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ABSTRACT

An explicit formula is obtained for the coefficients of the
cyclotomic polynomial Fn(x), where n is the product of two distinct
odd primes, A recursion formula and a lower bound and an improve-
ment of Bang's upper bound for the coefficients of Fn(x) are also
obtained, where n is the product of three distinct primes. The cyclo-
tomic coefficients are also studied when n is the product of four dis-
tinct odd primes. A recursion formula and upper bounds for its
coefficients are obtained. The last chapter includes a different approach
to the cyclotomic coefficients. A connection is obtained between a
certain partition function and the cyclotomic coefficients when n is the
product of an arbitrary number of distinct odd primes. Finally, an
upper bound for the coefficients is derived when n is the product of an

arbitrary number of distinct odd primes.
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CHAPTER 1

INTRODUCTION .

1.1 Historical Background
The cyclotomic polynomial Fn(x) of order n is defined by

the equation

@ (n)
P = T

(x-¢C.) (1)
3 J

1
where gl, C,Z, 4 C’qb(n) are the primitive nth roots of unity., Here
¢(n) is Euler's function which enumerates the number of positive inte-

gers = n which are relatively prime to n, We can also write
ok
F (%) = e xS,
k=0

where the coefficients c are integers which we call

0’ 1 Sg(m)
cyclotomic coefficients. This thesis is a study of some of the proper-
ties of these coefficients.

The cyclotomic polynomials appeared first in Gauss's
Disquisitiones Arithmeticae (1801) in a study of equations which deter-
mine the divisions of the circle. They appeared later in Cauchy's
proof of the existence of primitive roots of a prime p (Exercises de
math, , 1829, 231)., In 1854 Kronecker (Journal de math. , XIX) and in
1859 V. Lebesgue (Ann. Mat, 2) studied the irreducibility of cyclo-

tomic polynomials, Bang (Tidsskrift for math., (5), 4, 1886) and



Sylvester (Comptes Rendus Paris, 106, 1888) proved the existence of
infinitely many primes of the formm m z+ 1 for given m by use of

cyclotomic polynomials.

1,2 Some Basic Properties of Cyclotomic Polynomials

This section lists some basic properties of cyclotomic poly-
nomials in the form of six lemmas. The first three lemmas show that
Fn(x) is a monic polynomial of degree ¢(n) with integer coefficients,
Lemma 4 shows that symmetrically located coefficients are equal.
Hence to study the coefficients of the cyclotomic polynomial it suffices
to study only half of them. Lemmas 5 and 6 reduce the study to cyclo-
tomic polynomials of an order which is a product of distinct odd
primes.

Lemma 1. x -1l= I F.x) . (2)

dl n R
Proof: This follows from the fact that any nth root of unity

is a primitive dth root of unity for some unique divisor d of n.

(xd 1) w(n/d)

Lemma 2 Fn(x) = [l # (3)

dln

Proof: This follows from ILemma 1 by applying the M&bius

inversion formula.
Lemma 3. The cyclotomic polynomial Fn(x) of order n is
a monic polynomial of degree ¢(n) with integral coefficients,

Proof: This is easily proved by mathematical induction. The

theorem is true for n = 1. Now suppose it is true for all Fk(x), where



k< n. From (2) we have

x"-1 = F(x) I Fyx)=F_(x)G_ (0 |,
dln
d<n
where Gn(x) = I Fd(x) "
din
d<n

Since d<mn, each factor Fd(x) is a monic polynomial with integral
coefficients by the induction hypothesis. Hence Gn(x) is also a monic

polynomial with integral coefficients. Now write

Since Gn(x) has leading coefficient 1, the long division produces only
integral coefficients, so Fn(x) is also a monic polynomial with integral

coefficients,

To conclude the induction we need to prove that the degree
of Fn(x) is ¢(n). Let the degree of Fn(x) be v. From the induction
Hypothesis the degree of Fd(x) is ¢(d) for each d<n. Hence by (3) we
have

n=v+ 2 ¢(d =v-9n)+ 2 ¢(d =v-9¢n +n

d|n d|n
d<n

since Zl) #(d) = n. Hence v = ¢(n) and the lemma is proved.
d|n

Lemma 4. Symmetrically located cyclotomic coefficients

are equal for n > 1,
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Proof: Since the degree of Fn(x) is ¢(n), proving the lemma

is equivalent to proving that x@(n) Fn(l /x) = Fn(x). This proof makes
use of the two well-known formulas (a) 2; p(d) =0 forn>1, and
din
(b) 2 du(n/d) = é(n).
dln

From (3) we have

] d Uv(n/d)
_B(n) (;) _ S ((i) ) 1)
n\ x d]n X
(n/d)
e (1 'Xd)un

) 4. Mn/a
I (1-x")

2 dun/d) d|n

dln
x

(n/d
I TR N :
dln

by (b). If we change the sign of each factor the product does not change

sign since by (a) we have 2 w(n/d) = 0. Therefore
d|n

(n/d)
x¢(n) F,(%) = III (xd-l)u . = Fn(x)
d|n

C(.l CLZ a
Lemma 5. If n = Py Py -+ P where the c,i are pos-

itive integers, let q = Py:«- Pp- Then



F_(x) = Fq(xn’q)

Proof; First rewrite (3) as

n/d w(d)
X -

Fn(x)= I ( 1)

dln

Now u(d) = 0 unless d|q. Hence

w(d) q/d w(d)
Fo)= 0 P91y =1 {(xn/q) 8 1} = F_(x*/9) .
" dlq d|q S

Lemma 6., If n is odd, n = 3, we have an(x) = Fn(-x) .

Proof: Bylemma 2 we have

F,o(xx = I (x =1)
&n d| 2n

Since n is odd, the divisors d of 2n are equal to the divisors d' and

2d', where d'ln. Hence we have

w(2n/d") 24! w(2n/24d"
=

an(x)

I
—t
0

1
—
S

1
-
e

n d'In

dl p‘(zn/d.) dl l-l'(n/dl) d'r u‘(n/d')
Il I (x =-1) I (x +1) .
d'|n d'|n d'| n
Since p(2n/d') and p(n/d') have opposite signs for odd n> 1 and d'l n,

we have



(%) o (x9 1)u(n/di) £ B 1
F X) = X + . or n
Z2n d'ln

Since n is odd and d'l n, we have

EL (n/d')
ot
d' n

( X) da' “‘(n/d') (_ 1)“‘(nld')
d' n

27 p(n/dY

| (n/d") .
[ri ((-x)d-1)un }(-1)dln , for n>1.
Hln

Since 2 p(n/d') =0, we obtain
d'|n

F Zn(x)

1]

an(x) = Fn(-x) " for n>1.

1.3 Previous Work on the Cyclotomic Coefficients

In 1883, Migotti [12] proved that the coefficients of Fp 1PZ(X)
are £1 or 0, where p; and p, are two odd primes. In 1895 Bang [4]
proved that no coefficient of FP1P2E>3(X) exceeds Py - 1, where
pl<p2< p, are odd primes, In 1931, ILSchur proved that there exist
cyclotomic polynomials with coefficients arbitrarily large in absolute
value. The proof has not been published, but it was given by Emma
Lehmer in one of her papers [11]. In 1936 Emma Lehmer [11] proved
that as n runs over all products of three distinct primes, the cyclo-

tomic polynomials Fn(x) contain arbitrarily large coefficients. In 1945

Paul Erdss [8] proved there are infinitely many n such that the



greatest coefficient of Fn(x) in absolute value exceeds n" for every k.

In 1960 Marion Beiter [5] proved that if we let

o(p,P,)
F (x) = 2z c Xt
plpz n=0

where Py < p, are odd primes, then

(- 1)5 if n= ap, + sz + 8 in exactly one way ,
0 otherwise ,

where o and B are nonnegative integers and 6 = 0 or 1. In 1964
Helen Habermehl, Sharon Richardson, and Mary Ann Szwajkos (9]
proved that if we let

F (%) = c_x s
3'p2 n=0

where p, is a prime greater than 3, then for n =< pz-l,

1 if n=0 (mod 3)
¢, = -1 if n=1 (mod 3)
0 if n=2 (mod 3) .

For n>p2-1, we have c, = cn', where n' = 2(p2—1) -n,.



CHAPTER 1I

THE CYCLOTOMIC POLYNOMIAL Fn(x) WHERE n IS

A PRODUCT OF TWO DISTINCT ODD PRIMES

Theorem 1 gives a formula for the coefficients of Fp Pz(x)
1
where P and p, are two distinct odd primes greater than 3., In
corollary 1 we show that the coefficients are +1 or 0 by means of the

formulain Theorem 1. It agrees with the known results.

2.1 E=xplicit Formulas for the Coefficients

Theorem 1: Let Py and P, be two primes with P, > Py > 3.

Let
#(p1Pp)
F (%) = 2 c x™
P1P2 n=0
?(p,P,)
and let N = ~—g=r|
2
For each k=0,1,2,,...,N, let
(0 if 0<n< kp,
] @(Plpz)
1 if kpzins—z—-— , n = kp, (mod Pq)
c (k =
S 1 ) ¢(pypPy)
-1 if kpzini—?— ; n = kp,y+1 (mod pl)
0 otherwise

\

Then we have



_ ?(pp,)
(A) cn=cn(0)+cn(1)+...+cn(N) if 0<n<—mmm — ,
?(p,P,)
(B) €1 = %(p,p,)n f——s—<nzolppy) -

2.2 An Example
Before we prove the theorem 1, we consider the example
F35(x). Here P = 5 Py = 7. From the formula (3) of Lemma 2 we

have

(35/4)
ooy

al 35

F35(x)

_(x-1) (x32-1)
P = 1) T’ = 1

Dividing out we have

F35(x) = 1—x+x5—x6+x7-x8+x10-xll+x12- .+x24

To compute the coefficients by’I‘héorem 1l we first determine

N[ﬁ_aw_n]l S ) R
27 2

The calculations forTheorem 1 can be arranged in tabular form as

follows:

n | 0] 1|2|3|4|5|6]7]8]9]10]11] 12
cl 1] -1foflofo[1[-1]o] of 0 -il @
c(h|o| ojolo[o[o| o|T[-1[0]| 0] o

N I[=-T| 6| 0|0 L |=t] 2| ~1] O T




10

2.3 Proof of Theorem 1

From Lemma 1 we have

"
]
—
1

= Fl(x) Fpl(x) sz(x) Fplpz(x)

pz—l pl-l
(x—l)(x +...+X+1)(x +...+x+1)F (x)

PP,
pz pl_l
x - X +...+x+ 1| F ()
PPy

B3
Dividing by (x - ) we have

pl-l pl_z
X + x teeet x4+ 1} F (x)
P1P2

P 2p {p;-1)p
=1+X2+x 2-+...+x L .

Now we multiply out and make an appropriate change of the indices to

obtain
¢(P1p2)+(P1"1) N ¢(P1P2)+(P1'2) ‘ N
c X+ c X + ..
n=p, -1 By =1 n:pl-Z 8-{py~2)
¢(p,P>)
172 p (p,-Dp
L+ D e % = l4x L eeetx YR (4)
n=0

We shall prove (A) by equating the coefficients of like powers
of x in (4). Part (B) then follows from the symmetry property of
lemma 4.

We will prove (A) by mathematical induction on t where

tp, Sn< (t+ 1)p2.
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1) We consider the case t = 0, which means 0 <n<p,.
Since for each k=1,2,.,.,N we have cn(k) = 0 for 05 n < kpz, to
prove that (A) is true for 0<n< P, is equivalent to proving e .= cn(O)
for 0<n< Pj-

Equating the coefficients of like powers of x in (6) we find:

X 3 (D) = 1 = CO(O) .

X ; cl+c0=0;hencec -c =-1=c1(0).

L= o

x cz+cl+c0=0;hence c2=0=c2(0).

x ; c.+ c

;T S Fe-- v e+ cy=0; hence ¢, =0 =c/(0)

0

where iipl-l .

X ; c + c +ees+ Cy,+c. =0; hence
pl pl-l 2 1

cpl +(cpl_l v e Cl + CO) -Cy = 0 ; hence

e = C = CO(O) = C (0)

This proves that c = cn(O) for 0<n< Py -

Next we show that c cm+1(0) on the assumption that

m+l =

B = cm(O) where P 2 Py - This will prove that c = cn(O) for

0§n<p2.

m-+1

Equating the coefficients of x in (4) we find:

+c_ +... 4+

mil T Cm T T Syt (p 1) T o
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Hence

€t —cm+1(0) + (cm+1(0) + cm(O) s +C 11 _(pl_l)(O)) =0 (5)

Now we shall prove, by induction on n, that we have

?(p,Py)

cal0) + e (0 4. + (@ =0 for p-l<n<—0= . (6)

C
n-(pl

Since co(O) = cl(O) = -1 and ci(O) =0 for ZEif_pl-l ,

we have
cpl_l(O) + cpl_Z(O) . +c1(0) + cO(O) =0

Hence (6) is true for n = pl-l. Next we suppose it is true for n = m

and show it is true for n = m+1l. We have

Cona 1O e A0) #usn % C_ _1)(0)

+1—-(p1

= € 100+ (Cm(O) te {0+, +cm_(pl_1)(0)) - cm_(Pl_l)(O) . (7)

By the assumption that (6) is true for n = m the right member of (7)

simplifies to

“m+ 1(0) ke

m'(Pl' 1) (0)

By the definition of the cn(O)'s, this difference is 0. Hence we have
proved (6).

By (6), equation (5) becomes

“m+l ~ cm+1(0) = 0
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Hence

Cm+ y B Crn+ 1(0)

Hence we have shown that e = cn(O) for 0<n< Py -

2) Now we assume (A) is true for all n in the interval

tp, Sn< (t+ l)pz and try to show it is true for all n in the interval

¢(P1P2)
(t+1)p, Sn < (t+2)p2 and n < ———

Equating the coefficients of like powers of x in (4) we find
+ c T o B E =1
(e l)p, T “(t+1)p,-1 (t+1)p, - (py-1)

By the induction hypothesis we have

“(e+1)p, + (C(t+l)p2-1(0) e T C(t+l)p2-1(N))
b R, ¢ (C(t_l_l)pz > (pl_l)(o)
4 C(t+1)p2—(pl-1)(l) o ve F c(t_l_l)pz_(pl_l)(Na = X,

Hence we have
c(t+1)P2(0) + (C(t+l)p2-1(0) + C(t+l)p2-2(0)+"' +C(t+1)p2-(p1-l)(0))
+ (C(t+1)p2-1(1) Foww T C(t+1)p2—(p1-l)(l)) + ws

oo + (c(t+1)p2_1(N) +..0. + C(t‘*‘l)Pz'(Pl'l)(m) =1

Adding and subtracting c (0) +... (N) on the left we

+
(t+1)p, “(t+1)p,

obtain
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“(t+1)p, ~ (C(t+1)p2(°) teeo °(t+1)p2(N))

~1(0) +..

¥ (C(t+1)p2(o) * c(t+1)p2 -t C(t+1)P2 - (pl__l)(O)) +..

wu (c(t+1)p2(N) Fones # C(t+l)p2-(p1—1)(N)) =1 . (8)

Now we shall prove, by induction on n, that for each k=1,

2,...,N we have

Sl ep (0 +ees de o (9 =0, (9)
?(p,P,)
where n is such that (k+ l)pzi nf_—-z—- .
Since C(k+1)P2(k) =1 and C(k+1)P2'(P1"1) = -1, we have
C(k+l)pz(k) + C(k+1)p2-1(k) + .. + C(k+1)p2-(pl—l)(k) =0

This proves (9) for n = (k+l)p2. Now we suppose (9) is true for n = m,
?(PyP,)
where (k+ l)p2 <m< —2~— and show it is also true for n=m+l, We

have

S T R _(pl_l)(k)
= Cm+1(k) b (Cm(k) teoo t cm_(pl_l)(k)) = Cm-(pl-l)(k) . (10)

By the hypothesis that (9) is true for n = m, the right member of (10)

simplifies to

Cm+l(k) - cm-(pl-l)(k) ol

This proves (9).
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Now we return to (8). Since by (6) we have

c(t+1)p2(0) + C(t+1)p2-l(o) T, c(t+1)p2-(p1-l)(0) =0 ,

(8) simplifies to

“(t+1)p, (C(t+1)p2(o) Teee d c(t+l)p2(N))
¥ (C(t+1)p2(1) * C(t+l)p2-1(l) Tiwg ¥ C(t“)Pz'(Pl‘l)(la L P

L (c(t+l)p2(m A c(m)pz_(pl_nuﬂ = 1 (11)

Since we have cn(i) =0 for 0<n< ip, » (11) simplifies to

(4 1)p, " (C(t+1)p2‘°) Foeot c(t_l_l)pZ(N))
+ (C(t+1)p2(1) B C(t+1)p2-(p1-l)(1)) T

4 G:(Hl)pz(t) PR c(t+1)p2(t)) temp D = 1. (12)

Since we have
i} e & ) =0 ,
“(t+1)p, ) (t+1)p,, - (p,-1) 1)

where 1< j<t, by(9), equation (12) simplifies to

“(t+1)p, - (C(t+1)p2(0) oo d c(t+1)p2(N))

i c(t+1)p2(t+1) =1 . (13)

Since c (t+1) = 1, equation (13) becomes

(t+ l)p2
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C(t—i—l)pz = C(t+1)p2(0) + C(t+1)(l) *ees + c(t+1)p2(N) . (14)

(t+1)py+1

Equating coefficients of x we also have

+1+c t www T

c =
(t+1)p, (t+1)p, (t+1)p, - Py

By an argument similar to that used in the derivation of (8), we have

S(tr1)py+1 (C(t+l)p2+1(0) Faes & C(t+1)p2+1(N))
% (C(t+l)p2+l(o) * e * c(tH)pZ_pl(O)) % v

. (c(t+1)pz+1(N)+ I c(t+1)p2_p1(N)) =1 . (15)

Similarly, by (6) and (9) and the definition of the Cn(k)'s we have

S(t+1)p,-1 (C(t+1)p2+ 1(0) + .o 4 C(t+l)p2+1(N))

+ C(t+1)Pz+l(t+1) + C(t+l)p2(t+1) =0 .,
Since C(t+1)p2+l(t+l) = -1, C(t+1)p2(t+l) =1, we have
C(t+1)p2+1 = C(t+1)p2+l(0) % umw ot C(t+l)p2+l(N) .

Similarly we have
c(t+l)p2+2 = C(t+1)p2+2(0) Tuww T C(t+l)p2+2(m

1)(O) Fowww G

(e 1)py(py-1) T S(e+1)pHip, - (t+ 1)p i (p, - 1)1V -
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This proves (A) is true for n in the interval (t+l)p25 n < (t+1)p2+(p1-1) .
To finish the remaining cases we can assume that for all 0 <k<s, we
have

“(trl)pytk c(t+l)p2+k(o) Fowiw ¥ c(t+1)p2+k(N) ,
where s is such that pl-l <s< pz-l and (t+l)p2+s < &Plz.p_z)_ , and

show that

S(t+l)pytstl © C(t+1)pz+s+l(0) Fanse T C(t+1)p2+s+l(m

(t+1)pz+s+1
Equating the coefficients of x we find

1+.-.+C

c(t+l)pz+s+ (t+1)py+s+l-(p-1) =0

By an argument similar to the derivation of (8) we obtain

“(t+1)py+s+l ~ (C(t+1)p2+s+1(o) T axs ok C(t+1)p2+s+l(N))
% (C(t+1)p2+s+l(0) Foeoo F C(t+1)P2+S+1-(P1-1)(09 i S

«e ¥ (C(t+ l)p2+s+l(m Famw * C(t+1)p2+s+l-(p1-l)(m)
=0

Since cn(i) =0 for 0<n< ip2 , we simplify the above equations to
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“(t+1)pts+l (C(t+1)p2+s+1(0) Tanw * C(t+l)p2+s+l(N))
J“(C(t+ 1)p2+s+1(0) Fame C(t+1)P2+s+1_(pl_1)(Oa+ -

oo + (C(t+l)p2+s+l(t+1) +ea. c(t+1)p2+s+1-(p1-l)(t+1))

= O'

By the definition of cn(i)'s again, we have

C(t+1)p+s+l (C(t+ I)p2+s+1(0) Foens % C(t+1)p2+s+l(N9
* (C(t+1)p2+s+ ol & s ¥ C(t+1)p2+s+l(0))

x (c(t+1)P2+s+1(t) % oin & c(t+l)P2+S+1(t)) =0 .

By (6) and (9), we find that
c(t+1)p2+s+1 B (C(t+l)P2+s+1(0) W v C(1:+1)1.:>2+s+1(]‘\n) =0 .
Hence we have

C(t+l)}_:>2+s+1 = C(t+1)p2+s+ l(o) Tawn B C(t+ 1)p2+s+1(N) £

This completes the proof of Theorem 1.

Corollary 1: Let Py and P, be two primes such that

P, > Py > 3. Let
¢(pyPy)
F (x) = 2 c x"
PPy n=0
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Then c is +1 or O.

Proof: From Theorem 1 we have

c_ = c (0 +c (1) +.u. +c (N) (16)

where cn(k) is +1 or 0, for each k=0,1,...,N. Hence to prove

c is £1 or 0 it is sufficient to prove the following two statements:

(2) If one of the cn(k) in (16) is 1 then none of the other

cn(k) in (16) can be 1,
(b) If one of the cn(k) in (16) is -1 then none of the other

cn(k) in (16) can be -1,
We prove (a) by assuming the contrary, This means there

exist two distinct integers Kk, and kz between 0 and N such that
cn(kl) = cn(kz) = 1

According toTheorem 1, we have
n s klpz (mod pl) ;

¢(p IPZ)

where klpz il —2— , and

= kzpz (mod pl) ’

o)
in

?(pyPy)

where kzpz <n< _—E_— Hence we can write

n = klpz + mlpl

and
= kzp2 + J:nzp1 .

=}
I
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where m, and m, are two distinct integers between 0 and

?(pyP,)
N' = el o Subtracting the last two equations we have
it
(kl = kz)PZ = (mz = ml)Pl

Since P, and p, are two distinct primes, we have

pzl (nn2 -rnl) o

P,-1
But 0<m,, m, < = , SO0 we must have
-1 2 2
Pz'l
0<|m,-m <
— 2 1 2

Hence we conclude that

This also implies

This contradiction proves (a).

Now assume the contrary to (b). There exist two distinct

integers kl and kz such that

cn(kl) = Cn(kZ) = =l

According to Theorem 1, we have

B
n

= k1p2+ 1 (mod pl) 5

B
1l

= k2p2+ 1 (mod pl) .
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Hence we can write

B
1l

klpz + mlp1+ 1

B
1l

kop, + mopy + 1L

where m, and m, are two integers between 0 and N'. Subtracting

the last two equations we have
(kl'kz)pz = (mz'ml)Pl .

Again as in the proof of (a), this leads to a contradiction., This com-

pletes the proof of the corollary.
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CHAPTER III

THE CYCLOTOMIC POLYNOMIAL Fn(x) WHERE n IS THE

PRODUCT OF THREE DISTINCT ODD PRIMES

3.1 Upper and Lower Bounds for the Largest Coefficient

The coefficients of a cyclotomic polynomial whose order is a
product of three distinct odd primes are no longer +1 or 0. In fact,
the coefficient of x7 in F3_ 5. 7(:u:) is -2. In 1895 Bang proved that no
coefficient of Fp1p2p3(x) exceeds pl-l if Py < P, < py are odd primes,
In 1936 Emma Lehmer proved that for a given odd prime Py if we con-
struct primes P, and Py such that Py = kpl + 2 and Py = (m plpz-l)IZ ’
then the coefficient of x is (pl—l)/Z , Where h = (p1-3) (p2p3+ 1y /3,
Theorem 3 shows that for a given odd prime P if we construct primes
p, and P such that p, = kp, + 2 and Py = (m plpz-l)/2 , then the
coefficient of o is (p1+1) /2, where h = (pl-l) (p2p3+ 1)/2. Hence .
(pl-l) /2 is not an upper bound for the coefficients of Fp1p2p3(x)
Theorem 4 shows that under certain conditions Bang's upper bound
(pl—l) for the coefficients of Fplpzp3(X) can be improved.

First we obtain a recursion formula for the coefficients of

F (x) .
PP,P4

3.2 A Recursion Formula for the Cyclotomic Coefficients

Theorem 2: Let
?(p,P,P3)
F (x) = 2J c x .
PP2P5 n=0 a
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where Py <p,< py are three distinct odd primes. Let T = qb(plpz)

+ ¢(p1p3) + (pl-l) , and define €gr €12 eces €qp/p by the relation

#(pP3)
(x) = 2 e x"
P3

n=0

F
Py

and e = B if ¢>(plp3) <n< T/2. Define fo, fl’ ee., £, as follows:

T

(a) For each s =0, 1,..., (p;-2) ,

f =e

n n—spz + en—(S-l)pz e wow F en if sPZi n< (S+1)p2 ,

(b) fn g &

e + e
n'(Pl'l)pz n-(pl'Z)Pz n

if (pl-l)pzinf_ TIE ,

() £ =fn_ _ i T/2<n<T.

Then we have

(A) For 0<n<T,

1 if n=0 (mod p2p3)
fgent i g teee tEcg = ,
0 if n + 0 (mod p2p3)

(B) For T<n<¢(pPyPs)/2 ,
1 if n=0 (mod p2p3)

fp v EC g teoe T EQE g = ;

0 if n# 0 (mod p2p3')
(C) For ¢(pyP,P3)/2 <n<¢(p;pP,yP,)

“n~ “p(ppypy) -1

Proof: Bylemma 1 we have
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P1P2P3
x -1
= (-1} F F_ (x)F F F F F
CDF, (IF, (AF, (IF, o (IF, o (T, (F, o (0
= {x-1) F F F F F F F
foenE, por, pom, Ll 0T, L IF L F )
(pzp3 )F F F F (
=T oY P RE 5 B 0 P F B,
PaPg
Dividing by [x - we find
F F_(9F ) F .
PI(X) Plpz() P1P3() Plpzps()
P,P 2p,p (p;-Dp,p
=1+x23+ 23+...+xl 23. (17)

We obtain the conclusion of this theorem by equating coefficients of

like powers of x in (17). Let's consider

F (9F () = (xpl - 1) (x- 1)(xplp2_ 1)

Py PiPp (-1 (;pl-l)(xpz—l)

P 2p {p;i=1}p
=1+x2+x 2+...+x 1 2 .
If we let
(py-1p, R
F (x)F (%) = 2 a_ x 3
P PPz n=0
then we have
1 if n=kp2 s where k=0, 1: v--:(pl-l)

0 " otherwise
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If we let
T n
F_ (x) F (x) F (x) = 2 b x|,
Py PP P1P3 n=0 o
then we have
bn = ane0 + an_le1 Foes + aoen

Substituting the value for a into the above equation, we obtain

bn=en if 05n<p2,
= i < < 2
bn en-p2+ ®n = Pgl B Py »
bn = en-sp2+ en-(s-l)p2+"' + en-p2+ 2 if SPZS n < (s+l)p2

and 0§s<p1-1 .

T

b teoo e if (pl-l)pzsni .

= e + e
n n-(p;-1)p,  "n-(p;-2)p,

Since the symmetrically located coefficients of F_ (x) F (x) F (%)

n

are equal, we have

: i
bn—bn_T/Z lf 7<n£T

Hence we see that

Then (14) becomes

- B(pyP,1s)
2 fn = 2 c x| = 1+ x
n=0 n=0 n



26

Equating the coefficients of like powers of x we find:

For 0§n< i e

—
e
r—h
=}
m

+...+f c =

. Cn+flcn—l n o

0
0 if n Jf 0 (mod p2p3)

f—-—
[
H
]
i

fc +f¢£
n

0 +...+ch

1°n-1 n-T

0 i =nFO0 (modp,p,)
For ¢(p;p,P,;)/2 < n<d(p;pP,ps),

“n T “o(pypypy) - m

by the symmetry of the coefficients of F (%) .
PyPoP3

Hence we complete the proof of this theorem.

Theorem 3: ' There exist integers n, the product of three
distinct odd primes greater than 3, such that the cyclotomic poly-
nomial Fn(x) contains a coefficient which is equal to (p1+ 1) /2, where

P, is the smallest prime factor of n,

Proof: Given a prime Py > 3, by Dirichlet's theorem on

primes in arithmetic progressions there is an integer k such that
P, = kpl + 2 is prime. Since PP, and (plpz-l)/z are relatively prime,
there is an integer m' such that P3 = m‘plpz + (plpz-l) /2 is prime.

Let m=2m'+ 1., Then Py = (mplpz- BJ2 .

From the definition of P,,Py We obtain the following lemma.
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Lemma 7: PyPy =- 1 (mod pl) ; k_p1p3 =1 (mod Py) ;
mp,p, =1 (mod p3) i Pp =2 (modp,); Py = -1/2 (mod P;Pp) >

that is, 2p, = -1 (mod p;P;) .

Proof df Lemma 7:

(mplpz-l)
PPy = (kp#2) ———— =- 1 (mod p))

" mplpz'l 2 mplpz'l
KDy = Bylmeemmas] B ()| ————] = 1 [mbdip) -

mp P, = Zp3 + 1 =1 (mod p3)
p2=kp1+252 (rnodpl).
(mp,p,-1) -1
p3 = _-——-——2 = 7 (mod plpz) .

This completes the proof of Lemma 7.

Now let

(py-D(pypsatl)
2

h =

We will show that the coefficient of x> is (pl-i- 1342 .

By Iemma 2 we have

¥ (%)
P PoP3

| P1P#Es 1) E(,xpl-l) (PZ_J (,Ps 1)

(XP2P3 _-lj (x 1P3 1) (zplpz ] ]} (x: 1)
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p p
L SIS
PyPs PyPg PPy 1-x%

l-x l1-x

. s : p.-1
1iP5P, +i5P Py +i,PP 1 . P P Po>+P
(Ex123 2F1F3 312)(2x3)(1_xz_x3+x23
j=0

Consider the diophantine equation

. . . . (pl'l)(P2P3+ 1)
11PoPy + 1P Py + 13P P, + j+ epy + £y = > =h , (18)

subject to the restrictions
DXigPppy sl 9z pPah,

0<i <h , Of_j<p1,e=00rl,andf=00rl. (19)

3PP =

The coefficient of xh is the number of solutions of (18) with
e = f, minus the number of solutions of (18) with e :}f,
Now we reduce equation (18) modulo Py» Pys Py respectively,

using the lemma. This gives us

i,p,p3 t j+ep,+fpy =0 (modp,); since p,p; = -1 (modp,)
. . (py-1)

i,ppP3 +j+fpg Sl 5T Hol

. ‘ o N

;PP +Jj+ep, S ——— (mod p3)

Multiplying the last two congruences by k and m, respectively, and

using Lemma 7 again, we obtain
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f
j=1i; - 2e +-2- (mod pl) . (20)
. Byl ¢
. Pyt )
iy & mj—S—-] - ep, (mod p3) 5 (22)

Now we will show that: for e =f =0, (18) has (p1+1)/2 solu-
tions; for ¢ =f =1, (18) has no solution; for e :% f, (18) has no solu-
tion. This will prove that the coefficient of xh is (p1+ 1y /2,

Assume e =f = 0. Then (20) gives j = il (mod pl). Since

j< (pl—l) and il < Py, We obtain j = il. Substituting j = il into the
equations (21) and (22), we have
pl-l
i, = k(——z—- - 11) (mod pZ) . (23)
' pl-l ) ‘
iy = ml——-1i, (mod p3) ; (24)

Since ilpzp3 <h, we have

1 <((p1-1)/2)(pzp3+1) (py-D) (1+ . ) Pyl (D
kL omee P,Ps 2 PoP; 2 CP,P4

Since i1 is an integer, we obtain il <( . 1)/2. Since Py = kp1+2, we

have k(pl—l)/z < p,. Since p1p3i2_<_h, we have

(o172 teapard  (py-1) y
2 = P1P3 " %) [P24‘§g)

(pl-l) p;-1

= <
Zp; T2V Zpyp, | T2
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Therefore we conclude that (23) is an equality,

. i P
i, = k(——-——z -1y ) (231
mp,p,-1 m(p,-1)

Since py = ————, we have e 5 e Since

P1Piz < h, we have

. <((p1-l)/2}(pzp3+1) ) py-1 sl =(P1'1)p . Pyl
= P1P2 oy JU3 T P) T B 3T ey 0 T3

Hence we conclude that (24) is an equality,

pl"l )
_ ot W :
iy m < i - (24"
Since 0 < il < — =y there are (p1+l) /2 choices of
values for il . If we can show that for each choice of i1 we have
izplp3 <h and i3p1p2 < h, then we can conclude that (18) has (pl+ 1)/2
k(py-1
solutions in the case e =f =0, By (23" we have iz < ﬁ: . Hence
- 2
we have
_ (py-1) " (py-1)  py-1
1ZP1P3 E kplp?)—_é_ = (Pl' ) P3 2 5 > § (P2p3) <h
Since we have i3 5—2—— by (21'), we have

= <h
2 2

1;P4P5 < ™MPiPy

Next assume e =1, f = 0: (20) becomes j = dy = 2 (mod pl) .



3l
Hence we obtain j=1

if i, = 0. For the last two cases we can use (21) to get

(pl-l) . .
- k(pl_l ) Jl- IS = (mod pz); if j = pl-l
i = —— -] =
2 2
-k (mod pz); if j:pl-?_
Hence we have
k(p,-1) ]
p -
22 K(p,-1)
i, = > > p, - 1
2 — 5
Pp - >
. o/
Hence we have
kp,p,(p,-1) (p,-2)p.(p,-1)
. 1=3%%1 _ 2 31
Pl'l p,+1

1
= PPyP3 - PyP3 + p3(P;-1) = pyp; ——+ p5(p;-1) > h

pl_l P1'5

For the case j=1i,-2: Since i , we have j<

1

still in the case e = 1, f = 0. Hence (22) becomes

e

. (P17t
13=m( > -j-py (modp3).

Hence we obtain

(-2 if i, 40, 1; j=py-1if ij=1; j=p,; -2
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el
W
=
™
1
O
R

Hence, since mp,P, = 2p3+ 1, we have

i3plp2 = PiPaPs + mplpz(z'PZ)

P1P2P3 + (2P3+ 1)(2 i pz)

(P2P3+ 1)(P1 o 2) o (4p3"P2+ P1+4)

A

(pP5+ (P - 2)

> h

Hence for e =1, f =0, (19) is violated. Hence we conclude that (18)
has no solutionfor e=1, £f=20, ,
‘ (py+1)
+ "

Assume e =0, f = 1., Then from (20) we have j = il =

Substituting this value of j into (22), we have

pl-l p1+1
m(—-—z—— - il - "-"?-) (mod P3)

= - m(1+il) (mod p3)

Hence we obtain
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Hence we have

13P1P2 = P1PpP3 " MP1Pp ———
(py+1)
= PyPpPy - (Bpy+ 1) ——

“piPaPy ~ 4P P ~ &Py ~P; - 4
2

Assume

2p|PyP3 - 2P P3 - 2P, - Py - 1 e (P1-1) (pypy+1)
2 = 2

Then we have
2pPyP3 = 2P |P3 =~ 2P, P~ 1 < PP,P3~PpP3+P; -1
Hence we obtain
P|PyP3+PyP3 - 2P1P3 -~ 2P, - 2p; < 0
or (P1P,P3 = 2P P3) + (PyP3-2P,-2p;) < 0 . (%)

Since Py > 2 and P,P5 - sz— Zpl > P,P3 - 4p2 = pz(p3-4) > 0 we have
proved that the inequality (%) is not true. Hence we conclude that

izplp2 = Z = h

Hence for e =1, £ =0, (19) is violated, Hence {(18) has no solution for
e=1, f =0,

Assume e =f =1, Then from (20) we have j = il - 2—%

= i1 -% (mod pl) . Hence we have j = il + (p1-3)/2. Substituting into

(21) and (22), we have
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: L S -
iy = m(——z—- -y -—=—-p, (mod p3)

= m((l - il) - pz) {mod p3)
Hence we have
i3 = Py - m(pz - (il-l)) > Py - m(p2+1) "
i,P1P, > P PyP; = MmP P, (Py+])
= p1p2p3 - (2p3+1) (P2+1)

= PyPyP3 = 2PpP3 = 2P3 = Py - 1
Assume

4

PyPaity - 2PpPy = 293 -Pp -1 S h =
Then we have
2P PPy = 4PyP3 =~ 4P3 = 2P, -2 < P P,P3 -~ PpP3+ Py - 1
Hence we obtain

p1p2p3—3p2p3-4p3-2p2-p1- 1 < 0 . ( sk

—

But
P,oP3(P;-3) - 4p3 - 2p, - Py -1 > p,ps(p-3) - 8p,
= p3(p2(p1-3) - 8) > 0 since P, >3
Hence (%) is not true. Hence
13P1Pp = P PpP3-2PpP3-2P3-Pp-1 > h

Hence for e =f =1, (15) has no solution. This proves that the coef-

ficient of xh is (pl+1)/2, where h = (pl—l)(p2p3+1)/2.
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3.3 Improvement of Bang's Upper Bound
Theorem 4: Let
¢(pP,P3) .
(x) = 2 c_x

F
P1P2P3 n=0 e

where Py: Pps Py are three distinct odd primes. If there exists an

p,-1
integer m such that for each integer k satisfying 1< k<m< 1 _ 4+ 1,
- = 4
the diophantine inequality
kp,Py + S,PP3 + 53P P, | < Py -1
py-1 p3-1
has no solution in the domain |52| & -1 and |s3| < o 1

then

& (pl-l)
Ic I CE - (. SR
at = 2(m+ 1)

Note: The upper bound for |cni does not exceed pl—l.

The upper bound is equal to pl-l when m=0. This is the case proved

by Bang.
Proof: By Lemma 1 we have
P{P,P p p P
(X)=(x123-1) (xl-l) (x 2-1)(x3~1)

PiPaPq ( PiPs ) ( P1P3 ) ( PyPg ) ( ]
x -1 \x -1 \x -1 \x-1
P1P5P P

_x 2t . 1 -Xl_l(xpz—l)(xp3 1)

PaP3 PyP3 P1P2 x-1 \
X -1 x -1 x -1

3 : ; p,-1
(2 xllpzps””zplpaﬂsplpz)( 5 xj)(l-xpz—xp3+xp2+p3)
; j=0
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1)PpP3 +i5P,P3+13P1P,

If we let 2 ox = 2 anxn then we obtain

p,-1
1 : P P P>t+P
F (x):( a.xn)( 2 xa(l-x 2'-x3+:-c2 3 .

If we let

then we obtain

P P P>tP
F (%) =(Zb xn) (l-x 2—:nz;3+x = 3) =2 c x2 i (siestesi)
P1P2P3 n n

where b =a +a +oesba g B, =20 4f 1<0 .,
n n n 5

=3 n"(Pl"l)

Since a_ and bn are nonnegative, from (%) we can see

that Ic |<2ma_x|'b l Hence we need to find a bound for maxlb |
n' — a n n =

Since we need only to consider those cn's such that n<

¢(p1p2p3) /2, we have

. By=d . Pyl . P31l
05115 2 -1, O_<_125—2-—-1, 0513E 5 -1 (25)

Assertion 1: For a given n < ¢(P1P2P3)/2 we have a = I,
if n= 11p2p3+12p1p3+i3p1p2 has solution; a, = 0, if n = ilp2p3

+ 12p1p3+i3p1p2 has no solution.
Proof: From its definition, a is the number of solutions of

n = 1,p,Py+i,P Pa+isP P, . (26)
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Hence to prove the assertion we need to prove that for a given n (26)

has at most one solution.,

. s o B 3
Suppose (26) has two solutions (11,12,13) and (11 ,12,13).

Then we have

; ; : .1 . .
0 = (11 —11’) pzp3 + (12'12) plp3 + (13'13') P1P2 . < (27)
Hence we obtain
pll(il_ill) PZP3

Since pl,pz,p3 are three distinct primes, we have

Pyl -ip)
' (Pl‘l)
Since Oiil, il f_—T - 1, we also have
11-11' =0 ,
Lt
or 11 = 11

Substituting into (27), we have

. y y . ¥
6= fg~ig) pyfy * Uy =1] PPy

Hence we obtain

pzl(iz"izl)
, (py-1)
Since 0<i,, i, €< ——— -1, we conclude that
s A 2

. wr 8 ]

i, =1,
Hence we also have

1
iz =1
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This completes the proof of the assertion.

From b =a +a +ees F and assertion 1 we con-
n n n-1

*n-(p-1)
clude that for a given n < @¢(p,pP,P,)/2 the coefficient b_ is the number
g - 1¥2%3 n

of the following equations which have a solution:

o)
]

11PpPy + 1,P Py + 15P Py

o]
]
-

1

= i PoPa + i5PPy + i4PP
1P2P3 2F1F3 1P2
3 (28)

n=(Py=1) = i1PyPy + 1P Py + 13P1Py
where the equations with left-hand side negative are omitted.

Assertion 2: If two equations in (28) have solutions, their

values for il must be different.

Proof: Suppose not. Then we have

Rk = €y PaPyt SaPyPy F S5PiPy s

. 1 1
m-] = PP F By PP T o Py Pa

where i :Itj and Qf_i, jf_pl-l. Hence we obtain

e 1
1= = (ez‘ez) P1p3 + (33"(331) PIP?_ .

Hence we have
pl I (1 = 3) -

Since O <i, j< pl-l , this implies
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a contradiction. This proves assertion 2.

p,-1
Using the inequalities 0 < i 1

1 < - 1 and assertion 2, we

conclude that in (28) there are at most (pl- 1) /2 equations which have
solutions and their values for i, are distinct. We can rearrange them

according to increasing values of i, as follows:

1

n'jo = 0 PyP3 + 1,P1P4 + ip,P,
n-j; = 1PpP3+1,P\P3+i3P P, 295
. ) By=1 _ ,
ey -1 - 7= = 1) PaP3 * 1P Py + 137 1P;
el TSP, |
2
where jO’jl""’jp -1 is a subset of 0,1,..,,(p1-1) .
==L,

The coefficient bn is the number of equations in (29) which
have a solution. Hence we have maxibnl i(pl-l)/z and lcnl <p;-1,
which is Bang's bound.

Notice that if Py > 3, the system (29) contains more than
one equation.

If we subtract each equation from its predecessor in (29),

we have
Jg = Jg1 = PpP3 t+ 8P Py 83P 1P,
or
|pyp, + 8,01P5 + 8,21P,| < ;-1 (30)
where
py-1 py-1

lSZli——r-l and |S3l_<_—r-l
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Hence if (30) does not have a solution, then the maximal

number of solvable equations in system (29) is reduced to:

Pyl 5 =

-7 when —_— is even ;
¥ 2

pl-l pl—l

—— + 1, when —— is odd .

2w 2 Z

Putting this into one formula, we find that the maximal number of

solvable equations in system (29) is reduced to

2.2
If we subtract each equation from its second predecessor in
(29), we have

2p,p, + 5,P P53 + 8,0 P,| <Py -1 (31)

where

Hence if (30) and (31) do not have a solution, then the maximal number

of solvable equations in system (29) is reduced to

B Y

This process continues. Since there are only(pl-l)lz equa-
tions in (29), we will reach a largest integer m < (pl-l)/4 + 1 such that
for each k satisfying 1<k<m< (pl—l)/4 + 1 the diophantine in-

equality
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kp,P3 + 5,P Py + 53P1P, | <P -1
has no solution in the domain

pz"l
2

p,-1
-1 and |s3|_<_—-3'2—-—l

ls, | <

Then the maximal number of solvable equations in (29) is reduced to

[' (Pl' l)}
R

This completes the proof of this theorem.
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CHAPTER IV

THE CYCLOTOMIC POLYNOMIAL Fn(x) WHERE n IS THE

PRODUCT OF FOUR DISTINCT ODD PRIMES

This chapter develops properties of Fp1p2p3p4(x) , where
P, <p,< Py < p, are odd primes., Theorem 5 gives recursion for-
mulas for the cyclotomic coefficients, Theorems 6 and 7 give upper

bounds for the coefficients derived from Theorem 5.

4.1 A Recursion Formula for the Coefficients

From Lemma 2 we have

F (x)
P1PoP3Py

R et Gt i) et S )
(xplpzp3-1)[xp1p3p4- g(xplpzp‘*- g(xp2p3p4_ 1)(}{91_ 1) (xpz_ 1)(,3’3- )(xp 4 1)

P.P5P,P P,P
_ -x1234_ 1 ' 1 . 1 .l_xllz
P2P3P4 P1P3P, P1P2Py P1P,P3 By
l-x l1-x l-x 1-x l-x
P>P PP P.P '
l-xz3 1-x 173 l-x 1 4' 1 p2p4 1 p3p4 1
By B Pa o -F "
l1-x 2 l1-x% 3 l1-x
P,- . . Ps- o : .
( ] 11P2P3P4)( 2 12"1%"4)( < 131’192?4)( 4 141311’21’3)
= x x X X
11=0 12=0 iy =0 14=0
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pz-l . P.-1 . p.-1 . p,-1 .

jP 3 joP L jap 1 JaP
3 X]. 1 5 xZ 2 » x3 3 5 x4 4
jy-o g =0 i3=0 j4=0

P,P PP+l  pPLP P.p,+1  pP,P, +P.P PoP,+P,P, T
(1-x-x24+x24-x34+x34+x24 3P4__P2Py 34)_

Let

P17l i popap,\ P27t ip.p.p,\/P2! i.p.pop

o, L273ha|l 5 2R1PsPa)l 5, T3F1FaPy

11=0 12=0 13=0
p- %
4 i,p,P,P
EX4123=ZaXn.
i =0 X
4

Then a_ is equal to the number of solutions of n = 11P,P3Py

+ izplp3p4 + i3p1p2p4 + 14p1p2p3 . Now we will prove that:

B, = L RSiPRaPy + IPPePy * IgPiPaPy +iPiPep;  (38)
has a solution in the range 0 < il = pl-l .
0_<_12£p2-1, 05135p3-1, Oii4ip4-l :

a_ = 0 otherwise,.

n

It is sufficient to prove that if an# 0 then B = 1. Suppose not. That

is, assume there are two solutions for some n, say

B
1

= 1)PoP3Py + 1P P3Py + 13P PP, + 1,P PpP;

PR o I . & IR |
14 PaP3Py + 1, P P3Py T 13P PPy + 1,P1PoP;y

T T PR R s -, . 4 : g
where (11,12,13,14) + (11,12,13,14) Wlthlj a.ndlj lying in the

specified intervals. Then we obtain
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(ip=1)) PaPyRy+ (ip-i5)) PYP3Py
+(ig=i5") pyPop, + (iy-i ) PyPop, = O . (34)
Hence
pylliy 1)

Since Iil -il'l < pl-l » we conclude that

Then (34) becomes

- s ! 4 L3 . .
(iy-1,) PyPy + (ig-15) Pyp, + (14—14') P,y = 0 . (35)
Hence

5 < B
Pollip-iy)

- - 3 '
Since i, -12| < pz-l , we conclude that

Then (35) becomes

n ‘l n Lt
(13-13) p4+(14-14) P3 =0

Hence

1

Since li3 -i3 < p3—1 , we conclude that

- -l
13—13

Hence we also have
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5 s w4 & S T T T .
contrary to the relation (11,12,13,14) :t: (1l iy sig sy )} . This proves

(33).
Let
py-l . Py-1 . (pp-1)py+{p;-1p
2 i P 1 =P 2 1 1 3
2 x 171 2 x 373 = 2 b xn
jp =0 j3=0 n=0 b

If we consider that bn's are obtained by multiplying each term in

p,-1 . P,-1

27 jp L~ igp
2 x . with 2 x - 5
jl.-.:O j3=0 L
we have
bn =1 4 aAEs kpl (mod p3) and kpl < nsk‘p1 + (pl—l) Py
where 0< k< pz-l : (36)
b =0 otherwise.
n
Let
-1 . -1 . -1 -1
Ps=l j,p,\[ P AN (P3-1pyt(p-1py )
x 2 x = 2 d x .
jy=0 §4=0 n=0 A

Then we obtain, as above,

d =1 if n=kp, (mod p,) and kpzinf_kpz+(pl-1) Py
where 0< k< p3-1 4 (37
d =0 otherwise ,
n

Let N =(p,-1)p; + (p;-1) P5 + (P3-1) Py + (P;-1) b, ;

Nl = (Pz'l) Pp ¥ (Pl"l) P33 N2 = (p3-l) Py + (pl-l) Py- Write
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N1 N2 N
P b xn 2 d xn = 2 e xn =
n=0 * n=0 = n=0 ©°
Then we have
enzbnd0+bn—1_d1+"" bOdn if 0;<_n< N1

e =byd N +bN1-1dn-N1+l+"'+bod0 if N. <n<N

1 1 1-— 2
en.:bN dn-N -i-...+bn_N dN if Nzinf_N
1 1 2 2
Let
N
2ia xn 2 e xn =2 f xn
n n n
n=0
Then we have
fn=ena.o+ena1+...+eoan if OEn<N
f = e_.a

+ e a + + a if N<n< 1 o(
a = O Y P fnenapl tron B8, B NERES 00 PPPy
Hence we obtain

e x = F (%)
n=0 = P1P2P3Py

PP p,P,+1 Dp.P
(Efnxn)(l-x-x & 4-{-x 274 -X 374

P3P4tl  PoP4tP3Py p2p4+p3p4+1)
x +x -x

1 (38)

Equating coefficients of like powers we find

if 1_<_n§p2p4-1
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c = fn-fn_l-fo if n= P,Py

= - - i & < -
< fn fn_ 1+fn-(p2p4+ 1) fn—p2p4 if PoP,yt l<n< P3Py I
“n " fn“fn— 1+fn-(p2p4+ 1) -fn-p2p4-f0 & w= P3Py

=f -f +f -f +f -f
Cn n n-1 n‘(p2p4+1) n‘p2p4 n'(p3p4+1) n'p3p4

if p3p4+1§n_<_ PoPy T PaPy - 1

=1 =f f -f f -f f
C’n n n- 1+ n-(p2p4+ 1) n'1214+ n"(p3p4+l‘) n-P3P4+ 0

i H= PPyt P3Py

=f ~f _4f i f f
“n ™ 0" n-1""n-(p,p,+1) n-pzp4+ n-(pyPy+1) n-pyp,

+£ -f
n-(p2p4+p3p4) n'(P2P4+P3P4+ 1)

S 1
if pypy + P3Pyt Sn<=08(p;P,P3P,)
Hence we have the following theorem:

Theorem 5: Let Fp Bl (x) = chxn be the cyclotomic
17253%4
polynomial, Let:

-

1 if n = kp, (mod p3) and kp1_<_n_<_ kp1+ (pl-l)p3
b = « where Oikipz-l;

0 otherwise .

(1 if n = kp, (mod p4) and ‘&c;‘.»z_-<_n_f_1<1:.~2+(pl-l)p4

d =W where ngipz-l;

LO otherwise .,
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1 if n=1;p,PaPy + 1,P PPy + 13P PoP, + 14PP,P;

a_ = has a positive integral solution ;

0 otherwise .

N; = (p,-1) py + (Py-1) Py
Ny =

§ .
bnd0+"'+b0dn if O§n<Nl

o= <ledn_Nl+... +b0dn if N1§n<N2
b, d +...+Db d if N, <n<N
. N1 n-—N1 n-N2 Nz 2—"=
ena0+°"+e0an if 0<n<N

fn = 1
enNn-N Tror T ep2, if N< n<-— ¢(plp2p3p4) .

Then
e =f ~f 4 - f + £
n n-1 n-(p,P,+1) n-p,P, n-(p3p4+ 1)

-

3

+ f - f
n-pyP,  0-(PyP4tPsP,)  n-(PyPytPaP4tL)

where fi=0 if 1i<0.

4,2 TUpper Bounds for the Coefficients
Theorem 6: Adopt the same notations as in Theorem 5. Let
o be the maximum number of nonzero an's for n in the range

1 5 .
k<n<k+ Nf_-z- ¢(p1p2p3p4) for any integer k> 0; let
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- n-ll . Then

|Cn| <4aB
Proof: From Theorem 5 we have
Ic I < 4max|f - f
n

< 4 max (a.n_N+... + a.n) max len- e

n-1
n-1

= 4:@{3

FromTheorem 6 we see that the differences between succes-
sive fn's keep the values of cn's small., If we consider only the pos-

itive part, we obtain an upper bound for lcnl >

n .
Theorem 7: Let Fp1p2p3p4(}‘) =2 c X be the cyclotomic

polynomial, where P <P, < Py < p, are distinct odd primes, Then
le, | <2, (pp-Dips-1)
o TR T | 2 3 g

Proof: In equation (38) we proved the formula

F (x) = (Ef xn)
p1p2p3p4 n

PpPq PaPytl P3Py Papytl
l-x-x +x -x + 3%

PoP4+P3Py Pzp4+p3p4+1)
+ X -x

(39)

where

S BT xilpzpspz;“zp1P3P4+i3p1P2P4+14P192P3+j191+jzpz+jsp3+j4p4
. i
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We need only consider those n in the interval 0 <n 5—;: ¢(P1P2P3p ) «
For these n, fn is the number of solutions of
D = 11PpP3Py 1P P3Py + 13PPoPy
+ i,4P PPy + )Py T Py + 3Pyt iyPy o (40)
Py-1 py-1 py-1

0§11< = ;0512< - ;0513< 5

&
Syt i 0202wk 050y S pprld BSigsmy-l

1 2 - -
To show that lfn] 571' Py (pz-—l)(p3-l) it suffices to prove
that for fixed (iz, 13,j3, j4) the diophantine equation (40) has at most one

solution (il’ié’jl’jz)’ because the number of possible choices for
o E .1 2

(12» 13s.]3:.]4 18 '4' pl (Pz' 1)(p3-1) .

Suppose (40) has more than one solution, say

D = 1)PaP3Py + 1P P3Py ¥ 13P PoPy T 14PPoP3
! : . Lt
= 1) PpP3Py t 1P P3Py + 13P PyPy + 1, P PyP;
L 3 : :
+§1Py +iaPy t i3Pg+ i, P,

- . . ” FUREL I B A |

where (11,14,_]1,32) # (11,14,J1,J2) i

Then we obtain

(i,-i,) + (i,-i,") + (31737 ) Py + (ip=in ) P, =0 . (41
1731 7 PP3Py + 171, ) PyPoP3 + U -J1 ) Py T U=l ) P =0 . )
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Reducing this modulo P,P3 . we obtain

Lot . &
(j1=i;) Py *+ (i5=i,) p, = O (mod p,p;) . (42)
But (42) is equivalent to the system
T s .
(3;=i;) Py = 0 (modp,)
(43)

(3,73;) Py + (ipiz) Py, = 0 (mod p,)

Since |j1-j 1' I ) pz-l , the first congruence relation in (43) is an
equality, i.e., (jl-j 1') p; = 0. Hence the second congruence in (43)

becomes
. e -
(‘]Z-JZ ) PZ =0 (mod P3)

Since ]jz—jz' I < p3-l , the above congruence is an equality. Hence we

conclude that j2 = j2 ' , and (41) becomes
i s ! s s
(i7=17) PaPyPy + (14734) P1PoPy = O

p,-1
Hence p1|(il—i1‘). But Iil-il'l < 12 , so we have i, = i,'. Hence

1 1

we also have i, = i, . Thus, for fixed (i (40) has at most

4= 14 213033034

one solution. Therefore we obtain the inequality

1 2
It | =5 2," (oy-1ps-1)

Since |cn| < 4 max lfnl , this gives us the upper bound

le_| <1, (p,-py-1)
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CHAPTER V

THE CYCLOTOMIC POLYNOMIAL Fm(x) WHERE m
IS A PRODUCT OF AN ARBITRARY NUMBER

OF DISTINCT ODD PRIMES

If m is a product of more than four distinct odd primes, the
formula for Fm(x) in Lemma 2 and the method depending on this lem-
ma are no longer applicable, This chapter contains results of a dif-

ferent type for Fm(x) , Where m is a product of an arbitrary number

of odd primes.

5.1 A Partition Function and Its Generating Function

Let Sm denote the reduced residue system modulo m. Let

51 <sg,<s_,<...< S@(m) be its elements, chosen to lie in the interval

lis

2 3
v S s
1 —_—
We define p(k,m,n) to be the number of ways that an integer

k can be partitioned into sum of n distinct members of S

A generating function for p(k,m,n) is given in the following

theorem.
n k
Theorem 8: 2 1 X Lo Ep(k,m,n)xk e (44)
- S L=1
=€ k,eS
£ " m

ki+kj for itj

Proof: Consider the coefficient of xk. From the left-hand

side of (44) we see that the coefficient of xk is equal to the number of
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ways that k can be partitioned into sum of n distinct members of Sm ;

which is exactly p(k, m,n). Hence (44) is an identity.

5.2 Connection Between p(k, m, n) and the Cyclotomic Coefficients

Theorem 9: Consider the cyclotomic polynomial

¢(m)
F (x) = Z (-1)%c xPlmi-n
m sl n

where m 1is a product of t distinct odd primes. For any n < ¢(m) let

K = s

e ¢(m)+s¢(m)_1+...

T 5¢(m)-(n-1)

where S ) qu)(m)-l’ Ot S¢(m)-(n-1) are the largest n elements of

the reduced residue system modulo m., Then we have

c = 2 p(d, m, n) p(—ra)
N 4|m | |22d (mod m) -
L<K_

Proof: We shall use the following well-known formula:

D o) - o

k mod. m
(m, k) =1

From the definition of the cyclotomic polynomial we have

2mifd
Fm(x) = (L’rg):]_ (x - exp( = ))

£ mod m

From the hypothesis of the theorem, this is equal to

QD(zr)n) (_1)n & X(D(m)-n
n=0 =
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Hence we have

= E 27171
c_ S . exp( ﬁl(vlsl F VB # v¢(m)s¢(m))) (45)
(m)

v.=0, or 1
i

21il /m

where the s, are the elements of Sm' Since e is periodic with
period m, we can write
I 2mik
¢, = 2 oalke ™ " (46)
k=0
. 2mil/m . _
Collecting the terms e with £ =k (mod m) and £< Kn we see
2mit/m .

that the coefficient of e is p(4,m,n), so we have

a(k) = 2 p(£,m,n) . (47)
4=k (mod m)
L<K_

From (46) we see that

2mik'
C = Z) : E b(d,m,n, kl) em (48}
" d|m|k' mod m/d
(k',m/d)=1

where b(d,m,n,ki) = a(k'd) .

We will prove that b(d,m,n,k') is independent of K .

2mi/m By & 2ik/m

It can be seen that if we replace e with

th

(k,m) =1 we get the same set of primitive m~ roots of unity Sm.

Since c. is a symmetric function of the elements of Srn from (45),

2mi/m e21'rik/rn

there is no change in <. if we replace e by with

(k,m) = 1. We can also prove that the set
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e ™ d - (kls}z{) =1, k' mod—rg.}

2mi/m eZTrik /m

is invariant under the replacement of e by with

(k!m) =1,

21i/m by e21'r1k/m

For d =1; if we replace e , then

b(l,m,n, 1) plays the role of b(l,m,n,k). Hence we have

b(l,m,n,1l) = b(l,m,n, k)

If we let k go from 2 to m with (m,k) = 1, then we obtain
b(l,m,n, 1) = ses = b(l,m,n,k) ’

where (k,m) = 1, k mod m. Letus write b(l,m,n,1) = b(l,m,n).

Then we have

2mik’ 2mik'
L b(l,m,n,kYe ™ = b(l,m,n) Z g B
k mod m k' mod m
(' m) =1 (k', m)=1

2mi/m - eZTTik/m

For d > 1; if we replace e with {m, k) = 1,

then b(d, m,n, 1) plays the role of b(d,m,n,k). Hence we have
b(d,m,n, 1) = b(d, m, n, k)
If we let k go from 2 to m/d with (k,m/d) = 1, then we obtain
Bld,m,n: 1) = ... =& Bld,m, n %

where (k,m/d) =1, k mod m/d. Write b(d,m,n, 1) =b(d,m,n). Then

we have
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2m ik 2mik'
.z Bld, o0, B & O = Bidam, o > e m/d
k 'rnod m/d "k lmod m/d
(k' ,m/d)=1 (k' ,m/d)=1

Hence (48) becomes

ZTTikI
c = 2 b(d, m, n) 2 em:d
® dlm k' mod m/d
(k ,m/d)=1
By the formula
2mik’
v e™/d _ p(in_)
k' mod m/d d
(', m/d)=1

we obtain

c = 2 b(d, m, n) u(—ra) .
n dlm d

But b(d,m,n) = a(d) by (48), so we have

c_ = Z a(d) u(—rg-)

= d|m

By (46) we have

e = Z Z p(d, m, ) u(—rr—l)
= d[rn 2=d (mod m) d
EEKn

5.3 An Upper Bound for the Coefficients

Theorem 10: Consider the cyclotomic polynomial
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¢ (m)
F (x) = 2 c¢c x
m bsff B

n

where m is a product of t distinct odd primes. Then we have

el £ 2207 (cos® ) (cos® ) L (cos?(2G2L -0} 2T}

Proof: Since Fm(x) is analytic, we have

! F (2)
(n) - m
FUUO0) = — dz
m 2mi e
I zl =1
Therefore we obtain
n! Fm(z)
n! Cn - -2—:' —‘m dz .
i Z

Hence we have

1 .
_<_ - max I Fm(Z)l 2m

" lzl =1
= lr;x[a:cll Frn( z)l 5 (49)

To complete the proof we will show that
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max IFm(Z)l < 2#(m) (cosz %) (c:os2 %)

zl =1
2 (¢(m 21
w3 (COS (-(T—l- - I}Tn) » (50)
From the definition of Fm(x) we see that
2rki
Fm(x) = 1 Y S
(k, m)=1
Therefore we obtain
2mki
\F (z)l = I T
2 (k, m)=1
Hence we have
2mki
max IF (z)l = max II Z -8 (51)
z|=1 m Iz\:l (k, m)=1

We therefore see that mlax ‘Fm(z)l is equal to the maximum of the
z|=1

product of the lengths of the segments between z on the unit circle and

ezﬂkl/m with (kkm)=1, We consider a half unit circle

Co(m) _,
2

A 0 B

Figure 1
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Write C, as the point 82111k/m fo

_ ¢ (m)
. rk—l,Z,...T-l.

Write

o(m) _
2

p=2 1 [|AC | (52)
k=1

where I‘.A‘—Ckl is the length of Ek .
Since the angleL BAC, = 2k/m , we have

IEkI = 2 cos 2;::‘{

Hence

$(m)
p = 2 z (cos%)(cos—g—:) (cos(gﬁi;—n-l- 1) Z—r;T-)

We therefore have

Pz = 2¢(m) (cosz-%nﬂ) (coszﬂ) (cosz(g-(—ér-n—)- - l) -2-11)

m m

The problem now reduces to showing that

2mik
max Z - < p2 . (53)
Izl:l (k, m)=1 -
Consider
2mik
11 B B o
(k, m)=1
It is a continuous function of z. Let Z0 be the point such that
2mik 2mik
I Zo-em = max Il z =g (54)
(k, m)=1 Izl:l (k, m)=1
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We draw a diameter ZOB . Let

21mik
T. = number of e ™ with (k,m)=1 and l1<k<m, which
are on the'upper half closed circle,
2mik

T, = number of e ' with (k,m)=1 and 1< k<m, which

are onthe lower open half circle.

Then we have Tl + 'I‘2 = ¢(m) .

i6
ILet B=e 0, Write

22£+60 m
CJ& = e for L = 1,2, I
-2mik
+ 6
c/ =e™ 0 wor 4= 1.2, 2
Then we have
2mik Tl-l ’I'Z—l
m 2 e s
n Z,~e < 2% 1 |z,c,| n |z,C, 0] . (55
(k,m)=1 - =1 2=1
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where ]ZOC2| is the length of ZOCf,’ and [ZOC/IQ,[ is the length of

Z C' . Say T,>T,, thenwe h P Sler B that
0%y ay T, >7T5, then ave 25———2-—. us we see tha
.G e | .G, | :
0¥T+T, | = 07T,
2
1
ZoCr 4T < [%0CT +1‘ :
17 2 2
+1
2
1
ZoCT 1] 2 |%6CT 4T .
1 "2
2
Hence we have
T 2
T,-1 T,-1 _1_2_2___1
—_——— __T ——
2 1 |Z,C,l I [24C,]] <2 1 1Z24C,|
z:l E:l A:l
B(m) _ A
3 -
= 2 1 B | (56)
But by (52) we see that
p(m) 4 @
2 2 —
p- = 2 1 |Z,C,l
g]:l 'Q'

Combining this with (54), (55), and (56) we have

2r7ik
m

2
<p .

mazx

I Z - e
{zl =1 (k;m)=1

This proves (53) and also completes the proof of Theorem 10,
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12,
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