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Abstract

The subject under investigation concerns the steady surface
wave patterns created by small concentrated disturbances acting on
a non-uniform flow of a heavy fluid. The initial value problem of a
point disturbance in a primary flow having an arbitrary velocity
distribution (U(y), 0, 0) in a direction parallel to the undisturbed free
surface is formulated. A geometric optics method and the clas-
sical integral transform method are employed as two different
methods of solution for this problem. Whenever necessary, the
special case of linear shear (i.e. U(y) = Uo(l+ey) ) is chosen for the
purpose of facilitating the final integration of the solution.

The asymptotic form of the solution obtained by the method of
integral transforms agrees with the leading terms of the solution
obtained by geometric optics when the latter is expanded in powers
of small er.

The overall effect of the shear is to confine the wave field on
the downstream side of the disturbance to a region which is smaller
than the wave region in the case of uniform flows. If U(y)
vanishes, and changes sign at a critical planer FTE S (e.g:

e = -1 for the case of linear shear), then the boundary of this
asymmetric wave field approaches this critical vertical plane. On
this boundary the wave crests are all perpendicular to the x-axis,

indicating that waves are refllected ai this boundary.
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Inside the wave field, as in the case of a point disturbance in
a uniform primary flow, there exist two wave systems. The loci of
constant phases (such as the crests or troughs) of these wave sys-
tems are not symmetric with respect to the x-axis. The geometric
optics method and the integral transform method yield the same
result of these loci for the special case of U(y) = Uo(l +€y) and for
large Kr (er €1 «Kr).

An expression for the variation of the amplitude of the waves
in the wave field is obtained by the integral transform method. This
is in the form of an expansion in small er., The zeroth order is
identical to the expression for the uniform stream case and is thus
not applicable near the boundary of the wave region because it be-
comes infinite in that neighborhood. Throughout this investigation
the viscous terms in the equations of motion are neglected, a reason-

able assumption which can be justified when the wavelengths of the

resulting waves are sufficiently large.
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I. INTRODUCTION

In oceanography, the effects of strongly sheared ocean cur-
rents on the propagation of ocean waves present problems of consider-
able interest. Another example of water waves in shear flow is the
ship waves propagating in the wake and near the stern of a ship. A
steady wave pattern of surface wave is produced by a concentrated
stationary disturbance located either on the surface or submerged
within a steady primary shear flow. This class of problems
is of basic academic interest as well as of great importance in ship
hydrodynamics because it can predict the main features of the system

of waves accompanying a ship moving through a sufficiently deep water.

There exists an extensive literature concerning the special
case when the primary flow is uniform. The classical method of

solution is discussed in L.amb's Hydrodynamics (Ref. 7) where applica-

tion is made to gravity waves (Kelvin's ship wave-pattern) in §256 and
to capillary and combined capillary-gravity waves in §272. The ex-

tension of this classical method to disturbances of variable or pulsat-
ing strength and follow'}ng an arbitrary path in a uniform primary flow

may be found in Wehausen and Laitone (Ref. 18) and Stoker (Ref. 14).

In contrast, the problem is much more difficult when the
primary flow is non-uniform. Several papers treating the problems
of disturbances in a rotational floware limitedto two dimensional dis-

turbances in parallel shear flows without free surfaces. The vortex



lines in these flows are straight, remain parallel to one another, and
are not stretched during the motion. Hence they are relatively
easy to treat.

When the disturbance is three-dimensional, even though the
undisturbed flow may still be unidirectional and does not possess a
free surface, the stretching and bending of vortex lines must play an
important role, Certain outstanding papers on the theory of these
flows have appeared.

A basic theorem that two-dimensional disturbances become
unstable at a lower critical Reynolds number than three-dimensional
disturbances has been given by Squire (Ref. 12).

Squire and Winter (Ref. 13) have investigated steady three-
dimensional disturbances to a parallel shear flow with no free surface
by the so-called '"secondary flow'' method. In this treatment, no
restriction is placed on the disturbances but there is an assumption
that the undisturbed stream is weakly sheared. The shear is usually
taken to be linear though this is not an essential limitation to the
method, A difficulty arising in the application of this theory is that
the secondary flow disturbance due to the presence of an obstacle falls
off more slowly with distance than does the primary flow disturbance.
This limits the validity of the solution to the region near the obstacle,

In an effort to clear up this difficulty Lighthill (Ref. 9) has
studied the fundamental solution of a small steady three-dimensional
disturbance in a two-dimensional parallel shear flow without a free

surface, Denoting the velocity field by (U(y) +u,v,w), he has shown



that the small perturbation theory based on neglecting the squares of
the perturbation velocities u, v and w is valid far from the obstacle
and overlaps the region where the secondary flow solution is valid.
The asymptotic behavior of this solution for large r shows that a
source in a shear layer produces in a region of uniform flow outside
the shear layer a disturbance equivalent to a source of different
strength at a different position, The strength of the equivalent source
can be predicted by an image method in which the shear layer is
regarded as a superposition of layers of piecewise uniform flows. The
displacementin effective positionis of the order of the width of the shear
layer. It is expected that such modification of source strength and
position will no longer be so simple in the presence of a free surface,

In fact, in the presence of a free surface, the difficulties of
treating the stretching and bending of the vortex lines are further en-
hanced. If the undisturbed flow contains a vortex sheeti.e, a dis-
continuity in velocity, perpendicular to the free surface, any disturb-
ance may produce wave motions both in the free surface and in the
vortex sheet, Development of a theory describing the interaction be-
tween the waves and these free surfaces is a difficult mathematical
task, For primary flows having a continuous horizontal velocity
distribution,the free surface waves produced by an obstacle will de-
finitely be affected by the vorticity of the primary flow,

In spite of the difficulties described above, Ursell (Ref, 17)
has investigated the problem of steady wave patterns on a non-uniform

steady fluid flow. By assuming that the primary non-uniform flow is
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irrotational and does not vary rapidly with distance, he has developed
a theory, for the steady wave pattern, based on the following assump-
tions:
(1) The streaming velocity component normal to a
wave crest is equal to the phase velocity based
on the local wave length;
(ii) the separation between consecutive crests is

equal to the local wave length.

The purpose of the present study is to develop systematically
a theory for steady surface wave patterns due to a small concentrated
disturbance in a primary parallel rotational flow. In the construction
of the phase curves by Ursell (reference 17) it was assumed that the
phase velocity relative to a siightly non-uniform stream of variable
depth can be adequately approximated by the phase velocity obtained
from constant depth theory. The validity of this implicit assumption
of adopting the original dispersion relationship for uniform flows of
constant depth for rotational non-uniform primary flows is not im-
mediately obvious. Indeed, our theory shows that if terms other
than the two lowest orders are kept, this is no longer wvalid.

By discarding the squares of the perturbation velocities u, v
and w of the velocity field (U(y) + u, v, w), we shall first formulate
the problem for an arbitrary primary parallel shear flow U(y) with
an undisturbed free surface at z = 0, in Chapter II.

A method based on the notion of group velocity and geometric

optics argument, as developed by Landau and Lifshitz (reference 8),
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by Keller (reference 6) and by others, is applied to the problem of a
small stationary concentrated surface disturbance on a primary
parallel shear flow U(y) in Chapter III. In section 1, U(y) is kept
arbitrary but in sections 2 and 3, solution for the special case of
Uly) = Uo(l +ey) is carried out while no restriction is placed on ¢ .
It is believed that the true behavior of the flow far from the disturb-
ance must be obtained from the full equations with the squares of the
disturbance neglected. Such an approach results in a ""small-
perturbation' solution. The region of validity of this result is at
large distances from the disturbance and overlaps the region near the
disturbance where a '"'small-shear' solution is valid. This over-
lapping holds in the sense that the asymptotic behavior of the '"small
shear'' solution is sim:.lar to the asymptotic behavior of a perturba-
tion expansion of the '"'small-perturbation' solution for small er.
This is, indeed, indicated by comparison of the results of

Chapter III, section 3, and Chapter IV.

The geometric optics method of Chapter III fails at the bound-
ary of the wave region. For the special case of uniform primary
flow, Ursell (reference 16) has determined the behavior of the waves
near the boundary of the wave region by a modification of the prin-
ciple of stationary phase. Thus showing that for dispersive waves,
the integral transform method is the fundamental one. Therefore,
in Chapter IV, we shall modify the classical integral transform
method to treat a weak submerged source of constant strength in a

primary linear shear flow, i.e. U = U_(l +ey). By following the
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"secondary flow' method, we take the "primary flow' to coincide
with that in which the undisturbed stream is uniform and the
"secondary flow' to be a perturbation of the primary flow by allowing
a small shear (€ small) in the undisturbed stream. The resulting
""small shear' solution, obtained by applying the method of
stationary phase to evaluate the inverse transform, is valid for

large r (<—'15).: However, a more elaborate asymptotic technique

will have to be applied in order to deduce a solution valid near the
boundary of the wave region.

Although the velocity distribution Uo(l + y) considered in
Chapter III and Chapter IV may seem somewhat artificial, it never-
theless provides some insight to the problem of arbitrary U(y) as
well as a first approximation to the horizontal velocity distribution
of the ocean near the shore-line. In the present treatment, surface
tension and viscous terms in the equations are neglected. This is
known to be permissible except near the critical region where U(y)
is zero. Accordingly the theory developed here is limited to a region

in which U(y) is nowhere zero.
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11, GENERAL FORMULATION

1, Co-ordinate system and convention

The problem in question concerns the propagation of surface
waves in a body of heavy fluid, of infinite depth,initially havinga pre-
scribed non-uniform horizontal velocity distribution, due to a station-
ary disturbance, The fluid is taken to be inviscid and incompressible,
of constant density p. The resulting flow will be generally rotational;
the disturbance is however assumed to be so small that a linear theory
can be applied, Consider a right-handed rectilinear co-ordinate sys-
tem such that (Fig. 1)

(i) the z-axis points vertically upward, with z = 0

coinciding with the undisturbed free surface, and the grav-

ity acting in the negative z-direction;

(ii) the x-axis is in the direction of the undisturbed stream

which is taken to be a function of y only; and

(iii) the y-axis completes the system,

The x,y, z-components of the velocity vector E are denoted by u,v,
w, the pressure by p, the density by p and the gravitational accel-

eration by g. Other notations will be defined in the text as needed,

2, Equations of motion

The primary flow is unidirectional and has a prescribed shear

given by

(Uly), 0,0)

Q)
I

(2.1)
P, = ~p8g2
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where U(y) is an arbitrary function of y and is assumed to be at
least twice differentiable, With q, and p, representing the total veloc-
ity vector and pressure respectively, the momentum equation for an

inviscid, incompressible flow is

3 q::: — — v p’:‘

g il VMg = - —— -Vez . (2.2)

The continuity equation is
Veq, = Q(x,t), (2.3)
where Q(;,t) represents a source in the fluid,

3. Boundary conditions

The boundary conditions on the free surface of the heavy fluid

can be stated as follows, Let the free surface be Sf: z -{(x,y,t) =0

where {(x,vy,t) is the vertical displacement of the free surface meas-

ured from z = 0, The dynamic condition of constant pressure at the

free surface required

(_i't:; =0 on z =0(x,y,t) . (2.4)

The kinematic condition for the particles on the free surface is

v gl =g (B2 5y -1 on ==l y.t) s (2.5)

On solid surfaces with specified shapes S(x,y,z,t) = 0 the boundary

condition is

5% + q*'VS =0 on Sle,yezst) =0 . (2.6)



4, Linearization

The flow field maybe considered as a combination of the prima-

ry shear flow (21-0, po) and a perturbation (a, p) so that

1

(_1::: :(—:]TO +a (U(Y) +u:vlw), (2_7)

p::: PO + P = ng + p

If the departure from the primary flow is small, then by neglecting
the squares and products of u,v,w and their derivatives, Eqgs, (2, 2),

(2.3) can be linearized to give

Du+ Uty + g B) = 0, (2.9)
D +%(§]=o, (2.10)
Dow + %(g] s s (2.11)

ou ov ow =

where D = Bit + Uly) 5—3%, and in the sequel D' = U'(y) % and
D" = U''(y) % . The linearized free surface conditions can be readily

shown to be

-pgw + Dp = 0 (2.13)
on = =0 ,
DL =W

whereas the boundary condition on solid surface remains unchanged.
Elimination of p by cross differentiations of (2,9), (2.10) and (2.11)
gives

= Du=D Y. -887 (U'yw) (2.15)
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) ov
-a—y- DW—DE . (2.16)

Although from (2.12), (2.15) and (2.16) a single equation for any
component of the perturbation velocity a = (u,v,w) can be obtained,
the equation with v as the dependent variable is preferred. By

eliminating u and w, we obtain

[DV? - D']v = % DQ(x,t) . (2.17)

Equation (2.17) is the basic equation of motion, When v has been
solved together with appropriate boundary conditions, u and w may
be deduced from (2.16) and the continuity equation, To obtain w, the
lower limit in the y-integral may be taken as either +o0 or -« since
the disturbances are assumed to vanish at both limits., The result
obtained using either limit is the same. In integrating the continuity
equation with respect to x to obtain u, however, the lower limit
must be -« because it is possible that the fluid at +ea in which
region the vorticity may be permanently changed after the fluid has
passed the disturbance, may not have zero disturbance velocity i. e,
we shall only assume all disturbances vanish farup stream (at x=-w),
The appropriate condition on the free surface for v can be

derived by differentiating (2.13) giving

5] 0

Eliminating w from (2,18) and (2,16), we obtain after some manip-

ulation
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9 2 0 (p p
-g == Dv +D (}+ZDD'(—=O
E Bz By (p o
By using (2.10) in the second term and integrating the resulting equa-

tion once, we have

ov 2 P
g ok = +2D'( =0 . %1
g 5y - D'V 5 (2.19)
Recaliing D' = U'(y) E?_x , Eqg. (2.9) can be used to eliminate {%),
yielding
tg 2 4 DPv +2U(y)Du +U ' (yv) = 0 . (2.20)
Finally, dividing (2, 20) by U'(y), differentiating it with respectto y, then

using (2.15) to eliminate u, we obtain the free surface boundary

condition as

2 ov
o |IDV*tE 57 )

W—ﬁ,—,-(?)—z—ZEDV on z =0 « (2.21)
With appropriate initial and boundary conditions, v canbe solvedfrom
(2.17)and (2.21). Sofar norestrictionhasbeenplacedon U(y). They
are linear partial differential equations with variable coefficients
which depend on y in such a complicated manner that it is quite dif-
ficult to obtain an analytical solution for the general case of arbitrary

U(y). In Chapter III a geometric optics method will be developed for

the case when the variation of U(y), otherwise arbitrary, is as-
sumed small, In Chapter IV an integral transform method will be
applied to solve (2.17) and (2.21) for v for a particular, although

somewhat artificial U(y), namely that of linear shear,

Uly) = Uo( 1 +ey) . (2.22)
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It is obvious that this type of undisturbed parallel velocity distribution,
if exists at all, is rare. Nevertheless the solution may give some in-

sight to the much harder problem of arbitrary U(y).

5. Review of steady wave pattern in a uniform stream

The treatment of a stationary point source of strength m, sub-
merged in a uniform primary flow, by double Fourier transform and
asymptotic evaluation of certain integrals based on the principle of
stationary phase illustrates the characteristic difficulties involved
(Ref.18). We shall review this method briefly to fix ideas as well as
for discussion and comparison of the results with the case in which the
primary flow is non-uniform.

Let rectangular cartesian co-ordinates (x,y,z) be chosen with
the z-axis perpendicular to the undisturbed free surface, the x-axis
parallel to the stream velocity Uo’ and the y-axis completing the
system. The gravity acts in the negative z-direction, with gravitation-
al acceleration g,. The origin is taken so that the point of disturbance
is at (0,0, - h). Polar co-ordinates (r,0,z) are defined by
X =rcos0, y =r sing, Our problem is to find the velocity potential
qbo(x,y, z) based on the linearized theory that in the flow field z < 0,

¢, satisfies the Laplace equation
v2¢o =0 except at (0,0, -h) , (2.23)

and the boundary condition at the free surface =z = 0 that

o%_ o6
+KW:O (Z:O) ] (2,24)

dx?
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where K = g/U; is a characteristic wave number, We further write

m 1 &
¢O(Xsy,z) = = Ef{— +¢(X=Y:Z) b

~
where ¢ is a harmonic function, regular in the region z < 0, and

Rf =x* + y* + (z+h)* . (2.25)

For the condition at infinity we require

lim grad¢0 =0 (2.26)
Z—> -00
lim gradqf)o =0 (2.27)
X -c0
Applying the double Fourier Transform,defined as
> 00 0 3 ,
Flo,} =S dxf ay BV (2.28)

-00 -00

to (2.23), we obtain a second order ordinary differential equation with

z as the only independent variable, The coefficients in the solution of
this transformed equation are determined by the transform of the bound-
ary conditions., The details of the method of solution can be found in
Havelock (Ref. 4 ) and elsewhere and will not be repeated here, With
the notaticn

kcos 6

R
n

p) (2.29)
k sin 6

™
1

the resull is as follows:
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m 1
Wy 2l = - I g
T
o
+ Re 1 g
27

-
2

+
M|

28
41

[oH
D
OL/} o
8
o,
=

eikr cos(G—U)ek(z-h) mk sec?6

k-K sec?f

(2.30)
where R? =x* + y% +(z-h)® and '"Re' denotes ''the real part of',
2

The
physical significances of the terms on the right-hand side of (2. 30),

are respectively, the point source, its reflection into the plane z = 0

2
and the disturbance due to the free surface effects, including the sur-
face waves,

By evaluating the k-integral along an appropriate path, the
integral in (2. 30), for cos(6-0)> 0, vyields in the final result of (I)O a

term of the following integral representation

6
Re i ‘S ? a6 eirH: sec?d cos(G-O')eK sec?f(z-h)
s
6
1

mK sec?f
where

3

™
= '2-‘"1'0'

(o)
0 = and 6 = for o
1 oy 2

™
'-27'*"0'

AV

This integral is in suitable form for the application of the method of
stationary phase.

For large Kr and for each particular o,

the sta-
tionary points are given by the roots of

—gg[seczacos(ﬂ—o)] =0 ,

or
2tan6 cos(f0-0) - sin(6-0) = 0

(2.31)
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Explicitly, there are two roots 6_ and 9+, given by

~1+ /1 -8 tanc
tan 9:*: =

4 tano

(2.32)

The asymptotic form of the wave part of qbo for large kr follows from

}

} , (2.33)

the principle of stationary phase to give

= . 2 »
d)o = A(6+) mn{rK sec 9+ cos(9+ g) +

INE]

-A(e_)sin{rx sec’d cos(f_-0) -

AN

where

o (144tan? 6. )¥Y*  «ksec?0,(z-h)
A(G):fz mkK sec 6 = =
+ KrT + 2 V)

(1-2tan 91)

. (2.34)
with 9;!: given by (2.32). The above results show that the resultant
wave pattern of a subrnerged source is the superposition of two sys-
tems of wave which are confined in the wedge bovnded by two vertical
planes 0 =+ 0,, 0, =19.5°, The general features of the curves of
constant phase are shown in Fig. 5b.

The variation of the amplitude is indicated by Eq. (2, 34). The
above expressions (2,33) and (2, 34) break down when the second deriv-
ative of the phase function sec?0 cos(0-0) with respect to 6 vanishes;
this occurs at the boundary 0 =% 0, of the wave region., By a more
elaborate asymptotic method, Ursell (16) has shown that the leading
term of qSO is of order O(I{r)_% in the region near |o] = |0'*I_ In
this region, the method of geometric optics to be discussed in Chapter

II1, too, fails. For dispersive systems, the method of stationary
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phase therefore seems more fundamental, But it can be seen that
this integral transform method, without modifications, fails when the
primary flow is non-uniform because Eqs. (2,23) and (2, 24) are re-
placed by Egs. (2.17) and (2.21) which have variable coefficients, We
shall ‘show in Chapter IV, how this integral transform approach can be

modified in a special case to overcome this difficulty.
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III. METHOD OF GEOMETRIC OPTICS

1. Unsteady problem

The method of geometric optics has been developed and applied
to problems involving wave motions in anisotropic and dispersive
media by Landau and Lifshitz ( 8 ), Lighthill (10), Whitham (20),
Keller ( 6), and by others, The basic assumption necessary for suc-
cessfu! application of this method is that the non-uniformity in the
dispersive medium in which the wave propagates does not change sig-
nificantly over distances comparable to the typical wave-length under
consideration. In our present problem of gravity waves, in a parallel
shear stream with free streamvelocity U(y), this assumption may be
interpreted as

S
Uo /gl «1

where Uo is a characteristic constant velocity, Uoz/g , is the typical
wave length, and { is a characteristic length over which the primary
parallel shear flow velocity, changes appreciably. For example, £
may be chosen to be Uol(mean value of |[dU/dy|). In this section, the
problem of a point disturbance applied on the surface of the fluid at

x =0, vy =0 for t> 0 is first formulated. The steady wave pattern

due to a stationary point disturbance on the surface is then deduced

quite readily.

We considerherea general distribution of velocity U(y),
Uph=U + U ilyl « (3.1)

subject to the restriction that U (y) is a slowly varying function and is
1
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small compared to u,. When the variations of U(y) are smooth, we
can keep a clear separation between the phase of a surface wave and

its amplitude. Thus we may write
vix,t) = AGL 0 ) o A explifx, 1) + LE, 0} (3.2)

where

L

L{x,t) = log[ A(x,t)/A_]

and AO is a reference amplitude, A(;, t) is the amplitude function,
which is assumed to be slowly varying in x and t. The function

(,b(;; t) in general may be complex, its imaginary part is determined by
the differential equation governing v. To represent a surface wave,

the real part of ¢ assumes the form

Re{¢(x,t)} = koq,(;,t) =k _¥(x,t) - ot (3.2a)

where ko is a constant reference wave number appropriate to the wave
motion in question, w = w(;, t) is the circular frequency, and the real
function \If(;,t) is the so-called eikonal function, which defines the
surfaces of equal phase,

For the geometric wave approximation we next introduce the
basic assumption that the characteristic wavelength Zw/ko is assumed
to be small compared to the distance £ over which U(y) changes ap-
preciably. Hence, if _;{ is referred to £, and t to kollwo, as the
basic units, then from the above assumption it follows that the deriva-

tives of ¢ and L will assume the order of magnitudes:
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grad¢| =0k ) , I [=0kp ,
(3.3)
lgrada L] = o(1) L] =o@)

and the higher order derivatives of ¢ with respect to x and t are
clearly also of order (koﬂ)_ Since the geometric wave approximation
requires kOE to be large, the differential equations for ¢ and L can
be derived by substituting v into the basic equation of motion (2.17)
and the boundary condition (2,21), then expanding the equations for
small (l/koﬂ). Consequently, the terms in (2.17) have the following

orders of magnitude:

ID@*v)| = ollvik ) ., luv | =o(urvik )

where the prime denotes differentiation with respect to y, as before.

Hence, up to the first two leading terms for koﬁ large, we have

D(VZV) =0 )

which holds true for arbitrary U(y) provided the variation of U(y) is
smooth, a factor of error [l+O(kO£)_z] for the left side of the above
equation being understood. This equation can be integrated once, giv-
ing Viy = f(x - Ut), f(x) being an arbitrary function of x; but this
function must be zero since V?v 1is required to vanish as y2 4zt > o
in the flow field. Whence

Vivy = 0 5 (3.4)

valid for the first two leading orders. The free surface condition (2, 21)

becomes
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1
é%- (D*v + gv,) = - 2U'Dv,_+ < (Div +gv ) . (5. 5)

It may be noted that the two terms on the left hand side of (3.5) may be
regarded to be of the same order since the parameter gI/UCZ) , Wwhich
is the factor multiplying ¥ in the dimensionless form of the equation,
can be very large. It is also noted that the terms on the right hand side
of (3.5) enter in the calculation of the second order term. |

By substituting (3.2) into (3,4) and retaining only the two lead-

ing orders, we obtain

S 3R o oo
and
9x oy oz
From (3.6),

g 22 =ﬂa¢ [W’ ZJZ (3.8)
Hence we observe that if the partial derivatives of ¢ with respect to
x and y are real, as is required by the solution representing a sur-
face wave propagating in the x-y plane, then 08¢/08z will be purely
imaginary so that v will vary exponentially with respect to =z, In
(3.6), an appropriate branch of the function (ci)xz +¢yz)% is chosen to

satisfy the boundary condition that v > 0 as z — -0, By differentiat-

ing (3.6) with respect to x,y,z, and by some substitutions, we find

Zd) -

"

a¢ + 2 9¢ o9 az. +{8¢ 82¢ .(3.9)

1 5¢
z+(%_)] (a o 9x Oy 9%0 Z

oy
9y
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By making use of (3.8) and (3.9), (3.7) may be written as
a¢ o¢
L _ 9L oL dy

1 %z T ox ‘:( ) [ } Y[(%)z+(%z]%

8¢ |* 8% , 0 99 9% 4] 89 2 9%
ml - Lk
oy

T oy

We also note that if qﬁx, ¢, L, and LY are real, then 0L/0z

@

_I_

must be purely imaginary. We shall henceforth regard i ?r and

aL

155 as real.
Next we substitute (3.2) in (3.5), again keeping only the two

leading orders, and separate the real and imaginary parts, to obtain

1
9 2 9 2|2
(a‘f+ug‘i g[(g_g) +(%] =0 (z2=0), (3.11)
9
AT [ AP
[(%Z + %Z}E
ox oy
o¢
5 T3 0 (% 4y 2 8¢ 8¢
a¢)2 . a¢ 2l 2
5%l +(5%
o¢ o¢
g @ ox g @ oy
o S 2 (ﬁz}z— ZBY a¢2 a¢2%
¢ 9
(321" (28] (21" +2e)]
0¢
r2(F v BluomT-o -0 . (3.12)
dy

In (3.11), (3.8) has been used to replace i g—‘i— . Also (3,10) has been
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used in (3.12) which has been further simplified by subtraction of
(3.11) and its first derivative with respect to y. The eikonal equation
(3.11) provides an equation for ¢ while the transport equation (3,12)
is a first order partial differential equation for L. Since (3.11) and
(3.12) are deduced from the linearized free surface condition (3.2),
they are valid on z = 0 only,

To effect the integration of (3.11) and (3.12) we introduce the

frequency function w(g, t) and wave number _12(;, t) =(k1, kz’ 0) by

o¢ _ op 8¢ _ .2 2 .
gr=-e . Feck . gk b=/ ak> (5, 1%)

in terms of which (3.11) becomes

1

(S

F(-w,k,k,y) = (0-Uk J - g{k + Kk )2 =0 . (3.14)

By applying the theory of first order partial differential equations (e.g.
see Courant and Hilbert, (1962), Vol. 2), the characteristic equations
"may be written immediately., If we introduce a parameter \ along the

characteristic curves the characteristic system of equations become

%Z'%?Z(WWI) , (3.15)
g_i: g_ll'-:; ='2(w—Uk1)U—gk1/k , (3.16)
& =g§z:‘gk/k ; (3.17)
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dw OF oF
ﬁ = _t - w %— = 0 3 (3n 19)
dk

L _ _8F . OF _ 5
T < 5 "R gt 202
dk

2 oF oF 4

= - — - = 2(w- 1 3.2

Equations (3,19) and (3, 20) show that w and kl are constants along the
characteristics or ray paths though their constant values may be dif-
ferent for different characteristics.

By dividing (3.16) and (3.17) by (3.15) and using (3,14), the

components of the group velocity Eg = (CgX,ng) are deduced to give

K
_dx | dw lig 1 -
. ~@ - “YYIEE (%, 22]
1
K
_dy  dw 1 /g 2 .
Cgv“ﬁ?‘é‘li;‘ zhe & (3.23)

The form of these group velocity components resembles those of the

waves propagating on the surface of a stream with a uniform velocity

except that in the present case U = U(y), and k 1is no longer constant
2

on ray paths as can be seen by division of (3.21) by (3,15)

dle
ey !
T = - KUy) (3.24)

which gives the rate of change of k along a ray path. This rate is

2
constant on each ray path for the special case of a primary parallel
flow of linear shear, that is, U'(y) = const,, but it may differ on differ-

ent rays, The ratio of (3,22) to (3.23) gives
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'?—1 = 3
_/E__ gkZ
2l kK &k

from which the ray paths or group lines may be deduced. Equation

U+-1—/&EL 2U(gk)T* +g%k
dx Z/k & 5 55
= T = (3.25)

2

(3.25) may be put into a form which can be readily integrated. From

(5,14},
\[gl: = (w-Ukl) 5 or
(w-Uk }
B ekt = g (3.26)
2 gZ 1

Substitution of (3,26) in (3, 25) gives

2U(w-Uk ) +g%k
= - L L , (3.27)
J (w-Uk )*
+ g 1 - K2

gZ 1

of which the right hand side is a function of y only because k1 and w
are constant along each group line. For the special case of linear
shear primary flow, it is readily seen that the group lines may be ex-
pressedas the elliptic functions., Integration of (3,27) for this partic-
ular case will be carried out for the steady problem in the next section,
To conclude this section we shall examine briefly the transport
equation (3,12) governing the amplitude variation. In terms of the

notations defined in (3,13), (3.12) becomes
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oL oL a1, 1 2] 9
ot +ng N +ng 'a—y + ——Z(w_Ukl){a—t— (w-Ukl) + U a (w Ukz)
k k k
E,_E’_(_L S_.i[_i) P N
- o - k]+28y " +U(Y)kz =0 , (3.28)
where ” kl
(w-Uk U + —
Z2 k
Cg, = : ’ (3.29)
(w-Uk )
k
g _z
2 E
g, ") - (3.30)

These expressions for the components of the group velocity are the
same as (3.22) and (3. 23) by virtue of (3.14). In order to express
(3.28) in a physically more meaningful form, we shall first take the
partial derivatives of ng and ng with respect to x and y respect-

ively, giving, after some rearrangement,

k oCg Cg
! 8 g 9 1 a\l_ % x 9
(w-Uklj 0 5% (“"Ukl) v 2 3}?[_1?)}_ ox ' (w-Ukl) 5% (w—Ukl) ;
(3..31)
and
! g 8 [2)\_ y y 8
(w-'Uk1 5{2 By{ k)}- 9y * ((.u—Ukl) dy (w Ukl) . {3.32)

We recall that the total time derivative of a function f(x,vy,t), which

does not depend on k2 explicitly, along the group lines is

af _ of of .  of
o ot Y, 5 (3 35

Hence,



Db

dU

d g _ au _ _ ey 9Y - I(y)Cg_ 3.34
¢ (@-Uk) = Il k1U1(Y) I k Uly)Ce, ( )

since w and k are constants on each group line. But by (3,33), we
1

can also write

—--(w—Uk)- (w- Uk)+Cg T(w Uk)+Cg (t.o Uk) . (3.35)
1
But the right hand sides of (3.34) and (3. 35) must be identical, hence

& (@-Uk )= - Cg_ g (e-Uk ) - Cg % (0-Uk ) - & U(y)Cg, .(3.36)

Expressions (3.31), (3.32) and (3.36) may now be used to rewrite

(3.28) as

k k
dL , 138 9 ' 1 1 1 =
& * z{&zcg}ﬁ Wng} *U‘Y)(g T ZTUR By =0 - (3.37)
1

To display the physical significance of (3.37), we recall
L(;,t) = log| A(;,t)/Ao] so that in terms of A, one may obtain by

multiplying (3.37) by A? the equation
aat  Afla .8 = MMy L. o LY, (3.38)
dt 2 2 ] 0x “Sx dy 2yl y k )

where (3.14) and (3.23) have been used to obtain the last term of (3, 38),

By using the explicit form (3.33) for dA?%/dt, (3.38) may also be writ-

ten as
2 2 2 k [4k 2+3k?
D L Tt
21
heie U i = +;—§-—- and U'(y) = U'(y). Regarding the quantit A~
2 0 0x oy Yi =M\ g g ¥ "z

as a measure of the energy density, (3.39) shows that the flux of energy
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along ray tubes, formed by adjacent group lines or rays, is not con-
stant. In the region where U'(y)> 0, for the waves with kz < 0,
(3.39) indicates that the effect of shear is to introduce a fictitious
energy source while for kz > 0, a fictitious energy sink, We may
conclude that the primary parallel shear flow supplies energy to the
waves with kz < 0 and retrieves it from waves with kz > 0, resulting
in a net transfer of energy to different regions of the flow field. It
may be conjectured that the total energy of the waves are due entirely
to the disturbance at the origin so that, while the parallel shear flow

redistributes the energy, it does not supply its own energy to the

waves,

2, Steady wave pattern

The familiar steady ship wave pattern created by a stationary
point disturbance acting on the surface of a uniform stream will be
modified when the primary undisturbed flow has a non-uniform hori-
zontal velocity distribution. The steady wave pattern on the surface of
a parallel linear shear flow due to a disturbance at x =0, y = 0
furnishes at least qualitative modifications one would expect of the
more general case of arbitrary shear; this special case will be con-
sidered in this section. When the wave pattern has reached a steady
state, the encounter frequency w relative to the disturbance must

vanish in the wave field, hence (3, 14) reduces to

w = [gk + (U +U (y) )k =0 : (3.40)

The result that k and w are constant along group lines must still be
1
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true so that along each group line
dk? = d(k® +k?) = dk* = 2k dk (3.41)
1 2 2 2 2

and kz = kz(y) on each group line.

The slope of the group lines may be deduced from (3,27) by
putting w = 0, however, it can be put into a more useful form by
deriving it again directly from the components of the group velocity.

From (3.22) and (3.23),

dx ng _ kl L2 K U0+U1(Y)
dy ~ G "k gk 2
vy O, K g 1
which by (3.40) becomes

k 2 k k

& .3z K 1 1 2 :

dy K 2 = L + 2 o A (3.42)

2 1 2 z 1

Since the right-hand side of (3.42) is a function of y only, we let

¥ - 3.4
T my) . (343}
k
Upon solving for EE— from (3.42) in terms of mf(y),

1

1:2_ _ =111 -8mP(y)

3 J—r— ) . (3, 44)

For the waves to exist, k and kz must be real, Equation (3. 44)
1
shows that this requirement is satisfied if and only if

1

- 3.45
iy ( )

This upper bound m, of the slope function m(y) will be used to deter-

Im\ < m* =

mine the boundary of a wave region outside of which the disturbance
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dies down very rapidly. Introducing polar coordinates (k,8) in the
wave number plane by

k k cos 6
1 i (3.46)

k sin 6

]

k
2

we may write (3,44) also as

A 2
g G = el = 0B )

4m(y)

, (3.47)

which will be used in the subsequent analysis. For the moment we
shall simply note that for each m(y) satisfying (3.45) there exist two
angles of 6, denoted by 6_+_ and 6 , given by (3.47). Corresponding

to 8+, the value of k+ are determined by (3.40) and (3.46), to give

20
sec +

Ty = o e 4 (3.48)
v (14T (y) )
where Ul(y) = Ul(y)/Uo, so that

k =k cos?®
1+ - - -

k =k sin@
2% + +

2

a result which shows the presence of two systems of waves inside the

wavye region inferred by (3. 45).

By transferring the last term of (3,40) to the right-hand side

and squaring, we obtain:

e 2
gk = kl[ UO+U1 (v)]
Then
K2
K= 4 (U 4U (y))L 1| &?
2 | g o i 1



-30-

or

k k e N
k_zzi %) (1 +U)* -1 » (3.49)

where we have defined

g B (3.50)
Uz
O
and
- Uiyl
Ul = UO = ey (3.51)

In the last step the linear shear primary flow has been chosen specifical-
ly for U(y) for the purpose of facilitating integration of the solution,

We shall now introduce a new variable
E/6,=1+TUly)=1+ey E =/-+, (3.52)

so that (3.49) becomes

k
=i £ -1, (3.53)
1
Here the requiremeht of k1 and kz to be real in order for waves to
exist is satisfied if and only if £ > 1, On physical grounds, we expect
the waves to appear in the downstream of the disturbance; this implies
that k1 > 0. The + or - sign in (3,.49), (3.53), and in the sequel is

taken according as kz is > or < 0. To show the equivalence of this

to (3.45), we may deduce from (3.42), (3.43) and (3.53) the expression

m(§) = + @4-11%(254 =15 (3.54)

To find the maximum of m(f) we set
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4 3
am o, BV

=0
(264 1)y £4-1

Since £> 1, the only zero is thus

at which the slope function m attains its maximum value

1
(&) = —— = i,
M) = e e

which is identical to (3.45).

£

The dependence of

is useful in obtaining the steady wave pattern. This is shown in
Fig. 2,

m on the parameter

Next, differentiating (3.52) we have

d K
& W -
1

(3.55)
Substitution of (3.53) and (3.55) into (3.42) then gives

(3.56)

Upon integration, with the integration constants so chosen that all ray

paths will pass through the origin x =0, y =0 or § :/‘kl/K,

g FEi= leo = /7%) >

(@]
or
£ £
¢t x = %5, §4-1| . A.lj-u —f:&‘ . (3. 57)
e S [feta

The absolute value is taken because the assumption of zero upstream
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wave disturbance indicates only positive ex is required. The choice
of the lower limit of integration in (3.57) arises from the assumption of
a point disturbance at x = 0, y = 0 so that all the group lines pass
through the origin, The integral in (3,57) can be readily expressed in

terms of the elliptic integrals. Thus

%£§/ £4-1 _§O/g4o Al = ;—}—_—[ (cos (&—)/._J F cos (E——)/_):'

(3.58)

egox =

where F(y,\) is the elliptic function of the first kind whose integral

representation is

L
£ = = F(y,)\) (3.59)
S‘b /uz.+az/“z_bz /a2+b2

with y = cos'l(:%] . B = /a.lj-:bz— , 0<b<p and 0<a, This function
has been studied extensively and its values for arbitrary arguments
have been tabulated (Ref, 3). Therefore, with the known properties of
F(y,N), (3.58) and (3.52) give a parametric representation of the group
lines. The basic features of these two equations are shown in Fig, 3
for kl > K and for kl = K. In each case, ey is linear with a positive
slope El— and intersects the £ -axis at E’o' The behavior of ex is

o
more complicated. As § increases from unity, ex decreases from

2 1 1 -1
q gf -1 - —. COS [E—) )
3 o / > Eo
to zero at £ = §0(> 1). Then it increases monotonically for £ > £

Since from (3.55) and (3. 56)
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4 (ex 1 @821 5 | (o) =|2
gg(x) FO £%-1 E3 E;

for £ > 1, the branch of ex for § > E,o always lies above ey. The

point go :fk—lf_;c_ :fl::EI_Z/_g in Fig. 3 is particularly important, It
corresponds to the point source of disturbance in the physical flow field
from which all group lines originate, Therefore,it is a natural con-
sequence from the requirement of £ > 1 that the appropriate group
lines of the wave region are g