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ABSTRACT

We have sought to determine the nature of the free-radical pre-
cursors to ring-opened hydrocarbon 5 and ring-closed hydrocarbon ,(2
Reasonable alternative formulations involve the postulation of hydrogen
abstraction (a) by a pair of rapidly equilibrating classical radicals (the
ring-opened allylcarbinyl-type radical 3 and the ring-closed cyclopro-
pylcarbinyl-type 4), or (b) by a nonclassical radical such as homo-

allylic radical 7.
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Entry to the radical system is gained via degassed thermal de-
composition of peresters having the ring-opened and the ring-closed
structures. The ratio of 6:5 is essentially independent of the hydrogen
donor concentration for decomposition of the former at 125° in the
presence of triethyltin hydride. A deuterium labeling study showed
that the o and B8 methylene groups in 3 (or the equivalent) are rapidly
interchanged under these conditions.

Existence of two (or more) product-forming intermediates is

indicated (a) by dependénce of the ratio 6:5 on the tin hydride concen-



iv
tration for decomposition of the ring-closed perester at 10 and 35,
and (b) by formation of cage products having largely or wholly the
structure (ring-opened or ring-closed) of the starting perester.
Relative rates of hydrogen abstraction by 3 could be inferred by

comparison of ratios of rate constants for hydrogen abstraction and

ortho-ring cyclization:

.
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At 100° values of ka/kr are 0, 14 for hydrogen abstraction from 1,4~
cyclohexadiene aﬁd 7 for abstraction from triethyltin hydride, The
ratio éi at the same temperature is ~0, 0035 for hydrogen abstraction
from 1, 4-cyclohexadiene, ~ 0. 078 for abstraction from the tin hydride,
and =5 for abstraction from cyclohexadienyl radicals. These data in-
dicate that abstraction of hydrogen from triethyltin hydride is more
rapid than from 1,4~-cyclohexadiene by a factor of ~ 1000 for 4, but
only ~ 50 for 3.

Measurements of product ratios at several temperatures allowed
the construction of an approximate energy-level scheme. A major in-
ference is that isomerization of 3 to 4 is exothermic by 8 * 3 kcal/mole,
in good agreement with expectations based on bond dissociation ener-
gies, Absolute rate-constant estimates are also given.,

The results are nicely compatible with a classical-radical



mechanism, but attempted interpretation in terms of a nonclassical
radical precursor of product ratios formed even from equilibrated
radical intermediates leads, it is argued, to serious difficulties.

The roles played by hydrogen abstraction from 1, 4-cyclohexa-
diene and from the derived cyclohexadienyl radicals were probed by
fitting observed ratios of 6:5 and 5:10 in the sense of least-squares to
expressions derived for a complex mechanistic scheme. Some 30 to
40 measurements on each product ratio, obtained under a variety of
experimental conditions, could be fit with an average deviation of ~ 6%.
Significant systematic deviations were found, but these could largely be
redressed by assuming (a) that the rate constant for reaction of 4 with
cyclohexadienyl radical is inversely proportional to the viscosity of
the medium (i.e., is diffusion-controlled), and (b) that ka/kr for hy-
drogen abstraction from 1, 4-cyclohexadiene depends slightly on the
composition of the medium. An average deviation of 4, 4% was thereby
attained.

Degassed thermal decomposition of the ring-opened perester in
the presence of the triethyltin hydride occurs primarily by attack on
perester of triethyltin radicals, presumably at the —O-O-— bond, even
at 0.01 M tin hydride at 110 and 125°, Tin ester and tin ether are ap-
parently formed in closely similar amounts under these conditions, but
the tin ester predominates at room temperature in the companion air-
induced decomposition, indicating that attack on perester to give the
tin ether requires an activation energy approximately 5 kcal/mole in

excess of that for the formation of tin ester.
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AN OVERVIEW

Theses, at least those recently submitted in Chemistry at this
Institution, generally begin with an introduction in which the stage is
set for the presentation of the current results and conclusions. That,
however, is not the principal purpose of this section. To be sure, a
liberal amount of stage—setting will be indulged, but generally at appro-
priate points later in the text.

As this thesis describes work in the field of free—radical re—
arrangements in small-ring compounds, an argument can be made for
including a comprehensive introduction for the convenience of readers
not reasonably conversant with the field. However, treatments of
suitable length and scope are available in reasonably accessible
sources, and this thesis is quite long enough as it is. I shall therefore
simply list here available treatments and leave it to the reader to make
whatever use of them he wishes.

The introductory section to a recent paper by Montgor.nery (1)
conveys rather briefly (two and a half journal pages) the essential
flavor of the field. Though structured to suit his particular uses, the
discussion is appropriate here as well, for both Montgomery's work
and mine emphasize rearrangements between cyclopropylcarbinyl
radicals and their allylcarbinyl counterparts. The first and third sub-—
sections (about 25 pages) of the introduction to Rosen's 1964 thesis (2)
discuss skeletal rearrangements of this particular type. The introduc—

tion (30 pages) to Schuster's 1961 thesis (3) covers much of the same



ground, but includes as well a discussion of radical rearrangements in
a number of other systems. Pryor's recent book '"Free Radicals'' (4)
contains an easily readable chapter covering the literature on radical
rearrangements through 1964. Finally, comprehensive literature re—

views have been supplied by Walling (5) and by Freidlina (6).

1. Purpose of this Overview

The subject of this thesis is a complex one. In the spirit of the
greatest possible clarity, no attempt will be made to use the detective—
story mode of presentation. Indeed, the opposite will be attempted; to
show the pattern of the results and their interpretation as early as
possible and, in steadily increasing depth of rigor and sophistication,
to demonstrate the validity of the interpretation. To this end, this
section is intended to give a brief overview of the principal results
obtained in this work and of the approach we shall take in seeking to

interpret those results.

2. A Few Comments on Terminology

Some 28 compounds or intermediates not possessing conveniently
short trivial names are discussed on multiple occasions in this thesis.
Because it would be awkward to give, at each mention, the full chem-—
ical name, the various compounds have been assigned numbers in the
order of their appearance in the text. I have been importuned to
realize, however, .that a total reliance on numerical designations

places a severe strain on the reader unless a structure is indicated
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after any sizable gaps between the occasions that the associated num-
ber is used. A mixed system has therefore been employed. A num-—
bered compound will be referenced by its number if the relationship
between the number and the structure has been recently reinforced; or
by a valid chemical name; or by use of an established synonym, gen-—
erally in conjunction with the numerical designation. Synonyms may
be contractions on the chemical name (e. g., diphenylbutene or the
butene for 1, 1-diphenyl—1-butene), but more commonly charac-—
terize some structural feature of the referenced compound (e.g., 'ring-
opened hydrocarbon' and 'ring—closed hydrocarbon' for 1, 1-diphenyl-
l-butene and diphenylcyclopropylmethane, respectively).

The reader may find quite useful the listing of numbers and
structures enclosed in a jacket on the inside back cover. A second
copy has been place'd preceding the list of references for use in micro-

filmed copies of this thesis.

3. A Brief Overview of Principal Results and Conclusions

Nonacid-catalyzed thermal decomposition of t—butyl peresters
appears to be a general means of generating alkyl or aryl free radicals
of reasonably predetermined structure (7). For example, if one
wished to study ethyl radicals, the perester of choice would be t—butyl
perpropanoate, CH3CH;CO,OtBu. Similarly, a radical R+ could be
prepared by thermolysis of the structurally related perester, as below:

o
I
R—C—O—OtBu —> R+ + CO, + *OtBu
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Thermal decomposition of the isomeric peresters 1 and 2 would

then be expected to generate the radicals 3 and ﬁ, respectively. The

0
Il (Ce¢H5),C=CH /CHZ'
(C6H5)ZC=CHCH2CH2'—C_O_O£BU At 3 \CHZ
1 ~
+ CO, + *OtBu

o

Il 5
[>—C(CyHy)—C—0—OtBu —= (C4H;),C—] + CO, + - OtBu

2 4

principal goal of this research has been to characterize the chemical
behavior of the 16—carbon radicals generated in this way. Perhaps the
most interesting aspect of this problem arises from the possibility
that radicals with ring—opened and ring—closed structures can inter—
convert., For example, attack of the radical center in ring—opened
radical i on the nearer of the olefinic carbons produces the isomeric
radical 4. Similarly, _;i can be regenerated from ﬁ by the opening of
one of the two equivalent cyclopropyl-ring bonds.

This suggests that products with both ring—opened and ring—closed
structures might be formed whichever the perester employed. Such is
indeed the case. In particular, the ring—opened hydrocarbon 1, 1-di-
phenyl-1-butene (i) and the ring-closed diphenylcyclopropylmethane (é)

are produced via abstraction of hydrogen from suitable hydrogen donors.

(C¢Hs),C=CHCH,CH, [>—cH(CeH:),
5 6

The radical precursors of 5 and émight well be the ring—opened and

ring—closed radicals 2 and i, each giving the structurally related



5
hydrocarbon. However, the situation need not be so simple, for itis
conceivable that a bridged ''monclassical'' radical such as 7 ( which re-
presents a structural compromise between the limiting forms 2 and i)
might give rise upon hydrogen abstraction either to ring—opened or to
ring—closed material. (A general definition of what might be meant by

,-'CHZ ~ + H' 2

(C¢Hs),C==CH - |

TNCH, S~+ H- 6

a nonclassical radical will be attempted in Section Three. For the

~

present I shall assume familiarity with the concept as embodying attack
of a reagent at more than one site and as possibly associated with un—
usually rapid rates of formation of intermediates. )

Thus, a principal purpose of the present account will be to mar-—
shal evidence on the nature of the radical intermediates which give rise
to the isomeric hydrocarbons 2 and ‘6\ As will become apparent, how-
ever, this thesis really has two stories to tell, The second will be to
give a mechanistic description of the rather complicated sequence of
reactions by which radicals generated as above are converted to the
several stable products under a variety of experimental conditions.

In reality, the two stories are intimately related. Some of the
observations and interpretations we shall find to be of great importance
in deciding on the involvement of a species such as 7 do not leap un-
encumbered from the experimental data, but rather arise from a de—
tailed characterization of the reaction mechanism. Moreover, for

other cases in which interpretation of the data is apparently straight-



forward, our confidence in those interpretations will be greatly en—
hanced by the general success of the mechanistic formulation.

In a spirit of reciprocity, it might be asked whether the mecha-
nistic study does not itself require assumptions concerning the nature
of the intermediates which give rise to the isomeric hydrocarbons 5
and é; and if so, whether such assumptions do not prejudice the inter—
pretation of the data. In general, the answer is that such assumptions
will frequently be made, but that the interpretation of the data is not
prejudiced. The reason is that the intermediates giving rise to 5 and
,éi' whatever their nature, are generally in rapid equilibrium; and as
every good kineticist knows, under such circumstances the form of
derived equations is independent of which reactions are attributed to
which of the equilibrated species. Alternative assignments change
the interpretation of various parameters, but the matter of interpre-—
tation can be taken up after the values of the parameters have been
extracted from the data.

In the remaining pages of this Overview we shall make a start
on each of the two stories. ZFirst we shall indicate why we have chosen
to examine the present system for the intervention of a nonclassical
radical such as 1 and we will give some examples of the types of infor-—
mation employed in that examination. Then we will survey the main
features of the overall reaction mechanism and indicate the approach to

be taken in giving a more complete description later in the thesis.

The nonclassical carbonium ion problem has commanded sub-

stantial interest over the past two decades. The reprint collection



"Nonclassical Ions'' edited by Bartlett features many important papers
in this field (8). As is well known, kinetic evidence points to very
large driving forces in some systems for the bridging—with-charge-
delocalization associated with the formation of the nonclassical ion,

In contrast, there seem to be no analogous examples of nonclassical
hydrocarbon free radicals (we exclude here bromine-bridged radicals
(9)), even though the free—radical chemistry of several of the systems
showing exotic behavior in carbonium ion reactions has been investi-
gated. For example, formation of norbornyl or 5-norbornenyl radicals
is unexceptional on kinetic grounds (10, 11). Moreover, the results of
products studies on the 5-norbornenyl-nortricyclyl radical system are
inconsistent with the sole intermediacy of a nonclassical radical capable
of giving products of either structural form (12).

Apparently, in many cases the driving force for formation of a
bridged intermediate in a carbonium ion system is wholly or entirely
lost upon addition of the extra electron possessed by the analogously
constituted free—radical system. It may be significant that semi-em-—
pirical molecular orbital calculations predict that this might be the
case (13). Still, it is not yet clear that the diminished driving force
will preclude altogether the formation of nonclassical radical inter-—
mediates. In attempting to resolve this uncertainty, it seems reason-—
able to carefully examine the free—radical chemistry of additional sys—
tems which apparently show substantial inclination toward formation of
nonclassical intermediates in carbonium ion reactions; the present
work is a case in point.

The facile interconversions of isomeric allylcarbinyl, cyclopropyl-
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carbinyl, cyclobutyl systems in carbonium ion systems is well known
and has been plausibly interpreted in terms of nonclassical bicyclo-

butonium ions (14). The sketch below indicates a proposed structure

for the parent four—carbon bicyclobutonium ion (13a). Attack of sol-
vent or an anion on the carbon at lower left leads to cyclopropylcarbinyl
product. Similarly, attack at upper right gives allylcarbinyl product,
and attack at the central carbon leads to cyclobutyl product.

One principal difference in the chemistry of analogously consti—
tuted radical intermediates is that allylcarbinyl and cyclopropylcarbinyl
structures do not seem to be interconvertible with cyclobutyl structures
(15). This generalization holds even where substitution should strongly

promote just such an interconversion (15a):
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For this reason, speculation on nonclassical free—radical intermediates

in this type of system has focused on structures of the so—called homo-



allylic type, as below:
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Free—radical studies on the parent 4—carbon system have been
reported by several groups. Kinetic evidence indicates that the cyclo-
propylcarbinyl radical is formed substantially more easily than a typi-
cal primary radical (16). However, products studies have proved dis-—
appointing in that on hydrogen abstraction at best trace amounts of
cyclopropylmethane are formed (17). Only i1-1 the chlorination of cyclo—
propylmethane have substantial amounts of the cyclopropylcarbinyl
product been observed (16b, 18). These results have been reviewed by
Rosen (2).

Evidently, if classical cyclopropylcarbinyl and allylcdrbinyl
radicals are involved, the former is less stable than the latter. Alter-
natively, if products are formed via a nonclassical species, that species
probably closely resembles the allylcarbinyl radical. In either case,
it seemed reasonable to try to effect closer competition by selectively
stabilizing the cyclopropylcarbinyl form.

The ring—opened and ring—closed raéicals for the dimethyl—-sub-—

stituted system are shown below. However, product studies here have
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also been generally disappointing. Thus, radical-ehain reduction
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of y, y—dimethylallylcarbinyl bromide by tri-n—butyltin hydride gave di-
methylbutene with only a trace (less than 0. 2%) of isopropylcyclopro-
pane (19a). In contrast, decarbonylation of dimethylcyclopropylacet-
aldehyde did give 18% isopropylcyclopropane when carried out in the
presence of approximately 3 M benzylmercaptan (19b). However, the
reaction appears to be too complex to permit dilineation of the mechan-
istic pathways by which this material was formed (20).

Phenyl groups woﬁld be expected to be much more eff