L are real, then a L/ oz 
'l' x ' 'l'y' x y 

must be purely imaginary. We shall henceforth regard acf> 
l 8Z and 

i oL 
8Z as r eal. 

Next we substitute (3. 2) in (3. 5 ), again keeping only the two 

leading orders, and s e parate the real and imaginary parts, to obtain 

+ 2 ('!1-_ + u at 

( acf> + u ~}z - [(eq,)z +(sq, )zl ~ = o 
at ax g ax ay J 

acf> 
0cf> ) u I ( ) OX = 0 ox Y a<p ( z = 0) 

ay 
In (3.11), (3.8) has been used to replace i ~: 

(z = 0) (3.11) 

(3 . 12) 

Also (3 . 10) has been 
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used in (3. 12) which has been further simplified by subtraction of 

(3. 11) and its first dBrivative with respect to y. The eikonal equation 

(3.11) provides an equation for q, while the transport equation (3.12) 

is a fir st order partial differential equation for L. Since (3. 11) and 

(3.12) are deduced from the linearized free surface condition (3. 2), 

they are valid on z = 0 only. 

To effect the integration of (3. 11) and (3. 12) we introduce the 

frequency function w(x, t) and wave number k (x, t) =(k , k , 0) by 
l 2 

-w aq, - k 
ay - 2 

in terms of which (3. 11) becomes 

1 

F(-w,k ,k ,y) = (w-Uk )2 
- g(k2 + k 2 

)2 = 0 
l 2 l l 2 

(3.13) 

(3. 14) 

By applying the theory of first order partial differential equations (e.g. 

see Courant and Hilbert, (1962 ), Vol. 2 ), the characteristic equations 

· may be written immediately. If we introduce a parameter A. along the 

characteristic curv es the characteristic system of equations b .ecome 

dt oF - 2(w-Uk ) (3.15) err.- = - aw- = 
l 

dx oF 
- 2(w-Uk )U - gk /k (3.16) dA. = 8k = 

1 1 
1 

dy 8F 
- gk /k (3.17) 

dA. = 8k = 
2 

2 

drf> BF+ k BF BF 
(w-Uk )2 (3.18) dA. =w Bk+ kz. 8k = ow l 1 

l z. 
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dw BF BF 0 
dA. = -- w aq;- = at 

(3 . 1 9) 

dk BF BF 1 - k 0 
dA. = - ox Ff = 

1 
(3. 20) 

dk oF oF l - k 2(w-Uk )k U'(y) 
dA. = - ay aq;- = 

l 1 1 l 
(3. 21) 

Equations (3 . 19) and (3. 20) show that w and k are constants along the 
1 

characteristics or ray paths though their constant values may be dif-

ferent for different characteristics. 

By dividing (3 . 16) and (3 . 17) by (3.15) and using (3.14), the 

components of the group velocity Cg = (Cgx, Q./ are deduced to give 

dx OW k 
Cg u+ ~fi-1 (3 . 22) = ill= Bk = 2 k k x 

1 

Cg = dy - ow = ~fi- kz (3. 23) 
y dt - ok 2 . k k 

l ~ 

The form of these group velocity components resembles those of the 

waves propagating on the surface of a stream with a uniform velocity 

except that in the present case U = U(y), and k 
l 

is no longer constant 

on ray paths as can be seen by division of (3. 21) by (3. 15) 

dk 
dt z. = - \U~(y) (3 . 24) 

which gives the rate of change of k along a ray path. This rate is 
l 

constant on each ray path for the special case of a primary parallel 

flow of linear shear, that is, U1(y) = const. , but it may differ on differ -

ent rays. The ratio of (3. 22) to (3. 23) gives 
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u+~fi~ 
2 Jk. k 

~fi.\ 
2J'k k 

2U(gk~2 + gzk 
l =-------- (3 . 25) 

from which the ray paths or group lines may be deduced. Equation 

(3. 25) may be put into a form which can be readily integrated. From 

(3 . 14), 

Jgk = (w-Uk ) or 
1 

/

(w-Uk f 
k = ± . 1 

- k 2 

z gz i 
(3 . 26) 

Substitution of (3. 26) in (3. 25) gives 

dx = dy 

2U(w- Uk ? + gzk 
l l (3. 27) 

of which the right hand side is a function of y only because k and w 
1 

are constant along each group line. For the special case of linear 

shear primary flow, it is readily seen that the group lines may be ex-

pressed as the elliptic functions. Integration of (3. 27) for this partic-

ular case will be carried out for the steady problem in the next section. 

To conclude this section we shall examine briefly the transport 

equation (3 . 12) governing the amplitude variation. In terms of the 

notations defined in (3.13), (3. 12) becomes 
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g_ ~ {~)}+ U'(y) 2 ay k 

k 
(w- Uk )U + g_ - 1-

1 2 k 

k 

(w- Uk ) 
1 

g_ i 
2 k 

Cgy = (w-Uk ) 
1 

(3 . 28) 

(3. 29) 

(3 . 30) 

These expressions for the components of the group velocity are the 

same as (3. 22) and (3. 23) by virtue of (3 . 14). In order to express 

(3 . 28) in a physically more meaningful form, we shall first take the 

partial derivatives of Cg and Cg with respect to x and y respect-x y 

ively, giving, after som~ rearrangement 1 

i a g_ a i 

{ 
k } 

(w-U\) U ox (w-U\) + 2 ox l11 = 
8Cgx Cgx 

--ax-- + (w- Uk ) 

and 

1 g_ ~ i = ___::_y:_ + 
{ 

k } ac.g 
(w.,;U\) 2 oy ( k) oy 

Cg 
y 

(w-Uk ) 
1 

1 

0 
ox (w-U\) 

(3.31) 

(3. 32) 

W e recall that the total time d'!rivative of a function f(x, y, t), which 

does not depend on k explicitly, along the group lines is 
2 

Hence, 

df 
dt 

= of c of +Cg of 
at + g x ox y oy (3. 33) 
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d dU 
dT (w-U\) = - \ dt = - k U'(y) ~dt = - k U'(y)Cg 

l l l l y 
(3 . 34) 

since w and k are cons tants on each group line . But by (3. 33), we 
l 

can also write 

But the right hand sides of (3. 34) and (3. 35) must be identical, hence 

Expr essions (3. 3 1 ), (3. 32) and (3. 36) may now be used to rewrite 

(3 . 28) as 

dL + .!__{~ cO' + o c } , ( \ 1 _k_1 _ c ) 
dt 2 ox "'x oy gy + U (y) kz - 2 w-Uk

1 
gy = O . (3 .37) 

To display the physica~ significance of (3. 37 ), we recall 

L(;, t) = log[ A(; , t)/ A 1 so that in terms of A, one may obtain by 
0 

multiplying (3. 37) by AZ the equation 

- - + - - Cg + - Ca = AzU'(y) _l_l_ d AZ Al { 0 0 } {k k 
dt 2 2 ox x oy '='y 4kl 

( 3 . 38) 

where (3. 14) and (3. 23) have been used to obtain the last term of ( 3 . 38 ). 

B y using the explicit form ( 3 . 33 ) for dAz / dt, (3. 38 ) may also be writ-

ten as 

where 'Y = i 
l 

= __ U'(y) _1 i l lAl) k (4k Z+3kl ) 

2 kl 2kl 
(3. 39) 

and U'(y) := U'(y ). Regarding the quantity 
l 

as a measure of the e nergy density, (3. 39) shows that the flux of energy 
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along ray tubes, formed by adjacent group lines or rays, is not con-

stant. In the region wher e U 1 (y) > 0, for the waves with k < 0, 
2. 

(3. 39) indicates that the effect of shear is to introduce a fictitious 

energy sourc e while for k > 0, a fictitious ene rgy sink, We may 
z 

conclude that the primary paralle l shear flow supplies e nergy to the 

waves with k < 0 and retriev es it from waves with k > 0, resulting 
l z 

in a net transfer of energy to different regions of the flow field. It 

may be c onj ecture d that the total energy of the waves are due entirely 

to the disturbance at the origin so that, while the parallel shear flow 

redistributes the ene rgy, it does not supply its own energy to the 

w aves. 

2 . Ste ady wave pattern 

The familiar steady ship wave patte rn created by a stationary 

point disturbance acting on the surface of a uniform str e am will b e 

modified when the primary undisturbed flow has a non-uniform hori-

zontal v elocity distribution, The steady wave patte rn on the surface o f 

a parallel linear shear flow due to a disturbance at x = 0, y = 0 

furnishes at least qualitative modifications one would expe c t of the 

mor e g e neral cas e of arbitrary shear ; this speci al c ase will b e con-

s ide red i n this s ection. When the wave patte rn h a s r e a c h e d a steady 

state, the enc ounter frequency w relative to the distu rbance must 

vanish in the wav e field, henc e (3 . 14) reduces to 

w = lgk + ( u + u ( y) )k = 0 I/ 'b "' 0 l l 
( 3 . 4 0) 

The re sult that k a nd w ar e constant along g roup line s must sti ll b e 
l 
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true so that along each group line 

dk2. = d(k2. +k2.) = dk2. = 2k dk 
1 2. 2. 2. 2. 

(3.41) 

and k = k (y) on each group line. 
2. 2. 

The slope of the group lines may be deduced from (3. 27) by 

putting w = 0, however, it can be put into a more useful form by 

deriving it again directly from the components of the group velocity. 

From (3. 22) and (3. 23), 

dx 
dy 

which by (3.40) becomes 

dx 
dy 

(3 . 42) 

Since the right-hand side of (3. 42) is a function of y only, we let 

* = m(y) 
k 

Upon solving for ~ from (3. 42) in terms of m(y), 
1 

-1 ±Ji -8mz.(y) 
4m(y) 

(3.43) 

(3. 44) 

For the waves to exist, k and k must be real. Equation (3 . 44) 
1 2. 

shows that this requirement is satisfied if and only if 

(3.45) 

This upper bound m,:, of the slope function m(y) will be used to deter -

mine the boundary of a wave region outside of which the disturbance 
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dies down very rapidly. Introducing polar coordinates (k, 8) in the 

wave number plane by 

k = k cos e 
l 

k = k sine 
2. 

we may write (3. 44) also as 

tan8+ 

}· (3. 46) 

(3. 4 7) 

which will be used in the subsequent analysis. For the moment we 

shall simply note that for each m(y) satisfying (3. 45) there exist two 

angles of e, denoted by e+ and e _, given by (3.47) . Corresponding 

to e +' the value of k+ are d e t e rmined by (3. 40) and (3. 46), to give 

secz.e + 

where U (y) - U (y)/U , 
l I 0 

= .JL 
uz 

0 
(1 +u (y) >z. 

l 

so that 

k == k cos e 
i± ± ± 

k = k sine 
2. ± ± ± 

( 3. 48) 

a r esult w hich shows the presence of two systems of waves inside the 

wave r egion inferred by (3. 45 ). 

By transferring the last term of (3. 40) to the right-hand side 

and squaring, we obtain: 

gk = k 2[u +u (y)J 2 

l 0 l 

Then 

k 2 =[k~ (U + U (y) )4:. l] k 2 

2. g2. 0 l I 
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_g_ 
u2 

0 

u (y) 
U - -fr- = Ey 

0 

(3 . 49) 

( 3 . 50 ) 

(3 . 5 1) 

In the l ast step the linear shear prima ry flow h as be e n chosen specifical-

l y for U(y) for the purpose o f facilitating integration of the solution. 

W e shall now introduce a new v ariable 

t, Is = 1 + u (y) = 1 + EY 
- 0 l 

so that (3. 49 ) b ecomes 

k 
k

2 =±Is 4 
- 1 

1 

( 3. 52) 

(3.5 3 ) 

Here th e r e quireme nt of k and k t o be r eal in o rde r for waves to 
1 2. 

exi st i s satisfied i f and only if s > 1 . On physical gr.o unds, we expect 

the waves to appear in the downstream of the disturbance ; this implies 

that k > 0. The + or - sign in (3. 49), (3. 5 3 ), and in the sequel is 
l 

t aken according a s k is > or < 0. To show the e quiv ale n ce of thi s 
2. 

to (3 .45), we may deduce from ( 3 .42 ), (3.43) and ( 3.53 ) the expr ession 

1 

rn(s) =+ (s 4 -1 )2 (2s 4 -1 )-
1 

( 3 . 54 ) 

To find the maximurn of m(s) we s e t 
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dm ,. crs (s ,:,) = = 0 

Since s > l, the only zero i s thus 

at which the slope function m attains its maximum value 

1 
m(s,J = 2(2 = m,~ ' 

which is identical to (3 . 45 ), The dependence of m on the paran1eter 

s is useful in obtaining the steady wave pattern. This is shown in 

Fig. 2. 

Next, differentiating (3. 52) we have 

d [K 
~ (ey) =rrz-: 

1 

(3.55) 

Substitution of (3 . 53) and (3. 55 ) into ( 3 . 42) then gives 

d -_ {K 2g 4 -1 
dS"" (ex) = +J ~ 

1 j £4 -1 
(3. 56) 

Upon integration, with the integration constants so chosen that a ll ray 

paths will pass through the origin x = 0, y = 0 or 

or 

ES x 
0 

i S s ds 
- 3 s / s 4 -1 

0 

S =/k /K, 
1 

' 

( 3 . 57) 

The absolute value is taken because th e assumption of zero upstream 
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wave disturbance indicates only positive Ex is required. The choice 

of the lowe r limit of integration in (3 . 57) arise s from the assumption of 

a point disturbance a t x = 0, y = 0 so that all the g r oup lines pass 

through the origin . Th e integral in (3 . 57) ·can be readily expr essed in 

t erms of the e lliptic integrals. Thus 

ES x =I~ [s/ £4 -1 -s Js4 -1] - -
1 

[F(cos-
1

( ~) _!_}- F(cos-
1 (J_J _l )11 , 

0 3 0 0 3/z s.,1z s--;}J/z. 'J 

(3.58) 

where F ('{, "-) is the e lliptic function of the fir st kind whose integral 

repres e ntation i s 

1 
F ('{ , 1'. ) ( 3 . 59) = 

, 0 < b < µ and 0 < a . This function 

has been studied extensively and its values for arbitrary arguments 

have been tabulated (Ref . 3 ). Therefore, w ith the known proper ties o f 

F('{, 1'. ), (3. 58 ) and (3. 52 ) give a parametric r epr esentation of the g roup 

lines. The basic features of these two equat ions are shown in Fig . 3 

for k > K and for k = K. In each case , Ey is linear with a positive 
l 1 

1 
slope r-

so 
and inter sects the s -axis at s . 

0 
The behavior of EX is 

more complicated. As s i ncreases from unity, EX d ec r eases from 

to zero at s = s (> 1 ). The n i t increases monotonically for s > s . 
0 0 

Since from ( 3 . 55 ) and ( 3 . 56 ) 
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> 
1 

= so 
the branch of ex for s > s always lies above Ey, 

0 

in Fig. 3 is particularly important. 

The 

It 

corresponds to the point source of disturbance in the physical flow field 

from which all group lines originate. The refore, it is a natural con-

sequence from the requirement of s > 1 that the appropriate group 

lines of th e wave region are given by 

from s = 1 
0 

s > 1. The limiting 
0 

together with the line s = 1 for all k
1

, H 
group line 

~ 1 , thus 

provide a bound for the wave region. This is shown in Fig . 4 in which 

typical group lines a nd lines of constant s are plotted inside the 

wave region. 

The group lines are obtained from (3. 58) and (3. 52.) with k (> K) 
l 

being kept constant on each line. In contrast to the case of stationary 

point disturbance on a uniform flow where the group lines are straight 

rays from the origin, in the present case of a linear shear stream, 

aside from the line y = 0 which remains straight, all the group lines 

are cubic far away from the origin. This is easily d e duced from (3. 55) 

and (3. 58) since for s 3 large Ex ex s while EY ex s so that Ex ex (Eyf . 

When the equation of the grc•up lines are expressed in the form 

Ey = fn(Ex) 

it can be shown that for y > 0, they are monotonic increasing functions 

e xtending from the origin to infinity in the fir st quadrant o f t h e x - y 

plane. For y < 0, they de c rease monotonically , t e rminating with zero 

slope (dy/dx = 0) on s = 1. This is obvious from (3.43) and (3.54 ). 
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From (3. 58) and (3. 52), k eeping s(~l) constant and varying 

k (~K) w e obtain the lines of constant s. With the exception of the 
1 

line s = 1, each s = £ = constant(> 1) has two branches. For 

1 </ \ < £ , the posit~ve branch starts from a point on the limiting 
K cf'k:" 

group line V -!;-,-1
- = 1 and decreases, for increas ing k towards the 

K 1 

origin. For - > s , as k increases, the negative branch which 
K c 1 

lies below ey = 0 decreases monotonically tending towards the asymp-

tote ey = - 1 which also corresponds to s = 0. The n egative branch of 

s = 1 has the same general b ehavior as the negative branches of 

s = s {> 1 ), however , the positive branch is missing. This curve 
c 

(s = 1) war rants special attention because, though it is not a group line, 

it neverthe l ess provides a bound for the wave r egion. W e obse r ve that 

it may be viewed as a 11focal curve 11 or "caustic" since it is an envelope 

of the one parameter family of group lines. Frorn (3 . 52) 

k K 
-/: 0 for s - 1 (3.60) = 

(1-ky )2. 

while (3. 5 3) shows 

for s = 1 (3.61) 

Therefore, k = 0 on s = 1, implying that all the wave cres ts are 
2. 

perpendicular to the x-axis ther e. Hence the net effect appears as if 

the waves are reflected from this c urve . Beyond s = 1, it is con-

jectured that edge waves, with their amplitudes decreasing exponentia lly, 

rnay exist but we shall leave this possibility for a nother investigation. 

To determine the traces of the wave crests, i.e. the lines of 
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constant phase, inside the wave region, we may use the following 

procedure: 

(i) For a given point (x , y ) in the wave region we 
c c 

may determine the line s = s pas sing through 
c 

it from Fig. 4. 

(ii ) Either from Fig. 2, or from (3. 54) we obtain 

m = +J s 4 -1 (Zs 4 -1 )-
1 

c c c 

which when substituted in (3. 4 7) will give e . 
c± 

(iii) Then by using (3. 52) in ( 3 .48) we arrive at: 

k = ± 

K sec3 8 
± 

from which k may be deduced by evaluating 
c± 

the expression at e and s · Equation (3. 46) 
c± c 

now gives explicitly the components of the wave 

number k at (x , y ). 
C± C C 

(3 . 62) 

(3. 63) 

With the knowledge that the constant phase lines are orthogonal 

to k , we may graph the curves showing the traces of the wave 
C± 

crests. Typical traces are shown qualitatively in Fig. 5(a) for the cas e 

of a stationary point disturbance on the surface of a linear shear flow. 

The corresponding pattern for a point disturbance on the surface of a 

uniform flow is reproduced in Fig. 5(b ), (Ref. 18 ) for comparison. 

Apart from the shifting of the wave crests, it is immediately obvious 

from Fig. 5(a) that the shear flow has the effect of suppre ssing the 

waves to a smaller region. (Dotted lines in Fig. 5(a) indicate the wave 
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region for a uniform flow. ) 

In summary, we observe that while two systems of waves, one 

divergent and one transverse, exist inside the wave region produced by 

a point disturbance on the surface of a linear shear flow, the traces of 

the crests and the bounds to the wave region are no longer symmetric 

with respect to the x-axis . In particular, the wave region boundary 

approaches but never reaches the critical line ey = - 1 at which 

U(y) = 0. The behavior of the wa·Fes near this critical line is not given 

by our analysis and will be the subject of furth e r investigation . Final-

ly, as a remark, it is quite obvious that essentially the same wave 

pattern is produced by a stationary source below the surface of a paral-

lel linear shear stream. 

3. A perturbation expansion 

In order to make a comparison between the present geometric 

optics method and the integral transform method, which will be dis -

cussed in Chapter IV, we shall consider here a perturbation expansion 

in terms of a small U (y ),;, . 
l 

By regarding iu (y) I « 1, 
l 

we are actually 

limiting the region of validity of the resulting solution to IY I « 
1 
E 

in 

view of the definition of U (y), (3 . 51 ), For a small shear gradient 
l 

(i . e. E small) this may still represent an appreciably large region 

in the physical space. 

::::: 

By expanding (3.49) in powers of U (y ), we have 
l 

It is quite obvious that the lowest order term in such an expansion 
r e presents a stationary point disturbance in a uniform stream. 
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k 
z 

k 
l 

(3 . 64) 

whereas the reciprocal of (3. 64) is 

{] 
kz k4 kl. 

l 2 _l_ 

+ u{is~ -r (:~~ -i1· 
k (± 1) Kz. 

l O(U3 ) ~ k -; k2. -u,(k:-) . l J 2. 
_l_ - 1 - -1 
Kl Kz 

( 3 . 65 ) 

By substituting (3 . 64) and (3.65) in (3.42), we obtain 

dx 
- <::!± 
dy 

kz kz. 
3 _l_ 6 _1_ 

(:: K:r' t/( ;K~l) 
+ O(u: ) } , (3. 66) 

in which th e + or - sign is taken according as y is > or < 0 . 

Using the known result that k and K are c o nstant on e ach g roup 
1 



line and u (y) 
l 

= ey, 

±~I k: I x 
- "" y 

-!) 
\Kl. 
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we obtain by simple integration 

ITT k'[ 1 
t2 t Ey -

1
- l';' -Ir"+ f_: Kl. 

K2 I K2 
I 

(:~ -r 
' 

kl. 
2 _1_ 

Kl 4 
- 3 

2 l 
- 1 

(3 . 67) 

which is the required expansion of the group lines . In (3. 67), the 

integration constant has been chosen for a point disturbance located at 

x = 0 , y = 0, so that all the group l ines pass through the origin of the 

x-y plane . Plotting of the group lines from (3 . 67) is straightforward. 

However, as the group lines over a m u ch l arger region have a l ready 

been traced in Fig. 4 , we will not repeat this operation. 

We proceed to determine the bou ndary of wave region and the 

loci of constant phases (such as the wave crests) within the wave 

r egion. The extent of the wave region can be deduced from Eq . (3. 67) 

for the ray t r aces . To simplify writing, we introduce the parameter 

s o that (3. 67) b ecomes 

1 

13 = (kl I K2 
- 1 )2 

l 
(3. 68) 
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5 6) - + - + O(eyf, 
133 135 

(3 . 69) 

where 

M = x/ IYI (3 . 70) 

which may be regarded as a function of (13; ey), possessing the expan-

sion for (ey) small . Along each ray track, k ' l 
and hence 13 remain 

constant. It therefore follows that at the bounding ray track, which 

envelopes the wave field, one must have (oM/ 813) = 0, the differentia-

tion being for fixed y. Now, by (3 . 69), 

( ~ ~) y = l 2 -
13 
\ ) + E y l 2 -

13 
\ + : J + } ( E y )

2 
( 2 -

13 
~ - ~ ~ - : ~ ) = Q • 

(3 . 71) 

The solution of (3 . 71), say 13=13,:,(ey), is obtained to have the expan -

sion 

(3. 72) 

as can readily be verified . It may be remarked here that only the 

positive branch of 13 ,:, is chosen since M, as defined by (3. 70), is 

non-negative. Substituting 13 ,:, of (3 . 72) for 13 in (3. 69), we obtain 

after some r egrouping , the following result for the boundary of the 

wave field, 

(3. 73) 

It is of interest to note that the terms of order (ey} cancel out in the 
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final result of x,:, (y); hence the boundary of wave region is symmetric 

with respect to the x - axis up to O(ey)2
• It is further noted that the 

stationary waves exist in the region x: > x,:,(Y ), that is, on the down-

stream side of x = x_._(y) . Although the envelope of the wave field is .,. 

symmetric in y, the detailed wave pattern is generally not sym-

metric w ith respect to the body trajectory y = O. Since, as indicate d 

b y (3. 69) , f3 , and hence k , 
1 

are neither even or odd in y . In fact, 

the value of k (x ... (y), y), which is the x-component of the wave num-
1 -~ 

ber at the boundary of the wave field, is different for different signs 
l 

of y, as can be se e n from 
z. -

k {x ... , y) = K ( 1 +[3 . .J2 
1 ~ ~ 

and (3. 72). This also 

implies that x = x,:,(y) and x = x ,:, (-y ) ar e no longer ray tracks . 

The above result may be expressed alternately in t e rms of 

cylindrical polar coordinates (r, a) defined by 

x = r cos a y = r sina (3 . 74) 

so that at the boundary x = x ,:, (y) , the value of <J = a ,:, (r;e) may be 

expanded as 

a ... ( r ; e ) = a ( r ) + e r a ( r ) + (er )z. a ( r ) + 0 (er )3 
.,. 0 1 z. (3. 75) 

Upon substitution of (3. 74) and (3 , 75) in (3. 73), together w ith neces-

sary expansions, a o' a
1

, CYz. are readily determine d; the final result 

is 

-1 1 -1{ 1 ) O" = t an - = sin 3 O" = 0 
0 

2/ 2 1 

(J 3Jz sin4 
<J 

12 
= - = - ~ 2 0 

(3 . 76) 

Thus,. 
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=±(sin-1
(1/3)- ~ (er)'+O(<r)1 

(3 . 77) 

sign is for y > or < 0. This result shows that 

th e o ve r -all effect of the uniform shear is suppressing the wave field 

to a smaller region than in the uniform flow case, the deviation being 

of s econd order for (er) small , These salient features are shown in 

Fig . 6 . 

The contours of constant phases (such as the wave crests) can 

be c alculate d as follows . We note first that the slope of a constant 

phas e line , cp = canst . , at the free surfac e is given by 

acfl I ax 
04> I ay 

k 
l = - k 
2. 

(3 . 78) 

by virtue of the characteristic equations, or more directly by the 

d e finition of the phase function. The term k /k on the right hand 
1 z 

side o f (3 . 78) can be regarded as a known function of x and y in 

view of (3 , 68), (3.69) and (3 . 64). Consequently, the above first order 

diffe rential equation can, in principle, be integrate d. However, the 

actual calcul ation may prove formidable. In view of the complicated 

nature of the functions k (x, y ), k (x, y), it is best to s e ek a parametric 
1 2. 

inte gration. It turns out that a convenient parame ter is @ , d e fined by 

k /K = s ec ® 
1 

T hen (3 . 69) b ecomes 

or 
1 

13 = (kz. /Kz - 1 )2 = tan @ 
1 

(3 . 79) 
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(3 . 80 ) 

with 

p(®) = 2 tan ® + cot ® q(@ ) = p(® ) - cot 3 ® 

By making use of the expansion (3 . 65 ), (3 . 7 8 ) can be expressed in 

terms of ® as 

(~) = (sgn y ) I :2 \ = (sgn y)tan® {l + 2e.y cscz.® +e.z.y 2 csc
2

(8:, (1-2 cot
2® )}. 

Y 4>= c i 
(3 . 8 1) 

We as sume that the integral of (3 . 8 1) may be expressed i n the following 

fo r m 

2 

y = !. e.nyn(® ) + O(e. 3 ) (3. 8 2) 

n=o n=o 

The two sets of functions {x (® )} and { y (® )} a r e not linearly in-
n n 

dependent since they are related by (3 . 80) . In fact, upon substitutio n 

of (3. 82 ) in (3. 80 ), we find that for y > 0, 

x = y p + yz q + Yo3 s 
l 2 l 

(3 . 83) 

w h ereas fo r y < 0 the s i gns of all the terms on the right hand sides of 

( 3 . 83 ) are changed. F urthermo r e , substituting (3 . 82) in ( 3 . 8 1) yields 

the fo llowi ng sets of differential e quations 
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x = ± y tan® 
0 0 

.;._ =± [y + 2y y csc2®)tan®, 
l l 0 0 

(3.84) 

x =± {y +2y y csc2®+ y [2y +y~l-2cot2®)]csc2®}tan® 
2 2 0 1 0 l 0 

where ;;.
0 

denotes dx
0

(®)/d®, etc, and the + or sign is for 

y > or < 0 respectively. Differentiating the first equation of (3. 83), 

we have 

(2tan ® + cot®)y + (2sec 2® - csc2®)y 
0 0 

After x is eliminated by making use of (3 , 84) we obtain the equation 
0 

for y as 
0 

which has the integral 

(cot® - 2 tan®}y 
0 

y =A sin®cos2 ® 
0 0 

w here A is an arbitrary constant of integration. 
0 

(3,85) 

(3.86) 

Similarly, from the second equation of (3. 83) and (3, 84) we 

derive the differential equation for y
1 

as 

d ( yl ) • d\85 = 2A y 
sin®cos2® 0 0 

(3. 87) 

This e quation can be integrated explicitly, giving 

y = A sin®cos 2® +A 2 cos4 ®cos 2® 
l l 0 

(3 . 88) 
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A being another arbitrary constant. Integration of higher order 

e quations becomes increasingly tedious; the integral of y will not be 
2. 

given he r e. 

Summarizing, we have determined the lines of constant phase 

in the parametric forrn 

x =A {cos @ (l+sin?..@) + 2eA sin @ cos5 @ + O(eA )2.} 
0 0 0 

y =: A {sin @cosz.@ + eA cos4 @ cos 2@ + O(eA )2
} 

0 0 0 

(3.89) 

(3 . 90) 

in which the constant A
1 

has b een absorbed into the higher order 

t e rms. The constant A can be related to the phase i/> by noting that 
0 

the phase function 

cp ;:; xk + y k = A K { 1 + 0 (EA } } 
l z 0 0 

(3.91) 

whe r e in the last step use has b een made of (3. 89), (3. 90) for x(@) 

and y(@), and of (3. 81) for (k /k ), 
2 l 

(3 . 79) for k . 
l 

Henc e 

(3 . 92) 

and from a wave c rest to another, cp changes by 2mr(n =l, 2 , . .. ). 

The l eading t e rms of x (@ ) and y(@) are the well-known Kelvin 

ship wave pattern in a uniform stream. There are two wave systems 

w ithin the region largtan(y/x)j < sin-
1
(1/3), one corresponding to the 

range 0 <@<@ 
~:::: ' (@ .. _ = t an -

113 ... = tan-
1
(/2./ 2 )) and the other to .. ,.. .., .. 

®,:,< @< TT/ 2, called respectively the diverging and transverse waves . 

In the present case of a uniform shear, the position and wavelength of 

these waves are shifted by an amount of order e . From (3. 90) it i s 

noted that \k \ increases for y > 0 (in which region k < 0) and 
7. 2 
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(where k > 0) with increasing shear gradient 
2. 

E, Thus the r esulting configurations of constant phase lines are not 

symmetric with respect to the x - axis; these qualitative features are 

shown in Fig. 6. The perturbation expansion studied in this section 

shows that the resulting steady wave pattern due to a point disturbance 

on th e surface of a linear parallel shear flow in the region y « 1 / e 

has essentially the same basic f e atures as the solution of the previous 

section . Thus, it constitutes a good approximation. The results 

obtained here will be compared with that obtained by the method of 

integral tr ans form to be investigated in the next chapter . 
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IV. INTEGRAL TRANSFORM METHOD 

A combination of Fourier transform and Laplace transform 

has been used by several writers (see D ePrima and Wu (Ref. 2 ) and 

Wu and Mei (Ref . 21) ) in dealing with problems of steady and unsteady 

surface waves. A slight extension of the classical Fourier transform 

method w ill be made in this section to investigate the steady wave pat-

tern in the surface of a linear parallel shear flow. A submerged 

source of constant strength is located at x = 0, y = 0, z = -h i. e . 

Q(x, t) = mo (x)6 (y)6 (z+h)H(t), (4. l) 

where 6 (x ) and H(t) repre sent the Dirac delta func tion and the 

Heaviside step function respectively. Hence for t > o+ (2. 1 7) be-

comes 

D\72 v - D"v = mD 6(x)6'(y)6(z+h), 
0 

(4 . 2) 

Although the Laplace transform may be used 

with respect to t and then the Tauberian theorem be applied to the 

resulting integrals for determining the steady state limit of the solu -

tion, it is simpler to formulate and solve the steady problem by using 

the a rtifice of Rayleigh's coefficient. We shall adopt this simpler 

approach . 

The s t eady state differential equation may be deduced from 

(4. 2 ) by taking D ::< U(y)8/8x, so that w ith U(y) = U
0

(ltey) we hav e 

mU 
0 

8 
ox 6(x)6 1 (y)6( z +h) , 
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which after division by U(y) and integration with respect to x, from 

x = -oo, gives 
u 

\fZv = m U(~) 6(x)6'(y)6(z+h) 

By applying the identity 

f ( Y )6 I ( Y) = f ( 0 )6 I ( Y) - f I ( 0 )6 ( Y ) 

we arrive at 

\12v = m[6'(y) + e6(y)]6(x)6(z+h) (4. 3) 

We introduce a new function <I> by 

(4. 4) 

This f unction <I? closely resembles the velocity pote ntial of irrotation-

a l flow and may be called a "modified velocity potential." In fac t, it 

becomes a ve l ocity potential when E vanishes. In this n e w var iable, 

(4. 3) may be written, after an integration with respect to y, as 

\72 <I> = 6(x)6(y)6(z+h) (4. 5) 

D er i vation of the free surface condition for the case of steady state 

can be accomplished in a similar manner. By taking D"'" UJl +ey) 
0
: 

in (2. 21) we obtain 

~[ (l+ey )2 ~ + K _9-J v = - 2e (l+ey) ~~ (z = 0) (4. 6) oy 8x2 oz 8x2 

whe r e K = g/U2 . In terms of <I>, (4. 6) becomes 
0 

:-(_9_ +e)[(l+ey)z _!_ +K _9-l<I> = - 2e 3y 
02

<I> (z = 0 ) .(4.7) 
vy oy 8x2 8 zJ oxz 
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The solution of (4. 5) subject to the free surface condition (4. 7) may 

be obtained but so much extra work has to be done that it is better to 

keep the theory intelligible by neglecting the right-hand side of (4. 7), 

which is of order O(e 3 ), so that by integrating the reduced equation 

twice with respect to y, we finally have 

r. az a] 
L( 1 +ey )2 oxz + K 8ZJ tl> = 0 (z = 0) (4. 8) 

The resulting solution of (4. 5) with condition (4 . 8) w ill be v alid only 

when (ey) is small i.e. y « 1 /e. Therefore the range of validity, 

when (4. 8) is used, of the solution coin cides with that of the perturba-

tion theory of Chapter III and the results can be readily compared. 

Even after the free surface boundary condition is considerably simpli-

fied, its approximate form (4. 8) still presents great difficulties, due 

mainly to the variable coefficients involving y, on an analytical ap-

proach to the problem. 

We shall seek the solution of (4. 5) with condition (4. 8) by intro-

ducing a double Fourier transform 

(4. 9) 

In order for the Fourier transform of tl> to exist, we must further 

require ~ and !grad ~I to be absolutely integrable with respect to 

x and y for every fixed z ~ 0. These conditions are associated 

with the physical argument that the wave velocity is finite for waves 

having finite wave length (see Ref. ( 2) ) and will b e assumed without 

proof. The transform of (4. 5) then gives 
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(4.10) 

.... 
where k 2 = a 2 + 13 2

• The appropriate jumps for CI> and its derivat~:ve 

are: 

-h ,...., + 
[ qi] -h = 0 and 

-h 
[ q; ] + 

z -h 
= m (4.11) 

so that the solution of (4. 10) has the form 

'"" m -k lz+h I '"" k(z-h) 
qi = - Zk e + B e , (4. 12) 

l ,...., 

where k denotes the positive branch of (a2 +13 2
)
2 , B(a, 13) represents 

an arbitrary function of a and 13, to be determined by using the free 

surface condition (4. 8 ). Hence, an integral representation of CI> for 

z > -h is 

<I> = s oo j oo ei(ax+13 y) (- ~ e -kz + B ekz J e -khda dl3' 

-oo -oo 

whose first partial derivative with respect to z is 

CI> = _l _ (' 
00 s 00 

e i(ax+13 y )k[ ~ e -kz + Bekz ] e -khdadl3 
z 4 l J 2k 1T -0() -0() 

These integral representations may now be substituted into the reduc ed 

free surface condition (4. 8) to obtain 

By defining 

B- = 2(B'"" _ m) -kh 
- a 2k e 

Eq. (4. 13) may be rewritten as 

+ B~e -khei(ax+13yhadl3 = 0 . 

(4 . 13) 

(4.14) 
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After integrating the above integrand by parts, with respect to f3, we 

obtain 

1 (' oo s oo i( ax+(Jy )f -kh+ll Kk) B- + · z -- J e - mKe - - i E 
4'!T2 -oo -oo L al· 

(4. 15) 

in which the boundary terms are assumed to vanish since 

-kh e = 0 at f3 = ± oo . Requiring the integrand in (4. 15) to vanish 

identically gives the following differential equation for B 

2 - --

E2 ~B - i2E 813 -(1 - Kk)B+ mKe-kh = 0 
a13z 8(3 cl' 

(4. 16) 

For E small, which is the case under consideration, (4. 16) 

is singular as E _,. 0. However, for our purpose a straightforward 

series expansion in E will suffice . We assume 

(4.17) 

where terms of O(E 3
) will be omitted. Substitution of (4. 17) into 

(4. 16) and equating like powers of E, yields 

"'8
0

( 1 _ Kk) -kh 
= 0, (4.18) - mKe 

cl 
813 

B
1 

( 1 _ Kk)+ i z __ o = 0' (4.19) 
z 8 f3 

O' 

I 1 
8B 8 2B 

B _ Kk) + i z _1_ 0 0 (4. 20) - = 2 I 2 8(3 8(32 Q' 
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The successive solutions of these algebraic equations are 

B = 
0 

B = 
1 

B = 
z 

mKcl' 

c/- - Kk 

- 2i 

-kh 
e 

cl' 
az-Kk 

a B 813" 0 

az ez 
B - 2i 

az-Kk o!)z 0 

' 
az a 

B 813 az-Kk 1 
. 

By carrying out the differentiation with respect to 13 on the right- hand 

side and combining (4. 17 ) and (4 . 14 ) , we have 

"" m 
B = 2k + B' (4 .21) 

where 

B = - iemK [-
2hazl3 - --'---+ 

k(az -Kk )z 

ha4 2Khazl3 z 

kz(az - Kk) 3 

4hZa4(3 z 
+ 

4hci.-6 + Ka4 

+ 
2Kzazl3 z 

kz (az -Kk ) 3 k 3 (az-Kk) 3 k3 (az - Kk )3 kz (az-Kkf 

4Ka6 

+ 
l 2Kha4!} z l 2Kza4!} z ] + O(E 3 ) 

k 3 (az-Kkf kz(az-Kkf kz (az - Kk)5 
(4 . 22) 

-As a remark, it can be seen that only the part B of B will contribute 

t o the wave motion. This will become clear shortly. For the moment, 

an integral representation of <I> may be written as 

('00 ('00 . [ I I <I>= _ l_ \ \ e1(ax+!)y) _ rn e -k z+h + 

4 z J J 2k 
1T -oo -oo 

m ek(z-h )+ Bek(z-h )l 
2k J 

dad!) t ( 4. 2 3) 
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where B = B(ci, 13 z, k, il3) is given by (4. 22). It is easily observed 
... 

that <I> is real because its complex conjugate ~-·- equals ~. There -

fore,it follows that 

1 ;oo 
) a e -2k e 2k e <i> = Re -- \ dl3 

2TI2 , } -OO 

("
00 

d i(ax+13y )t m -klz+hl + m k(z-h) 

' o 

B 
k(z-h~ (4. 24) 

+ e J' 
where "Re 11 stands for "the real part of11 the integral. 

Next, w e introduce two sets of polar co-ordinates 

a = k cos e 13 = k sine ' 

(4.25) 

x = r cos a y = r sina 

so that (ax+l3y ) = kr cos (8-a), and (4. 24) becomes 

iT 

cI? - Re ~ ~ 2 d8 s oo dkeikr cos(8-a) 

2TI iT 0 
-2 

[- ~ e -klz+hl + ~ ek(z-h)+ (kB)ek(z-h)] (4.26) 

where (kB) may be deduced from (4. 22) and (4. 25) as 
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(kB) = - ie mK sec u-------2 £)t 2hk sine 

_ 12K
2
sec

4
8 sinze] + O(e3) 

(k-K sec2 8f 

Frorn the known integral 

(k-K sec2 8)2 

lT 

+ 2K sec
2

8 sin8 l 
(k-K sec2 8) 3 

4h'k2 sin e 
(k-K secz8)3 

1 s2 soo = Re lT dB dke -klzl eikr cos(B-0') 

lT 0 

- 2 

(4. 2 7) 

the first two terms of (4. 26) can be integrated irrnnediately, giving 

where 

and 

~ =Re w 

m 1 m 1 
~ = - 4lT R + 4lT R + ~w ' 

lT 

1 2 

If = xz + y 2 + ( z + h )2 
' 

1 

Rz = xz + yz + (z-h)z, 
z 

1 s2 soo -- d() 
2lT2 lT 0 

-2 

(4.28) 

(4.29) 

The first two terms of (4. 28) represent the submerged source disturb -

ance and its reflection in the plane z = 0, whe reas <f> r e pres e nts 
w 
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the waves generated and some local effects. To evaluate (4. 29) one 

may r egard k to be complex and apply the theory of residues. 

Equa tion (4,27) shows that the expansion for (kB) has two poles at 

k = 0, K sec2 8 in the k-plane. D efining 

(4 .30 ) 

an order of magnitude comparison of the various terms indicates that 

for ik-K I </e and ikl < E, the expansion (4 . 27) becomes invalid be­
o 

cause terms of O(e2
) are greater than terms of O(e) in these regions. 

Therefore, if the expansion (4. 27) is to be used in (4 . 29) for <I> , 
w 

the integration in the k-plane must be taken along a path on which 

(4. 27) is valid i.e. ik -K I >f: and ik! > e 
0 

Although (4. 2 7 ), .when considered as a Taylor series expan-

sion in E, can be summed to yield (kB} = [ kB(e }] which gives the 

detailed distribution of poles in the region lk -K 
0 
I ~.[7°, it is found in 

Appendix A that if the path in the k-plane is take n in a region where 

(4 .27} is valid the resulting <I> using (4.27) in the integrand is cor-
w 

r ect, up to O(e 3 
). It is therefore unnecessary to consider the details 

of the poles in lk-K I ~r:. 
0 

Since only the real part of the integral in (4. 29) i s of interest, 

the pole at k = 0 does not contribute and may be n eglected complete -

ly. This is shown in Appendix B. 

To determine the appropriate path of integration in the k-plane, 

we will make use of the Rayleigh coefficient. It is shown by DePrima 

and Wu (Ref. 2 ) that this factor corresponds to a time limiting factor . 
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The correct us e of this artifice is similar to applying a Laplace 

transform on t for an initial value problem and then using the 

Tauberian theorem to obtain the steady state solution . From the 

definition of D = ;t + U(y) :x and Eqs, (2. 17) and (2 . 21) the metliod 

of the Rayleigh coefficient, when applied to our present problem, consists 

of replacing cl in B by (cl - iµa} where µ is real and > 0. 

Furtherrn.ore, since the path of integration, when the expansion (4. 27) 

is used, cannot be within [k-K I ~/e, 
0 

we assume µ > fe . Thus, in 

(4. 22) for B, the factor (a2 
- Kk} becomes (a2 - iµa - Kk) = 

k cos2e(k - iµse c B - Ksec2e} ~;o that the factor (k - K sec2e) in (4.27) 

is replaced by (k - iµ sec e - K sec2 B). The only relevant pole of (kB) 

therefore, is at 

k = K sec2 8 + iµ sec 8 

1T {) 1T which is in the fir st quadrant because for - 2 < v < 2 ' sec e > l . 

Hence, the appropriate closed contour r for the k-integral of (4. 29) 

is as follows: The original path along the positive real axis, broken 

at k = K 
0

, is connected up by a small semicir c le of radius J: + '{ 

('{ > 0) in the lower half plane and is joined by a large arc of radius 

R in the upper (or lower) half plane for cos(B-a) > 0 (or 

cos (8 -a) < 0), and back to k = 0 by the imaginary axis (se e Fig. 7). 

The asymptotic behavior of <ti for large r will be considered for 
w 

> cos (8-a) < 0 separately. 

( i ) c 0 s ( e -a ) < 0 

In this case, the appropriate closed contour is I' = r +r + r 
l 4 5 

(s ee Fig. 7 ). By Cauchy's integral theorem and upon pas sing to the 
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limit R-+ oo , the k-integral of (4. 29) becomes 

-s dkeikr cos(e-u)ek{z-h)(kB) = _ i Seo dTJ e11r cos(e-o-)e -i11(z-h)(kB), 

r o 
5 

where k = -i11, 11 real> 0, has been used in the last integral. For 

r large, we observe that the integrand of the above integral is expon-

entially small, implying that <I> will tend to zero as r -+ oo . Since 
w 

for 1T 1T - 2 < e < 2' cos(e-o-) < 0 and (4. 25) imply x < 0, the natural 

consequence of the above is that waves do not exist upstream of the 

source disturbance. This is in agreement with the results of 

Chapter III. 

(ii ) c o s ( e -a- ) > o 

From c 0 s ( e -0" ) > 0 and 1T < e < 1T - 2 2' we may deduce that 

for 1T 
0 <a-< 2 (i.e. x> 1T 

0' y > 0 ), - 2 + (J" < e < (J" while for 

- i<o- < 0 (i.e. x> o, y< 0), a-< e< I- +a- Therefore, with 

r = r + r + r (see Fig. 7 ), application of Cauchy's integral theorem 
1 2 3 

to (4. 29), and passing to the limit R-+ oo, yields 

<I> = Re _l_ su de 2TiiRes(eikr cos(e-u)ek(z-h)kB) 
w 

2n2 
1T k=K -2 +a- 0 

(o<a- < y) (4.31) 

and 

lT s 2 +a- . 
<I> = Re _l _ de 2ni Res (e1kr cos(e-a-) e k(z -h)kB) 

w 2 lTz a- k=K c 

(-y < a- < o) ' 
(4 . 32) 
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where the integral on r have also been discarded because by an 
3 

argument similar to that given in (i) they can be shown to be small 

for large kr. The factor 

R ( ikr cos(fJ-u) k(z-h)) = J 
es e e k=K 

0 

(4.33) 

in (4. 31) and (4. 32) denotes the residue at k = K of the quantity in­c 

side the brackets and is the only term contributing to the wave disturb-

ance. It has been evaluated for large r in Appendix C. The final 

result is 

J =A [lttrA+ 
0 l 

where 

A 2 f) K sec?fJ(z-h) 
0 

= m K sec e l 

A = 2 ( z - 2 h )K s e c 2 f) s in f) co s ( f) -a ) , 
l 

rp = s e c 2 e s in e c 0 s z. ( e -() ) ' 
l 

rp 2 =[} - } secz. e sin2 e] cos 3 (8-a) ' 

so that when substituted in (4 . 31) and (4. 32), 

. ] 
) 

. le 1 
z dfJ A [ 1 +er A . . 

iKr[ rp +(er )rp +(u )z. rp 
] 

0 l 2 ~ =Re 
w 1T e o i 

where 

e =r ! + () 
and 

. e 

> for a < 0 

(4. 44) 

(4.45) 

(4.46) 

(4.47) 

(4.48) 

(4 . 49) 

. ] 
(4. 50) 
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The integral representation (4. 50) is in a suitable form from which 

the asymptotic behavior of ~ may be investigated by the method of 
w 

stationary phase for large val ues of Kr provided c r « 1 « Kr. 

The main idea of the principle of stationary phase is that the 

significant contribution of the integral of (4 . 50) comes from a small 

range of fJ centered at the critical poi nts o f the phase function 

cp(fJ ,a, Er) = <fJ (fJ,cr) + Ercp(fJ,cr)+ (Er) 2 cp (8,cr) 
0 1 z 

( 4. 5 1) 

These critical points are the points of stationary phase given by the 

solution of the equation 

8cp 8cp 8cp 
= --sf- (fJ,cr) +(Er) 1ffi (fJ,a) + (er) 2 ~ (8,<J) = 0 (4.52) 

Let the root of Eq. (4. 52) be denoted by e = 8 <a, Er)' which may be 
c 

expanded for small Er as 

e = e (o) + Er e (o-) + (Er)z e (o-) + O(Er f 
c 0 1 z 

( 4. 5 3) 

By substituting (4. 53) in (4 . 52), expanding the resulting terms for 

small er, we obtain the following equations for e 'e and e 
0 1 2 

8cp 
0 ( e ' a) 0 (4. 54) ae = 

0 

Ef cp 8cp e 0 
( 8 'cr) + 1 

l 
88 2 ~ (fJ ,o} = 0 ( 4. 55) 0 0 

e 
z 8fJZ 

e z 83 
l <Po ( e ' a) + - ( 8 ' <J) + e 

0 2 883 0 l 

(4. 56) 

B y making us e of (4. 47), (4 . 54) becomes 
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2 tan e cos(e -o) - sin(e -er)= 0 
0 0 0 

which has two roots given by 

tane 
0± = 

-1 ± Ji -8 tan2er 
4 taner 

( 4. 5 7) 

(4.58) 

In order to have the stationary points e r eal, and hence to remain 
o± 

on the path of integration, we must have I er I < I er 
0 

I = I sin -
1(1 / 3)1 , 

This, indeed, is identical to ( 2. 32), which states that the wave region 

is bounded by the lines ler I= ler I· 
0 

From Eq. (4. 55) 

ocp 
e = - ai- l azcp 

(8 ±'er - -
0
- (G ,er) 

0 aez o± 

By making use of the expression for cp
0 

and cp, given by (4.47) and 
1 

(4. 48), we finally obtain 

e (8 ,er)= - cos 8 ±cos(e ± - er) (4. 59) 
i o± o o 

where the right hand side has been simplifie d by using (4. 58) . It can 

be r emarked that e ( e ' er ) < 0 fo r all 
1 o± 

ler I < I er I . 
0 

From Eq. (4. 56), it follows that 

ez a3cp az cp ocp 
1 0 + e 1 + 2 

2 
-- ae ae 3 1 00 2 

e = -
2 az cp 

0 - -
ae 2 

( 4. 60) 
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The right hand side of (4. 60) may be simplified by making use of 

the e xpressions for <p ' <p ' <p and 8 ' given by (4. 47) - (4. 49) and 
0 l 2. l 

(4. 59), respectively, yielding 

cos 2 (e -<J)tan 8 {l-8tan2 8 ±) 
o± o± o 

( 4. 61) 

If only the first non-zero perturbation from the uniform flow solution 

is required, it turns out to be unnecessary to evaluate e . 
2. .. 

Hence, for every lcrl<lcr I, 
0 

(4. 58) provides two roots 8 
o-

and eo+(> 80_) and (4. 53) gives the corresponding stationary points 

8 of the integrand in (4. 50). The behavior of CI? for large Kr 
c± w 

(er« 1 «Kr), may be calculated by application of the method of sta-

-·­.,. 
tionary phase to the integral of (4. 50) to give 

where 

~r: 

CI?w"' - A(8
0

+)sin[Krq>(8c+) + ~] - A(8
0

_)sin[Kr</(8c_) - i], 
( 4. 6 2) 

- ~ ( e 2 l 

A 
0 

1 
2 

I+•{:~ 

8=8 o± 

+0(er) 2 ( 4. 6 3) 

For the mathematical argument of this method , see Jeffreys and 
Jeffreys (Ref. 5) §17.05. 
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and 

(e )+cp(e )] 
o± 2 o± 

+ O(uf (4. 64) 

The right hand side of Eq . (4. 64) has been simplified by using (4. 54) 

and (4. 55 ). It is of interest to note that up to O(E r )2, e does not ap-
2 

p ea r in the phase function. Upon substitution of the expressions for 

<P , cp ,cp and e, (4.64)becomes 
0 1 2 1 

sec e tan e 
o± o± 

j l +4 tan4 e 
o± 

+ ¥l + O(Er)~. 

(4.65) 

The form of the constant phase lines (such as the wave c rests and 

troughs) far behind the source of the two wave systems is given ap-

proximately by 

(4.66) 

and 

K rep ( e ) - !_ = C c- 4 - (4. 67) 

where cp(e ) is given by (4. 65) and C+ are arbitrary constants. 
C± 

The qualitative pattern is shown in Fig . 6. Equation (4. 66) gives the 

diverging waves, (4. 67) the transverse waves. Their shift from t he 

well known Kelvin's ship wave pattern is apparent by. c omparison of 

Figs . 6 and 5(b) . As a - a , la I < la l , 
0 0 

and the two systems of waves coalesce. 

Eq. (4.58) shows 8 =8 
o+ o-

The amplitude variation of these waves is given by (4. 63). B y 

using the expressions for A , A , cp , cp and e from Eqs. (4.45) -
0 1 0 l 

( 4. 48) and ( 4. 5 9) we obtain 
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1 

( 1 +4 tan2 8 )4 
0± 

1 

(1-2tan2 8 )2 
0± 

tan e cos e ( 1 
0± o± z + 2K sec2 8 [-h secze 

/ 1 +4 tanze o± o± 
0± 

+ (z-h )tan'e o±]) + O(,r )' ] (4.68) 

The deviation from the uniform stream case [cf. Eq. (2. 34 )] appears 

in terms of O(E r ). Unfortunately, not only is this expression unduly 

complic ate d but it is a lso not suitable in the region near the boundar -

ies of the wave region. 
. 1 

As a __.. a ' la I < la I, tan e -+ ± ~ and 
0 0 o± /2 

the amplitude becomes infinite . A special investigation (e . g. see 

Ursell (16)) of this region will be necessary. 

We shall proceed to determine the extent of the wave region. 

As in Eq. (3 . 75), we may expand the value of o-(r) = O",:,(r) at the 

boundary as 

O" ,:, ( r , e ) = O" ( r ) + e r O" ( r ) + ( E r )zO" ( r ) + 0 (er f 
0 l z (4. 69) 

Upon substitution of (4 . 69) and (4. 53) into (4. 52) , together with the 

nee es sary expansions, we obt<ilin the following equations for 

and O" 
z 

O" ' O" , 
0 1 

(4 . 7 0) 

(4 .71 ) 
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::;: ~::: 

(8 ,a ) +a e 
0 0 l l 

+ e··· --1- (eo··· ,ao) + ~ (e··· ,a )= 0 
l 8 ez 0 r::J 0 0 

:::c 
(e ,a ) 

0 0 

(4 . 72) 

The solution of Eq. (4. 70) with rp given by (4. 47) is obtained as 
0 

,,, 

tan e'•' 
0± 

= 
-1 ± j 1 - 8 tan2cr 

0 

4 tano­
o 

Since at the boundary the two systems of waves coalesce (i.e. 

(4 . 73) 

Eq. (4 . 73) implie "3 a =± sin-
1
(1/3) and tant/=± l/Jz. 

0 0 

Then from (4. 70) and (4.48) we may deduce 

and 

Hence , Eq . (4 . 71) shows a - 0. By the above result, Eq. (4. 72) be-
1 

comes 
2 

':' '~ 8 rp i ':' 0<p 2 
(e ,a ) + e -- (e ,a ) + ~ 

0 0 l 8 ez 0 0 00 
(e':',cr 0. 

0 dj 
(4.74) 

Upon substitution of the expressions for <p , <p , <p and f) given by 
0 l 2 

(4 . 47) - (4.49) and (4.59), a is readily determined; the final result 
2 

is 

(4 . 75) 

Thus, 
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[ 
. -I I 12 2 µ] O",:,(r,E) = ± sm (1 3) - ~ (Er) + O(Er/ , (4.76) 

in whi ch the + or - sign is for y > or < 0. This result shows 

that the wave field is suppressed by the linear shear to a smaller 

region than in the uniform strea1n case, the deviation being of O(E r )2 

(see Fig . 6). 

The Eq . (4. 76) for the boundary of the wave region is identical 

to Eq . (3. 77) obtained in Chapter III. Also Eqs . (4. 65) - (4. 67) and 

(3. 89) - (3 . 90) are different parametric representations of the loci of 

constant phases within the wave region. Hence, for large r(< 1 /E ), 

the integral transform method of the present chapter yields the same 

result as the geometric optics method of Chapter III . 
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V. DISCUSSION AND CONCLUSION 

In the treatment of a steady point disturbance given in 

Chapter III, it is necessary to assume that all the group lines pass 

through the location of the point disturbance. It may be remarked 

that with this assumption, the theory of geometric optics can 

adequately handle all point disturbances including submerged and 

periodic types. 

Similarly, the method of integral transform of Chapter IV 

may be adopted to problems of surface and periodic point 

disturbances. 

Of the results of this investigation thre e main features rr,ay be 

recapitulated. First, by comparison with the steady wave pattern 

g enerated by a point disturbance moving with constant velocity, the 

parallel shear flow has the effect of compressing the r e gion of wave 

disturbance. In particular, a boundary of this resulting asymmetric 

wave region approaches but never attains the critical horizontal line 

E y = -1 (i.e. where U(y) = 0). A physical interpr e tation of this 

result is that this line effectively reflects the surface waves . The 

asymmetry of the wave pattern is also apparent from the trace s of 

c onstant phases. 

Another result of general interest is conce rned with the be­

havior of the solution for large r (< {} : both the small perturbation 

expansion of the geometric optics solution and the solutio n by the 

integ ral transform me':hod r e sult in a symme tric wave r e g ion with 
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asymmetric traces of wave c rests, indicating that the effect of the 

shear is not fully developed in the region r < 1 I e. The similarity 

of the wave patterns generated by a surface and a subme rged 

disturbance is also demonstrated by these solutions. 

Finally, the integral transform method provides an expres­

sion showing the corrections to the amplitude (for large r < { ) in 

comparison with that of the flow without shear. Howe v e r, this 

expression becomes infinite at the boundary of the wave field and is 

thus not applicable in that neighborhood. For the geometric optics 

method, due to the fact that energy is not constant in each part of 

the frequency spectrum, the amplitude cannot be inferred by the 

usual argument of energy flux being constant along adjacent group 

lines and the relationship between the energy d e nsity and amplitude . 

The above results are valid at a distance of many wave 

lengths downstream of the disturbance. Near the disturbance, the 

boundaries of the wave region and near the critical line where 

U(y) = 0, the present theory is not applicable. These, indeed, a r e 

areas where further study is necessary. 
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APPENDIX A 

To illustrate the approach that will be used in this appendix 

we consider the integral 

I = 2;i ~ ; ~:) dz 
c 

(A. 1) 

where g(z) is analytic everywhere within and on the closed contour C, 

If e is any point interior to C, then Cauchy's integral theorem im-

plies 

I = g (e) 

But for lz I > e, a straightforward expansion gives 

l 
Z -E 

E2. 
+- +O(e 3

) 
z3 

so that (A. 1) may be rewritten as 

I = -2 . ~ g (z) - + 1 .r> [l E 

'TTl .Jc z z2. 

(A. 2) 

(A. 3) 

(A. 4) 

With z = 0 and e interior to C, the application of Cauchy's integral 

theor e m to (A. 4) results in 

2. 

I= g(O) + eg'(O) + T g"(O) + O(e 3
), (A . 5) 

which is seen to b e a Taylor series expansion of (A. 2) in e, There-

fore, up to O(e 3
), (A.4) gives exactly the same result as (A. l) pro-

v ide d the path of integration encloses the pole under consideration i .e. 

C is in the region Jz I > E where (A. 3) is valid. 

We shall apply these ideas to the expression for (kB). 
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Consider (4. 22) as a Taylor series expansion of B about E = 0 and 

write 

B(e) (A. 6) 

so that by direc t identification with (4. 22) all the coefficients of (A. 6) 

may be determined as 

oB (e=O) 8E = 

mK 

cl'-Kk 

and so on . _AJso, up to O(e 3 
), we assume B has th e form: 

mK 
B(e) = ------

az -Kk+eB +elB 
+ O(E 3 ) 

l 2. 

which for small E may be expanded to give 

B(E) = mK [1 - E 

a l -Kk 

(A. 7) 

.(A. 8) 

Hence , it is obvious that B and B can be determined by equating 
l 2. 

t errr1s of like powers of E of (A. 6) and (A. 8 ). For our discussion, 

the precise forms of B (a, 13, K ,h) and B (a, 13, K, h) will not b e 
l 2. 

necessary. It is sufficient to not e 

B(a,f3,K,h} = 
l 

i 
-- P(a,13 ,K,h) 
az. -Kk 1 

and 

B (a,13, K,h) = 
1 

z. (az. - Kk)z. 
P(a,13,K,h) 

2. 

w h e r e P and P are a nalyti c func t ions, so that by (4. 2 5 ) and (A. 7) 
1 2. 
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+ 
eZ:P(k,8) 

2 

where P and P are again analytic. 
2 

The poles of (kB) are the zeros of 

+ O(e 3
) 

(k-K sec2 8 f + ieP (k, e )(k-K sec2 8 )2 + e2 P (k, e) = 0 
l 2 

(A. 9) 

(A. 1 0) 

The solution of (A. 10) gives the detailed distribution of poles in the 

neighborhood of k = K sec28. It can be clearly seen that all the poles 

in this neighborhood lie in the region jk-K sec2 8 j ~~. Hence by 

analogy to the situation of <A. 1) - (A. 5 ) , the integral with respect to 

k of (4. 29) 

will yie ld, up to O(e 3 
), the same result no matter whether (kB) is 

given by (A. 9) or by (4. 27) pr ·:>vided the path I' stays in the region 

jk - K sec2 8 I > Je i.e. the region in which the expansion (4 . 2 7) is v alid. 
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APPENDIX B 

We shall show that the pole of (kB) at k = 0 does not con-

tribute to cf> . Denoting by (kB}.,_ the terms in (kB) that have this w ... 

pole, we may write from (4.27) 

(kB) .. , = EzmK secze[ ___ K ___ _ 
.,. k(k-K secZ8'f 

+ 2Kzsec48sinze] 

k(k-K secz8'f 

The corresponding (cf>w),:, arising from (kB),:, is 

e 
(cf>w},:, =Re --7 s z d8~ dkeikr cos(e-a)ek(z-h}(kB},:, 

2rr e c 
l 

(B . 1) 

(B . 2) 

If k = 0 is interior to C, by using (B. l} in (B.2), it follows from 

Cauchy's integral theorem that 

. e 
l r z e . z m [ •e -- J d 2 rrl E - -COS + 

2rrz ' 8 K 
(cf> L.= Re w .,. 

l 

which can be integrated once more to yield 
e e 

(~ L.= Re \V .,. 
z z J . 3e + sin28 + sin4e\ + .!..(e _ sin4e) 

8 4 32 J 4 4 
e e 

(B. 3) 

Thus for any 8 and 8 , the right-hand side of (B. 3) vanishes because 
l z 

the real part of a pur e ly imaginary number is zero. The r e fore, the 

pole k = 0 does not contribute towards cf>w and the path of integration 

in the k-plane in the neighborhood of k = 0 is irrelevant. It may be 

taken to either include or exclude k = 0. 
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APPENDIX C 

We shall evaluate for large Kr the following integral 

R ( ikr cos(e-a) k(z-h)kB) = _l_ k dkeikr cos(e-a-) 
J = es e e k=Ko 2n1 Ye 

ek(z-h)kB,(C. 1) 

wher e K ::: K secze is interior to C and (kB) is given by (4. 27). 
0 

In terms of the variab l e 

11 = k - K 
0 

1 » 11 > E (C. 2) 

(C. 1) bec ome s 

1 AK f A. 
J = Zni e 

0 
'j' d11 e 11 (kB) 

c 
(C. 3) 

where 

A. - ( i r co s ( e -a ) + ( z - h ) ] (C . 4) 

By using (4. 27) the integrand of (C . 3) may be written in terms of 11 

as 
A. mK A. [ 2hK sine ( ) 2K sine] 

e 11 (kB) = --0- e 11 -i EmK - 0 1 + _!l_ + __ o __ _ 
11 o z K 3 

11 0 T) 

A. 11 e 

+ ezmK[- ~ + hzseczesinze (l + 21 L +-1-( 1 _ ...2L + ~ . ·) 
z Z K ro 3> K z ' 

11 11 o ··1 o K 
0 

2 hK secze sinze 41:1K ( ) 
o + __ o l + .21._ _ 4 h secze sinze K z( l +-21.) z 

.,.,:> 3 K 3 o K 
., T) 0 11 0 

+ 2secze sinzeK (i _ _!l_ + !{__ _ ~ ) _ 4
K 0 

4 o K 0 Kl K 3 .,.,4 
11 0 0 'I 

+ 
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For large r, we shall consider (A. 11) small (i.e. r11 « l) and expand 

eA. 11 in (C. 5) in a power series of (A. 11 ). The residue at the pole may 

then be evaluated by using the well-known theorern that if 

terior to C and g(z) analytic 

_1 __ f dz g(z) 

2rn ~C ( z - z )n 
0 

Hence, from (C. 3) and (C. 5) we obtain 

2. (" 3 + l 2h sec2 8 sin2 
{) K

0 
3"f 

+ O(e3 
)] 

A. z) + --2K 
0 

= 
gn-1 (z ) 

0 

(n-1 )! 

z 
0 

is in-

(C. 6) 

By substituting (C . 4) into (C. 6) and separating real and imaginary 

parts we may write 

(C. 7) 

where 

H = 2r(z-2h)K sin8cos(8-a) 
l 0 

(C . 8) 

r4 
H

2 
=-y K~ sin2 8 cos4 (8 -a) + O(r2

, (z -hf (C . 9) 
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I = r 2K sin 8 cos 2 (8-a) + O( (z-h)2 

0 

3 

1z = ;- [ 2K-K
0

sinz.8] cos3 (8-a) 

+2r3(z-2h)K z. sin2 8 cos3 (8-a) + O(r) 
0 

(C.10) 

(C.11) 

In (C . 8) to (C . 11 ), we have retained only the terms of highest order 

in r in each case. This is justified because the asymptotic behavior 

of J for large r is of interest here. A physically more significant 

form of the above may be easily deduced by rewriting (C . 7) to (C. 11) 

in the following form: 

iKr[cp +(Er)cp +(er)2 cp 
J = A ( 1 +Er A + . 

0 l 
) 

0 l z . e 

where 

A 
0 

= mK e 
0 

K (z-h ) 
0 

A = 2(z -2h )K sin 8 cos2 (8 -a) 
0 

cp = s e c z. 8 c 0 s ( 8 -a ) 
0 

cpl = s e c z. 8 s in 8 c 0 s z. ( 8 -a ) ' 

cp z =[ ~ - } sec2 8 sinz.8] cos
3 

(8-a) 

. ] (C.12) 

(C.13) 

(C. 14) 

(C.15) 

(C. 1 6 ) 

(C. 1 7) 

The derivation of (C. 13 ). to (C. l 7) from (C . 8) to (C . 11) is straight-

forward and will b e left out. The meaning of (C.12) to (C. 17) is ex-

plained in the text . 


