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ABSTRACT 

This research is concerned with block coding for a feedback 

communication system in which the forward and feedback channels are 

independently disturbed by additive white Gaussian noise and average 

power constrained. Two coding schemes are proposed in which the 

messages to be coded for transmission over the forward channel are 

realized as a set of orthogonal waveforms. A finite number of forward 

and feedback transmissions (iterations) per message is made. Infor

mation received over the feedback channel is used to modify the wave

form transmitted on successive forward iterations in such a way that 

the expected value of forward signal energy is zero on all iterations 

after the first. Similarly, information is sent over the feedback 

channe l in such a way that the expected value of f eedback signal 

energy is also zero on all iterations after the first. The se schemes 

are shovm to achieve a l ower probability of error than the best one-way 

coding scheme at all rates up to the forward channel capacity, provided 

only that the feedback channel capacity be greater than the forward 

channel capac ity . These schemes make more efficient use of the 

available feedback power than existing feedback coding schemes, and 

the r efore require l ess feedback power to achieve a given error perform-

ance. 
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I. INTRODUCTION 

This research is concerned with block coding for a communication 

system consisting of a forward and a feedback channel. A block coding 

scheme for such a system is shovm in Figure l. 

s 
Xj ::t(s>~,, ... >~j-~ 

j=l, ... )D 
FoR.vvAR.D 

C HANNt<L 

De:cooE"R 

Vlj=,9j(<ju···1<jj) 
j = 1,. .. ,D-I 

Figure l. Feedback Coding Scheme. 

The message s is one of a set of M equiprobable messages to 

be coded for transmission over the forward channel. We code each 

message into a sequence of forward channel inputs as shovm. The for-

ward channel inputs are functions of the message being coded and of the 

previous feedback channel outputs. The feedback channel inputs are 

fUnctions of the previous forward channel outputs, These functions are 

fixed for a given feedback coding scheme. The decoder makes a decision, 

" s, as to the message being coded based on the r eceived sequence of 

" forward channel outputs. An error is made if s is not equal to s. 

We wish to choose the functions [fj : j=l, ••• D}, [gj : j=l, ••• , 
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D-l}, and the decoder so as to achieve reliable transmission of infor

mation over the forward channel. 

Feedback coding schemes have been analyzed under a variety of 

assumptions regarding the forward and feedback channels [l-6]. These 

schemes achieve a lower probability of error than that attainable with

out feedback. The presence of the feedback channel does not, however, 

increase the capacity of the forward channel. This result holds for a 

wide class of feedback communication systems (see Appendix A). 

In the remainder of this paper, we consider a feedback communica

tion system in which the forward and feedback channels are independently 

disturbed by additive white Gaussian noise and average power constrained. 

While feedback coding does not increase the maximum rate at which 

reliable information may be sent over the forward channel of this 

system, it can improve error performance. If the feedback channel is 

noiseless, Schalkwijk [ 2, 3 ], Kailath [2], Omura [4], and Butman [5 ] 

have devised schemes in which the probability of error in transmitting 

information over the forward channel is lower than the minimum proba

bility of error attainable without feedback . This result holds at all 

rates up to the forward channel capacity. Thes e schemes use scalar 

signals, that is each message is realized as a point on the real line. 

The forward channel inputs are linear combinations of the scalar message 

point be ing coded and the previous feedback channel outputs . The feed

back channel inputs are linear combinations of the previous forward 

channel outputs. Decoding is accomplished by taking an appropriate 

linear combination of the forward channel outputs . Then, denoting this 

combination by a, we choose the message point closest to a as · 
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representing the message being coded. In particular, the maximum 

likelihood decoder may be implemented in this way. (Reference 5 con-

tains the complete formulation of this linear coding scheme .) 

Note that a is of the form 

where n is a Gaussian random variable with mean zero and variance 

2 a , and 8 is the message point being coded. If the message points 
n 

are equispaced about the origin, the probability of error, p ' e 
for 

this linear coding scheme is 

p 
e 

where T is the time to transmit a message, 

information rate of the forward channel, and 

R _ ln M 
- T is the 

y is the output signal 

to noise ratio. 
0 e 2 

(y = --2 ' where cre is the variance of the set of 
a 

n 
equiprobable message points.) Clearly, as T becomes large, it is 

necessary that y increase exponentially with time in order to 

attain a vanishingly small probability of error for any non-zero rate R. 

The above expression for the probability of error for a linear 

coding scheme is also valid in the presence of feedback channel noise. 

In this case y may be upper bounded by the sum ·or the ratio of for-

ward signal energy to forward channel noise and the ratio of feedback 

signal energy to feedback channel noise. (This bound follows fr an a 
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result obtained by Elias [8]. An alternate derivation of this bound, 

which makes use of Butman's matrix formulation of the linear coding 

scheme [5], is due to Farber [9].) Thus, with the average power con-

strained in both the forward and feedback channels, y can increase 

no faster than linearly with time, and reliable transmission cannot be 

maintained over the forward channel at non-zero rates. Equivalently, 

for a finite amount of power in the forward direction, an infinite 

amount of feedback power is required to maintain any non-zero rate, R, 

and achieve a zero probability of error. This is a severe limitation 

of linear coding schemes. 

Kramer [6] has recently analyzed a feedback coding scheme in which 

each message is realized as one of a set of orthogonal waveforms. 

Information received over the feedback channel is used to modify the 

waveform transmitted on successive forward i terat ions i n such a way 

that the expected value of forward signal energy is zero on all itera-

tions after the first. His scheme also achieves a lower probability 

of error than the best one-way coding scheme at all rates up to the 

forward channel capacity. However, even in the presence of feedback 

noise, only a finite amount of feedback power is required to achieve 

this improved performance. Thus, this scheme is of particular interest. 

In Chapters +I and III of this paper, feedback coding schemes are 

introduced which further reduce the amount of feedback power required. 

This is accomplished by sending information over the feedback channel 

in such a way· that the expected value of feedback- signal energy is also 

zero on all iterations after the first. Chapter IV contains a dis-
' ""' 

cussion of the performance of these schemes. 
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II. FEEDBACK CODIJ>G SCHEME 1. 

2.1 . Preliminaries. 

The forward and feedback channels are the vector channel equiva-

l ents of the time continuous additive white Gaussian noise channel . 

(Chapter 4 of Referencell contains a discussion of the equivalence of 

t he vector and time continuous channel models . ) Both channels are 

assumed to have no bandwidth constraints, and the forward and feedback 

noises are assumed to be statistically independent . Every T seconds 

we wish to code and transmit over the forward channel one of M 

equiprobable messages from the message set 

' M} 

Let 

e = te. 
1 

i=l, • • • , M} 

be a set of orthogonal M dimensional vectors r epresenting M 

orthogonal waveforms over a time interval 'f with \\eill 2 = E . Let 

i - 1 • • • M} - J , 

be a similar set with \\¢i\\2 = E'. We associate each message s. 
1 

,J' with a vector e. in e 
1 

Let xk denote the M dimensional 

in 

vector input to the forward channel at the kth transmission, ~ the 
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M dimensional forward channel noise and yk = xk + ~ the forward 

channel received vector. The corresponding quantities for the feedback 

channel are wk' and (See Figure 2.) In addition, 

denote by N 
0 

the one-sided power spectral density of the forward noise 

and by p 
av 

the average signal power in the forward direction. Let 

N~ and PFB be the corresponding feedback quantities. The components 

of the forward and feedback noise vectors are independent zero mean 
N N' 

0 0 
~ and ~ respectively. Gaussian random variables with variance 

p 
The forward channel capacity is 

xk 

zk 

C -~ - N 
0 

nk 
J-
© 

© 
t 
~ 

yk 

wk 

Figure 2. The Forward and Feedback Vector Channels. 

We now proceed to the description of feedback coding Scheme 1. 

2.2. Description of Scheme 1. 

Assume s £ ~ is the message to be coded for forward transmission 

and e £ 8 is the M dimensional vector associated with s. We make 

N forward transmissions and N-1 feedback transmissions, each of time 

duration 1, as follows: 

nl 
J, 

xl e © 1 = e + nl 

zl ¢1 + ml @ wl = ¢1 
1' 
ml 
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n2 

* l * x2 = e - el ~@ Y2 e - el + n2 

,... 

zk = ¢k - ¢k- l + ~"c--@----wk = ¢k - ¢k- l 

I 
~ 

¢k * where and ek are determined as foll ows : 

Let 

k 

A.k = Y1 + l: (yj + e. i) J -
j =2 

Then ek is that member of e which maximizes 



over 

and if ek = et then ¢k = ¢t• 

Let 

8 

e. E e 
J 

(¢* = 0) 
0 

¢*k Then is that member of which maximizes 

* and if ¢ ¢ then k = t 

Finally, if 9N = 

over 

-lC· 

ek = et. 

¢. E p 
J 

et the receiver decides st was the message 

coded. An error is made if eN f e. Note that the total time T to 

transmit s is 

T = NT 

2.3. Analysis of Scheme l. 

We wish to determine the probability of error, PN(e), the 

average forward power and the average feedback power for this scheme . 

In particular we wish to determine the behavior of these quantities as 

we let 'f .... 00 while the rate of transmission, R = :4, and N are 

held constant. Bounds on these quantitie s will be obtained in terms 

of Pefb and Pek defined below : 
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Let 

f(x) 1 -

2 

y JM-1 2 dy dcx 

We define 

Pefb = ~ ;J where S ' 
E ' 
T 

and 

f(~) where 
E s = -
T 

The properties of f(x) are well known and the reader unfamil iar 

with them should consult Chapter 5 of Reference ll . In particular, 

f(x) is monotone decreas i ng in x . 

In the previous section we defined vector quantities A.k and 13k 

* which were used in determining ek and ¢k. If s is the message 

being coded, then 

* and if e . e. 
J J 

k 

Ak = k9 + L 

for j 1, ... 
k 

A.k k9 + l: n. 
J 

j=l 

I n this case the probability that 

* (e. - e.) 
J J 

' 
k- 1 it follows that 

ek -f e is known to be pek" 
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Similarly, 

* " 
and if ¢k-l = ¢k-l then 

* " In this case the probability that ¢k f ¢k is simply Pefb" Hence, 

is the probability that ek f e given that 

••• , k-l and Pefb is the probability that 

* e. = e. for 
J J 

* " ek f ek given 

* ek-l = 9k-l" In what follows let £ ( ) be an operator denoting 

statistical expectation and P( ) denote the probability of the 

event in parentheses. 

I.et 

Then 

where 

= P(ek f e./s. 
J.. J.. 

is being coded) 

that 
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An upper bound to Pk(e) may be derived as follows: 

* ,... 
Pk(e/s. )= Pk(e/s. ,e . = 8. 

l. l. J J 

* ,... 
for j=l,•••,k-1) P(8 . = e. 

J J 
for 

* ,... 
j=l,···,k-l/s

1
.) + Pk(e/s . , e . f e. 

l. J J 
for some j) 

. k-1 * ,... 
for some j/s.) = P k(l-P fb) + Pk(e/s.,e. -f e. for 

l. e e l.J J 

k-1 
some j)(l-(1-Pefb) ) (2.1) 

since 

k-1 
* IT * ,... * P(e. = e. j=l,···,k-1/s . ) = P(e. = e./s . , e~ 
J J l. . 1 J J l. 'V 

J= 

Noting that 

it follows f rom ( 2 .1) tha t 

k-1 

=IT P(e~ = 
. 1 J J= 

(1-P )k-1 
efb 

* e./s., e. 1 J l. J-

e t-1 • • • J. -1) 
t - ' ' 

e. 1) J-

( 2 . 2 ) 
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It also follows directly from (2.1) that 

We now obtain bounds on P where 
. av 

N 

Pav = ~,. L dllxk\12) 
k=l 

= ~T ( E + ~ e(\\xk\\2)) 

For k ~ 2, 

* * A 

If ek-l f ei then either ek-l f ek-l or 

ek 1 ! e./s.) 
- l. l. 

Therefore, 

where 

(2 .3) 

(2 .4) 

Hence, 
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* ... 
and by induction, noting that P(e1 f e1 ) = Pefb' we have 

(2.6) 

It follows from (2.2), (2.4), (2 .5) and (2.6) that 

Hence, 

(2. 7) 

We now bound PFB where 

N-l 

PFB = ~'f L dllwkli
2

) 

k=l 

( 

N-l ) 

= ~' E' + ~2' <hll2) (2.8) 

For k ~ 2, 
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,. 

Now if ek I ek-l then either ek I ei or ek-l I ei. It 

follows from this that 

,. 

P(ek I ek_1/si) s P(ek I ei/si) + P(8k-l I ei/si) 

Therefore, 

It follows from (2.2), (2.8) and (2.9) that 

E' 
- s PFB NT ( 

N-l 

,;; ~~ i + 2 ~2 ( Pek + (k-i) 

Finally, noting that Pek s Pek-l we obtain 

SI SI ( 2 N s PFB s N l + 2(N-2) Pefb + 

(2.9) 

(k-2) pefb)) 

(2.10) 

We now wish to determine the asymptotic behavior of this scheme 

for l arge 'T. It follows from the properties of the function f(x) 

that 

for 

for 

k > l 

S' S 
N' ~ N" 

0 0 
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and 

p -+ 0 
el as T -+ "" for 0 

lnM s 
~ -- < -T N 

0 

Therefore, for 

S' s and 0 ~ R lnM s 
- ~ NT < --
N' N NN 

0 
0 0 

we have 

p s 
T -+ "" -+ - as 

av N 
( 2 . l l ) 

PFB 
S ' 

-+ - as T -+ "" 
N 

(2.12) 

To observe the asymptotic behavior of the probability of error we 

examine the behavior of the channel reliabil ity function, E (R), where 

From Eq . ( 2 .2) we have that 

Let us now consider the following two case s : 

A) S ' 
NT 

0 

s 
r'N 

0 

for 1 ~ r < N (r need not be an integer ) 



I n thi s case 

Therefore, 

and 

p 
er 

PN(e) $ N P er 
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and 

E(R) ~ l im 
T-+C:O 

( - ~ tn P ) + NT er 

r (- 1 
per) =N l im - tn rT ,. __ 

l im 
T-+c:o 

Making use of the asymptotic expression for 

E(R) r 
~ N 

s tnM 
2N - rT 

0 

(- ;T tnN) 

P we have 
er 

We now require that R <~ NN . Then using (2 .ll) and ( 2 .12) the 
0 

above result may be r ewritten as : 

If 

then 

p 
av 

r -N 
0 

l $ r < N ( 2 . 13 ) 
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0 ~ R 
. av av 

(
rP P ) 

~min ~, No 

E(R) ~ (2.l4) 

. av 
(

rP 

:rrun ~' 

B) r ;?:: N (r need not be an integer) 

In this case 

so that 

and 

E(R) ;?:: ( - ~ -Ln p ) + 
NT eN 

lim 
T-+CO 

= 
lim 
T-4D (- ~ {,n P ) 

NT eN 

s 
R 0 ~ R 

s 
2N - ~ 4N 

0 0 

= 

(~ -JRr s s 
4N ~ R < -N 

0 0 
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In additio~ from (2 . 3) we have that 

Therefore, 

E(R) s (- ~ tn P )+ ( N l - ) lim lim - ~-~ tn(l- P ) 
NT eN NT efb 

'!"->CO 1"->eo 

lim (- l 
peN l ::: -tn 

T_,co NT 

provided that Pefb _, 0 as T _, ""' · This will be true as long as 

lnM Si 
-,.- <NT . 

0 

Finally, if we 
s 

require that R < NN , then using ( 2 .ll) and (2 .l2) 
0 

the above results may be rewritten as : 

If 

then 

E(R) == 

NP av 
W- - R 

0 

r ;;:: N 

0 s R s . (NPav Pav) mm ~, N 
0 0 

(
NP p l . av av 

min rm- , W- s R 
0 -o I 

p 
<~ 

N 
0 

(2.l5 ) 

(2 .l6) 
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The upper bound to E(R) obtained here from (2.3) also applies 

to the case 1 ~ r < N. However, in that case the upper and lower 

bounds no longer coincide. A more exact analysis is required to 

obtain the true value of E(R) in that case. In the following 

chapter a feedback coding scheme is introduced for which an exact 

expression for the channel reliability function is obtained . 

A discussion of the performance of these schemes is postponed 

until Chapter TV. 
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III . FEEDBACK CODING SCHEME 2 

3 . l. Preliminaries. 

Section 2.l of Chapter II applies verbatim to Scheme 2 . In 

addition, quantities defined in Chapter II are not redefined in this 

Chapter unless their meanings have changed. The feedback coding 

scheme introduced here permits an exact analysis of the channel relia-

bility function. In addition, a simple modification of this scheme is 

considered and its effect on peak power is discussed. 

We now proceed to the description of feedback coding Scheme 2. 

3.2. Description of Scheme 2. 

Assume s c: ~ is the message to be coded for forward trans-

mission and 9 c: 8 is the M dimensional vector associated with s. 

We make N forward transmissions and only one feedback transmission, 

each of time duration T, as follows: 
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In this scheme we let 

N 

f..N = Y1 + L (yk + e1) • 

k=2 

* * eN is then determined as in Scheme 1. e
1

, ¢1, ¢
1 

and e
1 

are the 

same as in Scheme 1. 

3.3. Analysis of Scheme 2. 

We first obtain exact expressions for P and P 
av FB' 

N 

Pav - ;T L E(llxkll 2
) 

k=l 

For k ~ 2, 

* 2EP(e1 r e./s.) 
l. l. 



where 

Pefb' To do this we write 

Therefore, 

and 

1 
= 0 +(-) Pel M-1 

22 



23 

Also 

Therefore, 

(3.2) 

We now consider PN(e) , the probability of error, for this 

scheme. Note that when s is the message being coded, 

The probability of error therefore depends on the values of e1 and 

* e1 . The foll owing is a tabl e of the possible events associated with 

these values . 

Event 

A 

B 

c 

D 

It is assumed that s. is the message being coded . 
1 

e. 
J 

e. 
J 

e. 
1 

e. 
1 

jfi 

jfi 

e. 
J 

e. 
1 

j,h 

e. 
J 

e.i ifi, j 

k=l 
N 

L nk + (2N- l)9 . -(N-l)8 . 
1 J 

k=l 
N 

2= ~+ 
k=l 

N 

2= ~ + 

k=l 



E e. j.fi 
J 

e. 
l. 

These events are disjoint and we may write 

A 

N 

2= 
k=l 

n. + e. + (N-l)e. 
.K l. J 

PN(e/si) = P(eN.tei/si,A)P(A/si) + P(8N t ei/si,B)P(B/si) 

A A 

+ P(eN t ei/si,C)P(C/si) + P(eN t 8i/si,D)P(D/si) 

A 

+ P(eN _J_ e./s.,E)P(E/s.) 
Fii l. 

We wish to consider the terms which make up this sum. 

~ P((A.._, 8.) ~ (A.N' e. )/s .,D) . ".N J l. l. 

(3 .3) 

We now substitute the value of A.N corresponding to event D in the 

above expression. When we do this we can condition the probability 

o~y on the re l ationship 

implied by event D. Therefore, 

= p( t 
k=l 

N 

(nk, ej) + (N-1) E ~ L (nk' ei) 

k=l 

+ NE/ (nl' 0 j) > (n1, ei) + E) 
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k=2 
N 

where L (nk, e j) and 

k=2 

are independent identically dis-

tributed Gaussian random variables. 

It therefore follows that 

(3.4) 

A similar argument shows that 

The conditional probabilities of events D and E are 

and 

P(E/s.) 
J. 

Now 

P(eN-!= e./s.,B) = 1 - P((A.N,e.) > (A.N,e) 
J. i J. r 

~ l - P( ~1 (nk,e1) + (2N-l) E > ~ 

(3.7) 

for a ll r-/= i/s.,B) 
. J. 

N 

(nk, ej )- (N-1) E, L (nk, er) 

k=l 
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£or all r f i,j/(n~ei) + E > (n1,er) £or all r f i) 

::;; l - for all r f i/(n1,ei) 

+ E > (n1,er) for all r f i) 

" 
= P(eN -f e . /s.,A) 

1. 1. 

and 

If 

then 

The conditional probabilities of events A and B are 

lnM s' Q::;;-<-
T N' 

0 

p -+ 0 
efb 

as 
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and for large T 

In this case 

" 
0 ~ P(eN f ei/si,B) P(B/si) ~ P(eN f ei/si,A) P(A/si) (3. 8) 

Finally, 

(3. 9) 

It follows from (3.3) - (3.9) that 

(3.lO) 

where we have assumed T 
tnM S' is large and 0 ~ - < - to obtain the 

T N' 
0 

upper bound. 

Suppose now that 

8 I S 
N1 = r N""" for r ~ l (r need not be an integer) 

0 0 
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This implies 

If, in addition, we require that 

then 

and from (3.l) 

0 ~ R <~ 
NNO 

p --+ 0 
el 

p --+ 0 
efb 

s 
p --+ -
av N 

as 

as 

as 

Equation (3 . lO) is valid with 

reliability function 

E(R) = lim [-
T-+eo 

where 

T --+ co 

pefb = p 
er 

~ln 
NT PN(e) ) 

(3.ll) 

and we have for the channel 
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El(R) = l:i.m [- ~ ln p ) ,._,co NT eN 

and 

Now, using (3.2), (3.ll) and the asymptotic expressions for Pel' 

Per and PeN' the above results may be written as: 

If 

then 

where 

NP 
av 
~-R 

0 

r :e: l 

0 ~ R ~ . av ~ 
(

NP P ) 
min W--, N 

0 0 

. av av 
(

NP p ) 
~in~' No ~ R 

p 
<~ 

N 
0 

(3.l2 ) 

(3 .l3a) 

(3 .l3b ) 



and 

(r+l)P 
___ a_v - 2R 

2N 
0 

30 

p 
0 s R s av 

4N 
0 

(r+2 )P av 
2N 

0 
~ av s . av P (rP 4N Rsmmw-, ::v) 

(r+l)P av 
N 

0 

0 

2~ (l+/;) + 2R 
0 

0 0 

(

rP . av 
min~, 

p 
< av 

N 
0 

(3 .l3c) 

These eQuations completely describe the behavior of E(R) for this 

scheme. If N s r or N ~ r + l they can be simplified as follows : 

Clearly 

so that 

as in Scheme l. 

rP av 
~-R 

0 

. av av 
( 

rP P ) 
0 s R s min ~ , N 

0 

. av 
(

rP 

min ~' 

for N s r 

p 
< ~ 

N 
0 

It i s also possible to show that 



Therefore, 

(r+l)P _____ a_v __ R 
2N 

0 
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. av av 
( 

(r+l)P P ) 
0 :-s:: R :-s:: min 4No ' No 

. av av 
( 

(r+l)P P ) 
min 4No ' No :-s:: R 

for N ~ r + l 

p 
< 2:.! 

N 
0 

Note that E2 (R) is independent of N. Hence, E(R) cannot be in-

creased by further increas ing N, for N ~ r + l. 

Before concluding this section it is of interest to cons ider the 
p p 

performance of this coding scheme when N"E(' < N av We show that in 
0 0 

this case reliable transmission of information over the forward 

channel is not possible at all rates up to the forward channel 

capacity. 

To see this, note that i f 

then 

lnM S' 
~ ~ N' so that Pefb ~ 1 as ~ ~ ~ 

0 
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It then follows from (3.1) that 

Pav - ~ (2N-l) as T - oo 

and from (3 .10) that 

for all rates R such that 

av p ) 
p 
<~ 

N 
0 

Reliable transmission cannot be maintained for this range of rates . 

3.4. Peak Power. 

We define peak power for the feedback coding scheme as the 

maximum average -power over any transmission i nterval T . let PPK 

denote the peak power in the forward direction and PPK denote the 

peak power in the feedback direction . The peak -power in the forward 

direction is the maximum value of 

llxkl!
2 

k 1, • • • ' N T 

If * e1 f:. e then 

llxkll
2 

28 k 2, • • • ' N = = 
T 
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Therefore, 

The peak power in the feedback direction is 

Hence, from (3.2) 

N 

For the remainder of this section we assume that 

and 

Then from (3 .ll) 

S' 
N' 

0 

s 
rN 

0 

0 ~R <~ 
NNO 

PPK 
-- -+ 2N p 

av 
as 

r ~ l 

(3.14) 

Thus the ratio of peak power to average power increases with N, 

the number of transmi ssions per message . Any physical commW1ication 



system operates with a peak power limitation. Hence, the number of 

transmissions is limited. 

Suppose now we modif'y feedback coding Scheme 2 by letting 

k = 2, • • • , N 

where g is a fixed positive gain constant. For this scheme we let 

N 

A.N = Y1 + L (yk + gel) 

k=2 

to determine 9N. Note that 

p 
av 

s 
-+ -

N 
as T -+ co 

independent of the choice of g. Now, however, 

Since, 

PPK 2 . 
p--- = max( 2g N,N) 

av 

we assume that only the constraint on the forward peak to average 

(3 .15) 

power ratio is critical. We wish to determine tlJ.e channel reliability 

function for this scheme . Proceeding as in the previous section it 

can be shown that, 



If 

then 

where 

p 
av 

2N 
0 

E1 (R) = 

v~:v 

PFB rP av 
N' = -w---

0 0 

( (N-l)g+l) 

N 

( (N-l)g+l) 
2 

N 

2 

- R 

-JRr 
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r ~ l 

<R<min( 
2 

Pav J ( (N-l)g+l) p 
0 av 

N 4N J No j 0 

. ( ( (N-l)g+l)
2 p 

p ) p av _£ sR< _£ min N 4N J N N 
0 0 0 

and E2 (R) is again given by (3.l3c) and is independent of N and g . 

E1 (R) can be increased by increasing either Nor g . However, 

if we fix the forward peak to average power ratio (see (3.15)), it can 

be shown that E1(R) increases with decreasing g (for g ~ J2/2). 

Therefore, it is reasonable to choose g = l as in feedback coding 

Scheme 2, and increase 

ance. E1 (R) is 

g = [2/2 and N 

in fact 
PPK 

=p 
av 

N in order to obtain 

maximized, for fixed 

improved error perform
p PK 
p , by choosing 

av 
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IV. PERFORMAl'fCE OF THE CODING SCHEMES 

4.1. The Channel Reliability Function. 

In Chapters II and III of this paper we analyzed two block coding 

schemes for a feedback communication system in which the forward and 

feedback channels are disturbed by independent additive white 

Gaussian noise and average power constrained. In particular, we 

focused our attention on the behavior of the channel reliability 

function, E(R), for these schemes. (See Equations (2.13)-(2.16), 

(3.12) and (3.13).) This function is of particular interest since for 

large coding delay (time to transmit a message) T, the probability 

of error is given by 

PN(e) ""'exp(-E(R)T) 

and E(R) can be used to compare the performance of different coding 

schemes. 

4.2. Comparison of Coding Schemes. 

The channel reliability functions for the feedback coding schemes 

can be compared with the optimum reliability function attainable if 

the feedback channel were not available. Denoting this optimum 

ohe-way channel reliability function by E'(R), we have (see Chapter 

5 of Reference 11) 



p 
av 

2N - R 
0 
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EI (R) (4.l) 

p p 
av ~ R < av 

'l:j:N N 
0 0 

It is well known that signals orthogonal over the time interval T 

attain this performance. Note that for both feedback coding schemes, 

E(R) >EI (R) at all rates R up to the forward channel capacity, 
p 

C - _!!:".'!_ 
- N ' 

0 

provided only that the feedback channel capacity be greater 

than· the 

T, 

forward channel 
p 

and R < ..E-
N ' 0 

capacity. Hence, for the same values of 

the probability of error, for the 

feedback schemes is less than the probability of error, P'(e) ::::.. 

exp(-E' (R)T), for the best one-way scheme. 

p 
av' 

As T becomes arbitrarily large for these schemes, so does the 

number of dimensions per second used in coding, or equivalently, so 

does the bandwidth used [ll]. In many practical systems we may be 

restricted to a given large but finite time-bandwidth product, or 

equivalently, to a given large but finite number of dimensions. It is 

interesting to compare the one-way and feedback schemes for the same 
p 

values of Pav' N
0

, R < N av , and the same large but finite number 
0 

of dimensions D. Letting M' denote the number of messages and T' 

the coding delay for the one-way orthogonal scheme, we have 

R= 
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and 

D = M' 

Using (4.1), it then follows that 

p 
~ 4;v 

0 

P'(e) ""'exp(-E'(R)T') = (4.2) 

p p 
av ~ R < ~ 

4N N 
0 0 

Letting M denote the number of messages, T the coding delay, and 

N the munber of forward transmissions for the feedback coding schemes, 

we have 

and 

D = MN • 

Assuming N ::; r, where it follows using (2.16) or 

(3 .13 ) that 
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f 
exp {_(NP av _ l) ln ~1 p \ 

N:VJ \ 2N R N 

PN(e) ""' exp(-E(R)T) =l o (4. 3) 

\
2 NP p ex{(Jif- l) ln ~)min(~, N:v)~ R p 

<~ 
N 

Using (4.2) and 

same p 
av' 

(4.3) it can be shown that PN(e) < P'(e) for the 
p 

R < av and number of dimensions D which is 
N ' 0 

assumed to be l arge. 

0 

We now discuss the relation of Schemes 1 and 2 to existing feed-

back coding schemes. In Chapter I we mentioned several existing 

coding schemes for the particular feedback communication system we 

have considered. It is worth repeating that in the presence of feed-

back noise the schemes of Schalkwijk [ 2,3], Kailath [2], Omura [4], 

and Butman [5] require an infinite amount of feedback power to maintain 

any non- zero rate and achieve a zero probability of error. Hence, the 

presence of feedback noise poses a severe limitation on the performance 

of these schemes . The scheme considered by Kramer [6] does not have 

this limitation, however. Even in the presence of feedback noise, his 

scheme requires only a finite amount of feedback power to achieve im-

·proved asymptotic performance over the best one-way scheme at all 

rates up to the forward channel capacity. His is the first feedback 

coding scheme. with this property. Kramer's sche~e uses ,N forward 

transmissions and N-1 feedback transmissions and is simil ar to 

Schemes 1 and 2 . For his scheme Kramer shows that 



If 

then 

E(R) = 

NP av 
~-R 

0 

4o 

r :?: N(N-1) 

. av av 
(

NP p ) 
0 ~ R ~ min ~ , No 

. av av 
(

NP p ) 
mm~, No ~ R 

p 
< ....!E:!.. 

N 
0 

(4.4) 

(4.5) 

To obtain the same performance as in (4.5) for the same number, N, 

of forward transmissions, Schemes 1 and 2 require only that 

p 
av 

r --N 
0 

r:?: N 

(See Equations (2.15), (2.16), (3 .12), and (3.13).) Of course the 

condition (4.4) on the amount of feedback power required is only a 

sufficient condition. As Kramer points out, it may in fact be 

possible to obtain the s&me E(R) for a smaller value of the feedback 

power. 

With this in mind, a lower bound to the probability of error for 

Kramer's scheme is obtained in Appendix B. (S~e _Equations (B.8) and 
• 

(B.9) . ) Suppose for simplicity that 



4l 

where r is an integer greater than 1 and that N = r + 1, Let 

EK(R) denote the channel reliability function for Kramer's scheme. 

It follows from (B.9) that 

(r+l)P av 
- (r+l) R 

p 
0 s; R s; av 

4N 
0 

= (4.6) 

(J )2 (r+l)P 
No av - j(r+l)R 

p p 
av s; R < ..E_ 

4N N 
0 0 

The channel reliability function, E(R), for Scheme 2 with N r + l 

is given by (3.13c), which is repeated here for convenience. 

(r+l)P p 
av - 2R 0 s; R s; av 

2N 4N 
0 0 

(r+2 )P 15 P (rP ::v) E(R) av av . av 
(3 .13c ) 2N 

2 __:::... 4N s; R s; min 4N"" , N 
0 0 0 0 

(r+l)P ~ (rP P ) P av . av av < av 
N 2 N (l+Jr)+ 2Rmrn~, N s: R N 

0 0 0 0 0 
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It follows from the above that E(R) > EK(R) for R > O. In 

particular, it can be shown that 

E(R) ~ EK(R) + (r-l)R 

and for r ~ 4 

p 

E(R) ~ EK(R) + 4:v (r-l) 
0 

p 
av 

O~R~Ij:N 
0 

p p 
av~ R < ~ 

4N N 
0 0 

Kramer uses equal amounts of energy on each feedback transmission 

rather than using all the available energy on the first transmission 

as in the forward channel. By sending information over the feedback 

channel in such a way that the expected value of feedback signal 

energy is zero on all transmissions after the first, Schemes 1 and 2 

achieve a reduction in the amount of feedback power required. 

Finally, it should be mentioned that for N = 2, Schemes l and 2 

are identical to Kramer's scheme. 
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V. CONCLUSIONS 

A feedback communication system in which the forward and feedback 

channels are independently disturbed by additive white Gaussian noise 

and average power constrained was considered. Feedback coding schemes 

were presented which make efficient use of the feedback power available 

to obtain improved error performance over existing coding schemes. The 

behavior of the probability of error is particularly dramatic at rates 

arbitrarily close to the forward channel capacity, since channel 

reliability functions were obtained which remain positive at capacity. 

The messages to be coded were realized with a set of signals (in 

this case orthogonal signals) which allow reliable one-way transmission 

of information over both the forward and feedback channels. The ex

pected value of signal energy in both the forward and feedback channels 

could then be made negligible on all iterations after the first. In 

this way all the available signa l energy per message could be used on 

the first iteration, and the probability of error was decreased. This 

approach can be applied under other assumptions regarding the forward 

and feedback channels provided that signal sets exist which allow 

reliable one-way transmission of information over these channels. If 

the average power were the critical factor in determining the error 

probability for the forward channel, improved error performance should 

be obtainable in this way. 

It should be pointed out that the coding schemes presented here, 

while effective, are not optimum. Several modifications are possible . 

Signal gain constants could be used. However, it was shown that peak 

power limitations make it reasonable to increase the number· of 
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iterations per message as a means of improving error performance 

rather than using gain constants. The decoder considered is optimum 

only if the feedback channel is noiseless, and it could b e modified. 

It is, however, desirable that the decoder still be easy to implement 

and analyze. The decision rule used on the feedback channel could 

also be modified. 



APPENDIX A 

WEAK CONVERSE FOR A FEEDBACK COMMUNICATION SYSTEM 

Consider the feedback coding scheme of Figure 1. If the forward 

channel is discrete and memoryless and the feedback channel is 

noiseless, Shannon [7] has shown that such a scheme cannot increase 

the capacity of the forward channel. This result is now extended to 

a system in which the forward and feedback channels are independent, 

time discrete, amplitude continuous, and memoryless. In what follows 

we assume that all random variables have bounded density functions and 

finite variances so that all integrals exist. 

Let p(y/x) be the conditional probability density describing 

the forward channel, where the channel inputs x and outputs y are 

points on the real line. Let / denote the set of M messages to be 

coded for transmission over the forward channel and V denote the 

space of forward channel output sequences (V is Euclidean D-space). 

We assume the forward channel inputs are constrained so that 

1 
n e:(h(x . )) ~ K 

J 

where E( ) is an operator denoting statistical expectation, h is 

a real-valued fUnction, and K is a constant. I.et 

I(./;v) = L f P(s) p(v/s) ln P~(t)) dv 
Jv . 

be the mutual information between the set of messages and the space of 

forward channel output sequences for a given feedback coding scheme. 
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Let 

CD CD 

r(x;Y) == J J p(x)p(y/x) in P~ci)) dy dx 
_co -CD 

be the forward channel mutual information, and 

C == Max I(X;Y) 
CD 

p(x) : J p(x)h(x)dx ~ K 

be the forward channel capacity. 

We now prove the following 

Lemma. r(J;v) ~ nc 

Proof: Since the channels are independent and memoryless, the 

channel output yj depends only on the channel input xj. Therefore, 

Making use of this , Gallager has shown (see Appendix A of 

Reference 4) 

D 

I(../;V) ~ L Ij (X;Y) 

j==l 

The mutual information, Ij(X;Y), is computed using the dens ity, 

pj(x), on the jth channel input for the given feedback coding scheme . 

We def:ine a probability densitY. funct i on, p'(x), as follows. 



D 

p'(x) =IT L pj(x) 

j=l 

Let I'(X;Y) be the mutual information computed using this density 

:function. Letting 

co co 

pj(y) ~ pj(x)p(y/x)dx and p'(y) = f p'(x)p(y/x)dx 
_co -CO 

we have 

co co co 

I' (X;Y) = J p' (y)ln p' (y) dy - J f p' (x)p(y/x) ln p(~/x) dy dx 

-CO _co _co 

D co D co co 

= IT L f P/Y)ln p' CY) dy - IT L f J p/x)p(y/x) ln p(~/x) dy dx 
j=l -CO j=l -co -CO 

D ( co 

;:: IT L f pj(y)ln p .ty) 
. l J J= -co 

D 

= IT L Ij (X;Y) 

j=l 

Hence 

co co 

dy - J J pj (x)p(y/x)ln p(ylx) 

r(..!;v) ~DI' (X;Y) 

The forward channel inputs are constrained so that 
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D oo 

~ L J pj (x) h(x) dx ~ K 
j=l -<Xl 

Therefore, p'(x) satisfies 

CXl 

J p'(x) h(x) dx ~ K 

and 

I' (X;Y) ~ C 

The proof is complete. 

Assuming the messages are equiprobable, we now have the 

following. 

Theorem (Weak Converse). 
lnM 

If R = D > c, the probability of error, 

P(e), for the feedback coding scheme is bounded away from zero . 

Proof: The proof is standard (see Chapter 8 of Reference 10). Let 

Then 

H(..//v) = L J P(s/v)p(v) ln P(;/v) dv 
..! v 

'(J 1 1 
H( .. .//v) ~ P(e)ln P(e) + (1-P(e))ln l-P(e) + P(e)ln(M-1) 

This is Fano 1 s inequality. We also have, for a set of equiprobable 



messages, 

I(J';V) 1nM - H (..//v) 

Application of the l erruna now yields the weak converse. 

Hence, feedback coding cannot increase the capacity, c, of the 

forward channel. In particular, the above results apply to the 

vector channel model for the feedback communication system considered 

in this paper. 
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APPENDIX B 

A LCMER BOUND TO THE PROBABILITY OF ERROR FOR 

KRAMER'S SCHEME 

The symbols to be used here have been previously defined in 

Chapter II. The description of feedback coding Scheme l (see Section 

2.2) applies to Kramer's coding scheme [6] with the following changes. 

We transmit 

k = l, • • • , N - l 

over the feedback channel and let 

k = l, • • • , N-l 

* * ~ to determine ¢k. Note that the probability that ¢k f ¢k is simply 

pefb' ¢: independent of the values of ~ 

It can be shovm for this scheme that 

p 
av 

(N-l)S I 
N 

(See Chapter III of Reference 6.) 

and t =l, ••• ' k-l. 

(B.l) 

(B. 2) 

(B.3) 



5l 

We now obtain a lower bolilld to the prooability of error for this 

scheme . To do this we consider. the following table of events 

(similar to that in Section 3.3) associated with the possible values 

* of eN-l and 9N-l" It is assumed that s. is the message being 
l. 

coded. 

Event 9N-°1 
* 9N-l "-N = "-N-1 + YN + 9N-l 

AN-l e. e. "-N-l + ~ + 9 . 
l. l. l. 

B ei ej j;fi A.N-1 + ~+ 29 . - 9 . N-l· l. J 

CN-l e. j;fi e . "-N-l + ~ + ei J J 

DN-l e. 
J 

j;fi e .{, .if i, j A.N-l + ~+ e. 
l. 

- e .i + ej 

EN-l e. 
J 

jfi e. 
l. A.N-l + ~+ e . 

J 

The method of analysis is similar to that of Section 3.3. The 

events are disjoint so that 

A A 

PN(e/si) P(9Nf ei/si'~-l) P(~_1/si) + P(eN f 9i/si,BN_1 )P(BN-l/si) 

A 

+ P(eN f ei/si,cN-l) P(CN-1/si) + P(eN f ei/si,DN-l)P(DN-l/si) 

A 

+ P(eN f ei/si,EN-l) P(EN-l/si) (B.4) 

We now lower bound the terms in this sum. Proceeding as in 

Section 3. 3, 
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.... 

P(eN f ei/si,DN_1 ) = P((AN,er) ~ (AN,ei) for some r f i/si,DN_1 ) 

<~-1' ei >) 

;;:.: P( (nN' e j > ~ <,, e i > ) 
l 

=2 

Similarly, it can be shown that 

The conditional probabilities of events DN-l and EN-l are 

and 

Lower bounding the second term in (B.4) by zero, it follows from 

tne above that 

.... .... 

PN(e/si) ~ P(9N f ei/si,~-l)P(AN-l/si) + P(9N f ei/si,CN-l)P(CN-l/si) 

(B.5) 
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It is difficult to obtain an exact expression for the first two terms 

in (B.5). However, a simple lower bound to these terms follows from 

noting that 

= p (1-P )N-1 
eN efb 

Therefore, 

for k = 1, ••• , N-1/s.) 
1 

P (e) P 
PN(e) ~ p (1-P )N-1 + N-1 efb (B. 6 ) 

eN efb 2 

A similar lower bound to PN_1 (e) may be obtained. Substituting this 

lower bound in (B.6), lower bounding PN_ 2(e), and continuing in this 

way, the following lower bound to PN(e) is obtained. 

(B .7) 

Suppose now that 

r ~ 1 (r need not be an integer) 



and 

Then 

O:SR<~ 
NN 

0 

Pek < Pel -> 0 as T -> oo for k > l 

= p 
r 

e N-l 

,and if N :S r + l then 

It then follows fro~ (B.l) and (B.3) that 

s P .-. - as 
av N 

Using (B. 2) and (B.7), it follows from the above that 

If 

r ;;::: l and N :S r + l 

then 

(B .8) 
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N ( Pe N~ll k-l ( p e N2~liN-k PN( e) ~ L P ek l -

k=l 

(B. 9) 

This is the desired lower bound. 



56 

REFERENCES 

[l] E. R. Berlekamp, "Block Coding with Noiseless Feedback", Ph.D. 
Dissertation, M.I.T., Department of Electrical Eng ineering, 
September 1964. 

[2] J. P. M. Schalkwijk and T. Kailath, "A Coding Scheme for Additive 
Noise Channels with Feedback - Part I: No Bandwidth Constraint", 
I.E.E.E. Transactions on Information Theory, IT-12, 172-182, 
April 1 966 . 

[3] J. P. M. Schalkwijk, "A Coding Scheme for Additive Noise Channels 
. with Feedback - Part II: Band-Limited Signals", I.E.E .E. Trans
actions on Information Theory, IT-12, 183-189, April 1966. 

[4] J. K. Omura, "Signal Optimization for Channe ls with Feedback", 
Report SEL- 66- 068, Stanford Electronics Labs ., Stanford University, 
August 1966. 

[5] S. Butman, "Optimum Linear Coding for Additive Noise Systems Using 
Information Feedback", Technical Report No. l, Communications 
Theory Lab., California Institute of Technology, May 1967 . 

[ 6] A. J. Kramer, "Analysis of Communication Schemes Using an 
Intermittent Feedback Link", Report SEL-67-014, Stanford 
Electronics Labs . , Stanford University, March 1967. 

[7] C. E. Shannon, "The Zero-Error Capacity of a Noisy Channel", 
I.R.E. Transactions on Information Theory, IT-2, 8-19, September 
1956, 

[8] P . Elias, "Networks of Gaussian Channels with Applications to 
Feedback Systems", I.E .E .E. Transactions on I nformation Theory, 
IT-13, 493-501, July 1967 . 

[9] S . M. Farb er, Private Communication, 1968 (to be published) . 

[10] R. B . Ash, Information Theory, John Wiley and Sons, Inc., New York, 
1965. 

[ll] J. M. Wozencraft and I. M. Jacobs, Principles of Communication 
Engineering, John Wiley and Sons, Inc., New York, 1965, 


