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ABSTRACT 

An explicit formula is obtained for the coefficients of the 

cyclotomic polynomial F (x), where n is the product of two distinct 
n 

odd primes. A recursion formula and a lower bound and an improve-

ment of Bang 1 s upper bound for the coefficients of F (x) are also 
n 

obtained, where n is the product of three distinct primes, The cyclo-

tomic coefficients are also studied when n is the product of four dis-

tinct odd primes. A recursion formula and upper bounds for its 

coefficients are obtained. The last chapter includes a different approach 

to the cyclotomic coefficients. A connection is obtained between a 

certain partition function and the cyclotomic coefficients when n is the 

product of an arbitrary number of distinct odd primes, Finally, an 

upper bound for the coefficients is derived when n is the product of an 

arbitrary number of distinct odd primes, 
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CHAPTER I 

INTRODUCTION 

1. 1 Historical Background 

The cyclotomic polynomial F (x) of order n is defined by n 

the equation 

F (x) = 
n 

¢(n) 
II (x - () 

J 
( 1) 

j= 1 

where t;; 1 , t;; 2 , ••. , '¢(n) are the primitive nth roots of unity. Here 

¢(n) is Euler's function which enumerates the number of positive inte-

gers :::: n which are relatively prime to n. We can also write 

F (x) 
n 

¢{n) k 
= ~ ck x 

k=O 

where the coefficients c
0

, c 1 , ... , c¢(n) are integers which we call 

cyclotomic coefficie nts. This thesis is a study of some of the proper-

ties of these coefficients. 

The cyclotomic polynomials appeared first in Gauss's 

Disquisitiones Arithmeticae ( 1801) in a study of equations which deter-

mine the divisions of the circle. They appeared later in Cauchy's 

proof of the existence of primitive roots of a prime p (Exercises de 

math., 1829, 231). In 1854 Kronecker (Journal de math., XIX) and in 

1859 V. Lebesgue (Ann. Mat. 2) studied the irreducibility of cyclo

tomic polynomials. Bang (Tidsskrift for math. , (5), 4, 1886) and 

r. 
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Sylvester (Comptes Rendus Paris, 106, 1888) proved the existence of 

infinitely many primes of the form m z + l for given m by use of 

cyclotomic polynomials. 

1. 2 Some Basic Properties of Cyclotomic Polynomials 

This section lists some basic properties of cyclotomic poly-

nomials in the form of six lemmas. The first three lemmas show that 

F (x) is a monic polynomial of degree ¢(n) with integer coefficients. 
n 

Lemma 4 shows that symmetrically located coefficients are equal. 

Hence to study the coefficients of the cyclotomic polynomial it suffices 

to study only half of them. Lemmas 5 and 6 reduce the study to cyclo-

tomic polynomials of an order which is a product of distinct odd 

primes. 

Lemma 1. 
n 

x - l = II F d(x) 
din 

( 2) 

Proof: This follows from the fact that any nth root of unity 

is a primitive dth root of unity for some unique divisor d of n. 

Lemma 2. 
d µ,(n/d) 

F (x) = II (x - 1) 
n djn 

( 3) 

Proof: This follows from Lemma 1 by applying the Mobius 

inversion formula. 

Lemma 3. The cyclotomic polynomial F (x) of order n is 
n 

a monic polynomial of degree ¢(n) with integral coefficients. 

Proof: This is easily proved by mathematical induction. The 

theorem is true for n = 1. Now suppose it is true for all F k(x), where 
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k < n. From ( 2) we have 

where 

n 
x - 1 = F (x) IT Fd(x) = F (x) G (x) 

n din . n n 

d<n 

G (x) = 
n 

IT F d(x) 
djn 
d<n 

Since d< n, each factor F d(x) is a monic polynomial with integral 

coefficients by the induction hypothesis. Hence G (x) is also a monic n 

polynomial with integral coefficients . Now write 

F (x) 
n 

xn - 1 
= G (x} 

n 

Since G (x) has leading coefficient 1, the long division produces only 
n 

integral coefficients, so F (x) is also a monic polynomial with integral 
n 

coefficients. 

To conclude the induction we need to prove that the degree 

of F (x) is ¢(n). Let the degree of F (x) be v. From the induction 
n n 

hypothesis the degree of F d(x) is ¢(d) for each d< n. Hence by (3) we 

have 

n = v + ~ ¢{d) 
djn 
d<n 

= v - ¢ { n) + ~ ¢ ( d) = v - ¢ { n) + n 
din 

since 6 ¢(d) = n. Hence v = ¢{n) and the lemma is proved. 
din 

Lemma 4. Symmetrically located cyclotomic coefficients 

are equal for n > 1. 
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Proof: Since the degree of F (x) is ¢(n), proving the lemma 
n 

is equivalent to proving that x¢(n) F (1 /x) = F (x). This proof makes 
n n 

use of the two well-known formulas (a) ~ µ.(d) = 0forn>1, and 
din 

(b) ~ dµ(n/d) = ¢(n). 
din 

From (3) we have 

( 

d 1) µ(n/d) 
x¢(n) F n(~) = x¢(n) d ln (~) -

( 

d)µ(n/d) 
¢(n) II 1 - x = x d 

din x 

x 
¢(n) 

= ------
:B dµ.(n/ d) 

din x 

d µ(n/d) 
II (1 - x ) 

din 

d µ(n/d) 
= II (1 - x ) 

din 

by (b). If we change the sign of each factor the product does not change 

sign since by (a) we have ~ µ(n/d) = O. Therefore 
din 

d µ(n/d) 
II (x - 1) ' 

din 
= F (x) n 

Lemma 5. 
ak 

pk , where the ai are pos-

itive integers, let q = p
1 
... pk. Then 
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F (x} = F (xn/q} 
n q 

Proof: First rewrite (3) as 

F (x} = 
n 

n/d µ.(d} 
II (x - 1} 

din 

Now µ.{d} = 0 unless di q. Hence 

F (x} = 
n 

I µ.( d} 
II (xn d - 1} 

dlq 
{ 

n/q q/d } µ.(d} = II (x } - 1 = 
<liq 

Lemma 6. If n is odd, n ~ 3, we have F 2 (x) = F (- x) • 
n n 

Proof: By Lemma Z we have 

F Zn(x) = 
d µ.( Zn/d) 

II (x - 1) 
di Zn 

Since n is odd, the divisors d of Zn are equal to the divisors d' and 

Zd', where d' In. Hence we have 

d 1 µ.( 2n/ d') Zd' µ.(Zn/Zd ') 
II (x - 1 ) II (x - 1 ) 

d'I n d'I n 

= 
d 1 µ.(Zn Id') 

II (x - 1 } 
d'I n 

d I µ.(n/d') 
II (x - 1) 

d'I n 

d' µ.(n/d') 
II (x + 1) 

d'I n 

Since µ(Zn/d ') and µ.(n/d') have opposite signs for odd n > 1 and d' In, 

we have 
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F 2n(x) = 
d' µ.(n/d') 

II (x + 1) 
d'I n 

for n > 1 . 

Since n is odd and d' I n , we have 

F 2n(x) = ( 
d' )µ.(n/d') 

II - ( - x) + 1 
d'I n 

= a•\ n [(<-x>d' - 1) µ(n/d') (- l)~(n/d'>] 

[ ~ d 1 ) µ.( n / d 
1 
)] = II (- x) - 1 

d'I n 

:B µ.(n/d') 

<- 1>d'I n , for 

Since ~ µ.(n/ d ') = 0 , we obtain 
d'I n 

F 2n(x) = F (- x ) , 
n 

for n>l. 

1. 3 Previous Work on the Cyclotomic Coefficients 

n>l. 

In 1883, Migotti [ 12] proved that the coefficients of F (x) 
P1Pz 

are ± 1 or 0, where p 1 and Pz are two odd primes. In 1895 Bang [ 4] 

proved that no coefficient of F (x ) exceeds p 1 - 1, where 
P1P2P3 

p
1 
<p2 <p

3 
are odd primes. In 1931, I.Schur proved that there exist 

cyclotomic polynomials with coefficients arbitrarily large in absolute 

value. The proof has not been published, but it was given by Emma 

Lehmer in one of her papers [11]. In 19 36 Emma Lehmer [11] proved 

that as n runs over all products of three distinct primes, the cyclo-

tomic polynomials F (x) contain arbitrarily large coefficients. In 1945 
n 

Paul Erdos [8] proved there are infinitely many n such that the 
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k 
greatest coefficient of F n(x) in absolute value exceeds n for every k. 

In 1960 Marion Beiter [5] proved that if we let 

n 
c x 

n 

where p
1 

< Pz are odd primes, then 

c = { (- 1) 0 

n 0 

if n = ap 1 + \3p 2 + o in exactly one way , 

otherwise , 

where a and [3 are nonnegative integers and o = 0 or 1. In 1964 

Helen Habermehl, Sharon Richardson, and Mary Ann Szwajkos [9] 

proved that if we let 

F 3 (x ) = 
. Pz 

¢(3· Pz) 

6 
n=O 

n 
c x 

n 

where Pz is a prime greater than 3, then for n s: p
2

- l, 

1 if n = 0 (mod 3) 

c = -1 n if n = 1 (mod 3} 

0 if n = 2 (mod 3) 

For n > p 2 -l, we have en= er:, where n' = 2(p 2 -l) - n. 
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CHAPTER II 

THE CYCLOTOMIC POLYNOMIAL F (x) WHERE n IS 
n 

A PRODUCT OF TWO DISTINCT ODD PRIMES 

Theorem 1 gives a formula for the coefficients of F (x ) 
P1P2 

where p
1 

and p 2 are two distinct odd primes greater than 3. In 

corollary 1 we show that the coefficients are ± 1 or 0 by means of the 

formula in Theorem 1. It agrees with the known results. 

2. 1 Explicit Formulas for the Coefficients 

Theorem 1: Let p
1 

and p
2 

be two primes with p
2 

> p
1 

> 3. 

Let 

and let 

For each k= 0,1,2, ••. ,N, let 

0 if 0 .:S, n < kp2 

1 if 
¢(P1Pz) 

kp 2 < n < 
- - 2 

c (k) = 
¢(p 1 P2) n 

-1 if kp 2 < n < 
- - 2 

0 otherwise . 

Then we have 

n 
c x 

n 

' n = kp2 (mod p
1

) 

' n = kp2+l (mod p
1

) 
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c (0) + c ( 1) + ..• + c (N) if 
¢(p 1 P2) 

(A) c = 0 < n < 
n n n n 2 

{B) if 
¢(P1P2) 

< n :::_¢{pl P2) c = c 
n ¢{pl P2> -n 2 

2. 2 An Example 

Before we prove the theorem 1, we consider the example 

F 35(x). Here p 1 = 5, p 2 = 7. From the formula (3) of Lemma 2 we 

have 

d µ.(35/d) 
IT (x - 1) 

dl35 

(x - 1) (x35 - 1) 
= 5 7 

(x - 1) (x - 1) 

Dividing out we have 

5 6 7 8 10 11 12 24 
F 35(x) = 1-x+x -x +x -x +x -x +x - ••. + x 

To compute the coefficients byTheorem 1 we first determine 

N = [( 5 - 1) ( 7 - 1 )] = l 
2· 7 ' 

and ¢(5· 7) = 12 
2 

The calculations forTheorem 1 can be arranged in tabular form as 

follows: 

n 0 1 2 3 4 5 6 7 8 9 10 11 12 

c (O) 1 -1 0 0 0 1 
n -1 0 0 0 1 -1 0 

c ( 1) 0 0 0 0 0 0 0 1 -1 0 0 0 1 n 
c 1 -1 n 0 0 0 1 -1 1 -1 0 1 -1 1 
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2, 3 Proof of Theorem 1 

From Lemma 1 we have 

Now we multiply out and make an appropriate change of the indices to 

obtain 

n 
c x 

n 

n 
c ( Z)x+ .. 
n- P1 -

Pz <P1- 1>Pz = l+x + ••• +x (4) 

We shall prove (A) by equating the coefficients of like powers 

of x in ( 4). Part (B) then follows from the symmetry property of 

lemma 4. 

We will prove (A) by mathematical induction on t where 
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1) We consider the case t = 0, which means 0.::;, n < p
2

. 

Since for each k = 1, 2, ... ,N we have c (k) = 0 for 0 < n < kp
2

, to 
n -

prove that (A) is true for 0 < n < Pz is equivalent to proving 

for 0.::;, n < p 2 . 

c = c (O) n n 

Equating . the coefficients of like powers of x in (6) we find: 

0 
x c ( 0) = 1 = c 0 ( 0) . 

1 
x c

1
+c

0
=0; hence c 1 =-c

0
=-l=c

1
(0). 

2 
x c 

2 
+ c 

1 
+ c 

0 
= 0 ; hence c 

2 
= 0 = c 

2 
( 0) • 

i 
x Ci + Ci-1 + • • • + C 1 + CO = 0 

where 

This proves that c = c (0) for 0 < n < p
1 

. 
n n - -

hence 

hence 

= c. ( 0) 
]. 

hence 

N ext we show that cm+ 1 = cm+ 1 (0) on the assumption that 

cm= cm(O} where p 1 .::;, m < p 2 . 

0 .::;, n < Pz. 

This will prove that c = c (0) for 
n n 

m+l Equating the coefficients of x in (4) we find: 

c + 1 + c + . . . + c 1 ( 1) m m m+ - p 1- = 0 
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Hence 

Now we shall prove, by induction on n, that we have 

c { O} + c i { O} + • • • + c { l} ( O} = .0 n n- n- p -. 1 

we have 

c i(O} + c 2 (0} + ••• + c i(O) + c 0(0) = 0 • 
Pi- Pi-

Hence (6) is true for n = Pi- i. Next we suppose it is true for n = m 

and show it is true for n = m+ 1. We have 

cm+i(O) + cm(O} + ••• + Cm+i -(pi-i}(O} 

{ 6} 

= cm+i(O)+(cm(O}+cm-1(0)+ •.• +cm-{pi-i}(O))-cm-{pi-1}(0}. (7) 

By the assumption that (6} is true for n = m the right member of (7} 

simplifies to 

By the definition of the c {O} 's, this difference is 0. Hence we have n 

proved (6}. 

By (6), equation (5) becomes 
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Hence 

c 1 = c 1(0) m+ m+ 

Hence we have shown that en= cn{O) for 0 :::_ n < Pz. 

2} Now we assume (A} is true for all n in the interval 

tp
2 

.:S. n < (t+ l)p
2 

and try to show it is true for all n in the interval 

¢(P1Pz) 
( t+ 1) p 2 .:S. n < ( t+ 2) p 2 and n .:S. 

2 

Equating the coefficients of like powers of x in (4) we find 

= 1 

By the induction hypothesis we have 

c(t+l)pz + (c(t+l)pz-1(0) + c(t+l)pz-1(1) + .•• + c(t+l)pz-l(N)) 

+ ••• + (c(t+ l)pz - (pl -1) {O} 

+ c(t+l)pz-(Pl-1)(1} + •.• + c(t+l)pz-(Pcl)(N~ = 1. 

Hence we have 

+ (c(t+l)pz-1(1) + ••• + c(t+l)pz-(Pl-1)(1~ + .. 

+ (c(t+l)pz-l(N) + ••• + c(t+l)pz-<P1-l)(N)) = 1 

Adding and subtracting c(t+l)p
2

(0) + ••• + c(t+l)p
2

(N) on the left we 

obtain 
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c -(t+l)p2 

+ (c(t+l)p2(0) + c(t+l)p2-l(O) + •.• + c(t+l)p2-CP1-l)(O~+ .. 

+ (c(t+l)p2(N) + ••• + c(t+l)p2 - (pl -l)(N)) = 1 ( 8) 

Now we shall prove, by induction on n, that for each k = 1, 

2, •.• , N we have 

c n ( k) + c n _ 1 ( k) + • • . + c n _ ( p 
1 

_ 1) ( k) = 0 

¢ (P1P2) 
where n is such that (k+ l)p2 :S. n 2, 

2 

1 and c = - 1 , 
( k+ 1) p 2 - ( p 1 - 1) 

(9) 

we p.ave 

This proves (9) for n = (k+ l)p2 • Now we suppose (9) is true for n = m, 

¢ (pl P2) 
where (k+l)p2 < m < and show it is also true for n = m+l. We 

- 2 
have 

cm+ 1 ( k) + cm ( k) + • • . + cm+ 1 - ( p - 1) ( k) 
1 

= cm+l(k) + (cm(k) + ••• + cm-(pl-l)(k))- cm-(pl-l)(k) . (10) 

By the hypothesis that (9) is true for n = m, the right member of ( 10) 

simplifies to 

c l(k) - c ( 1) (k) = 0 m+ m- p 1-

This proves (9). 
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Now w e return to {8}. Since by {6} w e have 

{8) simplifies to 

c{t+l}p2 -(c{t+l}p2{0} + ••• + c{t+l}p2{N)) 

+ (c{t+l)p2{1) + c{t+l)p2-l{l) + ••• + c{t+l)p2-<P1-l){l~ + .. 

+ (c{t+l)p2{N) + ••• + c{t+l}p2-<P1-l){N)J = 1 {11} 

Since we have c {i} = 0 for 0 < n < ip2 , { 11) simplifies to 
n -

c{t+l}p2 -(c{t+l}p2{0) + ••• + c{t+l)p2{N}J 

+ ( c (t+l)p2{1} + ••• + c{t+l}pz-<P1-l}{l~ + .. 

+ ~(t+l}p2{t) + . .. + c{t+l)p2{t)) + c{t+1)p2{t+l) = 1 • {12) 

Since we have 

whe r e 1 :::_ j :::_ t, b y {9}, equa tion { 12) simp lifie s to 

c(t+l)p2 - ( c {t+l)p2{0) + ••• + c{t+l)p2{N~ 

+ c { t+ 1) p 2 ( t+ 1) = 1 

Since c{ t+ l)p
2

{t+ l) = 1, equ ation {13} become s 

( 13) 
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( 14} 

(t+ l)pz+ 1 
Equating coefficients of x we also have 

c{t+l) +l + c(t+l) + • • • + c(t+l) - = O Pz Pz Pz P1 

By an argument similar to that used in the derivation of (8), we have 

+ (c(t+l)pz+l(O) + ••• 

+ (c(t+l)pz+l(N)+ ••• 

+ c(t+l)p -p (0)) 
2 1 

+ c ( t+ l) p _ p ( N)l 
2 1 ) 

+ .. 

= 0 

Similarly, by ( 6) and (9) and the definition of the c (k) 's we have 
n 

c(t+l)p
2
-l - (c(t+l)p

2
+1< 0> + • • • + c(t+l)p

2
+1{N)) 

+ c(t+l)Pz+l(t+l) + c(t+l)p}t+l) = O 

- 1 ' 

Similar 1 y we have 

( 15) 
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This proves (A) is true for n in the interval (t+l)Pz.S. n.S. (t+l)p2 +(p1-l). 

To finish the remaining cases we can assume that for all 0 .S. k .S. s , we 

have 

¢(pl Pz) 
where s is such that p 1-1.::: s < p 2-l and (t+l)p2+s < --

2
--

show that 

(t+l)p2+s+l 
Equating the coefficients of x we find 

By an argument similar to the derivation of (8) we obtain 

c(t+l)p
2
+s+l - (c(t+l)p

2
+s+l(O) + • · • + c(t+l)p2+s+l(N~ 

and 

+ (c(t+l)p
2
+s+l(O) + · · · + c(t+l}p

2
+s+l-(p

1
-l}(Oj + 

+ (c(t+l}p
2
+s+l(N) + .•• + c(t+l}p

2
+s+l-(p

1
-l}(N}) 

= 0 

Since c (i) = 0 for 0 < n < ip2 , we simplify the above equations to 
n -
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c(t+l)p
2
+s+l -(c(t+l)p

2
+s+l(O) + • • · + c(t+l)p 2+s+l(N~ 

+(c(t+l)p
2
+s+l(O) + ••• + c(t+l)p2+s+l-{p 1 -l)(O~+ •• 

+ (c(t+l)pz+s+l(t+l) + ••• + c(t+l)pz+s+l-{pl-l)(t+l~ 

= o. 

By the definition of c (i) 's again, we have 
n 

c(t+l)p
2
+s+l - (c(t+l)p

2
+s+l(O) + • • • + c(t+l)p2+s+l(N~ 

+ (c(t+l)p
2
+s+l(O) + ••• + c(t+l)p

2
+s+l(O)J + ·• 

+ (c(t+l)p
2
+s+l(t) + • • • + c(t+l)p

2
+s+l(t)) = O 

By ( 6) and (9), we find that 

Hence we have 

This completes the proof of Theorem 1. 

Corollary 1: Let p 1 and Pz be two primes such that 

Pz > pl > 3. Let 

n c x 
n 
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Then c is ± 1 or O. 
n 

Proof: From Theorem 1 we have 

c = c (O} + c ( 1) + •.. + c (N) n n n n 
( 16} 

where c (k} is ± 1 or 0, for each k = 0, 1, ... , N. Hence to prove 
n 

c is ± 1 or 0 it is suf£icient to prove the following two statements: 
n 

(a) If one of the c (k) in ( 16) is 1 then none of the other 
n 

c (k} in ( 16} can be 1. 
n 

{b} If one of the c {k) in ( 16) is - 1 then none of the other 
n 

c (k) in (16) can be - 1. 
n 

We prove (a} by assuming the contrary. This means there 

exist two distinct integers k
1 

and k 2 between 0 and N such that 

According to Theorem 1, we have 

and 

Hence we can write 

and 
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where m 1 and m 2 are two distinct integers between 0 and 

l¢(P1Pz)J 
N' -

- Zpl • 
Subtracting the last two equations we have 

Since p 1 and Pz are two distinct primes, we have 

Pz-1 
But 0 :S. m 1 , m 2 < -Z , so we must have 

Pz-1 
<--

2 

Hence we conclude that 

This also implies 

This contradiction proves (a). 

Now assume the contrary to {b). There exist two distinct 

integers k
1 

and k 2 such that 

According to Theorem 1, we have 

n - kzPz+ 1 



Hence we can write 
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n = k 1p 2 +m 1p 1 +1 

n = kzPz + m2pl + 1 

where m
1 

and m
2 

are two integers between 0 and N'. Subtracting 

the last two equations we have 

Again as in the proof of {a), this leads to a contradiction. This com

pletes the proof of the corollary. 
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CHAPTER Ill 

THE CYCLOTOMIC POLYNOMIAL F (x) WHERE n IS THE 
n 

PRODUCT OF THREE DISTINCT ODD PRIMES 

3. 1 Upper and Lower Bounds for the Largest Coefficient 

The coefficients of a cyclotomic polynomial whose order is a 

product of three distinct odd primes are no longer ± 1 or 0. In fact, 

the coefficient of '.?' 
7 

in F 
3

. 
5

. 7 (x) is - 2. In 1895 Bang proved that no 

coefficient of F (x) exceeds p
1

- l if p
1 

< p 2 < p
3 

are odd primes. 
P1P2P3 

In 1936 Emma Lehmer proved that for a given odd prime p
1 

if we con-

struct primes p 2 and p
3 

such that p 2 = kp
1 

+ 2 and p
3 

= (m p
1 

p
2

- l) /2, 

then the coefficient of x11 is (p
1
-l)/2, where h = {p

1
-3) (p

2
p

3
+1)/2. 

Theorem 3 shows that for a given odd prime p 1 if we construct primes 

p 2 and p
3 

such that p 2 = kp
1 

+ 2 and p
3 

= (m p
1

p
2
-l)/2, then the 

coefficient of xh is (p
1
+1) /2, where h = {p

1 
- l){p

2
p

3
+ 1) /2. Hence 

{p 
1
-1)I2 is not an upper bound for the coefficients of F {x) . 

P1P2P3 

Theorem 4 shows that under certain conditions Bang's upper bound 

{p
1

- l) for the coefficients of F (x) can be improved. 
P1P2P3 

Fir st we obtain a recursion formula for the coefficients of 

3. 2 A Recursion Formula for the Cyclotomic Coefficients 

Theorem 2: Let 

n 
c x 

n 
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where p
1 

< p 2 < p
3 

are three distinct odd primes. Let T = ¢(p
1 

p 2) 

+¢(p
1

p
3

) +(p
1
-l), and define e

0
, e 1 , ... , eT/ 2 by the relation 

n 
e x 

n 

(a) For each s = 0 , 1 , . . • , ( p 
1 

- 2) , 

f = e + e ( l) + ••. + e if sp2 < n < (s+ l)p2 , n n-sp
2 

n- s- p
2 

n 

(b) f = e ( l) + e ( 2) + ••• + e n n- p 1 - P 2 n- P 1 - P 2 n 

if (p1 - l)p2 _::: n _::: T /2 , 

(c) f = fT if T /2 < n < T • 
n -n 

Then we have 

(A) For 0 < n < T , 

(B) For T _::: n < ¢(p
1

p 2p
3

) /2 , 

£Oen+ flcn-1 +. • • + fTcn-T = {: 

Proof: By Lemma 1 we have 
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= (x-1) F (x) F (x) F (x) F (x) F {x) F {x) F {x) 
P1 Pz P3 P1P2 P1P3 . PzP3 P1PzP3 

= {<x-1) F (x) F {x) F (x)} F {x) F (x) F {x) F {x) 
Pz P3 PzP3 P1 P1P2 P1P3 P1PzP3 

= (xPzP3 - i) F (x) F {x) F {x) F {x) 
P1 P1P2 P1P3 P1PzP3 

Dividing by GPzP3 - 0 we find 

We obtain the conclusion of this theorem by equating coefficients of 

like powers of x in { 17). Let's consider 

If we let 

F {x) F {x) = 
P1 P1P2 

then we have 

if n:::: kp2 , where 

otherwise 

n a x 
n 

k=O, l, ••• ,{p
1
-l) 
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If we let 

then we have 

Substituting the value for a into the above equation, we obtain 
n 

b = e n n 

b = e + e n n-p2 n 

if 0 .:::_ n < Pz 

if Pz .:::_ n < 2p2 

b = e + e + ••• + e + n n-sp
2 

n-(s- l)p 2 n-p2 

and 0 .:::_ s < p
1 

- 1 . 

b = e 
n-(p -l)p + e 

n-(pl -2}p2 + •• • + e n . 1 2 

e if sp2 .:::_n< (s+l)p
2 n 

if T 
(pl-l)pz.:::_n.:::,7 . n 

Since the symmetrically located coefficients of F (x) F (x} F (x) 
P1 P1Pz P1P3 

are equal, we have 

Hence we see that 

Then ( 14) becomes 

f = b if n n 

if 
T 

""Z' < n.:::_ T 

0 < n< T 

(pl -1) PzP3 
+x 
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Equating the coefficients of like powers of x we find: 

For 0 < n < T, 

if 

f
0

c + f 1c 1 + .•. + f c n n- no 
if 

if 

if 

by the symmetry of the coefficients of F (x) • 
P1P2P3 

Hence we complete the proof of this theorem. 

Theorem 3: · There exist integers n, the product of three 

distinct odd primes greater than 3, such that the cyclotomic poly-

nomial F n(x) contains a coefficient which is equal to (p
1
+1) /2, where 

p
1 

is the smallest prime factor of n. 

Proof: Given a prime p 1 > 3, by Dirichlet's theorem on 

primes in arithmetic progressions there is an integer k such that 

p 2 = kp
1 

+ 2 is prime. Since p
1 

p 2 and (p 
1 

p 2 - l) /2 are relatively prime, 

there is aninteger m' such that p
3 

= m'p
1

p 2 + (p
1

p 2-l)/2 is prime. 

Let m = 2m' + 1. ~hen p 3 = (mp1p 2 - l)/2. 

From the definition of p 2 ,p3 we obtain the following lemma. 
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Lemma 7: p 2p
3 

= - 1 (mod p 1) 

m p
1 

p 2 = 1 (mod p
3

) p 2 = 2 (mod p 1) 

that is, 2p
3 

= - 1 (mod p 1 P 2) 

Proof of Lemma 7: 

mp
1

p 2 = 2p3 + 1 - 1 (mod p
3

) 

P2 = kpl + 2 = 2 (mod p 1) 

- 1 

k? 1p 3 = 1 (mod p 2) 

p
3 

= -1/2 (mod p
1

p 2) 

1 (mod p 2) . 

(m P1 P2- l) 
p = =- (mod p

1 
p 2) 

3 2 2 

This completes the proof of Lemma 7. 

Now let 

h = 

We will show that the coefficient of xh is (p
1
+ 1) /2 

By lemma 2 we h ave 

F (x ) 
P1P2P3 
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Consider the diophantine equation 

= h ' ( 18} 

subject to the restrictions 

The coefficient of xh is the number of solutions of ( 18} with 

e = f, minus the number of solutions of ( 18} with e ~ f. 

Now we reduce equation (18} modulo p
1

, p
2

, p
3 

respectively, 

using the lemma. This gives us 

since p 2p
3 

- - 1 (mod p
1
) . 

izP1P3 + j + fp3 
( p 1- l} 

{mod p 2) -
2 

i3P1Pz + j + ep2 
{pl -1) 

{mod p
3

) -
2 

Multiplying the last two congruences by k and m, respectively, and 

using L e mma "? again, we obtain 
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f (mod p
1
) j - il - 2e + z ( 20) 

i2 - (pl -l f) 
k-2--j+2 (mod p

2
) ( 21) 

i3 
1 . (p -1 

=m-2--J ep2J (mod p
3

) ( 22) 

Now we will show that: for e = f = 0, (18) has (p 1+1) /2 solu

tions; for c = f = 1, (18) has no solution; for e ~ f, (18) has no solu

tion. This will prove that the coefficient of xh is (p 1+1) /2. 

Assume e = f = 0. Then ( 20) gives j = i 
1 

(mod p
1
). Since 

j.::, (p 1-l) and i 1 < p 1 , we obtain j = i
1

. Substituting j = i
1 

into the 

equations (21) and (22), we have 

i2 - (p -1 ) 
k +-il (mod p

2
) ( 23) 

i3 - (p -1 J m +-i1 (mod p
3

) (24) 

Since i l p 2p 3 .::, h, we have 

( 
1 ) l+--

P2P3 

p -1 (pl-1) 
= _1_ + 

2 2p2p3 

Sinc e i 
1 

is an integer, we obtain i 
1 

:::_ (p 1-1)/ 2. Since p 2 = kp
1
+2, we 

have k(p 1 -1)/2 < p 2. Since p 1p 3 i 2 :::_ h, we have 

i < (<P1-1)12) (P2P3+ 1) = 

2 - P1P3 

= 
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Therefore we conclude that (23) is an equality, 

(23 1) 

mp 1p 2-l m(p
1
-l) 

Since p
3 

= 
2 

, we have 
2 

< p
3 

. Since 

p
1 

p 2i
3

.:::, h, we have 

Hence we conclude that ( 24) is an equality, 

(24') 

. (pl-1) 
Since 0 < i

1
.:::, 

2 
, there are (p 1+1)/2 choices of 

values for i
1

. If we can show that for each choice of i
1 

we have 

i 2p 1p
3

.:::, h and i
3

p 1p 2 .:::, h, then we can conclude that (18) has (p
1
+1) /2 

. k(p 1 -1) 
solutions in the case e = f = 0. By ( 23 ') we have i 2 < . Hence 

- 2 
we have 

m(p
1
-l) 

Since we have i
3 

< by (21'}, we have 
- 2 

Next assume e = 1, f = 0: (20) becomes j = i 1 - 2 (mod p
1
). 
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Hence we obtain j = i 1 - 2 if i 1 ~ 0 , 1; j = p 1 - 1 if i 1 = 1 

if i
1 

= 0. For the last two cases we can use (21} to get 

Hence we have 

Hence we have 

i2P1P3 > P1P2P3 -

(pl-1) 
- k 

2 
(mod p 2) ; if j = p 1 - 1 

k(pl -1) 
p ----2 2 

P2 -

kpl P3(P1- l} 

k(pl -1) 
> P2 - --2--

(p2-2)p3(P1 -1) 
= P1P2P3 -2 2 

P1-l P1+l 
+ p 3 (p 1 -1} = p 1 P2P3 - P2P3 = P2P3 -2- + P3(P1 -1) 

2 
> h 

For the case j = i 1 -2: 
P1-l pl-5 

Since i 1 .:S, -
2
- , we have j .:S, -

2
- . We are 

still in the case e = 1, f = 0. Hence (22) becomes 

Hence we obtain 
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(
pl-1 . ) 

i3 = P3 + m -2- - J - P2 

(

p -1 p -5 ) 
> P3 + m + -+ -P2 

= P3 + m( 2 - P2) 

Hence, since m p 1 Pz = 2p3 + 1, we have 

i3P1P2 = P1P2P3 + mplp2( 2 -Pz) 

= P1P2P3+(2p3+1)(2-p2) 

= (P2P3 + l)(pl - 2) + (4p3 - P2+ P1+4) 

> (p2p
3 

+ l)(p
1 

- 2) 

> h 

Hence for e = 1, f = 0, (19) is violated. Hence we conclude that (18) 

has no solution for e = l, f = 0. 

Assume e = 0, f = 1. 
. (pl+l) 

Then from (20) we have j = 1
1 

+ 
2 

Substituting this value of j into (22), we have 

Hence we obtain 

i 3 = p 3 - m(l+i 1) 

> P3 - m(l + P1;l) 

m· (p 1+1) 

2 
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Hence we have 

i3pl P2 
(pl-1) 

= P1P2P3 - mplp2 2 

P1P2P3 - (2p3 + 1) 
(pl+l) 

= 2 

2P1P2P3 - 2P1P3 - 2p3 - P1 - 1 
= 

2 

Assume 

Then we have 

Hence we obtain 

or 

Since p 2 > 2 and p 2p
3 

- 2p2 - 2p 
1 

> p 2p
3 

- 4p2 = p 2(p
3

-4) > 0 we have 

proved that the ine quality ( >~) is not true. Hence we conclude that 

Hence for e = 1 , f = 0 , (19) is violated. Hence (18) has no solution for 

e = l, f = O. 

Assume e = f = 1. Then from (20) we have j = i
1 

- 2 - i 
= i 1 - ~ (mod p 1). Hence we have j = i 1 + (p 1-3)/2. Substituting i nto 

(21) and (22), we have 
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(p -1 p -3 ) 
i3 

1 . -+- P2 (mod p
3

} - m -2- - 11 

- m((l - i 1} - p 2J (mod p
3

} 

Hence we have 

Assume 

Then we have 

Hence we obtain 

But 

P2P3<P1-3} - 4p3 - 2p2 - P1 - 1 > P2P3<P1 - 3} - 8p3 

= p 3 (Pz(P 1 - 3) - s) > 0 sinc e pl> 3 

Hence ( ~:<>~} is not true. Hence 

Hence for e = f = 1, (15} has no solution. This proves that the coef

ficient of xh is (p 1+1)/2, where h = (p1 -1} (p2p
3

+ l} /2. 
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3. 3 Improvement of Bang's Upper Bound 

Theorem 4: Let 

n c x 
n 

where p
1

, p
2

, p
3 

are three dis tine t odd primes. If there exists an 

P1 -1 
integer m such that for each integer k satisfying 1 < k < m < __ + 1 , 

4 
the diophantine inequality 

I kPzP3 + s2P1P3 + s3P1P2 I < P1 - 1 

Pz-1 P3-l 
has no solution in the domain I s 2 I .:s.-2

- - 1 and I s 3 I < 
2 

- 1 , 

then 

G
-(p -1)1 

I en I .:S. - 2 2(m ~ l):J 

Note: The upper bound for I en I does not exceed p
1 
-1. 

The upper bound is equal to p
1 
-1 when m=O. This is the case proved 

by Bang. 

Proof: By Lemma 1 we have 

P1PzP3 
x - 1 1 = 

PzP3 
x -1 
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(
"""' n~(p ~ 

1 

~· ( P2 P3 P2+P3J = L..Ja x LJ x 1-x -x +x 
n . 0 J= 

If we let 

then we obtain 

(
"""' n~ ( P2 P3 P2+P3j = LJb x 1-x -x +x 

n 
:6 

where b = a + a 1 + ••• + a ( l) ' n n n- n-p
1

-
a. = 0 if i < 0 • 

1 

n 
c x 

n 

Since a and b are nonnegative, from (>:(>~>:() we can see 
n n 

that I c I < 2 max I b I . Hence we need to find a bound for max I b I. 
n - n n n n 

Since we need only to consider those c 1 s 
n 

such that 

p -1 
O<i < -

1
-- 1, 

- 1- 2 

p -1 
o < i 2 < -

2
- - 1 , 

- - 2 

p -1 
0 < i3 < _ 3_ - 1 . 

- - 2 

n< 

(25) 

Assertion 1: For a given n .s_ ¢ (p 1 p 2p 3) /2 we have an= 1, 

if n = i 
1

p 2 p
3 

+ i 2p 1 p 3 
+ i

3
p

1 
p 2 has solution; 

+ i 2P 1P
3 

+i
3

p 1p 2 has no solution. 

a = 0, n 

Proof: From its definition, a is the number of solutions of 
n 

(26) 
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Hence to prove the assertion we need to prove that for a given n (26} 

has at most one solution. 

Suppose (26} has two solutions (i
1
,i2 ,i

3
) and (i

1
',iz',i

3
1
). 

Then we have 

(27) 

Hence we obtain 

Since p
1

, p 2 , p
3 

are three distinct primes, we have 

I (p1- 1> 
Since 0 :S, i 1 , i 1 :S, 

2 
- 1 , we also have 

i 1 - i 1
1 = 0 

or 

Substituting into (27), we have 

Hence we obtain 

. ' (p2-1> 
Since O :::_ i 2 , i 2 :::_ 

2 
- 1, we conclude that 

Hence we also have 
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This completes the proof of the assertion. 

From b = a +a 1 + ••• +a ( l) and assertion 1 we con-n n n- n- p-

clude that for a given n.:::, ¢(p
1 

p 2p
3

) /2 the coefficient bn is the number 

of the following equations which have a solution: 

(28) 

where the equations with left-hand side negative are omitted. 

Assertion 2: If two equations in (28) have solutions, their 

values for i
1 

must be differe nt. 

Proof: Suppose not. Then we have 

where if j and 0 < i, j.:::, p
1
-l. H e nce we obtain 

Hence we have 

Since 0 < i, j.:::, p 1 -1, this implies 

i = j 
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a contradiction. This proves assertion 2. 

U . th . l" . 0 . p 1 - l 1 d . 2 sing e inequa ities < i 1 < -- - an assertion , we 
- - 2 

conclude that in (28) there are at most (p
1 
-1) /2 equations which have 

solutions and their values for i
1 

are distinct. We can rearrange them 

according to increasing values of i
1 

a~ follows: 

n-j 
0 

n-j(p -1) 
1 

---- 1 
2 

= 

= 
( 29) 

= 

where ~0 ·i 1·····i+-J is a subset of 0,1, •.. ,(pl-l). 

The coefficient b is the number of equations in (29) which 
n 

have a solution. Hence we have max I bn I .::::, (p1 -1)/2 and I en I .::::, p 1 -1, 

which is Bang's bound. 

Notice that if p
1 

> 3 , the system (29) contains more than 

one equation. 

If we subtract each equation from its predecessor in (29), 

we have 

or 

(30) 

where 

and 
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Hence if (30) does not have a solution, then the maximal 

number of solvable equations in system (29) is reduced to: 

p -1 P1 -1 1 when 
~ ' 2 

is even 

p -1 p -1 
_1_+ 

1 ' when 1 
2. 2 2 

is odd . 

Putting this into one formula, we find that the maximal number of 

solvable equations in system (29) is reduced to 

-[-~] 2 . 2 

If we subtract each equation from its second predecessor in 

( 29) , we have 

(31) 

where 

P2-l 
I s2 I < -2- - 1 and 

Hence if (30) and (31) do not have a solution, then the maximal number 

of solvable equations in system (29) is reduced to 

- [- (pl -1)] 
2. 3 

This process continues. Since there are only(p
1 
-1)/2 equa

tions in (29), we will reach a largest integer m.:::,(p1-l)/4 + 1 such that 

for each k satisfying 1.:::, k.:::, m < (p
1
-l)/4 + 1 the diophantine in

equality 
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has no solution in the domain 

P2-l 
I s2 I < -2- - 1 and 

Then the maximal number of solvable equations in (29) is reduced to 

This completes the proof of this theorem. 
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CHAPTER IV 

THE CYCLOTOMIC POLYNOMIAL F (x) WHERE n IS THE 
n 

PRODUCT OF FOUR DISTINCT ODD PRIMES 

This chapter develops properties of F p
1

p
2

p
3

p
4

(x) , where 

p
1 

< Pz < p
3 

< p 
4 

are odd primes. Theorem 5 gives recursion for

mulas for the cyclotomic coefficients. Theorems 6 and 7 give upper 

bounds for the coefficients de rived from Theorem 5. 

4. 1 A Recursion Formula for the Coefficients 

From Lemma 2 we have 

P1PzP3P4 
1-x 1 1 1 1-x 

P1Pz 
.. = 

1-x 
PzP3P4 

1-x 
P1P3P4 

1-x 
P1PzP4 

1-x 
P1PzP3 

1-x 
pl 

1-x 
PzP3 

1-x 
P1P3 

1-x 
P1P4 

( PzP4) ( P3P4) ( 0 1-x 1-x 1-x 

1-x 
Pz 

1-x 
P3 

1-x 
P4 
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Let 

=~ 

Then an is equal to the number of solutions of n = i
1

p 2 p
3

p
4 

+ i 2P
1

P
3

P
4 

+ i
3

P 1P 2P
4 

+ i
4

p 1p 2p
3

. Now we will prove that: 

has a solution in the range 0 .:::_ i 
1 

.:::_ p
1 
-1 , 

a = 0 otherwise. 
n 

n a x 
n 

It is sufficient to prov e that if a + 0 then a = 1. Suppose not. That 
n n 

is, assume there are two solutions for some n, say 

where (i
1
,i 2 ,i

3
,i

4
) f (i 1',i 2

1

,i 3
1 ,i~) 

specified intervals. Then we obtain 

I 
with i. and i . lying in the 

J J 
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(il -i1'> PzP3P4 + (iz-i2'> P1P3P4 

+ (i3 -i3') P1PzP4 + (i4 -i~) P1PzP3 = 0 . (34) 

Hence 

Since I i 1 - i
1
' I :S, p

1 
-1, we conclude that 

Then (34) becomes 

(35) 

Hence 

Since I i 2 - iz' I :S. p 2 - l , we conclude that 

Then (35) becomes 

Hence 

Since I i
3 

- i 3
1 I :S, p 3 -1 , we conclude that 

Hence we also have 
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(33). 

Let 

If we consider that b 1 s are obtained by multiplying each term in 
n 

with 

we have 

where 0 .:::_ k.:::_ p 2 -l 

b = 0 otherwise . 
n 

Let 

Then we obtain, as above, 

d = 0 otherwise . 
n 

Let N = ( p 2 - l) p 1 + ( p 1 - l) p 3 + ( p 3 - l) p 2 + ( p 1 - l)" p 4 

Nl = (pz-1) P1 + (pl-1) P3 ; N2 = (p3-l) Pz + (pl-1) P4· Write 

(36) 

(3 7) 
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Then we have 

n e x 
n 

b d b d b d l.f 0 _< n < N
1 en = n 0 + n-1. 1 + • · · • 0 n 

e = bN d -N + ... + b -N dN if N 2 :s_ n :s_ N 
n ln 1 n 2 2 

Let 

Then we have 

Hence we obtain 

¢ (pl PzP3P 4) 

:0 
n=O 

n 
c x 

n 

if O<n<N 

Equating coefficients of like powers we find 

co = fo = 1 

c = f - f 1 n n n-
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c = f -f -f 
n n n-1 0 

if 

c = f -f +f -f -f n n n-1 n-(p2p 4+ 1) n-p2p 4 0 
if 

if 

if 

Hence we have the following theorem: 

Theorem 5 : 

polynomial. Let: 

t 
if n = kp 1 

(mod p
3

) and kp 1 .:S. n .:S. kp 1 + ( p 1 - 1) p 3 

b = where 0 .:s_ k .:s_ p 2 -l 
n 

otherwise 

if n = kp 2 (mod p 4) and kp2 .:S. n .:S. kp 2 + (p 1-1)p4 

where 0 .:s_ k .:S. p 2 - l 

otherwise • 



a = n 
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has a positive integral solution 

0 otherwise . 

N = {pz-1) P1 + {pl-1) P3 + {P3-l) Pz + {pl-1) P4 

Nl = {pz-1) P1 + {pl-1) P3 

Nz = {p3-l) Pz+ {pl-1) P4 

e = bN d N + ••• + b 0d n 1 1 n- 1 n 

bN d -N + ••• + b -N dN 
1 n 1 n 2 2 

if 

if 0 < n< N 

if 

Then 

c = f -f +f -f +f 
n n n-1 n-{PzP 4+ 1) n-p2p 4 n-{p3 p 4+ 1) 

where £. = 0 if i < 0 . 
1 

4. 2 Upper Bounds for the Coefficients 

Theorem 6: Adopt the same notations as in Theorem 5. Let 

a. be the maximum number of nonzero a . 1 s for n in the range 
n 

k .::_ n .::_ k + N .::_ ~ ¢{p1p 2p
3

p 4) for any integer k > 0 ; let 



13 = max I e - en- 11 • 
O<n<N n 
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Then 

I c I < 4 as 
n -

Proof: From Theorem 5 we have 

I c I < 4 max I f - f 1 I n n n-

.< 4 max (a N + .•• + a } max I e - e 1 I n- n n n-

= 4 a (3 

FromTheorem 6 we see that the differences between succes-

sive f 1 s keep the values of c 's small. 
n n 

If we consider only the pos-

itive part, we obtain an upper bound for I c I . n 

Theorem 7: Let Fp p p p (x} = ~ c xn be the cyclotomic 
1 2 3 4 n 

polynomial, where p
1 

< Pz < p
3 

< p
4 

are distinct odd primes. Then 

Proof: In equation ( 38} we proved the formula 

where 

~ n '"' i1PzP3P4+izP1P3P4+i3P1PzP4+i4P1PzP3+j1P1+jzPz+j3P3+j4P4 
LJf x =Lix n . 
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1 
W e need only consider those n in the interval 0 _:: n _:: z ¢{p1p 2p

3
p

4
). 

For these n, f is the number of solutions of 
n 

with 

p -1 p -1 p -1 
0 < i 1 < - 1

-; 0 < i2 < - 2
-; 0 < i < _ 3_. 

- 2 - 2 - 3 2 ' 

p -1 
O_::i4 <+; O_::j 1 _::p2 -l; O_::j3 _::p 3 -l; O_::j 4 _::p 1-l. 

To show that I fn I _:: ~ p 1
2 

{p 2 - l){p
3

- l) it suffices to prove 

that for fixed {i
2

, i
3

, j 
3

, j
4

) the diophantine equation { 40) has at most one 

solution {i 
1

, i 
4

, j 
1

, j
2
), because the number of possible choices for 

{ i 2' i 3' j 3' j 4) is ~ p 12 { p 2 - 1){p3 - 1) . 

Suppose { 40) has more than one solution, say 

where 

Then we obtain 
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Reducing this modulo p 2 p
3 

, we obtain 

But ( 42) is equivalent to the sys tern 

(j 1-j1
1

) p 1 - 0 

(j 1-j1
1

) p 1 + (j 2 -j z') P2 - O 

( 42) 

( 43) 

Since I j 
1
-j

1
' I :S, p

2
- l , the first congruence relation in (43) is an 

equality, i.e. , {j 1-j 1') p 1 = 0. Hence the second congruence in ( 43) 

becomes 

Since I j 2 -j z' I < p
3 

-1 , the above congruence is an equality. Hence we 

conclude that j 
2 

= j 
2 

1 
, and ( 41) becomes 

Hence 

we also have i
4 

= i~. Thus, for fixed (i2 ,i
3
,j

3
,j

4
), (40) has at most 

one solution. Therefore we obtain the inequality 

Since I c I < 4 max If I , this gives us the upper bound 
n n 
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CHAPTER V 

THE CYCLOTOMIC POLYNOMIAL F (x) WHERE m 
m 

IS A PRODUCT OF AN ARBITRARY NUMBER 

OF DISTINCT ODD PRIMES 

If m is a product of more than four distinct odd primes, the 

formula for F (x} in Lemma 2 and the method depending on this lem
m 

ma are no longer applicable. This chapter contains results of a dif-

ferent type for F (x ) , where m is a product of an arbitrary number 
m 

of odd primes. 

5. 1 A Partition Function and Its Generating Function 

Let S denote the reduced residue system modulo m. Let 
m 

s 
1 

.::, s 2 .::, s 
3

.::, ..• .::, s ¢ (m} be its e l ements , chosen to lie in the interval 

l<s.<m. 
- 1-

We define p{k, m, n} to be the number of ways that an integer 

k can be partitioned into sum of n distinct members of S . 
m 

theorem. 

A generating function for p{k, m, n} is given in the following 

Theorem 8: 6 
s 

m 

n 
II 

.l= 1 

k.t k 
x = 6 p{k, m, n}x • (44) 

Proof: Consider the coefficient of 
k 

x. From the l e ft-hand 

side of {44) we see that the coe fficient of xk is equal to the number of 
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ways that k can be partitioned into sum of n distinct members of S , 
m 

which is exactly p(k, m, n). Hence (44) is an identity. 

5. 2 Connection Between p(k, m, n) and the Cyclotomic Coefficients 

Theorem 9: Conside r the cyclotomic polynomial 

F (x) = 
m 

¢(m) 
~ (-1) n c x¢(m) -n 

n n=O 

where m is a product of t distinct odd primes. For any n .:S, ¢(m) let 

K 
n = s¢(m) + s¢(m)-1 + · · · + s¢(m)-(n-l) 

where s¢(m), s¢(m)- l' ..• , s¢(m)-(n- l) are the largest n elements of 

the reduced residue system modulo m. Then we have 

en= df m [~~d}~: m)p(d,m,n~ µ(:;)] 

Proof: We shall use the following well- known formula: 

:6 exp(2nik) = µ.(m) 
k mod.m m 
(m, k) =l 

From the definition of the cyclotomic polynomial we have 

F (x) = 
m 

II 
(J,, m) = 1 
J, mod m 

( ( znu,~"'\ 
x - exp --mJJ 

From the hypothesis of the theorem , this is equal to 

¢(m) 
:6 (-l)n c x¢(m)-n 

n 
n=O 



Hence we have 

c = 
n 

54 

{ 45) 

where the s. are the elements of S . 
i m 

2ni.l /m 
Since e is periodic with 

period m, we can write 

c = n 

m-1 
6 

k=O 

2nik 

a{k) e m { 46) 

Collecting the terms e Zni.l /m with .l = k {mod m) and .l < K 
- n 

2ni1./m . 

we see 

that the coefficient of e is p{.l, m, n) , so we have 

a{k) = 6 p{.l, m, n) { 4 7) 
.l=k {mod m) 

1.< K 
- n 

From { 46) we see that 

~ 
2nik') 

c = 6 6 b(d, m, n, k
1

) e -:rnr<f 
n dim k

1 
mod m/d 

{k
1

, m/d)=l 

{ 48) 

where 
I I 

b{d, m, n, k ) = a{k d) . 

· I I 
We will prove that b(d, m, n, k ) is independent of k . 

It can be seen that if we replace e Zni /in by e Znik/m with 

(k,m) = 1 we get the same set of primitive mth roots of unity S . 
m 

Since c is a symmetric function of the elements of S from (45), 
n m 

th . h . .f 1 2rri/m b 2nik/m .th ere is no c ange in c i we rep ace e y e w1 
n 

{k, m) = 1. We can also prove that the set 
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{ 

2nik
1 

m/d e . , (k I, r;;) : 1 , I m} k modd 

2ni/m 2nik/m 
is invariant under the replaceme nt of e by e with 

(k,m) = 1. 

. 2ni/m 2nik/m For d = 1; if we replace e by e then 

b{ l, m, n, 1) plays the role of b{ 1, m, n, k) . Hence we have 

b(l,m,n, 1) = b(l,m,n,k) 

If we let k go from 2 to m with {m, k) = 1 , then we obtain 

b( 1, m, n, 1) = = b( 1, m, n, k) 

where (k,m) = 1, k mod m. Let us write b(l,m,n, 1) = b(l,m,n). 

Then we have 

2nik' 

~ b(l,m,n,k1
) e m 

k
1 

mod m 
(k

1
, m) = 1 

= b ( 1, m, n) ~ e 
k' mod m 
(k1 ,m)=l 

2nik
1 

m 

2ni/m b 2nik/m For d > 1; if we replace e y e with (m, k) = 1, 

then b(d, m, n, 1) plays the role of b(d, m, n, k). Hence we have 

b{d, m, n, 1) = b(d, m, n, k) 

If we let k go from 2 to m/d with (k, m/d) = 1 , then we obtain 

b{d, m, n, 1) = = b(d, m, n, k) 

where (k, m/d) = 1, k mod m/d. Write b(d, m, n, 1) = b(d, m, n). Then 

we have 
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2nik
1 

2nik
1 

"'\"' I m/d 
LJ b(d, m, n, k ) e = b(d ) """' em/d ,m,n LJ 

k mod m/d 
(k

1
, m/d)=l 

· k mod m/d 
(k

1
, m/d)= 1 

Hence (48) b e comes 

en= :0 b{d,m,n) 
1 

:0 em/d ~ ( 

2nik

1 )j 
aim k modm/d 

By the formula 

we obtain 

{k
1

, m/d)= 1 

2nik
1 

:0 e mrcr = µ. (r:) 
k

1 
mod m/d 

(k
1

, m/d)=l 

c 
n 

= 6 b{d, m, n) 
aim 

But b{d, m, n) = a(d) by {48), so we have 

By ( 46) we have 

c = n 

c = 
n 

6 a(d) µ.(r:;) 
aim 

5. 3 An Upper Bound for the Coefficients 

Theorem 10: Consider the cyclotomic polynomial 

r. 



F (x) = 
m 

57 

¢{m) 
6 

n=O 

n c x 
n 

where m is a product of t distinct odd primes. Then we have 

I c I < z<ti <m> 
n ( 

22n)( 24n) ( 2( ¢ {m) ) 2n) cos ill cos ill . . . cos -z - i -m 

Proof: Since F (x ) 
m 

is analytic, we have 

F(n) (0) 
n! f F {z) 

m dz = n+l m 2ni z 
lzl=l 

Therefore we obtain 

Hence we have 

n! f F (z) 
n! 

m c = n+l n 2ni z 
I zl =l 

I cnl ~;TT f 
I zl =l 

F (z) 
m 
n+l z 

dz 

dz 

< 2~ max IF m(z)I 2n 

I zl =l . 

max IF {z)I 
I zl =l m 

To complete the proof we will show that 

( 49) 
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From the definition of F (x) we see that 
m 

F (x) 
m 

( 
2nki) 

= II x-em 
(k, m)=l 

Therefore we obtain 

IF (z) I = m 
II 

(k, m)=l 

2:d I 
z - e 

Hence we have 

2nki 

max IF (z)I = max II 
I z I = 1 m I z I = 1 (k , m) = 1 

z - e 
m 

(50) 

(51) 

We therefore see that max IF (z) I is equal to the maximum of the 
I zj =l m 

product of the lengths of the segments between z on the unit circle and 

2nki/m e with (k, m) = 1. We consider a half unit circle 

A 0 B 

Figure 1 
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2nik / m ¢ (m ) 
Writ e C k as the point e for k = 1, 2, . .• •-z- - 1. 

W rite 

¢ (m ) 1 
- 2- -

p = 2 IT 
k =l 

where I A C k l is the le ngt~ of ACk • 

S i nce the a ng l e L BAC k = 2nk/m, we h ave 

Hence 

¢ (m ) 

= 2 cos 211k 
m 

p = 2-
2
- ( co s ~) (cos !:) .. . (cos (¢ (~) - i) ~) 

We therefore h ave 

The probl em now reduces to showin g that 

2nik 

I1 m 2 
max z - e < p 
I zl = i (k, m )=l 

Con sider 

TI 
(k,m)=l 

I 2:k 1 z - e 

It is a c ontinuou s function of z. Let z
0 

b e the point suc h that 

2nik 2nik 

II z0 - e 
(k,m) = l 

m 
= max I1 

I z I= i (k, m ) = i 
z - e 

m 

( 52) 

(53) 

(54) 
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C1 

Z O -+-------------+B 

Figure 2 

We draw a diameter z
0

B . L et 

2nik 

Tl number of m with (k, m}=l and = e 

are on the"upper half closed circle. 

2nik 

T2 = number of e m with (k, m)=l and 

are on the lower open half circle. 

Then we have T 
1 

+ T 2 = ¢ (m) . 

iSO 
Let B = e Write 

2ni.l + e 

l .S: k,::::m, 

l .S: k.S: m, 

c 1. 
m 0 for 1. 

m 
= e = 1, 2, ... '4 

-2n i1. + e 
c 1. 

I m 0 
= e 

Then we have 

I1 
(k, m )=l 

2nik 

Z - em 
0 

for £, 
m 

= 1,2, ... ,4 

which 

which 

(55) 
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where I z 0 c ..e,I is the length of z 0c ..e,' and I z 0C~I is the length of 

T1 + T2 
z

0
c ~ • Say T 1 ,:::. T 2 , then we have T 2 .::::_ 

2 
Thus we see that 

Hence we have 

zocT l+T 2 < I zoc~ 21 

2 

ZOCT +T < I zoc~2+1I -
1 2 +l 

2 

IZOCTl-11 
< z c' - 0 T 1+T 2 

2 
-1 

But by (52) we see that 

Combining this with {54), (55), and (56) we have 

max II 
I z I = 1 Ck, m> = 1 

I 2~kl 
z - e 

2 < p 

This proves (53) and also completes the proof of Theorem 10. 

(56) 
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