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ABSTRACT 

Part I 

Solutions of Schrtldinger 's equation for systems of two 

particles bound in various stationary one-dimensional potential 

wells and repelling each other with a Coulomb force are obtained 

by the method of finite differences. The general properties of 

such systems are worked out in detail for the case of two electrons 

in an infinite square well. For small well widths (1-10 a. u.) the 

energy levels lie above those of the noninteracting particle model 

by as much as a factor of 4, although excitation energies are only 

half again as great. The analytical form of the solutions is obtained 

and it is shown that every eigenstate is doubly degenerate due to the 

"pathological" nature of the one-dimensional Coulomb potential. 

This degeneracy is verified numerically by the finite-difference 

method. The properties of the square-well system are compared 

with those of the free- electron and hard- sphere models; perturbation 

and variational treatments are also carried out using the hard- sphere 

Hamiltonian as a zeroth-order approximation. The lowest several 

finite-difference eigenvalues converge from below with decreasing 

mesh size to energies below those of the "best" linear variational 

function consisting of hard- sphere eigenfunctions. The finite­

difference solutions in general yield expectation values and matrix 

. elements as accurate as those obtained using the "best" variational 

function. 

The system of two electrons in a para bolic well is also 

treated by finite differences. In this system it is possible to 

separate the center-of-mass motion and hence to effect a con-
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siderable numerical simplification. It is shown that the pathological 

one-dimensional Coulomb potential gives rise to doubly degenerate 

eigenstates for the parabolic well in exactly the same manner as for 

the infinite square well. 



v 

Part II 

A general method of treating inelastic collisions quantum 

m.echanically is developed and applied to several one-dimensional 

models. The formalism is first developed for nonreactive 

"vibrational" excitations of a bound system by an incident free 

particle. It is then eh'tended to treat simple exchange reactions of 

the form A + BC .... AB + C. The method consists essentially of 

finding a set of linearly independent solutions of the Schrtldinger 

equation such that each solution of the set satisfies a distinct, yet 

arbitrary boundary condition specified in the asymptotic region. 

These linearly independent solutions are then combined to form a 

total scattering wavefunction having the correct asymptotic form. 

The method of finite differences is used to determine the linearly 

independent functions. 

The theory is applied to the impulsive collision of a free 

particle with a particle bound in (1) an infinite square well and (2) 

a parabolic well. Calculated transition probabilities agree well 

with previously obtained values. 

Several models for the exchange reaction involving three 

identical particles are also treated: (1) infinite-square-well 

potential surface, in which all three particles interact as hard 

spheres and each two- particle subsystem (i. e . , BC and AB) is 

bound by an attractive infinite-square-well potential; (2) truncated 

parabolic potential surface, in which the two- particle subsystems 

are bound by a harmonic oscillator potential which becomes infinite 

for interparticle separations greater than a certain value ; (3) para­

bolic (untruncated) surface. Although there are no published values 

with which to compare our reaction probabilities, several inde­

pendent checks on internal consistency indicate that the results are 

reliable. 
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P REFACE 

All of Part I of this work is concerned exclusively with the 

treatment and properties of one-dimensional (1-D) model systems. 

Also in Part II we have chosen 1-D models to illustrate the 

application of a quite general theory. Because of their mathematical 

tractability, 1-D analogues of real physical systems have long been 

studied with the hope of gaining insight into the real systems. 

Indeed, there has been published recently a book entitled 

"Mathematical Physics in One Dimension"*, in which are collected 

reprints of one-dimensional model studies. 

On one hand, we must question the value of investigating 

models which indubitably suffer from a lack of three-dimensional 

effects. On the other hand, we may in particular cases adduce 

much evidence, perhaps empirical, that a one-dimensional model 

faithfully reflects the properties of interest in the real physical 

system under scrutiny. Whatever the case may be, it is clear that 

the study of one-dimensional models indirectly makes a significant 

contribution to our understanding of real systems. First, the 

appealing feature of 1-D models, i.e., their susceptibility to 

rigorous mathematical analysis, makes us wary of simplistic 

theories contrived merely to circumvent mathematical complexities 

inherent in the three-dimensional problem. Second, specific results 

of the 1-D treatment may suggest interpretations of confounding 3-D 

results or modifications in the theory which lead to a more satis­

factory "picture". In this respect the study of one-dimensional 

models serves to sharpen our concept of reality. 

* "Mathematical Physics in One Dimension", ed. E. Lieb and 
D. Wmttis (Academic Press, Inc., New York, 1966). 
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I. QUANTUM MECHANICS OF ONE-DIMENSIONAL TWO­

PARTIC LE MODELS 

A. Introduction 

A classic example of a valuable one-dimensional (1-D) 

model is the simple free-electron model (FEM), in which the 

electrons move independently in a 1-D infinite square well. In 

spite of the relative success of this model, e. g. , in its application 

to pi-electron spectra of conjugated molecules, a first obvious 

"improvement" is the inclusion of the 1-D Coulomb interaction 

among the electrons. The solution of our model gives wave­

functions, energies, and other properties for the two-electron 

case of this improved FEM and furthermore demonstrates how 

"physics" may get distorted in one-dimension. 

In this part we solve, by the method of finite differences 

(FD), the Schrtldinger wave equation for systems of two particles 

bound in various types of one-dimensional potentials and inter­

acting with each other via a 1-D Coulomb potential I x1 - x2 I""1. 

For the case of two electrons in an infinite square well, 1 which 

we shall treat in detail, the energy levels lie higher than those 

of the noninteracting-particle model (FEM) by as much as a 

factor of 4; excitation energies are 50 to 70% greater. Most 

important, however, every eigenstate is doubly degenerate. This 

is a non-group-theoretically required degeneracy and is due to the 

"pathological" nature of the 1-D Coulomb potential which requires 

that the wavefun.ction vanish when the coordinates of the electrons 

are equal. 
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A central problem in the quantum theory of many- electron 

systems is to find approximate wavefunctions which accurately 

predict the properties of the system. Traditionally, one uses the 

variational principle to determine the "best" trial function of a 

given form. Often, however, this "best" trial function does not 

successfully predict other properties of the system more important 

to the chemist than total energy. To discover directly why this 

function fails it is necessary to examine the exact solution. For 

example, to study the effects of electron correlation in two­

electron atoms, Kestner and Sinanoglu 2 and Tredgold and Evans3 

independently investigated the "exactly" soluble 3-D model con­

sisting of two electrons bound in a parabolic well, but repelling 

eacn other with a Coulomb force. Although the model is not 

exactly soluble in the sense that the wavefunction may be written 

in closed form, the presence in the Hamiltonian of the attractive 

(nuclear-electron) parabolic terms allowed them to separate the 

Schrtsdinger equation in the center-of-mass coordinate system. 

As we shall see, the one-dimensional problem may be treated 

similarly. In fact, the solution of the 1-D relative equation is 

identical to the 3-D relative solution multiplied by the interelectron 

coordinate r 12. It is clear, however, that the FD method has the 

advantage of enabling one to study the effects of a wide variety of 

attractive (nuclear- electron) potentials on electron correlation, 

since it does not rely on the presence of a separable potential in 

the Hamiltonian. 

A great deal of study has been given to the problem of 

electronic interaction in the FEM. Several authors have 

investigated the effect of including explicit interelectronic inter­

action (Coulomb) terms in the model Hamiltonian. Araki and 
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Araki4 used a 2-D average over the 3-D Coulomb potential in a 1-D 

treatment of the cya.nine dyes. In a similar manner, . Huzinaga 5 

re- exar.a.ined the Platt model for the naphthalene molecule, including 

electron repulsion terms as 1-D averages over the 3-D potentials . 

. Also, Ham and Ruedenberg6 modified the free-electron network 

model by introducing the electron interaction terms as 2-D 

averages over the cross-section of the bond path. Finally, 

Olszewski 
7 

attempted a configuration interaction treatment of 

linear conjugated molecules using antisymmetrized 1-D free­

electron molecular orbitals (ASFEMO). 8 The solution of our 

model suggests several alternative methods of treating linear 

conjugated molceules which do not involve taking averages over 

arbitrary cross sections or limits of 3-D expressions. 

Bolton and Scoins, 
9 

concerned primarily with the solution 

of eigenvalue problems by the finite-difference method, have 

reviewed attempts to solve various two-variahi.e Schrtldinger 

equations. Although not particularly interested in electron corre­

lation, they obtained for the "S-limit1110 of the ground state of the 

helium atom a value of -2. 65 a. u. (best value -2. 879)~ lO, 11 

In the remaining sections of Part I we have two main 

purposes: first to obtain accurate energies, wavefunctions, and 

selected properties for the model system (IFE M) discussed above 

and then to consider the relevance of our results to more com­

plicated and interesting systems. In Section II the !FEM is 

treated quantitatively. The analytical propert ies of the wave­

functions, including the "accidental" double degeneracies, in 

part 1; the FD method, uniqueness and convergence properties 

of FD eigenfunctions, eigenvalues, and matrix elements in part 2. 
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We also discuss numerical verification of the degeneracies in 

part 2. In part 3 the FD results are compared with approximate 

solutions obtained by the perturbation and variational methods. In 

Section C we apply the FD method to the problem of two electrons 

in a parabolic ·well, discussing how the accidental degeneracies 

arise analogously to those of the IFEM. Finally, in Section D we 

discuss the results and how they apply to more complicated one­

dimensional models and also indicate how the FD method may be 

used to solve differential equations arising in the treatment of 

more 11chemically" interesting three-dimensional problems such 

as the He atom. 

B. Wiathematical Treatment of the IFEM 

1. General Considerations 

The time-independent Schrt)dinger equation for the one­

dimensional system of two electrons in an infinite square well is 

written in atomic units (a. u.) in the coordinate system [xJ.,. x2] 12 

where 0 ~ x1
1

, x2 
1 

:::;. a and x1' and x2 ' denote the electron 

coordinates; a is the well width. Since the wavefunction must 

vanish outside the well, the boundary conditions on v,; in 

[x1
1

, x2
1 J are: 

(la) 

(lb) 
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l,(;(xl I' 0) - 0 

l,(;(xl '' a) = 0 -

(2) 
l,(1(0, x ') 2 - 0 

l,V(a, x2 ') :: 0 

These conditions require that ~(x1 ', x2 
1

) vanish on the boundary 

of a square of edge a (see Fig. Ia). The Schrtldinger equation 

(la) is invariant under transformation to the system [x1, x2J, 
defined by 

However, the boundary conditions in [x1, x2J are: 

cp(x
1

, - a/2) _ 0 

cp(x1, a/2) - 0 

(3) 

cp(- a/2, x2) = - 0 

cp(a/2, x2) - 0 . 

In the center-of-mass coordinate system [X1, X2J, where 
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X~ + x 2 
X - _1-=--

1 - 2 

the Schrt5dinger equation becomes 

2 
Cl '1' --· + 

aX
2 
2 

= E'l' 
' 

with the corresponding boundary conditions 

'1' (X 
1' 

2X
1 

+a) = 0 

'1' (Xl, 2X1 - a) = 0 

'1' (Xl, -2X
1

- a) = 0 

'1' (X -2X +a) 
1' 1 = 0 . 

These conditions specify that the wavefunction vanish on the 

bour.ldary of a rhombus, the edges of which are not coincident 

with coordinate surfaces in [X1, X2J (see Fig. lb). 

In each of the coordinate systems there is a group of 

(4) 

(5) 

operators IE , ri. , fR 1 , IR 2 defining coordinate transformations 

which leave the Hamil~onian invariant. It is simplest to define 

thesa operators in [x1, x2J, although we shall express them 

later in the other systems. Thus IE is the identity which takes 
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the point (x
1

, x2) into itself, Ii is the inversion about (0, 0) 

taking (x1, x2) into (-x1, - x2), lf\ is the reflection about the 

diagon~l x2 = x1 which transforms (x1, x2) into (x2, x1) and IR
2 

is the reflection about the other diagonal which carries (x1, x 2) 

into (-x2, -x1). This group is isomorphic with the Vierergruppe, 13 

in which all the elements are mutually commuting. Thus the group 

of the Schrtldinger equation is Abelian and has only one-dimensional 

irreducible representations (i. r. ). These are listed in Table I. 

Furthermore, since the exact eigenfunctions of the Hamiltonian 

must transform according to these i. r. 's, we conclude that all the 

eigenstates of our system are nondegenerate, i.e., there is no 

group-theoretically-required degeneracy. 

Now consider the solution of the Schr<:Sdinger equation in the 

system [ x
1

, x
2
J by the method of separation of variables. To 

study the form of the components of the required solution, we 

substitute 'i' (X1, x 2) = ¢(X1)x(X2) into Eq. (4). A sum of such 

components will, of course, have to be used to satisfy the boundary 

conditions, Eq. (5). We obtain 

and 

1 d
2

¢ 
Li: ... - 2 + En-¢ = 0 

dX 'P 

1 

~+ 
dX2 

2 

_ X_ - E X = 0' 
IX2l x 

where E = E¢ +EX. The general solution of Eq. (6a) may be 

written 

(6a) 

(6b) 



8 

2 where k¢ = 4E¢ and A1 and A2 are arbitrary constants. 

In the region x
2 

> 0, Eq. (6b) may be transformed into 

Kummer's equation 

2 
z d v + (2 - z) dv - (1 - - 1- ) v = 0 

dz2 dz 2kx ' 

k x
2 

(7) 

(8) 

by the substitutions x = x2e X v( z), z = -2kXX2, where 

k 2 = -E . 14 Since b in the general form of Kummer's equation x x 
is an integer in this case, namely 2, the two independent solutions 

are, in the notation of Slater14 

where 

co 

v 
1 

= 
1
F

1 
(a, b ;z) :;;: l 

m:;;:O 

n-l (a-n) r-n co 

v2:;;: l (1-n{zr! +l 
r=O r r=O 

(a)m 

~ m 

m 
z 
m! 

(a-n) r-1 
n+r z 

(l-n)n-1 (l)n+r rT x 

r-1 
1 r 1 \ 

-r-(a-+-s--n-1) - l (s+n-1) - L 
s:;;:l s=l 

(9) 
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1 a= 1--2k ' 
x 

b=n+1=2 

(s) = s(s + 1) ••.. (s+p-1) . 
p 

Thus for x2 > 0 the general solution of the relative equation (6b) 

is 

Similarly for x 2 < 0 the general solution takes the form 

-k x . 
x<(X2) = CX2e x 

2 
{Bl vl (2kxX2) + B2 v2(2kxX2)} ' (lOb) 

where the B's and C are arbitrary constants. vVe note that with 

the substitutions 

. 1 
Tl = 2().. 

A. = E , Eq. (6b) becomes 
x 
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ct
2 2 ~ + (1 - ~) x ::: 0 ' 

dp2 p 
(11) 

the Coulomb wave equation for states of zero angular momentum. 
15 

The general solution of the relative equation may thus be expressed 

as a sum of the regular and irregular Coulomb wavefunctions of 

order zero, F 0 and G0 , respectively 

The solution of the relative equation in the regions x
2 

< 0 

and x
2 

> 0 is thus reasonably straightforward but, on account of 

the singularity in the Coulomb potential, it is not clear how the 

solutions should be joined at x2 = 0. In order to ascertain the 

appropriate boundary conditions in the case of an infinite potential 

it is necessary to start with a finite potential V requiring 

continuity of the wavefunction and its gradient, and then to take 

the limit as V goes to infinity. 16 To resolve the joining problem 

at x
2 

= 0 we consider a related simplified problem in which the 

"physics" is identical except that the boundary conditions arising 

from the stationary potential (the infinite square well) pose no 

difficulty. A suitable system is that of a particle of mass 1/2 

which is repelled by a "truncated" Coulomb potential symmetric 

about the origin, but which is confined in an infinite square well. 

The Schrtidinger equation is 

- d2tf; + 1/.1 

dx2 I xi + e: 
= Etj;, (12) 
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where -a/2 .s: x ,:::; a/2, a is the well width. We require that 

'lf.,{-a/2) = 'lf.,{+a/2) = 0. Equation (12) is identical in form with 

Eq. (Gb) and thus the general solution may be expressed 

(13) 

where y = x + e: for x > 0 and y = -x + e: for x < 0. Since the 

potential V = 1/( I xi + e: ) is even under :inversion of the coordinate 

x, the solutions I/; must be either even or odd under inversion. 

Hence, for the states of odd parity I/; must vanish at y = e: and 

e: ± a/2, 

(14a) 

I ( /2) F ( e: + a/2 ) + b G ( e: ~~/2 ) = 0 • 
'l.f.I o e: + a = ao 0 11 ' 211 o 0 11 ' (14b) 

On the other hand, for the even states the first derivative must 

vanish at y = e:. Since IJ;(e: + a/2) = 0 for the even states also, we 

have 

I/; '(e:) =a F 0
1 (11, e:/211) + b G0

1 (11, e:/211) = o e e e (15a) 

( I ) ( e: + a/2) ( e: + a/2) 1fJ e: +a 2 = a F 0 11, . 2 + b G0 11, 2 = o . 
e e 11 e 11 

(15b) 

The eigenvalues E = 1/ 411
2 

are found for each e: from the 

requirement that the determinant of coefficients of the unknowns 
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a , b , a , b in the above equations vanish. V./ e now consider o o e e 
the behavior of the solutions as e becomes arbitrarily small, in 

the limit restoring the Coulomb potential. For the odd states b
0 

must be zero in the limit since F 0(ri, 0) = 0 and G0(ri, 0) I- O. 

Thus, for the odd states 

where ri is chosen such that F 0 vanishes at y = a/2 and a
0 

so 

that tll is normalized. ·o 
For the even states, if Eq. (15a) is to be satisfied, b 

e 
must become very small as e approaches zero since G0

1 diverges 

while F 0
1 remains finite. In the limit e = 0, we thus obtain for 

· the even states 

x>O 

x < 0' 

where ri and a are chosen as before. e 
Apparently, the odd and even states are degenerate in pairs 

as are the one-dimensional hydrogen-atom eigenstates (except the 

ground state). 17 Also there is a required node for all states 

(actually the coalescing of two nodes for even states) at x = 0. 
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This result is equivalent to that obtained by initially eliminating 

G0 on the basis of "physical" considerations. We suppose that 

if; contains G
0

• Then the expectation value of the Hamiltonian is 

where (if; IV I if; ) contains a term 

+a/2 2 1 J G0 - dx. 
-a/2 I xj 

Since G0 is approximately constant in the neighborhood of the 

origin, the integrand diverges. We have 

.. a/2 2 1 
I G -dx~lim 

.1 o I I o -a/ 2 x a. .... 

:= 2 a 
lim ln 2a. • 

a.-+ 0 

Hence ( if; IV I if; ) diverges logarithmically and since 

~ dx} 

(lf;j K
0

pjlf;) > 0, we find that the eigenvalue is infinite. Hence 

we eliminate G0. 

The discontinuity of the first derivative for the even .wave­

functions is tolerable since the potential is singular there. The 

same sort of discontinuity is observed in the solutions of other 

one-dimensional problems which involve singular potentials, e.g., 

the particle in the box, hard spheres in a box, and the hydrogen atom .. 
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Applying the results of this simplified problem [Eq. (12)] 

to the solution of the relative equation (6b), we set B2, the 

coefficient of the irregular function v 2 in the general solution, 

equal to zero, thus obtaining 

Finally, we have the complete general solution of the Schr(}dinger 

equation in [X1, X2J 

for the states symmetric under reflection about the line x
2 

= 0, 

i. e. , operation IR 1 of the symmetry group, and 

for the states antisymmetric under this operation. Here 

1/4, k .. 
2 

- k .
2 = E, the A1 .1 and A2 .1 are arbitrary cons~ts, 

9 J XJ J J 
and the S . indicates a sum over the discrete spectrum of k and 

] 

an integral over the continuum. In order to find the allowed 
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eigenvalues and eigenfunctions we must impose the boundary 

conditions (5) in [ x1, x2J. To simplify the discussion we 

consider only the totally symmetric eigenfunctions, i. e. , those 

which transform according to the i. r. r 1, and therefore set 

A2 j1 
:::: 0 for all j. Thus, from Eqs. (16a) and (5) 

(17) 

for all x
1 

for 0 '5. x
1

.::;;: a/2. To further simplify the discussion 

we rewrite Eq. (17) as 

'i' (Xl, -2Xl +a):;; s .A. ¢. (k.;Xl)x .(E,k.;Xl) . (18) 
J J ' J J J J 

The ¢ . and x. may be expanded in power series as 
J J 

00 

¢ . :::: \ a . (k.) x
1

11 

J L Jn J 
(19a) 

n::::O 

(19b) 

Now from Eqs. (18) and (19), we have 
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co n 
\ \ S .A.a. 

9 
(k.)b. 

9 
(E, k.)X

1
n. (20) 

L L . J J J"- J J, n-"' J 
n~O t=O 

Since the sum must vanish identically in the range 0:;; x
1

:::; a/2, 

the coefficient of each power of x 1 in the right member of Eq. (20) 

must vanish. Vie have thus 

n 
\ S .A.a. 

9 
(k.)b. 

9 
(E, k.) = 0, n = 0, 1, 2,... (21) 

L J J J"- J J, n-"' J 
.t=O 

In fact, sh-ice the spectrum of k is continuousj Eq. (21) represents 

an infinite set of coupled integral equations found to be highly 

intractable mathematically. Employing a discrete set of k and 

truncating the expansions in n and j, we obtain a finite set of 

equat ions in the unknowns A., which has a nontrivial solution only 
J 

if the determinant of the coefficients of the A . vanishes. This 
J 

requirement allows one to determine the approximate eigenvalues 

E. \Ve have investigated this method, but have encountered 

difficulties in choo.sing an appropriate set of k. 's and also in solving 
J 

a rather unmanageable determinantal equation in E. We shall 

therefore defer further consideration of this approach until a later 

date and go on to discuss the more generally applicable and highly 

tractable finite-difference method. 
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2. The Finite-Difference Method 

In the FD method the approximate solution of the 

Schrtldinger equation (la) is expressed as a set of numbers 1.f; i 

which are the approximate values of the wavefunction of a finite 

set of grid (mesh) points in [ x1', x2
1 

] • The set of grid points 

is divided into boundary points, at which the values of 1.f;.. are 
1 

k nown, and interior points, at which the values of 1.f;.. are to be 
1 

determined by solving the difference equation analogue of the 

Schrtidinger equation 

H. iµ, ;;;: ei.J;,., i ;;;: 1, 2, . . • M, 
1 1 1 

where H. is the discretized Hamiltonian, e is the discretized 
1 

eigenvalue, and M is the number of interior points. A square 

(22) 

mesh of size h is conveniently constructed as shown in Fig. Ila, 

wher2 the boundary points are denoted by circles 0 and the 

interior points by dots 0 . It is not necessary to construct a 

mesh over the whole square since, as we have shown above, all 

of the exact eigenfunctions vanish along the diagonal, being either 

symmetric or antisymmetric with respect to IR 1. The explicit 

form of the difference equation analogue (22) is f ow1d at each 

point of the mesh by expressing the partial derivatives in H in 

terms of 1.f;. at neighboring points. Thus we consider mesh 
1 

point i .:::; M and denote the neighboring points as i1, i 2, i
3

, and 

i 4 (Fig. Ilb). The values 'If; i. at neighboring points may be· 

expanded in a Taylor's serie~ as18 · 



18 

2 2 3 3 .1. L1. 
I I , ,1, , • I , • _ ( otf.1 ) ( o '<f.I ) n , ( o '+' ) n o '<f.I n 

1./J - - if/ . + -...,-, h + --2 -21 .,. --3 -3 T + (--.1_) 4-1 + •. • 
11 l 0Xl 1. 0X1' l. • 0X1' l. • 0 I • • xl i, i

1 

,3 4 , ,4 
~+ (~) n 
3 1 4 41.+ •••• 

• '::>. I 

i oXl i, i
3 

Adding these equations and rearranging, we obtain 

2 ll;. + w - - 2ij;. 2 L1. 
.,, . l . 1 1 • 

( ~) = _1_-=3 __ - ~ [(~) 
"' ,2 , 2 4 ! ~ A ox1 1

. n ox1 . . 
1, 11 

A s Lnilar expression may be obtained for (o 
21.f;/ ox2

12)i. For h 

small enough the bracketed terms may be neglected19 so that the 

difference equation analqgue becomes 

i = 1, 2, •.. M, (23) 

, /2' 2 wn2re e = -A. n . The set of equations (23) may be expressed 

more conveniently in matrix form as 

(24) 

where H is a real symmetric (Hermitian) matrix order M, "± is 

a colur.c.1.n vector of the 1.fl.., and A. is the modified eigenvalue. The 
1 
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structure of !:! is, of course, determined by the mesh labeling 

shown in Fig. Ila. All the diagonal elements are negative and 

the off-diagonal elements are either 1 or O. Since ~ is Hermitian, 

its eigenvectors, which are approximations to the exact eigen­

functions, are orthogonal. Furthermore, the matrix ~2 which 

reflects '1!, across the diagonal x
2
' == -x

1
' + a commutes with !! 

so that the FD eigenvectors have the same symmetry required of 

the exact eigenfunctions. Thus, the eigenvectors 1/1 , formed X-ws 
over the whole square by joining the discretized solutions in the 

two half-squares such that tJ; is of either even or odd parity, 
~- ~ws 

must transform according to the i. r. 's of the Vierergruppe. 

a. Uniqueness and convergence 

A symmetric nxn matrix always has n distinct 

(i. e. , linearly independent) eigenvectors. 2° Furthermore, a 

Hermitian matrix can be diagonalized by a similarity transfor­

mation with a unitary matrix whose columns are the eigenvectors 

determined up to a phase factor. 21 Hence, we may conclude that 

for every mesh size h there is a set of distinct eigenvectors 

determined up to a constant factor, which we set by normalization. 

Following the procedure of Bolton and Scoins9 we 

consider whether the discretized eigenvalues, eigenfrmctions, and 

matrix elements converge to the exact values in the limit as the 

mesh size h approaches zero. We assume that there exists a 

continuous function l./J c (x1', x2' ;h) which satisfies the difference 

equation analogue (23) for all values of h and that l./J c (x1', x2
1 ;h) 

and A. (h), the discretized eigenvalue, may be expanded as follows 

in the intervals 0 ;:::; x1', x2
1 .$ a, 0 .$ h < h

0 
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(25) 

or 

where the ¢ 1 may be expanded in the complete orthonormal set .. {: 

of exact eigenfunctions. If the expansions (25) are substituted 

into E q. (23), the value of lfJ at neighboring grid points expanded c 
in Taylor's series, and the coefficients of equal powers of h 

equated, one obtains 

(26a) 

(26c) 
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Since Eq. (2Ga) is just the Schre5dinger equation, we see that ¢
0 

is the exact eigenfunction and E = - c /2 foe exact eigenvalue. 
. 0 

Multiplying Eq. (26b) by ¢ and integrating over the range 
0 

0 ~ x1 ', x2 ' .:::; a, we. obtain 

a a a a c1 a 
J J ¢0H¢1dx1'dx2' = E J J ¢0¢1dx1'dx2' - 2 J 
0 0 0 0 0 

Since H is Hermitian and the ¢k real, the left member of Eq. 

(27) equals the first term of the right member and 

a a 

I I 
0 0 

Fience c1 = O. Thus from Eq. (26b) ¢
1 

:: 0 or is a multiple of 

¢
0

• Vle set ¢
1 

:: 0, thus obtaining c
3 

== 0 in a ma:r1ner similar 

to that above. If we multiply Eq. (26c) by ¢
0 

and integrate as 

before, we obtain eventually 

c = 
2 

L1. 

+ 0 
... ") ¢ dx

1
1dx

2
1 

• 
':::. ,... 0 
oX2 

Thus we see that the error in the leading term of the discretized 

energy e(h) is of order h2 . 

e(h) 
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It can be shown that, under rather general 

conditions, as h tends to zero, the solutions of the difference 

equation approach the solution of the differential equation, i.e., 

the discretization error usually decreases as the mesh size is 

reduced. A small value of h will minimize the truncation error 

inherent in Eq. (23) but will increase the size of the matrix to be 

diagonalized. Although the eigenvalues of fairly large matrices 

of this type can be obtained quite accurately and economically, 11 

it would be advantageous to avoid such large matrices. Since the 

difference between the eigenvalue at a given mesh size and the 

exact eigenvalue is a polynomial in h2, one may use the Richardson 

extrapolation technique 22 : put a polynomial through the values 

obtained at various not-too-large mesh sizes and extrapolate to 

"zero" mesh size. Of course, this extrapolation process may be 

somewhat dangerous since it is necessary to employ mesh sizes 

sufficiently small to be certain that the extrapolant lies close to 

the true eigenvalue. Exactly how small a mesh size is required 

must be ascertained by investigation of specific cases. As we 

show below, there are several cogent reasons why our solutions 

should be reliable, e.g., agreement with variation and perturbation 

treatments, small differences between FD eigenvectors for mesh 

sizes differing by a factor of 2, and results obtained for the "S­

limit" of the He atom using much smaller mesh sizes and including 

fourth-difference terms in the discretized Schrtsdinger equation. 

Consider the matrix element of an operator M 

connecting states k and .i. We write 
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a a 
J . J l/J ck (x1', x2'; h) Ml/Jc .f-(x1

1
, x 2

1
; h)dx1

1 dx2
1 

• (28a) 

0 0 

Substituting the expansion of E q. (25) for l/J c (x1
1

, x2
1

; h), we obtain 

Hence as h approaches zero, the discretized matrix element 

approaches the exact value with error of order h2, since 

¢ . = 0 for all j. 
J1 

(28b) 



24 

b. Method of solution of the finite difference equations 

In order for the set of homogeneous equations (23) 

to have a nontrivial solution, the determinantal equation 

I!:!- t..,!,I =o 

must hold, where I is the M x M unit matrix. The eigenvalues 

t.. are determined by solving this Mth degree equation. For large 

mesh sizes (M .::; 4), the roots may be found analytically. For 

M > 4 the problem is solved by diagonalization of ~ by the 

Householder method on a computer. Symmetry serves as a 

useful check on the accuracy of eigenvectors for a given mesh 

size. Various approximations, e (h) = - 1/2h2 · t.. (h), to a n . n 
particular eigenvalue E are obtained for a series of values of 

n 
h corresponding to M = 10, 15, 21, 28, 36, 45, 55, 66, and 78. 

To obtain an accurate estimate of the true eigenvalue E for a given 
n 

state, we extrapolate to zero mesh size using the method of 

Richardson and Gaunt
22 

as discussed above, which depends on 

the fact that the discretized eigenvalue is expressible as a series 

in even powers of h. 

IY.fatrix elements of operators M(x1
1

, x2
1
), e.g., 

expectation values and transition moments, are approximated for 

a given mesh size h by 

M_(h) 
(ij Ml j) ::: l \/lik~(xlk' x2k)\[ljk ' (29) 

k=l 
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where i and j denote the eig·enstates connected by M, 1\ (x1_k, 
x2k 1 ) is the FD analogue of the operator M at point k of the 

mesh; ij;'s now have two subscripts, the first indicating the 

eigenstate and the second the mesh point. i.J;. 1s are normalized 
l 

M 2 
so that l tf;ik = 1. Of course, the matrix elements may be 

k=l 

evaluated by more accurate numerical quadrature methods. 23 

In a few cases examined these methods yielded values very little 

different from those calculated from the simpler expression (29). 

We note that if one wishes to compare eigenvectors corresponding 

to different mesh sizes, it is necessary to normalize the approxi­

mate eigenfunction over the half- square x1
1 .2: x2'. We do this 

below. 

c. Results 

Results of calculations performed for the case of a 

square well of width 4. 00 a. u. are shown in Table II. 

The eigenvectors corresponding to the eigenvalues 

e:l' e: 2, etc. are, of course, approximations to the exact eigen­

functions tJ;1 , i.J.;2 , etc. in the half- square x1
1 > x2

1
• Since ex ex --

the exact eigenstates are all doubly degenerate, we form the FD 

approximations over the whole square by joining the reflection of 

"}, (or -Y!) in the half-square x1
1 < x2

1 with Y!, in the half-square 

x1
1 > x2

1
• Thus we have doubly degenerate eigenstates whose 

approximate eigenfunctions are either symmetric or antisymmetric 

with respect to IR 1 and transform according to the i. r. 's listed in 

Table I. The symmetric states are denoted by a superscript + and 
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the antisymmetric states by - . Figure Ill shows probability 

amplitude contours (obtained by linear interpolation) for h = • 50 

for the first three symmetric eigenstates of the 4. 00 - a. u. well. 

A three-dimensional plot of the approximate symmetric FD ground­

s tate eigenfunction is shown in Fig. N. An indication of the 

relative accuracy of eigenvectors corresponding to different mesh 

sizes may be obtained by comparing eigenvectors generated from 

meshes whose sizes differ by a factor of 2, such that each point 

of the coarser mesh coincides with alternate points of the finer 

mesh. Such a comparison is made in Table ill for the ground- and 

first excited- state eigenvectors (normalized over the half- square) 

and shows that the eigenfunction changes very little when the mesh 

size is halved. This is a commonly used method
24 

of estimating 

the accuracy of a finite-difference solution. Usually if the 

difference between two solutions with quite different mesh sizes 

is small, one may feel justified in assuming that the error is 

small. Our results certainly indicate this. 
_, --+ _, 

In [x1, x2J the matrix elements of x = x1 e1 + x2e2, 

where el and e2 are unit vectors, may be written 

(ijijj ) = (ilx1lj) el+ (ilx2lj) e2, ws ws ws 
(30) 

where the subscript ·ws denotes that the integral is over the whole 

square. Each of these integrals may be broken up into two 

integrals, one over the lower half-square (lhs) where x1 > x2 and 

over the upper half-square (uhs). Thus 

(31) 
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Now if both '<{; . and '<{;. are either symmetric or antisymmetric, 
l J . 

'<{Ji · '<{;j is symmetric about x1 == x2, whereas if only one is 

antisymmetric '<{; i · '<{; j is antisymmetric. Further, since x1 in 

uhs at (x2, x1) is equal to x2 in lhs at the reflected point (x1, x2), 

we can rewrite Eq. (31) as 

where the + sign holds if both i and j are symmetric or anti­

symmetric and the - if only one is antisymmetric. From Eq. 

(32) we deduce 

In a similar manner, 

with the same sign convention. If '<{;. and '<{;. transform 
l J 

a ccording to the same i. r., then '<{;. • '<{;. transforms totally 
l J 

s ymmetrically (r 1). Then, since (x1 + x2) transforms as r 3, 

the total integrand transforms as r 3. We conclude that 

(33) 

(34) 

( ii x1 ! j) == 0 in [xl'x2J or 2.0 in [x1
1,x2

1 J. Table II confirms 

these group theoretical results. Furthermore, since x1
2 + x2 

2 

and V == 1/ I x1 - x2 I both tr an sf orm according to r 1, their . 

expectation values do not vanish in general. However, all matrix 

elements of these operators connecting eigenstates of different 

symmetry must vanish. 
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Ground- state energies, extrapolated by Richardson's 

method from mesh sizes corresponding to M = 10, 15, 21, and 28, 

are plotted as a function of well width in Figure V. In particular 

we verify that the FD eigenfunctions satisfy the virial theorem 

approximately. For any system of particles interacting by Coulomb 

potentials the virial theorem is given by 

. oE 
2 (K ) + (V) = 2E - (V) = -a( -) 

op 11=a 11=a a 11=a 011 11=a ' 
(34a) 

where E is the total energy, 11 is a scale factor, in our case the 
a 

well width, and a is a particular value of 11. 25 The quantity 

-a(oE/011)
11

=a' calculated using values of (aE/011) obtained by five­

point interpolation, is tabulated in Table IV along with 2Ea - (V) 
11

=a· 

The increasing percentage error with well width is due to the fact 

that extrapolations for larger well widths are approximately as 

inaccurate as for smaller, yet the virial is decreasing with 

increasing well width. 

d. Numerical verification of degeneracies 

When the boundary condition along the diagonal 

x
1

' = x2 ' is relaxed and a rectangular mesh with n(n + 1) interior 

points (arranged n + 1 horizontal by n vertical) constructed over 

the whole square such that no mesh point lies on the diagonal, 

near degeneracies occur in pairs, the eigenvector associated with 

the lesser of the two eigenvalues (see Table V) being symmetric 

with respect to ~l and that associated with the greater being anti­

symmetric. The eigenvalues of the lowest four eigenstates (two 
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lowest nearly dege1~erate pairs) of the 4. 00 -a. u. well are listed 

in Table V as a function of n along with the Richardson extra­

polants. We note that the eigenvalue for the lower state of the 

1-2 pair converges less rapidly than the eigenvalue of the higher 

state, thus indicating that in the limit n = ClO ex.act degeneracy 

would occur. We also note that the higher-state eigenvalue of 

neither pair is greater than the corresponding eigenvalue obtained 

from the half-square treatment. Probability amplitude contours 

(normalized over the whole- square) for the lowest nearly 

degenerate pair are pictured in Fig. VI. The heavy dark lines 

represent the approximate nodes. Note that the inversion d. is 

the only operator transforming mesh points in lhs into mesh 

points in uhs, although the contours indicate that the other 

required symmetry is present. 

3. Comparison of Results with Other Approximate 

Treatments 

In order to compare the accuracy of the approximate 

eigenvalues and functions found by the FD method and also to 

assess the effects of inter-electronic interaction on the properties 

of the system, it is advantageous to consider some other perhaps 

less accurate approximations. 

FEM. As a zeroth-order approximation we neglect 

the electronic interaction entirely. The Hamiltonian for the 

model system becomes simply that of two independent particles 

in an infinite square well, whose eigenvalues and associated 

eigenfunctions may be written in [x1
1

, x2
1 J 
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• , 
1 

_ 2 . nrrx1' . mrrx2' . mrrx1' . nrrx2' ) 
¢FEM(n, m, x1 , x2 ) - a (sm -a Sill a ± Sill -a- sm -a 

n
2 2 2 

EFEM(n,m) = 2 (n + m), 
2a 

where the + and - signs hold when n -f m. If one attempts to 

improve the FEM approximation by using the FEM Hamiltonian 

(35) 

as an unperturbed Hamiltonian and including the 1-D Coulomb 

interaction as a perturbation, one finds that the integrals involved 

in the first..: order corrections to the energies and wavefunctions 

diverge, since the integrand in . J lf/
0 

*H'lf;
0

dT behaves as 1/ I x1- x2' I 
in the region of x1 ' = x2 '. This suggests that we do perturbation 

theory on a system whose wavefunctions are required to vanish on 

x1' = x2 ', i. e. , a system in which a large part of interelectronic 

interaction has been accounted for. Such a system is that of two 

point hard spheres (HSM) in an infinite square well. 

HSM. The HSM Hamiltonian is identical to the FEM 

Hamiltonian, except that the hard- sphere condition requires that 

the wavefunctions vanish on x1 ' = x2
1

, where the potential becomes 

infinite. Because of the singularity in the potential, every state is 

at least doubly degenerate (for the reasons discussed above in part 1 of 

section B.) . Further degeneracies occur for states ¢HSM(n, m) 

and ¢HSM(n', m') for which n
2 

+ m
2 

= n 12 + m 12• These 

degeneracies are all "accidental" in the sense that they are .not 

group-theoretically required. Thus the energy levels and wave­

functions (normalized over the half square) are: 
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2 2 2 
EHSM(n, m) = TT 2 (n + m ) 

2a 
(36a) 

n I I I I 
+ . 

1 
, _ 2 . rrx1 . mnx2 . mnx1 . nnx2 1 1 ¢HSM> (n,m,x1, x2)- a(sm a-sm-a- -sm -a- sm -a-), x1 > x2 

(36b) 

+ . 
1 

, __ 2 . nnxi_ . mnx2 . mnxl . nnx2 
1 

, 

¢HSM<(n,m,x1, x2)--a(sm a- sm -a- -sm -a- sm -a-), x1 < x2 

(36c) 

(36d) 

all x1
1 and x2 ', where n 'f m. From expressions (36) it is clear 

that 

Using the HSM Hamiltonian as an unperturbed 

~-Iamiltonian, we calculate corrections to first- and second-order 

in the ener gies and to first-order in the wavefunctions for the 

first two symmetric eigenstates of the 4. 00 - a. u. well (see 

Tables VI and VII). The first- and second-order corrections 

to the energy are given by the expressions 
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En<.2m) = ~ \ (¢F.+ISM(n,m) 1 ¢+ (9 k)) (¢+ (9 k) 1 . L L HSM ""' HSM ""' 
t k >t I x1-x2 I I x1-x2 I 

Although these integrals may be evaluated analytically (see 

Appendix), for the purposes of the present calculation they 

were done numerically by a Simpson's rule routine on a 

computer. The numerical and analytical results for selected 

integrals agree closely, as demonstrated by the small errors 

in integrals which vanish by group theory (see Table VII). Tbe 

energies corrected to second-order in Table VI were calculated 

including the first ten terms of the sum (37b); matrix elements 

were evaluated from the first-order wavefunctions given by 

N-1 N 

-.p = ¢+ (n m) + \ \ 1 · 
nm HSM ' L L (EHSM(n, m) - EHSM(.i, k)) 

t=l k>-l 

(37a) 

(37b) 
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where N = 5. Properties involving the third eigenstate were not 

included since this state is of the same symmetry as the ground 

state. 

We note that the double degeneracies due to the 

singularity in the hard sphere potential are not split since the 

perturbation operator 1/ I x1' - x2 ' I does not connect symmetric 

and antisymmetric states. 

The Ritz linear variation treatment employing an 

expansion in N HSM eigenfunctions is also carried out for the 

4. 00 - a. u. well. vVe express the variational function as 

¢v = l cnm ¢~SM (n, m;x1', x2') • 
nm 

Since the ¢~SM form a complete orthonormal set, the requirement 

that ( ¢ I HI ¢ ) be stationary for first- order variations in the c v v nm 
leads to the equations 

m-1 N 

l l cnm { (¢~sM(n, m) I HI ¢~sM(k, .i)) ·- e:onk6m.e.J ::: O 

n:::l m>n 

k = 1, 2, .•• l-1 

.f,>k. 

To find the eigenvalues e:, which are approximations to the true 

eigenvalues, we have diagonalized the H matrix by the Householder 

method on a computer. This is done for N = 1, 2, and 5 and the 

results are collected in Tables VI and VIL· The energy (¢vl I _HI li\i> 
for the variational function 
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¢ :; x '(x ' - a)x '(x ' - a) (x ' - x ') vl 1 1 2 2 1 2 

is also included in Table VI for comparison. 

In order to compare the wavefunctions calculated by 

these various approximations, we expand the FD eigenfunctions 

in the complete orthonormal set of HSM eigenfunctions. The 

expansion coefficients for the ground state eigenfunction are 

. listed in Table VII along with those of the HSM and the HSM 

perturbation and variational treatments. All of the wavefunctions 

are normalized over the half- square in [ x1
1

, x2
1
]. We also 

compare some average properties predicted by these various 

.approximations in Table VL All matrix elements and expectation 

· values are calculated for the states symmetric with respect to !R 1• 

From Table VI we note that no variational function 

gives an energy less than the ground state FD eigenvalue. Further­

more, the "best" trial function, the 10-term HSM function, yields 

an energy about. 5% above that of the extrapolated FD eigenvalue 

for the ground state. We conclude that the FD method is converging 

to the exact eigenvalue from below and gives a very good lower 

bound to the true eigenvalue. The energies determined by first­

order perturbation theory on the HSM are very inaccurate, in 

general. It is clear that the first- order corrections to the energy 

are not small and hence we should not be surprised that first- order 

theory is inaccurate in this instance. However, the second- order 

corrections lower the energies nearly to those of the variational 

values, and higher- order corrections appear to be progressively 

less important. We note further that since the unperturbed energy 

is proportional to 1/a2 and the first-order correction to 1/a (see 
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Appendix), we would expect the accuracy of the first-order treat­

ment to improve for smaller well widths. 

Table VII indicates that, for the coefficients that do 

not vanish by group theory, i.e., c12, c
14

, c
23

, c
25

, and c
34

, 

the 10-term HSM variational ground-state function agrees 

remarkably well with the M = 78 (h = . 285) FD eigenfunction; 

matrix elements are also in close agreement. The HSM ground-

. state eigenfunction corrected to first-order by perturbation theory 

also agrees well with the FD treatment, although matrix elements 

do not compare as favorably. 

C. Two Electrons in a Parabolic Well 

The Schrtidinger equation governing two electrons in· a 

parabolic well is, in [x1, x2J 

(39) 

where x1 and x2 are the electron coordinates with respect to the 

center of force and x. is the force constant which determines how 

tightly the electrons are bound. In the center-of-mass system 

Eq. (39) is separable into the two ordinary differential equations 

(40a) 

(40b) 
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where 

We note that the group of the SchrUdinger equation (39) 

is identical to that of Eq. (la) for the infinite square well and hence 

we should be tempted to conclude, as before, that there are no 

·degeneracies in the eigenstates of this system. However, comparing 

Eqs. (6b) and (40b) near x2 = 0, we observe that the behavior of qi 

is similar to that of x and that similar arguments about joining the 

solutions for regions x2 < 0 and x2 > 0 at x2 = 0 may be made. 

Hence we again have accidental double degeneracies. 

To solve Eqs. (40) we note that l/; = r(x1)tll(X2) mustvanish 

rapidly enough for large values of x1 and x2 such that l/; is square 

integrable. Hence the boundary conditions in [X1, x 2J are 

lim r = o (41a) 

X1-+= 

lim qi = 0 (41b) 

x -+Cl) 
2 

such that r and ell are separately square integrable. Eq. (40a) 

describes the motion of a harmonic oscillator of mass 2 and force 

constant 2x., the eigenfunctions and eigenvalues of which are. given 

by 
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r;:;-L 1/2 2 
r (~) = (-" P_1/n) H (?;)e ... ; /2 

n 2n , n n. 

Er(n);; .f2x_(n + 1/2) , 

, E:r (~) . H ·t 1 · 1 26 wnere J. '=> is a erm1 e po ynom1a. 
n 

Eq. (40b) cannot be 

solved by the power series method since it gives rise to an 

irreducible three-term recursion relation. Hence we use the 

method of finite differences. 

The FD analogue of Eq. (40b) is easily obtained by a 

procedure similar to that followed in section B2 above. We 

divide the interval of interest, say [ 0, a], into M + 1 equal 

subintervals as shown in Fig. VIL The value of d2
(f}/d.X2

2 at 

point i is then found by using appropriate Taylor's series 

expansions about the neighboring points, of which there are · 

only two now. Upon substituting the discretized expressions 

into Eq. (40b), we obtain 

1 2 2 1 2 -[- 2 ~ (-4 x. x. + -)h ]w. + <ll. 1 + «P. 1 = t...<I>. , 
l x. l 1- l+ l 

1 

i ;; 1, 2, • • • , M, 

(42a) 

(42b) 

(43) 

where f... ~ - e cJ? h 
2

, h is the mesh size, and e: <I> is the discretized 

energy eigenvalue. We note that in Eq. (43) x2 has been replaced 

by x., where the subscript i denotes the mesh point. In matrix 
l 
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form, Eq. (43) becomes 

(44) 

where H is a M x M real symmetric tridiagonal matrix and ~ is 

the M- component column vector of approximate values of <I? at the 

mesh points. The eigenvectors and eigenvalues of !! are found by 

diagonalization by the Householder or Jacobi method. We note 

that in the FD treatment of Eq. (40b) much finer meshes may be 

used than in the treatment of Eq. (23). This is, of course, because 

Eq. (40b) involves only one independent variable whereas Eq. (23) 

involves two. Hence, for the same number of mesh points M and · 

the same interval for each variable, the mesh size h is inversely 

proportional to M + 1 in Eq. (43) rather than to 1 + /M as in Eq. 

(23). As we shall see below, it is possible to obviate Richardson 

extrapolation by using fine enough meshes. 

Uniqueness and convergence properties of the solutions of 

Eq. (44) may be proved in analogy to the proofs of section .B2. 

1. Results 

We have solved Eq. (44) for x. = • 320224 and a= 10. O. 

This value of a is large enough that the value of the wavefunction 

at a is negligible compared to its maximum value. The ·eigen­

values as a function of mesh size are given in Table VIII for the 

first several eigensolutions of Eq. (44). Kestner and Sinanoglu2 

obtained the ground state energy and wavefunction for the three­

dimensional problem also using x. = • 320224. They too separated 

variables in the center-of-mass system, obtaining equations 
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related to ours by 
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Their relative wavefunction <Ii1 is 
. {S 

where 0 1 is a solution to their relative equation (6). The 
L{-S 

corresponding relative eigenvalue E1 is identical to ours. 
{-S 

Solving their relative equation by the Hartree method, they 

obtained an eigenvalue Ek-s = 1. 384168, which agrees well 

with the 1. 384 which we estimate from Table VIII. Plots of our 

lowest several relative wavefunctions are shown in Fig. vm. 

D . . Discussion 

Consideration of two examples has demonstrated that the 

FD method can yield (1) accurate lower bounds to the true eigen­

values of a system of two particles interacting by a Coulomb 

potential, and also (2) discretized wavefunctions which give . 

expectation values of accuracy comparable to that obtained using 

the "best" variational functions. In the solution of single-variable 

relative ordinary differential equations resulting from a separation 

of variables it is relatively easy to obtain convergence to 4 or 5 

significant figures by using a fine enough mesh (see Table VIII). 

The "accidental" double degeneracies found for the !FEM 

seem to be characteristic of linear one-dimensional systems of 

particles interacting by the Coulomb potential. For exa.mple, we 

have solved the problem of two electrons bound in a parabolic well 

and have observed the same double degeneracies arising. By 
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arguments similar to those of section Bl we can show for the 

general case of an arbitrary binding potential that if the energy 

is to be finite, the wavefunctions must vanish at least as rapidly 

as (x1 - x 2) near x1 =: x2. Hence, the general solutions in the 

region x 2 > 0 and x 2 < 0 can be joined to form either symmetric 

or antisymmetric wavefunctions by satisfying appropriate boundary 

conditions. An interesting corollary to this result is that for 

one-dimensional systems of two fermions interacting by Coulomb 

potentials, S =: 0 and S:: 1 states are degenerate, a conclusion 

in accord with Lieb and Mattis• 27 result: "If S > S', the E(S) > E(S') 

unless V is pathologic, in which case E(S) 2: E(S')," where E(S) is 

the ground-state energy, S is the spin. The Coulomb potential is · 

an example of a pathologic potential. 

The pathological nature of the 1-D Coulomb potential has 

certainly "distorted" physics, since we know that in three­

dimensional systems of two fermions, the S = 0 state is of lower 

energy than the S - 1 state. The Coulomb potential is too "strong" 

in one dimension. Hence, in order to apply our model to real 

systems, some modifications, or at least conventions, will have 

to be made. For example, our treatment above of the IFEM 

suggests at least two ways of handling the pi-electron system of 

linear conjugated molecules. One way is to expand a trial wave­

function as a linear combination of hard- sphere eigenfunctions and 

use the Ritz method to find the approximate eigenvalues and 

functions. This does not get rid of the degeneracies, but at least 

allows us to calculate the integrals in the Hamiltonian matrix. An 

alternative method is to assume that the electrons move on parallel 

lines so that the Coulomb potential 1/jx . . j is replaced by 

1//d
2 + x .. 

2
: where d is distance betwe~n the lines. This lJ 
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modified potential corresponds to a 2·D average over a 3~D 

Coulomb potential. 
28 

The latter method has the advantage of no 

degeneracy, but the disadvantage that d cannot be known~ priori. 

Although we have been concerned in this part with the 

treatment of several examples of one-dimensional two-particle 

models, further work (yet in progress) has demonstrated the 

general utility of the FD method in the solution of real three­

dimensional problems .of more direct interest to chemists. As we 

. mentioned above, it has been possible to obtain an accurate 

value for the "S-limit" of helium-like atoms. 11 Another appli­

cation is the solution of second-order, inhomogeneous, partial 

differential equations resulting from the reduction of the N-electron 

first- order perturbation equation 

(Ho - e:)!/J(l) = (e: (1) ..: V).i/J o (45) 

to a series of pair equations. Each of these pair equations corre­

spond· to a description of the motion of that pair in the field of the . 

remaining electrons and is not coupled to other pair equations. 

Each pair function is associated with a pair energy and the second 

order correction to the energy is a sum over the various pair 
-energies. The first order equation is obtained by varying 1.f;1 in 

the expression 

(46) 

Hence, we can use Eq. (46) to determine an upper bound for the 
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contribution of each pair energy to the secmd order correction. 

We solve the pair equations by expanding the pair functions 

in a series of partial waves and then solving the resulting un-

coupled partial-wave equations by the FD method. The discretized 

partial-wave solutions are fit to a convenient analytical expansion 

and the analytical expansion plugged back into Eq. (46) to obtain an 

upper bound for the contribution of each partial wave. This 

procedure has been applied to the He atom with encouraging results: 

using a mesh size of . 25 a. u. we have obtained -0. 12386, -0. 02554, 

and-. 00323 a. u. for the contributions to the second-order energy of the 

the t =: 0, 1, and 2 partial waves, respectively. These are to be 

compared to the t =: 0, 1, and 2 contributions of -0. 12532, -0. 02648, 

and -0. 09389 obtained by Byron and Joachain29 using a variational 

expansion of the form 

t ,m,n 

We are presently extending this method to more complicated 

atoms. 

Acknowledgment. We thank Dr. David Cartwright for supplying the 

programs necessary to generate the three-dimensional graphs of 

Fig. IV. 
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E. Appendix 

The first-order correction to the energy of hard-sphere 
+ state ¢HSM(n, m) is given by 

a x' 1 
E ( 1) - I - I d I j" d I Ii\+ ( . I I) 1 Ii\+ { . I ') (A 1) 

nm - - o xl o x2 ""HSM"n,m,xl, x2 I x1-x2 I ""HSM"n,m,xl, x2 ' -

since the integrand is symmetric with respect to 1R 1 and ¢~SM 
is normalized over the half- square. Making the changes of 

variables 

and 

TIX I 
1 x =-­a 

TI~' 
y=-· 

a 

Y = (x - y), 

we obtain from Eq. (A-1) 

TI/2 . 

(A-2a) 

(A-2b) 

2 2 rr - I - { . n< - - . m < - -I - 4 · a • TI j dy dx sm 2 2x + y) sin 2 2x - y) -

. o y/2 . (A-3) 
. 2 

sin ~ (2x + y) sin ~ (2x - y)} 1 

y 
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Hence, we see that E(l) is proportional to 1/a, the reciprocal of 
nm 

the well width. The integrand in Eq. (A-3) is expanded to obtain 

· a sum of three terms, each term consisting of a product of four 

sines of arguments involving the sum of x and y. These three 

terms may be further broken down by trigonometric identities into 

sums of products of sines and cosines. Thus 

where 

n n/2 

1 = ~ • ~ I ctY f dx er 1 + 12 + I3), 

0 y/2 

- ) 1 1{ - - - -I (n m = - • - 1 - cos ny cos 2nx + sin ny sin 2nx 
1 ' 4 -y 

- cos mY cos 2mx - sin my sin 2mx 

+ 4 cos (n-m)y cos 2(n+m)x - 4 sin (n-m)y sin 2(n+m)x 

(A-4a) 

1 - - · 1 - -} + 2 cos (n+m)y cos 2(n-m)x - 2 sin (n+m)y sin 2(n-m)x 
. (A-4b) 

12 (n, m) . = - 41: {cos 2:n.X cos 2mx - cos my cos 2:n.X - cos ny cos 2mx 
y . 

+cos ny cos my} 

I 3 (n, m) = 1
1 

(m, n) . 

Carrying out the integrations over x, we have 
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n l - l cos (n+m)y _! - _! cos (n-m)y 
I = ~ • 21 J dy {n ( 2 2 ) + n( 2 __ 2 ____ ) 

a n - -y y 
0 

1 ( 1 1 1 ) sin 2ny 
- + 2n - 4(n+m) - 4(n-m) -

y 

( 1 1 1 ) sin 2my 
+ 2m - 4(n+m) + 4(n-m) -

y 

( 1 _ _!__ _ _!_ ) sin (n+m)y 
+ 2(n+m) 2n 2m -

y 

+ ( 1 _ _!__ + _!_ ) sin (n-m)y 
2(n-m) 2n 2m - . 

y 

+ cos ny cos my } • 

The first two terms of Eq. (A- 5) may be written in the form 

a . 2 1 . J s~ x dx = 2 (ln y + log a. - Ci(2a) ) , 

0 

(A-5) 

(A-6) 

where y is Euler's constant and Ci is the cosine integral. 30 The 

last term of Eq. A- 5 vanishes since n -f m. Thus we obtaiil · 

finally 
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4 { IT (n+ m)IT . ( ) I = ITa 2 [ ln y + ln 2 - Ci n+ m IT ] 

+ ] [ln y + 1n (n-;i)IT - Ci (n-m)IT] -IT 

1 1 1 
+ ( 2n - 4(n+m) - 4(n-m) ) Si (2nIT) 

1 1 1 
+ ( 2m - 4(n_!m) + 4(n-m) ) Si (2mIT) 

+ ( 1 1 2ml ) Si (n+m)IT 2(n+m) - 2n -

+ ( 2(;-m) - in + 2~ ) Si (n-m)IT} ' (A-7) 

where Si is the sine integral. 
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TABLE I. 

The Irreducible Representations of the. Vierergruppe 

IE Ii. Rl R2 

11 1 1 l 1 

12 1 -1 -1 1 

13 1 -1 1 -1 

14 1 1 -1 -1 
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TABLE ID 

Comparison of FD Ground- and First-Excited-State 

Eigenvectors for the 4. 00-a. u. Well 

State Ground state First excited state 

Mesh Size • 571 • 286 • 571 • 286 

Mesh 
:Point 

1 • 03821 • 03751 • 12456 • 12663 

2 • 14178 • 14177 .34840 • 35116 

3 • 27866 • 27775 • 42171 • 41246 

4 • 34600 • 34196 • 21740 • 21612 

5 . 24750 • 24260 o.o o. 0 

6 • 12818 • 13129 • 22911 • 24444 

7 • 33380 • 33811 • 29243 • 29746 

8 • 46116 • 46084 o.o 0. 0 

9 • 34602 • 34196 - .21740 - .20612 

10 • 17995 • 18162 o. 0 o. 0 

11 . 33380 • 33810 - • 29243 - • 29746 

12 • 27866 • 27775 - .42171 - • 41246 

13 • 12818 . 13129 • 22911 • 24444 

14 • 14178 • 14177 - .34840 - . 35116 

15 • 03821 • 03751 - .12456 - • 12663 



3.00 

4.00 

5.00 
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TABLE IV 

Verification of Virial Theorem for the IFEM 

(2E - (V) ) 
a ri==a 

- a(oE/ori) _ 
· ri-a 

6.42 6.72 

3.82 3.56 

2.55 2. 90 

bBased on a(oE/o ri)ri==a· See Eq. (34a). 

% Error b 

4. 5 

7. 3 

12.1 
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TABLE V 

Eigenvalues of the Lowest 4 Eigenstates for 

the 4. 00-a. u. Vvell Obtained by the FD Treat­

ment Over the Whole Square 

Eigenstate 1 2 3 

n 

6 2.03624 2.21361 3.37296 

7 2.06110 2.23207 3.44395 

8 2.08029 2.24502 3.49775 

9 2.09554 2.25446 3.53989 

10 2.10795 2.26154 3.57379 

11 2.11824 2.26699 3.60162 

Extrapolated 2. 18 2.28 3.76 

4 

3.65420 

3.73663 

3.79488 

3.83759 

3.86983 

3. 89.476 

3.96 
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TABLE VI 

Comparison of FD Results with Other Approximations for the 

4. 0-a. u. Well 

Expec-
Matrix Matrix Matrix ta ti on 

Eigen- Eigen- Element Element Element Value of 

Approximation state value (ij x1' j 1) (ij x1• j 2) (ij x1• J 3) x'2+x'2 
1 2 

Finite Difference (FD) 1 2. 281 1. 999 • 364 4. x 10-7t 9. 86 

(extrapolated to h=_==O) 2 3.9G4 1. 999 • 335 9.85 

3 4.798 1. 999 10.40 

Frea-Electron Model 1 • 61684 2.000 o.oo o.o 8. 90 

(FEM) 2 1. 5421 2.000 0.0 10.16 

3 2.4674 2.00 10.26 

Hard-Sphere Model 1 1.5421 2.000 • 389 3. x 10- 5t 9.65 

(HSM) 2 3.0842 2.000 • 397 9. '77 

3 4. 0095 2.000 9. 81 

HSM Perturbation 1 2. 291 2.043 • 368 10.08 

Treatment 2 4.036 2.034 10.01 

3 

HSM Variational 
Treatment 
a) 1 function 1 2.353 2.000 9.65 

(n=l, m=2) 
b) 2 functions 1 2.353a 

(n=l, m=2; 
n=l, m=3) 2 4.097 

c) 10 functions 1 2.298 2.000 • 364 3. x 10-4t 9. 85 
(n=l, m=2, ••• 5; 
n=2, m=3, .•• 5; 2 4.040 2.000 .336 9.849 
n=3, m=4 5; 
n=4, m=5~ 3 4. 887 2.000 10.40 

Variational Function 

x '(x '-a)x '(x '-a)(x '-x ') 1 1 2 2 1 2 1 2.382 

aThese values are identical with energies corrected to first-order. 

t These elements vanish by group theory. 
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TABLE VII 

Coefficients of Hard-Sphere Ejgenfunctions in Expansions of Various Approximate 
Ground State Wavefunctions for the 4. 00-a. u. Well 

Coefficients 

Approximation I c12 c13 
t 

c14 cl5 
t 

c23 c24 
t 

Finite Difference I • 991 -6 -2 -6 
.124 ~. 06 x 10 3. 67 x 10 1. 04 x 10 - 7. 70x10 

(M = 78) 

I-ISM I 1. 000 o. 0 0,0 o.o o.o 0.0 

HSM Perturbation 1. 000 -5 -2 -6 
• 135 -1. 49x10 3. 57 x 10 -7.6l x 10 - -5.87 x 10 

treatment 

RSM Variational 
-5 -2 -6 treatment • 991 -1. 44 x 10 3. 48 x 10 -6. 97 x 10 - • 123 1. 41 x 10 

(10 functions) 

Approximation I c25 c34 c35 
t 

c45 

Finite Di.ff erence I 7. 24 x 10 
-3 

-2. 62 x 10 
-2 

2. 86 x 10 
-8 - 1. 01 x 10 

-2 

(M=78) 

RSM I o. 0 o.o o.o o.o 
HSM Perturbation J 1. 00x10 

-2 
-3.72xl0 

-2 
1.74x10 

-6 - 1. 56 x 10 
-2 

treatment 

HSM Variational 
I -3 -2 -6 -2 treatment 7. 32 x 10 -2. 64 x 10 1. 91x10 - 1. 05 x 10 

(10 functions) 

t These coefficients should vanish by group theory. 

-7 

-7 
01 
CJ') 

-6 
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TABLE VIII 

Eigenvalues as a Function of Mesh Size for the 

First Three Eigenstates of the Relative Eq. (40b) 

for Two Electrons in a Parabolic Well (x. = • 320224, 

a = 10. 0) 

Eigenstate 1 2 3 

Mesh size 

1. 250 1. 34210 2.24398 2.94878 

. 500 1. 37784 2.42160 3.46717 

• 333 1. 38135 2.43785 3.50787 

• 250 1.38258 2.44347 3.52185 

• 200 1. 38314 2.44606 3.52828 

• 167 1. 38344 2.44746 3.53175 
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Figure I 

Boundary conditions on the wa vefunctions in various co­

ordinate systems. (a) Coordinate systems [x1 ', x2'] and 

[x1, x2J, in which the wavefunctions vanish on the edges of 

a s quare. (b) Center-of-mass coordinate system [X1, X2J, 
in which wavefunctions vanish on the edges of a rhombus. 
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Figure II 

Finite-difference mesh. (a) Square mesh of size h = a/6 

(a is well width). (b) Enlargement of mesh of size h 

around point i. 
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Figure ID 

Probability amplitude contours (normalized over the half­

squara) for the three lowest symmetric eigenstates of the 

4. 00-a. u. well determined by the FD method over the half­

square. (a) Ground state lf;1+(r1). (b) First excited state 

lf;
2
+(r

3
). (c) Second excited state lf;

3
+(r1). 
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Figure IV 

Three- dimensional plots of symmetric FD ground state 

eigenvector for the 4. 00-a. u. well (interpolated from M = 78). 
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Figt1.re V 

Ground- state eigenvalue as a function of well width for two 

electrons with (a) no interaction (FEM) (b) one­

dimensional Coulomb potential (IFEM). 
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Fig-1.1re VI 

Probability amplitude contours (normalized over the whole 

square) for the lowest pair of nearly degenerate states of 

the 4. 00-a. u. well. (a) Ground state (symmetric). (b) 

First excited state (antisymmetric). 
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Figure VII 

Illustration of finite-difference mesh (M = 19) used in the 

treatment of the relative equation (40b) for two electrons 

in a parabolic well. 
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Figure Vill 

Plots of the lowest three FD eigenfunctions (normalized 

over half-space x
2 

> 0) of the relative equation (40b) for 

two electrons in a parabolic well (rt = • 320224; a = 10. O). 
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IT. A QUANTUM IvIBCHA.NICAL TREATMENT OF INE LASTIC 

COLLISIONS 

A. Introduction 

There exists a large volume of literature devoted to the 

theoretical study of energy transfer in the inelastic collision of 

composite particles. In particular, the problem of energy 

transfer between translational and vibrational and rotational 

degrees of freedom has received a great deal of attention. 

Takayanagi1 has written a stellar review of the work done in 

this field. 

A great proportion of the theoretical work has been done 

on coli.near (one-dimensional) models representing the collision 

between an atom and a diatomic molecule or a solid sarface or 

between two diatomic molecules. .foJthough these models 

undoubtedly suffer from a neglect of three-dimensional effects 

of real space, it may be reasonably argued that the configuration 

allowing the most efficient transfer of energy is that in which the 

atoms are · coli.near. The model of a diatomic molecule, 

repr esented by a harmonic oscillator, being struck by an atom 

has been treated classically~' 3 
semi.classically, 

4 
and quantum 

mechanically by the method of distorted waves. 5' 6 

Shuler and Zwanzig 7 have calculated numerically the 

quantum mechanical transition probabilities for the impulsive 

collision (coli.near) of a free particle with a particle bound 

harmonically to a fixed equilibrium position, a problem 

mathematically equivalent to the atom-diatomic collision. 

Their method consists of expanding the total scattering wave-
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flmction '±' (R, r) as a linear combination of products of the bound­

state eigenfunctions of the oscillator and free-particle wave­

functions such that '±' satisfies the Schrtlding·er equation describing 

the system. Now since the SchrUdinge r equation is separable, '±' 

as expressed above automatically has the correct asymptotic form. 

The impulsive condition now requires that the '±' (R, r = R) :: 0, i.e., 

that the wavefunction vanish whenever the particle coordinates are 

identical. Shuler and Zwanzig satisfied this requirement in a 

least-squares sense by expanding the '±' (R, R) in the complete 

orthonormal set of harmonic oscillator eigenfunctions, thereby 

obtaining an infinite set of simultaneous linear equations for the 

unknown expansion coefficients. Although the matrix corresponding 

to this set of equations is inherently ill-condit ioned, Shuler and 

Zwanzig found that they could obtain transition probabilities which 

had converged to several sig11ificant figures by using successively 

larger finite matrices, i.e. , by successively increasing the 

num ber of virtual channels in the expansion of '1' . Vl e have 

attempted to apply this method to the impulsive collision between 

two diatomic molecules. Hmvever, the number of equations in 

the truncated set increases as the s quare of the number of 

channels included in the expansion so that numerical instability 

sets in before the probabilities converge. 

The Shuler- Zwanzig method has the clear disadvantage 

(in addition to numerical instability) that it is applicable only to 

impulsive collisions. Secrest and Jolmson B, 
9 

have r ecently 

developed an approximate method of treating inelastic collisions 

which is more generally applicable. Essentially their method 

involves a stepwise matching of the total scattering solutions for 

a portion of the interaction potential and an additional "slab 11 to 
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obtain fi.J.i.ally the total scattering vv-avefunction having the correct 

asymptotic form. To clarify this procedure, we look at the 

scattering of a one-dimensional plane wave i.J.1cident upon a 

potential barrier. We can find the reflection and transmission 

coefficients by splitti.J.1g up the barrier into "slabs". Suppose that 

we know the solutions !,l;1 and !,l;2 of the Schrt5dinger equations 

for slabs 1 and 2. \Ve can then form a "partial" solution if.! for 

both slabs by requiring continuity of l,L; and grad l,L; at the point 

where the slabs join. This procedure is continued by matching 

this partial solution for slabs 1 and 2 with that for the ne}i..1: slab 

3, and so on until the total scattering wavefunction l' is obtained. 

An analogous procedure may be employed to treat inelastic 

scattering except that in this case the matching is complicated 

somewhat by the fact that it is necessary to invert two matrices 

of order equal to the number of channels in the state expansion 

(or Green's function expansion) for 'f. 

Secrest and Jolmson applied their method to the atom­

diatomic collision problem, using various types of i.J.1teraction 

potentials between the incident particle and the diatomic. In 

particular they were able to duplicate the results of Shuler and 

Zwanzig by approximating the hard- sphere interaction by a step 

potential +25 oscillator units high. 

Chemical reactions constitute a special case of inelastic 

collisions. w· e wish to restrict our consideration to reactions 

which involve the collision of two composite particles to produce 

two new composite particles, e.g., exchange reactions. 

Furthermore, we shall consider only electronically adiabatic 

constrained linear encounters primarily because such a model 
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is mathematically tractable (in coritradistinction to the non­

linear case). Also a vast amount of previous theoretical work 

in this a r ea has been devoted to this model , presumably for the 

same reasons. It has been t r eated both classicallylO, 11 and 

quantum mechanically. 12, 13 Mazur and Rubin
12 

solved the 

time-dependent Schrodinger equation for a linear model exchange 

reaction using a specially prepared wave packet giving directly 

a momentum averaged reaction probability. 

Mortensen and Pitzer13 have treated the H2, H exchange 

reaction by solviri.g the time-independent Schr()dinger equation 

using the Sato14 potential surface and including "bending" corre­

ctions to take into account the effects of nonlinearity. They use 

the finite - difference method to solve the Schrt>dinger equation in 

the inseparable region, assuming a set of amplitudes and phases 

which determine the asymptotic form of the wa vefunction. In the 

intermediate region between the inseparable and asymptotic 

regions they analyze the solution to obtain a new set of amplitudes 

and phases apparently differing little from the assumed set. 

These are then "corrected to the boundary using the WKB approxi­

mation". These corrected values a.re next u sed to obtain an 

improved finite - difference solution and the above process is 

repeated until convergence is obtained. 

The principal purport of the present work i s to develop 

a general method of treating the problem of energy transfer 

occurring in the inelastic collision of composite particles. 

Essentially the theory consists of constructing the total scattering 

wavefunction from a set of linearly independent solutions of the 

relevant Schrt>dinger equation, each solution of the set satisfying 



78 

a different arbitrary boundary condition specified in the asymptotic 

region. We shall see that the method is capable of handling both 

nonreactive (e.g. , vibrational excitation) and reactive (e.g., 

exchange reaction) collisions. After presenting the formalism 

for one-dimensional colinear models, we shall consider several 

specific examples of each type (i.e., nonreactive and reactive) of 

collision which demonstrate the utility of the method. 

In section B -sve develop the general theory for vibrational 

excitations, using the atom-diatomic collision as an example. 

The determination of the set of linearly independent functions (x .) 
] 

by the method of finite differences is the subject of section C ., in 

which we also consider the "analysis'' of the X· 's into their 
] 

separable components in the asymptotic region and also the 

convergence of the x. ' s and transition probabilities as a function 
] 

of the mesh size. In section D we apply the theory to i-wo 

problems in vibrational excitation: the impulsive collision of a 

free particle with a particle bound in (1) an infinite square well 

and (2) a parabolic well. In section E the general theory is 

e::h.i:ended to exchange reactions and then applied in section F to 

several models for exchange reactions involving three identical 

particles, of which the H2, H · exchange reaction is the simplest 

physical realizable example. Finally in section G we shall discuss 

our results and indicate how the general theory might be modified 

to treat three-dimensional collisions. 

B. General Theory 

In order to clarify the presentation of the theory we shall 

consider the colinear atom-diatomic collision, which is depicted 
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in Fig. I. If we let m 1, m 2, m 3 and xl' x2, x3 denote the 

masses and coordinates of the three particles, respectively, 

we may write the time-independent Schrtldinger equation for 

the system 

(1) 

where we have assumed that particles 1 and 2 are bound by 

the potential V 12 ' and that the incident particle (atom) 3 inter­

acts only with particle 2 of the bound pair (diatomic). 

In the center-of-mass coordinate system, defined by 

the following transformation, 

x = (m1x 1 + m 2x2 + m3x3)/M 

x' = x - (m1 x1 + m2x2)/m 3 

y' = x2 - xl 

M = ml+ m2 + m3 

m = ml+ m2 

the Schrtldinger equation (1) becomes 
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2 :::.2 2 2 2 2 m 
{ 

t1 _v_ _ ti _o __ _ f, __ o __ + V, (y') + V' (x' _ -1y')}'l.'=E'i' 
- 2M 0x2 2µ 12,3 ox'2 2µ 12 oy'2 12 I m ' 

where 

m • m 3 
µ12, 3 = -rvr-

= 

(2) 

Since the potential energy does not depend on the center-of-mass 

coordinate X, we can separate variables in the Schrt>dinger 

equation (2) by making the substitution 'l' = XcM(X) • i.j;(x', y') . 

The equation for the relative motion is then found to be 

11
2 a2w ri

2 a2 
t 

{ - -2' 2 - 2-~ + v12(y) + VI(x - y)} i.J; = E i./;' (3) 
µ ~ µ12 :::. r oX oY 

where 

x' 

y' 

µ 

=y+yo' 

mm2 
3 1 = Mm 

v12(y) = v 12 '(y' - Yo) ' 
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E = E + E CM r' 

and y denotes the equilibrium separation of particles 1 and 2. 
0 

We see from Eq. (3) that our problem is equivalent to that of a 

particle of mass µ 12 oscillating about an equilibrium position y 0 

being struck by a particle of mass µ. Hence, we now can 

simplify our treatment by adopting this point of view. 

In Fig. Ila is drawn the coordinate system for the 

system described by the SchrtJdinger equation (3). We shall 

assume that the bound particle has a discrete spectrum and that 

it is bound tightly enough that i{;(x, y) :: 0 for I yj ~a. Further­

more, we assume that the interaction potential is weak enough 

that 

V=Oifx>x, x<x ' I o o 

The "cutoffs'' x , x 1 thus specify the extent. of what we shall 
0 0 

refer to as the inseparable (or interaction) region (see Fig. Ilb). 

Outside the interaction region, where the Schrodinger equation 

is separable, we seek a total scattering wavefunction of the form 

+ik x 
m -A.x R e ¢ (y) + 0 (e ) , x > x m in o 

m=l 

N 
-ik x 

if; = \ T e m ¢ (y) + 0 ( e + A.x), x < 
L m m 

m=l 

x' 
0 ' 

(4a) 

(4b) 
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where the 0 are ei2:enfunctions of the bound particle which · rn ~ 

satisfy 

V· (y) ¢ = e: ¢ 
12 m m m' 

(4c) 

and the exponentials are the corresponding free -particle wave­

functions , such that 

8 + 
. 111 2µ 

= E 
r 

(4d) 

From Eqs. (4) we see that there are N open channels, i.e., the 

incoming particle has sufficient energy to excite the bound 

particle to any of the lowest N eigenstates. In the asymptotic 

region x > x ti11e total scattering wavefunction i.f; consists of 
0 

an incoming wave of tmit amplitude in channel I plus reflected 

waves of amplitudes R in the various open channels. In the m . 
other asymptotic region "</; given by Eq. (4b) consists of 

transmitted waves of amplih1des R in the various open · in 
channels. The terms O(e- A.x) in Eq. (4a) and O(e +A.x) in 

Eq. (4b) i11dicate contributions to i.f; from virtual states, which 

are included for mathematical completeness as we shall see 

below. Physically, Eq. (4a) describes a free particle of 

momentum tik:r impinging on a particle initially in state I, 

exciting the bound particle to state m with a certain probability 

given by 
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k 
P (R) - m jR 12 --- 1 I-. m k1 m ' 

and then reflecting back in the direction from which it came. 

Eq. (4b) corresponds to the incident particle's exciting the 

bound particle to state m with probability 

(5a) 

(5b) 

and continuing on its path in the same direction. Relations (5a) 

and (5b) are obtained by identifying the transition probability 

P
1 

_, m with the ratio of current scattered into channel m to 

incident current tikr!m in channel I. 

Conservation of current (flux) requires that 

N 
k ? 

N k 

I m jR , ... l m IT 12 = 1 kI m + kI m ' 
m~l m=l 

(6) 

a relation which serves as a useful chec.k on numerical calcu­

lations of the transition probabilities. Another check is provided 

by time-reversal invariance, which, stated classically, means 

that a system executes its motion in reverse if time is allowed 

to rw1 backward. In quantum scattering processes this means 

that P . . = P. . , i. e. , the probability of a transition for 
1->J 3-•1 

state i to state j is equal to that for transition for state j to i . 

We now turn to the central problem - determination of the R 
m 
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The crux of the method, which has already been stated 

in the Introduction, is to find a set of linea rly independent 

solutions x. of the Schr(}dinger equation, each solution of t he 
J 

set satisfying a distinct arbitrary bounda ry condition specified 

in the a symptotic regions x < x ', x > x . For example, we 
0 0 

might set x .(x ' , y) = ¢
1

(y), x .(x , y) = ¢
2

(y). These conditions, 
J 0 J 0 

along with those that x/x, I YI ~ a) = 0, are sufficient to determine 

a unique solution of Schrl5dinger 's equation. Although none of the 

s olutions X· will have the correct asymptotic form, each may be 
J 

expresse d in the regions x < x ' x > x as 
~ 0 ' 0 

where 

N 

x/x, y) = l (.) -iktx (") +iktx 
[A J e + A J e ] ¢ (y) 

t t t 

t>N 

-e->N 

t =1 

(") - 1\X (") +k X 
[B J e + BJ e t ]¢ 

9 
(y), x > x 

t t ~ 0 

( •) -k-e, x (") +k-l x 
[~tJ e + ~-lJ e ] ¢.e, (y), 

E 
r 

X< X T 

0 ' 

(7a) 

(7b) 
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\Ve note that xj satisfies the wave equation (3). The first sum in 

en.ch of Eqs. (7) i s over the; open channels, i. e., k-i is pure real; 

the second is over all virb.ial (i. e., energetically inaccessible) 

channel s for which k-e, i s pure imaginar y. Vlc can regard xj as 

being expanded in the "complete" (for energy E ) orthonormal set 
r 

of eigenflmctions .of the Hamiltonian without the interaction term 

V 1 and this set must include t?e virt:ials. . 

The coefficients A (J) A (J) B (j) etc may be found 
{, ' {, ' t ' . , 

by taking the appropriate inner product with ¢ t (y) and solving the 

resulting sets of simultaneous equations (see Appendix). Now the 

total scattering wavefunction ij; is constructed as a linear 

combination of the independent x. as 
J 

co (I) 
\ C . X· ' L J J 

(8) 

j=l 

such that ij; is everywher e a solution of the SchrCJdi.nger equation 

(3) and also satisfie s the correct a symptotic conditions (4). Thus 

we must r equire 

~ (I) (j) 
Cj A1 

::: 
olt ' (9a) 

j 

\' c/I) Bt (j) 0 . l ::: 

' 
(9b) 

j 

)' C j (I) (i-t (j) ::: 0 ' 
'-' 

(9c) 

j 
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'\' (I) (j) = 
L cj f3.e, o, t>N, (9d) 

j 

where the superscript (I) on the C . (I) denotes the incident state. 
J 

Physically, Eq. (9a) states that there is only a single incoming 

wave incident from the right and Eq. (9c) that there are no waves 

:incident from the left. Eqs. (9b) and (9d) require that there be 

no rising virtual components in either asymptotic region. 

In practice we anticipate solving Eqs. (9) by truncating 

the expansions in -t and j to obtain a finite system of simultaneous 

linear equations. Suppose we retain a total of M states, N open 

and M-N virtual, in the t expansion of Eq. (7). Then there are 

2M Eqs. (9) so that we must determine 2M linearly independent 

X· 's. If this is done, Eqs. (9) may be expressed more compactly 
J 

in matrix form as 

AC = I' (10) 

where A is a 2M x 2M matrix of the coefficients A.e, (j), etc., 

C is a 2M x N matrix of unknow11 coefficients C. (I), and I' is a 
~ J ~ 

2M x N matrh:: consisting of a N x N unit matrix spanning the 

first N rows and a ( 2M- N) x N null matrix spcuming the 

remaining. The column vectors of£ correspond to the various 

possible incident states I= 1, 2, . .. N. Having obtained £ by 

solving Eq. (10), we can find the reflection and transmission 

coefficients by taking the product 

A C = A A-l I' (11) 
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where A is a N x 2M matrix of the coefficients A (j) a (j) 
,{'., ' t 

corresponding to the relations 

I - (j) 
CjAt = R,e, 

j 

I c j Ct_e, (j) = Tt t < N. 

j 

C. Determination of the x. 
J 

(12a) 

(12b) 

Having developed the formalism of the method, we now 

turn to the central problem - determination of the set of 

linearly independent solutions X·· For this purpose we choose 
J 

the method of finite differences, which has been discussed 

already in Part I. In this case, however, our task is considerably 

simpler since we do not have an eigenvalue problem. We have 

only to find the solution (discretized x .) of the simultaneous set 
J 

of linear equations resulting from the discretization of the 

Schr()dinger equation for a fixed energy Er. 

Substituting the expressions for the discretized partial 

derivatives derived in Part I, we obtain for the finite-difference 

analogue of the Schrl5dinger equation (3) 

1 1 '2 1 
[2(- +-) + 2n (V12 +VI - E).Jx. - - (x. + X· ) 

µ µ12 1 1 µ 11 13 

i = 1, 2, ... Q ' (13) 
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where the points are mun be red as shown in Fig. ID and the sub­

scripts on x have the same sig11ificance as in Part I, i.e., the 

subscript j denoting the particular member of the linearly 

independent set has been suppressed. The set of equations (13) 

may be rewritten in matrix form as 

H v = b. 
~ ,.(J ~ 

(14) 

H is a real symmetric band matrix of order Q (the number of 

interior mesh points). The bandwidth, defined by the expression 

bandwidth _ 2B - 1 , 

where Hij = 0 if· Ii - j I .::: B, is determined by the number of 

poi11ts across the well (i. e. , the number of points which divide 

the range of the y variable :in the finite-difference mesh), for 

the particular 5-point difference analogue which we are using. 

x is the column vector of approximate values of x. at the grid 
J 

points. b is the column vector of the form 
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lx(x <x ' ~ )/µ l o ' n + 1 

X(x<x' ~ )/µ 
o' n + 1 

• 

0 

• 

0 

x(x > xo, n ~ 1)/µ 

2a 
x(x > xo, n + 1)/µ 

where n is the number of p0ints across the well. The form of 

E corresponds to the non-zero boundary conditions at either 

end of the interaction region which occur as "off-diagonal" terms 

in the left member of Eq. (13). 
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1. Uniqueness and Convergence 

The uniqueness of the solution of the finite-difference 

equations resulting from elliptic partial differential equations with 

Dirichlet boundary conditions has been discussed elsewhere. 15 

\Ve wish to consider further the explicit dependence of the 

convergence of the solutions x. and the transition probabilities 
J 

upon the mesh size h. Employing the procedure of Part I, we 

assume that there exists a continuous function x (x, y; h) such c 
that x satisfies the difference equation for all values of h and 

c 
that x may be expanded in a power series of the form 

c 

Xe (x, y; h) ;::; I sk(x, y) hk ' 

k 

where the sk may in turn be expanded in~ complete set of 

linearly independent functions which are the exact solutions 

of Eq. (3). 
16 

Then x must satisfy the difference equation c 
analogue 

- _! x (x+h y· h) - _! x (x-h y· h) - - 1-x (x y+h· h) 
µ c ' ' µc '' µ c'' 12 

where 

(15) 

(16) 



91 

2 
<:: = 2h E 

r 

Substituting Taylor's series expansions for Xe into Eq. (16) gives 

[2(1+-1-) + 2h
2 (v12 +V

1
)J x (x,y;h) 

µ µ12 . e 

~ .._2 2 ..._3 3 "' 4 L1 
1 uXe , o Xe h o Xe h o Xe h. I - ~ fx (x, y;h) + (-, -)n + (-2-)2' + ( -3-)31 + <-a-hrr j 
µ l e ox ax · ox · ox· • · 

= e x (x, y; h) • c 

Re placing x with its expansion Eq. (15), making appropriate c 
cancellations, and equating coefficients of equal powers of h, 

we obtain 

(17) 

(18a) 
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{ - 21µ 
2 1 02 0 

+ V 12 +VI} sl Ersl 2 - 2µ 12 2 = 
ox Cly 

( 1 
,2 1 ,2 

+ V 12. + VI } S 2 
0 0 + l - 2µ oX2 - 2µ 12 ay2 

{ - 2!µ 
04 1 0

4 

ox
4 - 24µ12 ay4} so = Ers2. 

Since s 
0 

satisfies the Schrlldinger equation and the boundary 

conditions we have that 

the exact solution of the problem. Hence, the approximate 

finite difference function may be expressed as 

2 xc = x + hs 1 + h s 2 , 

and x approaches the exact solution as h approaches zero. c 
Now the asymptotic form of x may be written in analogy to 

c 
Eq. (7) as 

(18b) 

(18c) 

(19) 

N -ik.e,x _ _ +ik.e,x 
Xe= l [(A.e,0 + A-llh + · · · )e +(A-lo+ A-t lh + .•• )e ] ¢-e, 

-t,~1 
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where the various channel coefficients have been expanded in 

powers of h. This is possible since the asymptotic form of 

each sk can be expanded in the complete set of eigenfunctions 

of the Hamiltonian without the interaction term Vr Corre­

sponding to this approximate expansion of the x. our matrix 
] 

equation (10) becomes 

Identifying coefficients of equal powers of h on either side of 

Eq. (20), we find 

c ::: A -1 I I 

..-vO ..-vO 

-1 

-S1 
::: -A A c 

..-vO '°'"' 1..-vO ' 

etc. From Eq. (11) we see that the matrix of approximate 

amplitudes may be written 

A. c + (A c 1 + A.1 c ) h + • • • • ..-vO ..-vO ,.,..,0 ,.,_, '"'-' ,.,..,0 

(21a) 

(2lb) 

(21c) 

Thus the approximate transition probabilities determined by the 

finite-difference method approach the exact values as the mesh 

size tends to zero 
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P. .(h) = (P. .) + (P. .)
1
h + (P . .. )

2
h2+· • •. (22) 

1-+J 1-+JO 1-+] 1-+J 

This equation may be used to extrapolate to the exact transition 

probability (P. .) analogously to the Richardson procedure 
1-+ J 0 

used in Part I. We obtain values P. .(h1), P. .(h2), 
1-+J 1->J 

Pi__. j(h
3

), ... at various not-too-large mesh sizes h1, h2, 

11
3 

· · · and then fit a polynomial of the form of Eq. (22) through 

these points. We shall do this in several examples considered 

below. Alternatively, we may regard P. .(h) as a "mathematical 
1 _, J 

transient" and apply the so-called e 1 m transform to enhance 

the convergence of the sequence. 
17 

We shall also use this 

procedure. 

2. Solution of Finite-Difference Equations 

Depending on the eA'tent of the interaction region 

and on the accuracy we demand of the transition probabilities, 

it may be necessary to .solve very large systems of simultaneous 

equations (14). It turns out that for the examples we shall 

consider below it is necessary to solve up to 1500 simultaneous 

equations, the corresponding matrix !:! having a bandwidth of 

81. To accomplish this we have employed a highly accurate and 

efficient computer subroutine capable of handling large band 

matrices. 
18 

Originally devised by C. W. 1\J.IcC ormick for treating 

large distributed elastic systems, the method is based on tri­

angular resolution without interchanges. 
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The matrix !! is put into upper triangular form 

(i. e. , zeros below the diagonal) by Gaussian elimination, taking 

the successive pivots along the principal diagonal. The upper 

triangular matrL"I{ is called £. If the successive multipliers 

are arranged in columns to form the matrix 

1 0 0 0 

0 0 

L = 

1 

where the first column is composed of the multipliers - aj 1/a11, 

j :::; 2 · · · n used to eliminate the first variable from the last 

n - 1 equations, and so on, the following relation holds 

(23) 

Hence, we can find the solution _x to Eq. (14) by solving 

~ l = b (24a) 

u x = J, (24b) 
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sequentially by back substitution. The method fails if the ith 

leading minor of !:! is singular or nearly so, since the element 

{,.. of L depends on the reciprocal of this minor. Usually such 
Jl ~ 

a difficulty may be avoided by interchanging the rows or columns 

of H. 

A great computational advantage of the triangular 

resolution scheme for band matrices is realized as reduced 

storage requirements and running times compared with con­

ventional matrix inversion routines. This is so because at each 

stage o~ -elimination only B rows of H need be contained in core, 
2 so B locations are required for an unsymmetric matrix and 

about half as many for a symmetric matrix. McCormick 

has made provision for large matrices by using magnetic tapes 

to store H and b. They are read into core in successive "blocks" 

and the resulting triangular matrices written on special magnetic 

tapes. Once the triangular resolution has been effected, the ~ 

and U _matrices may be used to operate on as many right-hand 

side vectors b as desired. 

The solution may be improved iteratively to specified 

accuracy. This is done by solving Eqs. (24) to find a first approxi_. 

mation x . Then a residual vector ob = b - b is calculated o ~ ~ ~o 

using b = H x . A correction o x to x is calculated using 
~o ~ o ~o ~o 

Eqs. (24) with b replaced by 6 b. This process is repeated until 

j 6X I is less th~1 a specified nu~ber e or until a specified 
x 

maximum number of iterations have been carried out. For the 

FD equations one iteration is sufficient to obtain an accuracy of 

1 part in 10 7. 
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3. Analysis of the x. 
J 

The integrals necessary in the determination of the 

expansion coefficients At (j), At (j), etc. in Eq. (7) are of the 

form 

+co 

I ¢ * x. dy = f (j) (x) 
k J k 

where xj vanishes for j yj ~ a (see Appendix). These integrals 

are evaluated approximately using ai1 extended Simpson's rule; 

the general form of which is 

n-1 Y2n 
I p (y) dy == ~ [fo + 4 I f2j + 1 

j=O 

n-1 

+ 2 \ f2. + f2 J L. J n 
j=O 

- nh
5 

p (4)(s) 
90 

where h is the mesh size, 2n is the number of mesh points 

(including the end points) in the interval, and s is some value 

of y such that y 
0

,:::; s < y 2n. 
19 

For selected x j' this method 

has yielded integrals accurate to 1 part in 108. 

(25) 
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D. Application of the Theory to Vibrational Excitations 

In this section we apply the theory to two one-dimensional 

(two- particle) models for vibrational excitations. Vv e consider 

the impulsive (hard- sphere) collision of a free particle with a 

particle bound to a fixed center of force. A diagram of the 

coordinate system and appropriate boundary conditions is shown 

in Fig. N. Note that transmission is not allowed in this case. 

1. Infinite-Square-Well Binding Potential 

The Schrtsdinger equation for this system is simply 

E if; ' r 
(26) 

where x 2: y and o .s y .s a, ~ being the width of the square well. 

Ma.king the substitutions x = a/11 x', y = a/11 y', and dividing 

through by ti 
2

11
2 
/mBa. 

2
, we obtain 

2 2 2 
where E' = mBa /ti 11 E. The bound states of the well are 

described by eigenfunctions 

¢ = 12/rr sin nx' , n 

(27) 
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and eigenvalues 

Hence, we express energy conservation by the equation 

2 k 2 
a n 
22 for all n, (28) 
IT 

where k is the wavenumber of the free particle. Transition 
n 

probabilities have been obtained for two different total energies 

and the following parameters: a= rr; x
0 

=a; m A/mB = 1. 0. 

Fig. V shows a graph of transition probability v. s. (a/h - 1), 

the number of mesh points across the well, for a total energy 

of 2. 25 units, i.e. , two open channels. It was found necessary 

to include only one virtual channel in the state expansion for the 

range of mesh sizes considered. Adding one or two more virtuals 

did not change the transition probabilities before the fifth decimal 

place. Table I lists transition probabilities as a function of the 

mesh size together with e1m -extrapolated probabilities, which 

differ by ± • 005 to ± • 01 from values obtained for the finest 

mesh. For a total energy of 4. 75 units (corresponding to three 

open channels) lists of transition probabilities are contained in 

Table II. Again it was necessary to retain only one virtual 

channel in the state expansion. 

N 
\ P .. L i .... J 
j=l 

We observe from the tables that the sum check, i. e. ' 

= 1, improves as we decrease the mesh size; also 

that the sum check for e2d:rapolated values 
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is better than that for the finest mesh. The same appears to be 
true of the check afforded by the time reversal requirement 

P .. = P ... 
i-3 3-1 

2. Parabolic Binding Potential 

For the collision of a free hard sphere with a hard­

sphere oscillator we may write the Schrl:5dinger equation as 

1i 2 02 h2 02 1 2 . 
[ - 2m -2 .- 2M -2+- tt(y - Y) ]lj;=E lfl. (29) 

ox oY 2 o r 

In the coordinate system defined by 

- - (Mw)l/2( ) 
i; - T Y "."' Yo 

SI = ( ~W ) 1/2 X ' 

Eq. (29) becomes 

1 1 a2 
1 a2 

1 2 ' 
[-2 - -2-2 +-2s ]lj;=Elj;, 

( m) os '2 as 
M 

(30) 

)-1 2 where E' = (ti w E, x. = Mw , w being the classical frequency 

of the oscillator. In these w1its the eigenstates of the oscillator 

are described by 
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1 1;2 -s2/2 
9\1 =( n 1/2 ) Hn (s)e 

2 n!rr 

e: = (n + 1/2) , 
n 

where H is a Hermite polynomial. The energy conservation 
n 

(3la) 

(3lb) 

relation determining k , the free particle wavenumber, is given 
n 

by 

EK. E. + (n + 1/2) = E'. (32) 

The x-'s are determined by solving the Schrtldinger 
J 

equation (30) with the harmonic· oscillator equilibrium position 

with s = a/2 and taking a large enough that the x. 's are in 
0 J 

fact small compared to their maximum value for s > a/2. 

Transition probabilities were determined for several total 

energies using the following set of parameters: a = 10; s 
0

' 

(cutoff in asymptotic region) = 10; m/M = 1/2. Table ID contains 

the e_ m-extrapolated transition probabilities for E' = 1. 75. In 
1 

this case there are two open channels and it was sufficient to 

include two virtuals in the state expansion. Table IV lists e
1 

m _ 

e}...'trapolated transition probabilities for E' = 2. 75, in which case 

there were three open and two virtual channels in the state 

expansion. In. general we find that the sum and time-reversal 

checks improve as the mesh size decreal?es~ the extrapolated 
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values satisfying these requirements better than finest-mesh 

values. These results also agree with Shuler and Zwanzig's 
7 

to ± • 02. 

Observing that extrapolated values seem to differ 

from finest-mesh values by approximately ± • 006, we have 

calculated transition probabilities in the range E' = 1. 50 ..., 2. 50 

(two open and two virtual channels) using a mesh size h = . 3125 

(number of points across well = 31). The transition probability 

v. s. total incident energy curves (see Fig. VI) agree to ± • 02 

with previously calculated 7 curves, taking into· account the 

extrapolation error and the error in reading the Shuler- Zwanzig 

curves. 

From the preceding examples we see that transition 

probabilities for impulsive collisions may be obtained quite 

accurately using relatively crude me3hes. Also, computing 

times for the solution of FD equations, which is really the rate 

determining step in the calculation, are relatively low. For 

example, for the impulsive free-particle-harmonic-oscillator 

collision the execution time is approximately linear in the band­

width as shown by the curves in Fig. VIL These curves were 

obtained specifying a maximum of three iterations. However, 

it is possible to obtain solutions x. agreeing with the three­

iteration solution s to 1 part in 10 7J requiring only one iteration, 

which consumes approximately one-third as much time. We 

note that these time estimates are independent of the nature of 

the interaction potential V 1 or the total energy Er. 
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E. Eh.i:ension of the Theory to Exchange Reactions of the Type 

A + BC .... AB + C 

Although the extension of the theory to exchange reactions 

is perhaps straightforward in principle (as most insoluble 

problems seem to be), some simplifications can be effected by 

choosing an appropriate coordinate system in which to determine 

the x. and to analyze them into their separable components in the 
] 

asymptotic regions. To keep the presentation clear and simple 

we consider a colinear electronically adiabatic reaction (see Fig. 

VIII), for which the time-independent Schrt5dinger equation may 

be written as 

{- (33) 

where x
1

, x2, x3 and m 1, m 2, m
3 

are, respectively, the 

coordinates and masses of the three particles (atoms or molecular 

fragments) involved in the reaction. The potential V 123 is a 

three- body potential, i. e . , the total potential cannot be expressed 

simply as a sum of two-body potentials. This is so because, in 

the adiabatic approximation, the electron "clouds" of the three 

atoms interact with one another in a complicated fashion to 

produce an effective potential surface upon which the nuclei of 

the atoms move. Our task is to develop a quantum mechanical 

description of the motion of these nuclei on the potential surface 

which will allow us to predict the probability that for a given 

incident state (e. g. , atom A impinging with a given relative 
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kinetic energy upon pair BC bound in a given eigenstate) a 

reaction yielding products AB and C will occur. 

In the following treatment we shall employ four distinct 

coordinate systems, which are labeled as in Part I. The three 

systems other than [x1, x2, x3] are defined by the following 

transformations: 

(a) [X, x12' x23]' 

(34a) 

(b) [X, x, x12J, 

3 
X = \. m.x_/M 

L i i 

i=l 

(34b) 

(c) [X, x', x23 J, 

3 
X = \ m.x./M 

.Ll l l i= 
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(34c) 

In these equations the symbols have their usual significance, 

i.e., xl' x2, x
3 

· are the particle coordinates in an arbitrary 

space-fixed reference frame, X is the coordinate of the center 

of mass in this frame, x12 and x23 are the interparticle 

separations, and x and x' are the coordinates of particles 3 

and 1, respectively, with respect to the center of mass of the 

bound pair. 

Since the potential is independent of X, we can separate 

the center-of-mass motion in each of the three coordinate 

systems defined above. Thus in [X, x12, x23 ] the SchrUdinger 

equation for the relative motion becomes 

{ -
2 

0 + V }111 = E il1 ax ox 123 -r r.,.' 12 23 
(35) 

where 

The coordinate system showing the interaction region and 

boundary conditions is sketched in Fig. IXa. We assume that 
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each bound pair has a discrete spectrum and that V 
123 

= V 
12 

when x
23 

> x
23 

(O), V 
123 

= V 
23 

when x
12 

> x
12 

(O). These 

"cutoff" parameters define the inseparable region for the reaction 

in a manner analogous to x , x 1 for the case of non1·eactive 
0 0 

scattering. We. also sketch the boundary conditions and 

inseparable region in the systems [X, x, x12J and [X, x 1
, x23 J 

(see Fig. IXb) since the asymptotic forms of -.p assume a simpler, 

more physically aesthetic appearance than in [X, . x12, x23 ]. 

We now wish to find a total wa vefunction -.p satisfying 

the wave equation everywhere and having the following form in 

the asymptotic regions: 

+ik x 
Rme m ¢m (x12), 

m=l 

- (0) 
X > XO - a.x12 + X23 

N' 
-.p(xr' x23) = l +ik 1 x' 

T e m -;;.. (x ) x' > x 1 = ci x + x (O) 
m ""m 23 ' o "' 23 12 

m=l 

where 

(36a) 

(36b) 

where the ¢ and ¢ are the bound- state eigenfunctions of the in m 
BC and AB subsystem, respectively, and the exponentials are 

the corresponding free-particle eigenfunctions. The energy 

conservation condition may be expressed as 
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21 2 21 2 .> 21 ,2 
(I) tz ,:I (m) ti · .;:m (m) r1 .;:m 

€ + = € + = € +---
12 2µ12 3 . 12 2µ12 3 23 2µ23 1 

' ' ' 
(37) 

where 

3 
l /µ12 3 = ( l mi)/(ml + m2) · m3 

' i=l 

3 

l/µ23 1 = ( l mi)/(m2 + m3) • ml • 
' i=l 

We may interpret the asymptotic behavior of lj/ as given in Eqs. 

(36) analogously to that described by Eq. (4), i.e., the total 

stationary scattering wavefunction consists of an incident wave 

of unit amplitude in channel I plus scattered waves of various 

amplitudes in channels corresponding to reaction and reflection 

without reaction.. Thus R is the amplitude for excitation of 
m 

the BC subsystem to state m and reflection of A with relative 

momentum f'zk . T is the amplitude for reaction to occur, 
m m 

producing AB in state m and ejecting C with relative momentum 

tzk ' . The transition probabilities are expressed as 
m 

p (R) 
k 

IR 12 In 
= 

kl I-+ In m 
(38a) 

k I 

p (T) In 
!Tm! 2' = 

kI I_, m (38b) 
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where PI (~)m is the probability that the incoming particle A 

will excite subsystem BC from incident state I to excited 

state m and reflect, P
1
(T) is the probability that A will 
-+ n1 

react with subsystem BC to form a new subsystem AB in 

eigenstate m. Relation (6), requiring conservation of flux, 

holds exactly in the case of exchange reactions also, thus 

providing a check on numerical computations. 

As in the case of vibrational excitation, our primary 

goal is to obtain the R 1 s and T 1 s and we do this again by finding 

the appropriate linear combination of linearly independent 

solutions x ., each x. satisfying the wave equation (33) in 
J ] 

addition to distinct arbitrary boundary conditions specified 

in the asymptotic regions. In [X, x12, x
23

J each X· has the 
. J 

asymptotic form 

+ I 
-G>N 

(0) 
x23 > x23 (39a) 

(j) -ikt'(!3X23+X12), - (j) +ikt'(!3X23+X12)-:-
[at e -rat e ] qit (x23) 
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where N and N' are the number of open channels for subsystems 

BC and AB, respectively. The coefficients in the above expansions 

A-t (j), A-l (j), etc. are found by tnincating the expansion, i:..t..ki.ng 

inner products with the bound-state eigenfunctions, and solving 

the resultant set of simultaneous equations (see Appendix). The 

total wavefunction for the reaction may now be written 

l./J = \ c . (I) X. ' 
L J J 

(40) 

j 

such that i.f; everywhere satisfies Eq. (33) and has the correct 

asymptotic forms [Eqs. (36)]. As before, we must have 

l cj (I) At (j) = 6r {, ' 
j 

I c. (I) B (j) = 0 
--' J {, 
j 

l c. (I) a (j) = 0 ' J )..., 
j 

l c/I) ~ -t (j) = 0 ' ,e, > N' ' 

j 

where the superscript I denotes the particular incident state. 

The physical interpretation of these equat ions is as follows : 

Eq. (41a) corresponds to the requirement that we have a 

(41a) 

(41b) 

(4lc) 

(41d) 
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monoenergetic beam of particles A from the right, Eq. (41c) to 

the fact that there are no particles C incident from the left; 

Eqs. (4lb) and (4ld) eliminate the rising virh1al components in 

reo-ions x > x (O) and x > x (O) respectively Truncatino-:::. 23 • 23 12 12 ' . ::::> 

the expansions in t and j, we may obtain a finite system of 

simultaneous linear equations expressed in matrix form as 

A c = I' 
,,-....,,J r-..J ~ ' 

(42) 

where A is the (IvI + M') x (M + M') matrix of coefficients A (j), 

etc. , c is the (M + M') x N matrix of c. (I), and I' is a (M +~' )xN 
~ J ~ 

matrix consisting of the N x N unit matrix occupying the first N 

rows and a (M + M' - N) null matrix the rest. M is the total 

number of BC channels and M' the total number of AB channels 

retained in the truncated state expansion (39). The amplitudes 

R and T are determined from 
111 lll 

where 
- (j) 
a.t 

A- -- A- A-l I' 'T - c (43) 
~ ~ ~ 

A is the (N + N') x (M + M ') 

c is the matrix of . c . (I) 
] 

matrix of coefficients At (j), 

determined from ( 42), and 

T is the NN' x N matrix, the first N rows of which are the R 
111' 

the next N' the T . in 
The x. may be determined most easily by the finite­

J 
difference method in the coordinate system [X, x12, x23J. 

Making the substitutions
20 
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(44a) 

2 
( a x2) = 12 (x. 1 . - 2x . . + x. 1 .) + O(h2) 

oX12 . . h l+ ' J 1, J 1- ' J 
1, J 

(44b) 

2 
( 0 x ) 

..._ 2 
oX23 . . 

1, ] 

1 2 
= - 2 (x. . 1 - 2x. . + x . . 1) + o (h ) , 

, 1, J+ i, ] 1, J-n 
(44c) 

we obtain for the discretized Schrtidinger equation (Eq. (33)) 

1 1 
- -µ (xi 3·-1 +xi 3·+1) - -µ Cxi-1 3· + xi+l J.) 

12 ' ' 23 ' ' 

1 . 1 -2 { } 2 + 2 [ - + - + 1i ( v123 - E )h Jx. . = o, 
µ12 µ23 i, j r l, 3 

(45) 

where the indices i and j denote the point of the mesh as shown 

in Fig. X. Again the subscript j of x., denoting a particular 
) 

member of the linearly independent set, has been dropped. We 

note that even though the Hamiltonian contains a mixed partial 

derivative in the kinetic term, this is not difficult to incorporate 

in the FD equations and does not ruin the symmetry or "bandedness" 

of the FD matrix, although the bandwidth increases. Furthermore, 
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the boundary conditions are separable and it is easy to construct 

a uniform mesh, as we have seen in Fig. X. 

It is possible to make arguments about uniqueness and 

convergence analogous to those given above in section C. We 

shall not review those here. 

F. Application of the Theory to Exchange Reactions 

V.l e consider in this section two models for the exchange 

reaction involving three equivalent particles. Though the 

particles are equivalent, they are not indistinguishable since 

they cannot penetrate one another. We solve for the X · in 
J 

[X, x12, x23 J. Since V 123 is symmetric about x12 = x23 , it 

is necessary to solve for only half as many x. 's as usual. 
- J 

Suppose we include M cha1mels in the truncated state expansion. 

Then, according to the development in section E, we need 2M 

linearly independent X· 's. We find M of these using the following 

set of boundary conditions: xj(x12, x23 (O)) = ¢j(x12), x/x23 , 

x
12 

(O)) ::: 0, j = 1, 2, · · · M. For the remaining M we simply 

th " d" t f d •t• . ( ' (O)) - 0 ( ' use e reverse se o con i 10ns. X· x12, x23 = , X. x23, 
(0) J J 

x12 ) = ¢j' j = 1, 2, · · • M. But the xj 's corresponding to the 

reversed conditions are identical to the first M x. 's reflected 
. J 

through the line x12 - x 23 = O. Hence, it is necessary to 

determine only M: X· 's, i.e., to solve the FD equations only M 
. ] 
times. We have done this for several model potential surfaces. 
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1. Infinite Square-\Vell Potential Surface 

V./ e consider first the simplest possible potential 

surface, i.e., V 123 :: 0 inside the L- shaped reaction path and 

V 
123 

= O:l outside. Thus, each subsystem is bound by an infinite 

square well potential. Making the substitutions 

a I 

x12 
::: - x12 TI 

a f 

X23 = - x23 TI 

in Eq. (32) and then multiplying both members by (ti 
2

TI
2/µ12a 

2r 1, 
we obtain 

where 

E' = 

The spectra of the two subsystems are discrete, the eigen­

functions and eigenvalues being given by 

e:i~ = n
2 
/2 , respectively. 
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Energy conservation requires, as usual, 

2 k a n 
2 

22 
TT 

where 

k is the free-particle wavenumber. Since the particles are 
n 

identical, we have m 2/ µ12 = 2, µ 12/ µ12, 3 = 3/ 4. Transition 

probabilities have been determined for E 1 = 2. 125 (two open 

channels), a= TT, x
12 

(O) = x
23 

(O) =TT. It was necessary to retain 

only two virtuals in the state expansion and five for the analysis 

of x. (see Appendix). Probabilities as a function of mesh size 
J 

are given in Table V along with extrapolated values obtained 

using Eq. (22). Since probabilities for only four different mesh 

sizes were obtained, an accurate e
1

m extrapolation was not 

possible. 

From Table V we observe that sum and time-reversal 

checks are good not only for individual mesh values but also for 

the extrapolated values~ For examples, y1 (~)2 and P 2 (~\ 
differ by less than 2%, or . 0006, and Pi

12 2 and P~T~ 1 by 

less than 3% (. 0028). 

2. Truncated Parabolic Potential Surface 

A more realistic potential surface is described by 

the expressions 

1 2 
V 123 = 2 x. (r 12 - r 120) 
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r 12' r23 < O (47b) 

1 2 
V 123 = 2 ]{.(r23 - r230) 

. (0) 
r 12 > r 12 ' 0 .$; r 23 S a 

(0) 
r12>rl2 .r23<0, r23>a, (47c) 

where r 120 = r 230 , the equilibrium separation of the two atoms 

of the equivalent subsystems. The potential surface described 

by Eqs. (47) is sketched in Fig. XI. In the asymptotic regions 

the potential is a truncated parabola. In the interaction region, 

it is generated by rotating a parabola centered at r 120 about an 

axis at (r12 = 2r120, r 23 = 2r230) perpendicular to the r 12 - r 23 
plane. With the substitutions 

(48a) 

(48b) 

the Schrodinger equation (32) becomes 
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where 

o2 
1 ---,,,.+-

:;,. r 1 2 2y 
uX23 
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r _ 2 2 2 -1 
V 123 - ( h TT / µ12a ) V 123 

1 
_ 2 2 2 -1 

E - (ti TT /µ12a ) Er ' 

(49) 

and a is the well width, i. e. , truncation point. The eigenvalues 

and eigenfunctions of the truncated parabolic binding potential 

are determined using the Ritz linear variational method, 

expressing the trial wavefunction as a linear combination 

of particle-in- box eigenstates as 

11 
max 

¢1/x12) = J2far l ckn sin n xl2' . 
11=1 

Energy conservation requires, as usual, 

(E ) + e: = E' 
K. E. n n ' 

(50) 

(51) 

where e: is the approximate eigenvalue associated with the nth 
11 

eigenstate and (EK. E. )n is the corresponding energy of the free 
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particle, either A or C. Since we are dealing with identical 

particles, the mass ratios are fixed as follows: µ 12 :;::; 1/2; 

y :;::; 1. Reaction probabilities are given in Table VI for other 

system parameters arbitrarily fixed as follows= rt:;::; 10. O; 

a :;::; n ; E ' :;::; 5. 00; n :;::; 10. For this particular energy there 
r in ax 

are two open channels; it was found sufficient to retain three 

virtuals in the asymptotic state expansions. The probabilities 

were calculated by analyzing the xj with values of x12
1 or x23 ' 

as far apart as possible in the asymptotic regions (see Appendix). 

As we can see from Table VI, the values seem to converge in a 

reasonable fashion, with sum and time-reversal checks improving 

as the mesh size dec1·eases. Probabilities obtained by doing the 

xj analyzes at x12
1 (x

23 
') values closer together differ little 

( < 1 %) from the values of Table VI. Also, including more 

functions in the variational trial function Eq. (50), i.e., taking 

n > 10, induces an insig11ificant change in the probabilities. 
max 

3. U ntruncated Parabolic Surface 

Certainly a more realistic potential surface is that 

described by Eqs. · (47) without the truncation. In this case the 

binding potentials become ''pure'' parabolic in the asymptotic 

regions. In order to determine the x. we take the interaction 
J 

region to be large enough that x. are negligibly small outside 
J 

the L- shaped reaction path, requiring that xj :: 0 outside this 

region (except, of course, in the asymptotic regions). :W.!aking 

the substitutions 
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. the Schrtld:inger equation (32) becomes 

where 

E' = E / t1 w r 

The eigenfunctions and eigenvalues of the bound states of the 

subsystem are given, with minor modifications, by Eqs. (31). 

Energy conservation may be expressed by 

(EK. E.) + (n + 1/2) = E' 
11 

(53) 
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where, as usual, (E1r E ) is the kinetic energy of the free )... . n 
particle, A or C. As before, since we are dealing with identical 

particles, the mass ratios are fixed as follows: µ 12 == 1/2, y ::: 1. 

When we attempted to treat the reaction using the parameters 

a == 10. 0, E' == 1. 75 (two open channels), difficulties were 

encountered. The problem is summarized in Table VII, which 

lists probabilities obtained using a mesh size of • 4165 (23 points 

across the well) and two virtual states. For this mesh size 

there are four pairs of values of ~ (or ~' ) for which the 

analysis of x . may be carried out. Probabilities obtained using 
. J 

these various possible pairs are listed in the columns of Table 

VII. The first column corresponds to the ~ , values farthest 

apart, the second column to ~ values next closest, etc. 

Clearly the various sets of probabilities disagree markedly. 

Column 2 seems to best satisfy sum and time reversal checks, 

although there is no obvious reason. We attribute this ":instability" 

to the fact that the mesh is too coarse. For example, the finest 

mesh size attainable ·for a == 10. 0 is h == • 325 compared with 

h == • 157 for the coarsest mesh used in the treatment of the 

trw1cated parabolic surface. One might reasonably expect an 

improvement using finer meshes. Addition of more virtuals in 

either the state expansion or x. analysis did not alter the columns 
J 

of Table VII appreciably. Although there is no really sound reason 

to favor column 2, we would expect columns 3 and 4 to be more in 

error since the analysis matrix (see Appendix) may be i.11-

conditioned for ~ values too near one another. 
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G. Discussion 

We have presented a quite general method for the quantum 

mechanical. treatment of the inelastic collision of composite 

particles. The essential feature of the method consists of forming 

the complete stationary wavefunction describing the collision by 

taking a linear combination of members of a set of linearly inde­

pendent functions, each member of the set satisfying the relevant 

Schrt>dinger equation in addition to an arbitrary boundary condition 

specified in the asymptotic region. vVe have shown that the 

functions of the linearly independent set may be found using the 

finite-difference method; that the finite-difference equations may 

be quickly and accurately solved by the McCormick subroutine. 

Two examples of one-dimensional impulsive collisions 

have been treated and in one case, the free-particle-harmonic­

oscillator collision, the results agree well with previously 

published results. 

By a simple extension of the theory we have been able 

to treat an important special class of chemical reactions -

exchange reactions. We have obtained very reasonable results 

for the reaction probabilities on several model potential surfaces 

for constrained linear electronically adiabatic encounters. As 

far as we know, this is the first direct quantum mechanical 

treatment of exchange reactions. The crucial feature of our 

method is that it avoids the difficulty of the usual state expansion 

.,.-,l 

j 

¢. f. ' 
J J 

(54) 
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where ¢ . are eigenfunctions of the initially bound pair BC and 
J 

f. are arbitrary functions of the coordinate of the incoming 
J 

particle A relative to the center of mass of the bound pair. The 

difficulty is that the ¢ . do not form a complete set over the whole 
J 

reaction space and hence tfJ caru10t be everywhere expressed as 

in Eq. (54). In our method it is not necessary to expand the 

fw1ctions x. in any particular set, except in either asymptotic 
J 

region where expansions (39) are valid. 

The success -of our method in the treatment of impulsive 

collisions indicates that it should be generally useful, although 

there are several diffic-µlties. For long-range interaction 

potentials the FD equations must be solved over a large inter­

action region. For vibrational excitations, this may pose no 

problem, since, as we found for the free-particle-harmonic­

oscillator collision, it may be possible to obtain convergence of 

transition probabilities using relatively crude meshes. However, 

from our results on the parabolic potential surface, it is clear 

that large interaction regions may lead to a type of "instability" 

or, at least, inconsistency in the treatment of exchange reactions. 

It may be possible to circumvent this difficulty by using a small 

interaction region, specifying the boundary condition in the "near 

asymptotic" region and then extending the solution into the 

asymptotic region by the WKB method (assuming the potential 

is essentially separable in the "near asymptotic" region). 

A possibly · very useful application of our method would 

be an investigation of a parametrized potential surface to determine 

which regions most influence reaction probabilities for a given 

incident total energy. Such a parametrized surface has been 
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studied classically by Wall and Porter. 21 It would be interesting 

to compare our results with quantum mechanical approximations 

and with the classical results. This should give us an idea of the 

importance of quantum effects and conditions under which these 

other approximations are reliable. 

It does not appear to be practical to apply our method 

directly to three-dimensional problems, since the number of FD 

equations increases as (a/h - l)n, where a is the range of each 

variable, h is the mesh size, and n is the number of variables. 

Thus, for a three-dimensional two-particle problem, one would 

be required to solve 106 simultaneous equations for a ::; 10. 0 

and h ::; 10/11, a very crude mesh. This is a formidable task 

even if the FD matrix is banded. However, it may be possible 

to solve the problem indirectly by using a state expansion of the 

form of Eq. (54). For instance, suppose we are interested in 

the collision of two diatomic molecules. Following Takayanagi's1 

formal treatment, we expand the total scattering wavefunction 'l' 

as 

'l' = I f(j, \)'A I~' R)R-l s(j, v, A J8, ¢, rl, 81' ¢1' xl' r2, 82, ¢2, x2) 

jvt.. (55) 

where R is the distance between centers-of-mass of the molecules, 

s are vibrational- rotational functions for the free molecules, 

characterized by quantum numbers j, v, and t... We obtain an 

infinite set of coupled equations for the f's by making use of the 

orthonormality of the various factors in 'l'. These equations may 

be expressed as 



123 

t1 
2 

{ a
2 

j(j + 1) 2} . I 
2M - 2 - 2 + 1\ f(J, v, A. 1)_, R) = 

dR R 

J., v' A.' 
' ' 

V., ., ,, , f(j',v',A. 1 /k.. "R). 
JV11.J V 11. A. 

(56) 

Our approach to the solution of this set of coupled equations 

would be as follows. Having truncated the expansion in j ', v', 

and A.', we would solve the FD equations to obtain sets of f's 

corresponding to independent boundary conditions specified in 

the asymptotic region. Then we would take an appropriate 

linear combination of these sets to satisfy the asymptotic 

condition on the total wavefunction '±'. Unfortunately, the FD 

matrix is symmetric but unbanded. However, the total number 

of FD equations should be given by the product of the number of 

states retained in Eq. (56) by the number of mesh points, there 

being only one variable R. If one can tolerate a paucity of both 

mesh points and expansion states, it may be relatively easy to 

solve the coupled FD equations. 
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H. Appendix 

If we multiply Eq. (7a) by ¢ 1 * and integrate with respect 
, ( 

to y from - 00 to 00 , we obtain (for k .=:;; N) 

(Al) 

A similar equation involving the virtual coefficients B (j) and B (j) k k 
may be obtained if k > N. Choosing two different values of x, say 

· x
1 

and x2, in the asymptotic region (x > x
0

) gives us two . 

simultaneous linear equations from which to determine A
1 

(J) and 

~ (j). We have, dropping the subscript k and superscrip~ j, 

(A2a) 

(A2b) 

where the integrals f are evaluated using the eA.'i:ended Simpson's 

rule as discussed in section C. Eqs. (A2) can be solved trivially 

using Cramer's rule: 

+ib::2 +ib::1 -ik(x1-x2) +ik(x
1
-x2) 

A= (f(x1)e - f(x2)e )/(e - e ) 

(A3a) 
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Clearly from Eqs. (A3), 

A* = A. (A4) 

Repeated evaluations of A and A using different pairs of values 

of x agree to 1 or 2% (depending on the mesh size) for the cases 

of vibrational excitation treated in section D. 

We now consider the more complicated analysis of the 

x. for the case of exchange reactions. Upon multiplying E q. 
J 

(36a) by ¢k * and integrating with respect to x12 over all space, 

we arrive at the following equation 

N 

l [~.e, (x23)At (j) + 1k.i*(x23)A-e, (j)] + I CH}z;:.e, (x23)Bt (j) 

.i=l -t>N 

( ) - (j) - (j)( ) + Gkt x2 3 B -t ] - gk x 2 3 , k = 1, 2, 3, ••. , (A5) 

where 

(A6a) 

' 
(A6b) 

(A6c) 



126 

and 

co 

gk <n <x23) = I ¢1/ <x12) x/x12' x23) dx12 • (A6d) 

We note that Eq. (A5) is, in fact, a set of simultaneous equations 

involving all the unknown coefficients. We solve this set of 

equations by trwicating the expansions in .f- and k and then adding 

successively more terms until convergence of the coefficients is 

achieved. If we retain n terms in the .f- expansion, then we have 

n equations (obtained by taking inner products with ¢k' k = 1, 2, 

· .• .. n) in 2n unknown, there being an "unbarred" and "barred" 

unknown for each of the n terms. Hence, we secure two equations 

per k by choosing two different values of x23 , as we did above. 

A similar analysis of x j for the cx,.f- (j), etc. , may be carried out. 

For the model exchange reactions discussed in section D 

we have found it necessary to take n equal to 5 or 6 (using a 

computer subroutine CSLECD which solves systems of equations 

with complex coefficients) for a four- channel (two open, two virtual) 

state expansion of Xj. Analyses using different pairs of x
23 

(or 

x12 ) values vary considerably depending on mesh size, as the 

examples treated in section F demonstrate. 
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TABLE I 

Transition Probabilities as a Function of Mesh Size for Impulsive 

Collision of Free Particle with Particle Bound in Infinite Square 

Well (E' = 2. 25; Number of Virtuals = l; a= n; mA/mB = 1) 

Mesh 
size pl-+ 1 pl-+ 2 p 1-+l + p 1-+2 

. 1745 • 5468 • 4463 • 9931 

. 1571 • 5498 • 4446 . 9944 

. 1428 • 5521 • 4433 . • 9954 

• 1309 • 5538 • 4423 • 9961 

• 1208 • 5552 • 4415 • 9967 

Extrapolated • 5606 • 4387 • 9993 
value 

p2-+ 1 p2-+ 2 p 2-+l + p 2-+2 

• 1745 • 4602 • 5468 1. 0070 

• 1571 • 4557 . 5499 1. 0056 

• 1428 • 4524 • 5522 1. 0046 

• 1309 • 4500 • 5539 1. 0039 

• 1208 • 4480 • 5552 1. 0032 

Extrapolated • 4399 • 5607 1. 0007 
value 
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TABLE II 

Transition Probabilities as a Function of Mesh Size for Impulsive 

Collision of a Free Particle with a Particle Bound in an Infinite 

Square Well (E' ::: 4. 75; Number of Virtuals ::: l; a::: rr; m A/mB:::l) 

Mesh 

I size Pl ... 1 Pl_, 2 Pl ... 3 
p 

1 ->i 

• 1745 • 6126 • 1281 • 2470 . 9877 
• 1571 • 6121 • 1304 • 2475 . 9900 
• 1428 .6115 . 1325 • 2477 . 9917 
• 1309 • 6108 • 1345 . 2477 • 9930 
• 1208 • 6103 • 1362 • 2477 • 9942 

Extrapolated .6072 • 1466 • 2477 1. 0015 
value 

l p 2->i P2 ... 1 P2 .... 2 P2 ... 3 

• 1745 • 1321 • 6069 . 2564 • 9954 
• 1571 • 1337 • 6050 . 2576 . 9963 
. 1428 . 1353 • 6034 • 2583 . 9970 
. 1309 . 1368 • 6019 • 2587 • 9974 
• 1208 • 1382 • 6008 • 2588 • 9978 

Extrapolated • 1473 • 5965 • 2588 1. 0026 
value 

l p 3->i P3_, 1 P3 .... 2 p3 _, 3 

• 1745 • 2681 • 2698 • 4796 1. 0175 
• 1571 • 2645 • 2684 ·• 4812 1. 0141 
• 1428 • 2617 • 2673 . 4827 1. 0117 
• 1309 • 2594 • 2662 . 4841 1. 0097 
• 1208 . 2575 • 2652 • 4855 1. 0082 

Extrapolated • 2461 • 2529 • 5010a 1. 0000 
value 

a.This value is obtained by difference from P 3... , P 3_,2, 
since extrapolation on such rapidly varying values gave 
faulty results. 
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TABLE III 

Extrapolated Trahsition Probabilities for Hard-Sphere-Harmonic 

Oscillator Collision (E = 1. 75; Number of Virtuals = 2; a= 10. O; 

m/M = 1/2) 

Final State 

Incident 
State 

1 

2 

1 

• 4941 

.5084 

TABLE IV 

2 

• 5044 

• 4941 

Extrapolated Transition Probabilities for Hard-Sphere-Harmonic 

Oscillator Collision (E = 2. 75; Number of Virtuals = 2; a= 10. O; 

m/M = 1/2) 

Final State 1 2 3 

Incident 
State 

1 • 0014 . 5903 • 3981 

2 • 5.988 • 1595 • 2414 

3 • 4059 • 2480 • 3506 
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TABLE V 

Reaction Probabilities as a Fw1ction of Mesh Size for Square-Well 

Binding Potentials (a = rr; E' = 2. 125; Number of Virtual Channels 

= 2) 

p(R) p(R) (T) p(T) 
2 

Mesh I pl . 
size 

1-+ 1 1-+ 2 pl-+1 1-+ 2 -+1 
T,R,i=l 

• 1571 • 7673 • 0249 . 1178 • 0859 • 9959 

• 1308 • 7590 • 0267 • 1208 • 0911 • 9976 

• 1122 • 7539 • 0279 • 1225 • 0943 • 9986 

• 0982 • 7509 • 0286 • 1237 • 0965 • 9997 

Extrapolated . 7404 • 0306 .1264 • 1042 1. 0016 
value 

p(R) p(R) p(T) p(T) 
2 

I p2 . 2-+ 1 2-+ 2 2-+ 1 2--+ 2 -+1 
T,R,i=l 

• 1571 • 0251 • 4398 • 0942 • 4453 1. 0054 

• 1308 • 0268 • 4429 • 0960 • 4369 1. 0026 

• 1122 • 0278 • 4451 • 0971 • 4314 1. 0014 

• 0982 • 0284 • 4466 • 0978 • 4277 1. 0005 

Extrapolated .• 0300 • 4562 .1014 • 4116 • 9992 
value 
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TABLE VI 

Reaction Probabilities as a Function of Mesh Size for Truncated 

Parabolic Surface (x. = 10. 0; E' = 5. 0; a = rr; Number of Virtual 

Channels = 3) 

. Mesh p(R) p(R) p(T) p(T) I pl . 
size 1--1 1--2 1--1 1--2 --1 

T,R,i 

• 1571 • 0455 • 1134 • 6489 • 1774 • 9852 

• 1308 • 0538 .1196 • 6327 • 1832 • 9893 

• 1122 • 0595 • 1233 . 6224 • 1865 • 9917 

• 0982 . 0635 • 1256 • 6156 • 1885 • 9932 

Extrapolated • 0779 • 1326 • 5932 • 1939 • 9976 
value 

p(R) 
2--1 

p(R) 
2--2 

p(T) 
2--1 

p(T) 
2-- 2 I P2 ... i 

T,R,i 

• 1571 • 1178 • 4271 • 2048 • 2673 1. 0170 

• 1308 • 1230 • 4177 • 2022 • 2688 1. 0117 

• 1122 • 1262 • 4118 • 2007 • 2701 1. 0088 

.• 0982 • 1282 • 4079 • 1997 • 2712 1. 0070 

Extrapolated • 1347 • 3958 • 1958 . 2753 1. 0016 
value 
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TABLE VII 

Transition Probabilities for the Untruncated Parabolic Surface 

(a= 10. O; E ' = 1. 75; h = • 4165; Number of Virtual Channels r 
= 2). The Columns Correspond to Various Analyses of X· as . J 

Discussed in Text 

Transition 1 2 3 4 
Probability 

p(R) 
1 -+ 1 • 000667 • 000611 • 000915 . 00103 

p(R) 
1-+ 2 • 003135 • 002430 • 001429 • 00840 

p(T) 
1 -t 1 • 724909 • 712349 • 698335 . 68557 

p(T) 
1 -t 2 • 256870 • 283050 • 314947 . 34546 

· l pl--i • 995581 • 998440 1. 015626 1. 04146 

R,T,i 

p(R) 
2 -t 1 • 000306 . 001567 • 002316 • 00268 

p(R) 
2 -t 2 • 005751 • 005947 • 004405 • 00277 

p(T) 
2--> 1 . 292969 • 287198 • 283838 • 28214 

p(T) 
2 -t 2 • 719046 • 707013 • 694846 •. 68384 

~ 

l p2 . 
-t l 

1. 018072 1. 001725 • 985405 • 97143 

R,T,i 
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Figure I 

Diagram of the colinear collision of an atom (m3) with a 

diatomic molecule (m1 - m 2) showing relation between · 

coordinate systems. 
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Figure II 

(a) Diagram of a collision of a free particle with a particle 

bound to a fixed center of force. (b) Schematic showing 

boW1dary conditions and interaction (inseparable) region 

for collision diagrammed in (a). 
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Figure ill 

Finite-difference mesh used in the solution of the atom­

diatomic collision problem. 
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Figure IV 

Schematic of the coordinate system and boundary conditions 

for the impulsive collision of a free particle with a particle 

bound to a fixed equilibrium position. 
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Figure V 

Transition probability v. s. number of mesh points across 

the well (y' coordinate) for the impulsive collision of a 

particle bound in an infinite square well with a free 

particle (incident energy E' = 2. 25; number of virtuals 

in state expansion (N - M) = 1; well width a = rr; 
mA/mB = 1). 
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Figure VI 

Transition probability v. s. total incident energy for the 

impulsive harmonic- oscillator-free- particle collision. 
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Figure VII 

Execution time v. s. number of mesh points across the well 

for the computation of transition probabilities in the 

impulsive harmonic-oscillator-free-particle collision. 
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Figure Vill 

Diagram of exchange reaction A + BC -+ AB + C. 
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Figure IX 

Coordinate systems used in the treatment of exchange 

reactions showing boundary conditions and the interaction 

region: (a) [X, x12, x23]; (b) [X, x, x12]. 



152a 

(a) 

Asymptotic region 

. :•· , .. 

0 
(f 23 'O) 



152b 

(O, 0) x 

(b) 

= Q x + x (O) 
~ 23 12 

Asymptotic 
region 

x 



153 

Figure X 

Finite-difference mesh used in the treatment of exchange 

reactions in the coordinate system [X, x12, x23 J. 
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Figure XI 

Sketch of trw1cated parabolic surface for model exchange 

reaction. 
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Abstract of Propositions 

I. An improved model for physical adsorption on metal 
surfaces is presented and discussed. It is proposed that · 
the model be tested by calculating heats of adsorption of 
nitrogen on three different copper crystal faces for which 
reliable experimental data are available. 

II. An initial-value method of calculating quantum-
mechanical transition probabilities for inelastic collisions 
is presented. A perturbation method for solving the 
coupled equations to various orders in a "cutoff" parameter 
is proposed. · 

ill. A semiclassical theory of radiationless transitions 
is proposed. The theory views the relaxation of an 
electronically excited solute molecule as a transition 
between zero- order nonstationary states induced by a 
time-dependent perturbation caused by solute- solvent 
Coulomb interactions. The translational motion of the 
molecules is treated classically and the internal degrees 
of freedom quantum mechanically. Two model studies 
designed to compare the effect of various parameters of 
the classical motion on the transition probability are 
proposed. 

IV. A method for treating the collisional transfer of 
ener gy between vibrational and electr onic degrees of 
freedom is proposed. The central feature of the method, 

.- Which remedies several defects of a previous treatment, 
is that it treats only the electronic motion of the vibrator 
adiabatically. This is believed to be a reasona ble approxi­
mation since the vibrator is not undergoing a change of 
electronic state. It is proposed that the transition proba­
bilities be found by the initial-value method outlined in 
Proposition IL 
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V. · · It is proposed that the relaxation (including r eaction) 
of an initial distribution of reactant molecules among 
various quantum levels be investigated. The transition 
rates W depend explicitly on concentration so that the mn 
relaxation equations are nonlinear. After outlining the 
general theory, we derive the relaxation equations for a 
displacement reaction and briefly discuss methods of 
solution. 
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Proposition I 

An improved model for physical adsorption on 
metal surfaces is presented and discussed. It is 
proposed that the model be tested by calculating heats 
of adsorption of nitrogen on three different copper 
crystal faces for which reliable experimental data are 
available. 

It seems apparent that not a great deal is understood about 

forces between isolated pairs of atoms and molecules and even less 

about the interaction of atoms and molecules with surfaces, wherein 

the interaction among large collections of particles complicates the 

problem. The particular case of physical adsorption on metal 

·surfaces is of great interest. Gurney1 has discussed the theory of 

electrical double layers in terms of one-dimensional systems of 

potential wells representing the metal and adsorbate. Gomer and 

Swanson2 have recently elaborated on this model in conjunction with 

a theory of field desorption. 

Lennard-Jones
3 

had earlier viewed the van der Waals 

attraction of a molecule to a metal surface in terms of the inter­

action of instantaneous dipoles formed between the electrons and 
4 . 5 

their images in the metal. Bardeen and Margenau and Pollard 

objecting that Lennard-Jones 1 model assumed instantaneous 

relaxation of the metal electrons and that it neglected their quantum­

mechanical behavior, developed their respective models. Bardeen 

presented a general method for the approximate calculation of 

dispersion forces between two arbitrary systems. The method 

of Margenau and Pollard regards the metal as composed of 
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polarizable volume elements and the total interaction of metal and 

molecule is expressed as a sum of dipole-dipole induced inter­

actions over the volume of the metal. 

All of the theories discussed above seem to suffer from 

the disadvantage of not considering the internal structure of the 

metal in detail, a factor which may be of considerable importance 

in the process of physical adsorption. It is therefore proposed 

that a new approach, which is based on an extant model for metals 

and which also explicitly takes into account the structure of the 

metal, be investigated. In the following paragraphs the general 

model will be discussed and then a specific proposal made to test 

the worth of the model. 

As a zeroth-order approximation the Sommerfeld theory 

of metals will be assumed, in which one valence electron from 

each atom is in a non-localized state belonging to the metal as a 

whole and the remaining electrons are localized. It is further 

assumed that for the delocalized electrons the potential is zero 

inside the metal and infinite outside. Thus, for a metal in the 

shape of a cube of edge a, the wave function for the free- electron 

gas is given by 

n.nx. t.ny. m.nz. 
, 1, _A{ rr . i i . i 1 . i i} 'r'FE - 9 Sm -- SID Sln • n.'"'.m. a a a 

(1) 
. 1 1 1 

Hence, the metal appears as a lattice of positive ions in a uniformly 

dense electron gas. This hp.plies that an electric field will exist 

outside the metal which is non-uniform and depends on the structure 

of the lattice. 
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Consider an arbitrary array of lattice points in the half­

space z > 0. For points z < - e: < 0, the electric field is given by 

- - + - - ..-. N e( r - r ) - - J. p(r') (r - r') dv' l j E(r) = + , 
I- - ,3 ,- -+13 r-r' . 1 r-r. 

J~ J 

-where p is the electron density, r is the radius vector to the 

field point, and r. + is the radius vector locating the ith lattice 
1 . 

point. Note that since p is constant the integral E- ( ~) will be 

constant for a very large volume of metal. The ref ore the 

variations in the surface electric field w~ll be determined only 

by the positive lattice. For example, for a simple cubic lattice 

(2a) 

(2b) 

3 of 8n atoms, the z-component of the electric field will be given 

by 

n f· ~ (z - ma) 
Ez +(r) = e l L l (3) 

k=-n t =-n m=O { (x- ka)2 + (y - t a)2 + (z - ma)} 3/2 ' 

where a. is the lattice spacing. Hence, it is seen that the field 

component perpendicular to the metal surface will vary as a 

function of the coordinates (x, y, z) of the field point in a manner 

that reflects the structure of the lattice. An atom or molecule 

in the vicinity of the surface will thus be polarized and the resulting 

dipole attracted toward the surface where it will reside in a region 
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of lower energy. The properties of the adsorbed species and of 

the adsorption process may then be calculated using quantum and 

statistical mechanics. 

It is suggested that this theory be applied to a specific 

case for which reasonably reliable experimental data are available. 

Rhodin 6 has reported results for the adsorption of nitrogen on very 

clean, regular copper crystal faces at coverages low enough that 

lateral interactions among the adsorbed molecules are negligible. 

He found that the heats of adsorption are -1800, -2000, -2200 

cal/mole on the (100), (110), and (111) faces, respectively. As a 

zeroth- order approxima~ion, the potential energy of a nitrogen 

molecule near the metal surface can be expressed as 

V FI( r) is given by 

.... 1 .... .... 2 
V FI( r) = - 2 a,' I E ( r) I ' 

and is the energy of interaction of the induced dipole with the 

electric field, VD is the van der Waals attraction energy, and 

(4) 

(5) 

V R is the repulsive interaction energy. V FI can be broken down 

into the contribution of the lattice v;I and that of the electron 

gas VFT The dispersion and repulsive interactions of the 

molecule with the lattice may be approximated by the Lennard-

J ones 6-12 potential. 
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Other applications of this model to the problem of the 

interactions of molecules with metal surfaces may be envisioned. 7 

Also, there are several obvious (albeit perhaps difficultly 

incorporable) improvements, among which are, for example , 

(1) the requirement that there be fewer than one delocalized 

electron per 1'l18tal atom, (2) the employment of a periodic, lattice­

dependent potential, and (3) allowance for repulsion among the 

free electrons. Each of these "improvements" will affect the 

negative charge distribution in the metal and consequently the 

negative component of the surface electric field. 
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Proposition II 

An initial-value method of calculating quanium­
mechanical transition probabilities for inelastic 
collisions is presented. A perturbation method for 
solving the coupled equations to various orders in a 
"cutoff" parameter is proposed. 

Reconsider the one-dimensional problem of the inelastic 

collision of a free particle with a particle bound to a fixed equi­

librium position. Assume that the interaction potential V 
1 

is 

slowly varying and that the interaction region is well localized (for 

reasons which will become clear below). We wish to solve the 

Schrl:Jdinger equation 

H '±' = E '±' , (1) 

where 

tz 2 02 . 112 02 
H = - 2-- --2 - 2- ~ + VB(y) + VI(x, y)' (2) 

mA ox mB oy 

and 'l' satisfies the asymptotic conditions 

-il~x N +ik x 
'l' = e . ¢I(y) + l Rme m ¢m (y) + O(e -A.x), 

m=l 

.N 
'±' = I x < o, 

m=l 

x > x ' 0 
(3a) 

(3b) 
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2 2 
fl k 

Ill 
= E: + 

m 2mA 
(4) 

where we have assumed that the interaction region extends from 

x = 0 to x = x • The symbols in Eqs. (2) - (4) have the same 
0 

significance as in Part II, i.e., A labels free-particle parameters, 

B labels bound-particle parameters, Rm is the amplitude for 

reflection in channel m, T the amplitude for transmission in m . 
channel m, N is the number of open channels, e: is the mth 

~~ m 
discrete eigenvalue of the bound particle, and k is the corre­

m 
sponding free-particle wavenumber. 

The method of solution of the Schr(jdinger equation (1) is 

essentially that described in Part II. There is one important 

modification, however, and that involves the method of deter­

mination of the x. 's. 1 We express the total scattering wa vefunction 
J 

'i' as a linear combination of functions of a set, each member of 

the set satisfying linearly independent initial conditions in the 

asymptotic region x < O. Denoting the members of this set by 

x-, we have 
J 

Now each X· is expressed as 
] 

C-X· • 
J J 

(5) 
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f. (j) (x) ¢ . (y) ' 
l l 

(6) 

whe1•e the ¢. are the bound- state eigenfunctions and f. (j) (x) are 
1 1 

arbitrary fw1ctions of x to be determined. The x. are found by 
] 

solving the initial-value problem created by specifying the values 

and slopes of the f. (j) corresponding to arbitrary initial conditions 
l 

on X·· Now since each X· must satisfy the Schrl1dinger equation 
] ] 

(1), we substitute Eq. (6) into Eq. (1) and take the inner product 

of both sides with ¢ t to obtain 

up .(x) f. (j)(x) = 0, t = 1, 2, ..• M (7) 
'\/l l 

where 

= 2mA r·ai 
7 

We find the f. (j) by solving the set of coupled equations (7), which 
1 "k -1 ~ .x 

we note has been truncated. If x .(x < 0, y) ·=- e J ¢.(y), then we 
J J 
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have the following initial conditions on f. (j): 
1 

f.(j)(O) = 0 . . 
1 lJ 

f_(j)(O) = ~ik . 0 .. , j ~ N 
1 J lJ 

or 
f. (j) (0) = 0 . . 

1 lJ 

f_(j)(O) = k. 0 .. ' j > N. 
1 J lJ 

Inside the interaction region the various channels "couple" so 

that in the asymptotic region x > x , X· is expressible as 
0 J 

(j) -il\X _ (j) +ikiX 
(A. e + A. e ) ¢. (y) 

1 1 1 

( .) -1\X _ (j) +kiX) .( ) 
+ \ (B. J e + B. e ¢1 Y ' L i i 

i>N 

where the coefficients A. (j), A. (j), B. (j), B. (j) are determined 
. 1 1 1 1 

by requiring continuity of x. and grad x. at x = x
0

• Thus for 
J J 

i _::s N 

(8a) 

(8b) 

(9a) 

(9b) 

(10) 

(lla) 



168 

( .) -ik .x (j) +ik.x 
= "k A J l 0 "k A l 0 

-1 i i e + l i i e ' 

from which the A. (j) and A. (j) can be determined. Similar 
l l 

equations may be written for the virtual-channel coefficients. 

Since we choose only outgoing waves in the open channels and 

decaying virtual channels for our initial conditions, we need 

solve for only M (the total number of states retained in the 

state expansion of each x .) x. 1 s. The equations determining 
J J 

c. in Eq. (5) are 
] 

M 

I c . (I) A. (j) = 6Ii ] l 
j < N 

j=l 

M 

I c. (I) B. (j) :::; 0, 
] l 

j > N 

j=l 

These may be written more compactly as 

where I denotes the incident state. 

T (I) are given by 
m 

M 

I I 

,...., ' 

The amplitudes R (I) and 
lU 

R (I) = \ c . (I) A (j) 
L J m m 
j=l 

(llb) 

(12a) 

(12b) 

(13) 

(14a) 
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c 
m 

(I) 
(14b) 

It now remains to solve the coupled set Eq. (7). If u -li (x) 

is a smooth, slowly varying function and the interaction region is 

not too large, i. e. , the interaction is of the nature of a perturbation, 

we may be able to obtain a rapidly convergent power series 

representation of fi (j) in the interaction region. We expand ft (j) 

and u -li in a Taylor Is series about x = 0 as follows 

f (j) 
-l 

co 

= l 
n=O 

a (j) (-l) x11 

n 

d (-t, i) xn . 
n 

Substituting these expansions into Eq. (7), we obtain 

OJ 

l { (n + 2)(n + 1) a~j~ 2 (-l) ± yk-l 2 an (j) (t)} xn 

n=O 

(15a) 

(15b) 

. M OJ OJ 

- l ( l an(j\i)xn)( l dm(t ,i)xm) = 0, j = 1,2, •.. M, (16) 

i= 1 n=O m=O 
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where the + holds for t .:s N and the - for t > N. Equating 

coefficients of equal powers of x gives 

m M 

(m+2)(m+l) a (j) (-l) ± yk 2a (j) (t) - \ 
m+2 t m L { \ a. (j) d (t i)} = 0 • 

L K m-k ' 
i=l k=O (17) 

The initial conditions (8) and (9) determine a
0 

(j) (-i) and a
1 

(j) (t). 

Thus 

a (j) (t) = 0 tj 0 

al O\t) = -ikt ot j, j < N 

or 
a (j) (t) = 0 ,f, j 0 

a (j) (-e,) 
1 = kt 0 tj ' j > N . 

From Eqs. (18) and (19) we can use the recursion relation (17) 

to find all the coefficients a (j) (t) successively. 
m 

(18a) 

(18b) 

(19a) 

(19b) 

Now we treat x as a parameter to obtain a "perturbation" 
0 

expansion for the c.'s and transition probabilities. To see how this 
J 

is possible, we solve Eqs. (11) to obtain 
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A (j) -
.e.. 

[ik f (j) (x ) - f ,(j) (x )] +ik
9 

x
0 t .e.. 0 -e, 0 'V 

~~~---,,~~~~~- e 
2ik-e, 

Substituting the expansions 

f (j\x ) - f a (j) (t ) x 11 

t o . L n o 

f ,(j) (x ) 
t 0 

into Eq. (20) gives 

Similarly, we obtain 

n-0 

• c:::> 

= I 
n-0 

n=O 

q=O 

(n + l)a (j) (t)x 11 

n+l o 

[ ik a (j) (t ) - (q + 1) a (j)~ (.e..) J 
t q q+l 

(ik
9 

)
11-q 

-v ·} n --.(-n--q)-c--=-! x o • 

(20) 

(21a) 
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co 11 

B (j) (x ) = - 1- \ { .\ [k a (j) (-i) + (q + l)a (j) (t ) J • 
t o 2k-e, L L t q ·q + 1 

n=O q:==O 

(2lb) 

co n 
B (j)(x ) = - 1 \ { \ [k a (j)(t) - (q+ l)a (j) (t)J . 

t o 2kt L L t q q+ 1 
n=O q=O 

( )n-q 
+kt n 

(n-q) ! } XO ' 
(21c) 

and 

co n 
A (j)(x ) = --J:- \ { \ [ik a (j)(-e,) + (q+ l)a (j) (t)J · 

-e, o 21k-e, L L -i q q + 1 
n=O q=O 

(-ik )n-q 
t } n 

(n-q) ! XO • 
(2ld) 

Thus, we have the matrix elements of .f:: expressed as explicit 

functions of the "cutoff" parameter x . The matrix equation (13) 

for the c (I) may now be expressed as
0 

(A + A x + A x 2 . · · )(c (I) + c (I) x + c(I)x 2 •.• ) = I' (22) 
""0 "" 1 0 ""2 0 ""0 ""1 0 "" 2 0 "" 
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The various "orders" of c (I) may be determined by identifying 

coefficients of equal powers of the "cutoff" parameter. Hence, 

we obtain the matrix equations 

A c (I) =I I 
""'0 ""'0 ""' 

n1 

\ A. c . (I) = 0 • 
L ""'J ""'m- J 

j=O 

We note from the expansions (21) that 

A (j) = -.1- [ik a (j)(t) - a (j)(t)J = o . 
-lo 21k-e.. t o 1 tJ 

B (j) = - 1- [k a (j)(t) +a (j\t)] = o . 
t 0 2k t t 0 1 l J ' 

(23a) 

(23b) 

and thus A is the M x M unit matrix. From Eqs. (23) we then 
""'O 

obtain 

c (I) = I I 

"-'O 
(24a) 

C (I) = - A c (I) 
-·1 1 ·- ""' ,....,0 

(24b) 

(24c) 
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Expressing Eqs. (14) as a matrix equation, we can obtain the 

reflection and transmission amplitudes to various orders as 

follows: 

(A + Al x + A2x 2 + ... ) ( c (I) + c 1 (I) x + c.2 (I) x 2 + ••• ) = 
'"'"'0 '"'"' 0 '"'"' 0 '"'"'0 '"'"' 0 ~ 0 

R (I) + R (I)x + R (I)x 2 + · · · (25a) 
~o ~1 o ""'2 o 

T(I) = c (I) + c (I)x + c (I)x 2 + · · • • (25b) 
"-'O ~1 0 ~2 0 

In particular, if x
0 

= 0, i.e., there is no interaction, we observe 

that 

- (I) 
A c 
""'O "-'O 

= R (I) = 0 
~o 

T(I) = c (I) 
""'O 

which means that there is only a wave of unit amplitude 

transmitted in channel I and nothing reflected. Evidently, 

our formalism is correct in the limit x
0 

== O. The hopa is 

·that we may obtain reasonably accurate approximations to the 

amplitudes for weak interactions VI by including only a few 

powers of x
0 

in the expansions (24) and (25). The method has 

two possible advantages over the distorted wave method. The 

first is that it is possible to obtain analytic expressions for the 

(26a) 

(26b) 
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amplitudes for arbitra r y potentials. Second, each order of 

correction couples all the cha.ilnels, both open and virtual, 

included in the state expansion for '±'. 
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Proposition ID 

A semiclassical theory of radiationless 
transitions is proposed. The theory views the 
relaxation of an electronically excited solute 
molecule as a transition between zero-order 
nonstationary states induced by a time-dependent 
perturbation caused by solute-solvent Coulomb 
interactions. The translational motion of the 
molecules is treated classically and the internal 
degrees of freedom quantum mechanically. Two 
model siudies designed to compare the effect of 
various parameters of the classical motion on the 
transition probability are proposed. 

Several theories of radiationless transitions have been 

proposed. l, 2' 3 Among those which consider explicitly the relation 

of solute molecules (guest) to environment (host, lattice), Robinson 

and Frosch 1s 2 and Gouterman1s 3 are probably most prominent. 

Essentially Robinson and Frosch determine the rate of a radiationless 

transition by following the "decay" and "build-up" of the nonstationary 

initial and final states which are coupled by stationary perturbations. 

The most important of these stationary perturbations arise in the 

free molecule. Solute-solvent perturbations are not important 

except in special cases. Hence, the major role of the solvent is to 

serve as a collection of coupled oscillators into which the excitation 

energy ultimately flows as phonons. 

Gouterman 
3

, in contrast to Robinson and Frosch, assumes 

that the solute-environment interaction is wholly responsible for 

inducing transitions between stationary electronic states of molecules. 

He develops a Hi.ickel-type theory based on the analogy of the "phonon 

field" of the solvent to the photon field used in the semiclassical 
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theory of radiative transitions. Expressing the time-dependent 

perturbation as 

H" = \ ri x F cos (wt + ~ • r ) , L a. a. a. a. 
Ct. 

where F is a force field set up by "phonon waves" (analogous 
Ct. 

to E ) and ri is a "coupling constant", he obtains expressions 
x a. 

for the induced and spontaneous radiationless transition rates. 

These expressions involve Htlckel-type constants, e.g., the 

coupling constants ri • 
a. 

(1) 

It is proposed that a more realistic semiclassical model 

for radiationless transitions be investigated. Gouterman admits 

that his perturbation (1) is wrong, but he hopes to compensate for 

this error after the manner of Htickel theory by introduction of 

empirical parameters. The model we propose to investigate here 

takes full account of the proper solute-solvent interaction 

Hamiltonian in the same fashion as the semi.classical theory of 

radiative transitions. vVe now suppose that we have a solution of 

excited solute molecules which exist in any of a complete set of 

"stationary" excited states at time t = O. The translational motion 

of the molecules is treated classically and the internal degrees of 

freedom quantum mechanically. We now look at a particular excited 

solute molecule. It is constantly colliding with solvent molecules 

which are creating an effective time-dependent perturbation through 

the Coulomb interactions of their charges with the electrons of the 

excited solute molecule. It is this time-dependent perturbation 

which we wish to consider causing radiationless transitions between 
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the "stationary" states of the free-molecule. In a way, it appears 

that this is an eA.'tension of the Robinson-Frosch theory which 

:involves transitions between nonstationary states induced by a 

stationary perturbation switched on at time t = O. In fact, there 

exist no true stationary states of molecules in condensed media, 

although this approximation may not be unreasonable for gases. 

An alternative way of looking at the present theory is as follows. 

It takes into account the full Hamiltonian of the free molecule to 

calculate a complete set of zero- order nonstat:ionary states. The 

states are nonstat:ionary by virtue of solute-solvent time-dependent 

interactions. These time-dependent interactions which couple the 

initial and final nonstat:ionary states are determined by the classical 

motion of individual molecules. 

Of course, the time-dependent field which any particular 

molecule experiences is an incredibly complex function of time 

which depends on the velocities, impact parameters, and phases 

·of many successive collisions. In condensed media the inter-

molecular correlations are important in determining the detailed 

nature of the time dependence. Hence, we should expect the 

radiationless transition rate to depend on the pressure and 

temperature as well as the molecular structure. In order to 

study the effects of these variables, it is proposed that several 

simplified models be investigated: (1) the binary collision of 

two hydrogen-like atoms; (2) the system of monatomic solute 

molecules imbedded in a monatomic solvent. 

In Fig. 1 is depicted the collision of an excited hydrogen­

like atom A (nuclear charge Z A) and a ground-state hydrogen-like 

atom B (nuclear charge ZB). Initially B is travelling toward A 



179 

_, 
with velocity v and impact parameter b. For the present, we 

assume that the trajectory of B, calculated classically using an 

appropriate adiabatic ir1termolecular potential such as the 

Lennard-Jones 6-12, is such that we may neglect relativistic 

and exchange effects. The set of zero-order states is denoted 

by {¢ (i! ) · '<// (i!b)}. The perturbation may be written 
n a m 

+ 
2 e 

+ 

where RAB is the radius vector from nucleus A (regarded as 

fixed in the x - y frame) to nucleus B, I! is the radius vector 
_,a 

from A to the electron on atom A, and rb the radius vector 

from nucleus B to its electron. The time dependence enters 

in RAB = RAB (t). Since the perturbation acts for only a finite 

time, i.e. , the time of duration of the collision, the transition 

probability P , , is given by4 
n1n-+ nm 

2 
1 CO 0 +iUJ I ,t 

pnm-+n'm' = 2 2 J ot (V nm n'm')e nm, nm dt 
1i w -(X) ' 

nm n'm' . ' ' ' 

where 

(2) 

(3) 
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and 

E is the eigenvalue associated with the stationary state nm 

. ¢ (J; ) '</; (J; b). This model could be used to study the dependence m a n 
of the transition rate on relative velocity and impact parameter. 

Now for a system of molecules we have seen that the 

time-dependent perturbation is a much more complicated function. 

For dense media, especially, it is not a good approximation to 

assume that only binary collisions are important and that the 

interval between collisions is long compared to molecular rotation 

and vibration. We thus propose a model which allows for the 

complex correlations in a dense medium such as a liquid. We 

adopt a simplified model which consists of a dilute solution of 

excited monatomic solute molecules in a monatomic solvent. We 

assume that only the valence electrons of the solute need be 

considered. Also, the solvent molecules are not excited during 

solute-solvent collisions so that the electronic motion of the 

solvent can be treated adiabatically in calculating the perturbation. 

The complicated motion of the nuclei is found classically by 

integrating Newton1 s equations using an adiabatic intermolecular 

potential. Thus a single solute molecule A experiences a time­

dependent perturbation of the form 



N 

VA (I! a' t) = l 
j=l 
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VA.(~ 'RA.(t)) ' J a J 

where VA. is the time-dependent perturbation due to solvent 
J -+ 

molecule j, R Aj (t) being its trajectory relative to the solute 

molecule. The radiationless transition probability P for 
n-+ lTI 

the solute molecule to be deexcited from state n to state m is 

then given by
5 

p 1 
n-+m=~ 

·where 

t +iw t J V mn (t) e mn dt 
0 

2 

This model should allow us to study the effect solvent-solvent 

and solvent-solute correlations on the transition probabilities 

in addition to the effects of temperature and pressure. 

(4) 

(5) 
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y 

• v(t) 

b 

x 

Figure I. The collision of two hydrogen-like atoms. 
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Proposition IV 

A method for treating the collisional tr an sf er 
of energy between vibrational and electronic degrees 
of freedom is proposed. The central feature of the 
method, which remedies several defects of a 
previous treatment, is that it treats only the 
electronic motion of the vibrator adiabatically. 
This is believed to be a reasonable approximation 
since the vibrator is not w1dergoing a change of 
electronic state. It is proposed that the transition 
probabilities be found by the initial-value method 
outlined in Proposition II. 

The treatment of collisional energy transfer between 

electronic and vibrational degrees of freedom is complicated by 

the fact that the interaction potential cannot be calculated in the 

adiabatic approximation, i. e. , by assuming that electronic motion 

adjusts itself instantaneously to provide a surface upon which the 

nuclei move. Effectively, the surface changes discontinuously 

during the collision. We consider the coli.near collision of a 

diatomic molecule BC with an atom A and desire to find the 

cross sections for the following reactions 

A* + BC A+ BC* (1) 

A + BC* A*+ BC (2) 

A +BC ..... A*+ BC* . (3) 
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Reaction (2) is a transfer of electronic excitation of at om A to 

vibrational excitation of molecule BC and reaction (2) vice 

versa. Reaction (3) is a collision in which translational energy 

is converted into electronic and/ or vibrational energy. Dickens, 

Linnett, and Sovers
1 

have calculated cross sections for electronic­

vibrational transfer reactions of type (1) above using the Born 

and distorted-wave approximations. Unfortunately, they used a 

very approximate interaction potenti~ of the form v = v 1 ( r) . 
V2(q) · V3(r1

), where r is the vector distance between the 
-> 

centers of mass, q is the vibrational coordinate, and r 1 the 

electronic coordinate. Apparently this form was chosen to 

simplify the integrals necessary in the calculation. For the 

various potential factors they used 

v 1<r) = V " e -a.r 
0 

= e +a.q 

(4a) 

(4b) 

(4c) 

where V ", a., and ~ are empirical constants. This corresponds 
0 

to an exponential interaction between the incident atom A and 

the nearest atom of the diatomic, modulated by the electronic 

charge of A concentrated at r 1. They found that the cross sections 

were very sensitive to the empirical parameters. Furthermore, 

one would expect that the interaction potential would not be entirely 

repulsive and actually might be attractive similar to a Lem1ard-
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Jones 6-12 potential. Also, with all the approximations, both 

mathematical (Born or distorted-wave) and physical (p::>tential) 

it is not clear why the cross sections do not agree with experi­

ment. For these several reasons it is proposed that reactions 

of type (1), (2), and (3) be treated rigorously within the frame­

work of theinitial..,.value method of Proposition II using a more 

physically realistic form for the interaction potential. 

We consider the "colinear" collision of atom A with 

diatomic molecule BC (see Fig. I). The motion of the nuclei 

is restricted to a straight line, although each of the electrons 

has three-degrees of freedom. To illustrate the nature of the 

intei'action potential, we choose A to be very simple, say a 

hydrogen atom. Then we wish to solve the following wave 

equation, expressed in the center-of-mass (of nuclei) system 

> 2 
{ 

rl 

- 2µA BC 
' 

2 
v + H r o 

where 
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H
0 

is the Hamiltonian of the electron a in the field of nucleus 

A, V BC is the adiabatic binding potential of the diatomic BC, 
_, 

v
1 

the interaction potential, r the radius vector from the a 
nucleus of A to its electron, and E the total energy. Hence, 

the interaction potential depends explicitly on the electronic and 

nuclear coordinates of A only and may be expressed as 

p (y; j'.!BC) di!BC 

ji! + j'.!BCI 

(6) 

where the first two terms are the nuclear repulsion terms, the 

third term is the interaction of nucleus A with the charge cloud 

about the diatomic, and the last term is the interaction of the 

electron about .A with the diatomic charge cloud. If one wishes, 

he may take into account polarization of the diatomic by making 

P (r BC), the electronic density of BC, a function of r. 

Note that we have assumed that the diatomic behaves adiabatically 

and this does not seem unreasonable in view of the fact that its 

electronic state does not change during the collision. If the 

diatomic is not highly vibrationally excited, the approximation 

may be expected to be good. 
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To find the transition probabilities for the various 

reactions (1), (2), and (3), we expand the total scattering wave· 

as 

'l.' = l l fnm (r) xn (y) lflm (r a) 

n .m 

(7) 

where x is the nth vibrational eigenfunction of BC, If; the mth n m 
electronic eigenfunction of atom A, and f the corresponding nm 
arbitrary function of r, the asymptotic behavior of which is 

lim f
00 r-+c:o 

lim f = R e 
r-+c:o nm nm 

+ik r nm 

(8a) 

(8b) 

where f is the incident cham1el function. Since the interaction 
00 

v1 becomes infinite for r .:::;; 0, f (0) = 0. The transition nm 
probability P is given as usual by 

00-+ n1n 

where 

k 
p = n1n I 

1
2 

oo --+ nm ~ . Rnm ' 
00 

h
2 2 

----k +e: +e. =E. 
2µA BC nm n m 

' 

(9) 

(10) 
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In Eq. (10), which is an expression of energy conservation, E: 
11 

and e are, respectively, the vibrational and electronic eigen­
m 

values and k is the corresponding free-particle wavenumber. n1n 
Substituting expansion (7) into SchrUdinger equation (5) and taking 

the inner product with x , (y) lj; , ( i! ) , we obtain the set of coupled n _ 111 - a 
equations for the f , nm 

2 2 2µA BC -
( 'V + k )f = ' \ V (r)f (r) 

r n1n n 1m 1 2 L n'1n'nrn n1n ' 
fl 

(11) 

nm 

where 

The coupled set (11) may be solved by the method outlined in 

Proposition II or, if only a rough approximation is needed, the 

Born approximation or distorted wave method may be used. The 

integrals V , , will probably have to be calculated numerically. 
n 111 n111 

For atoms A with more than one electron, we may wish 

to express the interaction potential and zero- order electronic 

eigenfunctions as functions involving all the electronic coordinates 

explicitly. .P.J.ternatively, we may treat just the valence electrons. 

In summary, the salient feature of the proposed method 

is that it treats adiabatically those electrons whose motion is not 

greatly affected by the collision, i. e. , the electrons associated 

with the diatomic and possibly with the core of a many electron 

atom A. 
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c B A 

r 

Figure I. Collision of an atom A with a diatomic 
molecule BC. 
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Proposition V 

It is proposed that the relaxation (including 
reaction) of an initial distribution of reactant 
molecules among various quantum levels be 
investigated. The transition rates vV depend 
explicitly on concentration so that thent1haxation 
equations are nonlinear. After outlining the general 
theory, we derive the relaxation equations for a 
displacement reaction and briefly discuss methods 
of solution. 

The standard theories of chemical kinetics, i.e. , the 

collision theory and Eyring's absolute rate theory, assume that 

the velocities of the reactants are distributed according to the 

Maxwell-Boltzmann law throughout the course of the reaction. 

Montroll and Shuler1 have reviewed various models of chemical 

reactions which allow for the disturbance of the initial equilibrium 

velocity distribution. Curtiss2, Prigogine 3, and Takayanagi4 have 

investigated the pertur!)ation of an initial Maxwell velocity distri­

bution by a chemical reaction. They developed a generalized 

Boltzmann equation which took account of (1) the energy change 

during reaction and (2) the loss of highly energetic molecules by 

reaction. Zwolinski and Eyring5 described chemical reactions as 

occurring by collision-induced transitions from one set of quantum 

levels representing the reactant to another set representing the 

product. Equations governing the concentration of reactants and 

products in the various quantum levels as a function of time were 

derived and applied to test the validity of the equilibrium postulate 

of absolute rate theory . . Kramers6 postulated a Brownian-motion 
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model in which reactant molecules gain sufficient energy by 

successive collisions to surmount a potential barrier (react). 

Montroll and Schuler1 have generalized the Zwolinski­

Eyring approach to a stochastic model and have derived general 

mathematical expressions describing the relaxation of non­

equilibrium initial distributions. They consider a large number 

of reactant molecules with quantized energy l evels to be dilutely 

dispersed in a constant-temperature heat bath. By successive 

collision with heat bath molecules the reactants are stepwise 

excited to higher levels. Reaction is defined to occur when a 

molecule is excited into the (N + 1) "level 11
, where it is in an 

unbound state. The model corresponds to unimolecular de­

composition following activation. The equation governing the 

relaxation of some initial distribution is 

dx 
n 

dt = 

N 

l { W nmxm - W mnxn} ' n = 1, 2, ••• N ' 

m.fn 

(1) 

where x is the concentration of reactant molecules in level n, 
n 

W is the transition probability per unit time per molecule. nm 
The first term corresponds to transitions from various levels 

m to level n, the second to transitions from level n to the other 

levels. The transition rates W can be calculated quantum nm 
mechanically. 

vVidom 7, using classical mechanics, has derived a 

"continuous" version of the relaxation equations (1) in which the 
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transition rate matrix W is replaced by a kernel k(x, y) and the 

summation by an integration. 

A great deal of attention has been devoted to the relaxa.tion 

of non-equilibrium distributions of harmonic oscillators diluted 

dispersed in a constant-temperature bath. Under these conditions, 

the W are constant and the relaxation equations thus are linear. nm 
It is possible to obtain analytical expressions for the solutions of 

Eqs. (1). 
1 However, for more general relaxation processes, e.g., 

reactions and nonconstant-temperature relaxations, the explicit 

dependence of W on concentration, temperature and time must nm 
be ta.ken into account. It is proposed that a model for reactions 

which incorporates these various dependencies be investigated. 

Below we shall derive the relaxation equations and consider the 

specific manner in which the transition rates depend on concen­

trations. Then we shall consider briefly the method of solution of 

the relaxation equations. 

Since most complex reactions occur by a series of bi­

molecular reactions, we restrict our consideration here to such 

a reaction, realizing that we . obtain the overall relaxation equation 

by "coupling" the bimolecular relaxation equations. Consider the 

displacement reaction 

M 
AB+ C BC + A, 

in which, for simplicity, we assume that AB is a diatomic 

molecule with internal quantum levels 1, 2, ... N, BC is a 

diatomic molecule with levels 1, 2, · · • N', and C and A are 

atoms possessing only translational kinetic energy. M denotes 

(2) 
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an "inert"low density g·as solvent. It is inert in the sense tha t it cannot react 

with any of the reactants or products, although it can undergo 

inelastic collisions witll any of them. The equations describing 

the relaxation (reaction) may be written 

N' 
+ l {unq xBC(q, t) - U qn xAB(n, t)} 

q;;l 

N' 
dxBC (n, t) ~ \ 

dt - L { w nin XBC (m, t) . - w mn XBC (n, t)} 

N 

min 

N 

+ l {unq XAB(q, t) - u qn XBC(n, t)} ' 
q::::l 

N' N N' 

(3a) 

(3b) 

Eqs. (3a) and (3b) relate the rates of change of concentrations of 

var ious quantum levels of the ·reactants and products, while Eq. 

(3c) expresses conservation of matter. xAB(n, t) and xBC(n, t) 

are the concentrations of AB and BC in quantum level n at time 
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t; W is the transition probability per unit time per rnolecule nn1 
from level m to level n of molecule AB and VI is the transition n1n 
rate similarly defined for molecule BC; U is the transition 

nq 
probability per unit time per molecule for transition from level q 

of BC to level n of AB and, similarly, U is the transition rate nq 
for AB in level q going to BC in level n. Thus, the contribution 

of the first term of Eq. (3a) arises from nonreactive transitions 

among the levels of AB, while the second term correspm1ds to 

reactive transitions from levels of BC to levels of AB. Eq. (3b) 

has a similar interpretation. 

Before considering solutions of Eqs. (3), we discuss the 

behavior of the transition rates W , W , U , U in which nm nm nq · nq 
the various consequences of our assumptions about the reaction 

conditions are manifested. A general expression for the transition 

rate T.. is given by 
l] 

a:> 

T .. =-v'8/7Tc(kT/µ )112 J CY •• (E)(E/kT)112 e-E/kT dE , 
lJ lJ 

0 

where T is the absolute temperature, µ is the reduced mass of 

the "collision complex" leading to the transition i - j, CY •• (E) is 
lJ 

the cross section for transition i _.. j at relative l:inetic energy 

E, and c is the concentration of molecules capable of for ming 

a complex leading to the transition. 
7 

The derivation of Eq. (4) 

assumes that the relative translational motion of the molecules 

forming the complex is determined by an equilibrium velocity 

distribution at temperature T. 

(4) 
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Now let us consider reaction (2) in which we begin with 

equal concentrations of AB and C in a dilute solution. Since 

AB - M and BC - M collisions are primarily responsible for 

nonreactive transitions among the quantum levels of AB and BC, 

W and W shm1ld remain constant if T remains constant. nm n1n 
However, reactive transitions can occur only via collision 

complexes of the form AB - C or BC - A. Hence, from Eq. (4) 

we see that U decreases in proportion to the concentration of nq 
C as the reaction (2) proceeds to the right. At the same time, the 

increasing concentration of A causes U to increase. Thus, nq 
since the initial concentrations of AB and C are equal 

N 
xJt) = nZi x AB (n, t) (5a) 

N' 
xA (t) ;::: l xBC(n, t) (5b) 

n=l 

Thus 

u ;::: kn (T) . [I' "Bc(m, t)J (6a) 
nq q rn=l 

u = k (T) · hI xAB(m, t)l (6b) qn qn m=l 

u = kn (T) • ~I xAB(m, t)J (6c) nq q m=l 
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[
N' J :::: k (T) • \ xuc<m, t) , 

qn 11f.::::1 .o 
(6d) 

where k .. (T) is the temperature dependent factor which depends 
l] 

implicitly on the cross section also. Substitution of Eqs. (6) into 

Eq. (3a) for example, gives 

+ 

which, together with the similar equations for dxBC/ dt, form a 

set of coupled, nonlinear first-order ordinary differential equations. 

In most cases of interest, it will probably not be possible 

· to obtain analytical expressions for the solutions of Eqs. (7). For 

initial distributions { XAB(l, 0), XAB(2, 0), •.• ' XBC(N'' o)} . close 

to equilibrium, it is possible to use the equilibrium transition rates 

and obtain analytical expressions for the xAB and xBC" For 

initial distributions far from equilibrium, such as the one discussed 

above, it is necessary to solve Eqs. (7) numerically. For this 
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purpose there are numero:1s computer subroutines available which 

are based on the Runge-Kutta method or various modifications. 
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