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ABSTRACT

The resolution of the so-called thermodynamic paradox is presented
in this paper. It is shown, in direct contradiction to the results
of several previously published papers, that the cutoff modes
(evanescent modes having complex propagation constants) can carry
power in a waveguide containing ferrite, The errors in all previous
"proofs' which purport to show that the cutoff modes cannot carry
power are uncovered, The boundary value problem underlying the
paradox is studied in detail; it is shown that, although the solution
is somewhat complicated, there is nothing paradoxical about it,

The general problem of electromagnetic wave propagation through
rectangular guides filled inhomogeneously in cross-section with
transversely magnetized ferrite is also studied, The problem is split
into TE and TM parts and scalarized, Application of the standard
waveguide techniques reduces the TM part to the well-known self-
adjoint Sturm Liouville eigenvalue equation., The TE part, however,
leads in general to a non-self-adjoint eigenvalue equation, Tihis
equation and the associated expansion problem are studied in detail,
Expansion coefficients and actual fields are determined for a partic-

ular problem,
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GENERAL INTRODUCTION

The original objective of this resecarch was to resolve the
"thermodynamic paradox,'" an apparent inconsistency associated with
the propagation of microwaves in guides containing magnetized
ferrite slabs, It soon became apparent that the study of propaga-
tion in such guides leads to mathematical forms quite different
from those obtained in the usual waveguide problems. Although
many investigators have determined the modes that may exist in
ferrite loaded guides, no one has been successful in finding linear
combinations of these modes that would solve any fundamental problem,
For éxample, given the electric and magnetic fields at one cross
section, no one to date has mathematically determined the resulting
fields at some other cross section.

As the research progressed it became apparent that the nature
of wave propagation in ferrite loaded guides is not completely under-
stood, If such propagation were completely understood, there would
be no paradox. For this reascn, it was decided to first study the
general theory of wave propagation in ferrite loaded guides. It
was felt that the development of such a theory would provide a
firm foundation with which to attack the thermodynamic paradox, as
well as to help clear up many of the associated misunderstandings.

This paper is divided into two parts. Part I develops the

general theory of wave propagation in guides filled inhomogeneocusly



in cross section with transversely magnetized ferrite material.
Part II considers the particular case of the thermodynamic paradox.
Only original work is included; references are given for

previously obtained results necessary for the development,



PART I - THEORY OF GUIDED WAVE PROPAGATICN IN

ANISOTROPIC MEDIA

0.0 Introduction

During the past fifteen years the electrical engineering
journals have been flooded with papers considering the propagation
of waves through guides containing anisotropic materials. Two most
pertinent papers are those by Suhl and Walker (1) and VanTrier (2).
A more complete listing of papers is given in the bibliography. In
this paper we will not be concerned with the many details presented
in this great mass of literature. We will simply summarize the past
research by stating that most of it is concerned only with deter-
mining the modes of propagation, In general, no attempt has been
made to find what linear combinations of the modes yield electric
and magnetic fields satisfying any waveguide boundary value problem,
In some cases the determination of the required linear combination
is trivial. However, when the anisotropic material fills the guide
inhomogeneously, the determination is very difficult. Except for a
few special cases, no one to date has determined the linear combin-
ations of modes satisfying any given boundary conditions for guides
which are inhomogeneously filled. In this part we will study the
mathematical peculiarities of these problems which make them so much
more difficult than the standard waveguide problems., Our ocbjective

will be to provide the necessary mathematics to understand problems



of this nature and to provide a foundation with which to attack the
problem of the thermodynamic paradox.

In the study of wave propagation through materials made aniso-
tropié by the application of a biasing field, the biasing field is
usually considered either parallel or perpendicular to the direction
of propagation. We will consider the application of a biasing field
perpendicular to the direction of propagation of a wave traveling
between two parallel plates, In order to keep the mathematics as
simple as possible without eliminating any of the peculiar phemocmena
which we wish to observe, we will also assume that the constitutive
parameters do not vary alongdthe direction of the applied biasing
field., We have chosen this problem for the following reasons:

1. As may be seen from the literature, this problem is of

wide interest. In particular, the thermodynamic paradox
is an excellent example of the interest in this problen,

2. The mathematical formulas parallel those for cylindrical

guides biased longitudinally with parameter variations
only in the radial direction. Thus, the results may be
applied to such cylindrical guides as well,

3., Little could be gained at the present time by considering
more complicated problems.

Our analysis will assume a scalar electric permittivity and a
tensor magnetic permeability. It should be noted, however, that

the results can very easily be extended to problems in which the



magnetic permeability is a scalar and the electric permittivity
is a tensor (magnetically biased plasma).

This part begins with a mathematical formulation of the
problem to be considered, i.e., Maxwell's equations and the appro-
priate boundary conditions, It is shown that the propagation may
be split into TE and TM modes. The TM modes do not lead to
interesting results., An investigation of the TE modes, however,
leads to the study of a non-self-adjoint eigenvalue equation. The
eigenfunctions (the waveguide modes) of this equation are not
orthogonal and hence the usual waveguide techniques, which may be
used on the TM modes, break down completely. A major portion of
this section is devoted to finding new methods which can be applied

to the TE modes.



1,0 Statement of the Problem

The analysis presented in this paper will be based on Maxwell's

equations in a source free region,
v xE=iwB 5 |

VXxH=-iwd (1.2)
: -iwt | .
where the time dependence e is assumed and the vector fields

D and B are related to E and H respectively through the constitu-

tive parameters

D = €E {1.3)

1]

B=p.H , (1.4)

The region of interest will be that confined by two perfectly
conducting parallel plates of infinite extent, The x axis will be
chosen perpendicular to these plates, and the problem will be
assumed normalized such that the plates intersect the x axis at 0
and 1. See figure 1l.1. The region between the parallel plates
will contain a ferrite material biased by an external magnetic
field, H,, applied in the y direction such that the permeability, U,
will be a temsor of rank two., The elements of the permeability
tensor will be permitted to be functions of the x coordinate. The
permittivity, € , will be assumed a scalar constant. In order to

make the problem two dimensional, no variations in the y cocrdinate






d
will be permitted,-g— = 0 . Under these restrictions, Maxwell's
y
equations become
Vx E (x,2) = iwu(x) « H (x,2) (1.5)
Vx H (x,z) = - weE (x,z) (1.6)

where the permeability u(x) is given by

V1 (x) 0 iva (x)
gzx) =v(x) = 0 vy (x) 0 (1.7)
-iva (x) 0 vy (x)

where -1 denotes the matrix inverse and wherev; (X) ,v, (3},
and ua(x) are given real functions whose values depend on the
properties of the ferromagnetic material, the operating frequency,
and the amplitude of the external biasing field, H,.

The objective of this paper is to solve equations 1.5 and 1.6

subject to the following boundary conditiomns:

I
(=]

E;(0,2) =
' i=vy,.z (1.8)

[
o

Ej {1,z)



where

Ej(x,z) = E(x,z) °* éj
and éj (7 = x,y,z)is the unit vector in the j direction, In
addition to conditions 1.8 there must be boundary conditions in z

indicating the means of excitation. These additional conditions

will be discussed later at a more appropriate time.



10

2,0 Scalarization - Splitting into TE and TM Waves

The coupled vector differential equations 1.,5-1.6 subject to
the boundary conditions 1.8 cannot be solved directly. It is first
necessary to find some means of scalarizing these equations such
that they may be reduced to one or more scalar differéntial
equations. We will now show that the coupled vector cquations may
be reduced to two independent scalar equations in which the unknown
scalar functions are Ey and Hy

In component form equation 1.5 becomes

9L BEY
Hy =vy §z *tive §x
. | 1 BEX aEZ
Hy = fw| Yds “Yizx ; (2.1)
1 V a——'—Ey + V BEY
H, 1Vv2 = 1 3%
Equation 1.6 becomes
i _ ol
zx Sz
«1 Aty - dlg
Ey = e 32 5 X . (2.2)
SHY
E
L - L, —
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Substituting equation 2.2 into equation 2.1 yields

; 32Hyx 921, S 3 e 32Hy  9%il, ; -W
-V - + iv -
Hx A 3z 2 9X3z 2 X0z 3 x%
1 921, 9%u
B | o | 5, e v
y wle 3z2 a2
" ) 32Hx  92lig 3%Hx  32liz
g 1 ——— 0 —— + v -
A | V2l 57 T 5% ) 1 (57 "5 )
Substituting equation 2.1 into equation 2,2
8, DB,
Ey + vy ( -—)
3xX3z 322
, 1 3 3E, 3 8By 3 3B, 3 3Ly
E = wmpree | L e—— V] +lg——-U2-—-—-- ] —— Vz—-_ — V] m—
y weE oz dz 9z ©3x Ix “3z 3X T9x
3 pEx 8 3E,
Bz 3 3 3z T 3% 3 O3X
L7 || .

Consider waves which have no z component of electric field,

transverse electric (TE). Substituting Ez = 0 in equation 2.4

yields
vy (x) 82E,
S P
9 3E
X .
0 = ——-Va(X) .5—7.—

oxX

(2.3)

(2.4)

(2.5)

(2.6}
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Equations 2.5 and 2.6 are consistent only ifla =z 0 for the follow-
ing reason.

Differentiation of equation 2.6 with respect to z yields

3 BZEX
0= SEMBBZZ ' b
32E.

X ; : 3 5
Solving equation 2.5 for >— and substituting this value into

-
o

equation 2.7, we obtain

9
0 =—E
dx X
or 2
E, = P(z)

where P(z) is an arbitrary function of z. Using this expression

of E

x in equation 2.5 and rearranging,

w?e - d?p(z)
V3 (x) T dz2

. (2.8)

Under the assumption that v_ is a function of x and is not a

3

constant, equation 2,8 can be valid only if P(z) = 0 . Hence Ex_z

and equation 2.4 reduces to

1 9 R . 9 JE 3 3E 3 3E
E, = = = v1 Y oi v, y--i——\az—l---\a 4
Y w2e az 3z dz ax ax 3z ax lax

)

0

>

(2,93



TE wave propagation may thus be described by the scalar
differential equation 2,9, The associated magnetic field may be

derived from the scalar function E_, using equation 2,1

¥
] [ = &y
-V # IV, e
By o 2%
_ 1
H I 0 2,10
4 iw ( )
3E 3E
. ¥ ¥
H v +t v, — .
| = Ll 23z 1ox |
It may be shown in a like manner that H, 2 0 implies Hy = 0

and thus wave propagation having no z component of magnetic field,
transverse magnetic (TM), may be described by the following scalar
di fferential equation

v 221 92H
3 Yy, Y
ax2 g3z?2

I (2.11)

The associated electric field may be derived from the scalar function

H_ using equation 2,2

y
ot
B -5
1
Ey| = - — 0 (2.12)
iwe -
1 }’ =
bz | | X

*See Appendix A
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In the preceding we have shown that wave propagation having
no z component of magnetic field (TM) may be described by a sincle
scalar differential equation; wave propagation having no z component
of electric field (TE) may be described by another scalar differ-
ential equation. An arbitrary wave having z components of both
magnetic and electric fields may be considered as the sum of two
waves, one having no z component of electric field, and the other
having no z component of magnetic field. Thus, the general problem
of wave propagation between our parallel plates may be divided into
two separate problems: one involving the scalar function Ey; the

other, the scalar function Hyl In the next two chapters we will

consider each of these problems,
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3.0 TM Wave Propagation

We have shown that the study of TM wave propagation between
our parallel plates reduces to the mathematical problem of solving
the scalar differential equation 2,11 subject to suitable boundary
conditions. As may be seen from the form of this equation, with
the exception of one minor detail ( vy is a function of the
variable x), TM wave propagation between our parallel plates gives
rise to the same equations as the classical problems concerning
propagation through homogeneously filled guides. Although our
objective is to present only original work in this paper, we will
briefly demonstrate the application of the classical methods to
the TM problems in order to (1) help define the notation which
will be used throughout the remaining parts of this paper, (2)
refresh the reader's memory of the classical methods so that the
significance of the slight differences between the TM and the much
more complicated TE problem will be immediately apparent, aﬂd
(3) make the discussion of propagation between parallel plates
complete,

Separation of variables suggests we seek a solution of the
form |

H(x,2) = £(x) e (3.1)
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Using equations 1.8, 2.12, and 3.1, the boundary conditions on

f(x) become

=0 (3.2)

2 2
.c.l.._§.+ i f = h2f (3:3)
dx v3(x) :

In operator notation the problem becomes

ME = Af A =h2
df _ df =0 (3.4)
dxly = ¢ dxly o1
d® w?e
+

M=
dx? v3(x) "

Defining an inner product
(£,2) = sl £(x) g(x) dx, (3.5)
o}

it is immediately apparent that problem 3.4 is the classical self-

adjoint Sturm Liouville boundary value problem since
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(Mf,g) = (£, Mg) (3.6)

for arbitrary continuous functions f and g, As shown in the
standard references on such problems,

1, There is an infinite set of square-integrable
functions (£ } (n = 1,2,...) each solving problem
3.4, Associated with each of these functions
(eigenfunctions) is a distinct and real value of
An (eigenvalue),

2. The infinite set {f } forms a complete set for the set
of bounded continuous functions defined on the inter-
val [0,1]; a set {an} exists such that

lim l Rx) - ? a, f,(x) l =0
N> e i '
uniformly for any function F(x) continuous on [0,1] and
satisfying the boundary coﬁditions of problem 3.4,
3. The fn may be normalized such that they are orthonormal

under the inner product 3.5,

(f., £:) = 6..={

ar ij 0 i#j '

We will now apply these three properties of the Sturm Liouville
problem to determine Hy[x,z). In the usual manner we assume

ihnz
Hy(x,z) =L a, f, e 3.7)
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where the summation extends over all possible f,, h, and the expansion
coefficients a, are to be determined such that Hy(x,z) satisfies some
given boundary conditions in z.

Since \n= hnz is real (property 1), we know that each fj has

two associated values of h, (YA, and - v/ ), ). Thus for each
ihgz

-il
apfje under the summation 3.7, there is also a term a,f,e T 2 .
The sumnmation 3.7 may therefore be written as
X,z - Nz
ly(x,2) = T (ape "™ +bye ) L0 (3.8)

where the fn and An under the summation are now all distinct, With

the expansion for Hy "split" in this manner it is very easy to deter-

mine the expansion coefficients ap, bp. For example, given

Hy(x,o) = 0, equation 3,8 would require

0= 1 (ag +Dby) £,(x) . (3.9)
Us ing property 3, equation 3,9 implies a, = - by . Equation 3.8
becomes
. ifihz -iv Az
Hy(x,z) =La; (e -e ) £,(x) . (3.10)

If we were also given‘Hy(x,Q), equation 3,10 would require

_ i -id AR
HyCX.P«J =1z a’n( e - e ) fn(x) . (3-11)
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Using property 3 again, equation 3.11 requires*

(Hy (X)E')a fn x))
oiVAnt _ o=ivAn2

a
n

(3.12)

and thus the expansion coefficients a, , b, have been determined
such that the summation 3,8 converges to satisfy boundary conditions
at z = 0 and z = ¢ ., The proposed solution must then be justified in
the usual manner,
The important point to keep in mind is that the determination
of the expansion coefficients was trivial for the following reasons:
1, Expansion 3,7 could be "split'" into the form of equation 3,8
such that the application of the boundary conditions at
one z yielded a very simple relationship between the
expansion coefficients (a, = - b,).
2, The completeness of the set {f } guaranteed the existence
of expansion coefficients {a } such that equation 3,11
could be satisfied for arbitrary continuous Hy(x,z).
3. The fact that the f;; were orthogonal made the evaluation
of the expansion coefficients of equation 3,11 trivial,

In the next section TE wave propagation will be considered, and

it will be shown that:

: .. i/ge -ivp2 ,
*We assume here that (H,(x,2), £,) = 0 if e n* = e n If this

is not the case, loss must be inserted to obtain meaningful results.
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1. The expansion for the scalar function cannot, in general,
be "split" into the form of equation 3,8; hence, the
application of boundary conditions at one z does not yield
simple relationships between the expansion coefficients,

2. The completeness of the associated eigenfunctions or modes
is questionable,

3., The associated eigenfunctions or modes are not orthogonal,

Thus the preceding steps used for solving the TM problem break down

completely,
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4,0 TE Wave Propagation

4,1 Introduction

We have shown in chapter 2 that the study of TE wave propagation
between our parallel plates reduces to the mathematical problem of
determining the solutions of equation 2,9 subject to boundary con-

ditions 1,8,

1 d oE 3 9E, 3 E, &  oE
E,(x,2) ==—5— (- —wvy L fem vy = =iee v s — L (4.1a)

Y w?e oz 32 3z ax ax 3z 53X T ax
Ey(x,2) | - = Ey(x,2) | = 0, (4.1b)

x=0 x &k
For separable solutions of the form”
ihz

Ey(x,z) = f(x) e s (4.2)

the partial differential system 4.1 reduces to an ordinary differ-

ential system,

d df

dv
— vy —+ (2 - h2v, - h—2) £(x) = 0 (4.3a)
dx dx A dx
£10) = £01) = D . (4.3Db)

*The f and h used here are not related to those of the previous section,
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Our task is to study the solutions of system 4.3. Except for

dv
the nresence of the factor h—— , equation 4,3a does not appear to
, dx
differ greatly from equation 3.3 governing TM wave propagation. In
dv
fact, if —— and v;(x) are linearly related, system 4.3 reduces to
dx

the classical Sturm Liouville problem,

4,2 Special Case

Before attempting to study system 4,3 in its most general form,

we will pause to consider the special linear case

dv2
— KVICXJ (4'4)
dx =

where K is a real constant (zero or non-zero), For this case,

system 4,3 becomes

1 d df  w?g
e — ——— f f— 2 -
Sl R +u1(x) (h2 + hK) £(x) (4.5)

£(0) = £(1) = 0,

or in operator notation,

Nf = Af " A = h? + hX

(4.6)
£(0) = £(1) =0
where
1 d d we
NEe———v}; —+ g

vy dx dx vy



System 4,6 is Sturm Liouville under the inner product defined

by
1
(£,8) = 7o v (X) £0x) g(x) dx 4.7)

Hence, we know that the eigenfunctions {f,;} form a complete set
in [0,1] for all bounded continuous functions satisfying the boundary
conditions 4.3b, the eigenvalues A are real, and the eigenfunctions are

orthogonal under the inner product defined by 4.7. Thus we may write

ih,z
Ey(x,z) =L a; f,(x) e ‘ (4.8)
By definition :
A =h2 + hX
or
kE £K2 + 45y
h, == . (4.9)

2

Thus if X2 # -4)  (n = 1,2,3,..., ), there are two values of h,
associated with each eigenfunction f, , and the summation 4.8 may

be '"split" into the form

. . . K
+iR_z -iR_z -i z

Ey(x,z) =1 (aye + bpe ) & £, (x) (4.10)

where
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In this form it is apparent that the coefficients a,, b, may
be obtaineé in the usual manner as described in chapter 3, By
specifying boundary conditions in z such as Ey(x,o), Ey(x,z), the
coefficients aj,u, may be obtained easily using the completeness
and othogonality properties of the {fh} . It is apparent that
the application of the boundary condition at one given z(z = g)
immediately yields a simple relationship between each ap and by .
That is, if Ey(x,2) is given, then

+i(Rp- K/2)2 -i(Rp + K/2)2
ap e + b, e = ¢ (4,11)

where
Ch = (EY(X,R,), fa(x)) .

There are several things here which are interesting to note,
First, the propagation is reciprocal for K = 0 (v, independent of x),
For K = 0 equation 4,10 becomes

+i/§;z -i/ihz
Ey(x,z) = I ( ae + by e ) £4(x) (4.12)
Just as in the case of an empty guide or an inhomogeneously filled
isotropic guide, any given mcde f;; has two possible propagation
constants, JT; and - /i; <

Second, it is interesting to note that for some values of K # 0

it is possible for the two propagation constants associated with

any £, to be real and have the same sign, That is, for
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- (g)z <a < 0 (4.13)

equation 4,10 becomes

iPlz ipzz
Ey(x,z) = ( aj e + bj e ) fj(x)

(4.14)

N =

+ e + e e
ngj (ay n )

z
fh(x)

where Py and P; are real constants having the same sign. One might
iPlz iPzZ
think that this implies the wave aj e fj and the wave bj e fj
represent two waves traveling (carrying power) in the same direction.
It may be shown, however, that the direction of power flow and the
sign of the propagation constant are unrelated, The direction of
power flow depends on the sign of the derivative of the propagation
constant with respect to @ , The derivatives of P; and P; are such
iPlz iPzz
that aj e fj and bj e fj carry power in opposite directions.
A third interesting point to consider is the case where some

eigenfunction fj has only one associated propagation constant. This

occurs if

Rj = 'éz + Aj= 0 (4.15)

or
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For this cése, equation 4,10 would become

-i%—z
Ey(x,2) = aj e fj(x)
(4.16)

iRz -iR,z -iz z
(ap e + by e Ye 2 £,(x) .

Suppose for this special case of K = £ 2v- Aj one attempted to find
the coefficients a, , by such that Ey(x,o) = 0 and Ey(x,l) is a
given function, Applying the properties of the Sturm Liouville

functions f; , the boundary condition Ey(x,o) = 0 implies

a. =20 4.17)

Applying the boundary condition at z = £ then requires

K
iRy ~iRp% -izg
) = L -
Ey(x,) ¥ a, (e e ) e () . (4.18)

Clearly a set {a,} satisfying equation 4,18 can exist only if

Ey(x,i) is normal to fj ; that is, if
(By(x,2), £5(0 ) =0 . (4.19

If (Ey(x,g), fj(x) ) # 0, loss must be inserted into the system
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in order to obtain meaningful results,”
Our preceding work concerning TM wave propagation and the
dv,
special cases of TE wave propagation defined by I = Kv, (x) may-
be summarized by the following statements:

1, The coefficients apn , bn of the modal expansion may be
obtained directly and easily using the Standard waveguide
techniques.,

2. The success of these methods is based on the fact
that the modes fn come from a Sturm Liouville system,

and the expansion may be '"split" since each mode has

two associated propagation constants,

*

The single mode f; in expansion 4,16 does not correspond to the
unidirectional mo%e in the thermodynamic paradox considered later;
the former does not carry power, while the latter does.
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4,3 General Case

In order to complete the general description of TE wave propaga-
tion between our parallel plates, it remains to consider the general
d\)z
solution of system 4,3 with— #Kv,(x) . For our general discussion
dx

we will write system 4,3 in operator notation

Ly fo(x) =0
£, (o) = f,(1) =0 (4.20)
d d dv

- 2 2 2

E e V] (X) e + W€ = h © v; = R ’
= n" V1 = P

dv,
It is immediately apparent that for — # Kv_ , the problem
PP : dx 1

cannot be written in the Sturm Liouville form,

0f, = P(h,) £,

£.(0) = £,(1) = O

(4.21)

wherce P(hn) is a function of hn only and O is an operator contain-
ing.only the variable x, The operator Lp = Lp(x,hp) contains the
eigenfalues h, such that the problem cannot be written in the form
of system 4,21, System 4,20 is non-self-adjoint; that is, an inner

product cannot be found such that

(Lf, g =(f, Lg) (4.22)

*
for arbitrary bounded, continuous functions f and g in -C2,

*Some authors have erroneously concluded that system 4,20 is self-adjoint
by overlooking the fact that equation 4.22 must be valid for ARBITRARY
f and g (27).
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The properties of the self-adjoint system 4,21, namely the
completeness and orthogonality properties of the eigenfunctions,
may not be valid for the non-self-adjoint system 4,20, The
eigenfunctions of non-self-adjoint ordinary differential systems do
not always form a complete and orthogonal set; solutions cannot
always be expanded in a series of the eigenfunctions,

Non-completeness of the eigenfunctions of a non-self-adjoint
system is not an unusual occurence of interest only to the mathe-
maticians. The eigenfunctions of ordinary differential systems
describing very simple physical problems do not always form a complete
set. An excellent example of such a problem is given in a paper by
D, S. Cohen (3). Cohen considered the physical problem of diffrac-
tion by a perfectly conducting circular cylinder of radius o of a
wave produced by a source distribution F(r,s). The problem was to find

U(r,o) such that

v2u + k%u = F(r,0)
u(@,8) =0 (4.23)
lim | rl/2 ﬂfi - iku) | = 0 (Radiation Condition)
) dr

where k is a real non-zero number. Applying separation of variables

to problem 4,23 yields

a2 4
d o

+ 22 09 =0 (4.243)
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0(8) = 0(8 + 2m) (4.24b)
and
d2R 1 dr 2 AZ)R i 4.95
—_—f = + (k% - — = .
dr2 r dr ( T2 ( 58)
1im dR
RY2 (—_-4km ) =0 (4.25b)
o dr
where

U(r,8) = R(r) o(8)

The usual method of solving the diffraction problem is to
expand the solution in a series of eigenfunctions of system 4,24,
One would expect that the solution could as well be expanded in a
series of the eigenfunctions of system 4,25, That is, since both
systems 4,24 and 4,25 are obtained by applying separation of vari-
ables to system 4,23, it would seem that their eigenfunctions should
be equally suited for expanding the solution of system 4,23, Notice,
however, that system 4,24 is self-adjoint, but system 4,25 is non-
self-adjoint because of the boundary condition 4,25b, Cohen studied
system 4,25 and found that there exists radial eigenfunctions

&Y

1 (kr) (n = 1,2,...) with complex eigenvalues An . He made a
A
n

detailed study of these eigenfunctions and showed that they do not

form a complete set, That is, the expansion
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% ap u{") (kr) (4.26)

By = nzlan
is impossible for a large class of reasonable functions £(r), and in
fact solutions of system 4.23 may not always be expanded in a series
of the eigenfunctions of system 4.,25.

The point which we are trying to make clear is that the
eigenfunctions and eigenvalues of our non-self-adjoint system 4,20
describing TE wave propagation may differ greatly from those of the
Sturm Liouville system 4,21, As demonstrated in Cohen's work, the
eigenfunctions of non-self-adjoint systems associated with physical
problems do not always form a-complete set, Thus, the classical
method of expanding the fields in a series of eigenfunctions and
then determining the expansion coefficients by the boundary conditions
in z, as we did for the case of TM wave propagation, can be carried
out only formally, if at all, for TE wave vpropagaticn, Without
first studying the eigenfunctions f;, there is no guarantee that the
expansion will converge to the desired boundary conditions at some
given z,

Before attempting a rigorous analysis of the completeness
properties of the eigenfunctions of system 4,20, let us assume that
the set {fn} is complete and make a few simple observations, Suppose
the set {fn}.is "exactly complete," The term "exactly complete"
means that the set contains as few functions as possible in the sense

that no one function of the set may be expressed as a linear combination
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of the others, A set {fp} (n = 1,2,...) is exactly complete if

{fy} forms a complete set,

N
lim | F(x) = T apfp(x)| = 0  for all F(x) <! (4.27)
' 1

N—rou
and no set of non-zero constants {cn} exists such that

0= Tepf (0 . (4.28)

Equation 4,28 implies that the expansion of an arbitrary function
in a series of eigenfunctions fn is unique. The eigenfunctions
associated with the self-adjoint Sturm Liouville systems are eXxactly
complete.

Under the assumption that the set £, is exactly complete,

consider the expansion of the desired field, Ey(x,z),

By(%,2) = T ay £,(%) JE (4.29)

From the form of system 4,20 it may be seen that each £, has only

. * < . -
one associated h;. Hence, expansion 4,29 may not be "split" as

*Suppose there were two distinct possible elgenvalues, hy and hj,
associated with a single eigenfunction £ , Subtraction of each of
the two corresponding eigenvalue equations would yield

. dvz
[(h] = 13 Juy(X) & (hy = hp)==1£(x) =0 , all 0c<x 1 .

Under the assumption that £(x) is at least a piecewise continu-
ous function which is not identically zero, this implies

2 3 W2
(1,2 = B2 v, () + (1, = h)—=0
Clearly for h1 # hz‘ this is possible only if
Y2 (x)
dx 1 '
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were the expansions of the TM solutions and TE solutions for the

dv,
special case E—— = Kv; . Now suppose we apply the boundary con-
X

dition z = 0; equation 4.29 becomes

Ey(x,o) = L af, (x) i (4.30)

Under the assumption that the set {f,|} is exactly complete,
equation 4,30 uniquely determines the {a,} . However, if the
{a,} of expansion 4,29 are uniquely determined by the boundary
condition at z = 0, there is no means of forcing expansion 4,29
to satisfy the necessary bhoundary conditions at some other z, Thus
we must conclude that if solutions in the form of expansion 4.29
are to exist, the eigenfunctions {f;} must not form an exactly
complete set, The {£ } must be more than complete; that is, the
expansion of an arbitrary function in a series of these eigen-
functions must not be unique.

Since the eigenfunctions {fn} must be more than complete, it

is clear that they cannot all be orthogonal.* No welgnting function

*Let fho(n = 1,2,...) denote a more than complete set, Then there exists

at least one set of constants ¢, not all identically zero such that

. 0 =L ¢y £,(x)
or if ¢;# 0 ,
G:E: m & c.f. . i
i A3 nen (1)

Now suppose there exists a weighting factor W(x) such that
(fi,fj) = W g £ dx = 843

¢i(f1,£3) = I, (fn, £5) (ii)

Then

Tt
or
c. =0
l ¢
It will later be clear that series (i) is uniformly convergent so

that (ii) follows.
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W(x) can exist such that

1 i
(f5,£5) = {7 W £ £5 dx = 8335 (4.31)

It should also be noted that, in addition to being more than
complete, the set {f,} must be sufficiently complete for the expan-
sion 4,29 to be capablé of satisfying boundary conditions at two
different values of z. That is to say, although the application of
the boundary conditions at one z must not uniquely determine the
expansion coefficients, the application of boundary conditions at
two values of z must,

Thus it should be clear that if solutions in the form of
expansion 4,29 are to exist, the eigenfunctions {f } must possess
some rather special properties. It should also be noted that the
eigenfunctions associated with TM wave propagation and TE wave
propagation for the special case ;;— = Kv, do not have to possess
these special properties, For these problems, each eigenfunction
has two associated propagation constants; hence, an exactly complete
set of functions (Sturm Liouville) is sufficient, The expansions can

be split into the form

ih§12 ihézg
 (ape + by e ) fn(x) (4.32)

such that the application of a boundary condition at one z yields

a very simple relationship between the expansion coefficients
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a; = function (bj) S (4.33)

dv
dx

cannot be split in this manner and the eigenfunctions must therefore

However, for the general case L Xv; , the expansion
be more than complete., The application of boundary conditions at
one z gives rise to very complicated relationships between the

expansion coefficients of 4,29
aj; = function (al, a2, +es 35 - Ly aj + Yo wied (4.34)

It is interesting to note that by considering the partial
differential system 4,1 (the waveguide problem), it was possible
to draw conclusions about the properties of the eigenfunctions of
the ordinary differential system 4,20, There appears to be an
inherent relationship between the ordinary differential._system and
the partial differential system, We will later show a striking
example of this relationship, Using the ordinary differential
system, 4,20, we will derive a relationship involving the eigen-
functions, This relationship will appear to have no significance
with respect to the ordinary differential system from which it was
derived, yet it will provide a means of determining the expansion
coefficients for solutions of the partial differential system 4,1!
Now that we have a basic understanding of some of the properties
of these eigenfunctions {fn} , let us proceed to study the nature
of these functions in a rigorous mathematical manner. The eigenfunc-

tions which we wish to consider were defined by system 4.20,

*Compare with equation 4,11,.
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dfn ) . de
—V; ——+ (W€ = h v, = h —=) f =0 4.35
Tx 1dx ( n 1 n Jx n ( )
fal0) = £,(1) = 0 .

e would like to prove first, that the functions {f,} do indeed
form a complete set and, second, that they are sufficiently over-
. complete to expand the scalar function Ey(x,z) in the form

Ey(x,z) = I a fh(x) e11 : . (4.36)

Some of the earliest rigorous mathematical work on non-self-
adjoint problems in the form of system 4,35 was performed by J.
Tamarkin (4). Tamarkin proved that the eigenfunctions defined by
system 4,35 form a complete set for the class of continuous, bounded
functions.” He obtained explicit expressions for the expansion
coefficients such that the eigenfunction series converges uniformly
to a function in this class., The expansion coefficients determined
by Tamarkin are unique; once the function to be expanded is given,
the expansion coefficients are determined, From Tamarkin's work it
would appear that the eigenfunctions {f,} form an exactly complete
set, However, we know that if the set {f;} is exactly complete, it

is not sufficient for obtaining solutions to waveguide problems, We

w i . - 6 .ok ~
Tamarkin's work is based on the assumpﬁ%on that the coefficients of

the differential equation (w?e, v, (x), 2 ) are continuous functions
of X, This assumption will apply dx throughout the remainder
of this chapter,
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would therefore expect that Tamarkin's expansion coefficients must
actually be a special case of some other more general expression in
which the coefficients are not unique.

Many years after Tamarkin's work appeared, the brilliant
mathematician R, E. Langer studied second order ordinary differential
systems more general than system 4,35, A major portion of this work
concerning second order differential systems appears in a single
paper entitled "The Expansion Problem in the Theory of Ordinary
Linear Differential Systems of the Second Order" (5)., In this paper
Langer rigorously derived an expansion theorem involving the eigen-
functions of second order ordinary differential systems,

Langer's results are of more value to us than Tamarkin's because
they show that the expansion coefficients are not unique; there are
many possible {Ch} such that I C,f,(x) converges uniformly to a given
F(x) . Thus the set {fn} is not exactly complete, It is not surpris-
ing that Tamarkin did not realize that his expansion coefficients
should not be unique and that the eigenfunctions of system 4,20 form
a more than complete set, We determined that the eigenfunctions of
the ordinary differential system 4,20 must form a more than complete
set by considering the original partial differential system 4.1,
Suppose that we were given only the ordinary differential system,
as was Tamarkin, and were not told that it was obtained from a partial

differential equation describing some physical problem, There would
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be no reason to suspect that the set {£,} is more than complete,
lience, there would also be no reason to question the uniqueness of
the expansion coefficients, Thus it is quite understandable that
Tamarkin, a mathematician studying systems of the form 4,35 without
regard to what physical systems give rise to these ordinary differ-
ential systems, did not realize his evaluation of the expansion
coefficients yielded just one of many possible eigenfunction expan-
sions,

Until 1964 no one working on the problem of propagation of TE
waves in ferrite filled guides realized that system 4.35 is a
particular case of Langer's work, In 1964 D.,S. Cohen (6) made this
observation and applied Langer's results to the special case of
system 4,35, Cohen was thus the first person to make rigorous
mathematical statements about the completeness properties of the
eigenfunctions or.modes associated with TE wave propagation in
ferrite filled guides. Although Cohen applied Langer's work to obtain
solutions of the ordinary differential system 4,35, he did not obtain
solutions §f the original partial differential system 4.1, bore
precisely, given a function F (x), Cohen showed how to determine the

expansion coefficients ¢, such that

F(x) = Ecp £4(x) ; (4.37)

however, he did not have any means of determining the expansion

coefficients a, such that



Ey(x,z) =

solved the original partial differential system 4.1 describing the

waveguide problem.

We will now apply Cohen's results concerning the ordinary

L ap, f(x) e

ihnz

(4.38)

differential system 4,35 to obtain solutions of the original partial

differential system; we will find for the first time what combina-

tions of modes vield solutions to some given waveguide problems,

We

do not want to become involved in the details of Cohen's and Langer's

works, and will therefore state only their results which we need.

The details of their work may be found in the original papers (5)-(6).

The results which Cohen obtained by applying the particular form

of system 4,35 to Langer's general work are as follows:™
1. Any arbitrary, bounded, continuous function F(x) can be

expanded in the uniformly convergent series

X

]
F(x) =z ¢y £, (0] % 0

where f; are the eigenfunctions of system 4,35.

2. The expansion coefficients c

I

n

F(x)

are given as follows:

R dx

K(x)

fl
o

™~

n R ¥p dx

(4.39)

(4.40)

%* ¥ 5 5 A
We have converted the results to cur notation and simplified where-

ever possible.
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where K(x) is an arbitrary, bounded, continuous function and
%
yn( )

Yo = 2) is defined by
Yn

Y(x) - [-h R + B(x)] Y(x) = O

(4.41)
10 00
Y(0) + Y(1)= 0
00 10
sz 2 (@) g . -
and ZIn [2n "7, %4n ] is defined by the adjoint system
Z'(x) + Z2(x) [-h R + B(x) ] =0
e (4.42)
00 00
=Z(0) o+ Z(1) =0
10 01
and
10
R = (4.43)
0 -1
and
1 dv
1 2 dt
0 e \Jl(ﬁ) dg
1 dv
B(x) = - 2 a (4,44)
o Vv;(&) dg
q(x) e 0 |
and
1 d?v; d2v, 1 dv, dv, 2 w?e
q(x) = + x ( + o (4.45)
2v, ( dx? dx? ) 4vi2 " dx dx Vi
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1
and the functions f, Yn( ) are related by
] 1 dv
- 1/2 . Z g (1)
£,0) =1 (x) e T, 2w (g)df valx) . (4.46)

Langer and Cohen obtained the expansion coefficients c, by
transforming the differential system 4,35 into the matrix form
4,41 and using the adjoint system 4,42 to formally obtain expansion
coefficients 4,40* Langer rigorously proved that this formal evalu-
ation of the expansion coefficients is correct,

Notice that the expansion coefficients depend on an arbitrary
function K(x) as well as theufunction to be expanded,F(x). By
choosing different functions K(x), different expansions are obtained
for the same function F(x). (Langer showed that Tamarkin's expansion
could be obtained by choosing a particular K(x); hence, as was
expected from our previous work, Tamarkin's expansion is a special
case of a more general expansion.)

Until ﬁow no one seems to have noticed that Cohen's results
concerning the expansion coefficients c, may be greatly simplified
and reduced to a form appropriate for solving the original partial
differential system 4,1, Since this reduction of Cohen's work is

quite lengthy and involved, it has been placed in appnendix B, The

*The idea of transforming ordinary differential systems to matrix
systems is often a useful method of solving non-self-adjoint problems,
An excellent example of the application of the matrix approach to a
much simplier problem may be found in Friedman (7).



crucial observation necessary for this reduction is that the
components of the vector Y associated with system 4.41 are
reclated to the components of the vector Z,, associated with the
adjoint system 4,42, In appendix B we prove that Cohen's ecight
relationships 4,39-4,46 can be reduced to the following simple
statement:

Any arbitrary, bounded, continuous function F(x) can be

expanded in the uniformly convergent series

F(x) = ¢ ¢ f,(x) (4.47)

where £, (x) are the eigenfunctions of system 4.35 and

{)l(vl h, F(x) + K(x)) £, (x) dx

¢, = (4.48)

AV
Aen v, + 22y 2ax
n 1 n
0 dx

where K(x) is an arbitrary, bounded, continuous,
function.

Now let us proceed to use the coefficients of 4,48 associated
with the ordinary differential system to solve the original partial

differential system 4,1, Assume a solution of the form
ih,z
Ey(x,z) =1 a, f(x) e . (4.49)

Suppose we are given E (x,0). Assuming uniform convergence

in z, the expansion 4,49 becomes

Ey(x,o) = I a, £,(x). (4.50)



From 4,48 we know that this expansion is valid if the set {an} is

defined by
1 h, Ey(x,0) + K(x)) f£f,(x) dx
an:fﬁ(ulny(.) (X)) £5(x) .
A2y » 2 £,° dx '
0 dx

With a, = aj [K(x)] defined by 4.51, the expansion 4,49
satisfies the boundary condition at z = 0, Physically, this is
quite plausible, The value of Ey(x,z) at one value of z does not
completely determine the field; an additional boundary condition is
necessary. The arbitrary function K(x) must be chosen such that the
additional boundary condition is satisfied. More precisely, the solu-
tion 4,49 defined by 4,51 is actually an infinite set of possible
solutions which satisfy the boundary condition Ey(x,z)]z=o = Ey(x,o),
An additional boundary condition must be given to determine which
one solution of the infinite set of solutions solves the problem
of interest., This additional boundary condition determines the
function K(x). For example, if we were also given Ey(x,g), then we

hn2
converges to Ey(x,ﬁ).

i
must choose K(x) such that I a, fn(x) e
Under the assumption that the series 4,49 is uniformly con-
vergent in z, we can make the following statements:
1, Langer's work guarantees that the solution
ihnz
L A, [K(x)] fn(x) e converges to Ey(x,o) at z = 0

for any bounded, continucus function Ey(x,o).



44

2. The problem of dctermining the expansion cocfficients
ihnz ) )
a, [K(x)] such that za, f,(x) e is a solution of the

original partial differential system, can thus be reduced

to determining the function K(x).

We must now ask if we can find a K(x) which yields expansion

coefficients a; [K(x)] such that the sum I a, £, elhnz converges
to match some additional appropriate boundary condition at some value
of z, In general, determining the function K(x) is very diffiéult.

For example, suppose we were given the value of Ey(x,z) at z = 2 ,

We would then have to find a function K{x) such that

ﬁlcvl hn E,(E,0) + K(E)) £,(8) d&

12 h. v, + %92y £2(£) a&
é by ¥y az n?

ih_g
B (x,2) = I £(x) e ™ (4,52)
Clearly this is not a simple task, There does not appear to be any
direct way of proceeding, Thus, we ask if there is any physical
problem for which the function X(x) may be easily obtained. The
answer to this question is yes. Suppose both the electric and
magnetic fields are given for one value of z, say z = 0, According
to physical considerations there is certainly a unique solution for
this problem; that is, the electric and magnetic fieldg at all points
within a guide are uniquely determined once the electric and magnetic
fields at one cross section are given, We will now mathematically

determine for the first time these resulting fields. We will
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ih_z
determine a set { a,} such that the expansion I a, £, e ™ satisfies
Maxwell's equations, converges to a given value at z = 0, and has
an associated magnetic field equal to some given value at z = 0,

First it should be noted that specifying LE(x,0) and !i(x,0) is
3Ey(x,o)

2
equivalent to specifying E_(x,0) and — E (X»Z)I =
y 32 Y Z=0 az
For the TE case which we are considering, we know from the work in

chapter 2 that

E(x,0) = E_(x,0) e
- J ¥ (4.53)
H(x,0) = Hy(x,0) ey + H (x,0) e, .
According to equation 2,10
1 oEy 3By
Hy = — -V — iV
" 1 ( 13z 2 3x
(4.54)
ol 9L JE
: ¥ Y
= e— 1V, —— —— »
B " g S G
Providing vlz # v22 , we may take the inverse of system 4,54
BEY jw
z = 73 = (VI HX - iy Hz)
2 Vg~ ¥y (4.55)
oE 1w ) .
b - 3 ( - iv, Hy = ¥y H;) 4
Ix V" - vl

Thus specifying Ey(x,o) and S;-EY(X’O) is equivalent to specifying
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E(x,0) and Ii(x,0).

The problem has now been reduced to determining a set {an} such
ih_z
that the proposed solution fa, f, e R converges to Ey(x,o) at z = 0
o

9
and 5—-Ey(x,z) converges to a given arbitrary function — Ey(x,o) at
Z 9z

z = 0; or assuming uniform convergence in z

Ey(x,0) = L a; £5(x) (4.56)
a;y(xao) g
g = = I ihy ay £4(x) . (4.57)

From equations 4,47 and 4.48 we know 4,56 is satisfied by

1 . ,(1} "
IO (vy hy by(x,o) + K(x) ) £(x) dx

% T " T (4.58)
£ (20, v +—&3E5(x) dx
0 : dx
(1) _
where K(x) is an arbitrary function, For the same reason, 4.57
is satisfied by
JE, (x,0) 2
fo'tv n =L k83 £_(x) dx
ih_ a_ = L : (4.59)
2 R 1 dv
F U@y v+ =) £3(x) dx
0 1
dx
2
where K(x) is an arbitrary function,
(1) (2)

We must prove that a K(x) and a K(x) exist such that both

equations 4,56 and 4,57 can be satisfied by the same set of expansion
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(1) (2)

coefficients {a, }. That is, we must show K(x) and K(x) may be

chosen such that

(1) 3 (2)

fol(vlhnEy(x,o) + K(x) )Epdx (v Iy —;—Ey(x ,0) + K(x))f,dx
= - 2 (4.60)
s L2 Poyezax M plen ez e
AV) + X v B X
g *2 P ¥y dy =~ - 0 BTy iz 2
or
(1) 3E (x,0) (2)
A = IO vy H, Ey(x,o) + K(x) - : ( : “az + K(x))] £,(x) dx
(4.61)
= 0 Ll
From the original eigenvalue equation 4,35 we may write
1 d df, dv,
Vlhn f, = E;-( = v, E;—-+w afn - hp E;—-fn ) (4.62)
or
1 1, d df, dv
S v h fE (x,0)dx = —f "V —+o0 sf - M, E_(x,0)dx .
o ! n11y( ) h 0 (x 1 dx dx Ix )t ( )
(4.63)

Integrating by parts and requiring the physically reasonable

restriction that E_(x,0)| = E_(x,0)]| = 0, we obtain
y x=0 Y x=1
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. 1 ) d dE},(X.O)
£ v k£ B {x0o)x s — —y e * 32 E_(X,0)
o 1Ry : h é ¢ dx ! dx y
n
d v,
- hn ___.Ey(x,o) ) fndx .
dx
Using equation 4,64 in equation 4.61 yields
1.1 d dEy (x,0) 1 dv2
A= f e g —— + —— ZE X.0 - a——— ] X.0
) (IHldxvl dx hp” ® y (02 dx y (%59

6)) 3E. (X,0) 1 (2
+ K(x) + iv, # 1 o K%
3z hn

Rearranging the terms into two integrals

1 (1) 9E (x,0) vy
= i 5 s B
A é ( K(x) + i vl e o y(x,o) ) fndx

1 1 4 dEy (x,0) (2)
+}—1-I: é CE-;VIE-;—- +m=Ey(x,o)+1I\(x) ) In(X) dx

Clearly A = 0 if we choose

(4.64)

(4.65)

(4.66)
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(1) aEy(x,o) duz
K(x) = - iv, + Ey(x,o) (4.67)
oz dx
%23 d dEy(x,o) v
K(x)=i=—Vv ————— + iw2e¢ E (x,0) . (4.68)
dx ! dx Y

1 2
Thus KEx% and KEx% exist such that both equation 4,56 and
equation 4,57 can be satisfied by the same set of expansion

coefficients {a,} defined by

1 dv2 aEy(x,o)
[ (v. h, + —"% E_(x,0) =~ iv f (x) dx
g 1 n dx ) i , * 9z ] 3
= - (4.69
%n g = dv, h )
2y 9y e § B a2
(o] dx .

Hence, assuming the necessary uniform convergence in z, we
have shown in a completely rigorous manner that the proposed
solution

ih,z

n
Ey(x,z) = I8, fn(x) e s (4.70)

where the set {én} is defined by 4.69, converges to a given

3E_(x,2)
function Ey(x,0) at z = 0 and Y converges to another given
3Ey(xn°) 3 Z

function, =——swew—— . gt 2 = 0,
9z
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USing equation 4,55,

BEy iw
= Vi Hg =i v H, 1, (4.71)
az W Sey 8
we can also state that the expansion
Ey(x,2) = I ap f3(x) ¢ ihnz
(4.72)
where the set { a }is defined by
n
" dv, wv,
fo [(\l1 h, + )Ey(x,o) + v—'z——-—u—é- (vl‘klx(x,o)-i Vy Hy (x,0)) 1£,dx
dx 9= = My
°n 7 dv
' . 2
fol(z By vy + —— )Ep’dx
(4.73)

is a solution of Maxwell's equations which converges to a given
electric and magnetic field at the plane z = 0, Thus, given the
electric and magnetic field at any cross section of the guide, we
can mathematically determine the resulting electric and magnetic
fields at any other cross section of the guide,

It is interesting to note that the expansion coefficients 4,69
of the rigorous solution 4,70 can be formally obtained in a much more
direct manner, In order to obtain this formal expréssion for the
expansion coefficients { an} we must first derive an orthogonality
relationship,

Let £, and f; be eigenfunctions of system 4.20; let h, and hj
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be the respective corresponding eigenvalues

Ly f, = 0 fhlo) = £f,(1) = 0 (4.74)
Liw B = © £,(0) = £,(1) = 0 . (4.75)
We may then write
folpfm = 0 (4.76)
£ L. F. a0 g (4.77)
Subtracting f,L,f, from men£; and integrating yields
g Mgy = Gplgf) de =0 (4.78)

0

Substituting in the value of the operator Lj(x) and integrating

by parts yields

dv

2
(hy - by) /ML * hp) vy + ] fpfp dx =0, (4.79)

o %

or assuming hy, # h, for n # m,
1 d“z *
S “[(hy + hp) v, + — ] £, £ dx = 0 for n#m, (4.80)
o

“Ihis relation is not new; it is a special case of a more general
relationship derived by Walker (8).
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Clearly there is no obvious means of using this relation-
ship to find expansion coefficients { cp} such that I c, f,(x)
converges to some arbitrary given function. Except for one author
who incorrectly applied this relationship to obtain some erroneous
results concerning the power flow in a ferrite filled guide, no
one has been able to make any use of this orthogonality relationship,
Its significance has remained a mystery. We will now show that this
relationship, which seems to have no significance with respect to
the ordinary differential system from which it is derived (4.20),
may be used to determine the expansion coefficients for solutions of
the original partial differential system 4.1 (the system from which
the ordinary differential system was derived)!

Assume there exists a solution to the partial differential

ih_z

n

system E,(x,2z) = L fa(x) e uniformly convergent in z,
Y y X, an In

Differentiation with respect to z yields

aEy(x,z) ) ih
5 = L ibja,fye = (4.81)

Thus for z = 0 we obtain

Ey(x.o) L% £,0(x) ' (4.82)

SEy(x,o) )

g™

™ ihyay f(x) . (4.83)
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Multiplying both sides of equation 4.82 by fj hy v; and

integrating with respect to x yields

1

fo Ey(x,0)hy vy £ dx = S 1 i By By ¥ By Sy 4%, (4.84)
() ,
dv
Multiplying both sides of equation 4.82 by —— f; and integrating
. 5 4
with respect to x yields
;1 Wy 1 dvy i
5 Ey(x,o) E;—-fm dx = fo % ag E;— £, Epdx (4.85)

Multiplying both sides of equation 4.83 by - i v, fn and integrat=-

ing with respect to x yields

1 3Ey(x,0) 1
-J —— iv) fpdx= S " I ay vih, fy fndx, (4.86)
° 3z g n

Adding equations 4,84, 4.85, 4.86 and formally interchanging

the summation and integration yields

i dv2 i dv,
L a, S [(by + hplv, + 1€0fdx = J " [(hy vy + -——-)Ey(x,o)
n o dx o dx
aEy(x,o)
-iy, —L—— ] £ dx (4.87)

oz
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Applying the orthogonality relationship 4.80 yields

1 dv, 3E (x,0)
i} Io [(hy v + I ) Ey(x,0) - i v, T 1 B, dx (4.88)
2
dv
I l(Zhn Uy o+ e ) 2,2 dx .
o dx

This is exactly the result which we obtained rigorously
(Compare with equation 4,69). Thus the orthogonality relationship
4,79, which appears to have no particular significance with respect
to the ordinary differential system from which it was derived, formally
seems to have a great significance with respect to the partial
differential system from which the ordinary system was derived, This
certainly supports our previous statement that some ordinary differ-
ential systems are inherently related to particular partial differ-
ential systems.

For the benefit of readers who have studied Langer's and Cohen's
works, we would like to point out one additional observation., The
orthogonality relationship (h, - hp)/ ! Z, RYp dx = 0 used by Cohen

o
and by Langer to obtain the vector expansion theorem may be shown

equivalent to the orthogonality relationship 4.,79.*

*
Appendix C contains the proof of this statement
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It should be clear that the formal method of obtaining the
expansion coefficients { a,} of 4.88 cannot be justified without
the preceding rigorous discussion of the completeness properties of
the set of eigenfunctions {f,} . Without such a discussion it is
impossible to frove that I a, f,(x) converges to Ey,(x,0) and
T a i hy fh(x) converges to ;? Ey(x,o).

Now that we have developed a means of determining the electric
and magnetic fields at any point in a ferrite loaded guide from a
knowledge of the fields at any one cross-section, let us make a
few statements concerning other possible waveguide boundary value
problems. Suppose the given boundary conditions are E;(x,o) =0
and Ey(x,z)lé Ey(x,z). Assuming a solution of the form

A

ihyz .
Ey(x,z) =35 a, f(x) e . (4.89)

the problem reduces to finding a set { a; } such that

4

0o=I a £(x) | (4.90a)

Ey(x,2) = £ a3 glhint fa(x) . (4.90b)

From equations 4.47-4,48 we know that equation 4.,90a is satisfied
by - 3
L)
S K £fo(x) dx
o (%) n{*)

a, = n ’ i (9.91a)
d
é (2 hy vy + EEQ ) fﬁ(x) dx
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and 4,90b, by

1 . (2)
ihna é (vy h, Ey(x,ﬁ) + k(x) ) £,(x) dx
e a_ = 1 w5 (4.91b)
2

] (2h, vy # —=7 £ dx
o gt dx n

(1) (2) : ) :

where K( ) and k( are arbitrary, bounded, continuous functions,
X X

In order to obtain a solution, we would have to prove the existence
of and then determine K(l), K(Z) such that equations 4,90a and 4,90b

would be satisfied by the same set of expansion coefficients { a.} .

1 2
In analog with equation 4,61 we would have to find K( ) and K( ) such
that A, = 0 for all n where -
oy By Bty « k) o )y g (4.92)
= v % + - e X "
L (x) w7

It is clear that the dependence on n cannot be easily isolated to

yield solutions for Kcl) and K(Z)

. Herein lies the general diffi-
culty, In general, ferrite loaded waveguide boundary value problems
lead to infinite sets of integral equations which cannot be solved
rigorously. The set of integral equations 4,92 is a case in point.
The fact the rigorous solutions cannot in general be obtained
should not surprise the reader, Even for empty waveguides, rigorous
solutions cannot usually be obtained and it is necessary to resort to
approximate methods. For empty waveguides it has been possible to

apply the general theoretical work to develop reasonably successful

approximate methods (Schwinger's variational approach, etc,), Until



57

now, such general theoretical work for ferrite loaded guides was not
available, The theoretical work which we have presented may be used
to provide a firm foundation with which to develop sensible methods

of approximation for ferrite loaded waveguide problems,
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PART II - THE THERMODYNAMIC PARADOX

5.0 Introduction - Statement of the Paradox

In this part we will study the problem of the thermodynamic
paradox., We will state the paradox, review past significant research,
provide important corrections to this research, and present the
resolution, We begin by describing the problem which gives rise to
the thermodynamic paradox.

In 1956 K. J. Button and B. Lax (9) investigated the propaga-
tion of electromagnetic energy in an infinitely long rectangular
waveguide partially filled with a transversely magnetized ferrite
slab., See figure 5.1, They restricted their study of the propaga-
tion of TEno modes ( %; = 0) and hence essentially considered the
propagation of electromagnetic energy in a ferrite region between
two parallel plates. They also assumed that the transverse biasing
field was uniform and sufficiently strong to saturate the ferrite
and that the region of operation did not include ferromagnetic
resonance,

Using the notation of Part I, Maxwell's equations describing

wave propagation in such guides may be written as

-1
vV x E(x,2) = imuo »(x) - H(x,z) (5.1a)

Vv x H(x,2) = - iweE(x,z) (5.1b)
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where (= -
vl (X) 0 i\’z (x)
y(x) = 0 vy (x) 0
-i\)z (K) 0 V1 (X)

where for 0 < x< d

\’1 (x) = 1
v2(x) =0
vs(x) =1
and for d< x< 1
vl(x) = A
vz(x) =B
vy(x) =C

where A, B, C are real constants whose values depend on the
properties of ferrite, the amplitude of the biasing magnetic field,

and the frequency of operation.

Using the Heavyside step function notation we may thus write

for 0< x<1

]

Vl(x) 1+ (A-1) H(x - d)

v, (X) = BH (x - d) (5.2)

vy (x) 1+ (C = 1) H(x - d)
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where

0 x < d
H(x - d) ={
1 x> d "

From the work in Part I we know that only the y component of
the electric field can be non-zero for TEno propagation. Assuming

this component may be written as

E,(x,2) = £(x) elhZ ,

Maxwell's equations may be reduced to the following system

d df 2 2 dv2
EEPI(X) =t (w%uy, = h" vi(x) = h o< JE=0
(5.3)
f() =£fQ) =0
where the associated magnetic field is given in terms of f(x) by
df T
H(x,z) = (v, — = v hf e
H(x,2) = 0y 7= - Y )wo .
df eihz (5.4)
(vl E; - vohf )iwuo ez .

Lax and Button studied system 5.3 for each of the two regions,

For 0 < x < d system 5.3 becomes
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2
Cf ) (ulen, -n2 ) £=0
dx?
(5.5)
£f(0) = 0 5
for d<x<1 ,
2 2
St 28 32 e =0
dx A
(5.6)
f(l) = 0 °
Solutions of 5.5 are
f(x) = (const.) * sinh k(l)x (5.7)
whers X0 VG2 - mzsuo )
Solutions of 5.6 are
. (2)
f(x) = (const.) -+ sinh k (x-1) (5.8)
¥
where k(2)= hz_ ‘-‘-’—El’-o 3
Matching the tangential components of the electric and
magnetic fields at X = d in the usual manner, Lax and Button
obtained the following transcendental equation:
Ty ® kM eoth kMg o AP coth k(P (a-1) s B =0 -+ (5.9)
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Clearly this equation cannot be solved explicitly for the propaga-
tion constants h, Lax and Button studied equation 5,9 and found
that for a given range of frequencies it is possible to choose the
ferrite parameters A, B, and slab thickness (l-d) such that 5,9 admits
the possibility of a single propagating mode (a mode having a pure
real propagation constant), Their now famous plot of possible real
propagation constants versus ferrite slab thickness appears in
figure 5.2, Notice that there is only one propagating mode for a
sufficiently large slab thickness, Lax and Button concluded that
this single propagating mode imnlied the existence of a lossless
unidirectional transmission system. Such a system would constitute
a clear violation of the basic laws of thermodynamics, hence the
so-called thermodynamic paradox,

In order to make the meaning of the paradox more clear, let
us consider a finite section of such a ferrite filled guide reactively
terminated at one end, say z = £ , and connected to an empty guide
at the other end, say z = 0. See figure 5.3, Now suppose the empty
guide is fed from the left with energy such that the unidirectional
mode is excited in the ferrite guide, ‘This unidirectional mode will
carry power to the right toward the reactive termination at z = 2 .,
Lax and Button would reason that since there are no propagating modes
carrying power to the left away from the reactive termination, the
input power is being continually fed into a lossless system, clearly

an inconsistency.
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It should be noted that no one has ever solved the boundary
value problem posed in figure 5.3; that is, no one has successfully
determined the proper linear combination of modes satisfying the
boundary conditions of figure 5.3. The existence of the paradox
has only been implied by the reasoning in the preceding paragraph
based on the assumption that the fields in the finite section of
the ferrite filled guide can be expressed as a linear combination of
the modes of the infinite guide.

As the research progressed, it became apparent that no one had
been able to determine the linear combination of modes solving any
practical ferrite guide probiém.“Ir This realization led to the
general work presented in Part I.

Since Lax and Button's work in 1956 there have been many papers
published concerning the paradox. In the next chapter we will give
a very brief chronological summary of the previous significant

research,

“That is, no one has ever rigorously solved any ferrite guide problem
in which the ferrite fills the guide inhomogeneously. As previously
shown in Part I, solutions for homogeneously filled ferrite guides
are trivial,
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6.0 Review of Previous Research

In this chapter we will give a very brief review of the past
significant research concerning the thermodynamic paradox. Only
the conclusions of the past research will be presented; the reader
will be referred to the original papers for details. Some of these
conclusions which have been accepted to date are incorrect, In the
next section the errors in these incorrect conclusions will be
presented; only details which are essential to correct these errors
will be given,

The first published statement concerning Lax and Button's
thermodynamic paradox was made in 1956 by M, L, Kales, Kales made

the following statement: (10)

"Even in the case of a conventional waveguide at a
frequency for which all modes are cut off, it is

possible to transmit energy through a finite length,

This requires only that two properly phased modes of

the same kind, and attenuated in reverse direction, be
present, It therefore does not seem unreasonable to
expect that propagation through the finite ferrite section
is possible for either direction of propagation, when
modes belonging to both directions are present simultane-
ously."

Kales did not prove that the power carried to the right by the
propagating mode in figure 5.3 returned via the cutoff modes, he
merely stated that it seemed reasonable that it could,

In 1957 H. Seidel (11) studied the atomic model of ferrite

materials and concluded that lossless ferrite materials cannot exist,
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According to Seidel, all ferrites have an "intrinsic" loss which
prevents the transmission of energy without decay; thus, the propa-
gating unidirectional mode of the thermodynamic paradox cannot exist.

Two years later H. Seidel and R. C. Fletcher investigated the
propagation of higher order modes (TE,  ,m > 0 %; # 0 ) in rectangular
guides containing ferrite slabs and found that these higher order
(gyromagnetic) modes can carry power. They concluded that the power
carried by the single propagating mode in the problem of the
thermodynamic paradox returned via these gyromagnetic modes, They
rejected Kales' explanation that the power returned via the cutoff
modes with the following statement: (12)

",..0ur reason for favoring the gyromagnetic mode

resolution rather than the cutoff modes is that we

have experimental evidence for the coupling to the

gyromagnetic modes..."

It should be immediately clear to the reader that the gyro-
magnetic modes ( %;-# 0) cannot possibly resolve the thermodynamic
paradox., Although Seidel and Fletcher interpreted their experimental
results concerning rectangular guides as showing that there is
coupling to the gyromagnetic modes, it is clear that such coupling
cannot explain the paradox for propagation between parallel plates.
The problem of the paradox for propagation between parallel plates
may be reduced to a two dimensional problem in which the gyromagnetic

modes have no role.

In 1960 A, D, Bresler (13) studied the problem of the thermodynamic
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paradox in great detail, Bresler came to the following conclu-

sions:
p

2,

3.

It is impossible for power to return via the cutoff modes.
Seidel's "intrinsic'" loss resolution (11) is not accept-
able because it does not resolve the paradox within the
framework in w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>