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Abstract 

 
 
 FRAME3D, a program for the nonlinear seismic analysis of steel structures, has 

previously been used to study the collapse mechanisms of steel buildings up to 20 stories 

tall. The present thesis is inspired by the need to conduct similar analysis for much taller 

structures. It improves FRAME3D in two primary ways. 

 First, FRAME3D is revised to address specific nonlinear situations involving large 

displacement/rotation increments, the backup-subdivide algorithm, element failure, and 

extremely narrow joint hysteresis. The revisions result in superior convergence 

capabilities when modeling earthquake-induced collapse. The material model of a steel 

fiber is also modified to allow for post-rupture compressive strength. 

 Second, a parallel FRAME3D (PFRAME3D) is developed. The serial code is 

optimized and then parallelized. A distributed-memory divide-and-conquer approach is 

used for both the global direct solver and element-state updates. The result is an implicit 

finite-element hybrid-parallel program that takes advantage of the narrow-band nature 

of very tall buildings and uses nearest-neighbor-only communication patterns. 

 Using three structures of varied sized, PFRAME3D is shown to compute 

reproducible results that agree with that of the optimized 1-core version (displacement 

time-history response root-mean-squared errors are ~10−5 m) with much less wall time 

(e.g., a dynamic time-history collapse simulation of a 60-story building is computed in 

5.69 hrs with 128 cores—a speedup of 14.7 vs. the optimized 1-core version). The 

maximum speedups attained are shown to increase with building height (as the total 
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number of cores used also increases), and the parallel framework can be expected to be 

suitable for buildings taller than the ones presented here. 

 PFRAME3D is used to analyze a hypothetical 60-story steel moment-frame tube 

building (fundamental period of 6.16 sec) designed according to the 1994 Uniform 

Building Code. Dynamic pushover and time-history analyses are conducted. Multi-story 

shear-band collapse mechanisms are observed around mid-height of the building. The use 

of closely-spaced columns and deep beams is found to contribute to the building's 

“somewhat brittle” behavior (ductility ratio ~2.0). Overall building strength is observed 

to be sensitive to whether a model is fracture-capable. 
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Chapter 1 

Introduction 

 

 

 

 

 

1.1 General 

 

The structural engineering discipline has greatly been aided by the rise of 

structural analysis programs. Today, many such programs like SAP2000, ETABS, RAM, 

PERFORM-3D, OpenSees, and LS-DYNA are used by industry and research groups to 

solve complex problems. Yet computational challenges limit the capabilities of even the 

most popular software packages. 

In the past two decades, the California Institute of Technology (Caltech) has 

developed FRAME, a program for the nonlinear analysis of steel structures subjected to 
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ground motion. FRAME2D and 3D are capable of simulating building response well up 

to the point of collapse. They do this by automatically including in their algorithm 

formulations that address the challenges that some programs approach in an ad-hoc 

manner, challenges like geometric nonlinearity, robust convergence schemes, weld 

fracturing, and material models that match experimental data over many loading cycles. 

 

 

1.2 Literature review 

 

Of the many structural programs available, PERFORM-3D (CSi 2011) and 

OpenSees (Mazzoni et al. 2009) are two of the most widely used programs for highly 

nonlinear structural analysis. 

PERFORM-3D is a commercial finite-element program, generally considered the 

industry standard. It has a large user base among practicing professionals and is suitable 

for deformation-based design. Although P-Δ effects are considered, true large-

displacement analysis requires that equilibrium be taken at the structure’s deformed 

position, which is not done in PERFORM-3D. Material models are approximated using a 

five-line backbone curve, and hysteresis follows these lines. In a study (Bjornsson and 

Krishnan 2014) comparing FRAME3D and PERFORM-3D, PERFORM-3D frame elements 

were found to deviate from experimental data sooner (fewer loading cycles) than 

FRAME3D frame elements. PERFORM-3D also had more difficulty capturing the slow 

degradation of structures than FRAME3D. 
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OpenSees is an open-source finite-element program intended for both structural 

and geotechnical analysis. Because of its modular design, it has a large element library 

and is versatile. This also means that a user determines the level of nonlinearity intended, 

the solution algorithms, etc. specific for their project. Features like panel zones, geometric 

nonlinearity, large-displacement effects, and strength degradation can be included. The 

material models in its database are similar to that of PERFORM-3D, in that they are based 

on backbone curves composed of line segments. Although no comparison study between 

OpenSees and FRAME3D has been conducted, FRAME3D uses a more realistic steel 

backbone and hysteretic material model, and the above features (e.g., panel zones, 

geometric nonlinearity, etc.) are automatically included for the context of steel frame 

buildings. 

The FRAME program is the starting point of the current research. A brief history 

of FRAME is presented in the remainder of this section. Recounted are the works of 

Caltech professor John Hall and some of his Ph.D. students since the 1990s. 

In 1992, Challa completed his thesis, “Nonlinear seismic behavior of steel planar 

moment-resisting frames” (Challa 1992). Before this work, the behavior of steel under 

cyclic loading was well known from extensive experimental data (e.g., Kent 1969; Popov 

and Petersson 1978). Yet few structural analysis programs captured the nonlinear 

behavior well over several loading cycles. Challa proposed two computational beam-

column element models: (1), the plastic-hinge element, a simple model, and (2), the fiber 

element, a comprehensive model. The plastic-hinge element behaves elastically between 

two nodes and is allowed to hinge plastically when end moments exceed a yield value. It 

accounts for strain hardening approximately by including an elastic rotational spring after 
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hinging occurs. The more robust fiber element is discretized transversely into subelements 

(i.e., segments), where each segment is discretized longitudinally into fibers. Each fiber 

follows the backbone curve and hysteretic rules of a steel bar under uniaxial stress, based 

on experimental data (Kent 1969; Popov and Petersson 1978). The joints of the frames have 

finite size and match the experimental shear stress-strain curves well (Tsai and Popov 

1988). Additionally, Newmark’s method (Newmark 1959) was used to solve the 

incremental equations of motion (§2.2). The result of this work was the NDA2 program, a 

precursor to FRAME2D. 

Hall and Challa developed and published the formulation of FRAME2D (Hall and 

Challa 1995). The 1994 Northridge earthquake revealed a flaw in pre-Northridge moment-

resisting buildings: welds fractured below design levels. Thus, the fiber formulation was 

updated to simulate weld fractures (Hall 1995; Hall 1998). 

In the first efforts to extend FRAME2D to three dimensions, Carlson and Hall 

developed a 3D fiber discretization of columns and a 3D joint (Carlson and Hall 1997). 

Carlson also developed 3D constraint equations that represent the effect of rigid 

diaphragms, so that a 3D building can be studied using planar frames. The work resulted 

in the ANDERS program and Carlson’s thesis “Three dimensional nonlinear inelastic 

analysis of steel moment-frame buildings damaged by earthquake excitations” (Carlson 

1999). Carlson compared fracture-incapable models with fracture-capable models and 

found little correlation between their behaviors, which suggests that for large motions, 

fracture-incapable models would be insufficient. ANDERS, however, was not “fully 3D”; 

it neglected some 3D effects such as the biaxial bending of non-corner columns. 
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Krishnan reformulated FRAME2D into FRAME3D, fully accounting for 3D effects. 

He examined irregularly shaped buildings, those with a center of mass and rigidity that 

do not coincide, and observed that torsional demand can be significant. He documented 

the 3D transition in his thesis “Three dimensional nonlinear analysis of tall irregular steel 

buildings subject to strong ground motion” (Krishnan 2003). A 3D analog replaced every 

2D element. For example, 3D plastic-hinge elements can hinge in two orthogonal 

directions. 3D fiber segments are discretized to account for biaxial bending. For 

computational efficiency, Krishnan introduced the three-segment elastofiber element, 

which was calibrated to replace the fiber element. The descriptions and formulations of 

the 3D plastic-hinge and three-segment elastofiber elements can be found in §2.3 and §2.4, 

respectively. 

In 2009, Krishnan added the five-segment elastofiber element to FRAME3D’s 

element library to efficiently capture geometric nonlinearities and buckling. A description 

and formulation of the five-segment elastofiber element can be found in §2.5. 

 

 

1.3 Objectives of the present study 

 

Since the 1990s, FRAME2D and FRAME3D have contributed to the structural 

engineering community’s knowledge of steel frame buildings up to 20 stories, their 

response in strong earthquakes, and their collapse mechanisms. The primary goal of the 

current thesis is to extend the capability of FRAME3D to steel buildings much taller than 

20 stories. It is achieved with the following intermediate objectives: 
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 Review the existing formulation of FRAME3D. It is important to understand 

how the program works before improving it. 

 Propose revisions to the formulation of FRAME3D. The goal of these revisions 

is to improve the program’s ability to handle highly nonlinear situations, such 

as building collapse, and improve the realism of the steel material model. 

 Develop a computationally efficient, parallel FRAME3D. FRAME3D’s 

nonlinear formulation is complex and detailed enough that for systems larger 

than 20 stories, a sequential dynamic time-history collapse simulation may 

take days or weeks complete. This thesis aims to significantly reduce the 

computation times of tall-building simulations. 

 Develop and study an example 60-story steel building. The primary purpose 

of this example is to showcase PFRAME3D’s computational performance. A 

secondary purpose is to analyze the 60-story building’s nonlinear behavior and 

collapse mechanisms. (The secondary purpose will be achieved with greater 

detail in future work.) 

  

 

1.4 Outline of thesis 

 

This thesis consists of three parts. 

Part I presents a review of and the revisions to FRAME3D's formulations. Chapter 

2 reviews the FRAME3D formulation. It covers the global equations of motion and the 
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element contributions to the equations. Chapter 3 presents revisions to the FRAME3D 

formulation, including their effect on improving the robustness of the program. 

Part II focuses on the development of the parallel version of FRAME3D. Chapter 4 

provides a general orientation to parallel computing. Chapter 5 discusses the direct solver. 

Several algorithms are considered and a divide-and-conquer solver is chosen for 

PFRAME3D. Chapter 6 covers domain decomposition and parallel updating. Chapter 7 

demonstrates that PFRAME3D produces nearly identical results as FRAME3D in 

significantly less time. 

Part III covers the application of PFRAME3D to a 60-story example building. 

Chapter 8 explains the design considerations according to pre-Northridge (UBC 94) 

provisions, the modeling considerations for creating the PFRAME3D model, and the 

results of dynamic pushover and dynamic time history analysis. Finally, Chapter 9 is the 

conclusion of this report and presents future directions. 
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PART I 

FRAME3D Reviewed and Revised  
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Chapter 2 

A Review of the 

FRAME3D Formulation 

 

 

 

 

 

2.1 General 

 

A structural finite element program works by defining a set of elements connected 

at nodes, and then solving equations of equilibrium that describe how those elements 

respond to external input generally applied at the nodes. For a 2D model, the elements lie 

on a plane; for a 3D model, they lie in 3D space. The equations of equilibrium depend on 

many variables—such as element properties, model geometry, boundary conditions—and 
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for dynamic problems, mass, damping, and initial conditions, too. A review of 

FRAME3D’s equations is the focus of this chapter. 

The discussion here begins with the global equation of motion (§2.2) and ends with 

how each type of element contributes to the global equation (§§2.3 – 2.8). 

The element library consists of: 

 the plastic-hinge element (§2.3) 

 the three-segment elastofiber element (§2.4) 

 the five-segment elastofiber element (§2.5) 

 the panel-zone element (§2.6) 

 the four-noded diaphragm element (§2.7) 

 the translational/rotational spring element (§2.8). 

An example arrangement of these elements (except the spring) is shown in Figure 2.1 to 

provide context. Three right-handed orthogonal coordinate systems are used: (1) the 

global 𝑋𝑌𝑍 system, where 𝑋 and 𝑌 are horizontal and 𝑍 is vertical; (2) the panel-zone �̅��̅��̅� 

system, where �̅�, �̅�, and �̅� are initially defined to match the longitudinal, major, and minor 

axes, respectively, of the panel zone’s “associated column” (typically the column 

immediately beneath the panel zone); and, (3) the beam segment/element 𝑋′𝑌′𝑍′ system, 

where 𝑋′, 𝑌′, and 𝑍′ are the longitudinal, major, and minor axes, respectively, of the beam 

segment/element chord. The coordinate systems, elements, and nodes are further 

explained in §2.2 – 2.8. In-depth explanations can be found in Krishnan (2003), Krishnan 

and Hall (2006a, 2006b), and Krishnan (2009a). 



11 

 

 

Figure 2.1: Example element arrangement in FRAME3D, showing plastic-hinge, three-segment 

elastofiber, five-segment elastofiber, panel-zone, and diaphragm elements, with global nodes, local 

nodes, attachment points, and coordinate systems (Krishnan 2009a, edited). 

 

 

2.2 Global solution 

 

The dynamic solution of FRAME3D is based on the matrix equation (Cook et al. 

1989): 

 [𝑀]{�̈�(𝑡)} + [𝐶]{�̇�(𝑡)} + {𝑅(𝑡)} = {𝑓𝑔} − [𝑀][𝑟]{�̈�𝑔(𝑡)} (Eq. 2.1) 

where {�̈�(𝑡)} and {�̇�(𝑡)} are vectors of global accelerations and velocities, respectively, 

over time ({𝑈(𝑡)}, not shown in Eq. 2.1, is a vector of global displacements); [𝑀] is the 
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mass matrix, diagonal because masses are lumped at global nodes; [𝐶] is the Rayleigh 

damping matrix: [𝐶] = 𝑎0[𝑀] + 𝑎1[𝐾], where [𝐾] is the initial elastic stiffness matrix and 

𝑎0 & 𝑎1 are Rayleigh damping parameters; {𝑅(𝑡)} is the vector of nonlinear stiffness forces 

(i.e., internal or restoring forces); {𝑓𝑔} is the static external force vector, typically of gravity 

forces; {�̈�𝑔(𝑡)} is the three-component (global 𝑋, 𝑌, and 𝑍) input ground motion vector; 

and [𝑟] is the participation matrix (so that {�̈�𝑔(𝑡)} can be applied as inertial forces through 

[𝑀]). 

In 3D, {𝑈(𝑡)}, {�̇�(𝑡)}, {�̈�(𝑡)}, {𝑅(𝑡)}, etc. have 6 to 8 degrees of freedom (DOFs) per 

node. At each node, DOFs 1 – 3 are translations in global 𝑋, 𝑌, and 𝑍 directions (Figure 

2.1). DOF 4 is the rigid body rotation of the panel-zone element about the �̅� axis (Figure 

2.1). DOFs 5 – 8 define the deformations of the 2 orthogonal panel zones; each panel zone 

can deform in 2 modes (Figure 2.2). When one or both panel zones are absent or rigid, 

DOFs 5 – 6 and DOFs 7 – 8 consolidate to define up to 2 rigid body rotations, i.e., the node 

has 6 or 7 DOFs instead of 8. It should be noted that the global rotational DOFs are not 

about the fixed global axes 𝑋𝑌𝑍, but rather are defined by the panel-zone �̅��̅��̅� system. 

 

 

 

Figure 2.2: Global DOFs 5 – 8 based on deformations of panel zones (Krishnan 2009a). 

 



13 

 

Discretizing time (𝛥𝑡), applying constant average acceleration, and recognizing 

that a time step often cannot be completed in a single iteration, Eq. 2.1 at global iteration 

𝑙 of time step 𝑡 becomes 

 [
4

(𝛥𝑡)2
𝑀+

2

𝛥𝑡
𝐶 + 𝐾𝑇

𝑙 ] {𝛥𝑈} = {𝑓𝑔} − {𝑅𝑙} − [𝑀][𝑟]{�̈�𝑔(𝑡)} (Eq. 2.2) 

 +[𝑀] {
4

(𝛥𝑡)2
𝑈(𝑡) +

4

𝛥𝑡
�̇�(𝑡) + �̈�(𝑡)} 

 +[𝐶] {
2

𝛥𝑡
𝑈(𝑡) + �̇�(𝑡)} − [

4

(𝛥𝑡)2
𝑀+

2

𝛥𝑡
𝐶] {𝑈𝑙} 

where [𝐾𝑇
𝑙 ] is the global iterating matrix. Although the subscript 𝑇 suggests that [𝐾𝑇

𝑙 ] is a 

“tangent stiffness matrix,” it includes an elastic term, too; also, the fiber material model 

may use non-tangent slopes (discussed more in §2.4); and, because analysis is dynamic, 

whether an element loads or unloads is not necessarily certain at a given global iteration; 

thus, the true “tangent stiffness matrix” is often not used. 

[𝐾𝑇
𝑙 ], {𝛥𝑈}, {𝑈𝑙}, and {𝑅𝑙} are updated in every iteration. {𝑈(𝑡)}, {�̇�(𝑡)}, {�̈�(𝑡)}, and 

{�̈�𝑔(𝑡)} are updated at the beginning of every time step. [𝑀], [𝐶], and {𝑓𝑔} are constant 

throughout the dynamic analysis. 

A typical global iteration 𝑙 follows these steps: 

(0) Get the right-hand side (RHS) using iteration 𝑙 − 1 or the previous time step. 

The RHS is known as the force residual, which physically represents the 

difference between internal and external forces (including dynamic effects) at 

every DOF at the current global iteration. 

(1) Check convergence. The system is considered to be converged if the infinity 

norm of the RHS is nearly zero, within a tolerance. Physically, a zeroed infinity 

norm implies dynamic force equilibrium at every node. If the system 
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converged, proceed to the next time step; the current configuration {𝑈𝑙} is 

regarded as the solution for the current time step {𝑈(𝑡 + 𝛥𝑡)}. If the system did 

not converge, continue iterating. 

(2) Assemble [𝐾𝑇
𝑙 ], the tangent stiffness matrix, based on every element in the 

structure, and on the nodal configuration at iteration 𝑙. Add [𝐾𝑇
𝑙 ] to the 

constant 
4

(𝛥𝑡)2
[𝑀] and 

2

𝛥𝑡
[𝐶] terms to get the left-hand side (LHS) matrix 

[
4

(𝛥𝑡)2
𝑀+

2

𝛥𝑡
𝐶 + 𝐾𝑇

𝑙 ]. 

(3) Solve for {𝛥𝑈} using the LHS matrix and the RHS. {𝛥𝑈} represents the 

incremental difference between {𝑈𝑙} and {𝑈𝑙+1}. The solution process has two 

parts: 

a. Factor the LHS matrix with Cholesky or 𝐿𝐷𝐿𝑇 factorization. 

b. Solve the factored system. 

For more details on this step, see §5. 

(4) Update the geometry of the system—including element geometric parameters, 

nodal locations/attachment points, and {𝑈𝑙+1}. This updated geometry will be 

used at the next convergence check (step 1 of global iteration 𝑙 + 1). Because of 

this step, geometric nonlinearities and P-Δ effects are automatically included.  

(5) Assemble {𝑅𝑙+1}, the internal force vector, based on every element in the 

structure, and on the updated 𝑙 + 1 geometry. Go to iteration 𝑙 + 1. 

The primary task at each global iteration is to update [𝐾𝑇
𝑙 ] and {𝑅𝑙}, both of which are 

assembled from finite elements (§§2.3 – 2.8). For each element in the model, a static 

specified-displacement problem is solved; i.e., given an incremental displacement {𝛥𝑈}, 
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element stiffness and internal forces are determined such that static equilibrium is 

satisfied. The individual element contributions are combined to form [𝐾𝑇
𝑙 ] and {𝑅𝑙}. The 

remainder of this chapter covers, for each element type, the formulations of these “local” 

calculations. 

 

 

2.3 Plastic-hinge element 

 

The plastic-hinge (PH) element is a computationally efficient element, useful for 

preliminary analysis or for modeling secondary elements. Its formulation assumes doubly 

symmetric cross sections, centroidal axes, uniform cross sections along element length, 

and no warping restraint. The 12-DOF equation (6 DOFs per node) in incremental form 

describes the element: 

 {𝑑𝑅𝑝ℎ
′ }

𝐿
= [𝐾𝑇,𝑝ℎ

′ ]
𝐿
{𝑑𝑈𝑝ℎ

′ }
𝐿
 (Eq. 2.3) 

where {𝑑𝑅𝑝ℎ
′ }

𝐿
, [𝐾𝑇,𝑝ℎ

′ ]
𝐿
, and {𝑑𝑈𝑝ℎ

′ }
𝐿
 are the element’s incremental internal force vector, 

tangent stiffness matrix, and incremental displacement, respectively, in its local 𝑋’𝑌’𝑍’ 

coordinate system (§2.1; Figure 2.1). The 6 DOFs per node are 3 translational and 3 

rotational DOFs, as indicated by the subscript 𝐿. Before Eq. 2.3 is solved, the global 

displacement increments {𝛥𝑈𝑝ℎ} (extracted from {𝛥𝑈}) are transformed to {𝛥𝑈𝑝ℎ
′ }

𝐿
 using 

 {𝛥�̅�𝑝ℎ} = [𝑇1]{𝛥𝑈𝑝ℎ} (Eq. 2.4) 

 {𝛥�̅�𝑝ℎ}𝐿 =
[𝑇2]{𝛥�̅�𝑝ℎ} (Eq. 2.5) 

 {𝛥𝑈𝑝ℎ}𝐿 =
[𝑇3]{𝛥�̅�𝑝ℎ}𝐿 (Eq. 2.6) 
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 {𝛥𝑈𝑝ℎ
′ }

𝐿
= [𝑇4]{𝛥𝑈𝑝ℎ}𝐿

 (Eq. 2.7) 

where [𝑇1] transforms the global displacement increments from the 𝑋𝑌𝑍 to the �̅��̅��̅� 

system; [𝑇2] from the global node (e.g., J & K in Figure 2.1) to the local attachment point 

(e.g., 1 & 2 in Figure 2.1), which reduces the number of DOFs per node from 6 – 8 to 6 as 

denoted by the subscript 𝐿; [𝑇3] from the �̅��̅��̅� system to the 𝑋𝑌𝑍 system; and [𝑇4] from the 

𝑋𝑌𝑍 system to the 𝑋′𝑌′𝑍′ system. The result of the transformations is {𝑑𝑈𝑝ℎ
′ }

𝐿
. {𝑑𝑅𝑝ℎ

′ }
𝐿
 and 

[𝐾𝑇,𝑝ℎ
′ ]

𝐿
 are determined from {𝑑𝑈𝑝ℎ

′ }
𝐿
 using Eq. 2.8 – 2.10, and are transformed back to the 

6 – 8 DOFs per node in the global 𝑋𝑌𝑍 system. 

 

 

Figure 2.3: Nodal forces/moments and displacements/rotations in local coordinates of a plastic-

hinge element (Krishnan 2003). 
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Each term in {𝑑𝑅𝑝ℎ
′ }

𝐿
and [𝐾𝑇,𝑝ℎ

′ ]
𝐿
 is computed from beam theory, and accounts for 

axial, flexural, shear, and twisting contributions (Figure 2.3). Axial (𝑃, 𝑈) and twisting (𝑇, 

𝛼) contributions come from: 

 {
𝑑𝑃1
𝑑𝑃2

} =
𝐸𝑇𝐴

𝐿0
[
1 −1
−1 1

] {
𝑑𝑈1
𝑑𝑈2

} (Eq. 2.8) 

 {
𝑑𝑇1
𝑑𝑇2

} =
𝐺𝐽

𝐿0
[
1 −1
−1 1

] {
𝑑𝛼1
𝑑𝛼2

} (Eq. 2.9) 

where the subscripts 1 and 2 denote the local element node number; 𝐸𝑇 is the tangent 

Young’s modulus as independently computed using axial force only; 𝐴 is the cross 

sectional area; 𝐿0 is the original element length; 𝐺 is the elastic shear modulus; and 𝐽 is the 

torsional inertia. 𝐸𝑇 is determined by a bilinear material model defined by the elastic 

modulus 𝐸, the yield stress 𝜎𝑦, and the strain-hardening (i.e., post-yield) modulus 𝐸𝑠ℎ, 

and unloading is elastic. Eq. 2.9 neglects warping restraint. The flexural (𝑀, 𝜃) and shear 

(𝑄, 𝑉) contributions about the major axis (𝑌′) come from: 

{
 

 
𝑑𝑄1𝑍′

𝑑𝑀1𝑌′

𝑑𝑄2𝑍′

𝑑𝑀2𝑌′}
 

 
=

[
 
 
 
 
 
 

[
 
 
 
 
 
−1

𝐿0
1

−1

𝐿0
0

1

𝐿0
0

1

𝐿0
1 ]
 
 
 
 
 

[
𝑎𝑇 𝑏𝑇
𝑏𝑇 𝑐𝑇

]

[
 
 
 
−1

𝐿0
1

1

𝐿0
0

−1

𝐿0
0

1

𝐿0
1
]
 
 
 

+
𝑃

𝐿0
[

1 0
0 0

−1 0
0 0

−1 0
0 0

1 0
0 0

]

]
 
 
 
 
 
 

{
 

 
𝑑𝑉1𝑍′

𝑑𝜃1𝑌′

𝑑𝑉2𝑍′

𝑑𝜃2𝑌′}
 

 
 

(Eq. 2.10) 

where 𝑎𝑇, 𝑏𝑇, and 𝑐𝑇 depend on 𝐸, 𝐺, 𝑃, major-axis moment of inertia 𝐼𝑌′, major-axis 

effective shear area 𝐴𝑆𝑍′  (Figure 2.4), and major-axis plastic-hinge conditions at nodes 1 

and 2 (Krishnan 2003; Krishnan and Hall 2006a). 
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Figure 2.4: Effective shear areas for W-flanged and box sections (Krishnan 2003). 

 

 

A plastic hinge occurs when the moment at node 1 or 2 exceeds the yield moment 

𝑀𝑝𝑌′  or 𝑀𝑝𝑍′  as defined by a 𝑃-𝑀𝑝𝑌′-𝑀𝑝𝑍′  (PMM) interaction relationship. FRAME3D has 

two types of interaction curves. The first, shown in Figure 2.5 (top), accounts for the effect 

of 𝑃 on the plastic moment capacities, but not the effect of major-axis bending on minor-

axis plastic moment capacity and vice versa. The second is a PMM surface, constructed 

from a user-defined section (Krishnan 2009b); e.g., the PMM interaction relationship for a 

W6X20 section is shown in Figure 2.5 (bottom). Between nodes, the element is elastic in 

flexure. Switch 𝑍′ and 𝑌′ in Eq. 2.10 to get the flexural and shear formulation about the 

minor axis. The PH element, although efficient, is suited for secondary and pinned 

elements. To more accurately capture beam behavior for high levels of inelasticity, a more 

complicated fiber-based element is required. 

The next two sections describe the formulation of two fiber-based elements: the 

three-segment and five-segment elastofiber elements. 
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Figure 2.5: 𝑃-𝑀𝑝𝑌′  -𝑀𝑝𝑍′  relationships for PH elements. 𝑀𝑝𝑌′
0  and 𝑀𝑝𝑍′

0  are the plastic moment 

capacities when P=0 (top: Krishnan 2003, bottom: Krishnan, 2009b). 

 

 

2.4 Three-segment elastofiber element 

 

The three-segment elastofiber (EF3) element is suited for accurately modeling 

beams over many loading cycles. It can capture flexural behavior similar to a fully 
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discretized fiber element with significantly less computational cost (Krishnan 2003). It 

consists of 3 segments (fiber-elastic-fiber) and 4 nodes (2 interior and 2 exterior) (Figure 

2.6). 

 

 

Figure 2.6: Three-segment elastofiber element layout (Krishnan 2003). 
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Because displacement increments are specified at the exterior nodes and the EF3 

element has 2 interior nodes, it is treated like a local structural analysis problem. Thus, 

Newton-Raphson iterations (Eq. 2.11; similar to §2.2) are used to achieve local force 

equilibrium. For local iteration (𝑘), 

 [
𝐾𝑇,𝐼𝐼
(𝑘) 𝐾𝑇,𝐼𝐸

(𝑘)

𝐾𝑇,𝐸𝐼
(𝑘)

𝐾𝑇,𝐸𝐸
(𝑘)

] {
𝛥𝑈𝐼
𝛥𝑈𝐸

} = {
0
𝐹𝐸
} − {

𝑅𝐼
(𝑘)

𝑅𝐸
(𝑘)
} (Eq. 2.11) 

where the (𝑘) denotes local iterations within global iteration l; the subscripts 𝐼 and 𝐸 

indicate the 12 internal and 12 external DOFs, respectively, of the EF3 element (6 DOFs 

per node using the 𝑋𝑌𝑍 system); {𝛥𝑈𝐸} is the known displacement increment {𝛥𝑈𝑒𝑓}𝐿
 

applied at the exterior nodes (transformed from {𝛥𝑈𝑒𝑓} using [𝑇1], [𝑇2], and [𝑇3]); {𝐹𝐸} 

represents unknown external forces (which can be ignored as shown in Eq. 2.12 – 2.13); 

[
𝐾𝑇,𝐼𝐼
(𝑘) 𝐾𝑇,𝐼𝐸

(𝑘)

𝐾𝑇,𝐸𝐼
(𝑘)

𝐾𝑇,𝐸𝐸
(𝑘)

] and {
𝑅𝐼
(𝑘)

𝑅𝐸
(𝑘)
} are assembled from segment contributions (after the 

contributions are transformed using [𝑇4] from segment 𝑋′𝑌′𝑍′ systems to the 𝑋𝑌𝑍 system); 

and {𝛥𝑈𝐼} is solved from 

 [𝐾𝑇,𝐼𝐼
(1)
] {𝛥𝑈𝐼} = − [𝐾𝑇,𝐼𝐸

(1)
] {𝛥𝑈𝐸} − {𝑅𝐼

(1)
} (Eq. 2.12) 

 [𝐾𝑇,𝐼𝐼
(𝑘)
] {𝛥𝑈𝐼} = − {𝑅𝐼

(𝑘)
}. (Eq. 2.13) 

In Eq. 2.12, i.e., (𝑘) = 1, the effect of {𝛥𝑈𝐸} is an applied force on the upper 𝐼 equations of 

Eq. 2.11. At local convergence, the internal DOFs are condensed out of [
𝐾𝑇,𝐼𝐼
(𝑘) 𝐾𝑇,𝐼𝐸

(𝑘)

𝐾𝑇,𝐸𝐼
(𝑘) 𝐾𝑇,𝐸𝐸

(𝑘)
] and 

{
𝑅𝐼
(𝑘)

𝑅𝐸
(𝑘)
} using partial factorization, resulting in [𝐾𝑇,𝑒𝑓

𝑙+1 ]
𝐿
 and {𝑅𝑒𝑓

𝑙+1}
𝐿
, which are then 
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transformed into [𝐾𝑇,𝑒𝑓
𝑙+1 ] and {𝑅𝑒𝑓

𝑙+1} using [𝑇3], [𝑇2], and [𝑇1], and assembled into the global 

[𝐾𝑇
𝑙+1] and {𝑅𝑙+1} arrays. 

[
𝐾𝑇,𝐼𝐼
(𝑘)

𝐾𝑇,𝐼𝐸
(𝑘)

𝐾𝑇,𝐸𝐼
(𝑘)

𝐾𝑇,𝐸𝐸
(𝑘)

] and {
𝑅𝐼
(𝑘)

𝑅𝐸
(𝑘)
} are assembled from segment contributions. The center 

segment has an elastic beam formulation, without axial yielding or plastic hinging 

capabilities. The two outer fiber segment formulations can be derived from individual 

fibers (Figure 2.6). 

Consider fiber 𝑛 in a segment. Fiber 𝑛 has an incremental strain 𝑑𝜀𝑛 that depends 

on the incremental (axial) translations 𝑑𝑈 and incremental (relative to the chord) rotations 

𝑑𝜑 of the segment nodes 𝑖, 𝑗: 

 𝑑𝜀𝑛 =
𝑑𝑈𝑗−𝑑𝑈𝑖

𝐿𝑠0
+

𝑍𝑛
′ (𝑑𝜑

𝑗𝑌′
−𝑑𝜑

𝑖𝑌′
)

𝐿𝑠0
−

𝑌𝑛
′(𝑑𝜑

𝑗𝑍′
−𝑑𝜑

𝑖𝑍′
)

𝐿𝑠0
 (Eq. 2.14) 

where  𝑍𝑛
′  and 𝑌𝑛

′ is the location of fiber 𝑛 along the cross section (Figure 2.6), and 𝐿𝑠0 is 

the original segment length. 

A robust material model (Figure 2.7 and Figure 2.8, Hall and Challa 1995) defines 

the fiber’s current tangent stiffness 𝐸𝑇,𝑛 and stress 𝜎𝑛 based on its stress-strain history and 

𝑑𝜀𝑛. The user-defined backbone curve has an initial elastic region, a yield plateau, and a 

strain-hardening/softening curve defined by a cubic ellipse. In this curve, 𝐸 is the elastic 

modulus, 𝜎𝑦 is the yield stress, 𝐸𝑠ℎ is the tangent modulus at the onset of strain-hardening, 

𝜀𝑠ℎ is the strain at the onset of strain-hardening, 𝜎𝑢 is the ultimate stress, and 𝜀𝑢 is the fiber 

ultimate strain. The cubic ellipse (𝜀, 𝜎) in Figure 2.7 is determined by 

 
(𝜀−𝜀0)

3

𝑎3
+

(σ−𝜎0)
3

𝑏3
= 1 (Eq. 2.15) 
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where 𝜀0 and 𝜎0 define the center of the ellipse, and 𝑎 and 𝑏 are the diameters of the ellipse. 

𝜀0, 𝜎0, 𝑎, and 𝑏 are functions of 𝜎𝑦, 𝐸𝑠ℎ, 𝜀𝑠ℎ, 𝜎𝑢, and 𝜀𝑢. At the plateau region of the 

backbone curve (between point A and the point of strain-hardening onset in Figure 2.7), 

𝐸𝐴𝐵 is used as 𝐸𝑇,𝑛, where the A-B line segment is tangent to the cubic ellipse at point B. 

Beyond the ultimate point (between points C and D in Figure 2.7), 0 is used as 𝐸𝑇,𝑛. The 

Extended Masing’s hypothesis, described in Challa (1992), governs the hysteretic behavior 

(Figure 2.8). Fibers may also fracture in tension if a predetermined probabilistic fracture 

strain is exceeded; a fractured fiber may carry compressive loads. 

 

 

Figure 2.7: Stress-strain backbone curve of a fiber (Hall and Challa 1995). 
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Figure 2.8: Hysteretic stress-strain paths of a fiber (Hall and Challa 1995). 

 

Fiber contributions are combined to get the segment’s incremental axial force (𝑑𝑃) 

and moment (𝑑𝑀): 

 𝑑𝑃 = ∑ 𝐸𝑇,𝑛𝐴𝑛𝑑𝜀𝑛𝑛  (Eq. 2.16) 

 𝑑�̅�𝑌′ = −∑ 𝐸𝑇,𝑛𝐴𝑛𝑍𝑛
′

𝑛 𝑑𝜀𝑛 (Eq. 2.17) 

 𝑑�̅�𝑍′ = ∑ 𝐸𝑇,𝑛𝐴𝑛𝑌𝑛
′

𝑛 𝑑𝜀𝑛 (Eq. 2.18) 

where 𝐴𝑛 is fiber area. The overbar indicates that 𝑑𝑀 corresponds to the segment center. 

Shear (𝑑𝑄) is elastic and computed independently: 

 𝑑�̅�𝑌′ = −𝐴𝑆𝑌′𝐺
(𝑑𝜑

𝑖𝑍′
+𝑑𝜑

𝑗𝑍′
)

2
 (Eq. 2.19) 

 𝑑�̅�𝑍′ = 𝐴𝑆𝑍′𝐺
(𝑑𝜑

𝑖𝑌′
+𝑑𝜑

𝑗𝑌′
)

2
 (Eq. 2.20) 
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where 𝐴𝑆𝑌′  and 𝐴𝑆𝑍′  are the cross-sectional shear areas (Figure 2.4). Twisting (𝑑𝑇) is 

computed in the same way as PH element twisting. Eq. 2.14 is substituted into Eq. 2.16 – 

2.20, and Eq. 2.16 – 2.20 and Eq. 2.9 are combined to form the matrix equation 

 

{
  
 

  
 

𝑑𝑃
𝑑�̅�𝑌′

𝑑�̅�𝑍′

𝑑�̅�𝑌′

𝑑�̅�𝑍′

𝑑𝑇 }
  
 

  
 

= [𝐶𝑇]

{
 
 
 
 
 

 
 
 
 
 

𝑑𝑈𝑗−𝑑𝑈𝑖

𝐿𝑠0

−
𝑑𝜑

𝑗𝑌′
−𝑑𝜑

𝑖𝑌′

𝐿𝑠0

−
𝑑𝜑

𝑗𝑍′
−𝑑𝜑

𝑖𝑍′

𝐿𝑠0

−
𝑑𝜑

𝑖𝑍′
+𝑑𝜑

𝑗𝑍′

𝐿𝑠0
𝑑𝜑

𝑖𝑌′
+𝑑𝜑

𝑗𝑌′

𝐿𝑠0
𝑑𝛼𝑗−𝑑𝛼𝑖

𝐿𝑠0 }
 
 
 
 
 

 
 
 
 
 

 (Eq. 2.21) 

where 

 [𝐶𝑇] =

[
 
 
 
 
 
 
∑ 𝐸𝑇,𝑛𝐴𝑛𝑛 −∑ 𝐸𝑇,𝑛𝐴𝑛𝑍𝑛

′
𝑛 ∑ 𝐸𝑇,𝑛𝐴𝑛𝑌𝑛

′
𝑛 0 0 0

∑ 𝐸𝑇,𝑛𝐴𝑛𝑍𝑛
′2

𝑛 −∑ 𝐸𝑇,𝑛𝐴𝑛𝑌𝑛
′𝑍𝑛

′
𝑛 0 0 0

∑ 𝐸𝑇,𝑛𝐴𝑛𝑌𝑛
′2

𝑛 0 0 0

symmetric 𝐴𝑆𝑌′𝐺 0 0

𝐴𝑆𝑍′𝐺 0

𝐺𝐽]
 
 
 
 
 
 

.  (Eq. 2.22) 

By substituting 

 

{
 
 
 
 
 

 
 
 
 
 

𝑑𝑈𝑗−𝑑𝑈𝑖

𝐿𝑠0

−
𝑑𝜑

𝑗𝑌′
−𝑑𝜑

𝑖𝑌′

𝐿𝑠0

−
𝑑𝜑

𝑗𝑍′
−𝑑𝜑

𝑖𝑍′

𝐿𝑠0

−
𝑑𝜑

𝑖𝑍′
+𝑑𝜑

𝑗𝑍′

𝐿𝑠0
𝑑𝜑

𝑖𝑌′
+𝑑𝜑

𝑗𝑌′

𝐿𝑠0
𝑑𝛼𝑗−𝑑𝛼𝑖

𝐿𝑠0 }
 
 
 
 
 

 
 
 
 
 

=
1

𝐿𝑠0
[𝑆]

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑑𝑈𝑖
𝑑𝑉𝑖𝑌′  

𝑑𝑉𝑖𝑍′

𝑑𝛼𝑖
𝑑𝜃𝑖𝑌′

𝑑𝜃𝑖𝑍′

𝑑𝑈𝑗
𝑑𝑉𝑗𝑌′

𝑑𝑉𝑗𝑍′

𝑑𝛼𝑗
𝑑𝜃𝑗𝑌′

𝑑𝜃𝑗𝑍′}
 
 
 
 
 
 

 
 
 
 
 
 

 (Eq.2.23) 

where 



26 

 

 [𝑆] =

[
 
 
 
 
 
 
−1 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 −1 0
0 0 0 0 0 1 0 0 0 0 0 −1

0 −1 0 0 0 −
𝐿𝑠0

2
0 1 0 0 0 −

𝐿𝑠0

2

0 0 −1 0
𝐿𝑠0

2
0 0 0 1 0

𝐿𝑠0

2
0

0 0 0 −1 0 0 0 0 0 1 0 0 ]
 
 
 
 
 
 

 (Eq. 2.24) 

into Eq. 2.21, and accounting for geometric nonlinearity through the geometric stiffness 

matrix 

 [𝐺] =
𝑃

𝐿𝑠0

[
 
 
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0 0 0
0 0 1 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 
 
 

, (Eq. 2.25) 

Eq. 2.21 is rewritten as 

 

{
 
 
 
 
 
 

 
 
 
 
 
 

𝑑𝑃𝑖
𝑑𝑄𝑖𝑌′

𝑑𝑄𝑗𝑌′

𝑑𝑇𝑖
𝑑𝑀𝑖𝑌′

𝑑𝑀𝑖𝑍′

𝑑𝑃𝑗
𝑑𝑄𝑖𝑍′

𝑑𝑄𝑗𝑍′

𝑑𝑇𝑗
𝑑𝑀𝑗𝑌′

𝑑𝑀𝑗𝑍′}
 
 
 
 
 
 

 
 
 
 
 
 

=
1

𝐿𝑠0
[𝑆𝑇𝐶𝑇𝑆 + 𝐺]

{
 
 
 
 
 
 

 
 
 
 
 
 
𝑑𝑈𝑖
𝑑𝑉𝑖𝑌′  

𝑑𝑉𝑖𝑍′

𝑑𝛼𝑖
𝑑𝜃𝑖𝑌′

𝑑𝜃𝑖𝑍′

𝑑𝑈𝑗
𝑑𝑉𝑗𝑌′

𝑑𝑉𝑗𝑍′

𝑑𝛼𝑗
𝑑𝜃𝑗𝑌′

𝑑𝜃𝑗𝑍′}
 
 
 
 
 
 

 
 
 
 
 
 

, (Eq. 2.26) 

which is the segment’s incremental force-displacement relation 

 {𝑑𝑅𝑠
′} = [𝐾𝑇,𝑠

′ ]{𝑑𝑈𝑠
′}. (Eq. 2.27) 
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As stated above, [𝐾𝑇,𝑠
′ ] and  {𝑑𝑅𝑠

′} are transformed using [𝑇4] from the segment 𝑋′𝑌′𝑍′ 

system to the 𝑋𝑌𝑍 system before being assembled into [
𝐾𝑇,𝐼𝐼
(𝑘) 𝐾𝑇,𝐼𝐸

(𝑘)

𝐾𝑇,𝐸𝐼
(𝑘) 𝐾𝑇,𝐸𝐸

(𝑘)
] and {

𝑅𝐼
(𝑘)

𝑅𝐸
(𝑘)
}. 

 

 

2.5 Five-segment elastofiber element 

 

The five-segment elastofiber (EF5) element is suitable for modeling columns, 

braces, and other elements that may exhibit first-mode buckling. It has 5 segments (fiber-

elastic-fiber-elastic-fiber) and 6 nodes (4 interior and 2 exterior) (Figure 2.9). The five-

segment formulation is very similar to the three-segment formulation, except it has 24 

internal DOFs instead of 12. 

Interior nodal coordinates are updated at every local iteration in order to account 

for geometric nonlinearity and buckling. (Coordinate updating is done in the EF3 element, 

too, but this feature is more relevant for the EF5 element.) 

It is also worth nothing, for both EF3 and EF5 elements, that axial yielding is 

concentrated at the fiber segments, which may not be realistic behavior particularly when 

modeling braces in tension. 

When using the brace attachment points (Figure 2.1), pinned connections are not 

necessarily assumed (unlike FRAME2D). Krishnan (2009a) explains how gusset plates can 

be modeled at the brace attachment points. 
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Figure 2.9: Five-segment elastofiber element layout (Krishnan 2009a). 

 

 

2.6 Panel-zone element 

 

The panel-zone (PZ) element captures the nonlinear hysteretic behavior of the part 

of the column within the depths of the intersecting beams. Building joints are deformable; 

therefore, the PZ element contributes to the model's stiffness and internal forces. The PZ 

element consists of two orthogonal rectangles, with attachment points for beams, 

columns, and/or braces (Figure 2.1). Each PZ deforms in shear due to the moments and 

shears from attached beams and columns. 

The 4-DOF formulation has the form: 

 {𝑑𝑅𝑝𝑧} = [𝐾𝑇,𝑝𝑧]{𝑑𝑈𝑝𝑧} (Eq. 2.28) 
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where [𝐾𝑇,𝑝𝑧] is assembled from the two orthogonal panels (Figure 2.10). A PZ that 

corresponds to the web of the associated column (panel ①) is described by the 2-DOF 

equation: 

 {
𝑑𝑀𝐽�̅�

𝐵

𝑑𝑀𝐽�̅�
𝐶 } = 𝐺𝑇𝑡𝑝𝐻𝐷 [

1 −1
−1 1

] {
𝑑𝜃𝐽�̅�

𝐵

𝑑𝜃𝐽�̅�
𝐶 }. (Eq. 2.29) 

The tangent stiffness 𝐺𝑇 is based on the backbone curve in Figure 2.11 with hysteretic 

behavior similar to that of a fiber, 𝑡𝑝 is the thickness of the web (plus any doubler plates), 

𝐻 is the height (i.e., the depth of an attaching beam), and 𝐷 is the depth of the column. For 

panel ②, 𝑡𝑝 is the thickness of both column flanges (plus any doubler plates), and the 

column width 𝑊 is used instead of 𝐷. The relevant DOFs for each PZ are shown in Figure 

2.2. 

 

Figure 2.10: Beam-column joint represented as a panel-zone element (Krishnan 2003). Braces 

and brace attachment points are not shown. 
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Figure 2.11: Shear stress-strain backbone curve of a panel zone (Challa 1992, edited). 

 

 

The quadratic ellipse (𝛾, 𝜏) in Figure 2.11 is determined by 

 
(𝛾−𝛾0)

2

𝑎2
+

(𝜏−𝜏0)
2

𝑏2
= 1 (Eq. 2.30) 

where 𝛾0 and 𝜏0 define the center of the ellipse, and 𝑎 and 𝑏 are the diameters of the ellipse. 

𝛾𝑦, 𝛾0, 𝜏0, 𝑎, and 𝑏 depend on 𝜏𝑦 and 𝐺. Because the PZ element has no internal nodes, 

{𝑑𝑅𝑝𝑧} and [𝐾𝑇,𝑝𝑧] are computed without iterations. 

When assembled, the PZ element contributes to global stiffness of DOFs 5 – 8 

(rotational DOFs) at each node. No transformation is required. 
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2.7 Diaphragm element 

 

The diaphragms of a building, i.e., the floor slabs, are modeled as four-node 

linearly elastic plane-stress (PS) elements. A PS element provides in-plane-only resistance 

defined by elastic modulus 𝐸 and Poisson’s ratio 𝜈, and its formulation can be found in 

many finite element textbooks (also in Krishnan 2003). A three-node version is achieved 

by mapping two local nodes to the same global node. Unlike FRAME3D’s beam and PZ 

elements, its PS elements are always elastic; thus, the global stiffness matrix due to PS 

elements [𝐾]𝑝𝑠 is calculated only once, before analysis begins. Coordinate updating is not 

included in the PS element formulation. 

 

 

2.8 Spring element 

 

The simplest element in FRAME3D is the 1-node linear-elastic spring element, 

which resists a node's motion along a user-defined global DOF 1 – 8. It is added directly 

to the diagonal of the global stiffness matrix. Its implementation is straightforward and 1-

dimensional. 
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2.9 Conclusion 

 

This chapter reviewed the global equation of motion (§2.2) and various element 

formulations (§2.3 – 2.8). The remainder of the thesis discusses the contributions of the 

present research: improvements in the serial code (§3), the development of a parallel 

version (Part II), and an analysis of a 60-story high-rise building (Part III). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



33 

 

 

 

Chapter 3 

Revisions to the 

FRAME3D Formulation 

 

 

 

 

 

3.1 General 

 

FRAME3D is designed for highly nonlinear, large displacement analysis. In a 

study comparing FRAME3D with the industry standard PERFORM-3D, Bjornsson and 

Krishnan (2014) showed that both programs can track structures to the onset of collapse. 

They used both programs to analyze the collapse of a low-complexity water-tank tower 

(with fundamental period ~1.31 sec). A FRAME3D element was shown to capture more 
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loading cycles more accurately than an “equivalent” PERFORM-3D element. The 

FRAME3D water-tank tower degraded gradually until collapse onset. Immediately 

following the onset of collapse, the FRAME3D model encountered numerical instabilities 

that terminated the program. PERFORM-3D encountered similar numerical instabilities 

but terminated at larger roof displacements. However, the PERFORM-3D model 

collapsed suddenly with a large work-energy imbalance, an indication of error. 

Neither program can collapse the water-tank tower “to the ground”; in fact, few 

structural engineering programs have this capability. Researchers are concerned 

primarily with the structural response leading up to the formation of the collapse 

mechanism. However, the above-mentioned numerical instabilities may prevent a model 

from even reaching this point. Thus, the present work improves FRAME3D’s convergence 

capabilities by reformulating some of the core components of the solution procedure. 

Even though the structural models themselves may fail to capture all of the behavioral 

features of extremely large deformations associated with collapse conditions, it is 

important that a code not be limited by convergence problems. 

One approach to avoid non-convergence is to one-by-one attempt various 

nonlinear solution algorithms (e.g., Newton-Raphson, modified Newton-Raphson, 

Newton Line Search, Krylov-Newton, etc.) until convergence is achieved (Haselton et al. 

2009). This procedure may be time-consuming because several algorithms are used and it 

may not directly address some underlying causes of non-convergence. 

In the case of FRAME3D, convergence implies force equilibrium—for both the 

global (Eq. 2.2) and the local problem (Eq. 2.11). The global problem is dynamic and the 

LHS matrix tends to have an effective stiffness controlled by [𝑀] and [𝐶], so global 
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convergence is usually reliable. The local problem is static and there are often large 

changes in stiffness due to unloading and yielding, so local convergence can be a 

challenge. 

Recall (§2.4) the purpose of the local iterations: a multi-segmented beam problem 

with specified displacement increments at the ends is solved, as illustrated in Figure 3.1. 

The displacement/rotation increments are denoted as 𝛥𝑈1 and 𝛥𝑈2. Of interest are the 

beam's end forces/moments and condensed tangent matrix—but to determine these, the 

state of the interior segments must be solved via a static structural analysis; element-level 

iterations are hence needed. 

 

 

Figure 3.1: Pictorial representation of element-level iterations. Although not pictured, incremental 

rotations are included in 𝛥𝑈1 and 𝛥𝑈2. 

 

The previous FRAME3D addresses local convergence issues with these features: 

 For the first local iteration (𝑘 = 1) the elastic matrix is used; this is beneficial if 

one or more fibers are unloading because the unloading slope is the elastic 

slope 𝐸. 

 If the element force residual grows, it iterates with an elastic matrix for 2 

iterations. 
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 Otherwise, it iterates with the tangent matrix plus a user-defined fraction of 

the elastic matrix (the author uses 5%). 

 In addition to the above strategies, it uses a “backup-subdivide algorithm” 

(discussed in §3.3). 

But even with these remedies, the local problem can have trouble converging in some 

cases. In this chapter, elements and nodes are tracked more carefully and FRAME3D is 

revised to account for software bugs and limitations that arise in specific nonlinear 

situations. These situations involve: 

 Large displacement/rotation increments (§3.2) 

 The backup-subdivide algorithm (§3.3) 

 Element failure (§3.4) 

 Extremely narrow joint hysteresis (§3.5). 

The improvements in convergence due to the §§3.2 – 3.5 revisions are demonstrated in 

§3.6. The revisions above are shown to produce identical structural response compared to 

that of the previous FRAME3D with a greater ability to track collapse. 

This chapter also documents the modification of the fiber backbone curve to allow 

for: 

 Post-rupture compressive strength (§3.7). 

This modification simultaneously provides a more realistic representation of fiber 

behavior at large compressive strains and addresses a non-convergent situation in the 

fiber-segment formulation. Because this last modification alters structural response it is 

discussed separately from the §§3.2 – 3.5 revisions. 
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3.2 Large displacement/rotation increments 

 

In the present section, the algorithm that is used to create the Eq. 2.11 elastofiber 

element stiffness matrix for the local iterations is revised to handle large 

displacement/rotation increments more appropriately. 

Recall (Eq. 2.11) that [
𝐾𝑇,𝐼𝐼
(𝑘) 𝐾𝑇,𝐼𝐸

(𝑘)

𝐾𝑇,𝐸𝐼
(𝑘)

𝐾𝑇,𝐸𝐸
(𝑘)

] (denoted as [𝐾𝑇
(𝑘)
] for convenience in the 

present discussion) uses DOFs at both exterior and interior nodes. In the previous 

FRAME3D, when local iteration 𝑘 = 1, the values of the exterior DOFs come from the 

incremented state (“New node 1” and “New node 2” in Figure 3.1), and the values of the 

interior DOFs come from the most recently converged state (“Node 3” and “Node 4”)—

updating gradually until local convergence is achieved (and matches the incremented 

state). Using this original algorithm leads to successful convergence in most cases. 

However, Figure 3.2 shows that if displacement/rotation increments are large enough, 

the end segments can be very deformed, leading to an unrealistic [𝐾𝑇
(𝑘)
] and a difficulty 

with convergence. 

 

 

Figure 3.2: Pictorial representation of a large displacement/rotation increment. Highlighted (grey) 

is the configuration used by the previous FRAME3D to construct [𝐾𝑇
(𝑘)
] for local iteration k=1; 

the end segments are shown to be highly deformed. 
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Thus, FRAME3D is revised, for local iteration 𝑘 = 1 only, such that [𝐾𝑇
(1)
] is 

constructed from values of the DOFs from the most recently converged state (“Nodes 1 – 

4,” not the “New nodes”). Only the construction of [𝐾𝑇
(1)
] is different; the rest of Eq. 2.11 

is unchanged. 

For subsequent iterations 𝑘 > 1, the interior nodes are located in the neighborhood 

of the incremented state, so no revision is implemented: [𝐾𝑇
(𝑘)
] is constructed from the 

“New nodes 1 & 2” and the updating interior nodes. 

The revision described in this section matches FRAME2D’s formulation, except it 

is in 3D. 

 

 

3.3 The backup-subdivide algorithm 

 

The backup-subdivide algorithm was originally created to address large 

displacement/rotation increments for the local element-level problem. In the present 

section, the previous algorithm is reviewed and then revised to improve convergence 

capabilities efficiently. 

The previous backup-subdivide algorithm can be summarized by Figure 3.3. If 

local equilibrium at the fully incremented state (“Attempt 1”) cannot be achieved within 

a (user-defined) maximum allowable number of local iterations, then: 

(1) It backs up to the “Most recently converged state,” and subdivides the 

displacement increment. (The increment is halved in FRAME3D.) 
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(2) It applies the subdivided increment (“Attempt 2”) for which the element 

should converge more easily. 

(3) If the element does not converge, the program backs up and subdivides again 

(“Attempt 3”). 

(4) If the element converges (suppose at “Attempt 3”), then “Attempt 3” becomes 

the “Most recently converged state,” and the program attempts the remaining 

increment (“Attempt 1” again). Any future back-ups in the current global 

iteration return to the newly converged state. It is worth noting, that in order 

to avoid unrealistic effects such as artificial unloading, the fibers themselves 

are always updated using the overall strain increments since the previously 

converged time step. 

(5) The loop continues until the entire 𝛥𝑈1 and 𝛥𝑈2 are applied successfully, or 

until the subdivided increment is less than a “small” percentage (e.g., 25% in 

FRAME3D) of the original 𝛥𝑈1 and 𝛥𝑈2. The latter  implies non-convergence, 

in which case the program will “accept” the last attempt and reapply the 

remaining increment (with the backup-subdivide algorithm); the element may 

become convergent if the entire 𝛥𝑈1 and 𝛥𝑈2 end up successfully applied. 

(6) If the remaining increment is less than the small percentage (from step 5), then 

the algorithm accepts the remaining increment’s “Attempt 1” as the solution, 

whether or not it converged. A warning is issued if local convergence is not 

achieved. 

The previous (above) backup-subdivide algorithm ends in successful convergence in most 

cases. However, it is found that accepting step 6’s “Attempt 1” is sometimes insufficient 
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in terms of helping the model, as a whole, approach global convergence. Thus, step 6 is 

revised: 

(6) If the remaining increment is less than the small percentage (from step 5) and 

the remaining increment’s “Attempt 1” did not converge, then the algorithm 

accepts “Attempt 2,” reapplies the remaining half, and repeats (the revised) 

step 6. But if the remaining increment is also less than a much smaller 

percentage (e.g., 0.1%), then the remaining increment’s “Attempt 1” is accepted 

as the solution. A warning is issued if local convergence is not achieved. 

This revision allows further subdivisions at the end of the algorithm—when the 

remaining increment is less than 25% of the complete increment. It is more efficient than 

simply reducing the 25% to a smaller percentage (which also increases the number of 

subdivisions at the beginning of the algorithm). It is also observed that this revision tends 

to reduce the number of global iterations needed before convergence. For example, in the 

first 16 𝑠𝑒𝑐 (3200 time steps) of the water-tank tower collapse simulation, the revised 

FRAME3D uses 32% less global iterations overall than the previous FRAME3D. 

 

 

Figure 3.3: Backup-subdivide algorithm. 
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3.4 Element failure 

 

Realistic building collapses likely include element failure. In the present section 

the handling of failing elements is reconsidered for FRAME3D. For the discussion in the 

present section, the following rules define fiber, segment, and element failure: 

 Fiber 𝑛 is considered as failed if it has reached or exceeded the rupture strain 

in either tensile or compressive directions, i.e., |𝜀𝑛| ≥ |𝜀𝑟|. 

 A segment is considered as failed if every fiber in it has failed, i.e., min
∀𝑛

|𝜀𝑛| ≥

|𝜀𝑟|. 

 An element is considered as failed if any segment in it has failed. 

(The above failure criteria are modified in §3.7, but that revision will be discussed then.) 

 A fiber, segment, or element failure means that that fiber, segment, or element is 

omitted from the formulation thereafter, i.e., it no longer contributes to the stiffness or 

strength of the remaining structure. In the context of a single time step with global and 

local iterations, the previous FRAME3D mistakenly defines “thereafter”: 

 If an element fails at global iteration 𝑙, it is omitted from subsequent global 

iterations 𝑙. 

This definition sometimes leads to a computational “snowball effect” where many other 

elements fail in the same time step; the forces that cause the first element to fail are 

“redistributed” in the next global iteration (because the first element is omitted) to 

adjacent elements, which may cause them to fail, and so on. At the numerical instability 

of Bjornsson and Krishnan (2014), roughly 100 elements apparently fail simultaneously in 

a single time step (at t = 16 sec), which is physically improbable because time-step size 
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𝛥𝑡 = 0.005 𝑠𝑒𝑐 is very small. Thus, FRAME3D’s handling of element failure in the context 

of a single time step is revised to match that of FRAME2D: 

 If an element failed at a previous time step, it is omitted from all iterations of 

the current time step. 

 Otherwise, it is included in all iterations—global and local—of the current time 

step. 

This revision applies to fiber and segment failures, too. Essentially, the convergence of the 

global iterations at the current time step determines whether a fiber, segment, or element 

actually fails then. 

 

 

3.5 Extremely narrow joint hysteresis 

 

FRAME3D's material models are unique because they feature cubic and quadratic 

ellipses to define the backbone curves and hysteresis. (Other programs such as 

PERFORM-3D and OpenSees use multi-segmented lines to approximate material 

behavior.) Of interest in the present section is joint hysteresis (i.e., for PZ elements), which 

for FRAME3D is governed by the Extended Masing's hypothesis as stated in §2.6 and 

explained in Challa (1992). A part of the hypothesis is reviewed, a non-convergent 

scenario is identified, and the program is revised to account for the scenario. 

There are many rules in the hypothesis, but for the present discussion consider a 

branch originating from a PZ backbone curve. As shown in Figure 3.4, when unloading 

takes place (starting at point “3” or “6”), a linear-elastic path is taken until zero load is 
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reached (point “4” or “7”), after which a cubic ellipse is followed until the symmetric point 

on the translated opposite backbone curve is reached (point “5” or “8”). The entire path 

(from “3” to past “5,” or from “6” to past “8”) is functionally smooth and the cubic ellipse 

is computed internally to ensure that this constraint is met. Although not detailed here, 

the portion that represents the cubic ellipse is computed from one of two explicit 

functions: for a negative or a positive hysteresis loop. 

The hypothesis accounts for the case where unloading occurs with a very small 

amount of inelastic deformation because it may not be possible to construct a cubic ellipse 

that smoothly connects point “4” with point “5” (or “7” with “8”). In this case, the linear-

elastic path is extended beyond point “4” (or “7”) toward the yield point “4A” (or “7A”) 

of the translated opposite backbone curve until a cubic ellipse can be properly fitted. The 

above rules have been used effectively for many years to accurately model joint hysteresis. 

Although the hysteretic rules themselves are not revised in the present work, it is 

observed that if unloading occurs with a much smaller amount of inelastic deformation 

(plastic strain about 10−6), the program might use the wrong function to compute the path 

of the cubic ellipse, resulting in global non-convergence whenever a PZ element 

transitions from the linear-elastic to the cubic portion of an extremely narrow hysteresis 

loop. The author identified this issue, and Hall fixed it by ensuring that an appropriate 

function is used. The revision is implemented in the present work for FRAME3D. 

 



44 

 

 

Figure 3.4: Joint hysteresis example featuring a negative hysteresis loop branching from a positive 

panel-zone backbone curve, and a positive hysteresis loop branching from a negative panel-zone 

backbone curve (Challa 1992, numbers added). 

 

 

3.6 Demonstration of convergence capabilities 

 

Because of the revisions in §§3.2 – 3.5, FRAME3D is more robust for simulating 

structural collapse. For example, the water-tank tower in §3.1 (Bjornsson and Krishnan 

2014) can now collapse “to the ground.” Although the collapse mechanism forms before 

𝑡 = 16 𝑠𝑒𝑐 (the numerical instability observed by Bjornsson and Krishnan 2014), Figure 

3.5 (left) shows that the mechanism is not obvious in a plot of unscaled deformations. 

Figure 3.5 (right) shows that, with the revision, the tank can be seen clearly collapsing 
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with unscaled deformations at 𝑡 = 20 𝑠𝑒𝑐. The revised FRAME3D converges beyond 𝑡 =

20 𝑠𝑒𝑐, but this is not shown because some members are below “ground level” (𝑍 = 0 𝑚). 

It is shown in Figure 3.6 that the water-tank roof displacement histories, with and 

without the §§3.2 – 3.5 revisions, are nearly identical until 𝑡 = 16 𝑠𝑒𝑐; for the first 16 

seconds of the simulation, the root-mean-square error (against the previous FRAME3D) 

of the revised FRAME3D’s “X Displacement” history in Figure 3.6 is 6.14 × 10−6 𝑚, which 

can be considered as negligible for the present context. 

However, the reader must be cautioned. Even though the simulation is convergent 

through collapse, the structural behavior may not be modeled appropriately at large 

deformations. For example, the mass-proportional component of Rayleigh damping 

resists absolute velocity and is unphysical (Hall 2005); when (and before) the water-tank 

tower falls, it may be significant. Also, the stiffness-proportional damping may be 

generating excessive resisting forces (Hall 2005). 

It is recommended to improve FRAME3D’s damping formulation (this will be 

done in a future study). For example in FRAME2D, the contribution from stiffness-

proportional damping can be bounded, and damping elements can be incorporated. 

Nevertheless, the present research makes FRAME3D more robust for collapse 

simulations. 
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Figure 3.5: Unamplified deformations of water-tank tower at t=16 sec (left) and at t=20 sec (right), 

due to the Kobe earthquake ground motion at Takatori (Figure E.1) scaled to 32%. Elements that 

failed during analysis are not shown. Deformations are unamplified. 
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Figure 3.6: Water-tank tower roof displacement histories, due to the Kobe earthquake ground 

motion at Takatori (Figure E.1) scaled to 32%, as observed by Bjornsson and Krishnan 2014 (solid), 

and with the §§3.2 – 3.5 revisions (dashed). 
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3.7 Post-rupture compressive strength 

 

In the present section, the fiber backbone curve from Figure 2.7 is modified to 

allow the presence of a post-rupture compressive strength (Figure 3.7). Without this 

modification, non-convergence is sometimes observed because segment nodes might 

move close to and even past each other, creating unphysical or “inside-out” segment 

configurations. This behavior is not realistic and is observed because post-rupture 

compressive strength is omitted. The modified backbone curve improves realism by 

adding such strength. 

The modification can be summarized as follows. Consider fiber 𝑛 with current 

fiber stress 𝜎𝑛, current fiber strain 𝜀𝑛, rupture strain 𝜀𝑟, and “final” post-rupture strength 

𝜎𝑓𝑖𝑛. 

 In compression, if 𝜀𝑛 ≤ 𝜀𝑟 < 0, then 𝜎𝑛 = 𝜎𝑓𝑖𝑛 < 0. Although not done here, a 

user may adjust 𝜎𝑓𝑖𝑛 according to experimental data. 

 In tension, if 𝜀𝑛 ≥ 𝜀𝑟 > 0, then 𝜎𝑛 = 0, i.e., fiber 𝑛 fractures at the rupture point. 

In other words, fiber 𝑛 can never “completely fail”—it can only fracture in tension. 

Therefore, the element failure criteria is revised (see §3.4 for previous criteria): 

 Fiber 𝑛 can never fail. Even fractured fibers have potential compressive 

capabilities. 

 A segment is considered as failed if every fiber in it has fractured. 

 An element is considered as failed if any segment in it has failed. 
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With the above modification, segment nodes might still eventually pass each other 

and create an “inside-out” segment configuration that provides compressive resistance. 

This situation, too, is unphysical. Therefore, an additional failure criterion is added: 

 The segment can also fail, as a whole, in compression if the segment strain 𝜀𝑠 =

𝐿𝑠−𝐿𝑠0

𝐿𝑠0
≤ 𝜀𝑠𝑓 < 0, where 𝐿𝑠 and 𝐿𝑠0 are the current and original segment lengths, 

respectively, and 𝜀𝑠𝑓 is the segment failure strain. 

𝜀𝑠𝑓 = −0.9 is used presently so that segments fail before 𝐿𝑠 reaches a length of 0, but a 

more appropriate value may be determined according to experimental data. 

 

 

 

Figure 3.7: Positive stress-strain backbone curve of a fiber with non-zero post-rupture strength 

𝜎𝑓𝑖𝑛, highlighted (Challa 1992, post-rupture strength added). 
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With the modifications of the present section, it is worth noting that the collapse 

mechanism in §3.6 is no longer observed when the water-tank tower is subjected to the 

32% Kobe earthquake ground motion at Takatori. Assuming 𝜎𝑓𝑖𝑛 = 0.60𝜎𝑢, Figure 3.8 

shows that the water-tank tower needs a higher scale factor in order to collapse—37.3% 

instead of 32% of the prescribed ground motion—an indication that a true higher strength 

was not previously captured. Figure 3.8 also suggests that the material model at post-

rupture strains can affect collapse behavior significantly. At 37.3%, the response without 

the modified backbone curve (green) collapses almost 30 𝑠𝑒𝑐 sooner than with the 

modifications (cyan). More experimental data is recommended to properly characterize 

steel at post-rupture compressive strains. But presently, it can just be said that including 

some post-rupture compressive strength is more realistic than omitting it altogether. 

 

 

3.8 Conclusion 

 

Therefore, FRAME3D’s geometric nonlinearity and convergence capabilities are 

improved such that collapse can be further tracked, and the backbone curve is modified 

to more realistically characterize post-rupture compressive strength. The formulation in 

§2 and revisions in §3 are included for the remainder of this report. 
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Figure 3.8: Water-tank tower roof displacement histories, due to the Kobe earthquake ground 

motion at Takatori (Figure E.1) scaled to 32% and 37.3%, with and without the §3.7 modified 

backbone curve. 
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PART II 

A Computationally Efficient, 

Parallel FRAME3D 

 

 

 

 



53 

 

 

 

Chapter 4 

Overview of Parallel Computing 

 

 

 

 

 

4.1 General 

 

The revised FRAME3D at the conclusion of Part I exhibits superior convergence 

capabilities compared to previous versions. The next goal of the present work is to 

improve FRAME3D’s computational performance so that the nonlinear response of very 

tall buildings can be computed more quickly. For example, Part I’s FRAME3D (an 

unoptimized serial code) would compute the nonlinear dynamic time-history collapse of 

a 60-story building (designed in §8) with a wall time (i.e., from the user’s perspective; 

defined in §4.4.2) of 27 days. 
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In Part II (§§4 – 7), a computationally efficient, parallel FRAME3D (PFRAME3D) 

is developed. The serial code is optimized, reducing the wall time of the same 

computation to 3.5 days. Then the optimized serial code is parallelized, further reducing 

the wall time to 5.7 hours (using 128 cores). 

The current chapter, which presents an overview of parallel computing, is 

organized as follows: 

 Review of parallel computing in structural engineering (§4.2) 

 Terminology (§4.3) 

 Parallel performance measures (§4.4) 

 Computer architecture (§4.5) 

 Speedup strategy (§4.6). 

 

 

4.2 Review of parallel computing in structural engineering 

 

Parallel computing for finite-element programs is becoming an increasingly 

important topic due to rapidly improving computer environments. For dynamic 

programs that use explicit integration, distributed-memory parallel-computing strategies 

are well established. However, explicit integration is not preferred for large buildings 

because stiff elements require the use of unreasonably small time steps. Additionally, 

explicit dynamic analysis requires non-zero mass at every DOF in order to invert the mass 

matrix in the solution phase, but building models often assume zero mass at rotational 

DOFs. Thus, implicit integration schemes are usually preferred in structural engineering. 
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In the literature, there is yet to be a parallel framework intended specifically for 

the analysis of very tall buildings. Industry standards like PERFORM-3D and ETABS are 

currently limited to the shared-memory platform (one computer with multiple cores). 

A distributed-memory (multiple computers) parallel version of OpenSees 

(OpenSeesSP) (McKenna and Fenves 2007) was developed and addressed the general case 

of sparse systems (uses sparse linear solvers like MUMPS, Petsc, and SuperLU). It was 

reported, however, to not scale well when using implicit integration (McKenna 2012). A 

bottleneck is present due to communication overhead with a “head-node.” Thus, it was 

recommended to use OpenSeesSP with explicit integration, which as stated above is not 

ideal for building structures. 

Another distributed-memory parallel version of OpenSees (OpenSeesMP) 

(McKenna and Fenves 2007) has also been developed and achieves scalability for the 

naturally parallel case that is commonly used in parameter studies (i.e., many concurrent 

simulations). To use OpenSeesMP, a user must write parallel scripts—and account for 

potential deadlock (cyclic dependencies when message passing), race conditions (non-

determinism due to parallelization and variable CPU speeds), and load imbalances. 

OpenSeesMP also allows for the analysis of a single large structure, but it requires a user 

to specify subdomains. For example, a large model must be re-created if the user wants to 

split up the problem differently (e.g., to use 4 computer nodes instead of 2). This 

framework may not be ideal for highly complex structures. 

Cho (2012) developed a parallel framework for the implicit finite-element analysis 

of reinforced concrete walls. He observed scalability and his work is referenced in §B.1, 

but a different framework is found to be more suitable for very tall buildings. Essentially, 
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Cho (2012) addressed the parallelization of wide-band systems, but of interest here are 

narrow-band systems. 

Therefore, the parallel framework developed in the current report is unique in that 

it is intended for the nonlinear implicit analysis of large narrow-band systems 

representing tall buildings. To the knowledge of the author, it is the first of its kind. 

 

 

4.3 Terminology 

 

The reader may not be familiar with some of the terminology used by the parallel 

computing (PaC) and/or structural finite element modeling (FEM) communities. To add 

confusion, word usage may overlap between these two disciplines. For example, node 

refers to a computer in a computer cluster in PaC, but to a joint in a FEM model. Or, local 

refers to a single node in PaC, but to the element-level calculations in FEM. And global 

refers to a set of nodes in PaC, but to the structure-level calculations in FEM. §A.1 defines 

terms as they are used in this paper. 

 

 

4.4 Parallel performance measures 

 

4.4.1 General 

To quantify the effectiveness of parallelization, two performance measures are 

defined: 
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 Wall time (§4.4.2) 

 Speedup (§4.4.3). 

 

4.4.2 Wall time 

 Perhaps the most intuitive way to assess performance is to consider wall time; the 

ultimate goal of parallelization is to minimize this quantity. Wall time refers to the elapsed 

time as perceived by a user. When plotted against the number of cores used, wall time can 

help quantify how scalable a program is. Specifically, two notions of scalability are used: 

strong-scaling and weak-scaling. 

Strong-scaling involves varying the number of cores used to complete a constant 

overall “workload.” This notion addresses the effectiveness of parallelization for 

completing a single large computation as quickly as possible. 

Weak-scaling involves simultaneously varying both the number of cores used and 

the total workload such that the “workload per core” is constant. This notion addresses 

the effectiveness of parallelization for completing larger computations (using more 

parallelism) in the same amount of time as smaller computations (using less parallelism). 

For clarity in the present discussion (to account for both notions of scalability) wall 

time is written as 𝑇(𝑁,𝑊), a function of the number of cores used 𝑁, and the number of 

“workload units” performed 𝑊 (e.g., if 1 “workload unit” is performed, then 𝑊 = 1; if 𝑁 

“workload units” are performed, then 𝑊 = 𝑁, etc.). In a strong-scaling study, wall time is 

denoted as 𝑇(𝑁,𝑊 = 1); in a weak-scaling study, it is 𝑇(𝑁,𝑊 = 𝑁). 

Consider wall time vs. the number of cores used (i.e., 𝑇 vs. 𝑁). Strong-scaling is 

“ideal” if 𝑇(𝑁, 1) halves when 𝑁 doubles, and “poor” if 𝑇(𝑁, 1) is constant vs. 𝑁. The latter 
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condition is typically approached as more cores are added (Amdahl 1967). Weak-scaling 

is “ideal” if 𝑇(𝑁,𝑁) is constant vs. 𝑁, and “poor” if 𝑇(𝑁,𝑁) doubles when 𝑁 doubles. 

(The terms “ideal” and “poor” are used for convenience. It is possible to have 

“better than ideal” scaling, e.g., Cho (2012) due to favorable cache-effects, or “worse than 

poor” scaling, i.e., “parallel slowdown,” due to excessive communication costs. 

Nevertheless, “ideal” and “poor” serve as appropriate reference points.) 

 

4.4.3 Speedup 

Speedup, the relative wall times between serial (1-core) and parallel (𝑁-cores) 

computations, is a unitless metric that measures “how much faster” a parallel program is 

than its serial counterpart. It is most often defined (as is done here) in the strong-scaling 

sense, or 

 𝑆𝑝𝑒𝑒𝑑𝑢𝑝(𝑁) =
𝑇(1,1)

𝑇(𝑁,1)
. (Eq. 4.1) 

Speedup is “ideal” if it is 1:1 proportional to 𝑁, and “poor” if it is constant vs. 𝑁. As 

stated in §4.4.2, the latter condition is typically approached as more cores are added. 

 

 

4.5 Computer architecture 

 

All analyses are run using Garuda, a high-performance computer cluster at Caltech. 

The cluster has 75 nodes with 8 cores per node (a core is assumed to be the basic unit that 

can execute a single stream of commands); up to 600 cores may be simultaneously used 

in analysis. More specifically, it has 75 Dell PowerEdge 1950s, each with 2.33 GHz dual 
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quad-core processors, an 8 GB RAM, and a 148 GB hard drive. It has a Rocks operating 

system, and uses Qlogic Infiniband equipment and a MOAB/Torque scheduler. 

Additional background on computer architecture can be found in §A.1. 

 

 

4.6 Speedup strategy 

 

The strategy for developing a parallel framework of an existing program depends 

on the algorithm of the existing program. Recall that FRAME3D solves the iterative 

dynamic equation (Eq. 2.2): 

[
4

(𝛥𝑡)2
𝑀 +

2

𝛥𝑡
𝐶 + 𝐾𝑇

𝑙 ] {𝛥𝑈} = {𝑓𝑔} − {𝑅𝑙} − [𝑀][𝑟]{�̈�𝑔(𝑡)} 

                                                       +[𝑀] {
4

(𝛥𝑡)2
𝑈(𝑡) +

4

𝛥𝑡
�̇�(𝑡) + �̈�(𝑡)} 

                                                       +[𝐶] {
2

𝛥𝑡
𝑈(𝑡) + �̇�(𝑡)} − [

4

(𝛥𝑡)2
𝑀+

2

𝛥𝑡
𝐶] {𝑈𝑙}. 

For the discussion in Part II, Eq. 2.2 is simplified to 

 [𝐴]{𝑥} = {𝑏} (Eq. 4.2) 

Where 

 [𝐴] = [
4

(𝛥𝑡)2
𝑀+

2

𝛥𝑡
𝐶 + 𝐾𝑇

𝑙 ], (Eq. 4.3) 

 {𝑥} = {𝛥𝑈}, and (Eq. 4.4) 

 {𝑏} = {𝑓𝑔} − {𝑅𝑙} − [𝑀][𝑟]{�̈�𝑔(𝑡)} (Eq. 4.5) 

 +[𝑀] {
4

(𝛥𝑡)2
𝑈(𝑡) +

4

𝛥𝑡
�̇�(𝑡) + �̈�(𝑡)} 

 +[𝐶] {
2

𝛥𝑡
𝑈(𝑡) + �̇�(𝑡)} − [

4

(𝛥𝑡)2
𝑀+

2

𝛥𝑡
𝐶] {𝑈𝑙}. 
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Thus, the solution procedure (§2.2) simplifies to five general steps (referred to as Steps 1 – 

5 in Part II). For each global iteration 𝑙: 

(1) Check convergence 

(2) Update* [𝐴] 

(3) Solve for 𝑥 in [𝐴]{𝑥} = {𝑏} 

(4) Update geometry 

(5) Update {𝑏} 

*Most of the work for Step 2 involves iterating locally (element-level) to determine 

EF3/EF5 element tangent stiffnesses. This work is already done in Step 5 and is not 

included in Step 2’s wall time. 

 

By recording the wall time (𝑠𝑒𝑐) per simulation time step, using three example nonlinear 

dynamic time-history collapse simulations (small/medium/large), it is shown in Figure 

4.1 and Figure 4.2 that Steps 3 and 5 are usually the costliest—based on Part I’s FRAME3D, 

an unoptimized serial code. These three systems are discussed further in §7, along with 

performance results. In terms of strategy, it can be seen that as system size increases, Step 

3 becomes more significant. Step 5 is significant for all sizes and cannot be ignored. 

Thus, the speedup strategy here prioritizes Steps 3 and 5. §5 focuses on Step 3, and 

§6 focuses on step 5. Steps 2 and 4 are similar to step 5, and therefore, are also covered in 

§6. Step 1, though it uses insignificant computation time, is automatically sped up due to 

the implementations of §5 and §6. As a result, every step is made parallel. 
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Figure 4.1: Wall time (sec) per earthquake-simulation time step, from 3 example collapse 

simulations: a small (top), a medium (middle), and a large (bottom) system. Part I’s unoptimized 

FRAME3D is used. 
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Figure 4.2: Computational cost breakdown of significant steps, from three collapse simulations. 

Part I’s unoptimized FRAME3D is used. 

 

*The 650 ℎ𝑟 (27 𝑑𝑎𝑦) simulation never actually ran. It is estimated based on: (1) the wall 

time of an optimized 1-core analysis, and (2) the relative speeds of optimized and 

unoptimized 1-core code. 
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Chapter 5 

The Direct Solver 

 

 

 

 

 

5.1 General 

 

Many researchers have studied efficient solutions to the 𝑛-DOF linear equation 

[𝐴]{𝑥} = {𝑏} (Step 3 in §4.6). In this chapter, various LU-type direct solvers are explored: 

 LU and Cholesky solvers in general (§5.1) 

 Row-based solver (§5.2; the original FRAME3D solver) 

 Column-based solver (§5.2) 

 Blocked solver (§§5.2-5.3) 

 Divide-and-conquer solver (§5.4). 
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The divide-and-conquer solver implemented with hybrid parallelism is chosen for 

PFRAME3D. 

The LU solution procedure, which assumes that [𝐴]{𝑥} = {𝑏} can be solved without 

shifting, has two sub-steps: factorization and substitution. 

(3.1) Factorization: Factor [𝐴] to an [𝐿][𝐷][𝑈] or [𝐿][𝑈] system, where [𝐿] and [𝑈] 

are lower and upper triangular matrices, respectively, and [𝐷] is a diagonal 

matrix. This sub-step is often written as 

 [𝐴] = [𝐿][𝐷][𝑈] (or [𝐿][𝑈]). (Eq. 5.1) 

(3.2) Substitution: Solve the factored system [𝐿][𝐷][𝑈]{𝑥} = {𝑏} with three 

equations: 

 [𝐿]{𝑧} = {𝑏} (Eq. 5.2) 

 [𝐷]{𝑦} = {𝑧} (Eq. 5.3) 

 [𝑈]{𝑥} = {𝑦} (Eq. 5.4) 

where {𝑧} = [𝐷][𝑈]{𝑥}. Eq. 5.2 and 5.4 use forward and back substitution, respectively, 

because [𝐿] and [𝑈] are triangular. Eq. 5.3 is present if the system was factored as LDU 

(skipped if LU). Sub-steps 3.1 and 3.2 use about 
𝑛3

3
 and 𝑛2 multiplications, respectively, 

for an 𝑛 × 𝑛 linear system. 

For algorithmic efficiency and storage savings, symmetry and positive-

definiteness are considered. For a symmetric positive-definite [𝐴], [𝐿]𝑇 = [𝑈] and the 

factored system is [𝐿][𝐷][𝐿]𝑇{𝑥} = {𝑏} (or [𝐿][𝐿]𝑇{𝑥} = {𝑏}). The resulting procedure, 

called 𝐿𝐷𝐿𝑇 or 𝐿𝐿𝑇 (Cholesky) factorization, requires 
𝑛3

6
 multiplications—half of the LU 

factorization multiplication count. 
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For a banded [𝐴], the terms outside of the band can be skipped, reducing wall time 

and storage. As a result, factorization and substitution need 
𝑛𝑚2

6
 and 𝑛𝑚 multiplications, 

respectively, where 𝑚 is the system half-bandwidth. And because [𝐴] is symmetric and 

banded, storage requirements reduce from 𝑛2 to 𝑛𝑚. A tall building has a narrow-band 

symmetric positive-definite [𝐴] matrix where 𝑚 is roughly the number of DOFs per story 

level; e.g., for a 60-story building, 𝑚 ≈
𝑛

60
. Therefore, only banded Cholesky-type solvers 

are considered. The above simplifications are summarized in Table 5.1. 

 

Table 5.1: Multiplication-division count and storage for LU and Cholesky factorization. 

Factorization type # Multiplications 
in factorization 

# Multiplications 
in substitution 

Storage 

𝐿𝑈 (or 𝐿𝐷𝑈), 

non-banded 

𝑛3

3
 

𝑛2 𝑛2 

Cholesky or 𝐿𝐷𝐿𝑇, 

non-banded 

𝑛3

6
 

𝑛2 𝑛2 

Cholesky or 𝐿𝐷𝐿𝑇, 

banded 

𝑛𝑚2

6
 

𝑛𝑚 𝑛𝑚 

 

The Cholesky solvers in this chapter are subjected to a series of performance tests 

(solving [𝐴]{𝑥} = {𝑏} with varied system sizes 𝑛 and half-bandwidths 𝑚). Increasing the 

size of a tall building usually means increasing its height. When considering increasing 

building height, 𝑛 generally increases much faster than 𝑚. For example, if 1 story is added 

to a tall building, 𝑚 is constant and 𝑛 increases by 𝑚. That is not to say that increases in 𝑚 

are unimportant. On the contrary, taller buildings also tend to have larger footprints 

(higher 𝑚, or more DOFs per story) than shorter buildings. And the factorization costs 
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depend on 𝑚2, a stronger than linear relationship. Nevertheless, the relationship between 

𝑛 and 𝑚 is one where 
𝑛

𝑚
 approximately reflects the number of stories in a building. Thus, 

to test a solver’s suitability over a range of building heights, it is reasonable to vary 𝑛 with 

a constant 𝑚. 

For each solver in this chapter, performance results are reported first and 

algorithms explained afterwards. 

 

 

5.2 Serial (1-core) solvers 

 

This section shows that serial optimizations can significantly improve the 

performance of the direct solver. Four solvers are considered: 

 a row-based solver (the original FRAME3D solver), 

 a column-based solver, 

 an optimized column-based solver, and 

 a blocked solver. 

Performance tests, where 𝑛 ranges from 2500 to 160,000 with a constant 𝑚 = 1000, show 

(Figure 5.1) that serial optimizations alone can make the direct solver much faster than the 

original row-based solver. For example, if 𝑛 = 80,000 and 𝑚 = 1000, factorization wall 

time is reduced from 753 𝑠𝑒𝑐 (row-based) to 12.9 𝑠𝑒𝑐 (blocked). These improvements are 

achieved using 1 core. 
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Figure 5.1: Wall times (sec) of serial factorization, using row-based, column-based, and blocked 

solvers, where m=1000. Intel MKL is used for the “optimized” solvers. 

 

Begin with the original FRAME3D solver. It is a row-based variant of the 𝐿𝐷𝐿𝑇 

solver; it uses [𝑈] instead of [𝐿], where [𝑈]𝑇 = [𝐿]. [𝐴] is stored as an 𝑛 ×𝑚 matrix (Table 

5.2), and factored to [𝑈]𝑇[𝐷][𝑈] using the algorithm on the left of Table 5.3. 

A column-based version of the original solver is shown on the right of Table 5.3. 

Table 5.3 shows that the only difference between the row- and column-based solvers is 

the switching of indices (and the renaming of mincol to minrow—but this is trivial). The 

column-based solver is more efficient (~6 times faster than row-based) because it 

considers cache effects (§A.2). Essentially, computer code is more efficient when data 

arrangement matches the data access pattern. In a column-major language (FORTRAN), 
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this means that factorization is more efficient when [𝐴] is stored as 𝑚 × 𝑛 (Table 5.3). For 

similar reasons, substitution is sped up with the 𝑚 × 𝑛 arrangement. 

 

Table 5.2: Storage schemes for a banded matrix [A], where * represents symmetry. In this example, 

n=5 and m=3. 

𝒏 × 𝒏 𝒏 ×𝒎 𝒎× 𝒏 

 

[
 
 
 
 
𝑎00 ∗ ∗

𝑎10 𝑎11 ∗ ∗
𝑎20 𝑎21 𝑎22 ∗ ∗

𝑎31 𝑎32 𝑎33 ∗

𝑎42 𝑎43 𝑎44]
 
 
 
 

 

 

[
 
 
 
 
𝑎00 𝑎10 𝑎20
𝑎11 𝑎21 𝑎31
𝑎22 𝑎32 𝑎42
𝑎33 𝑎43
𝑎44 ]

 
 
 
 

 

 

[

𝑎00 𝑎11 𝑎22 𝑎33 𝑎44
𝑎10 𝑎21 𝑎32 𝑎43
𝑎20 𝑎31 𝑎42

] 

 

Table 5.3:  Row- and column-based pseudocodes for the serial factorization of a banded positive-

definite matrix. 

Row-based Column-based 

[𝐴] is 𝑛 ×𝑚 

[𝐴] = [𝑈]𝑇[𝐷][𝑈] 

[𝐴] is 𝑚 × 𝑛 

[𝐴] = [𝐿][𝐷][𝐿]𝑇 

do i=1,n 

   mincol = min(m,n-i+1) 

   do j=2,mincol 

      st = A(i,j)/A(i,1) 

      do k=j,mincol 

         A(i+j-1,k-j+1) = 

                      A(i+j-1,k-j+1) - A(i,k)*st 

      continue 

      A(i,j) = st 

   continue 

continue 

do i=1,n 

   minrow = min(m,n-i+1) 

   do j=2,minrow 

      st  = A(j,i)/A(1,i) 

      do k=j,minrow 

         A(k-j+1,i+j-1) = 

                       A(k-j+1,i+j-1) - A(k,i)*st 

      continue 

      A(j,i) = st 

   continue 

continue 
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Although much of the initial wall time reduction in Figure 5.1 can be attributed to 

the switch from a row- to a column-based solver, the equivalent optimized column-based 

factorization from the Intel Math Kernel Library (MKL), dpbtf2, is even faster. Intel MKL 

routines, designed specifically for Intel processors, include many additional optimizations 

(e.g., loop unrolling, vectorization, machine-level optimizations, etc.) that make it difficult 

to outperform (dpbtf2 is ~1.5 times faster than un-optimized column-based). 

Wall time is further reduced by switching to a blocked solver. The blocked solver is 

a generalization of the column-based solver; it factors by block columns instead of scalar 

(1 × 1 block) columns (Remon, Quintana-Orti, and Quintana-Orti 2007). Figure 5.1 shows 

that an optimized 1-core blocked solver is ~6 times faster than the optimized 1-core 

column-based one. Although the total operation count is similar, working with blocks 

reduces cache misses (Ballard et al. 2009). Used here is the Intel MKL version of the 

blocked factorization, dpbtrf, where block sizes are optimized for the processors’ cache 

sizes. 

To understand blocked factorization, consider the matrix [𝐴], which is split into 

blocks such that 

 [𝐴] =

[
 
 
 
 
 
[𝐴00] ∗ ∗

[𝐴10] [𝐴11] ∗ ∗
[𝐴20] [𝐴21] [𝐴22] ∗ ∗

[𝐴31] [𝐴32] [𝐴33] ∗

[𝐴42] [𝐴43] [𝐴44]]
 
 
 
 
 

 (Eq. 5.5) 

where ∗ represents symmetry. Assume that the first block column ([𝐴𝑖0], 𝑖 ∈ 0,1,2) has 

been factored already. To continue (using the next block column, [𝐴𝑖1], 𝑖 ∈ 1,2,3): 

(1) Factor the diagonal block 

 [𝐴11] = [𝐿11][𝐿11]
𝑇 (Eq. 5.6) 
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(2) Update the block column 

 [𝐴21](= [𝐿21]) = [𝐴21 ][𝐿11]
−𝑇 (Eq. 5.7) 

 [𝐴31](= [𝐿31]) = [𝐴31 ][𝐿11]
−𝑇 (Eq. 5.8) 

(3) Update across 

 [𝐴22] = [𝐴22] − [𝐿21][𝐿21]
𝑇 (Eq. 5.9) 

 [𝐴32] = [𝐴32] − [𝐿31][𝐿21]
𝑇 (Eq. 5.10) 

  [𝐴33] = [𝐴33] − [𝐿31][𝐿31]
𝑇. (Eq. 5.11) 

The serial optimizations in this section are shown to significantly improve the 

performance of the direct solver. Without adding computer resources (still using 1 core), 

the 𝑛 = 80,000 and 𝑚 = 1000 factorization wall time is reduced from 753 𝑠𝑒𝑐 (row-based) 

to 12.9 𝑠𝑒𝑐 (blocked). 

Single-core optimizations are also included for the substitution step; e.g., for 𝑛 =

80,000 and 𝑚 = 1000, substitution wall time is reduced from 2.37 𝑠𝑒𝑐 (row-based) to 

0.36 𝑠𝑒𝑐 (optimized Intel MKL dpbtrs). 

For small systems (e.g., elastofiber elements with interior nodes, where 𝑛 ≤ 36 < 

typical block size ≈ 64), the optimized column-based solver is most efficient, with 

factorization and substitution about 1.6 and 1.2 times faster, respectively, than the original 

row-based solver. 
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5.3 Multi-threaded blocked solver 

 

The blocked solver from §5.2 is easily parallelized in the shared-memory context 

(multiple cores in a computer node) because only matrix-matrix operations (Eq. 5.6 – 5.11) 

are performed. Shared-memory parallelism is also known as multi-threading (§A.1) where 

each core executes 1 thread. Figure 5.2 shows that multi-threading the blocked solver 

further reduces factorization wall time, e.g., for 𝑛 = 80,000 and 𝑚 = 1000, from 12.9 𝑠𝑒𝑐 

(1 core) to 3.47 𝑠𝑒𝑐 (8 cores). 

Shared-memory parallelism is often efficient because there is no communication 

cost; however, a maximum of 8 cores (the number of cores in 1 node) may be utilized. To 

further reduce wall time (by using more than 8 cores), a distributed-memory solver must 

be considered. 
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Figure 5.2: Wall times (sec) of multi-threaded blocked factorization (dpbtrf) with 1 to 8 cores. Each 

curve corresponds to a different system size n with m=1000. 

 

 

5.4 Divide-and-conquer solver 

 

The divide-and-conquer solver is a distributed-memory extension of the multi-

threaded blocked solver in §5.3. Figure 5.3 shows that for large enough systems, it can 

factor faster than the 8-core blocked solver. For example, with 256 cores, it factors the 𝑛 =

80,000, 𝑚 = 1000 system in 2.10 𝑠𝑒𝑐. 

Figure 5.3 shows an initial “penalty,” where the 8-core blocked solver is faster than 

a 16- or 32-core divide-and-conquer solver. This penalty is a result of “fill-in,” which 
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increases the overall operation count by about 4 (Cleary and Dongarra 1997). It is further 

described below, as part of the discussion on the divide-and-conquer algorithm. 

A weak-scaling curve (defined in §4.4) is constructed in Figure 5.3 (solid green). 

This curve shows, for example, that if workload doubles from 𝑛 = 80,000 to 𝑛 = 160,000 

with a constant 𝑛 = 5000 workload per 8 cores, factorization wall time increases by a 

factor of about 1.22. (Recall from §4.4.2 that weak-scaling is “ideal” if this factor is 1.0 and 

“poor” if it is 2.0.) 

 

 

Figure 5.3: Wall times (sec) of divide-and-conquer factorization with 8 to 256 cores. Each curve 

corresponds to a different system size n with m=1000. With 8 cores, the multi-threaded blocked 

factorization from §5.3 is used. A weak-scaling curve (solid green) is constructed (where workload 

is n = 5000 per 8 cores). 

 

0

2

4

6

8

10

12

0 50 100 150 200 250 300

Fa
ct

o
ri

za
ti

o
n

 w
al

l t
im

e 
(s

ec
)

Number of cores used (N)

10k 20k 40k 80k 160k Weak-scaling

System size (n)



74 

 

 Performance results for divide-and-conquer substitution (Figure 5.4) show that 

“fill-in” has little effect on parallel substitution and that the weak-scaling curve is 

relatively constant. For example, if workload doubles from 𝑛 = 80,000 to 𝑛 = 160,000 

with a constant 𝑛 = 5000 workload per 8 cores, substitution wall time increases by a factor 

of 1.17. 

  

 

Figure 5.4: Wall times (sec) of divide-and-conquer substitution with 8 to 256 cores. Each curve 

corresponds to a different system size n with m=1000. With 8 cores, the multi-threaded blocked 

substitution from §5.3 is used. A weak-scaling curve (solid green) is constructed (where workload 

is 𝑛 = 5000 per 8 cores). 
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The divide-and-conquer solver is designed for narrow-band systems, or 𝑚 ≪ 𝑛 

(Cleary and Dongarra 1997). [𝐴] is divided into “large blocks” (1 block per process), as 

shown in Figure 5.5 and Figure 5.6, where each block is (mostly) factored locally and 

independently. ([𝐴] is in symmetric band form 𝑚 × 𝑛, locally stored in 𝑝 processes as 𝑚 ×

𝑛𝑏, where 𝑛𝑏 ≈
𝑛

𝑝
. Here, 𝑝 also equals the number of “large blocks” used.) A permutation 

matrix [𝑃], which depends on 𝑛, 𝑚, and 𝑝, determines how [𝐴] is uncoupled. To solve the 

linear equation: 

(1) Left multiply [𝐴]{𝑥} = {𝑏} with [𝑃] to get 

 [𝑃][𝐴]([𝑃]𝑇[𝑃]){𝑥} = [𝑃]{𝑏} (Eq. 5.12) 

(2) Factor 

 [𝑃][𝐴][𝑃]𝑇 = [𝐿][𝐿]𝑇 (Eq. 5.13) 

(3) Solve 

 [𝐿][𝐿]𝑇{�̂�} = {�̂�} (Eq. 5.14) 

where {�̂�} = [𝑃]{𝑥} and {�̂�} = [𝑃]{𝑏}, 

(4) Recover 

 {𝑥} = [𝑃]𝑇{𝑥}. (Eq. 5.15) 

The permuted [𝐴] matrix is stored locally (e.g., as shown in Figure 5.7). Each local matrix 

is factored independently (e.g., to Figure 5.8) using 

 [𝐴𝑖] = [𝐿𝑖][𝐿𝑖]
𝑇 (Eq. 5.16) 

 [𝐿𝑖][𝐵𝑖
′]𝑇 = [𝐵𝑖]

𝑇 (Eq. 5.17) 

 [𝐶𝑖
′] = [𝐶𝑖] − [𝐵𝑖

′][𝐵𝑖]
𝑇 (Eq. 5.18) 

 [𝐿𝑖][𝐺𝑖]
𝑇 = [𝐷𝑖] (Eq. 5.19) 

 [𝐸𝑖] = [𝐺𝑖][𝐺𝑖]
𝑇 (Eq. 5.20) 
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 [𝐹𝑖] = [𝐵𝑖
′][𝐻𝑖]

𝑇 (Eq. 5.21) 

where [𝐻𝑖] are the last 𝑚 columns of [𝐺𝑖]. At this point, it is worth noting that the 

“interface” blocks ([𝐸𝑖], [𝐹𝑖], and [𝐶𝑖
′]) are not completely factored yet. Figure 5.9 shows 

that, as the final step in divide-and-conquer factorization, these “interface” blocks are 

combined as a tridiagonal block system and factored. The local storage of the factored 

permuted matrix is shown in Figure 5.10, ready for substitution. 
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Figure 5.5: [A] matrix before divide-and-conquer permutation (Cleary and Dongarra 1997, 

numbering convention adjusted). Shown are the diagonal and lower half of the matrix. This 

example uses 4 processes. 
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Figure 5.6: [A] matrix after divide-and-conquer permutation (Cleary and Dongarra 1997, 

numbering convention adjusted). Shown are the diagonal and lower half of the permuted matrix. 

This example uses 4 processes. 
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Figure 5.7: Local storage of process 2 after divide-and-conquer permutation, before factorization 

(Cleary and Dongarra 1997). Only the diagonal and lower half of the matrix are stored. 

 

 

Figure 5.8: Local storage of process 2 after the independent portion of factorization (Cleary and 

Dongarra 1997). Only the diagonal and lower half of the matrix are stored. 
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Figure 5.9: Final step for the factorization of the “interface” blocks combined as a tridiagonal block 

system. Shown are the diagonal and lower half of the matrix. This example shows 3 interfaces (4 

processes are assumed). 

 

 

 

 

Figure 5.10: Local storage of process 2 at the end of factorization (Cleary and Dongarra 1997, 

edited). Only the diagonal and lower half of the matrix are stored. 
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[𝐴] can be divided successfully only if 2(𝑚 − 1) ≤ 𝑛𝑏 . In other words, 𝑝 has the 

upper limit 

 𝑝 ≤
𝑛

2(𝑚−1)
 (Eq. 5.22) 

after which additional parallelization is not possible. For example, if 𝑛 = 40,000 and 𝑚 =

1000, [𝐴] may be split into a maximum of 20 local blocks. So as to not limit the divide-

and-conquer solver to (for this example) 20 cores, a hybrid-parallel implementation is 

used, where 

 𝑝 is the number of computer nodes used (1 process per computer node), and 

 the local operations (e.g., Eq. 5.16 – 5.21) are performed in parallel (8 cores per 

process). 

Thus for the current example, up to 160 cores may be used. It is worth noting, however, 

that for a fixed problem size, as 𝑝 is increased to approach the limit set by Eq. 5.22, the 

divide-and-conquer solver becomes less efficient. This is due to the increasing cost to 

factor the “interface” blocks (as 𝑝 is increased, there are overall more “interface” blocks) 

relative to cost of performing the independent calculations of Eq. 5.16 – 5.21. Fortunately, 

if problem size is assumed to grow with 𝑛, more cores may be used for larger problems 

(e.g., 320 cores if 𝑛 = 80,000 and 𝑚 = 1000, etc.). 

The primary drawback of the divide-and-conquer solver is “fill-in.” Due to the 

permutation, matrices [𝐸𝑖], [𝐹𝑖], and [𝐺𝑖] must also be factored, increasing the overall 

operation count to about 4 times greater than sequential Cholesky factorization (Cleary 

and Dongarra 1997). This effect is observable in Figure 5.3, where the divide-and-conquer 

solver is slower than the 1-process (8-core) blocked solver if 4 processes (32 cores) or less 

are used. 
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But for increasing 𝑛 with constant 𝑚, the operation count per process can be 

bounded. Each process operates on its own local matrix (e.g., Figure 5.8), which is 𝑛𝑏 ×

𝑛𝑏. Eq. 5.16, computed by the multi-threaded blocked factorization from §5.3, operates on 

a band matrix of size 𝑚 × (𝑛𝑏 − 2𝑚). Eq. 5.17, 5.18, 5.19, and 5.21 operate on 𝑚×𝑚 

matrices. And Eq. 5.19 and 5.20 operate on matrices smaller than 𝑚× 𝑛𝑏. Increasing 𝑝 

reduces 𝑛𝑏, so as long as 𝑚 is constant, the per-process operation counts for Eq. 5.16 – 5.21 

can be bounded. Additionally, it can be seen from Figure 5.9 that the cost to finish 

factoring the “interface” blocks is a function of 𝑚 and 𝑝. Finally, because the factored 

permuted system is stored locally, substitution can be done independently with costs 

related to 𝑛𝑏 and 𝑚. In other words, the cost of the divide-and-conquer algorithm is 

bounded by a function of 𝑛𝑏, 𝑚, and 𝑝—not 𝑛 directly. 

Communication, which occurs three times, has a cost that is bounded by a function 

of 𝑚. First, at the initial permutation, each process gives [𝐷𝑖]
𝑇, an 𝑚 ×𝑚 matrix, to its 

neighbor. Second, in order to finish factoring the “interface” blocks, each process gives 

[𝐶𝑖
′], an 𝑚 ×𝑚 matrix, to its neighbor. Third, before substitution begins, each process gives 

a 2𝑚 × 1 vector to its neighbor. These communication costs are independent of 𝑛. 

Finally, the divide-and-conquer solver has a major advantage that is more 

thoroughly discussed in the next chapter: preparation and communication costs are low 

when inserted into the context of PFRAME3D’s global iterations. Other distributed-

memory solvers, such as the Cho (2012) parallel pipelined solver (§B.1) are considered, 

too, but the divide-and-conquer approach is found to be more suitable for large narrow-

band systems. 
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5.5 Conclusion 

 

In this chapter, several Cholesky direct solvers are considered and one is chosen 

for PFRAME3D. First, serial optimizations are shown to be significant, e.g., for the 𝑛 =

80,000 and 𝑚 = 1000 system, factorization wall time is reduced from 753 𝑠𝑒𝑐 (row-based) 

to 12.9 𝑠𝑒𝑐 (1-core blocked, §5.2). Next, shared-memory parallelization is shown to further 

reduce wall time of the same computation to 3.47 𝑠𝑒𝑐 (8-core blocked, §5.3). Finally, 

distributed-memory parallelization is shown to reduce it even further to 2.10 𝑠𝑒𝑐 (divide-

and-conquer with 256 cores, §5.4). 

Recall (§4.6) that the 60-story building dynamic time-history collapse simulation, 

with 𝑛 = 30,606, 𝑚 = 514, would take 650 hrs (27 days) to complete if run with Part I’s 

unoptimized FRAME3D. Recall also that the row-based direct solver would use about 

89% of those 27 days. If serial optimizations are applied to the direct solver, the overall 1-

core simulation would take only 83.6 hrs (3.5 days). Out of the 83.6 hrs, 14.2 hrs are spent 

in the optimized 1-core direct solver. Parallelization of the direct solver reduces the 14.2 

hrs (1-core blocked) to 3.74 hrs (128-core divide-and-conquer). 

In other words, the direct solver is no longer the most time-consuming part of the 

overall simulation. 69.4 hrs (i.e., 83.6 hrs minus 14.2 hrs) are spent outside of the direct 

solver. Therefore, the next challenge is to speed up the rest of FRAME3D. This is the topic 

of §6. 
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Chapter 6 

Domain Decomposition 

and Parallel Updating 

 

 

 

 

 

6.1 General 

 

So far, Step 3 in §4.6 is sped up. §6, which focuses on the remaining steps, is 

organized as follows: 

 Domain decomposition (§6.2) 

 Parallel updating of {𝑏}𝑖 (§6.3; Step 5 in §4.6) 

 Parallel updating of [𝐴]𝑖 (§6.4; Step 2 in §4.6) 



85 

 

 Parallel geometric updating (§6.5; Step 4 in §4.6) 

 Parallel convergence check (§6.6; Step 1 in §4.6) 

 Parallel input-output (§6.7) 

 Miscellaneous considerations (§6.8). 

The result of this chapter is an efficient hybrid-parallel FRAME3D. 

For clarity in this chapter, the term node is used in the finite-element sense, a joint 

in the structural model. The parallel-computing node is referred to as a process to avoid 

confusion. (A process is a single instance of a computer program being run. In a typical 

hybrid-parallel program, each computer node in a computer cluster starts a process. See 

§A.1 for more on terminology usage.) 

 

 

6.2 Domain decomposition 

 

6.2.1 General 

This section shows how domain decomposition—the splitting up of a structural 

model across processes as shown in Figure 6.1—is implemented in PFRAME3D. The 

primary reason to conduct domain decomposition is to address the fact that a single 

computer may not have enough RAM to hold all of the nodal, element, fiber, hysteretic, 

etc. data of a very large model. Fortunately in the distributed-memory context, domain 

decomposition can bound the per-process (i.e., per-computer) storage requirements. Even 

if this RAM limit is not reached, domain decomposition still provides a more efficient use 
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of computing resources because parallelization eliminates the need for a given process to 

access the entire data set (describing the structural model).  

 

Figure 6.1: Domain decomposition of a structure. 

 

Previous parallel implicit programs address domain decomposition in two parts: 

one scheme for element-state updates, and another for the equation solver. OpenSeesSP 

and the Cho (2012) parallel program approach domain decomposition in this manner. 

This approach, however, results in additional “preparation” costs. For example, Cho 

(2012) noted that 𝑛 communication steps are needed to transition from the element-state 
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updates to the parallel-pipelined solver. He showed that these costs are asymptotically 

negligible for wide-band systems (as 𝑛 and 𝑚 → ∞, compared to the overall factorization 

costs). But for narrow-band systems, which are of interest in the present work, these costs 

are non-negligible. 

A “unified” approach is developed for PFRAME3D. Domain decomposition is 

most effective when inter-process communication is minimized between subroutines, e.g., 

between element-state updates and the direct solver of an implicit program. The 

“preparation” costs noted in Cho (2012) are a non-issue for parallel explicit programs 

because there is no linear equation solver in the explicit algorithm. The extent of 

communication in explicit programs is between “nearest neighbors.” That is, a process 

communicates only data from the boundary of its subdomain to the neighboring process 

that shares the same boundary. This paradigm, which is well suited for parallel 

computing, is applied to PFRAME3D, an implicit program. Domain decomposition is 

implemented such that, between the element-state updates and the global solver, 

processes need only to communicate 𝑚 × 1 vectors (the boundary) to their nearest 

neighbors. Essentially, the domain decomposition scheme for the element-state updates 

is made to match that of the divide-and-conquer solver. This “unified” domain 

decomposition scheme results in the “nearest neighbor” communication pattern that is 

rarely accomplished in parallel implicit programs, making PFRAME3D unique. It is 

achieved in three parts: 

 DOF allocation (§6.2.2) 

 Element allocation (§6.2.3) 

 Node allocation (§6.2.4). 
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Additional notes on domain decomposition are presented in §6.2.5. The “DOF” data set is 

distinct from the “node” data set in the following way: the “DOF” data set refers to any 

global array that is stored in either 𝑚 × 𝑛 or 𝑛 × 1 form, e.g., [𝐴], {𝑥}, and {𝑏}, whereas the 

“node” data set contains the coordinates, dimensions, deformation, etc. of every building 

joint.  

 

6.2.2 DOF allocation 

Start with the fact that the divide-and-conquer solver uncouples the DOFs in [𝐴] 

as shown in Figure 5.6. Before this permutation, [𝐴] is represented as an 𝑚 × 𝑛 band 

(Figure 5.5), and process 𝑖 ∈ [0, 𝑝 − 1] ⊂ ℤ gets a non-overlapping 𝑚 × 𝑛𝑖 block of [𝐴]—

where 𝑚 is the half-bandwidth, 𝑛 is the total number of DOFs, 𝑝 is the number of processes 

used, and 𝑛𝑖 is the number of DOFs assigned to a process 𝑖 as defined by Eq. 6.1 – 6.2. For 

process 𝑖 ≠ 𝑝 − 1, 

 𝑛𝑖 = 𝑛𝑏 = {
int (

𝑛

𝑝
) , if mod (

𝑛

𝑝
) = 0

int (
𝑛

𝑝
) + 1 , if mod(

𝑛

𝑝
) ≠ 0

  (Eq. 6.1) 

where 𝑛𝑏 is the standard block size. For process 𝑖 = 𝑝 − 1, 

 𝑛𝑝−1 = 𝑛 − (𝑝 − 1)𝑛𝑏 ≤ 𝑛𝑏. (Eq. 6.2) 

Denote process 𝑖’s block as [𝐴]𝑖. ([𝐴]𝑖 is different from [𝐴𝑖] in Figure 5.5 to Figure 5.7; the 

former refers to the entire local block, while the latter refers to a sub-block and is irrelevant 

in the present chapter.) 

The divide-and-conquer solver also requires that {𝑥} and {𝑏} be split up. To use it, 

process 𝑖 gets an 𝑛𝑖 × 1 portion of both vectors, denoted {𝑥}𝑖 and {𝑏}𝑖. 
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Other 𝑚 × 𝑛 and 𝑛 × 1 arrays are split similarly—into 𝑚× 𝑛𝑖 and 𝑛𝑖 × 1 blocks, 

respectively. Recall (§4.6) that [𝐴]{𝑥} = {𝑏}, is simplified from the dynamic equation of 

motion. Thus, process 𝑖 gets a non-overlapping block from [𝑀], [𝐶], [𝐾𝑇
𝑙 ], {𝛥𝑈}, {𝑓𝑔}, {𝑅

𝑙}, 

[𝑟], {𝑈(𝑡)}, and {𝑈𝑙}, denoted [𝑀]𝑖, [𝐶]𝑖, [𝐾𝑇
𝑙 ]
𝑖
, {𝛥𝑈}𝑖, {𝑓𝑔}𝑖

, {𝑅𝑙}𝑖, [𝑟]𝑖, {𝑈(𝑡)}𝑖, and {𝑈𝑙}𝑖. 

Process 𝑖 also gets [𝐾]𝑖
𝑝𝑠

, a non-overlapping block from [𝐾]𝑝𝑠, the global stiffness matrix 

due to PS elements (§2.7). No process ever has a complete global copy of any of the above 

arrays. 

 

6.2.3 Element allocation 

Recall (§2.2) that [𝐾𝑇
𝑙 ] & {𝑅𝑙} are assembled from beam, PZ, diaphragm, and/or 

spring elements. In parallel, process 𝑖 assembles [𝐾𝑇
𝑙 ]
𝑖
 & {𝑅𝑙}𝑖 only. Thus it needs only the 

set of elements that contribute to at least 1 DOF of [𝐾𝑇
𝑙 ]
𝑖
 & {𝑅𝑙}𝑖, denoted ℰ𝑖 ⊂ ℰ, where ℰ 

is the set of elements in the entire model. If an element contributes to [𝐾𝑇
𝑙 ]
𝑖
 & {𝑅𝑙}𝑖 and  

[𝐾𝑇
𝑙 ]
𝑖+1

 & {𝑅𝑙}𝑖+1, it belongs to both ℰ𝑖 and ℰ𝑖+1; multiple copies are allowed because the 

element-level calculations are deterministic. As shown in Figure 6.2, element subdomains 

can overlap by up to 1 story worth of elements. The percent of overlap is smaller for taller 

buildings. 
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Figure 6.2: Two-dimensional example illustrating element and node subdomain overlap. The solid 

lines represent beam elements and the dots represent nodes. The dashed line marks the division 

between the non-overlapping DOF subdomains of processes i and i+1. The highlighted (grey) 

elements and nodes belong to both processes 𝑖 and 𝑖 + 1, i.e., are overlapping. 

 

 

6.2.4 Node allocation 

Recall (§§2.3 – 2.8) that the element-level calculations depend on the incremented 

displacements of the global nodes. To perform a local-level beam calculation, the 

positions/rotations of the beam’s two end nodes—which are based on the coordinates 

and deformations of attached PZs—must be known. Similarly, a PZ calculation accesses 

data from one node, a PS calculation from four nodes, and a spring calculation from one 

node. Process 𝑖 needs only the set of nodes necessary for the calculation of at least one 

element in ℰ𝑖, denoted 𝒩𝑖 ⊂ 𝒩, where 𝒩 is the set of nodes in the entire model. If a node 

is necessary for the calculation of both an element in ℰ𝑖 and an element in ℰ𝑖+1, it belongs 

ℰ𝑖+1, 𝒩𝑖+1 

ℰ𝑖, 𝒩𝑖 
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to both 𝒩𝑖 and 𝒩𝑖+1. As shown in Figure 6.2, node subdomains can overlap by up to two 

floors worth of nodes. The percent of overlap is small for taller buildings. 

 

6.2.5 Additional notes 

The DOF, element, and node domain decomposition happens at the start of 

PFRAME3D, before analysis. Each process reads the same user-input files, skips irrelevant 

data, and saves relevant data. The more levels a building has, the more it can be split up. 

It is shown in §§6.3 – 6.8 that up to 𝑚-sized vectors are communicated (because of 

non-overlapping DOF subdomains). Element and node data, on the other hand, are never 

communicated. 

The domain-decomposition scheme here allows for hybrid-parallel computations. 

Process 𝑖 computes its subdomain 𝑖 in parallel using multiple cores. There is no core-to-

core communication in this shared-memory parallel layer. This approach is often superior 

to a pure Message Passing Interface (MPI) scheme, where each core has its own 

subdomain, requiring core-to-core communication within a computer.  

 

 

6.3 Parallel updating of {𝒃} 

 

6.3.1 General 

This section shows how {𝑏} is updated in parallel (Step 5 in §4.6). Updating {𝑏} 

(Step 5 in §4.6, which also includes most of the work for updating [𝐴]; see note for Step 2 

in §4.6) is the most computationally expensive step outside of the direct solver. Recall 
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(§5.6) that for the optimized 1-core 60-story collapse simulation, 69.4 hrs (out of 83.6 hrs) 

are spent outside of the direct solver. Updating {𝑏} uses 56.1 hrs of the 69.4 hrs. Table 6.1 

shows that the parallelization of the {𝑏} calculation results in a significant reduction in 

wall time and high speedups (vs. 1 core). 

Recall (Eq. 4.5) that 

{𝑏} = {𝑓𝑔} − {𝑅𝑙} − [𝑀][𝑟]{�̈�𝑔(𝑡)} + [𝑀] {
4

(𝛥𝑡)2
𝑈(𝑡) +

4

𝛥𝑡
�̇�(𝑡) + �̈�(𝑡)}

+ [𝐶] {
2

𝛥𝑡
𝑈(𝑡) + �̇�(𝑡)} − [

4

(𝛥𝑡)2
𝑀 +

2

𝛥𝑡
𝐶] {𝑈𝑙} 

and that process 𝑖 updates {𝑏}𝑖 only (§6.2). Thus, 

{𝑏}𝑖 = {𝑓𝑔}𝑖
− {𝑅𝑙}𝑖 − ([𝑀][𝑟]{�̈�𝑔(𝑡)})𝑖

+ ([𝑀] {
4

(𝛥𝑡)2
𝑈(𝑡) +

4

𝛥𝑡
�̇�(𝑡) + �̈�(𝑡)})

𝑖

 

 +([𝐶] {
2

𝛥𝑡
𝑈(𝑡) + �̇�(𝑡)})

𝑖
− ([

4

(𝛥𝑡)2
𝑀 +

2

𝛥𝑡
𝐶] {𝑈𝑙})

𝑖
. (Eq. 6.3) 

The following subsections describe how each term in {𝑏}𝑖 is updated with a shared-

memory parallel layer. The discussion is organized by descending computational cost: 

 Parallel updating of {𝑅𝑙}𝑖 (§6.3.2) 

 Parallel updating of ([
4

(𝛥𝑡)2
𝑀+

2

𝛥𝑡
𝐶] {𝑈𝑙})

𝑖
 (§6.3.3) 

 Parallel updating of other terms in {𝑏}𝑖 (§6.3.4) 

 Additional notes (§6.3.5). 
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Table 6.1: Wall time and speedup of parallel {b} calculation, from 60-story dynamic time-history 

collapse simulation. 

Number of 

cores used 

Wall time 

(𝒉𝒓𝒔) 

Speedup 

vs. 1-core 

1 

2 

4 

8 

16 

32 

64 

128 

56.1 

32.5 

19.9 

12.7 

5.01 

2.84 

1.78 

1.28 

1.00 

1.73 

2.81 

4.43 

11.2 

19.8 

31.5 

43.9 

 

 

6.3.2 Parallel updating of {𝑹𝒍}
𝒊
 

The most costly term in {𝑏}𝑖 is {𝑅𝑙}𝑖. For the same 1-core 60-story simulation, it 

uses about 99% of the {𝑏}𝑖 calculation. {𝑅𝑙}𝑖 is summed from the internal forces of every 

element in ℰ𝑖. Let ℰ𝑖 = ℰ𝑖
𝑏 + ℰ𝑖

𝑝𝑧
+ ℰ𝑖

𝑝𝑠
+ ℰ𝑖

𝑠, the sets of beam, panel-zone, plane-stress, and 

spring elements, respectively, in ℰ𝑖. The summation is handled in parts, based on element 

type; i.e., there is a different summation loop for each set ℰ𝑖
𝑏, ℰ𝑖

𝑝𝑧
, ℰ𝑖

𝑝𝑠
, and ℰ𝑖

𝑠 (called beam 

loop, panel-zone loop, etc.). 

 

Beam elements 

Consider the contribution of beam elements ℰ𝑖
𝑏 on {𝑅𝑙}𝑖. (A “beam element” is a 

beam, column, or brace in a structural model.) For efficiency, the beam loop is multi-

threaded with 1 thread per core. Three types of load-balancing are considered: (1) static, 
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(2) dynamic, and (3) sorted dynamic. To understand how each type works, let 𝑐 be the 

number of cores used by a process (e.g., 𝑐 = 8 in the present cluster) and let each core be 

identified by 𝑗 (an integer from [0, 𝑐 − 1]). The set of beam elements that core 𝑗 calculates 

for {𝑅𝑙}𝑖 is ℰ𝑖,𝑗
𝑏 ⊂ ℰ𝑖

𝑏. 

In static load-balancing, beam elements are evenly distributed among cores when 

the beam loop begins; i.e., ℰ𝑖,𝑗
𝑏  is predetermined such that |ℰ𝑖,𝑗

𝑏 | ≈
|ℰ𝑖

𝑏|

𝑐
, ∀𝑗. (| ∗ | is the 

number of elements in set ∗.) Static load-balancing implies that ℰ𝑖,𝑗
𝑏  is generally constant 

for the entire simulation. Its overhead is cheaper than dynamic load-balancing, but 

computations may be highly imbalanced. 

Due to nonlinearity, internal forces may be calculated quickly for some beam 

elements, but slowly for other beam elements. Denote the former as a fast element and the 

latter as a slow element; e.g., a PH element with elastic deformations is a fast element, and 

an EF3 or EF5 element with highly nonlinear deformations is likely a slow element. The 

solution procedures of EF elements are iterative (§§2.4 – 2.5), so it is possible for 1 slow 

element to have the same computational cost as hundreds or thousands of fast elements. 

Thus, dynamic-load balancing is considered. 

In dynamic load-balancing, elements are added gradually to ℰ𝑖,𝑗
𝑏  during the beam 

loop itself. For global iteration 𝑙, when the beam loop begins, only 1 (or a few) beam 

elements are in ℰ𝑖,𝑗
𝑏 ; i.e., |ℰ𝑖,𝑗

𝑏 | = 1. Beam elements are added to ℰ𝑖,𝑗
𝑏  whenever every 

element in ℰ𝑖,𝑗
𝑏  has contributed to {𝑅𝑙}𝑖. (In PFRAME3D, beam elements are added one at 

a time.) The procedure continues until every element in ℰ𝑖
𝑏 has contributed to {𝑅𝑙}𝑖; i.e., 
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∑ ℰ𝑖,𝑗
𝑏𝑐−1

𝑗=0 = ℰ𝑖
𝑏. The ℰ𝑖,𝑗

𝑏  when the beam loop finishes is likely different from one global 

iteration to the next. 

To improve dynamic load-balancing, the beam elements in ℰ𝑖,𝑗
𝑏  are sorted from 

slowest to fastest using the Intel MKL dlasrt routine every few global iterations or time 

steps. (In PFRAME3D, the beam elements are re-sorted every time step and every 10th 

consecutive unconverged global iteration.) The slowest elements are computed first, and 

the fastest elements last. For the 60-story simulation with 128 cores, the {𝑏} calculation 

takes 1.55 hrs with static load-balancing, and 1.28 hrs with sorted dynamic load-balancing. 

15 sec were spent sorting the elements. It is possible to study the optimum re-sort 

frequency, but this is not done here. 

 

Panel-zone elements 

Next, consider the contribution of panel-zone elements ℰ𝑖
𝑝𝑧

 on {𝑅𝑙}𝑖. Like the beam 

loop, the PZ loop is multi-threaded, where core 𝑗 computes the contributions of ℰ𝑖,𝑗
𝑝𝑧
⊂ ℰ𝑖

𝑝𝑧
 

to {𝑅𝑙}𝑖. But unlike the beam loop, all PZ calculations are direct (non-iterative). Thus, static 

load-balancing is implemented. 

 

Plane-stress elements 

Next, consider the contribution of plane-stress elements ℰ𝑖
𝑝𝑠

 on {𝑅𝑙}𝑖. Recall (§2.7) 

that [𝐾]𝑝𝑠, the global stiffness matrix due to PS elements, is computed only once, before 

analysis begins. The internal force vector due to PS elements is 

 {𝑅𝑙}𝑝𝑠 = [𝐾]𝑝𝑠{𝑈𝑙}. (Eq. 6.4) 

The goal of process 𝑖 is to compute {𝑅𝑙}𝑖
𝑝𝑠

. 
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To get {𝑅𝑙}𝑖
𝑝𝑠

, a hybrid-parallel matrix-vector operation (using a banded symmetric 

matrix) is created here because it is not found to exist in parallel linear-algebra libraries 

such as ScaLAPACK. Performance results (Figure 6.3) of this hybrid-parallel operation 

suggest nearly “ideal” weak-scaling (as defined in §4.4). For example, if workload doubles 

from 𝑛 = 80,000 to 𝑛 = 160,000 with a constant 𝑛 = 10,000 workload per 8 cores, the 

matrix-vector operation’s wall time increases by about 1%. 

 

 

Figure 6.3: Wall times (sec) of matrix-vector multiplication with 8 to 128 cores. Each curve 

corresponds to a different system size n with m=1000. With 8 cores, the multi-threaded matrix-

vector routine from Intel MKL (dsbmv) is used. A weak-scaling curve (solid green) is constructed 

(where workload is 𝑛 = 10,000 per 8 cores). 
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To understand the parallel matrix-vector operation, recall (§6.2) that process 𝑖 has  

[𝐾]𝑖
𝑝𝑠

 and {𝑈𝑙}𝑖. However, 

 {𝑅𝑙}𝑖
𝑝𝑠
= ([𝐾]𝑝𝑠{𝑈𝑙})

𝑖
≠ [𝐾]𝑖

𝑝𝑠{𝑈𝑙}𝑖 (Eq. 6.5) 

because {𝑅𝑙}𝑖
𝑝𝑠

 depends on some terms in {𝑈𝑙} that are not in {𝑈𝑙}𝑖. Rather, if [𝐾]𝑝𝑠 is 

decomposed into 

 [𝐾]𝑝𝑠 = [𝐾]𝑝𝑠1 + [𝐾]𝑝𝑠2 (Eq. 6.6) 

as shown in Figure 6.4, where the white portion of the band belongs to [𝐾]𝑝𝑠1 and the grey 

portion of the band belongs to [𝐾]𝑝𝑠2, a large portion of the computation can be done 

independently. For process 𝑖, Eq. 6.4 becomes 

 {𝑅𝑙}𝑖
𝑝𝑠
= ([𝐾]𝑝𝑠1{𝑈𝑙})

𝑖
+ ([𝐾]𝑝𝑠2{𝑈𝑙})

𝑖
. (Eq. 6.7) 

The first term in Eq. 6.7 can be computed without communication using the multi-

threaded Intel MKL routine dsbmv (double-precision symmetric band matrix-vector 

operation) because 

 ([𝐾]𝑝𝑠1{𝑈𝑙})
𝑖
= [𝐾]𝑖

𝑝𝑠1{𝑈𝑙}𝑖. (Eq. 6.8) 

To compute ([𝐾]𝑝𝑠2{𝑈𝑙})
𝑖
, process 𝑖 gets 𝑚 − 1 terms from processes 𝑖 − 1 and 𝑖 + 1. 

Communication is handled in two steps: 

process 0
{𝑅∗

𝑙}
0

𝑙𝑎𝑠𝑡

→     …
{𝑅∗

𝑙}
𝑖−1

𝑙𝑎𝑠𝑡

→     process 𝑖
{𝑅∗

𝑙}
𝑖

𝑙𝑎𝑠𝑡

→     …
{𝑅∗

𝑙}
𝑝−2

𝑙𝑎𝑠𝑡

→     process (𝑝 − 1) 

process 0
{𝑈𝑙}

1

𝑓𝑖𝑟𝑠𝑡

←     …
{𝑈𝑙}

𝑖

𝑓𝑖𝑟𝑠𝑡

←     process 𝑖
{𝑈𝑙}

𝑖+1

𝑓𝑖𝑟𝑠𝑡

←     …
{𝑈𝑙}

𝑝−1

𝑓𝑖𝑟𝑠𝑡

←     process (𝑝 − 1). 

The superscripts indicate that only the last or first 𝑚 − 1 terms are passed, and the {𝑅∗
𝑙}𝑖
𝑙𝑎𝑠𝑡 

indicates that {𝑈𝑙}𝑖
𝑙𝑎𝑠𝑡 is pre-multiplied to avoid passing terms from [𝐾]𝑖

𝑝𝑠2
. 

To avoid deadlock due to cyclic dependency (i.e., some processes must send first 

while others must receive first), each step is a single send-receive operation and MPI assures 
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stability internally. It can be seen that each step can be done in parallel, and that processes 

communicate with their “nearest neighbor” only; thus, the cost of the communication 

algorithm depends on 𝑚, not 𝑛 or 𝑝. Additionally, the first term in Eq. 6.7 is more 

significant for narrow-band systems (e.g., very tall buildings), making it suited for 

PFRAME3D. A pseudocode for the hybrid-parallel matrix-vector operation can be found 

in §B.2. 

 

Spring elements 

Finally, consider the contribution of spring elements ℰ𝑖
𝑠 on {𝑅𝑙}𝑖. The typical 

number of spring elements does not require a multi-threaded spring loop. 

 

6.3.3 Parallel updating of ([
𝟒

(𝜟𝒕)𝟐
𝑴+

𝟐

𝜟𝒕
𝑪] {𝑼𝒍})

𝒊
 

Like {𝑅𝑙}𝑖, ([
4

(𝛥𝑡)2
𝑀 +

2

𝛥𝑡
𝐶] {𝑈𝑙})

𝑖
 is also updated in every global iteration. The 

update of {𝑈𝑙}, covered in §6.5, is known prior to the update of {𝑏}. Because process 𝑖 has 

[𝑀]𝑖, [𝐶]𝑖, and {𝑈𝑙}𝑖, ([
4

(𝛥𝑡)2
𝑀+

2

𝛥𝑡
𝐶] {𝑈𝑙})

𝑖
 is calculated using the same hybrid matrix-

vector operation in §6.2 (for the ℰ𝑖
𝑝𝑠

 contributions to {𝑅𝑙}𝑖; pseudocode in §B.2). 
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Figure 6.4: [𝐾]𝑝𝑠 decomposition for hybrid-parallel matrix-vector operation. The thick black lines 

mark the subdomain divisions. The white portion of the band belongs to [𝐾]𝑝𝑠1 and the grey portion 

of the band belongs to [𝐾]𝑝𝑠2. Shown are the diagonal and lower half of the matrix. The example 

uses 4 processes. 
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6.3.4 Parallel updating of other terms in {𝒃}𝒊 

{𝑈(𝑡)}𝑖 and its time derivatives are updated at the start of each time step based on 

the converged {𝑈𝑙}𝑖 of the previous time step. Because [𝑀]𝑖 is diagonal, process 𝑖 

calculates ([𝑀] {
4

(𝛥𝑡)2
𝑈(𝑡) +

4

𝛥𝑡
�̇�(𝑡) + �̈�(𝑡)})

𝑖
 without communication using 

([𝑀] {
4

(𝛥𝑡)2
𝑈(𝑡) +

4

𝛥𝑡
�̇�(𝑡) + �̈�(𝑡)})

𝑖
= [𝑀]𝑖 (

4

(𝛥𝑡)2
{𝑈(𝑡)}𝑖 +

4

𝛥𝑡
{�̇�(𝑡)}

𝑖
+ {�̈�(𝑡)}

𝑖
). (Eq. 6.9) 

To get ([𝐶] {
2

𝛥𝑡
𝑈(𝑡) + �̇�(𝑡)})

𝑖
, the hybrid matrix-vector operation in §6.2 is used 

(pseudocode in §B.2). 

{�̈�𝑔(𝑡)} is read at the start of every dynamic time step. Because [𝑀]𝑖 is diagonal, 

process 𝑖 calculates ([𝑀][𝑟]{�̈�𝑔(𝑡)})𝑖
 without communication using 

 ([𝑀][𝑟]{�̈�𝑔(𝑡)})𝑖
= [𝑀]𝑖[𝑟]𝑖{�̈�𝑔(𝑡)}𝑖

. (Eq. 6.10) 

Finally, recall that {𝑓𝑔} needs no updating; hence, {𝑓𝑔}𝑖
 is constant throughout 

analysis. 

 

6.3.5 Additional notes 

Every term that contributes to {𝑏}𝑖 is considered above. Except in the hybrid-

parallel matrix-vector operation, each process works independently. The output {𝑏}𝑖 

matches the DOF subdomain of the divide-and-conquer solver, so no additional 

“preparation” is needed. 

Additional modest serial speedup of the {𝑏}𝑖 calculation is achieved by reordering 

the EF5 interior nodes from 3-5-6-4 (Figure 2.9) to 3-4-5-6, because the half-bandwidth of 

the EF5 local iterations is reduced from 24 DOFs to 12 DOFs; §5.1 has more discussion on 

the effect of bandedness. 
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6.4 Parallel updating of [𝑨] 

 

6.4.1 General 

This section shows how [𝐴] is updated in parallel (Step 2 in §4.6). Fortunately, 

updating [𝐴]𝑖 is similar to updating {𝑏}𝑖. Table 6.2 shows that the parallelization of the [𝐴] 

calculation results in a reduction in wall time and high speedups (vs. 1 core). 

Recall (Eq. 4.3) that 

[𝐴] = [
4

(𝛥𝑡)2
𝑀 +

2

𝛥𝑡
𝐶 + 𝐾𝑇

𝑙 ] 

and that process 𝑖 updates [𝐴]𝑖 only (§6.2). Thus, 

 [𝐴]𝑖 =
4

(𝛥𝑡)2
[𝑀]𝑖 +

2

𝛥𝑡
[𝐶]𝑖 + [𝐾𝑇

𝑙 ]
𝑖
. (Eq. 6.11) 

The first two terms 
4

(𝛥𝑡)2
[𝑀]𝑖 and 

2

𝛥𝑡
[𝐶]𝑖 are constant, so only [𝐾𝑇

𝑙 ]
𝑖
 needs to be updated. 

 

6.4.2 Parallel updating of [𝑲𝑻
𝒍 ]
𝒊
 

[𝐾𝑇
𝑙 ]
𝑖
 is summed from the stiffness matrices of every element in ℰ𝑖. There is a 

different summation loop for each set ℰ𝑖
𝑏, ℰ𝑖

𝑝𝑧
, ℰ𝑖

𝑝𝑠
, and ℰ𝑖

𝑠. All summations loops are 

multi-threaded using static load-balancing because all stiffness matrix calculations are 

non-iterative and well-balanced, a result of the fact that element tangent stiffnesses were 

determined during the update of {𝑅𝑙}𝑖 (see note for Step 2 from §4.6). 

After [𝐾𝑇
𝑙 ]
𝑖
 is computed, the Eq. 6.11 summation is multi-threaded. There is no 

communication needed to compute [𝐴]𝑖. The output [𝐴]𝑖 matches the DOF subdomain of 

the divide-and-conquer solver, so no additional “preparation” is needed. 
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Table 6.2: Wall time and speedup of parallel [A] calculation, from 60-story dynamic time-history 

collapse simulation. 

Number of 

cores used 

Wall time 

(𝒉𝒓𝒔) 

Speedup vs. 

1-core 

1 

2 

4 

8 

16 

32 

64 

128 

11.5 

7.98 

5.02 

3.49 

1.76 

0.89 

0.45 

0.25 

1.00 

1.44 

2.29 

3.28 

6.63 

12.9 

25.6 

46.6 

 

 

6.5 Parallel geometric updating 

 

This section shows how geometric updating is performed in parallel. Table 6.3 

shows that parallelization reduces geometric updating wall time. Recall (§4.6) that the 

input to the geometric updating step is the newly solved {𝛥𝑈} (i.e., {𝑥} from Eq. 4.4) from 

Step 3. 

Geometric updating has 4 parts: 

(1) Update geometric parameters of elements 

(2) Update coordinates/rotations of nodes 

(3) Update {𝑈𝑙} 

(4) Avoid artificial unloading (adjust {𝛥𝑈}). 
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Process 𝑖 needs only to update its subdomain ℰ𝑖, 𝒩𝑖, {𝑈
𝑙}𝑖, and {𝛥𝑈}𝑖. For parts (1) and (2), 

multi-threaded loops across ℰ𝑖 and 𝒩𝑖 are used with static load-balancing. For parts (3) 

and (4), {𝑈𝑙}𝑖 = {𝑈𝑙−1}𝑖 + {𝛥𝑈}𝑖 and {𝛥𝑈}𝑖 = {𝑈𝑙}𝑖 − {𝑈𝑙−1}𝑖 may be multi-threaded if 𝑛𝑏 is 

large enough; but even if it is not multi-threaded, the operation is already parallel in the 

distributed-memory sense. 

Before geometric updating can occur in parallel, a communication step is needed. 

Recall (§6.2) that process 𝑖 has {𝛥𝑈}𝑖. Also recall (§6.2) that some elements in ℰ𝑖 attach to 

DOFs outside of process 𝑖’s DOF subdomain. Because 𝒩𝑖 depends on ℰ𝑖 (§6.2), some nodes 

in 𝒩𝑖 are outside of process 𝑖’s DOF subdomain, too. Thus, to update some elements in ℰ𝑖 

and some nodes in 𝒩𝑖, process 𝑖 needs some values from {𝛥𝑈} that are outside of {𝛥𝑈}𝑖—

specifically, from the 𝑚 closest DOFs from {𝛥𝑈}𝑖−1 and {𝛥𝑈}𝑖+1. An efficient 

communication subroutine is created here (pseudocode in §B.3), similar to the two-step 

communication used in the hybrid-parallel matrix-vector operation: 

process 0
{𝛥𝑈}0

𝑙𝑎𝑠𝑡

→     …
{𝛥𝑈}𝑖−1

𝑙𝑎𝑠𝑡

→     process 𝑖
{𝛥𝑈}𝑖

𝑙𝑎𝑠𝑡

→     …
{𝛥𝑈}𝑝−2

𝑙𝑎𝑠𝑡

→     process (𝑝 − 1) 

process 0
{𝛥𝑈}1

𝑓𝑖𝑟𝑠𝑡

←      …
{𝛥𝑈}𝑖

𝑓𝑖𝑟𝑠𝑡

←      process 𝑖
{𝛥𝑈}𝑖+1

𝑓𝑖𝑟𝑠𝑡

←      …
{𝛥𝑈}𝑝−1

𝑓𝑖𝑟𝑠𝑡

←      process (𝑝 − 1). 

The superscripts indicate that only the last or first 𝑚 terms of {𝛥𝑈}𝑖 are passed. 

The cost of the communication algorithm depends on 𝑚 and is independent from 

𝑛. It is also independent from 𝑝 because each step can be done in parallel, and processes 

communicate with their “nearest neighbors” only. Relative to the rest of the geometric 

updating procedure (𝑚 ≪ 𝑛𝑖), the communication costs are small enough to result in 

noticeable speedups relative to 1-core wall times, as observed in Table 6.3. 
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Table 6.3: Wall time and speedup of geometric updating, from 60-story dynamic time-history 

collapse simulation. 

Number of 

cores used 

Wall time 

(𝒉𝒓𝒔) 

Speedup vs. 

1-core 

1 

2 

4 

8 

16 

32 

64 

128 

0.28 

0.16 

0.08 

0.05 

0.21 

0.11 

0.06 

0.03 

1.00 

1.76 

3.39 

6.09 

1.34 

2.63 

4.51 

8.28 

 

 

6.6 Parallel convergence check 

 

This section shows that the convergence check (Step 1 in §4.6) is automatically 

performed in parallel due to the parallelization of Steps 2 – 5. 

Convergence occurs if every DOF in {𝑏} converges. Because {𝑏} is split up, process 

𝑖 checks {𝑏}𝑖 only. Process 𝑖 then reports a convergence status (whether subdomain 𝑖 

converged) to the community of processes. If at least one process reports non-

convergence, then another global iteration is needed. Every process makes the same 

global decision. In other words, global convergence occurs only if every DOF in every {𝑏}𝑖 

converges. 

The program has another check. Recall (§3.1) that if the maximum force residual 

‖{𝑏}‖∞ grew in iteration 𝑙 − 1, then an elastic [𝐾𝑇
𝑙 ] is used for iteration 𝑙. Like the 
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convergence check, this check is already parallel. Process 𝑖 determines and reports ‖{𝑏}𝑖‖∞ 

to the community of processes. Every process determines the same global maximum force 

residual ‖{𝑏}‖∞ = 𝑚𝑎𝑥
𝑖∈[0,𝑝−1]

‖{𝑏}𝑖‖∞. 

Both checks use a very small collective communication step, where each process 

shares a scalar with the community of processes. 

 

 

6.7 Parallel input-output 

 

This section shows how input-output is handled in parallel. 

The user-input files for PFRAME3D are identical to FRAME3D. Each process 

determines internally whether data is relevant for it. No additional parameter files are 

needed; the user simply runs the program as shown in Table 6.4, specifying the number 

of processes. 

Other parallel programs, such as OpenSeesSP, make input “go through” a head-

node. The head-node reads input files then distributes the data to each process before 

analysis begins—which may be a bottleneck. A head-node is not used in PFRAME3D. 

Rather, each process independently reads the input files, skips irrelevant data, and keeps 

relevant data, which reduces startup communication costs and the above-mentioned 

bottleneck. 
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Table 6.4: User interface to run FRAME3D and PFRAME3D. In this example, PFRAME3D uses 

128 cores (16 processes). Vary “16” to adjust core utilization. 

Program Command 

FRAME3D 

PFRAME3D 

./frame3d 

mpirun –np 16 --bynode pframe3d 

 

Output files are distributed. Process 𝑖 saves results from its subdomain only to a 

process-𝑖-specific set of files. These results include various response histories like nodal 

displacements, story drifts, internal forces, times of fiber fracture, times of element failure, 

and other user-defined response histories (Krishnan 2009b). Thus, there are 𝑝 nodal-

displacement files, 𝑝 story-drift files, 𝑝 response time history files, etc. As 𝑝 increases for 

a fixed problem size, process 𝑖 prints less because its subdomain is smaller. The files can 

be quickly and easily combined in post-processing (e.g., in MATLAB). 

By distributing the output files, the bottleneck that comes from every process 

printing to the same set of files is avoided. This bottleneck can be significant for a very 

large model. Additionally, race conditions where the results are printed in a non-

deterministic order are avoided. 

 

 

6.8 Miscellaneous considerations 

 

6.8.1 General 

This section addresses parallelization issues not already covered in §§6.2 – 6.7. 

These are: 

 Speedup of miscellaneous computational costs (§6.8.2) 
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 Load-balancing in the distributed-memory layer (§6.8.3) 

 Conditional multi-threading (§6.8.4) 

 Race condition (§6.8.5) 

 Probabilistic fracture assignments (§6.8.6) 

 Shared-memory-only version of PFRAME3D (§6.8.7). 

 

6.8.2 Speedup of miscellaneous computational costs 

Table 6.5 shows that parallelization can speed up the miscellaneous computational 

costs relative to 1-core wall times (i.e., everything except for §4.6’s Steps 2 – 5). These costs 

include the convergence check (§6.6) and input-output (§6.7). While these speedups are 

modest, they reflect a small portion of the total wall time. 

 

Table 6.5: Wall time and speedup of miscellaneous computational costs, from 60-story dynamic 

time-history collapse simulation. 

Number of 

cores used 

Wall time 

(𝒉𝒓𝒔) 

Speedup vs. 

1-core 

1 

2 

4 

8 

16 

32 

64 

128 

1.54 

1.53 

1.50 

1.50 

0.89 

0.62 

0.45 

0.40 

1.00 

1.01 

1.02 

1.02 

1.72 

2.50 

3.39 

3.88 
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6.8.3 Load-balancing in the distributed-memory layer 

Load-balancing is an important consideration in the computation of {𝑅𝑙}𝑖, due to 

the possibly imbalanced local iterations of multi-segmented elements. The shared-

memory layer accounts for this imbalance with the sorted dynamic load-balancing scheme 

(§6.3.2). A similar type of imbalance can be observed in the distributed-memory layer. If 

one process is slower than others (e.g., because some parts of the building yield more than 

others), the other processes must wait. But if dynamic load-balancing is implemented for 

the distributed-memory layer, large amounts of element and node data must be 

communicated (e.g., the fiber histories of every fiber from every fiber segment in each 

element), which may increase the {𝑏} calculation’s overall wall time. It is a concern for 

future study. 

 

6.8.4 Conditional multi-threading 

There are minor loops that are not multi-threaded because overhead likely costs 

more than the loop itself. It is possible to study the tipping-point size (where 

parallelization outweighs multi-threading overhead cost) and implement conditional 

threads—parallel only if past the tipping point. This study is not done here, and results 

are expected to be processor-specific. 

 

6.8.5 Race condition 

Parallel programs with a shared-memory layer may suffer from the so-called race 

condition, where core 𝑗 may edit a variable that core 𝑘 is using. This type of bug is not 

deterministic and difficult to track because it depends on the relative computational 
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speeds of cores 𝑗 and 𝑘. Although not detailed here, considerable effort is taken to avoid 

race conditions. §7 indicates that race-condition problems are absent from PFRAME3D. 

 

6.8.6 Probabilistic fracture assignments 

Recall that FRAME3D simulates probabilistic beam fractures (§2.4). At the start of 

the program, a random number generator is used. A user may want a reproducible 

“random” sequence of numbers, and hence specify a seed. Thus, for a given seed, the fiber 

fracture assignments in PFRAME3D match FRAME3D. The random number generator in 

PFRAME3D produces identical results to that of FRAME3D, regardless of process or core 

count. 

 

6.8.7 Shared-memory-only version of PFRAME3D 

A shared-memory-only version of PFRAME3D is also created using the special 

case of 𝑝 = 1. Here, the multi-threaded blocked solver (§5.3) is used for Step 3 (instead of 

the divide-and-conquer solver). Thus, 𝑖 = 0, [𝐴] = [𝐴]0, {𝑥} = {𝑥}0, ℰ = ℰ0, 𝒩 = 𝒩0, etc. 

This version is suitable for solving small problems in parallel. 

 

 

6.9 Conclusion 

 

In this chapter, the entirety of FRAME3D has been made parallel. Reductions in 

wall time are observed for every step outside of the direct solver (Steps 1, 2, 4, and 5). 
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Recall (§5.6) that for the 60-story building dynamic time-history collapse 

simulation, Steps 1, 2, 4, and 5 take 69.4 hrs to complete with 1 core. Due to 128-core 

parallelization, the 69.4 hrs is reduced to 1.95 hrs. Also recall (§5.6) that, for the same 

simulation, the 128-core divide-and-conquer solver uses 3.74 hrs. Thus, combining §5 and 

§6, the overall 128-core simulation wall time is (1.95 + 3.74) hrs = 5.69 hrs. 

The remainder of Part II (i.e., §7) demonstrates PFRAME3D’s ability to produce 

the same results as FRAME3D, and further showcases PFRAME3D’s computational 

performance, using three example structures of varied sizes. 
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Chapter 7 

Overall Parallelization Results 

 

 

 

 

 

7.1 General 

 

PFRAME3D is described in §4 – 6. In the present chapter, two types of comparisons 

are made between PFRAME3D and an optimized 1-core version of FRAME3D (that also 

includes the revisions made in Part I). The first comparison demonstrates that PFRAME3D 

produces time-history structural responses that are nearly identical to that of FRAME3D 

and that any discrepancies are negligible. The second comparison demonstrates that 

PFRAME3D uses less overall wall time due to parallelization. Three example structures 

are used: 
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 the water-tank tower from Bjornsson and Krishnan (2014) (§7.2) 

 an 18-story building from Mourhatch (2015) (§7.3) 

 the 60-story tube building from §8 (§7.4). 

All three structures are subjected to collapse-causing dynamic time-history ground 

motions. In all cases, displacement response histories are saved and simulations are timed 

with various degrees of parallelism (i.e., core usage). The performance results from the 

three simulations are compared in §7.5. 

 

 

7.2 Results using a small structure 

 

This section shows that the output of the shared-memory-only PFRAME3D is 

nearly identical to that of FRAME3D and that wall time reductions due to parallelization 

are significant even for a small structure. 

The water-tank tower from Bjornsson and Krishnan (2014) is a braced-frame 

structure with: 

 𝑛 = 252  

 𝑚 = 102  

 144 EF5 elements 

 18 PS elements 

 12 spring elements 

 44 nodes. 
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Details regarding the water-tank tower’s elevation, plan, and member sizes can be found 

in Bjornsson and Krishnan (2014). It was not designed according to any particular building 

code. The water-tank tower is subjected to the Kobe earthquake ground motion at 

Takatori (Figure E.1), scaled at 37.3%—the same 3-component ground motion in §3.7. The 

simulation is terminated at 𝑡 = 38 𝑠𝑒𝑐 (7600 dynamic time steps are used), when the 

water-tank tower is clearly collapsing. The collapse configuration at termination is shown 

in Figure 7.1 for visualization. 

Because the number of processes 𝑝 allowed by the divide-and-conquer solver 

(§5.4) is limited according to Eq. 5.22, or 𝑝 ≤
𝑛

2(𝑚−1)
=

252

2(102−1)
≈ 1.24, only 1 process may 

be used; thus, the shared-memory-only version of PFRAME3D (§6.8.7) is used with up to 

8 cores (1 process). 

This example indicates that the shared-memory layer of PFRAME3D produces 

consistent results; Figure 7.2 shows that the roof displacement histories agree regardless 

of core usage. Against the 1-core “X Displacement” history shown in Figure 7.2, the root-

mean-squared error of the 8-core “X Displacement” history is 6.55 × 10−5 𝑚, which can 

be considered as negligible for the present context. 

In terms of performance, Table 7.1 shows that the 1-core 3.58 hr simulation is 

reduced with 8 cores to 1.23 hrs. 
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Figure 7.1: Isometric views of water-tank tower at t=0 sec (left) and t=38 sec (right) using 37.3% 

Kobe earthquake ground motion at Takatori (Figure E.1). Elements that failed during analysis are 

not shown. Deformations are unamplified. 

 

 

 

Table 7.1: Overall parallelization speedup for water-tank tower collapse simulation. 

Number of 

cores used 

Wall time 

(ℎ𝑟𝑠) 

Speedup vs. 

1-core 

1 

2 

4 

8 

3.58 

2.27 

1.55 

1.23 

1.00 

1.58 

2.31 

2.89 
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Figure 7.2: Roof displacement histories of water-tank tower (from the node initially at X=4.064 m, 

Y= 8.128 m, Z= 48.768 m) subjected to 37.3% Kobe earthquake ground motion at Takatori (Figure 

E.1). The results from 1-, 2-, 4-, and 8-core analysis are nearly identical. 
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7.3 Results using an 18-story building 

 

This section shows that the output of PFRAME3D (the complete hybrid-parallel 

version) matches that of FRAME3D and that wall time is reduced more for a medium-

sized tall building structure. The 18-story building (often referred to as the Canoga Park 

building), designed according to the UBC 94 with S2 soil conditions, from Mourhatch 

(2015), is a braced-frame building with: 

 𝑛 = 3966  

 𝑚 = 289  

 258 PH elements 

 282 EF3 elements 

 492 EF5 elements 

 216 PZ elements 

 517 PS elements 

 30 spring elements 

 760 nodes. 

Details regarding the 18-story building’s elevation, plan, and member sizes can be found 

in Mourhatch (2015). This building is subjected to a five-cycle idealized acceleration 

square wave with peak ground velocity 𝑃𝐺𝑉 = 1.375𝑚 𝑠⁄  and period 𝑇 = 5.75 𝑠𝑒𝑐 (Figure 

E.2). The simulation is set to terminate when the peak displacement history exceeds 300 𝑖𝑛 

(~7 𝑚), when the building is clearly collapsing. The collapse configuration at termination 

is shown in Figure 7.3 for visualization. Because 
𝑛

2(𝑚−1)
=

3966

2(289−1)
≈ 6.88 (Eq. 5.22), up to 

48 cores (6 processes) are used. 
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Figure 7.4 shows that the roof displacement histories agree regardless of core 

usage. 76 displacement histories (from throughout the building) are used to compare the 

1-core and 48-core results, and the maximum observed root-mean-square error is 3.77 ×

10−11 𝑚, which can be considered as negligible for the present context. 

Figure 7.5 (top) shows that the parallelization of the {𝑏} & [𝐴] update calculations 

contributes the most to the “Total” wall time reduction from 30.5 hrs with 1 core, to 2.95 

hrs with 48 cores. The shift to distributed-memory computing begins with 16 cores, so a 

penalty can be seen then (i.e., from 8 cores to 16 cores in Figure 7.5). For example, the 

parallel geometric updating, in which communication is significant, slows down at 16 

cores but speeds up as 48 cores is approached. Additionally, the divide-and-conquer 

factorization is slower than the 8-core blocked factorization, as a result of “fill-in” and the 

fact that 𝑝 is nearing the Eq. 5.22 limit (recall §5.4). Nevertheless, because the parallel 

speedup of the {𝑏} & [𝐴] update calculations is more significant than the parallel 

slowdown of the divide-and-conquer solver and parallel geometric updating, the lowest 

wall time of 2.95 hrs is achieved with 48 cores, a speedup of 10.3. 
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Figure 7.3: Isometric views of 18-story building at t=0 sec (left) and t=22.7 sec (right) subjected to 

the acceleration square wave ground motion (Figure E.2). Elements that failed during analysis are 

not shown. Deformations are unamplified. 



119 

 

 

Figure 7.4: Displacement histories at penthouse roof of 18-story building subjected to an idealized 

five-cycle acceleration square wave with peak ground velocity PGV=1.375 m⁄s and period T=5.75 

sec (Figure E.2). The results from 1-, 8-, 32-, and 48-core analysis are nearly identical. 
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Figure 7.5: Performance summary for 18-story collapse simulation. Wall time of total and various 

steps (top), and speedup vs. optimized 1-core code (bottom). 
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7.4 Results using a 60-story building simulation 

 

This section further shows that the output of PFRAME3D (the complete hybrid-

parallel version) agrees with that of FRAME3D and that wall time is reduced even more 

for very tall building structures. The large structure considered here is the 60-story 

moment-frame tube building designed according to the UBC 94 from §8 of the current 

report, with: 

 𝑛 = 30,606  

 𝑚 = 514  

 1496 PH elements 

 3840 EF3 elements 

 4348 EF5 elements 

 4080 PZ elements 

 4320 PS elements 

 77 spring elements 

 4421 nodes. 

The EF3 and EF5 elements have probabilistic fiber fracture assignments (§§8.3.2 – 8.3.3, 

brittle case with 𝑠𝑒𝑒𝑑 = 1). Details regarding the 60-story building’s elevation, plan, and 

member sizes can be found in §8.2. The building is subjected to the Denali earthquake at 

Pump station #10 (Figure E.3). This ground motion is chosen because the building 

approaches collapse slowly (~40 𝑠𝑒𝑐 in earthquake time), providing greater opportunity 

to check whether unforeseen race conditions are present. The simulation is set to terminate 

when the peak displacement history exceeds 300 𝑖𝑛 (~7 𝑚), when the building is clearly 
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collapsing. The collapse configuration at termination is shown in Figure 7.6 for 

visualization. Because 
𝑛

2(𝑚−1)
=

30606

2(514−1)
≈ 29.8 (Eq. 5.22), up to 232 cores (29 processes) are 

used. 

Figure 7.7 shows that the roof displacement histories agree regardless of core 

usage. 122 displacement histories (X and Y displacements from the centroids of the 61 

floors) are used to compare the 1-core and 128-core results, and the maximum observed 

root-mean-square error is 2.78 × 10−6 𝑚, which can be considered as negligible for the 

present context. It is worth noting that every element type (§2) is included in this model, 

and that probabilistic fiber fracture assignments are included in the EF3 and EF5 elements. 

Figure 7.7 (top) shows that parallelization reduces the “Total” wall time from 83.6 

hrs (1-core) to 5.69 hrs (128-cores). At 1 core, the {𝑏} & [𝐴] update calculations are the most 

expensive, but once extended to distributed-memory computing (≥16 cores), the divide-

and-conquer factorization becomes the most expensive step. 

Unfortunately, the divide-and-conquer factorization does not exhibit speedups as 

impressive as that of the parallel {𝑏} & [𝐴] update calculations. Nevertheless, the 

parallelization of {𝑏} & [𝐴] calculations is significant enough that the “Total” speedup 

reaches 14.7 with 128 cores. Additionally, as shown in Figure 7.9 (plot of the wall time of 

each step as a function of earthquake time, from the 128-core simulation of the 60-story 

building collapse), the {𝑏} & [𝐴] update calculations become more significant as the 

building yields and elements are more nonlinear, especially at the last time steps of the 

simulation (as collapse is approached). 

The slight “parallel slowdown” of the “Total” computation at 232 cores (“Total” 

wall time is 5.69 hrs with 128 cores and 5.74 hrs with 232 cores) is attributed to the divide-
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and-conquer, which as mentioned in §5.4, is less efficient as 𝑝 nears the Eq. 5.22 limit for 

a fixed problem size. Still, it should be noted that for an even taller building, the Eq. 5.22 

limit is increased (assuming that 𝑛 increases much faster than 𝑚), such that higher core 

counts may be used effectively. Additionally, the other steps in Figure 7.8 are shown to 

be faster with 232 cores. It is of interest in a future study to either improve the divide-and-

conquer solver (e.g., by accounting for sparsity within the narrow band) or altogether 

remove the direct solver (e.g., by solving the global equation of motion using a nonlinear 

conjugate gradient approach). The present hybrid-parallel framework is expected to be 

able to accommodate such changes. 
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Figure 7.6: Isometric views of 60-story building at t=0 sec and t=41.9 sec subjected to the Denali 

earthquake ground motion at Pump station #10 (Figure E.3). Elements that failed during analysis 

are not shown. Deformations are unamplified. 
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Figure 7.7: Displacement histories at the roof centroid of the 60-story building subjected to the 
Denali earthquake ground motion at Pump station #10 (Figure E.3). The results from 1-, 8-, 128-, 
and 232-core analysis are nearly identical. 
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Figure 7.8: Performance summary for 60-story collapse simulation. Wall time of total and various 

steps (top), and speedup vs. optimized 1-core code (bottom). 
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Figure 7.9: Wall time (sec) per earthquake-simulation time step, from 60-story building subjected 

to the Denali earthquake ground motion at Pump station #10 (Figure E.3). PFRAME3D with 128 

cores is used. The “spikes” in the {b} & [A] update wall times are a result of load imbalances in the 

distributed-memory layer (§6.8.3). 

 

 

7.5 Maximum speedups 

 

A more holistic understanding of PFRAME3D’s performance can be obtained by 

comparing the “Total” performance results of the three buildings with each other, as is 

done in Figure 7.10. For the water-tank tower collapse simulation, PFRAME3D achieves a 

maximum speedup of 2.89 with 8 cores; for the 18-story building collapse simulation, it 

achieves a maximum speedup of 10.3 with 48 cores; and for the 60-story building collapse 

simulation, it achieves a maximum speedup of 14.7 with 128 cores. 
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An additional curve is constructed on Figure 7.10 (bottom) by connecting the 

maximum speedups attained for the three structures. An upward trend can be seen, which 

suggests that as building height increases, additional cores may be used to achieve a 

higher speedup. 

The above comparison is similar to a weak-scaling study. However, it cannot be 

appropriately classified as such because the per-core workloads vary between the three 

cases. For example, because each structure has a different bandwidth, the divide-and-

conquer per-core workload varies. Or, the number of elements per floor is varied; e.g., the 

60-story building has more frame elements per floor than the 18-story building. It is also 

important to note that the three simulations themselves are very different. Three different 

ground motions are used, the collapse mechanisms form at different times, and the water-

tank tower and 18-story building are braced-frame buildings while the 60-story building 

is a moment-frame tube building. 

Nevertheless, Figure 7.10 indicates that parallel speedup increases with building 

height. It is not unreasonable to suggest that even higher speedups than shown in Figure 

7.10 are possible if PFRAME3D is applied to even taller buildings (e.g., a 100-story 

building). 
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Figure 7.10: Summary of “Total” wall time (top) and speedup vs. 1-core (bottom) for the water-

tank tower, 18-story building, and 60-story building collapse simulations. Also plotted (bottom) is 

a curve connecting the maximum speedups achieved for each of the three simulations. 
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7.6 Conclusion 

 

Therefore, using the three example dynamic time-history collapse simulations in 

§§7.2 – 7.4, PFRAME3D is shown to produce output that is nearly identical to that of 

FRAME3D. Race condition problems are not observed in any of the three cases. 

Still, it should be noted that round-off errors due to floating-point arithmetic can 

cause parallel computations to produce slightly different results than that of the 1-core 

computations (Goldberg 1991, Villa et al. 2009). For example, the mathematical property 

of associativity does not necessarily hold in optimized parallel libraries like Intel MKL. 

Or, elements may update the global {𝑅𝑙} (§6.3.2) and [𝐾𝑇
𝑙 ] (§6.4.2) in a different order than 

the 1-core case, leading to a slightly different {𝑅𝑙} and [𝐾𝑇
𝑙 ] (again, due to non-

associativity). It is possible to use fully deterministic versions of the Intel MKL routines, 

or use static load-balancing such that {𝑅𝑙} and [𝐾𝑇
𝑙 ] are assembled by the same sequence 

of elements as the 1-core case. However, these fixes are not optimal in terms of parallel 

performance, and so are not implemented here. Additionally, displacement-history root-

mean-square errors are observed to be ~10−5 𝑚 or less, and Figure 7.2, Figure 7.4, and 

Figure 7.7 show that the resulting collapse mechanisms are reproducible regardless of 

parallelization. Therefore, it can be stated that these discrepancies are negligible in the 

overall context of building analysis. 

Maximum speedups are shown to grow with the height of the building, and a 60-

story dynamic time-history collapse simulation is completed in 5.69 hours with 128 cores. 

Thus, it can be said that PFRAME3D is suited for the efficient computation of tall building 

response due to ground motion. 
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PART III 

Application and Conclusions 
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Chapter 8 

Application to a 60-story steel building 

 

 

 

 

 

8.1 General 

 

In this chapter a 60-story example building is developed and analyzed, in order to 

showcase PFRAME3D’s capability to perform collapse analysis on very tall buildings. The 

design satisfies UBC 94 load and stiffness criteria, and has a typical mass distribution for 

office buildings. It has a 6.16-second fundamental period, which is typical for buildings of 

its height. However, the building shows atypical moment-frame behavior because of the 

use of very closely spaced columns (8 𝑓𝑡 or 2.4384 𝑚 center-to-center) and very deep 

beams (up to 30 𝑖𝑛 or 0.762 𝑚). Beams in this configuration are likely to yield in shear, but 
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neither the EF3 (§2.4) or EF5 (§2.5) element can capture nonlinear shear. A more realistic 

building model, with shallower beams and columns less closely spaced, will be designed 

in a future project. Nevertheless, this test case is sufficient for the current report and 

PFRAME3D is shown to be useful for studying very tall buildings subjected to strong 

ground motions. Observations such as multi-story quasi-shear band collapse mechanisms 

(similar to Krishnan and Muto 2012) are noted. This chapter is organized as follows: 

 Building design and description (§8.2) 

 Modeling considerations (§8.3) 

 Building analyses and results (§8.4). 

 

 

8.2 Building description and design 

 

8.2.1 Building description 

The building considered in this chapter is a moment-frame (MF) tube structure. 

The general behavior of tube structures is well explained in Smith and Coull (1991) and 

briefly recounted in §C for convenience. 

The 60-story example building is designed with typical and 1st-story plans shown 

in Figure 8.1 and Figure 8.2, respectively. Story height is 12.5 𝑓𝑡 (3.81 𝑚) at levels 2 – 60, 

and 15 𝑓𝑡 (4.572 𝑚) at level 1. The plan is a square to take advantage of symmetry. Beam 

and column sizes are chosen every 4 stories as shown in Table 8.1. The properties of non-

standard sections can be found in §D. For simplicity, all MF beams are identical within a 

floor level, all interior MF columns are identical within a story level, all gravity columns 
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are identical within a story level, etc. Column splices are located at every odd story level 

above first story. Design considerations are discussed in §8.2.2. Modal characteristics and 

mode shapes of the building are shown in Table 8.2 and Figure 8.3, respectively. 

  

 

Figure 8.1: Typical plan (3rd floor to Roof) of 60-story example tube building, featuring closely-

spaced columns. 
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Figure 8.2: Plan for 2nd floor of 60-story example tube building, featuring transfer girder. 
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Table 8.1: Summary of column and beam sizes for 60-story example building. 

  Story 

levels 

Moment frame Gravity frame   

Floor 

levels 

Moment 

frame 

Corner 

columns 

Interior 

columns 

Columns  Beams 

57 – 60 

53 – 56 

49 – 52 

45 – 48 

41 – 44 

37 – 40 

33 – 36 

29 – 32 

25 – 28 

21 – 24 

17 – 20 

13 – 16 

9 – 12 

5 – 8 

2 – 4 

1 

W14X82 

W14X159 

W14X176 

W14X211 

W14X233 

W14X283 

W14X342 

W14X370 

W14X398 

W14X426 

W14X455 

W14X500 

W14X550 

W14X665 

W14X873 

28”X28” box* 

W18X71 

W18X97 

W18X119 

W21X147 

W24X176 

W27X194 

W30X211 

W30X261 

W33X291 

W33X318 

W33X354 

W36X395 

W36X441 

W36X529 

W36X723 

W36X925** 

W12X136 

W14X193 

W14X257 

W14X342 

W14X426 

W14X500 

W14X550 

W14X605 

W14X665 

W14X730 

W14X808 

W14X873 

24”X24” box* 

24”X24” box* 

26”X26” box* 

26”X26” box* 

 58 – Roof 

54 – 57 

50 – 53 

46 – 49 

42 – 45 

38 – 41 

34 – 37 

30 – 33 

26 – 29 

22 – 25 

18 – 21 

14 – 17 

10 – 13 

6 – 9 

3 – 5 

2 

W18X46 

W18X60 

W21X62 

W21X62 

W21X62 

W21X68 

W21X73 

W21X73 

W21X83 

W21X93 

W24X103 

W24X103 

W27X114 

W27X114 

W30X148 

W40X324*** 

* Non-standard section, see §D. 

** For column lines that extend to the ground. 

*** Transfer girder. 

 

Table 8.2: Modal periods of 60-story example building. 

Mode Type Period (s) 

1, 2 

3 

4, 5 

6 

7, 8 

1st translational 

1st torsional 

2nd translational 

2nd torsional 

3rd translational 

6.16 

3.18 

2.12 

1.32 

1.26 
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Figure 8.3: Elevation view of the 60-story example building’s first three translational modes along 

a single direction. 

 

 

8.2.2 Building design 

The 60-story building is assumed to be located in downtown Los Angeles (DTLA). 

Because some high-rise DTLA buildings were designed according to pre-Northridge 

building code, design loads are determined according to the 1994 Uniform Building Code 

(UBC 94). The building’s beams and columns are proportioned using the Allowable Stress 

Design (ASD) procedure found in the Specification for Structural Steel Buildings: Allowable 

Stress Design and Plastic Design (AISC 335-89). Design software ETABS is used throughout 

the entire design procedure. 
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The basic ASD load combinations (UBC 94 §1603.6) considered are: 

 𝐷 + 𝐿 

 𝐷 + 𝐿 ±𝑊 

 𝐷 + 𝐿 ± 𝐸 

where 𝐷, 𝐿, 𝑊, and 𝐸 are dead, live, wind, and earthquake loads, respectively. Columns 

also satisfy (UBC 94 §2211.5.1): 

 1.0𝐷 + 0.7𝐿 ± 3 (
𝑅𝑤

8
)𝐸 

 0.85𝐷 ± 3(
𝑅𝑤

8
)𝐸 

where 𝑅𝑤 accounts for material overstrength. 

Design dead loads are according to Table 8.3. Combined, the typical floor dead 

load (without beam/column self-weight and cladding) is 76 𝑝𝑠𝑓 (3.64
𝑘𝑁

𝑚2) and the roof 

dead load (without beam and column self-weight) is 64 𝑝𝑠𝑓 (3.06
𝑘𝑁

𝑚2). Cladding is 

applied around the building perimeter. 

Table 8.3: Design dead loads. 

Dead load 
𝒑𝒔𝒇 (

𝒌𝑵

𝒎𝟐
) 

MF beams and columns 

Gravity columns 

(Primary) gravity beams 

(Secondary) gravity beams 

Concrete slab 

Carpet/finish 

Mechanical, ceiling, etc. 

Partitions 

Cladding 

Self-weight 

Self-weight 

Self-weight 

6 (0.29) 

50 (2.39) 

2 (0.096) 

8 (0.38) 

10 (0.48) 

15 (0.72) 
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The building is intended to be an office building, and the design floor live loads 

are 50 𝑝𝑠𝑓 (2.39
𝑘𝑁

𝑚2) uniformly distributed (UBC 94, Table 16-A), except at the roof where 

live loads are 20 𝑝𝑠𝑓 (0.96
𝑘𝑁

𝑚2) uniformly distributed (UBC 94, Table 16-C). 

Design wind loads are applied as static forces according to the national standard 

ASCE 7-93 §6 (UBC 94 §1613). The wind-design parameters used are summarized in Table 

8.4 as defined in the ASCE 7-93 §6. Story-drift ratios are checked to be within 
1

400
 using the 

10-year wind and a 1st order analysis (Griffis 1993). 

Seismic consideration is important in DTLA. A static lateral-force procedure (UBC 

94 §1628.2) is an approximation of earthquake loads; while it is convenient for short 

buildings, earthquakes are dynamic and often bring out the higher-mode effects in tall 

buildings. Thus, the code requires a dynamic lateral-force procedure for buildings taller 

than 240 𝑓𝑡 (73.152 𝑚) (UBC 94 §1627.8.3). Beams and columns are proportioned 

according to the Response Spectrum Method (UBC 94 §1629.5) scaled to 90% of the static 

procedure base shear. Overall building stability (P-Δ), individual column stability (P-δ), 

and accidental torsion are considered. The seismic design parameters used are 

summarized in Table 8.5 as defined in the UBC 94. Story drifts due to seismic loads are 

checked to remain below a maximum allowable limit of 𝛥𝑎 = 0.0025ℎ𝑠𝑥 using 𝐶𝑠 = 0.012 

(UBC 94 §1628.8). 

Beams are proportioned to satisfy biaxial bending and shear strength demands. 

Although it is not uncommon for designers to proportion MF beams to yield in flexure 

(before shear), this check is not found to be explicitly specified in the UBC 94 as a beam 

proportioning issue and is not done here. Columns are proportioned to satisfy combined 
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axial and biaxial bending stresses using the Effective Length Method (AISC 335-89 §C2.2) 

and strong-column-weak-beam criteria. Beams and columns are also proportioned to 

satisfy acceptable width-thickness ratios. Doubler plates are added to PZs as prescribed 

by the code. 

At the upper story levels, wind drifts and seismic stresses govern the beam design, 

and seismic stresses govern the column design. At the lower story levels, seismic stresses 

govern the column design, and beam sizes are increased so as to limit the Effective Length 

Method K-factor enough to satisfy the allowable column stress criteria. 

Figure 8.4 shows that the maximum wind drift ratios due to the 10-year wind load 

are under 
1

400
= 0.0025, and the maximum seismic drift ratios are under 

0.03

𝑅𝑤
= 0.0025. Due 

to symmetry only one loading direction is shown. The “total” drift is reported by the 

design program ETABS and scaled to reflect the appropriate drift-level loads. The 

“bending” drift is approximated based on the rotation of the entire story level. The “shear” 

drift is the difference between “total” and “bending” drifts. 

 

Table 8.4: ASCE 7-93 wind design parameters for the 60-story example building. 

Parameter Value 

𝑉 

Exposure category 

𝐼 

�̅� 

𝐶𝑝 

70 𝑚𝑝ℎ (31.3 𝑚/𝑠) 

B 

1.00 

1.20 

0.8 (windward) 

-0.5 (leeward) 
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Table 8.5: UBC 94 seismic design parameters for the 60-story example building. 

Parameter Value 

𝐶𝑠 

 

𝑍 

𝐼 

𝐶 

𝑆 

𝑇 

𝑅𝑤 

0.030 (strength) 

0.012 (drift) 

0.40 

1.00 

0.36 

1.00 

6.54 

12 

 

 

Figure 8.4: Maximum wind drift ratios using ASCE 7-93 (left) and maximum seismic drift ratios 

using UBC 94 Response Spectrum Method (right) for the 60-story building. 
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8.3 Modeling considerations 

 

8.3.1 General 

This section outlines the assumptions used to model the 60-story example building 

in PFRAME3D. It is organized as follows: 

 Beams (§8.3.2) 

 Columns (§8.3.3) 

 Beam-column joints (§8.3.4) 

 Floor/roof slabs (§8.3.5) 

 Foundations (§8.3.6) 

 Soil-structure interaction (§8.3.7) 

 Gravity loads and mass (§8.3.8) 

 Damping (§8.3.9) 

 Miscellaneous parameters (§8.3.10). 

3D models are created because 3D effects are present in tube buildings. Corner columns 

belong to two orthogonal frames, and so may be subject to biaxial bending. Torsion may 

be present due to probabilistic weld-fracture assignments, which can result in asymmetric 

yielding from bi-directional shaking. 

 

8.3.2 Beams 

MF beams are modeled as EF3 elements (§2.4), where each fiber segment is 3% of 

the total beam length (calibrated in Krishnan 2003, based on material properties). The 

material model of each fiber (Figure 3.7) is defined by 
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 𝐸 = 29000 𝑘𝑠𝑖 (200 𝐺𝑃𝑎) 

 𝜎𝑦 = 50.0 𝑘𝑠𝑖 (345 𝑀𝑃𝑎) 

 𝐸𝑠ℎ = 580 𝑘𝑠𝑖 (4.00 𝑀𝑃𝑎) 

 𝜀𝑠ℎ = 0.012 

 𝜎𝑢 = 65 𝑘𝑠𝑖 (448 𝑀𝑃𝑎) 

 𝜀𝑢 = 0.160 

 𝜎𝑓𝑖𝑛 = 0.60𝜎𝑢. 

MF beams have rigid end connections. Perfect and brittle weld cases are considered. The 

perfect case assumes full ductility in a steel fiber, i.e., the tensile fracture strain is set to the 

tensile rupture strain, or 𝜀𝑓 = 𝜀𝑟 (§3.7). But using perfect welds may be unconservative, 

especially for pre-Northridge buildings (Hall 1998, Krishnan and Muto 2012). That is 

partly because MF assemblages used in experiments were smaller than in real buildings, 

and the stress intensity factor 𝐾 (in fracture mechanics) scales unconservatively with size. 

Additionally, field conditions may be non-ideal for producing perfect welds.  

Thus, fracture-prone (brittle) welds are also modeled; if the tensile fracture strain 

(𝜀𝑓) is exceeded, the fiber can no longer carry tensile stresses. 𝜀𝑓 is handled according to a 

probabilistic 10-point distribution (10% probability for each point). The distribution used 

in Krishnan and Muto (2012) is used here. For a beam’s bottom flange, 𝜀𝑓 = 0.9𝜀𝑦, 2𝜀𝑦, 5𝜀𝑦, 

15𝜀𝑦, and 40𝜀𝑦 each have a 20% probability of assignment. For a beam’s web and top 

flange, 𝜀𝑓 = 10𝜀𝑦 & 20𝜀𝑦 each have a 30% probability of assignment, and 𝜀𝑓 = 40𝜀𝑦 & 80𝜀𝑦 

each have a 20% probability of assignment. 
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Gravity-only beams are modeled as PH elements (§2.3) with pinned end 

connections. Only primary gravity beams (that attach directly to columns) are included; 

no secondary beams (beams framing into beams) are modeled. 

 

8.3.3 Columns 

MF and gravity columns are modeled as EF5 elements (§2.5) to efficiently account 

for geometric nonlinearity and column splices. Each fiber segment is 3% of the total 

column length. Material properties match that of the beams. The center fiber segment is 

used to model column splices with two weld cases: perfect and brittle. For brittle column 

splices, 𝜀𝑓 = 10𝜀𝑦 & 20𝜀𝑦 each have a 30% probability of assignment, and 𝜀𝑓 = 40𝜀𝑦 & 

80𝜀𝑦 each have a 20% probability of assignment. 

 

8.3.4 Beam-column joints 

The joints between beams and columns are modeled as PZ elements (§2.6). Its 

linear-quadratic ellipsoidal material model (Figure 2.11) is defined by 

 𝐺 = 11600.0 𝑘𝑠𝑖 (80.0 𝐺𝑃𝑎) 

 𝜏𝑦 = 28.8675 𝑘𝑠𝑖 (199.03 𝑀𝑃𝑎). 

 

8.3.5 Floor/roof slabs 

Slabs are modeled as diaphragm elements (§2.7). Its linear-elastic material model 

is defined by 

 𝐸 = 3605.0 𝑘𝑠𝑖 (24.86 𝐺𝑃𝑎) 

 𝜈 = 0.30. 
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Each slab is 6.25 𝑖𝑛 (0.159 𝑚) thick, and configured to laterally constrain every node at a 

floor without adding global nodes, as shown in Figure 8.5. If the beams on both sides of a 

column fail, the diaphragm prevents the column from two-story buckling. 

 

 

Figure 8.5: Layout of diaphragm elements in a typical floor level. 
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8.3.6 Foundation 

A mat foundation, typical in DTLA, is approximated using elastic beams (§2.3) at 

ground level (Figure 8.6). The beams have stiffness properties that match a 10 𝑓𝑡 (3.3 𝑚) 

deep foundation with an elastic material model where 𝐸 = 3605.0 𝑘𝑠𝑖 (24.86 𝐺𝑃𝑎). The 

beams are rigidly connected. Subterranean levels are not modeled. 

 

 

Figure 8.6: Foundation and soil modeling for 60-story example building. 

 

8.3.7 Soil-structure interaction 

To model soil-foundation-structure interaction, springs (§2.8) are attached at 

ground level to the foundation beams (§8.3.6) as shown in Figure 8.6. Horizontal springs 

are placed orthogonal to the perimeter at the base, and vertical springs are distributed 
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throughout the footprint of the base. The vertical springs automatically account for 

rocking. All springs are elastic. The springs’ combined effect is tuned to yield a 10% 

fundamental-period increase for Building 1 (the 6.16 𝑠𝑒𝑐 fundamental period in Table 8.2 

includes soil-structure interaction), whilst maintaining a horizontal-to-vertical soil 

stiffness ratio of 1-to-1.27 determined by the shallow-foundation equations from NIST 

GCR 12-917-21 §2.2; these equations depend on the soil’s shear modulus 𝐺, Poisson’s ratio 

𝜈, and the dimensions of the shallow foundation. The stiffness of an individual spring is 

directly proportional to its “tributary” perimeter (horizontal springs) or area (vertical 

springs). 

 

8.3.8 Gravity loads and mass 

Vertical gravity forces are applied at every global node (to form {𝑓𝑔} in Eq. 2.2), 

before and throughout dynamic analysis. Additionally, masses that represent the inertia 

of the building are applied at every global node (to form [𝑀] in Eq. 2.2). 100% dead loads 

and 25% live loads are used for both gravity loading and masses. Rotational-DOF masses 

are not included. 

 

8.3.9 Damping 

Rayleigh damping is used. As mentioned in §3.6, there are some unrealistic effects 

associated with Rayleigh damping that are significant before and during collapse but are 

not addressed here. These effects should be taken into consideration when interpreting 

results (Hall 2005; ATC 72 §2.4.4.3). 2% damping is used because it is typical for a 60-story 

building (ATC 72 §2.4.3.1). To capture the effects of significant higher modes, the 2% 
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damping limits are anchored as shown in Figure 8.7 at the fundamental period 𝑇1 and at 

0.2𝑇1 (ATC 72 §2.4.4). Because 𝑇1 = 6.16 𝑠𝑒𝑐 and 0.2𝑇1 = 1.23 𝑠𝑒𝑐, 𝑎0 = 0.0340 and 𝑎1 =

0.00654. In other words, the first three translational and first two torsional modes are 

damped at or below 2%. For future work, capped dampers will be included into the 

PFRAME3D framework. 

 

8.3.10 Miscellaneous parameters 

The tolerance, convergence, and Newmark parameters used in analysis are shown 

in Table 8.6. Also, analysis is automatically terminated if any node’s displacement exceeds 

300 𝑖𝑛 (7.62 𝑚), when the building is clearly collapsing. 

 

 

Figure 8.7: Damping ratio vs. period for 60-story example building. 
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Table 8.6: Tolerance, convergence, and Newmark parameters 

Parameter Value 

Global force tolerance 

Global moment tolerance 

EF3/EF5 force tolerance 

EF3/EF5 moment tolerance 

% stiffness* for PH elements 

% stiffness* for EF3/EF5 elements 

% stiffness* for PZ elements 

Newmark β 

Newmark α 

0.1 𝑘 

0.1 𝑘 𝑖𝑛 

0.005 𝑘 

0.005 𝑘 𝑖𝑛 

5% 

5% 

5% 

0.25 

0.50 

*The percent elastic stiffness matrix added to every tangent stiffness matrix during global 

iterations. 

 

 

8.4 Building analyses and results 

 

8.4.1 General 

To understand the nonlinear behavior of the 60-story example tube building, two 

types of analysis are conducted: 

 Dynamic pushover analysis (§8.4.2) 

 Dynamic time-history analysis (§8.4.3). 

It must be noted that these results reflect preliminary results (due to potential shear 

yielding, not captured in the current model, of the deep beams between very closely 

spaced columns) and that a more realistic building will be designed in the near future. 
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8.4.2 Dynamic pushover analysis 

 A pushover analysis is useful for determining the strength and ductility of a 

structure. During a pushover, lateral loads are increased gradually until the building 

collapses. In a dynamic pushover, a ramped horizontal ground acceleration causes the 

lateral loads (e.g., as done in Krishnan 2003). It rises at a rate of 0.3𝑔/𝑚𝑖𝑛 in the present 

case, which allows for a gradual deterioration of members. Masses are distributed 

according to §8.3.8 (not according to a building code’s vertical distribution of force, e.g., 

UBC 94 §1628.4). Damping is removed. Due to plan symmetry, only one direction of 

loading is considered (the X-direction). Four pushover analyses are run: 1 perfect-weld 

case, and 3 brittle-weld cases (called “brittle weld cases 0 – 2”), each with a different 

distribution of fracture strains. 

To interpret results, pushover curves are constructed in Figure 8.8, which has three 

subplots: 

(1) The base shear (as a percentage of overall building weight, see §8.3.8) is plotted 

vs. the displacement at the roof centroid. This force-deformation relationship 

is known as the “pushover curve.” It shows the building’s ultimate strength, 

which is defined here at the peak base shear. It also shows ductility, which is 

defined here as the ratio between the ultimate and yield displacements (same 

definition as in Krishnan 2003). 

(2) The base shear is plotted vs. time. This plot is useful for determining when 

ultimate strength is achieved, so that the building state at the ultimate point 

can be further studied. It is approximately linear until collapse because it 
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reflects the 0.3 𝑔/𝑚𝑖𝑛 loading; the dynamic nature of analysis prevents it from 

being perfectly linear. 

(3) The roof X-displacement is plotted vs. time. This plot shows the rate at which 

the buildings approach collapse. 

A summary of the pushover curves is shown in Table 8.7. The perfect weld case can 

withstand a 13.3% base shear, which is 4.43 times larger than the 3% design base shear. 

This “over-strength” factor is typical compared to previously studied high-rise buildings; 

e.g., the approximately 20-story UBC 97 buildings in Krishnan (2003) were reported to 

have over-strength factors ranging from 1.5 to 5.5. The perfect weld case also has a 

ductility ratio of 
3.65

1.81
= 2.02, which is near the lower limit of “ductile behavior.” 

(According to the FEMA 356 standard for the assessment of seismic performance, a 

building is “ductile” if its ductility ratio exceeds 2.) The example building is less ductile 

than previously studied high-rise buildings; e.g., Krishnan (2003) reported ductility ratios 

ranging from 2.4 to 5.6. The pushover curve never bottoms out to 0% because there is still 

some shear resistance in the first story after the collapse mechanism forms in the upper 

stories (see Figure 8.12). The brittle weld cases can withstand base shears roughly 2/3rds 

than that of the perfect case. They exhibit non-ductile behavior (ductility ratios are under 

2). Brittle weld case 1 showed the median ultimate base shear, so it is used for further 

analysis. Brittle weld cases 0 and 2 are no longer considered. 

 

 

 

 



152 

 

Table 8.7: 60-story example building pushover results. Roof displacement (m), percent base shear 

(% of building weight), and ductility ratio (ultimate roof displacement/yield roof displacement). 

 Yield Ultimate Ductility 

ratio Roof disp. Base shear Roof disp. Base shear 

Perfect 

Case 0 

Case 1 

Case 2 

1.81 m 

1.38 m 

1.38 m 

1.40 m 

10.4% 

8.47% 

8.47% 

8.56% 

3.65 m 

1.45 m 

1.55 m 

1.57 m 

13.3% 

8.75% 

8.90% 

8.93% 

2.02 

1.05 

1.12 

1.12 

 

 By examining the story drift ratios at the ultimate state (Figure 8.9), it is shown 

that the collapse mechanism is localized to the mid-height story levels. For the perfect 

case, stories 25 – 33 exceed 3% drift, and for the brittle weld cases (case 1 shown in Figure 

8.9), stories 26 – 32 exceed 1% drift. The perfect case shows a maximum of over 6% drift 

(at story 29) before instability (the steep drop in base shear in Figure 8.8), and the brittle 

weld case shows a maximum of less than 1.5% drift (at story 30) before instability. 

 More specifically, Figure 8.10 and Figure 8.11 show that the collapse mechanism 

forms as nearly all the web-frame beams from several floors fracture (or, for the perfect 

weld case, reach the rupture strain 𝜀𝑟). Shown are: 

(1) An isometric view of the frame at the ultimate state to provide context (upper 

left of Figure 8.10 and Figure 8.11). 

(2) A zoomed-in planar view of the web-frame at the ultimate state (right of Figure 

8.10 and Figure 8.11), with plastic hinges and flange fractures marked by 

square and triangle markers, respectively, as shown in the legend (bottom left 

of Figure 8.10 and Figure 8.11). Black markers are relevant for frame elements 

and white markers are relevant for PZ elements. The square markers vary in 

size depending on the plastic rotation in percent radians. Flange fractures 
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represent a more severe state, in which the fibers can only contribute in 

compression. Plastic rotations are not plotted for a segment if at least 1 of its 

flanges has fractured. 

The perfect weld case (Figure 8.10) shows that beams within the band of concentrated 

lateral displacement are plastically hinging with rotations exceeding 6%; many of these 

beams also have fractured flanges. Although barely visible in Figure 8.10, column plastic 

hinges have formed at story levels 25, 26, 31, and 32. The brittle weld case (Figure 8.11) 

shows more fractured flanges. Because fractures occur sooner, the brittle weld case 

collapses sooner. Column hinging is not observed at the ultimate state. Almost no PZ 

plastic rotations are observed in either perfect or brittle weld cases. 

Isometric snapshots of the building (Figure 8.12) when nodal displacements 

exceed 300 𝑖𝑛 (~7 𝑚) show that the mechanism is of the shear band type confined to story 

levels 25 – 32 (perfect) or 20 – 33 (brittle). Many beams in the brittle weld case are shown 

to have completely failed. The observed collapse mechanism indicates that, although the 

tube-frame design intends for flange-frame columns to resist lateral loads axially (§C), 

when it comes to nonlinear deformations, web-frame beams are the first to yield and fail. 

This effect can largely be attributed to the strong-column/weak-beam design philosophy 

and the result is that the collapse mechanism resembles a shearing (not a bending) beam. 

It should be stated that the author still agrees with the philosophy; the failure of a single 

beam is likely less catastrophic than the failure of a single column, and the observed 

collapse mechanisms form only after many beams over many floors fracture. 

Additionally, more analyses will be conducted in the near future to confirm any trend. 
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  The “somewhat brittle” behavior of the 60-story example building’s “perfect case” 

can be attributed to its very closely spaced columns and very deep beams. This is 

illustrated by considering the strain of a fiber 𝑛 in a pure bending beam, as shown in 

Figure 8.13 and summarized by 

 𝜀𝑛 = 𝑍𝑛
′ 𝜅 (Eq. 8.1) 

where 𝜀𝑛 is the strain of fiber 𝑛, 𝑍𝑛
′  is the position of fiber 𝑛 relative to the neutral axis, and 

𝜅 is curvature (the reciprocal of the radius of curvature). It can be seen (Figure 8.13) that 

𝑍𝑛
′  increases with beam depth, thus for a given 𝜅, 𝜀𝑛 increases, too. It can also be seen 

(Figure 8.14) that for a given beam rotation 𝜃 (which approximately correlates to story 

drift), 𝜅 increases (radius of curvature decreases) as beam span decreases, thus 𝜀𝑛 

increases, too. Therefore, 𝜀𝑛 increases “more quickly” in a building with deep beams and 

closely spaced columns, which results in fibers rupturing at smaller story drifts. Overall, 

the building is less ductile. 
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Figure 8.8: 60-story example building pushover curve (top), base shear history (middle), and roof 

|X| displacement history (bottom), using perfect welds and 3 cases of brittle welds. 
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Figure 8.9: Story drift ratios at maximum pushover base shear. Shown are the perfect weld case 

(left) and the brittle weld case 1 (right). 
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Figure 8.10: 60-story example building with perfect welds at ultimate state, t=27.0 sec. Web frame 

shown on right for the middle portion of the building. Deformations are amplified by 2 for both 

views. 
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Figure 8.11: 60-story example building with brittle welds (case 1) at ultimate state, t=18.0 sec. 

Web frame shown on right for the middle portion of the building. Deformations amplified by 5 for 

both views. 
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Figure 8.12: Pushover collapse mechanisms of 60-story example building with perfect (left) and 

brittle (right) welds. Snapshots are taken when nodal displacement exceeds 300 in (~7 m; at t=28.9 

sec and t=21.9 sec, respectively). Unamplified deformations shown. Failed elements are not shown 

as they are omitted from analysis. 
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Figure 8.13: Illustration showing pure-bending of a beam, from which the relationship between 

fiber strain 𝜀𝑛, fiber position 𝑍𝑛
′  (relative to the neutral axis), and curvature κ can be derived. 

 

 

 

 

Figure 8.14: Illustration showing that for a given end rotation θ, curvature κ is larger when beam 

length L is shorter, i.e., because 𝐿1 > 𝐿2, 𝜅1 < 𝜅2. 

 

 

 

 

 



161 

 

8.4.3 Dynamic time-history analysis 

The 60-story example building is subjected to the 2002 𝑀𝑤 7.9 Denali earthquake 

ground motion at Pump station #10 (Figure E.3). Figure E.3, which includes the 

pseudoacceleration spectra of this ground motion (corresponding to a 1-DOF system with 

2% and 5% damping), shows that this ground motion exceeds the UBC 94 design spectra 

significantly. 

Floor displacement and story drift time histories are plotted to help assess the 

performance of the example building (Figure 8.15 and Figure 8.16). Each figure has four 

subplots: X and Y displacements from the centroid of each floor, and X and Y story drifts, 

based on the relative centroidal displacements of adjacent floors. The floor displacements 

reflect the motions relative to the shaking ground, not the absolute displacements. The 

story drifts reflect the total story-drift ratios, not a bending or shear component. Time 

histories from every floor/story are shown, where the floor/story is defined by the color 

bar. Deep blue corresponds to the base of the building, and deep red corresponds to the 

top of the building. From these plots it is clear that the building with perfect welds remains 

stable, while the building with brittle welds collapses.  

The perfect weld case experiences highest X story drifts of over 2% at the upper 

stories (levels 46 – 54; peak at level 49 with 2.87%). Residual story drifts of up to about 1% 

are observed in the X direction. In the Y direction, peak and residual drifts are under 2% 

and 0.3%, respectively. Most of the damage can be attributed to the large pulse around 

𝑡 = 20 𝑠𝑒𝑐. 

The brittle weld case collapses with a shear-band mechanism at mid-height (levels 

20 – 37). The large pulse around 𝑡 = 20 𝑠𝑒𝑐 is observed to not fully travel up the height of 
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the building; instead it is observed to contribute to the mid-height damage that eventually 

leads to collapse. Although the building does not collapse in the Y direction, upper mid-

height stories (around level 43) experience a peak Y drift of 4.7%. 

A story-drift summary is shown in Figure 8.17. The white and black bars 

correspond to X and Y drifts, respectively. Peak story-drifts are shown for the perfect case, 

and collapse-mechanism story drifts (at 𝑡 = 30 𝑠𝑒𝑐) are shown for the brittle weld case. 

The brittle weld case collapse mechanism resembles the one observed in pushover 

analysis, but the peak drifts of the perfect weld case do not, a result of higher mode effects. 

To help understand what is happening at the element level, column 𝑃/𝑃𝑦  and 

beam 𝑀/𝑀𝑝 time histories are plotted in Figure 8.18 & Figure 8.19 and Figure 8.20 & Figure 

8.21, respectively. 𝑃 and 𝑃𝑦 are the current and yield axial forces, respectively, in the 

column. 𝑀 and 𝑀𝑝 are the current and plastic moments, respectively, in the beams. 

There are five subplots in Figure 8.18 and Figure 8.19 (the 𝑃/𝑃𝑦 plots). Each subplot 

corresponds to a unique column line as shown in Figure 8.1 and Figure 8.2. Shown are 

column lines A1, E1, I1, A5, and A9. Specific story-levels can be extracted based on the 

colorbar. The corner column experiences higher peak 𝑃/𝑃𝑦 values than the interior MF 

columns (0.48 vs. 0.30 for the perfect-weld case), which can be attributed to a combination 

of shear lag (§C) and bi-directional shaking. 𝑃/𝑃𝑦 is not observed to approach unity. 

There are six subplots in Figure 8.20 and Figure 8.21 (the 𝑀/𝑀𝑝 plots). Each subplot 

corresponds to a unique set of beams. Specific floor-levels can be extracted based on the 

colorbar. Figure 8.21 (the brittle weld case) represents failed beams as horizontal lines, 

extended from the time and 𝑀/𝑀𝑝 at failure. Many perfect-weld beams are shown to 

exceed the plastic moment, and only a few brittle-weld beams exceed the plastic moment. 
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Building damage is shown using plastic-rotation and flange-fracture plots (Figure 

8.22 and Figure 8.23). For the perfect case, peak plastic rotations are shown (Figure 8.22) 

because the damage represents the envelope of the time history and not a particular time 

step; thus, the plastic rotations are plotted on an undeformed configuration. The highest 

damage occurs at level 48 with beam plastic rotations of 2.39% radians and PZ plastic 

rotations of 1.36% radians. For the brittle weld case, collapse-mechanism damage (Figure 

8.23) is mapped on a deformed configuration (at 𝑡 = 30.0 𝑠𝑒𝑐). Damage is severe as many 

beams have failed, and many remaining beams have one or multiple fractured flanges. 

Columns are observed to not yet develop significant plastic rotations. 

For the perfect weld case, a summary of plastic rotations is presented in Table 8.8. 

All hinges are under 3% radians and about half of the beam components experience 

almost no plastic rotations (less than 0.1% radians). “Beam minor axis” plastic rotations 

can be attributed to diaphragm inertial effects. 

If compared to performance assessment criteria such as FEMA 356 or ASCE 41, 

which were developed after 1994, the perfect weld case building would be classified as 

“collapsed” because some beams exceed major-axis plastic-rotation limits; e.g., from 

FEMA 356, the major-axis plastic-rotation “collapse prevention” limit is 8𝜃𝑦, where 𝜃𝑦 =

𝑀𝑝𝐿

6𝐸𝐼
. (𝑀𝑝, 𝐿, 𝐸, and 𝐼 are the beam’s major-axis plastic moment, clear length, elastic 

modulus, and major-axis moment of inertia, respectively.) For the 60-story example 

building, 𝜃𝑦 ranges from 0.12% to 0.29% radians, which is much smaller than the 0.5% to 

1.1% radians range reported for the 19-story buildings in Krishnan (2003). The small 𝜃𝑦 

can be attributed to the closely spaced columns (small 𝐿) and deep beams (large 𝐼, 

although this second point is complicated by the fact that 𝑀𝑝 is also larger for deep beams); 
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i.e., 𝜃𝑦 is smaller for beams near the base and larger for beams near the roof.  In other 

words, the 8𝜃𝑦 “collapse prevention” limit is reached at plastic rotations of 0.96% to 2.3% 

radians. 

It is important to restate, however, that shear yielding is not included in the 

EF3/EF5 formulation, so the nonlinear behavior of the MF beams in the example building 

is not fully captured. A more realistic building will be designed in the near future, 

featuring wider column spacing and beams with shear capacities greater than 2𝑀𝑝/𝐿. 

Results from that analysis will be presented in a subsequent paper. 

Still, the 60-story example building is useful in the present research for showcasing 

the ability of PFRAME3D to perform highly nonlinear and collapse analyses efficiently. 

 

Table 8.8: Summary of plastic rotations from time-history analysis (due to the Denali earthquake 

ground motion at Pump station #10), with perfect welds. 

Component ≤ 0.1% (0.1, 1.0]% (1.0, 2.0]% (2.0, 3.0]% (3.0, 4.0]% (4.0, 5.0]% > 5.0% 

Panel zone 

Beam major axis 

Beam minor axis 

Column major axis 

Column minor axis 

2586 

3678 

7561 

8687 

8682 

1361 

3818 

231 

0 

5 

133 

288 

0 

0 

0 

0 

8 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 
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Figure 8.15: Displacement and drift histories of 60-story example building with perfect welds, 

subjected to the Denali earthquake ground motion at Pump station #10. 
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Figure 8.16: Displacement and drift histories of example 60-story building with brittle welds, 

subjected to the Denali earthquake ground motion at Pump station #10. 
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Figure 8.17: Story drift summary of time-history analysis with perfect (left) and brittle (right) 

welds. In the left, peak drifts are plotted. In the right, collapse mechanism drifts (at t=30.0 s) are 

plotted. Shown are drifts in the X (white) and Y (black) directions. 
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Figure 8.18: 𝑃/𝑃𝑦 histories of 60-story example building with perfect welds, subjected to the Denali 

earthquake ground motion at Pump station #10. 
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Figure 8.19: 𝑃/𝑃𝑦 histories of 60-story example building with brittle welds, subjected to the Denali 

earthquake ground motion at Pump station #10. 
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Figure 8.20: 𝑀/𝑀𝑝 histories of 60-story example building with perfect welds, subjected to the 

Denali earthquake ground motion at Pump station #10. 
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Figure 8.21: 𝑀/𝑀𝑝 histories of 60-story example building with brittle welds, subjected to the 

Denali earthquake ground motion at Pump station #10. 
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Figure 8.22: Peak plastic rotations in perfect weld case time-history analysis (due to the Denali 

earthquake ground motion at Pump station #10). 
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Figure 8.23: Collapse mechanism (at t=30.0 sec) and plastic rotations and flange fractures (right) 

in brittle weld case time-history analysis (due to the Denali earthquake ground motion at Pump 

station #10). 
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Chapter 9 

Conclusions and Future Directions 

 

 

 

 

 

9.1 Conclusions 

 

In Part I, a comprehensive finite element program for the highly nonlinear analysis 

of steel buildings, FRAME3D, is reviewed then revised. The review covers the iterative 

global solution procedure and the formulations of various elements. 

The revisions address specific nonlinear situations involving large 

displacement/rotation increments, the backup-subdivide algorithm, element failure, and 

extremely narrow joint hysteresis. The result of the revisions is superior convergence 

capabilities compared to the previous version of FRAME3D, as shown through a water-
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tank tower dynamic time-history collapse simulation. The structure can collapse “to the 

ground.” Although it is reasonable to expect that this convergence capability applies to 

other structural collapse simulations, it is noted that the structural models themselves 

may not capture all of the behavioral features of extremely large deformations associated 

with collapse conditions. 

The fiber backbone curve is modified to allow for post-rupture compressive 

strength, which provides a more realistic representation of fiber behavior at large 

compressive strains while addressing a sometimes non-convergent situation in the fiber-

segment formulation. The result of this modification is an overall increase in the strength 

of the water-tank tower (no longer collapses with the 32% Kobe earthquake ground 

motion at Takatori). It is found that whether a model collapses is sensitive to the 

additional parameters defined by the modified backbone curve; thus, experimental 

validation is needed to further improve realism. 

 In Part II, FRAME3D is sped up using serial optimizations and parallel computing. 

Serial optimizations alone result in an overall wall time reduction (for the collapse of a 60-

story building due to the Denali at Pump station #10 ground motion) from 650 hrs to 83.6 

hrs. The improvement due to serial optimization is primarily attributed to a reduction in 

cache-misses, most notably by switching to column-major and blocked code. 

A parallel framework to efficiently analyze highly nonlinear behavior of very tall 

buildings is developed, further reducing the same 60-story simulation wall time to 5.69 

hrs with 128 cores. A divide-and-conquer approach is used for both the global direct 

solver and element-state updates. The divide-and-conquer solver is found to be most 

suitable for problems where 𝑚 is relatively small compared to 𝑛. The element-state 
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updates are distributed to “match” that of the divide-and-conquer solver, resulting in 

communication costs that are generally limited by the half-bandwidth 𝑚 of the global 

matrix. PFRAME3D is one of if not the first implicit finite-element hybrid-parallel 

program with a “unified” domain decomposition scheme that takes advantage of the 

narrow-band nature of very tall buildings and uses nearest-neighbor-only communication 

patterns. 

Using three structures of varied sizes, PFRAME3D is shown to compute 

reproducible results that agree with that of the optimized 1-core version with much less 

wall time. Displacement-history results of parallel computations have root-mean-squared 

errors (against 1-core computations) of up to about ~10−5 𝑚, which are negligible in the 

context of building structures. Maximum speedups are shown to increase with building 

height (as the total number of cores used also increases), and the parallel framework can 

be expected to be suitable for buildings taller than the ones presented here. 

In Part III, PFRAME3D is applied to a 60-story example building. The building is 

designed according to the UBC 94 and has a fundamental period of 6.16 𝑠𝑒𝑐. Modeling 

considerations are presented. Dynamic pushover and time-history (Denali at Pump 

station #10) analyses are conducted using “perfect” and “brittle” weld cases. It is noted, 

however, that the very short span beams in the 60-story example building are found to be 

inappropriately modeled because shear yielding is not captured by the current element 

formulation. The conclusions below must be considered as “preliminary” until a more 

realistic building model is developed for more detailed analyses in the near future. 

Dynamic pushover analysis reveals multi-story shear-band collapse mechanisms 

around mid-height of the building. The dynamic time-history brittle weld case collapses 
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with a similar mechanism. This collapse mode is attributed to the strong-column/weak-

beam design philosophy, and it is not unreasonable to expect a similar shear-band 

collapse mechanism for other MF tube buildings. Still, more analyses should be conducted 

first to confirm any trend. 

The dynamic pushover analysis indicates that the use of closely spaced columns 

and deep beams can lead to “somewhat brittle” behavior (ductility ratio of 2.02). This is 

explained by considering the relationship between fiber strain, beam depth, and 

curvature—essentially that for deep short-span MF beams, fibers will rupture/fracture at 

smaller story drifts. 

Both pushover and time-history analyses show that overall building strength is 

sensitive to whether a model is fracture-capable. This result is consistent with previous 

studies (e.g., Hall 1998, Carlson 1999, Krishnan and Muto 2012) and shown here to apply 

to very tall steel buildings, too. In the pushover analysis, the brittle weld case has an 

ultimate base shear that is roughly two-thirds that of the perfect weld case. In the time-

history analysis, the brittle weld case collapses while the perfect weld case does not when 

subjected to the Denali earthquake ground motion at Pump station #10. 

The perfect weld case remains stable (from the Denali time-history) with peak 

transient story drifts of 2.87% at story level 49, peak transient column 𝑃/𝑃𝑦 = 0.48, and 

peak transient beam plastic rotations of 2.39% radians. Although seismic assessment 

criteria (e.g., FEMA 356) would classify the building as “collapsed” due to excessive beam 

plastic rotations, the computed model remains stable at the end of the ground motion. 
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9.2 Future Directions 

  

It is of interest to develop steel building models to study with the current 

framework. In the near future, realistic very tall MF buildings will be developed for highly 

nonlinear analysis. A tube design with wider column spacing will be considered. A 

bundled-tube building will also be designed to further avoid the short beam modeling 

limitations found presently. These building models will be subjected to a variety of strong 

ground motions. Very tall braced-frame and dual-frame steel buildings can also be 

studied with PFRAME3D, which may prove to be useful for the structural engineering 

community. 

It will be beneficial to implement a more accurate damping formulation. This is a 

topic that must be addressed especially for nonlinear and collapse dynamic analysis. 

Rayleigh damping with constant coefficients can overestimate damping forces. Damping 

elements will soon be incorporated into PFRAME3D, similarly to how they are already 

implemented in FRAME2D, to remove errors from Rayleigh damping assumptions. 

Because PFRAME3D introduces significant speedups, it is of interest to develop 

more detailed element types. For example, fiber elements (composed of only fiber 

segments, e.g., in FRAME2D) can replace the elastofiber elements used in PFRAME3D, 

which were originally created for efficiency and calibrated for MF beams. One such 

advantage of fiber elements is a more realistic representation of plastic axial deformation, 

which is especially useful for brace members. 

To be able to more accurately study a greater variety of structures (e.g., eccentric 

braced-frames or even the 60-story example building), it is of interest to generalize the 
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segment formulation to account for shear yielding. Or, to study composite structures, 

additional fibers (representing the composite floor slab) can be added to each fiber 

segment as is done in FRAME2D. 

Future work can include the revision of the PZ formulation to include an axial 

DOF—so that the PZ can participate in the axial deformation of columns. 

The consideration of the post-rupture compressive strength of a fiber as presented 

in §3.7 can be improved. Building response and collapse potential is shown to be sensitive 

to the inclusion of post-rupture compressive strength. Although including some post-

rupture strength is more realistic than ignoring it, the 𝜎𝑓𝑖𝑛 = 0.6𝜎𝑢 strength and the 𝜀𝑠𝑓 =

−0.9 segment failure strain presently used were not thoroughly substantiated by 

experimental data. More realistic values should be selected and verified in future work. 

Future work may also include the direct modeling of local flange buckling and its 

effect on the global response of structures. With the parallel computing framework of this 

thesis, modeling structures with greater detail is achievable. 

Regarding the hybrid-parallel framework presented in this thesis, future work 

may include improving the divide-and-conquer solver (e.g., by accounting for sparsity 

within the narrow band), exploring alternate solution algorithms (e.g., nonlinear 

conjugate gradient method), investigating efficient methods for distributed-memory 

dynamic load-balancing, or implementing a GPU-cluster version of PFRAME3D. 

There is still much to improve in terms of the structural engineering community’s 

ability to more accurately and efficiently model buildings in earthquakes. This thesis is a 

step towards that goal. 
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Appendix A 

Computer Architecture 

 

 

 

 

 

A.1 Terminology 

 

A.1.1 General 

The reader may not be familiar with some of the terminology used by the parallel 

computing (PaC) and/or structural finite element modeling (FEM) communities. To add 

confusion, word usage may overlap between these two disciplines. For example, node 

refers to a computer in a computer cluster in PaC, but to a joint in a FEM model. Or, local 

refers to a single node in PaC, but to the element-level calculations in FEM. And global 

refers to a set of nodes in PaC, but to the structure-level calculations in FEM. The context 
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of usage determines which definition is used and Figure A.1 & Figure A.2 illustrate the 

relationships between some terms. 

 

A.1.2 Hardware 

 A computer cluster is a set of computers that is configured to work as a unit 

(Figure A.1). Each computer (with its local processors, RAM, and disk) is often 

called a node. 

 A PaC node may have 1 or more processors; e.g., a dual quad-core computer 

has 2 processors (Figure A.2). A processor is the computer’s calculator; it 

executes the instructions. A processor may have 1 or many cores, e.g., a quad-

core processor has 4 cores. 

 A core can execute a single stream (thread) of commands, though it often does 

so in a single instruction multiple data (SIMD) manner using vector registers. For 

the purposes here, consider a core capable of doing sequential operations. 

 There are three general types of memory storage: disk, RAM, and cache. 

 The disk, or hard drive, can store the most amount of data, but is the slowest to 

access. Usually, it is accessed only when reading from or writing to a file. 

 The RAM (Random Access Memory) is accessed faster than the disk but can hold 

less data. A computer program generally works from the RAM to eliminate the 

need to search for variables in the disk. 

 The cache is accessed faster than the RAM but can hold less data. When a 

program accesses a variable in the RAM, it transfers neighboring variables to 

its cache, which reduces the need to re-access the RAM in the near future. 
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There are multiple levels of cache in modern computers—L1, L2, and L3—

where L1 is the fastest-but-smallest and L3 is slowest-but-largest. More 

discussion on the cache is found below (§A.2). 

 

 

 

Figure A.1: Typical computer cluster schematic with p nodes. 

 

 

 

Figure A.2: Typical schematic of computer node i, featuring dual quad-core processors and 3 levels 

of cache. 
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A.1.3 Software 

 A process is a single instance of a computer program being run. One type of 

parallel program is actually a set of multiple processes; i.e., multiple serial 

programs running concurrently. Another type of parallel program is a single 

process with multiple threads, a.k.a. a multi-threaded process. 

 The latter is also called a shared-memory (SM) program because the threads 

share the same RAM. SM parallelism is usually fast because there is little 

overhead and no communication cost. However, a SM program is usually not 

scalable because the number of cores per node tends to be limited (at least for 

CPU-based nodes). 

 OpenMP (Open Multi-Processing) is an interface to implement SM programs 

and is especially suited for parallelizing loops. 

 The Linear Algebra Package (LAPACK) is another way to implement SM 

parallelism. It is a library of vector-vector, matrix-vector, and matrix-matrix 

operations—many of which are parallelizable in the SM context. 

 The Intel Math Kernel Library (Intel MKL) is a library that contains LAPACK 

routines optimized for Intel processors. 

 OpenMP and LAPACK are both used in the present research. 

 A distributed-memory (DM) program is another type of parallel program. Here, 

data is distributed among multiple processes. A process cannot access the data 

of another process, unless the latter sends it. A DM program can be scalable 

because node count is potentially limitless (by connecting more computers). 
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However, communication in a DM program can slow it down—enough that 

DM-only programs are often slower than SM programs. 

 MPI (Message Passing Interface) is a library of communication subroutines for 

the DM context, so that processes can send/receive data to/from other 

processes. It has two basic types of subroutines: (1) point-to-point (between 

two processes); and, (2) collective (among many processes). 

 The Scalable Linear Algebra Package (ScaLAPACK) is another useful library for 

the DM context; it is the DM equivalent of LAPACK. 

 MPI and ScaLAPACK are both used in the present research. 

 A hybrid parallel program (HPP) is a DM program with a SM layer. In the DM 

layer, each node runs a process. In the SM layer, each process is multi-

threaded. A HPP uses all available cores without needing all cores to 

communicate; therefore, HPP programs are often fast and scalable. 

PFRAME3D is a HPP. 

 

 

A.2 The cache effect 

 

When a processor retrieves a variable from the RAM, it puts the variable, plus 

neighboring variables, into its cache. It does this because getting a variable in the cache 

(cache hit) is much faster than getting a variable in the RAM (cache miss). A programmer 

can take advantage of this feature by writing cache-friendly code. 
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In a cache-friendly code, data arrangement matches the algorithm’s access pattern. 

Consider the access pattern of a FORTRAN code that accesses an 𝑛 × 𝑛 matrix [𝐴], where 

𝑛 is large. FORTRAN is a column-major language, which means that 2D arrays are stored 

as columns—column 1, then column 2, etc. This means that 𝐴(𝑖, 𝑗) is adjacent to 𝐴(𝑖 + 1, 𝑗) 

and far (𝑛 entries away) from 𝐴(𝑖, 𝑗 + 1). A cache-friendly FORTRAN pseudocode would 

revise the algorithm as shown in Table A.1. Various nested loops in FRAME3D are revised 

to account for cache-friendliness. 

 

Table A.1: Original and cache-friendly pseudocodes of a 2D matrix update. 

Original Cache-friendly 

do i=1,n 

   do j=1,n 

      update A(i,j) 

   continue 

continue 

do i=1,n 

   do j=1,n 

      update A(j,i) 

   continue 

continue 

 

Similarly, the matrix factorization in §5.2 is updated as shown in Table 5.3. The 

same concept can be applied to speed up the solution procedure of [𝐿][𝐷][𝐿]𝑇{𝑥} = {𝑏}. 

Further, using blocked code (e.g., the blocked solver in §5.2) can reduce cache misses, which 

improves performance. 
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A.3 Regarding GPUs 

 

Graphics processing units (GPUs) are gaining acceptance as the future of high 

performance computing. GPUs allow for massively parallel computations—often 

hundreds or thousands of cores per node. One GPU core is usually slower than one CPU 

core. So if an algorithm is inherently serial, CPU computing may still be the faster choice. 

It is not uncommon to use both GPUs and CPUs; e.g., GPUs for the global linear-equation 

solver and CPUs for non-parallelizable computations. 

The present research uses a CPU cluster that yielded sufficient performance speed 

up; thus, GPU computing was not considered. Still, it may be interesting to study how 

GPUs can further speed up PFRAME3D. The same principles apply, but with many more 

cores per node. 
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Appendix B 

Miscellaneous Parallel Algorithms 

 

 

 

 

 

B.1 Parallel pipelined solver 

 

A “cache-friendly” version of the Cho (2012) parallel pipelined factorization is 

shown in Table B.1. (It is “cache-friendly” because it is a column-based algorithm written 

in FORTRAN, a column-major language; the Cho (2012) pipeline, too, was column-based 

but written in C++, a row-major language. See §A.2 for more about cache effects.) A 

benchmark comparison (Table B.2) shows that the “cache-friendly” version is an 

improvement of the Cho (2012) parallel pipeline, as seen in the less-than-half wall times 
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to solve a system (size 𝑛 = 32400 and 𝑚 = 8145) using the same computational resources 

(i.e., the same computer cluster). 

Table B.1: “Cache-friendly” parallel pipelined factorization*, based on Cho (2012). 

nextprocbefore=myproc-1 
nextprocafter=myproc+1 
lastproc=nproc-1 
if (myproc.eq.lastproc) nextprocafter=0 
if (myproc.eq.0) nextprocbefore=lastproc 
iproc = 0 
istart = 1 
do 10 i = 1,nj 
   minrow = min0(mbd,ni-i+1) 
   if (myproc.eq.iproc) then 
      buffer(1) = A(1,istart) 
      do 20 j = 2,minrow 
         buffer(j) = A(j,istart) 
         A(j,istart) = buffer(j)/buffer(1) 
      continue 
      call mpi_send(buffer to nextprocafter) 
      istart = istart+1 
   else 
      call mpi_recv(buffer to nextprocbefore) 
      if (myproc.ne.lastproc) call mpi_send(buffer to nextprocafter) 
   endif 
   jstart = myproc-iproc+1 
   if (jstart.le.1) jstart = jstart+nproc 
   ii = istart 
   do j = jstart,minrow,nproc 
      st = buffer(j)/buffer(1) 
      do k = j,minrow 
         A(k-j+1,ii) = A(k-j+1,ii) - buffer(k)*st 
      continue 
      ii = ii+1 
   continue 
   lastproc = iproc 
   iproc = iproc+1 
   if (iproc.eq.nproc) iproc = 0 
continue 

*Before this algorithm begins, the 𝑚 × 𝑛-sized [𝐴] (symmetric banded storage) is 

distributed “column-cyclically” among the different processes. For example, consider 3 

processes and 𝑛 = 7. Process 0 gets columns 1, 4, and 7; process 1 gets columns 2 and 5; 

and process 2 gets columns 3 and 6. 
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Table B.2: Benchmark comparison wall times (sec) with the Cho (2012) parallel pipelined solver 

using n=32,400 and m=8145. 

Solution step Version of 

parallel pipeline 

Number of cores used 

16 32 64 128 256 

Factorization Cho (2012) 

Cache-friendly 

2356.0 

1005.7 

1177.5 

503.2 

581.9 

231.1 

266.3 

70.9 

128.3 

22.4 

Substitution Cho (2012) 

Cache-friendly 

4.47 

2.33 

4.99 

2.10 

6.32 

1.99 

6.90 

1.97 

7.12 

2.18 

 

 

However, for the present work the parallel pipeline has two main drawbacks. First, 

it is based on the un-optimized column-based solver (§5.2), a much slower “starting point” 

for parallelization than the blocked solver from §5.2. For example, the parallel pipelined 

solver factors the 𝑛 = 80,000 and 𝑚 = 1000 system in 9.53 𝑠𝑒𝑐 (with 32 cores), whereas 

the 1-core blocked solver factors the same system in 12.9 𝑠𝑒𝑐. 

Second, if system half-bandwidth is narrower than the Table B.2 benchmark 

example (e.g., 𝑚 = 1000), Figure B.1 shows that weak-scaling (as defined in §4.4) is nearly 

“poor”; e.g., if workload doubles from 𝑛 = 80,000 to 𝑛 = 160,000 with a constant 𝑛 =

5000 per core, wall time increases by a factor of roughly 1.9. (Recall from §4.4.2 that weak-

scaling is “ideal” if this factor is 1.0 and “poor” if it is 2.0). 

The second drawback is attributed to the high communication costs in the parallel 

pipeline. Each process sends and receives 𝑛 messages. Cho (2012) compared this cost with 

𝑛3

3𝑝
, which asymptotically governed as 𝑛 → ∞. (𝑝 is the number of processes used, which 

for the pipeline equals the number of cores used.) For his wide-band systems (reinforced 

concrete walls), this comparison is adequate. But for narrow-band systems (𝑚 ≪ 𝑛), the 
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costs should be compared with 
𝑛𝑚2

3𝑝
, which grows at the same rate as 𝑛, assuming constant 

𝑚. Also, as 𝑝 increases, 
𝑛𝑚2

3𝑝
 decreases, making communication costs govern. There are 

additional “preparatory” communication costs that grow by 𝑛 when the solver allocates 

[𝐴] column-cyclically (see note in Table B.1) and {𝑏} & {𝑥} row-cyclically among processes; 

these preparatory costs are not included in Figure B.1, but would reduce the overall 

performance if the pipeline is implemented into a finite element program. 

Therefore, although the parallel pipeline solver was adequate for Cho (2012), it is 

not suitable for the large narrow-band systems likely used in PFRAME3D. §5.4 shows that 

a divide-and-conquer solver is better suited for PFRAME3D. 

 

Figure B.1: Wall times (sec) of parallel-pipelined factorization with 2 to 64 cores. Each curve 

corresponds to a different system size n with m=1000. A weak-scaling curve (solid green) is 

constructed (where workload is n=5000 per core). 
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B.2 Hybrid-parallel matrix-vector multiplication 

 

The pseudocode in Table B.3 computes 

 {𝑎} = {𝑎} + [𝐵]{𝑐} (Eq. B.1) 

in parallel where {𝑎}, [𝐵], and {𝑐} are distributed among 𝑝 processes as {𝑎}𝑖, [𝐵]𝑖, and {𝑐}𝑖, 

as is done in §6.2.2. If 

 [𝐵] = [𝐵1] + [𝐵2] (Eq. B.2) 

as shown in Figure 6.4, then Eq. B.1 becomes 

 {𝑎} = {𝑎} + [𝐵1]{𝑐} + [𝐵2]{𝑐} (Eq. B.3) 

or for process 𝑖, 

{𝑎}𝑖 = {𝑎}𝑖 + ([𝐵1]{𝑐})𝑖 + ([𝐵2]{𝑐})𝑖 

 = {𝑎}𝑖 + [𝐵1]𝑖{𝑐}𝑖 + ([𝐵2]{𝑐})𝑖 (Eq. B.4) 

The implementation in PFRAME3D computes Eq. B.4 accounting for symmetry, 

bandedness, and cache-friendliness. It can be seen that nearest-neighbor-only 

communications is used. 
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Table B.3: Hybrid-parallel matrix-vector multiplication. 

! Use Intel MKL dsbmv to compute {𝑎}𝑖 = {𝑎}𝑖 + [𝐵1]𝑖{𝑐}𝑖  

call dsbmv('l', ni, m-1, 1.d0, B, m, c, 1, 1.d0, a, 1) 

 

! Determine what to send to neighbors 

do i=1,m-1 

   if (myproc.ne.0) sendleft(i)=c(i) 

   if (myproc.ne.(nproc-1)) then 

      sendright(i) = 0.d0 

      mm=m-i 

      do j=1,mm 

         sendright(i)=sendright(i)+c(ni-j+1)*B(i+j,ni-j+1) 

      continue 

   endif 

continue 

 

! Send-receive operations 

if (myproc.eq.0) then 

   call mpi_sendrecv(sendright to myproc+1, and recvright from myproc+1) 

elseif (myproc.eq.(nproc-1)) then 

   call mpi_sendrecv(sendleft to myproc-1, and recvleft from myproc-1) 

else 

   call mpi_sendrecv(sendright to myproc+1, and recvleft from myproc-1) 

   call mpi_sendrecv(sendleft to myproc-1, and recvright, from myproc+1) 

endif 

 

! add ([𝐵2]{𝑐})𝑖 to {𝑎}𝑖 

do i=1,m-1 

   if (myproc.ne.0) a(i)=a(i)+recvleft(i) 

   if (myproc.ne.(nproc-1)) then 

      mm=m-i 

      do j=1,mm 

         a(ni-i+1)=a(ni-i+1)+recvright(j)*B(i+j,ni-i+1) 

      continue 

   endif 

continue 
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B.3 Share interface 

 

Assuming that dx is an 𝑛-DOF vector distributed as dxi (𝑛𝑖-DOF vector), the 

pseudocode in Table B.4 generates a dxg vector, where dxg is dxi with 𝑚-DOFs (from 

neighboring processes) concatenated to its front and back, i.e., an (𝑛𝑖 + 2𝑚)-DOF vector. 

It can be seen that nearest-neighbor-only communication is used. 

 

Table B.4: Share interface routine, used in parallel geometric updating. 

! Determine what to send to neighbors 

do i=1,mbd 

   if (myproc.ne.0) sendleft(i)=dxi(i) 

   if (myproc.ne.(nproc-1)) sendright(i) = dxi(ndof-mbd+i) 

continue 

 

! Send-receive operations 

if (myproc.eq.0) then 

   call mpi_sendrecv(sendright to myproc+1, recvright from myproc+1) 

elseif (myproc.eq.(nproc-1)) then 

   call mpi_sendrecv(sendleft to myproc-1, recvleft from myproc-1) 

else 

   call mpi_sendrecv(sendright to myproc+1, recvleft from myproc-1) 

   call mpi_sendrecv(sendleft to myproc-1, recvright from myproc+1) 

endif 

 

! Create dxg 

do i=1,mbd 

   dxg(i) = recvleft(i) 

   dxg(mbd+ndof+i) = recvright(i) 

continue 

do i=1,ndof 

   dxg(mbd+i) = dxi(i) 

continue 
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Appendix C 

General behavior of tube buildings 

 

 

 

 

 

The 60-story example building in §8 is a moment-frame (MF) tube structure. The 

general behavior of tube structures is well explained in Smith and Coull (1991), but a brief 

overview is recounted here for convenience. This appendix is intended as a qualitative 

discussion. 

A tube structure has four exterior frames (assuming a rectangular floor-plan) 

connected at the corners (Figure C.1). It is often idealized as a hollow bending beam, 

where the frames parallel to the loading direction act like beam webs, and the frames 

orthogonal act like beam flanges. The intention of the tube is that opposite flange frames 

provide the most stiffness through the axial tension and compression in columns. 
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In a MF tube building, the web frames produce a shear-like (i.e., racking) 

component of building response due to beam bending. The web frames’ response also has 

a bending component, where web columns are stretched/compressed based on their 

distance from the neutral axis. 

Corner columns are important to the tube frame because they belong to both web 

and flange frames. A simple elastic analysis of the fundamental mode of the §8 example 

building (Figure C.2 and Figure C.3) shows that when the web frame bends, the corner 

columns (C1) are stretched/compressed, and because they are rigidly connected to flange-

frame beams (B1), they cause the adjacent flange-frame columns (C2) to participate. In the 

same way, flange-frame beams (B2) transfer load from C2 to the next column line (C3), 

and so on. The overall result is that the flange-frame columns help resist lateral loads 

through axial deformation. 

But due to non-rigid beams, Figure C.3 shows that 𝛥1 > 𝛥2 > ⋯ > 𝛥9. This effect, 

known as shear lag, results in highly stressed corner columns and underutilized interior 

columns. (For the 60-story example building, C9’s axial loads are less than 25% of C1’s 

axial load.) Engineers typically try to minimize this effect, so that the columns are more 

evenly utilized. Shear lag may be reduced by stiffening beams or using closer column 

spacing (e.g., every 2 − 4 𝑚). Another way to reduce shear lag is to use variants of the tube 

structure, such as the bundled-tube or braced-tubed structure. In the present example, 

only the tube structure is considered. 

It is not uncommon for tube structures to have wider column-spacing at ground 

level. For aesthetic and/or practical reasons, architects and owners often want large 
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entrances. A transfer girder or truss is needed to accommodate this feature and 

redistribute loads to the 1st story columns. 

 

 

Figure C.1: Example plan of a moment-frame tube building. 
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Figure C.2: Exaggerated fundamental mode of the 60-story example tube building (§8). 

Compressive flange frame (left), web frame (center), and tensile flange frame (right). 
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Figure C.3: Upper stories of a compressive flange frame. Due to shear lag, outer columns are 

compressed more than interior columns. 

 

 

 

 

 

 

 

 



199 

 

 

 

Appendix D 

Non-standard Section Properties 

 

 

 

 

 

Most beams and columns in the 60-story example building are sized using 

standard sections according to the AISC Steel Construction Manual, 14th Edition (2010). Refer 

to this manual to get the properties of standard sections. However, a few sections are non-

standard and are listed in Table D.1, where 

 𝐴 is the cross-sectional area in 𝑖𝑛2 

 𝐼𝑦 and 𝐼𝑧 are the major- and minor-axis moment of inertias, respectively, in 𝑖𝑛4 

 𝑆𝑦 and 𝑆𝑧 are the major- and minor-axis section moduli, respectively, in 𝑖𝑛3 

 𝑍𝑦 and 𝑍𝑧 are the major- and minor-axis plastic section moduli, respectively, in 

𝑖𝑛3 
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 𝑑 is the depth of the section in 𝑖𝑛𝑐ℎ𝑒𝑠 

 𝑡𝑤 is the web thickness in 𝑖𝑛𝑐ℎ𝑒𝑠 

 𝑏𝑓 is the flange width in 𝑖𝑛𝑐ℎ𝑒𝑠 

 𝑡𝑓 is the flange thickness in 𝑖𝑛𝑐ℎ𝑒𝑠 

 𝐽 is the torsional constant in 𝑖𝑛3. 

 

Table D.1: Non-standard section properties used in the example 60-story building. 

Section 𝑨 

(𝒊𝒏𝟐) 

𝑰𝒚 

(𝒊𝒏𝟒) 

𝑰𝒛 

(𝒊𝒏𝟒) 

𝑺𝒚 

(𝒊𝒏𝟑) 

𝑺𝒛 

(𝒊𝒏𝟑) 

𝒁𝒚 

(𝒊𝒏𝟑) 

𝒁𝒛 

(𝒊𝒏𝟑) 

𝒅 

(𝒊𝒏) 

𝒕𝒘 

(𝒊𝒏) 

𝒃𝒇 

(𝒊𝒏) 

𝒕𝒇 

(𝒊𝒏) 

𝑱 

(𝒊𝒏𝟑) 

24”X24” box 

26”X26” box 

28”X28” box 

319.8 

351.8 

383.8 

22155.1 

29296.2 

37844.9 

22155.1 

29296.2 

37844.9 

1846.3 

2253.6 

2703.2 

1846.3 

2253.6 

2703.2 

2429.3 

2933.1 

3484.9 

2429.3 

2933.1 

3484.9 

24.0 

26.0 

28.0 

4.0 

4.0 

4.0 

24.0 

26.0 

28.0 

4.0 

4.0 

4.0 

32000 

42592 

55296 
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Appendix E 

Ground Motions 

 

 

 

 

 

 Three ground motions are used in the current report and presented in this 

appendix. Shown (Figure E.1 to Figure E.3) are acceleration, velocity, and displacement 

histories, and pseudoacceleration spectra. East-West (EW), North-South (NS), and vertical 

components are applied along the global X, Y, and Z directions, respectively. The velocity 

and displacement histories are integrated from the acceleration histories; artifacts from 

discrete integration (MATLAB’s cumtrapz) may be present. The pseudoacceleration 

spectra reflect the single-DOF response with 2% and 5% damping. The UBC 94 design 

spectrum is plotted for comparison. 
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The first (Figure E.1) is the Kobe earthquake ground motion at Takatori, which can 

be accessed from the Center for Engineering Strong Motion Data (CESMD) website, 

www.strongmotioncenter.org. This ground motion is used for the water-tank tower 

analyses in §3 (scaled to 32% and 37.3%) and §7.2 (scaled to 37.3%). 

The second (Figure E.2) is a five-cycle idealized acceleration square wave with 

peak ground velocity 𝑃𝐺𝑉 = 1.375𝑚 𝑠⁄  and period 𝑇 = 5.75 𝑠𝑒𝑐. NS and vertical motions 

are zero. It is used for the 18-story building analysis in §7.3. 

The third (Figure E.3) is the Denali earthquake ground motion at Pump station 

#10, which can be accessed from the CESMD website. This ground motion is used for the 

60-story example building analyses in §7.4 and §8. 
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Figure E.1: Kobe earthquake ground motion at Takatori. Shown are acceleration, velocity, and 

displacement histories, and pseudoacceleration spectrum. EW, NS, and vertical components are 

applied along the water-tank tower’s global X, Y, and Z directions, respectively. 



204 

 

 

Figure E.2: Five-cycle idealized acceleration square wave with peak ground velocity PGV=1.375 

m⁄s and period T=5.75 sec. Shown are acceleration, velocity, and displacement histories, and 

pseudoacceleration spectrum. EW, NS, and vertical components are applied along the 18-story 

building’s global X, Y, and Z directions, respectively. 
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Figure E.3: Denali at Pump station #10 acceleration, velocity, and displacement histories, and 

pseudoacceleration spectrum. EW, NS, and vertical components are applied along the 60-story 

example building’s global X, Y, and Z directions, respectively. 
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