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Abstract

The subject under investigation concerns the steady surface
wave patterns created by small concentrated disturbances acting on
a non-uniform flow of a heavy fluid. The initial value problem of a
point disturbance in a primary flow having an arbitrary velocity
distribution (U(y), 0, 0) in a direction parallel to the undisturbed free
surface is formulated. A geometric optics method and the clas-
sical integral transform method are employed as two different
methods of solution for this problem. Whenever necessary, the
special case of linear shear (i.e. U(y) = Uo(l+ey) ) is chosen for the
purpose of facilitating the final integration of the solution.

The asymptotic form of the solution obtained by the method of
integral transforms agrees with the leading terms of the solution
obtained by geometric optics when the latter is expanded in powers
of small er.

The overall effect of the shear is to confine the wave field on
the downstream side of the disturbance to a region which is smaller
than the wave region in the case of uniform flows. If U(y)
vanishes, and changes sign at a critical planer FTE S (e.g:

e = -1 for the case of linear shear), then the boundary of this
asymmetric wave field approaches this critical vertical plane. On
this boundary the wave crests are all perpendicular to the x-axis,

indicating that waves are refllected ai this boundary.
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Inside the wave field, as in the case of a point disturbance in
a uniform primary flow, there exist two wave systems. The loci of
constant phases (such as the crests or troughs) of these wave sys-
tems are not symmetric with respect to the x-axis. The geometric
optics method and the integral transform method yield the same
result of these loci for the special case of U(y) = Uo(l +€y) and for
large Kr (er €1 «Kr).

An expression for the variation of the amplitude of the waves
in the wave field is obtained by the integral transform method. This
is in the form of an expansion in small er., The zeroth order is
identical to the expression for the uniform stream case and is thus
not applicable near the boundary of the wave region because it be-
comes infinite in that neighborhood. Throughout this investigation
the viscous terms in the equations of motion are neglected, a reason-

able assumption which can be justified when the wavelengths of the

resulting waves are sufficiently large.
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I. INTRODUCTION

In oceanography, the effects of strongly sheared ocean cur-
rents on the propagation of ocean waves present problems of consider-
able interest. Another example of water waves in shear flow is the
ship waves propagating in the wake and near the stern of a ship. A
steady wave pattern of surface wave is produced by a concentrated
stationary disturbance located either on the surface or submerged
within a steady primary shear flow. This class of problems
is of basic academic interest as well as of great importance in ship
hydrodynamics because it can predict the main features of the system

of waves accompanying a ship moving through a sufficiently deep water.

There exists an extensive literature concerning the special
case when the primary flow is uniform. The classical method of

solution is discussed in L.amb's Hydrodynamics (Ref. 7) where applica-

tion is made to gravity waves (Kelvin's ship wave-pattern) in §256 and
to capillary and combined capillary-gravity waves in §272. The ex-

tension of this classical method to disturbances of variable or pulsat-
ing strength and follow'}ng an arbitrary path in a uniform primary flow

may be found in Wehausen and Laitone (Ref. 18) and Stoker (Ref. 14).

In contrast, the problem is much more difficult when the
primary flow is non-uniform. Several papers treating the problems
of disturbances in a rotational floware limitedto two dimensional dis-

turbances in parallel shear flows without free surfaces. The vortex



lines in these flows are straight, remain parallel to one another, and
are not stretched during the motion. Hence they are relatively
easy to treat.

When the disturbance is three-dimensional, even though the
undisturbed flow may still be unidirectional and does not possess a
free surface, the stretching and bending of vortex lines must play an
important role, Certain outstanding papers on the theory of these
flows have appeared.

A basic theorem that two-dimensional disturbances become
unstable at a lower critical Reynolds number than three-dimensional
disturbances has been given by Squire (Ref. 12).

Squire and Winter (Ref. 13) have investigated steady three-
dimensional disturbances to a parallel shear flow with no free surface
by the so-called '"secondary flow'' method. In this treatment, no
restriction is placed on the disturbances but there is an assumption
that the undisturbed stream is weakly sheared. The shear is usually
taken to be linear though this is not an essential limitation to the
method, A difficulty arising in the application of this theory is that
the secondary flow disturbance due to the presence of an obstacle falls
off more slowly with distance than does the primary flow disturbance.
This limits the validity of the solution to the region near the obstacle,

In an effort to clear up this difficulty Lighthill (Ref. 9) has
studied the fundamental solution of a small steady three-dimensional
disturbance in a two-dimensional parallel shear flow without a free

surface, Denoting the velocity field by (U(y) +u,v,w), he has shown



that the small perturbation theory based on neglecting the squares of
the perturbation velocities u, v and w is valid far from the obstacle
and overlaps the region where the secondary flow solution is valid.
The asymptotic behavior of this solution for large r shows that a
source in a shear layer produces in a region of uniform flow outside
the shear layer a disturbance equivalent to a source of different
strength at a different position, The strength of the equivalent source
can be predicted by an image method in which the shear layer is
regarded as a superposition of layers of piecewise uniform flows. The
displacementin effective positionis of the order of the width of the shear
layer. It is expected that such modification of source strength and
position will no longer be so simple in the presence of a free surface,

In fact, in the presence of a free surface, the difficulties of
treating the stretching and bending of the vortex lines are further en-
hanced. If the undisturbed flow contains a vortex sheeti.e, a dis-
continuity in velocity, perpendicular to the free surface, any disturb-
ance may produce wave motions both in the free surface and in the
vortex sheet, Development of a theory describing the interaction be-
tween the waves and these free surfaces is a difficult mathematical
task, For primary flows having a continuous horizontal velocity
distribution,the free surface waves produced by an obstacle will de-
finitely be affected by the vorticity of the primary flow,

In spite of the difficulties described above, Ursell (Ref, 17)
has investigated the problem of steady wave patterns on a non-uniform

steady fluid flow. By assuming that the primary non-uniform flow is
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irrotational and does not vary rapidly with distance, he has developed
a theory, for the steady wave pattern, based on the following assump-
tions:
(1) The streaming velocity component normal to a
wave crest is equal to the phase velocity based
on the local wave length;
(ii) the separation between consecutive crests is

equal to the local wave length.

The purpose of the present study is to develop systematically
a theory for steady surface wave patterns due to a small concentrated
disturbance in a primary parallel rotational flow. In the construction
of the phase curves by Ursell (reference 17) it was assumed that the
phase velocity relative to a siightly non-uniform stream of variable
depth can be adequately approximated by the phase velocity obtained
from constant depth theory. The validity of this implicit assumption
of adopting the original dispersion relationship for uniform flows of
constant depth for rotational non-uniform primary flows is not im-
mediately obvious. Indeed, our theory shows that if terms other
than the two lowest orders are kept, this is no longer wvalid.

By discarding the squares of the perturbation velocities u, v
and w of the velocity field (U(y) + u, v, w), we shall first formulate
the problem for an arbitrary primary parallel shear flow U(y) with
an undisturbed free surface at z = 0, in Chapter II.

A method based on the notion of group velocity and geometric

optics argument, as developed by Landau and Lifshitz (reference 8),
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by Keller (reference 6) and by others, is applied to the problem of a
small stationary concentrated surface disturbance on a primary
parallel shear flow U(y) in Chapter III. In section 1, U(y) is kept
arbitrary but in sections 2 and 3, solution for the special case of
Uly) = Uo(l +ey) is carried out while no restriction is placed on ¢ .
It is believed that the true behavior of the flow far from the disturb-
ance must be obtained from the full equations with the squares of the
disturbance neglected. Such an approach results in a ""small-
perturbation' solution. The region of validity of this result is at
large distances from the disturbance and overlaps the region near the
disturbance where a '"'small-shear' solution is valid. This over-
lapping holds in the sense that the asymptotic behavior of the '"small
shear'' solution is sim:.lar to the asymptotic behavior of a perturba-
tion expansion of the '"'small-perturbation' solution for small er.
This is, indeed, indicated by comparison of the results of

Chapter III, section 3, and Chapter IV.

The geometric optics method of Chapter III fails at the bound-
ary of the wave region. For the special case of uniform primary
flow, Ursell (reference 16) has determined the behavior of the waves
near the boundary of the wave region by a modification of the prin-
ciple of stationary phase. Thus showing that for dispersive waves,
the integral transform method is the fundamental one. Therefore,
in Chapter IV, we shall modify the classical integral transform
method to treat a weak submerged source of constant strength in a

primary linear shear flow, i.e. U = U_(l +ey). By following the
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"secondary flow' method, we take the "primary flow' to coincide
with that in which the undisturbed stream is uniform and the
"secondary flow' to be a perturbation of the primary flow by allowing
a small shear (€ small) in the undisturbed stream. The resulting
""small shear' solution, obtained by applying the method of
stationary phase to evaluate the inverse transform, is valid for

large r (<—'15).: However, a more elaborate asymptotic technique

will have to be applied in order to deduce a solution valid near the
boundary of the wave region.

Although the velocity distribution Uo(l + y) considered in
Chapter III and Chapter IV may seem somewhat artificial, it never-
theless provides some insight to the problem of arbitrary U(y) as
well as a first approximation to the horizontal velocity distribution
of the ocean near the shore-line. In the present treatment, surface
tension and viscous terms in the equations are neglected. This is
known to be permissible except near the critical region where U(y)
is zero. Accordingly the theory developed here is limited to a region

in which U(y) is nowhere zero.
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11, GENERAL FORMULATION

1, Co-ordinate system and convention

The problem in question concerns the propagation of surface
waves in a body of heavy fluid, of infinite depth,initially havinga pre-
scribed non-uniform horizontal velocity distribution, due to a station-
ary disturbance, The fluid is taken to be inviscid and incompressible,
of constant density p. The resulting flow will be generally rotational;
the disturbance is however assumed to be so small that a linear theory
can be applied, Consider a right-handed rectilinear co-ordinate sys-
tem such that (Fig. 1)

(i) the z-axis points vertically upward, with z = 0

coinciding with the undisturbed free surface, and the grav-

ity acting in the negative z-direction;

(ii) the x-axis is in the direction of the undisturbed stream

which is taken to be a function of y only; and

(iii) the y-axis completes the system,

The x,y, z-components of the velocity vector E are denoted by u,v,
w, the pressure by p, the density by p and the gravitational accel-

eration by g. Other notations will be defined in the text as needed,

2, Equations of motion

The primary flow is unidirectional and has a prescribed shear

given by

(Uly), 0,0)

Q)
I

(2.1)
P, = ~p8g2
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where U(y) is an arbitrary function of y and is assumed to be at
least twice differentiable, With q, and p, representing the total veloc-
ity vector and pressure respectively, the momentum equation for an

inviscid, incompressible flow is

3 q::: — — v p’:‘

g il VMg = - —— -Vez . (2.2)

The continuity equation is
Veq, = Q(x,t), (2.3)
where Q(;,t) represents a source in the fluid,

3. Boundary conditions

The boundary conditions on the free surface of the heavy fluid

can be stated as follows, Let the free surface be Sf: z -{(x,y,t) =0

where {(x,vy,t) is the vertical displacement of the free surface meas-

ured from z = 0, The dynamic condition of constant pressure at the

free surface required

(_i't:; =0 on z =0(x,y,t) . (2.4)

The kinematic condition for the particles on the free surface is

v gl =g (B2 5y -1 on ==l y.t) s (2.5)

On solid surfaces with specified shapes S(x,y,z,t) = 0 the boundary

condition is

5% + q*'VS =0 on Sle,yezst) =0 . (2.6)



4, Linearization

The flow field maybe considered as a combination of the prima-

ry shear flow (21-0, po) and a perturbation (a, p) so that

1

(_1::: :(—:]TO +a (U(Y) +u:vlw), (2_7)

p::: PO + P = ng + p

If the departure from the primary flow is small, then by neglecting
the squares and products of u,v,w and their derivatives, Eqgs, (2, 2),

(2.3) can be linearized to give

Du+ Uty + g B) = 0, (2.9)
D +%(§]=o, (2.10)
Dow + %(g] s s (2.11)

ou ov ow =

where D = Bit + Uly) 5—3%, and in the sequel D' = U'(y) % and
D" = U''(y) % . The linearized free surface conditions can be readily

shown to be

-pgw + Dp = 0 (2.13)
on = =0 ,
DL =W

whereas the boundary condition on solid surface remains unchanged.
Elimination of p by cross differentiations of (2,9), (2.10) and (2.11)
gives

= Du=D Y. -887 (U'yw) (2.15)
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) ov
-a—y- DW—DE . (2.16)

Although from (2.12), (2.15) and (2.16) a single equation for any
component of the perturbation velocity a = (u,v,w) can be obtained,
the equation with v as the dependent variable is preferred. By

eliminating u and w, we obtain

[DV? - D']v = % DQ(x,t) . (2.17)

Equation (2.17) is the basic equation of motion, When v has been
solved together with appropriate boundary conditions, u and w may
be deduced from (2.16) and the continuity equation, To obtain w, the
lower limit in the y-integral may be taken as either +o0 or -« since
the disturbances are assumed to vanish at both limits., The result
obtained using either limit is the same. In integrating the continuity
equation with respect to x to obtain u, however, the lower limit
must be -« because it is possible that the fluid at +ea in which
region the vorticity may be permanently changed after the fluid has
passed the disturbance, may not have zero disturbance velocity i. e,
we shall only assume all disturbances vanish farup stream (at x=-w),
The appropriate condition on the free surface for v can be

derived by differentiating (2.13) giving

5] 0

Eliminating w from (2,18) and (2,16), we obtain after some manip-

ulation
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9 2 0 (p p
-g == Dv +D (}+ZDD'(—=O
E Bz By (p o
By using (2.10) in the second term and integrating the resulting equa-

tion once, we have

ov 2 P
g ok = +2D'( =0 . %1
g 5y - D'V 5 (2.19)
Recaliing D' = U'(y) E?_x , Eqg. (2.9) can be used to eliminate {%),
yielding
tg 2 4 DPv +2U(y)Du +U ' (yv) = 0 . (2.20)
Finally, dividing (2, 20) by U'(y), differentiating it with respectto y, then

using (2.15) to eliminate u, we obtain the free surface boundary

condition as

2 ov
o |IDV*tE 57 )

W—ﬁ,—,-(?)—z—ZEDV on z =0 « (2.21)
With appropriate initial and boundary conditions, v canbe solvedfrom
(2.17)and (2.21). Sofar norestrictionhasbeenplacedon U(y). They
are linear partial differential equations with variable coefficients
which depend on y in such a complicated manner that it is quite dif-
ficult to obtain an analytical solution for the general case of arbitrary

U(y). In Chapter III a geometric optics method will be developed for

the case when the variation of U(y), otherwise arbitrary, is as-
sumed small, In Chapter IV an integral transform method will be
applied to solve (2.17) and (2.21) for v for a particular, although

somewhat artificial U(y), namely that of linear shear,

Uly) = Uo( 1 +ey) . (2.22)
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It is obvious that this type of undisturbed parallel velocity distribution,
if exists at all, is rare. Nevertheless the solution may give some in-

sight to the much harder problem of arbitrary U(y).

5. Review of steady wave pattern in a uniform stream

The treatment of a stationary point source of strength m, sub-
merged in a uniform primary flow, by double Fourier transform and
asymptotic evaluation of certain integrals based on the principle of
stationary phase illustrates the characteristic difficulties involved
(Ref.18). We shall review this method briefly to fix ideas as well as
for discussion and comparison of the results with the case in which the
primary flow is non-uniform.

Let rectangular cartesian co-ordinates (x,y,z) be chosen with
the z-axis perpendicular to the undisturbed free surface, the x-axis
parallel to the stream velocity Uo’ and the y-axis completing the
system. The gravity acts in the negative z-direction, with gravitation-
al acceleration g,. The origin is taken so that the point of disturbance
is at (0,0, - h). Polar co-ordinates (r,0,z) are defined by
X =rcos0, y =r sing, Our problem is to find the velocity potential
qbo(x,y, z) based on the linearized theory that in the flow field z < 0,

¢, satisfies the Laplace equation
v2¢o =0 except at (0,0, -h) , (2.23)

and the boundary condition at the free surface =z = 0 that

o%_ o6
+KW:O (Z:O) ] (2,24)

dx?
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where K = g/U; is a characteristic wave number, We further write

m 1 &
¢O(Xsy,z) = = Ef{— +¢(X=Y:Z) b

~
where ¢ is a harmonic function, regular in the region z < 0, and

Rf =x* + y* + (z+h)* . (2.25)

For the condition at infinity we require

lim grad¢0 =0 (2.26)
Z—> -00
lim gradqf)o =0 (2.27)
X -c0
Applying the double Fourier Transform,defined as
> 00 0 3 ,
Flo,} =S dxf ay BV (2.28)

-00 -00

to (2.23), we obtain a second order ordinary differential equation with

z as the only independent variable, The coefficients in the solution of
this transformed equation are determined by the transform of the bound-
ary conditions., The details of the method of solution can be found in
Havelock (Ref. 4 ) and elsewhere and will not be repeated here, With
the notaticn

kcos 6

R
n

p) (2.29)
k sin 6

™
1

the resull is as follows:



-14-

m 1
Wy 2l = - I g
T
o
+ Re 1 g
27

-
2

+
M|

28
41

[oH
D
OL/} o
8
o,
=

eikr cos(G—U)ek(z-h) mk sec?6

k-K sec?f

(2.30)
where R? =x* + y% +(z-h)® and '"Re' denotes ''the real part of',
2

The
physical significances of the terms on the right-hand side of (2. 30),

are respectively, the point source, its reflection into the plane z = 0

2
and the disturbance due to the free surface effects, including the sur-
face waves,

By evaluating the k-integral along an appropriate path, the
integral in (2. 30), for cos(6-0)> 0, vyields in the final result of (I)O a

term of the following integral representation

6
Re i ‘S ? a6 eirH: sec?d cos(G-O')eK sec?f(z-h)
s
6
1

mK sec?f
where

3

™
= '2-‘"1'0'

(o)
0 = and 6 = for o
1 oy 2

™
'-27'*"0'

AV

This integral is in suitable form for the application of the method of
stationary phase.

For large Kr and for each particular o,

the sta-
tionary points are given by the roots of

—gg[seczacos(ﬂ—o)] =0 ,

or
2tan6 cos(f0-0) - sin(6-0) = 0

(2.31)
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Explicitly, there are two roots 6_ and 9+, given by

~1+ /1 -8 tanc
tan 9:*: =

4 tano

(2.32)

The asymptotic form of the wave part of qbo for large kr follows from

}

} , (2.33)

the principle of stationary phase to give

= . 2 »
d)o = A(6+) mn{rK sec 9+ cos(9+ g) +

INE]

-A(e_)sin{rx sec’d cos(f_-0) -

AN

where

o (144tan? 6. )¥Y*  «ksec?0,(z-h)
A(G):fz mkK sec 6 = =
+ KrT + 2 V)

(1-2tan 91)

. (2.34)
with 9;!: given by (2.32). The above results show that the resultant
wave pattern of a subrnerged source is the superposition of two sys-
tems of wave which are confined in the wedge bovnded by two vertical
planes 0 =+ 0,, 0, =19.5°, The general features of the curves of
constant phase are shown in Fig. 5b.

The variation of the amplitude is indicated by Eq. (2, 34). The
above expressions (2,33) and (2, 34) break down when the second deriv-
ative of the phase function sec?0 cos(0-0) with respect to 6 vanishes;
this occurs at the boundary 0 =% 0, of the wave region., By a more
elaborate asymptotic method, Ursell (16) has shown that the leading
term of qSO is of order O(I{r)_% in the region near |o] = |0'*I_ In
this region, the method of geometric optics to be discussed in Chapter

II1, too, fails. For dispersive systems, the method of stationary
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phase therefore seems more fundamental, But it can be seen that
this integral transform method, without modifications, fails when the
primary flow is non-uniform because Eqs. (2,23) and (2, 24) are re-
placed by Egs. (2.17) and (2.21) which have variable coefficients, We
shall ‘show in Chapter IV, how this integral transform approach can be

modified in a special case to overcome this difficulty.
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III. METHOD OF GEOMETRIC OPTICS

1. Unsteady problem

The method of geometric optics has been developed and applied
to problems involving wave motions in anisotropic and dispersive
media by Landau and Lifshitz ( 8 ), Lighthill (10), Whitham (20),
Keller ( 6), and by others, The basic assumption necessary for suc-
cessfu! application of this method is that the non-uniformity in the
dispersive medium in which the wave propagates does not change sig-
nificantly over distances comparable to the typical wave-length under
consideration. In our present problem of gravity waves, in a parallel
shear stream with free streamvelocity U(y), this assumption may be
interpreted as

S
Uo /gl «1

where Uo is a characteristic constant velocity, Uoz/g , is the typical
wave length, and { is a characteristic length over which the primary
parallel shear flow velocity, changes appreciably. For example, £
may be chosen to be Uol(mean value of |[dU/dy|). In this section, the
problem of a point disturbance applied on the surface of the fluid at

x =0, vy =0 for t> 0 is first formulated. The steady wave pattern

due to a stationary point disturbance on the surface is then deduced

quite readily.

We considerherea general distribution of velocity U(y),
Uph=U + U ilyl « (3.1)

subject to the restriction that U (y) is a slowly varying function and is
1
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small compared to u,. When the variations of U(y) are smooth, we
can keep a clear separation between the phase of a surface wave and

its amplitude. Thus we may write
vix,t) = AGL 0 ) o A explifx, 1) + LE, 0} (3.2)

where

L

L{x,t) = log[ A(x,t)/A_]

and AO is a reference amplitude, A(;, t) is the amplitude function,
which is assumed to be slowly varying in x and t. The function

(,b(;; t) in general may be complex, its imaginary part is determined by
the differential equation governing v. To represent a surface wave,

the real part of ¢ assumes the form

Re{¢(x,t)} = koq,(;,t) =k _¥(x,t) - ot (3.2a)

where ko is a constant reference wave number appropriate to the wave
motion in question, w = w(;, t) is the circular frequency, and the real
function \If(;,t) is the so-called eikonal function, which defines the
surfaces of equal phase,

For the geometric wave approximation we next introduce the
basic assumption that the characteristic wavelength Zw/ko is assumed
to be small compared to the distance £ over which U(y) changes ap-
preciably. Hence, if _;{ is referred to £, and t to kollwo, as the
basic units, then from the above assumption it follows that the deriva-

tives of ¢ and L will assume the order of magnitudes:



S

grad¢| =0k ) , I [=0kp ,
(3.3)
lgrada L] = o(1) L] =o@)

and the higher order derivatives of ¢ with respect to x and t are
clearly also of order (koﬂ)_ Since the geometric wave approximation
requires kOE to be large, the differential equations for ¢ and L can
be derived by substituting v into the basic equation of motion (2.17)
and the boundary condition (2,21), then expanding the equations for
small (l/koﬂ). Consequently, the terms in (2.17) have the following

orders of magnitude:

ID@*v)| = ollvik ) ., luv | =o(urvik )

where the prime denotes differentiation with respect to y, as before.

Hence, up to the first two leading terms for koﬁ large, we have

D(VZV) =0 )

which holds true for arbitrary U(y) provided the variation of U(y) is
smooth, a factor of error [l+O(kO£)_z] for the left side of the above
equation being understood. This equation can be integrated once, giv-
ing Viy = f(x - Ut), f(x) being an arbitrary function of x; but this
function must be zero since V?v 1is required to vanish as y2 4zt > o
in the flow field. Whence

Vivy = 0 5 (3.4)

valid for the first two leading orders. The free surface condition (2, 21)

becomes
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1
é%- (D*v + gv,) = - 2U'Dv,_+ < (Div +gv ) . (5. 5)

It may be noted that the two terms on the left hand side of (3.5) may be
regarded to be of the same order since the parameter gI/UCZ) , Wwhich
is the factor multiplying ¥ in the dimensionless form of the equation,
can be very large. It is also noted that the terms on the right hand side
of (3.5) enter in the calculation of the second order term. |

By substituting (3.2) into (3,4) and retaining only the two lead-

ing orders, we obtain

S 3R o oo
and
9x oy oz
From (3.6),

g 22 =ﬂa¢ [W’ ZJZ (3.8)
Hence we observe that if the partial derivatives of ¢ with respect to
x and y are real, as is required by the solution representing a sur-
face wave propagating in the x-y plane, then 08¢/08z will be purely
imaginary so that v will vary exponentially with respect to =z, In
(3.6), an appropriate branch of the function (ci)xz +¢yz)% is chosen to

satisfy the boundary condition that v > 0 as z — -0, By differentiat-

ing (3.6) with respect to x,y,z, and by some substitutions, we find

Zd) -

"

a¢ + 2 9¢ o9 az. +{8¢ 82¢ .(3.9)

1 5¢
z+(%_)] (a o 9x Oy 9%0 Z

oy
9y
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By making use of (3.8) and (3.9), (3.7) may be written as
a¢ o¢
L _ 9L oL dy

1 %z T ox ‘:( ) [ } Y[(%)z+(%z]%

8¢ |* 8% , 0 99 9% 4] 89 2 9%
ml - Lk
oy

T oy

We also note that if qﬁx, ¢, L, and LY are real, then 0L/0z

@

_I_

must be purely imaginary. We shall henceforth regard i ?r and

aL

155 as real.
Next we substitute (3.2) in (3.5), again keeping only the two

leading orders, and separate the real and imaginary parts, to obtain

1
9 2 9 2|2
(a‘f+ug‘i g[(g_g) +(%] =0 (z2=0), (3.11)
9
AT [ AP
[(%Z + %Z}E
ox oy
o¢
5 T3 0 (% 4y 2 8¢ 8¢
a¢)2 . a¢ 2l 2
5%l +(5%
o¢ o¢
g @ ox g @ oy
o S 2 (ﬁz}z— ZBY a¢2 a¢2%
¢ 9
(321" (28] (21" +2e)]
0¢
r2(F v BluomT-o -0 . (3.12)
dy

In (3.11), (3.8) has been used to replace i g—‘i— . Also (3,10) has been
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used in (3.12) which has been further simplified by subtraction of
(3.11) and its first derivative with respect to y. The eikonal equation
(3.11) provides an equation for ¢ while the transport equation (3,12)
is a first order partial differential equation for L. Since (3.11) and
(3.12) are deduced from the linearized free surface condition (3.2),
they are valid on z = 0 only,

To effect the integration of (3.11) and (3.12) we introduce the

frequency function w(g, t) and wave number _12(;, t) =(k1, kz’ 0) by

o¢ _ op 8¢ _ .2 2 .
gr=-e . Feck . gk b=/ ak> (5, 1%)

in terms of which (3.11) becomes

1

(S

F(-w,k,k,y) = (0-Uk J - g{k + Kk )2 =0 . (3.14)

By applying the theory of first order partial differential equations (e.g.
see Courant and Hilbert, (1962), Vol. 2), the characteristic equations
"may be written immediately., If we introduce a parameter \ along the

characteristic curves the characteristic system of equations become

%Z'%?Z(WWI) , (3.15)
g_i: g_ll'-:; ='2(w—Uk1)U—gk1/k , (3.16)
& =g§z:‘gk/k ; (3.17)
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dw OF oF
ﬁ = _t - w %— = 0 3 (3n 19)
dk

L _ _8F . OF _ 5
T < 5 "R gt 202
dk

2 oF oF 4

= - — - = 2(w- 1 3.2

Equations (3,19) and (3, 20) show that w and kl are constants along the
characteristics or ray paths though their constant values may be dif-
ferent for different characteristics.

By dividing (3.16) and (3.17) by (3.15) and using (3,14), the

components of the group velocity Eg = (CgX,ng) are deduced to give

K
_dx | dw lig 1 -
. ~@ - “YYIEE (%, 22]
1
K
_dy  dw 1 /g 2 .
Cgv“ﬁ?‘é‘li;‘ zhe & (3.23)

The form of these group velocity components resembles those of the

waves propagating on the surface of a stream with a uniform velocity

except that in the present case U = U(y), and k 1is no longer constant
2

on ray paths as can be seen by division of (3.21) by (3,15)

dle
ey !
T = - KUy) (3.24)

which gives the rate of change of k along a ray path. This rate is

2
constant on each ray path for the special case of a primary parallel
flow of linear shear, that is, U'(y) = const,, but it may differ on differ-

ent rays, The ratio of (3,22) to (3.23) gives
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'?—1 = 3
_/E__ gkZ
2l kK &k

from which the ray paths or group lines may be deduced. Equation

U+-1—/&EL 2U(gk)T* +g%k
dx Z/k & 5 55
= T = (3.25)

2

(3.25) may be put into a form which can be readily integrated. From

(5,14},
\[gl: = (w-Ukl) 5 or
(w-Uk }
B ekt = g (3.26)
2 gZ 1

Substitution of (3,26) in (3, 25) gives

2U(w-Uk ) +g%k
= - L L , (3.27)
J (w-Uk )*
+ g 1 - K2

gZ 1

of which the right hand side is a function of y only because k1 and w
are constant along each group line. For the special case of linear
shear primary flow, it is readily seen that the group lines may be ex-
pressedas the elliptic functions., Integration of (3,27) for this partic-
ular case will be carried out for the steady problem in the next section,
To conclude this section we shall examine briefly the transport
equation (3,12) governing the amplitude variation. In terms of the

notations defined in (3,13), (3.12) becomes
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oL oL a1, 1 2] 9
ot +ng N +ng 'a—y + ——Z(w_Ukl){a—t— (w-Ukl) + U a (w Ukz)
k k k
E,_E’_(_L S_.i[_i) P N
- o - k]+28y " +U(Y)kz =0 , (3.28)
where ” kl
(w-Uk U + —
Z2 k
Cg, = : ’ (3.29)
(w-Uk )
k
g _z
2 E
g, ") - (3.30)

These expressions for the components of the group velocity are the
same as (3.22) and (3. 23) by virtue of (3.14). In order to express
(3.28) in a physically more meaningful form, we shall first take the
partial derivatives of ng and ng with respect to x and y respect-

ively, giving, after some rearrangement,

k oCg Cg
! 8 g 9 1 a\l_ % x 9
(w-Uklj 0 5% (“"Ukl) v 2 3}?[_1?)}_ ox ' (w-Ukl) 5% (w—Ukl) ;
(3..31)
and
! g 8 [2)\_ y y 8
(w-'Uk1 5{2 By{ k)}- 9y * ((.u—Ukl) dy (w Ukl) . {3.32)

We recall that the total time derivative of a function f(x,vy,t), which

does not depend on k2 explicitly, along the group lines is

af _ of of .  of
o ot Y, 5 (3 35

Hence,
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dU

d g _ au _ _ ey 9Y - I(y)Cg_ 3.34
¢ (@-Uk) = Il k1U1(Y) I k Uly)Ce, ( )

since w and k are constants on each group line. But by (3,33), we
1

can also write

—--(w—Uk)- (w- Uk)+Cg T(w Uk)+Cg (t.o Uk) . (3.35)
1
But the right hand sides of (3.34) and (3. 35) must be identical, hence

& (@-Uk )= - Cg_ g (e-Uk ) - Cg % (0-Uk ) - & U(y)Cg, .(3.36)

Expressions (3.31), (3.32) and (3.36) may now be used to rewrite

(3.28) as

k k
dL , 138 9 ' 1 1 1 =
& * z{&zcg}ﬁ Wng} *U‘Y)(g T ZTUR By =0 - (3.37)
1

To display the physical significance of (3.37), we recall
L(;,t) = log| A(;,t)/Ao] so that in terms of A, one may obtain by

multiplying (3.37) by A? the equation
aat  Afla .8 = MMy L. o LY, (3.38)
dt 2 2 ] 0x “Sx dy 2yl y k )

where (3.14) and (3.23) have been used to obtain the last term of (3, 38),

By using the explicit form (3.33) for dA?%/dt, (3.38) may also be writ-

ten as
2 2 2 k [4k 2+3k?
D L Tt
21
heie U i = +;—§-—- and U'(y) = U'(y). Regarding the quantit A~
2 0 0x oy Yi =M\ g g ¥ "z

as a measure of the energy density, (3.39) shows that the flux of energy
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along ray tubes, formed by adjacent group lines or rays, is not con-
stant. In the region where U'(y)> 0, for the waves with kz < 0,
(3.39) indicates that the effect of shear is to introduce a fictitious
energy source while for kz > 0, a fictitious energy sink, We may
conclude that the primary parallel shear flow supplies energy to the
waves with kz < 0 and retrieves it from waves with kz > 0, resulting
in a net transfer of energy to different regions of the flow field. It
may be conjectured that the total energy of the waves are due entirely
to the disturbance at the origin so that, while the parallel shear flow

redistributes the energy, it does not supply its own energy to the

waves,

2, Steady wave pattern

The familiar steady ship wave pattern created by a stationary
point disturbance acting on the surface of a uniform stream will be
modified when the primary undisturbed flow has a non-uniform hori-
zontal velocity distribution. The steady wave pattern on the surface of
a parallel linear shear flow due to a disturbance at x =0, y = 0
furnishes at least qualitative modifications one would expect of the
more general case of arbitrary shear; this special case will be con-
sidered in this section. When the wave pattern has reached a steady
state, the encounter frequency w relative to the disturbance must

vanish in the wave field, hence (3, 14) reduces to

w = [gk + (U +U (y) )k =0 : (3.40)

The result that k and w are constant along group lines must still be
1
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true so that along each group line
dk? = d(k® +k?) = dk* = 2k dk (3.41)
1 2 2 2 2

and kz = kz(y) on each group line.

The slope of the group lines may be deduced from (3,27) by
putting w = 0, however, it can be put into a more useful form by
deriving it again directly from the components of the group velocity.

From (3.22) and (3.23),

dx ng _ kl L2 K U0+U1(Y)
dy ~ G "k gk 2
vy O, K g 1
which by (3.40) becomes

k 2 k k

& .3z K 1 1 2 :

dy K 2 = L + 2 o A (3.42)

2 1 2 z 1

Since the right-hand side of (3.42) is a function of y only, we let

¥ - 3.4
T my) . (343}
k
Upon solving for EE— from (3.42) in terms of mf(y),

1

1:2_ _ =111 -8mP(y)

3 J—r— ) . (3, 44)

For the waves to exist, k and kz must be real, Equation (3. 44)
1
shows that this requirement is satisfied if and only if

1

- 3.45
iy ( )

This upper bound m, of the slope function m(y) will be used to deter-

Im\ < m* =

mine the boundary of a wave region outside of which the disturbance



PG

dies down very rapidly. Introducing polar coordinates (k,8) in the
wave number plane by

k k cos 6
1 i (3.46)

k sin 6

]

k
2

we may write (3,44) also as

A 2
g G = el = 0B )

4m(y)

, (3.47)

which will be used in the subsequent analysis. For the moment we
shall simply note that for each m(y) satisfying (3.45) there exist two
angles of 6, denoted by 6_+_ and 6 , given by (3.47). Corresponding

to 8+, the value of k+ are determined by (3.40) and (3.46), to give

20
sec +

Ty = o e 4 (3.48)
v (14T (y) )
where Ul(y) = Ul(y)/Uo, so that

k =k cos?®
1+ - - -

k =k sin@
2% + +

2

a result which shows the presence of two systems of waves inside the

wavye region inferred by (3. 45).

By transferring the last term of (3,40) to the right-hand side

and squaring, we obtain:

e 2
gk = kl[ UO+U1 (v)]
Then
K2
K= 4 (U 4U (y))L 1| &?
2 | g o i 1
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or

k k e N
k_zzi %) (1 +U)* -1 » (3.49)

where we have defined

g B (3.50)
Uz
O
and
- Uiyl
Ul = UO = ey (3.51)

In the last step the linear shear primary flow has been chosen specifical-
ly for U(y) for the purpose of facilitating integration of the solution,

We shall now introduce a new variable
E/6,=1+TUly)=1+ey E =/-+, (3.52)

so that (3.49) becomes

k
=i £ -1, (3.53)
1
Here the requiremeht of k1 and kz to be real in order for waves to
exist is satisfied if and only if £ > 1, On physical grounds, we expect
the waves to appear in the downstream of the disturbance; this implies
that k1 > 0. The + or - sign in (3,.49), (3.53), and in the sequel is

taken according as kz is > or < 0. To show the equivalence of this

to (3.45), we may deduce from (3.42), (3.43) and (3.53) the expression

m(§) = + @4-11%(254 =15 (3.54)

To find the maximum of m(f) we set
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4 3
am o, BV

=0
(264 1)y £4-1

Since £> 1, the only zero is thus

at which the slope function m attains its maximum value

1
(&) = —— = i,
M) = e e

which is identical to (3.45).

£

The dependence of

is useful in obtaining the steady wave pattern. This is shown in
Fig. 2,

m on the parameter

Next, differentiating (3.52) we have

d K
& W -
1

(3.55)
Substitution of (3.53) and (3.55) into (3.42) then gives

(3.56)

Upon integration, with the integration constants so chosen that all ray

paths will pass through the origin x =0, y =0 or § :/‘kl/K,

g FEi= leo = /7%) >

(@]
or
£ £
¢t x = %5, §4-1| . A.lj-u —f:&‘ . (3. 57)
e S [feta

The absolute value is taken because the assumption of zero upstream
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wave disturbance indicates only positive ex is required. The choice
of the lower limit of integration in (3.57) arises from the assumption of
a point disturbance at x = 0, y = 0 so that all the group lines pass
through the origin, The integral in (3,57) can be readily expressed in

terms of the elliptic integrals. Thus

%£§/ £4-1 _§O/g4o Al = ;—}—_—[ (cos (&—)/._J F cos (E——)/_):'

(3.58)

egox =

where F(y,\) is the elliptic function of the first kind whose integral

representation is

L
£ = = F(y,)\) (3.59)
S‘b /uz.+az/“z_bz /a2+b2

with y = cos'l(:%] . B = /a.lj-:bz— , 0<b<p and 0<a, This function
has been studied extensively and its values for arbitrary arguments
have been tabulated (Ref, 3). Therefore, with the known properties of
F(y,N), (3.58) and (3.52) give a parametric representation of the group
lines. The basic features of these two equations are shown in Fig, 3
for kl > K and for kl = K. In each case, ey is linear with a positive
slope El— and intersects the £ -axis at E’o' The behavior of ex is

o
more complicated. As § increases from unity, ex decreases from

2 1 1 -1
q gf -1 - —. COS [E—) )
3 o / > Eo
to zero at £ = §0(> 1). Then it increases monotonically for £ > £

Since from (3.55) and (3. 56)
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4 (ex 1 @821 5 | (o) =|2
gg(x) FO £%-1 E3 E;

for £ > 1, the branch of ex for § > E,o always lies above ey. The

point go :fk—lf_;c_ :fl::EI_Z/_g in Fig. 3 is particularly important, It
corresponds to the point source of disturbance in the physical flow field
from which all group lines originate, Therefore,it is a natural con-
sequence from the requirement of £ > 1 that the appropriate group
lines of the wave region are given by §0 > 1. The limiting group line
from &O = 1 together with the line £ =1 for all kl, —f%— > 1 5 thus
provide a bound for the wave region, This is shown in Fig, 4 in which
typical group lines and lines of constant £ are plotted inside the
wave region,

The group lines are obtained from (3,58) and (3.52) with k1 (>kK)
being kept constant on each line. In contrast to the case of stationary
point disturbance on a uniform flow where the group lines are straight
rays from the origin, in the present case of a linear shear stream,
aside from the line y = 0 which remains straight, all the group lines
are cubic far away from the origin, This is easily deduced from (3, 55)
and (3.58) since for £ large ex X£*> while ey €§ so that ex &< (ey ).

When the equation of the grcup lines are expressed in the form

ey = fn(ex)

it can be shown that for y > 0, they are monotonic increasing functions
extending from the origin to infinity in the first quadrant of the x-y
plane. For y < 0, they decrease monotonically, terminating with zero

slope (dy/dx = 0) on £ = 1. This is obvious from (3,43) and (3. 54).
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From (3.58) and (3.52), keeping &(21) constant and varying
kl (k) we obtain the lines of constant . With the exception of the
line £ =1, each £ = gc = constant(>1) has two branches, For
1< }%— < gc,k the positive branch starts from a point on the limiting
group line \/——“;k: 1 and decreases, for increasing k1 towards the
origin, For \/?-{1— > gc, as kl increases, the negative branch which
lies below ey = 0 decreases monotonically tending towards the asymp-
tote ey = - 1 which also corresponds to § = 0. The negative branch of

£
g

1}

1 has the same general behavior as the negative branches of

gc {(>1), however, the positive branch is missing. This curve

(£ = 1) warrants special attention because, though it is not a group line,
it nevertheless provides a bound for the wave region. We observe that
it may be viewed as a ''"focal curve'' or '"caustic' since it is an envelope

of the one parameter family of group lines, From (3.52)

kK = wedc £ 0 for £ =1 (3.60)
P (Tey P
while (3,.53) shows
k
k—Z:O for g:l . (3,61)

1

Therefore, kz =0 on £ =1, implying that all the wave crests are
perpendicular to the x-axis there. Hence the net effect appears as if
the waves are reflected from this curve, Beyond £ =1, it is con-
jectured that edge waves, with their amplitudes decreasing exponentially,
may exist but we shall leave this possibility for another investigation,

To determine the traces of the wave crests, i.e., the lines of
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constant phase, inside the wave region, we may use the following
procedure:
(i) For a given point (xc, yc) in the wave region we
may determine the line § = E,C passing through
it from Fig. 4.

(ii) Either from Fig. 2, or from (3.54) we obtain

m, =3/ % -1 (284 -1)7 (3.62)

(o}

which when substituted in (3.47) will give Gct.
(iii) Then by using (3.52) in (3.48) we arrive at:
K sec’ Gi
k:i: g e (3.63)
g
from which kct may be deduced by evaluating

the expression at 6,  and £ - Equation (3.46)

now gives explicitly the components of the wave
number kcs: at (xc,yc).

With the knowledge that the constant phase lines are orthogonal

—_

to kct’ we may graph the curves showing the traces of the wave
crests, Typical traces are shown qualitatively in Fig. 5(a) for the case
of a stationary point disturbance on the surface of a linear shear flow,
The corresponding pattern for a point disturbance on the surface of a
uniform flow is reproduced in Fig. 5(b), (Ref.18) for comparison,
Apart from the shifting of the wave crests, it is immediately obvious

from Fig. 5(a) that the shear flow has the effect of suppressing the

waves to a smaller region. (Dotted lines in Fig. 5(a) indicate the wave
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region for a uniform flow. )

In summary, we observe that while two systems of waves, one
divergent and one transverse, exist inside the wave region produced by
a point disturbance on the surface of a linear shear flow, the traces of
the crests and the bounds to the wave region are no longer symmetric
with respect to the x-axis, In particular, the wave region boundary
approaches but never reaches the critical line ey = - 1 at which
U(y) = 0. The behavior of the warses near this critical line is not given
by our analysis and will be the subject of further investigation, Final-
ly, as a remark, it is quite obvious that essentially the same wave
pattern is produced by a stationary source below the surface of a paral-

lel linear shear stream,

3. A perturbation expansion

In order to make a comparison between the present geometric
optics method and the integral transform method, which will be dis-
cussed in Chapter IV, we shall consider here a perturbation expansion
in terms of a small ﬁl (y)*. By regarding I?j1(y)| «1, we are actually
limiting the region of validity of the resulting solution to |y| « El— in
view of the definition of I?l (v), (3.51)., For a small shear gradient
(i.e. e small) this may still represent an appreciably large region
in the physical space.

By expanding (3,49) inpowers of U (y), we have
1

"It is quite obvious that the lowest order term in such an expansion
represents a stationary point disturbance in a uniform stream,
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1 K K 2 K2 k4
Ik 2 2 4
& gid el ol 21 4T 1ot $UP - ~| +O0(0 %))
KZ 1 kz \ 1 kZ kZ 1
. NN | L.
Kk K? K?
(3.64)
whereas the reciprocal of (3, 64) is
kZ k‘ kz
2 L 6 L B ol ‘\
k 2 ~ 4 4 .
e 2 L) -0 — +79 £ - 1+O(U3)’
k2 KE 112 K2 \ 2 K2 J 1
i . s 1 _) i .
2 2 2 2
£ K o . (3. 65)
By substituting (3.64) and (3.65) in (3.42), we obtain
kZ - kZ
-0 (T I PO 4% [ S T
v (1(7——') " 1 g2 K2 K2
U L f1 L
K2 K* K
k‘ kz kz k&
6 L 3.1 g L 4 1
2
+ ﬁzr K L PN SO
1] > \ 52 - 32 S 2 3/2
B S | — -1 I | ) O
K? / i " "SI
+O(@) 5, (3. 66)
in which the + or - sign is taken according as y is > or < 0,

Using the known result that k and Kk are constant on each group
1
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line and U (y) = ey, we obtain by simple integration
1

x il 1 2
Z= g - +
b I 12 K2 \ ¥2 K2
. 1 _1\ -
K?. KZ ‘J K.Z )
k* k? k* k*
2 1! 5 . X,
vl E c 1
Y1 kZ 5/2 kZ 3/2' kz 3 kz yz
A i S 1 B S
K? J* K K2
+O( (eyf ) > (3.67)

which is the required expansion of the group lines, In (3,67), the
integration constant has been chosen for a point disturbance located at
x = 0, y = 0, so that all the group lines pass through the origin of the
x-y plane, Plotting of the group lines from (3.67) is straightforward.
However, as the group lines over a much larger region have already
been traced in Fig. 4, we will not repeat this operation,

We proceed to determine the boundary of wave region and the
loci of constant phases (such as the wave crests) within the wave
region, The extent of the wave region can be deduced from Eq. (3,67)

for the ray traces. To simplify writing, we introduce the parameter

1

B = (k:/fcZ -1)2 (3. 68)

so that (3.67) becomes
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M:[Zﬁ + %-) +Eyl2ﬁ +1§ 12 B}; T l? (Ey)z 2p +~é— + ~[;5;—+-§)5—)+O(€y)3,
(3.69)
where
M Ex/[yl , (3.70)

which may be regarded as a function of (B; ey), possessing the expan-
sion for (ey) small, Along each ray track, kl, and hence  remain
constant, It therefore follows that at the bounding ray track, which

envelopes the wave field, one must have (8M/9p) = 0, the differentia-

tion being for fixed y. Now, by (3.69),

oM 1 1 3 1 2 1 15 30
= =2 - —|+ey|2 - — + =]+ F(ey)|2- —-—=- —\| =0 .
(a@)y | B?‘) | p? B‘*) L B2 Bt B

(3, T1)

The solution of (3,71), say B = (ey), is obtained to have the expan-

sion

E’i :E[l + ey + % (ey)* + O(Ey)}]

S

y (3.72)

as can readily be verified, It may be remarked here that only the
positive branch of B, is chosen since M, as defined by (3.70), is
non-negative. Substituting f, of (3. 72) for B in (3.69), we obtain
after some regrouping, the following result for the boundary of the

wave field,

%, (y) = ZE|Y‘{1 + 2 (ey)? + Oley P } ; (3.73)

It is of interest to note that the terms of order (ey) cancel out in the
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final result of x*(y); hence the boundary of wave region is symmetric
with respect to the x-axis up to O(ey)®*. It is further noted that the
stationary waves exist in the region x> x,(y), thatis, on the down-
stream side of x = x,(y). Although the envelope of the wave field is
symmetric in y, the detailed wave pattern is generally not sym-
metric with respect to the body trajectory y = 0, Since, as indicated
by (3.69), B, and hence kx’ are neither even or odd in y, In fact,
the value of kl (x*(y), y), which is the x-component of the wave num-
ber at the boundary of the wave field, is different for different signs
of y, as can be seen from kl(x*,y) = K(14+p 7‘)% and (3,72). This also
implies that x =x,(y) and x = x,(-y) are no longer ray tracks.

The above result may be expressed alternately in terms of

cylindrical polar coordinates (r,o) defined by

X = T COSO , vy = r sinoc (3.74)

so that at the boundary x =x,(y), the value of 0 =0 ,(r;e) may be

3

expanded as

o (rie) =0 _(r) + exo (z) + (erPo (x) + Ofex P . (3.75)

Upon substitution of (3,74) and (3,75) in (3. 73), together with neces-
sary expansions, S Gl, 0‘Z are readily determined; the final result
is
o = tEn ) e sin_l(%) , o =0
24 k
[z
27

- - 510l I
r:r2 =-3/2 sin a, = (3.76)

Thus,
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X

=1, Tk .-l E 3

o,ler) = tan 1 :t[mn (1/3) - > (er)z + O(er)}
(3.77)

in which the + or - signis for y> or < 0. This result shows that

the over-all effect of the uniform shear is suppressing the wave field
to a smaller region than in the uniform flow case, the deviation being
of second order for (er) small, These salient features are shown in
Fig. 6.

The contours of constant phases (such as the wave crests) can
be calculated as follows, We note first that the slope of a constant

phase line, ¢ = const,, at the free surface is given by

a 3¢ /9 <
o}

by virtue of the characteristic equations, or more directly by the
definition of the phase function. The term kL/kz on the right hand
side of (3.78) can be regarded as a known function of x and y in
view of (3,68), (3.69) and (3.64). Consequently, the above first order
differential equation can, in principle, be integrated. However, the
actual calculation may prove formidable. In view of the complicated

nature of the functions k]. (%,v), kz(x,y), it is best to seek a parametric

integration, It turns out that a convenient parameter is ®, defined by

1
1ﬁ/x - sec® or B :(kfnﬁ -1)%= tan® , (3.79)

Then (3, 69) becomes



AP =

x =+ y{pl®) + eyq(®) + ezyzs(®)} s (3.80)

with

p@®) = 2 tan® + cot® q(®) = p(®@) - cot’®@
- 1 3 2z
s(®@) = §-q(®) + 2 cot’®csc’®
By making use of the expansion (3. 65), (3.78) can be expressed in

terms of ® as

(d}‘) = (sgny)
=

k
T E-Z—\ = (sgny)tan® {1 +2ey csc® +r="‘y‘2 cscl® (1-2 cot®®@)}.
¢ 1

(3.81)

We assume that the integral of (3.81) may be expressed in the following

form

2 2
x:? enxn(®)+0(e3) y y’:T.enyn(@))-i-O(ea) ) (3.82)

n=o0 n=o

The two sets of functions {xn(®)} and {yn(@))} are not linearly in-
In fact, upon substitution

dependent since they are related by (3.80).

of (3.82) in (3.80), we find that for y > 0,

- 5 2 _ 2 3
X EFF ¢« BEFRIFE » = SFRpRYATES . 3.83)

whereas for y < 0 the signs of all the terms on the right hand sides of
(3.83) are changed. Furthermore, substituting (3.82) in (3.81) yields

the following sets of differential equations
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X =% *;rotan@) "

x
o
x =x[y +2y vy csc’®]tan® , (3.84)
1 1 6- 0o
x =+ {y +2y0§r csct@+ iro[ Zyl +y;(1—2cotz®)]csc?‘®}tan® 5
2 |
where ;{o denotes dxo(®)/d®, etc, and the + or - sign is for

y > or < 0 respectively. Differentiating the first equation of (3,83),

we have
. 3 - ® _ - 2 _ 2
X, =Y Pty P= (2tan® + cot@)yo + (2sec”® - csc ®)'yO

After ::co is eliminated by making use of (3.84) we obtain the equation

for Y, 2s
(3.85)

Y, = (cot® - 2tan®)yo i

which has the integral
Vo = Aosin®cos?‘® , (3.86)

where AO is an arbitrary constant of integration,

Similarly, from the second equation of (3.83) and (3., 84) we

derive the differential equation for y as
1

L=t 2AY, - ocm m v2a)
S SRS P S y
d® sin Gessdo o’o cos® d® Vo
(3.87)
This equation can be integrated explicitly, giving
(3.88)

y = A sin®cos®® + Aé cos*@cos 2@
1 1
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A  being another arbitrary constant. Integration of higher order

1
equations becomes increasingly tedious; theintegral of T, will not be
given here.

Summarizing, we have determined the lines of constant phase

in the parametric form

X = Ao{cos®(1+sin2®) + ZeA.Osin® cos’® + Ofe AO)?‘} ’ (3.89)

¥ Ao{sin@)cos"‘@ + eAOcos"l@ cos 2@ + O(EAO)Z} , (3.90)

in which the constant A, has been absorbed into the higher order
terms. The constant AO can be related to the phase ¢ by noting that

the phase function

¢ =xk +yk = A k{l + O(eA )} , (3.91)
1 2 o [e)

where in the last step use has been made of (3.89), (3.90) for x(®)

and y(®), and of (3.81) for (kz/k1)’ (3.79) for kl_ Hence
Ao:¢/fc:qu£/g ; (3. 92)

and from a wave crest to another, ¢ changes by 2nw(n=1,2, . . .).
The leading terms of x(®) and y(®) are the well-known Kelvin
ship wave pattern in a uniform stream. There are two wave systems
within the region larg tan(y/x)| < sin_1(1/3), one corresponding to the
range 0< @< 8., @ = tanﬂiﬁ* = tanml(E/Z) ) and the other to
®*< ®< w/2, called respectively the diverging and transverse waves,
In the present case of a uniform shear, the position and wavelength of
these waves are shifted by an amount of order e. From (3.90) it is

noted that {k?l increases for y > 0 (in which region k < 0) and
4 2



B

decreases for y < 0 (where kz > 0) with increasing shear gradient

e. Thus the resulting configurations of constant phase lines are not
symmetric with respect to the x-axis; these qualitative features are
shown in Fig. 6. The perturbation expansion studied in this section
shows that the resulting steady wave pattern due to a point disturbance
on the surface of a linear parallel shear flow in the region y « 1/e
has essentially the same basic features as the solution of the previous
section, Thus, it constitutes a good approximation. The results
obtained here will be compared with that obtained by the method of

integral transform to be investigated in the next chapter.
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IV. INTEGRAL TRANSFORM METHOD

A combination of Fourier transform and Laplace transform
has been used by several writers (see DePrima and Wu (Ref. 2 ) and
Wu and Mei (Ref, 21) ) in dealing with problems of steady and unsteady
surface waves. A slight extension of the classical Fourier transform
method will be made in this section to investigate the steady wave pat-
tern in the surface of a linear parallel shear flow, A submerged

source of constant strength is located at x =0, y =0, z = -h i, e.

Q(x,t) = mb (x)5 (y)5 (z+h)H(t) , (4.1)

where 6(x) and H(t) represent the Dirac delta function and the

Heaviside step function respectively. Hence for t > ot (2.17) be-

comes

DV2v - D''v = m D _6(x)5'(y)é (z+h) » (4,.2)

where Do = % + UO ;—X . Although the lLaplace transform may be used

with respect to t and then the Tauberian theorem be applied to the

resulting integrals for determining the steady state limit of the solu-
tion, it is simpler to formulate and solve the steady problem by using
the artifice of Rayleigh's coefficient.

We shall adopt this simpler

approach,
The steady state differential equation may be deduced from

(4.2) by taking D= U(y)38/9x, so that with U(y) = Uo(l +ey) we have

Uly) g Vv = mU_ s §(x)5'(y)s(z+h)
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which after division by U(y) and integration with respect to x, from

x = -0, gives
UO

By applying the identity
f(y)o'(y) = £(0)6'(y) - £'(0)5(y) ,
we arrive at

Vv = m[6'(y) + €6 (y)]6(x)6(z+h) . (4.3)
We introduce a new function @ by

v:(% te| @ (4. 4)

This function @ closely resembles the velocity potential of irrotation-
al flow and may be called a ""'modified velocity potential,'" In fact, it
becomes a velocity potential when € wvanishes. In this new variable,

(4.3) may be written, after an integration with respect to y, as

V28 = 6(x)6(y)6(z+h) . (4.5)

Derivation of the free surface condition for the case of steady state

can be accomplished in a similar manner. By taking D = U(l+ey) %
in (2.21) we obtain
2 2
2 trerr 2 sk ;_] v = -2e(lrey) 2L (=-0) .  (4.6)
y ox? 9x?

where K = g/U‘Z‘D, In terms of ®, (4.6) becomes

9
9y

2 2
8i +¢|| (1+ey)? £ +Ki@=-7-€3‘f = (z =0) (4.7)
y 93 9z a2
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The solution of (4.5) subject to the free surface condition (4.7) may
be obtained but so much extra work has to be done that it is better to
keep the theory intelligible by neglecting the right-hand side of (4. 7),
which is of order Of(e’), so that by integrating the reduced equation

twice with respect to y, we finally have

Lbey P e bk Dl B0 =0 (4.8)
(14+ey) o K 55 = = : ,

The resulting solution of (4.5) with condition (4. 8) will be valid only
when (ey) is smalli,e, y «1l/e. Therefore the range of validity,
when (4.8) is used, of the solution coincides with that of the perturba-
tion theory of Chapter III and the results can be readily compared.
Even after the free surface boundary condition is considerably simpli-
fied, its approximate form (4, 8) still presents great difficulties, due
mainly to the variable coefficients involving y, on an analytical ap-
proach to the problem.

We shall seek the solution of (4.5) with condition (4. 8) by intro-

ducing adouble Fourier transform
) o J
3 - g S‘ o eIy o (4.9)
-0 Y -0

In order for the Fourier transform of @ to exist, we must further
require @ and Igrad <I’| to be absolutely integrable with respect to
x and y for every fixed z £ 0. These conditions are associated
with the physical argument that the wave velocity is finite for waves
having finite wave length (see Ref, ( 2) ) and will be assumed without

proof., The transform of (4,5) then gives
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~ 2.-\,,‘—
® - K& =ms(z+h), (4.10)

where k%*=o® + B%. The appropriate jumps for ® and its derivative

are;
-h -h
(3] .,T=0 ana [3] t=m |, (4.11)
-h z
= -h_
so that the solution of (4,10) has the form
~  m -k|z+h| | & k(z-h)
D = - ﬁ e + Be ) (4_ ]_2)

L o~
where k denotes the positive branch of (a?+B2)?, B(a,B) represents
an arbitrary function of o« and B, to be determined by using the free

surface condition (4.8), Hence,an integral representation of @ for

z > -h is

3]

[} ca .
® = 12 S‘ S‘ el(mﬁ-ﬁy) [— _r% g "2 + B ekz]e_khdoz dp,
41 -00 Y =c0

whose first partial derivative with respect to z is

Q0 00 .
¢ = 412 S\ S‘ e A Wk[% g Ry Bekz]e'khdads
m ¥ =00 " -00

These integral representations may now be substituted into the reduced

free surface condition (4. 8) to obtain

o e ;
i = = . "
12 J 5 [(I“LW’ZO‘Z('Z@E 3 B)+ rck(% + Bﬂe KPP dap < 0 |
47 Y- Y -0 (4.13)
By defining
B = a"-(ﬁ 2 Z’%)e'kh , (4.14)

Eq. (4.13) may be rewritten as
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; o ; r :
1 ‘B S' elaX{:-mKe khelfsy 1
¥ -00

4n? -0

-i2e¢B —;g(eiﬁ Y)— B gp}_{ 1{3Yﬂdad@ = 0

After integrating the above integrand by parts, with respectto B, we

M BT

aZ

obtain
00 Moo = 27
L S S el(ax+ﬁy)[—mxe—kh+(1—ﬁ B +i2e 88% « i B }dadﬁ =0,
47 YoV -0 L ot ap
(4.15)
in which the boundary terms are assumed to vanish since
e¥B_ 0 at B =+ o, Requiring the integrand in (4,15) to vanish
identically gives the following differential equation for B
2= 1
e B—E-izeg—ﬁ (1-ﬁ)3+mxe K. g |, (4.16)
8p 2 o?

For e small, which is the case under consideration, (4.16)
is singular as € >~ 0. However, for our purpose a straightforward

series expansion in e will suffice, We assume

B=B +¢B +eZB“z+0(e3), (4.17)
1 2

where terms of O(e’) will be omitted. Substitution of (4.17) into

(4,16) and equating like powers of e, yields

B {1 -2 e,

(1-—-) -5 =0, (4.19)

E(\l-i‘ff)ﬂz =B . (4.20)

2
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The successive solutions of these algebraic equations are

— mkKao —kh'
s o® -kk
Z —
B o e ;’— B
1 Qz"’{k B o
2 2 2 _
B == 4 B -2i s E?_B B .
2 of-kk B2 o?-kk :

By carrying out the differentiation with respect to  on the right-hand

side and combining (4,17) and (4.14), we have

g:-r-%-}-B, 4. 21)

™y

where

2 2
B - 0K —iem}{[- Zha™p 4 ZKaP .l

o Kk k(a?-kk)  k(a®-kk)® J
+Ezmx[ h*e?82  hdt ___2kha®p?
k*(a?-kk)? k3 (a?-kk)? k*(a?-kk)?
_ 4hiatpl £ 4ho® s Kot n 2K%a’B?
k% (o?-kk)® k3 (a?-kk)? K (a?-kk)®  k%(e®-kk}f
6 2 2 2
. ERE 4 12xho/p . L2eidp J + 0 . (4.22)
k> (o?-kk )} K% (a?-kk )} k2 (o -kk)?

As a remark, it can be seen that only the part B of B will contribute
to the wave motion. This will become clear shortly. For the moment,
an integral representation of ® may be written as

[>0]

@:15‘

Moo .
i(lax+By)| . m —k[z+h| m _k(z-h), , k(z-h)
411-2 ) e { e e + 2? e + Be

0 -0

dadp, (4,23)
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where B = B(a?,p2,k,if) is given by (4.22), It is easily observed

e

that @ is real because its complex conjugate o equals ®, There-
fore,it follows that
(o ™ 00 ; r N
3 - Re 1 3 as { dael(axﬂ:’y’—E - k|z+h]| 4 A8 ek(z h)
2 J J 2k 2k
2% ¥ =00 “o
s Bek(z-h)]’(zx, 24)
where ''Re!" stands for ''the real part of'' the integral,
Next, we introduce two sets of polar co-ordinates
a =k cosf B =k sind ,
(4.25)
X =T cosg y =r sing ,
so that (ax+Py) = kr cos(0-0), and (4.24) becomes
X
W ° (8-0)
2 = Re g deg ak e €8
27t _m o
2
[_ = e‘klz+h|+ 5 glE=hi, (kB)ek(z_h)] , (4.26)

where (kB) may be deduced from (4.22) and (4. 25) as



BB

¢ i 2 20 sin6
(kB = mK sec6 T— secze[- 2hk sinf " K se(:Z S;ln }
k-K sec?@ (k-K sec?8) (k-K sec“f)
) K
+efmk sec?‘@[- L + Kk sin 93 : A ——
sec?O(k-k sec?8)? (k- sec“0) k(k-K sec“0)
2hk sec®0 sin®8 % 4hk _ 4h%?%sin 6
(k-Kk sec?8)> sec?(k-k sec?8)? (k-Kk sec?8)?
n 2k%sec?6 sin% _ 4k " 12hkk sec?6 sin®6
k(k-Kk sec?8 (k-K sec?Of (k-k sec? )
2o EE s
12Kk“sec*d sin 6]-!-0(53) . 4.27)
(k-K sec?8y

From the known integral
I
2

1 o0 " 5 g
(x2+y?+2z2)"Z = Re %Sv deS‘ dk e k|z| oikr cos(6-0)
o

NE

the first two terms of (4.26) can be integrated immediately, giving

m 1 m 1
e TS a Y i 5
where
RZ1 =x* + y* + (z+h)?,
RZ’- =x* +y* + (z-h)}
and
juj
2 0 y
® = Re S‘ dQS dkelkr cos(6-0“)ek(z-h)(kB). (4.29)
e 2m? . o
Z

The first two terms of (4,28) represent the submerged source disturb-

ance and its reflection in the plane =z = 0, whereas @w represents
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the waves generated and some local effects. To evaluate (4.29) one
may regard k to be complex and apply the theory of residues,
Equation (4, 27) shows that the expansion for (kB) has two poles at

k = 0, kK sec’0 in the k-plane, Defining
K, =K sec’f (4.30)

an order of magnitude comparison of the various terms indicates that
for lk-}{ol </: and \ki < &, the expansion (4.27) becomes invalid be-
cause terms of O(ez) are greater than terms of O(e) in these regions,
Therefore, if the expansion (4.27) is to be used in (4.29) for @W,

the integration in the k-plane must be taken along a path on which
(4.27) is valid i.e. |k-x_| >fe and |k|> e.

Although (4.27), when considered as a Taylor series expan-
sion in €, can be summed to yield (kB) = [kB(e)] which gives the
detailed distribution of poles inthe region Ik-Kol sj_e-, it is found in
Appendix A that if the path in the k-plane is taken in a region where
(4.27) is valid the resulting QW using (4,27) in the integrand is cor-
rect, up to 0(63). It is therefore unnecessary to consider the details
of the poles in [k-k_|</«.

Since only the real part of the integral in (4.29) is of interest,
the pole at k = 0 does not contribute and may be neglected complete -
ly. This is shown in Appendix B,

To determine the appropriate path of integration in the k-plane,
we will make use of the Rayleigh coefficient, It is shown by DePrima

and Wu (Ref. 2 ) that this factor corresponds to a time limiting factor.
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The correct use of this artifice is similar to applying a Laplace

transform on t for an initial value problem and then using the

Tauberian theorem to obtain the steady state solution, From the
)

definition of D =357 + Uly) %{ and Eqs. (2.17) and (2,21) the method

ofthe Rayleigh coefficient, when applied to our present problem, consists
of replacing o¢* in B by (e - ihe) where pu is real and > O,
Furthermore, since the path of integration, when the expansion (4.27)
is used, cannot be within lk—}{o| S/e_, we assume [ >J—e-,, Thus, in
(4.22) for B, the factor (o® - kk) becomes (o® - ipe - Kk) =

k cos®@(k - iusecB - ksecH) so that the factor (k - kK sec®) in (4,27)
is replaced by (k - it secH - kK sec’8). The only relevant pole of (kB)

therefore, is at

k = K sec’6 + iusech

3

which is in the first quadrant because for - % <6< % .

Hence, the appropriate closed contour I' for the k-integral of (4,29)

sec O > 1,

is as follows: The original path along the positive real axis, broken
at k = Koo is connected up by a small semicircle of radius J?'f‘ Y
(y > 0) in the lower half plane and is joined by a large arc of radius
R in the upper (or lower) half plane for cos(6-0)> 0 (or
cos(6-0) < 0), and back to k = 0 by the imaginary axis (see Fig. 7).
The asymptotic behavior of <I>W for large r will be considered for
cos(6-0) 2 0 separately.

(i) cos(8-c)< 0

In this case, the appropriate closed contour is F:I‘l +l"4+ F5

(see Fig. 7). By Cauchy's integral theorem and upon passing to the
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limit R =~ w, the k-integral of (4.29) becomes

‘S' dkeikr cos(G—U)ek(z--h)(kB)= o3 Swdn oNT cos(@—c)e—in(z-h)(kB),
I

o]
B

where k = -in, m real > 0, has been used in the last integral. For
r large, we observe that the integrand of the above integral is expon-
entially small, implying that @W will tend to zero as r ~ o, Since
for - —TZL <6< 72_1' , cos(60-0)< 0 and (4.25) imply x < 0, the natural
consequence of the above is that waves do not exist upstream of the

source disturbance, This is in agreement with the results of

Chapter III,

(ii) cos(B-g)> 0

From cos(f-c)> 0 and - % <6< %, we may deduce that
for 0<o < 3 (i.e. x> 0, y> 0),- = +0<6<0 while for
-12r-<0‘<0(i_e. x> 0,y<0),0<9<%+c. Therefore, with

T = 1; + l'; + 1'3‘ (see Fig. 7), application of Cauchy's integral theorem

to (4.29), and passing to the limit R — o, vyields

0‘ .
@W = Re 12 S' a0 ZTriRes(elkr cos(9—0‘)ek(z_h)kB)
am ":g-' +o k:KO
0<o < I , (4.31)
and
> +a
@, = Re - S‘ dQZTriReS(elkrcos(e-c)ek(z_h)kB)
ZTTZ a k:fc

i)

-%<o<o (4.32)



BT

where the integral on I'3 have also been discarded because by an
argument similar to that given in (i) they can be shown to be small

for large kr. The factor

ikr cos{0-0) k(z-h) =EJ (4,33)
e e )
k:KO

Res(
in (4, 31) and (4,32) denotes the residue at k = Ko of the quantity in-
side the brackets and is the only term contributing to the wave disturb-

ance, It has been evaluated for large r in Appendix C. The final

result is

ikr[o terle +Her)e . . ]
J:AO[1+erAl+. .. ]e : : p (4.44)
where

2
AO: mEK sec? 6 eK sec’8(z-h) 2 (4.45)
A1 = 2(z-2h)k sec?0 sin 6 cos(6-0), (4.46)
Py = sec?f cos(6-0), (4.47)
¢ = sec’@ sin@cosz(ﬂ—cr), (4,48)
1

2 1 3

qu :[§ o - sec2951n26;-1 coss(G—c) 4 (4.49)

so that when substituted in (4, 31) and (4. 32),

s inx[ g Herdp HerFo . . .
® = Re —g 2a0A [1+erA ., . .]e P . (4.50)
w 0 (o] 1
1
where
'—%-FU (o)
6 = and e = for o< 0
1 o 2 i + o
2
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The integral representation (4.50) is in a suitable form from which
the asymptotic behavior of ‘iw may be investigated by the method of
stationary phase for large values of Kr provided c¢r €1 « kr.

The main idea of the principle of stationary phase is that the
significant contribution of the integral of (4. 50) comes from a small

range of 6 centered at the critical points of the phase function

¢(6,0,¢exr) = ¢ (6,0) + ergol(9,0)+ (er)zgoz(e,(r) ) (4.51)

These critical points are the points of stationary phase given by the

solution of the equation
dg do ¢
do _ o 1 2 _2 =
—'a'a = —'5'9-" (6,0) + (ﬁr) 'E‘B- (9,0) - (Er) 5@ (6,0-) =10 . (4' 52-)

Let the root of Eq. (4.52) be denoted by 6 = QC(O', er), which may be

expanded for small er as

6. = 0(c) +er 61(0) + (er)zez(c) + Q(er)’ ) (4. 53)

By substituting (4. 53) in (4. 52), expanding the resulting terms for

small er, we obtain the following equations for 90, 91 and 92 3

agoo
55 (60;0') =0 , (4. 54)
Fo 9
0 (6,0) + ) (0 =0 4
i 892 o @— O:O) = ’ ( -55)
a2 02 8¢ 0% ¢ 9

o 1. 2 .
e (60,0') + 91 —= (6 ,0) + 50 (90,0) 0
(4. 56)

By making use of (4. 47), (4.54) becomes
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2 tan 6 cos(6 -0) - sin(6 -¢) =0 , (4. 57)
o o o

which has two roots given by

=1 + /1-8 tan®c
tan Bo:t =

4 tano ' (4.58)

In order to have the stationary points 0 real, and hence to remain

. -1 i
on the path of integration, we must have lcr |< lco| = [Sln (1/3)| '

This, indeed, is identical to (2. 32), which states that the wave region

is bounded by the lines Icrl = |0‘Ot ;

From Eq. (4.55)

Bcpl 9% ¢
91: T 90 (eoi’a)

e]

o (boi,or)

By making use of the expression for @ and qf, given by (4. 47) and

(4. 48), we finally obtain

6(6 ,,0) = - cos 6_,cos(6 ,-0) (4.59)
where the right hand side has been simplified by using (4.58). It can
be remarked that 6 (6 ,,0)< 0 forall |o|< |0 |.

1 Ok o
From Eq. (4.56), it follows that
6* o 92
1 Yo £ .
= 1 + 6 +
2 pp% 1 g9z 00
Bes ~ - (4. 60)
e} %
86°%
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The right hand side of (4. 60) may be simplified by making use of
the expressions for . 901, cpz and 91, given by (4.47) - (4.49) and

(4.59), respectively, yielding

2 2
] cos (Goi—cr)tan GOi(l—Stan eo:t)

9(6 :O')=_—3'

2 = OF

2 2
sec Goi(l—Ztan eoi)

(4.61)

If only the first non-zero perturbation from the uniform flow solution
is required, it turns out to be unnecessary to evaluate 62.

Hence, for every Io | < |0'O |, (4.58) provides two roots ‘ o
and 60+(> BO_) and (4. 53) gives the corresponding stationary points
Gci of the integrand in (4.50). The behavior of <I>w for large Kkr

(er €1 «xr), may be calculated by application of the method of sta-

tionary phase* to the integral of (4.50) to give

3~ - A(60+)sin[Krcp(6C+) 3 %] - A(QO_)sin[Krgu(Bc_) " H,

(4. 62)
where
5 AO 81 BAO
A(Qoi) - Jkrw B 1% & A oo * Al
aer 2 o
o
a6%
B_GOi
3 2
1 3 g e Bchl P .
I 3 2 + Ofer) s (4. 63)
30° 862 26
6=6
i P

“For the mathematical argument of this method, see Jeffreys and
Jeffreys (Ref. 5) §17.05.
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6
o0, ) =0, (0,,)+ cre (6, ,) +(er)2[ - %—9‘— (6,,) +e (90*)]
+ OferP . (4.64)
The right hand side of Eq, (4.64) has been simplified by using (4. 54)
and (4.55). It is of interest to note that up to O(er)?, Bz does not ap-
pear in the phase function, Upon substitution of the expressions for

@ ,0 ,9 and 0, (4.64) becomes
o 1 2 1

1 sec Gottane
o0 ) = sec’6  +ter
o

e J1+4 tan®6
ot

= + (ex)* + C)(er)3 .

J1+4 tan*6 6
ot

(4.65)

The form of the constant phase lines (such as the wave crests and
troughs) far behind the source of the two wave systems is given ap-

proximately by

Kre(6_,) + };- =C, . (4.66)

and

=0 (4.67)

NE)

Kre(0_ ) -

where "P(Qci) is given by (4.65) and C+ are arbitrary constants.
The qualitative pattern is shown in Fig. 6. Equation (4.66) gives the
diverging waves, (4,67) the transverse waves. Their shift from the
well known Kelvin's ship wave pattern is apparent by comparison of
Figs. 6 and 5(b). As o ~ o0, lo| < lcrol, Eq. (4.58) shows 0_-6__
and the two systems of waves coalesce,

The amplitude variation of these waves is given by (4,63). By

using the expressions for AO, A1 e Bop :pl and 61 from Eqs. (4,45) -

(4.48) and (4.59) we obtain
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i
(1+4tan?8 ) K sec?® (z-h)
ABO )=/ & mK sec 6 o e s
O Krm Ot

(1-2tan®6 )
Ok

=

tanf cos 90;1:{ 1
1 + (er) e + 2K seczeot [-h seczﬂoi

! / 1+4 tan?®6 \ “
P ot

+(z—h)tan290t] + Oler ) | . (4.68)

The deviation from the uniform stream case [ cf. Eq. (2.34)] appears
in terms of Of(er)., Unfortunately, not only is this expression unduly
complicated but it is also not suitable in the region near the boundar-

. , : ) 1
ies of the wave region, As ¢ — o |0| < \crol, tan 60i -+ f_? and

the amplitude becomes infinite. A special investigation (e,g. see
Ursell (16) ) of this region will be necessary,

We shall proceed to determine the extent of the wave region,
As in Eg, (3.75), we may expand the value of o(r) = O'*(I‘) at the

boundary as

O,(r,e) =0 (r) +ero(r) + (er)ZO'Z(r) + Ofer) . (4.69)

Upon substitution of (4, 69) and (4.53) intc (4. 52), together with the

necessary expansions, we obtain the following equations for T, 0
1
and ©
2
d¢ &
57— (6,0 )=0 , (4.70)
aZ(PO b % aztpo K 8§01 %
0'1 W (60,0'0)'{‘.01 (60’00)+ﬁ_ (GO’GO) =0 " (4,71)

96
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9% ol 8¢ , . 0% ;
o 3 o i b o !
o (0 ,0 )+ 2 — (6 ,0 Y+o 6 (6 ,0 )
2 8080 2 56802 = 11 56%¢ 4
2% " w 8% 7 8¢,
+ G[ 5050 (60,00) + 62 e (6 ,O'O) F g : (90 ,O )
k 8 Z(Pl S 8(,02 b3
+91 862 (90,0'0)+'é—g- (90,0'0):0 = (4:,72)

The solution of Eq. (4.70) with @ given by (4.47) is obtained as

-1+ J/1-8tan%c
(o]

tan” = S . (4.73)

Since at the boundary the two systems of waves coalesce (i.e.

3 . . _ o =L y :::_
90+ = 90_), Eq. (4.73) implies o, =#sin (1/3) and tan@o_:!: 14 2

Then from (4,70) and (4, 48) we may deduce

aZ‘PO sk a‘pl 3
862 (90,0'0) =0 and ﬂ— (90,0'0) =0

Hence, Eq., (4.71) shows cr1 = 0, By the above result, Eq. (4.72) be-

comes
o%. 9% 8% L% b
0-2 W (80’0-0) - 2 863 (60’00) * 61 892 (90’00) * FG_ (GO’GO) :

Upon substitution of the expressions for PP s and 0 given by
172 1

(4.47) - (4.49) and (4.59), 0’2 is readily determined; the final result

is 4 ,
sk 2 4%
; tan 60(1 -8 tan 90) E
g, ==7 * 5 O i . (4.75)
sec290(1+4 tanZGO)Z

Thus,
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o (e ) :t[sin"u/s) - L2 (erP+ O(Gr)’] : (4.76)
in which the + or - signisfor y > or < 0. This result shows

that the wave field is suppressed by the linear shear to a smaller
region than in the uniform stream case, the deviation being of O(er)?
(see Fig. 6).

The Eq. (4.76) for the boundary of the wave region is identical
to Eq. (3.77) obtained in Chapter III., Also Eqgs, (4.65) - (4.67) and
(3.89) - (3.90) are different parametric representations of the loci of
constantphases within the wave region, Hence, for large r(< 1/ ),
the integral transform method of the present chapter yields the same

result as the geometric optics method of Chapter III,
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V. DISCUSSION AND CONCLUSION

In the treatment of a steady point disturbance given in
Chapter III, it is necessary to assume that all the group lines pass
through the location of the point disturbance. It may be remarked
that with this assumption, the theory of geometric optics can
adequately handle all point disturbances including submerged and
periodic types.

Similarly, the method of integral transform of Chapter IV
may be adopted to problems of surface and periodic point
disturbances.

Of the results of this investigation three main features may be
recapitulated. First, by comparison with the steady wave pattern
generated by a point disturbance moving with constant velocity, the
parallel shear flow has the effect of compressing the region of wave
disturbance. In particular, a boundary of this resulting asymmetric
wave region approaches but never attains the critical horizontal line
ey = -1 (i.e. where U(y) = 0). A physical interpretation of this
result is that this line effectively reflects the surface waves. The
asymmetry of the wave pattern is also apparent from the traces of
constant phases.

Another result of general interest is concerned with the be -
havior of the solution for large r (< —é—) : both the small perturbation
expansion of the geometric optics solution and the solution by the

integral transform me*hod result in a symmetric wave region with
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asymmetric traces of wave crests, indicating that the effect of the
shear is not fully developed in the region r < 1/€. The similarity
of the wave patterns generated by a surface and a submerged
disturbance is also demonstrated by these solutions.

Finally, the integral transform method provides an expres-
sion showing the corrections to the amplitude (for large r < —i— ) in
comparison with that of the flow without shear. However, this
expression becomes infinite at the boundary of the wave field and is
thus not applicable in that neighborhood. For the geometric optics
method, due to the fact that energy is not constant in each part of
the frequency spectrum, the amplitude cannot be inferred by the
usual argument of energy flux being constant along adjacent group
lines and the relationship between the energy density and amplitude.

The above results are valid at a distance of many wave
lengths downstream of the disturbance. Near the disturbance, the
boundaries of the wave region and near the critical line where
U(y) = 0, the present theory is not applicable. These, indeed, are

areas where further study is necessary.
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APPENDIX A

To illustrate the approach that will be used in this appendix

we consider the integral

-1 g(z)
Lee 2mi §C Z -€ i (% &)

where g(z) is analytic everywhere within and on the closed contour C.
If ¢ is any point interior to C, then Cauchy's integral theorem im-
plies

I=gle) . (A, 2)

But for |z| > e, a straightforward expansion gives

GZ

& }—- + e = +O(E3) 2 (AS)
z 2 3
Z Z

so that (A, 1) may be rewritten as

Lo 5 (Z)—1—+€—+i+0(3) (A.4)
- el S e S0 .

z z
With z =0 and ¢ interior to C, the application of Cauchy's integral

theorem to (A.4) results in
EZ 3
I=g(0)+eg'(0)+ = g"(0) + Ofe”), (A.5)

which is seen to be a Taylor series expansion of (A.2) in e. There-
fore, up to O(e?), (A.4) gives exactly the same result as (A,1) pro-

vided the pathofintegration encloses the pole under considerationi. e.

C is in the region iz > € where (A. 3) is valid.

We shall apply these ideas to the expression for (kB).



=T =

Consider (4.22) as a Taylor series expansion of B about ¢ = 0 and

write

2 2
Bl o= Bl =05 4w s (e:0)+5——a]§
Oe

T 5 (€ =0) + O(>) (4. 6)

so that by direct identification with (4.22) all the coefficients of (A, 6)

may be determined as

B(e=0) = ——
a®-Kk
2 2
%E (e=0) = - imK[- i + g J ;
. k(a?-kk)? k(a?-kk)®
and so on. Also, up to O(e3), we assume B has the form:
Ble) = Ik + Ble*y (A.7)

azz—Kk+eBl +ezB2

which for small € may be expanded to give

B B? B ,
Ble) =T g e o g0 : - 2 + O(e’)} .(A. 8)
af Kk o?-Kk (a? -kk)? (e®-Kkk)

Hence, it is obvious that B and B can be determined by equating
1 2
terms of like powers of € of (A.6) and (A.8). For our discussion,
the precise forms of B (¢,P,k,h) and B {a,B,Kk,h) will not be
1 F)

necessary, It is sufficient to note

B(Q,B,K,h): < l—D(Of,B,K,h)
1 2 1
and
1 _
P ole, Pk Ry

(a'Z-Kk)Z 2

where P and P are analytic functions, so that by (4.25) and (A.7)
1 2

Ba(a;ﬁni{:h) =



2 Thy=

we may deduce

2

B mK sec“0 3

(kB) = P B ) i (4.9)
k-K sec?0 + 4 L 4
k-K sec’O (k-k sec?0)?
where P and P are again analytic,
1 2
The poles of (kB) are the zeros of
(k-K sec?0P+ieP (k, 0)(k-k sec29)7-+e21=>2(k,6) -0 . (A.10)
1

The solution of (A,10) gives the detailed distribution of poles in the
neighborhood of k =k sec?6, It can be clearly seen that all the poles
in this neighborhood lie in the region |k-k sec?8| /e . Hence by
analogy to the situation of (A.1) - (A.5), the integral with respect to
k of (4.29)

3

§ dk eikr cos(6~0‘)ek(z—h)(kB)
i

will yield, up to O(e3 ), the same result no matter whether (kB) is
given by (A.9) or by (4.27) provided the path I' stays in the region

|-k sec?®| >/ e i.e. the region in which the expansion (4,27) is valid.
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APPENDIX B

We shall show that the pole of (kB) at k = 0 does not con-
tribute to @w. Denoting by (kB)* the terms in (kB) that have this

pole, we may write from (4.27)

2. 4n . 2
(kB),, = Emi Seczg[ K 5 2K“sec™@sin 6} (B.1)

' k(k-k sec?8) k(k-k sec?@)

The corresponding (‘I’w)* arising from (kB), is

92
(@ ), = Re — g d9(§ dig i cosld-o) klz=hlnpy  (B.2)
w Tk 2
2 6 C

If k =0 1is interior to -C, by using (B,1) in (B.2), it follows from

Cauchy's integral theorem that

, 6
1 (1 - - 21m 4 2 22
(®_ ).= Re dB2wie” —|-cos 0+ 2 cos“f sin“f =
W 2 .) K
2w 0
1
which can be integrated once more to yield

6

s ) 2

i €m 36 sin 26 sin46 1 sin 46
(‘I)w)*:Re T K =R Vg Ll :- L -4'(9 4 )
e 6
1

{B.%)

Thus for any 91 and 92, the right-hand side of (B, 3) vanishes because
the real part of a purely imaginary number is zero. Therefore,the
.pole k = 0 does not contribute towards i’w and the path of integration
in the k-plane in the neighborhood of k = 0 is irrelevant. It may be

taken to either include or exclude k = 0.
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APPENDIX C

We shall evaluate for large kr the following integral

7= Res(el*r coslB-o) la-hh gy - L 55 gk o KT cos(6-9)
=Ko 21l c

o e bln e 1)
where K
o

= k sec?6 is interior to C and (kB) is given by (4.27).
In terms of the variable

n:k—,‘{o . 1>)n> € , (C,Z)
(C.1) becomes
1 M \
J=opr e §dne T(kB) , (C.3)
C
where
X = [ir cos(6-0) + (z-h)] (C.4)

By using (4.27) the integrand of (C. 3) may be written in terms of n
as

mK 2hk sin 6 2K _sin 6
SRy - S &M gemi [-———9—(1 e ol +——9—] &1
n o 2 3
n o n
2 29 . 29 2
+Emei:_"}_1_+hsec sin {1+ﬂ),{+__1_1u_1]_+11_q )
Z Z K O 3) K 2 . - -
n n o g o Ko
2hKk sec?0 sin?0 4hk P o w 2
_ o i o1 4+ M 4hsec851n9K31+_n_
3 3 K 3 K
mn mn o mn o
2 vy 2 3 4
z 2sec“O sin dK (1 —K—"'—+3——33—. ) ~ o
4 2 4
n (o) KO KO n
12h sec?6 sin?‘GK; 12sec?0 sin®Ok ? X
# L+ - : O]e 4 Ofe?)
n* ° n
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For large r, we shall consider (Am) small (i.e. rn « 1) and expand
e*M i (C.5) in a power series of (Am). The residue at the pole may
then be evaluated by using the well-known theorem that if z is in-

terior to C and g(z) analytic

gn-!(z )
1 ¥ :
27ri§ = g('Z)n = (n—l)(;
C (z-z )
o
Hence, from (C. 3) and (C. 5) we obtain
.)\Ko( : . 1 : 2
J =e | mg _-iemK | -2hsin Ok | X + —| + sin 6 k A
L o o o Ko e}
2 B B L e N
+e mf{[ -h\ +h%ec®fBsin“0 k (A + —| +4hKk | —=— + —
o K o\ 2 K
o o
2 2
+ KT o i +1— -hsec?0 sin%0 kK A\’ 4hZsec?@ sin? O «° L+ —Zi&-l-L
KO K 2 (o] (o] 2 K 2
o o] K
3 2 4k N3
+2 sectginl Bt - 2 o K L} o
o| 3! 2K 2 3 31
o K K
o o
2y 4
3 2 K-\
+ 12h sec?0 sin* 0 K;‘ (g—l + -2:2'— -12 sec?0 sin®0 04! ]
+ O(&a)} (C.6)

By substituting (C.4) into (C. 6) and separating real and imaginary
parts we may write

ik rcos(B-0) K _(z-h) ; 4
szKoe o e © {1+€H1+€ZH2+1E11+16212 +0(€)} , (C.7)
where

H1 = Zr(z-Zh)Kosin9c05(9~o) . (C.8)
-

H =-5 K’ sin®0 cos¥(6-0) + O(x?, (z-h)} ) (C.9)
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P = rZKO sin 6 cos?(0-0) + O( (z-h)?* ) , (C.10)

3
Hoee | 2 -Kosinzﬂ] cos’(8-0)

=
1]

+zr3(z-2h)x; sin?f cos’(6-0) + O(r) . (C.11)

In (C.8) to (C.11), we have retained only the terms of highest order

in r in each case, This is justified because the asymptotic behavior
of J for large r is of interest here, A physically more significant
form of the above may be easily deduced by rewriting (C.7) to (C.11)

in the following form:

iKr[cpo+(er)ga +er)eo . . .] (C.12)
J=A (l4erA+ . ., .)e k g s
O 1
where
Ko(z—h)
A =ZmK e (C.13)
(o] (o] ’
A =2(z-2h)k sin @ cos?(8-0) , (C.14)
1
¢, = sec?@ cos(6-0) (C.15)
(pl = sec?6 sinecosz(e-cr), (C.16)
P, ={% - 1? sec?O sin"‘B:I cos3(6-o) . (C.17)

The derivation of (C.13) to (C.17) from (C.8) to (C.11) is straight-
forward and will be left out. The meaning of (C.12) to (C.17) is ex-

plained in the text.



