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THE UNSTEADY FORCES ON SLENDER DELTA WING 

HYDROFOILS OSCILLATING IN HEAVE 

by 

Raymond Kay DeLong 

ABSTRACT 

The investigations described herein are both experimental and 

theoretical. An experimental technique is described by which the 

models tested could be oscillated sinusoidally in heave. The 

apparatus used to gather the unsteady lift, drag and pitching moment 

data is also described. 

The models tested were two flat delta wings with apex angles 

of 15 °  and 30 0 
 and they had sharp leading edges to insure flow 

separation. The models were fabricated from 0.25 inch aluminum 

plate and were approximately one foot in length. 

Three distinct types of flow were investigated: 1) fully wetted, 

2) ventilated and 3) planing. The experimental data are compared 

with the existing theories for steady motions in the case of fully wetted 

delta wings. Ventilation measurements, made only for the 30 0  model 

at 20 °  angle of attack, of lift and drag are presented. 

A correction of the theory proposed by M. P. Tulin for high 

speed planing of slender bodies is presented and it is extended to 

unsteady motions. This is compared to the experimental measure-

ments made at 60 and 12 0  angle of attack for the two models previously • 	des cribed. 
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This is the first extensive measurement of unsteady drag 

for any shape wing, the first measurement of unsteady planing forces, 

the first quantitative documentation of unstable oscillations near a 

free surface, and the first measurements of the unsteady forces on 

ventilated delta wings. The results of these investigations, both 

theoretical and experimental, are discussed and further investigations 

suggested. 

• 

• 
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I. INTRODUCTION 

A. Preliminary Remarks 

A hydrofoil boat is one which derives its lift force primarily 

from "wings" mounted to and away from the boat's hull. 	The lift is 

generated by the acceleration of the fluid surrounding the foil. 	This 

situation is very similar to an airplane flying through the atmosphere 

and much terminology and technique applied to hydrofoil boats has its 

roots in aeronautics. 

• 

Conventional boats, commonly called displacement craft, are 

buoyed up by the static pressure of the surrounding fluid. 	The boat 

displaces an amount of water equal to the boat's weight, hence the 

name displacement craft. 	All conventional hydrofoil boats operate 	in 

two modes. 	At low speeds (e.g., when docking) they operate as dis- 

placement craft and may or may not have their foils retracted. 	At 

higher speeds (e, g., design cruise) the hull is lifted clear of the 

water and the entire force is generated by the hydrofoil system. 	In 

this mode the craft is said to be "flying". 

The idea of using hydrofoils on boats is not new. 	It was first 

considered prior to the turn of the century. 	Even in 1919 Alexander 

Graham Bell, who is considerably more famous for another achieve- 

ment, had built and operated a hydrofoil boat capable of 60 knots. 

• 

Much more recently, however, a resurgence of interest in 

hydrofoil craft has taken place. This interest stems for all appli-

cations from one basic advantage afforded by the hydrofoil system 
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over displacement craft. Displacement craft operate on the surface 

of the water and as a result are greatly affected by the surface waves 

generated by wind, other boats, etc. A hydrofoil boat can operate 

with its hull above the wave crests and its foils submerged far enough 

so that the waves affect the lift to a negligible extent. The result is 

that a hydrofoil boat has better seakeeping capability at high speeds 

than does a displacement craft. 

This increased immunity to surface conditions is beneficial in 

both military and commercial applications. Currently the most likely 

military application is as a submarine chaser where the hydrofoil 

craft's ability to travel at high speeds in relatively rougher seas makes 

it a better choice. In commercial applications the dimunition of the 

wave influence gives a smoother ride. The decreased loading allows 

less fortress-like designs; indeed, since the craft operates somewhat 

like an airplane it must necessarily be built as light as possible, 

otherwise the operating range would suffer from the extra weight. 

Various hydrofoil configurations are popularly used. These 

are described in the voluminous monograph of Abramson, et al (1). 

There are several basic types of foils used in various combinations. 

These are planing, deeply submerged and surface piercing. The total 

lift generated by the foils is not affected by their placement since the 

lift generated must in any event equal the weight of the craft. 

The types of foils used and their arrangement will govern the 

stability of the craft, however. A planing foil has stability as long as 

• 

	 the leading edge is never submerged because of the change in wetted 
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area but is obviously severely affected by the surface waves. A 

submerged foil will experience a decrease in lift as it nears the free 

surface but the effect is slight unless the foil is less than a fraction of 

a chord from the surface. Ladder foils and surface-piercing V-foils 

are much better in that they can be designed to give whatever quasi-

steady stability is desired. 

The type of stability discussed in the previous paragraph con-

cerned the craft's natural tendency to return to the trim condition 

when perturbed. If the craft is suspended at three non-collinear 

points and the foils at each point have heave stability, the craft will 

also have pitch and roll stability. The pitch and roll "stiffness" 

depends on the separation of the points. The greater the horizontal 

• distance between the foils the stiffer the suspension. 

So far we have only been concerned with the lift force. For a 

boat which is to go other than in straight lines some means must also 

be included to generate side force for turning. In an airplane this 

side force is produced by banking the wing. This can also be done on 

a hydrofoil boat, but due to the interaction of the free surface it 

usually is not. What is generally done is to have the support strut 

generate the side force for inverted T and inverted ir foils and 

for V-foils differential lift in the two halves may be used to generate 

side force. The latter system is used on the tail of a Beechcraft 

Bonanza airplane. 

The infinite variety of ways in which the problem of building a 

hydrofoil boat can be attacked is part of what makes the problem 

• interesting. It also will suffice here to say that a detailed examination 
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of the designer's problems is clearly beyond the scope of these 

introductory remarks and the entire thesis. 

We will now confine ourselves to one facet of the design of 

hydrofoil boats, and that is its motion about its steady flight. If the 

boat is caused for any reason to oscillate about its mean path, the 

unsteady motion of the foils will give rise to unsteady forces caused 

by the acceleration of their fluid environment. The interaction of 

these elements (1. e,, fluid and foil-boat system) is commonly called 

hydroelasticity. 

Before an analysis can be made of the motion of the craft, a 

quantitative specification must be made of the forces experienced 

by the foils for various motions. It is the endeavor of this thesis to 

• add to the still rather sparse quantity of information regarding 

unsteady hydrodynamics. 

This investigation has been primarily concerned with delta 

planforrn foils and as such the work of previous authors will be for 

the most part also concerned with delta wings. References to other 

work will easily be found in references (1), (2) and (3). 

B. Previous Investigations 

The interest in triangular lifting surfaces hardly needs 

justification. They are common in aeronautics and from the studies 

of persons whose primary interest was motivated by aeronautical 

consideration we will consider previous "fully wetted" flow results. 

As was mentioned by Smith (4) the effect of Reynolds number on the 

•
general features of the flow about sharp edged delta wings is small. 
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Although viscosity is the physical property which determines the 

smooth outflow or lateral Kutta-Joukowski condition, the absolute 

value of the viscosity is not too important as long as the Reynolds 

number is moderately high. 

Prior to the interest in flows about delta wings with leading 

edge separation R. T. Jones (5) presented a method for calculating 

the force on a slender body at small angle of attack. Jones' analysis, 

conducted in the cross-flow plane, is applicable to slender delta wings. 

The cross-flow plane solution used was for a flat lamina perpendicular 

to the flow. The infinite velocities at the lateral edges in this model 

clearly do not exist in the actual case. Jones' analysis is, however, 

satisfactory for slender delta wings at small angles of attack and his 

1110 

	

	result is often called the linear contribution since it predicts the force 

to be linear with angle of attack. 

Subsequent experimental investigations, particularly by Roy (6), 

caused interest in finding a model which represented the observed flow 

especially the smooth outflow condition at the leading edges. 

Legendre (7) proposed the addition of two vortices above and inboard 

of the two leading edges. The strength and position of the vortices 

would be determined by the smooth outflow condition at the leading 

edges with the condition that the vortices have no net force on them. 

The two vortices were implicitly assumed to be joined by a cut so that 

the lift on the foil or foil-vortex system would be uniquely determined. 

Following a suggestion by Adams (8), Legendre modified the 

model with the vortices being joined to their respective leading edges 

• 	 by cuts rather than to each other. This had the advantage that the cut 
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could be interpreted physically as a vortex sheet feeding the primary 

vortex. His force condition was still on the vortex which meant that 

the lift on the foil depended on whether the forces or the cuts were 

included or not. 

Brown and Michael (9) proposed a model, anticipated by 

Edwards (1 0), which placed the zero force condition at each vortex on 

the cut as well. That is, the net force on the vortex and cut taken 

together should be zero. The ambiguity in the lift calculation was 

then removed. 

The Brown and Michael model has served as a basis for a 

number of other investigations. It has the advantage of basic 

simplicity and it reasonably represents the flow picture. It does not, 

• 	 however, predict the forces very well, being somewhat too high. 

The stability derivatives are likewise poorly predicted. 

Trying to develop a model which was even closer to the 

physical flow and one which would better predict the forces, Mangler 

and Smith (11) proposed a model with the flow separated from the 

leading edge being represented by a spiral vortex sheet. Somewhat 

better agreement with experimental data was obtained than with the 

Brown and Michael model. It has the disadvantage that the added 

complexity requires that the problem be solved on a digital computer. 

Smith (4) has recently published some further calculations using this 

model. These are used in the discussion of the experimental results 

in Section V. 

Apart from the foregoing studies, Gersten (12) presented a 

method of calculating the stability derivatives for triangular wings. 
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Gersten's method is basically one of lifting surface theory. It has 

the advantage that it predicts the forces fairly well but it has the 

aesthetic disadvantage that the trailing vortex field of his lifting 

surface theory does not physically resemble the actual flow. 

These are the major efforts to predict the steady forces on 

fully wetted delta wings. There have been other studies of the vortex 

structure and some flow visualization studies, particularly Marsden, 

et al (13), but these are the models from which most current work 

extends. The studies in this area are currently active as will be 

noted by Kiichemann.'s (14) report on the 1964 I. U. T.A.M. symposium 

held at Ann Arbor, Michigan. Several of the papers, notably (15), 

(16) and (17), presented at this symposium have since been published 

in volume seven of Progress in Aeronautical Science. Also the work 

of Garner and Lehrian (18) is notable but is really derived from 

Gersten' s. 

In the area of unsteady loads on non-stationary delta wings 

Jones' idea was discussed by Miles (19) and Garrick (20) for the 

linear problem. The unsteady problem with leading edge separation 

has been treated by Randall (21) who used the Brown and Michael 

model to calculate the force on a slender delta wing performing 

infinitesimal heaving oscillations. Lowson (22) used the same model 

for a slender delta wing performing finite heaving oscillations. The 

advisability of using this model for unsteady forces seems questionable 

in view of the not too good agreement with steady experiments, but 

they seem primarily interested in vortex position and it is suggested 

	

• 	 by Maltby, et al (23) that within experimental accuracy the work of 
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Randall shows encouraging agreement. Due to the computational 

difficulties no extension of the more realistic Mangler-Smith model 

has been made to unsteady flows but it would undoubtedly give 

superior force predictions. 

Another investigation of the forces on delta wings oscillating in 

heave was presented by Lawrence and Gerber (24). They used slender 

wing theory to calculate the effect of reduced frequency on the unsteady 

forces on some rectangular and delta wings. The theory is limited 

to vanishingly small angles of attack, not a very practical case, but 

gives surprisingly good correlation within the bounds of the theory. 

This is discussed in Section V. 

The other two types of flow investigated herein are unique to 

• hydrodynamics, therefore no aeronautically inspired results will be 

available. The second flow type (1. e., ventilated or cavitating) has 

received but slight treatment for delta wings. Tulin (25) has 

presented a theory for slender partially cavitating delta wings. This 

was subsequently corrected by Kaplan, et al (26). This model, 

though interesting, is not applicable to the current study since only 

a fully ventilated foil was tested. 

A theory presented by Curnberbatch and Wu (27) for cavity 

flow past a slender pointed stationary hydrofoil reasonably depicts 

the flow field of the current experiment. This theory treats the 

cavity-foil system as a slender body so that the problem may be 

solved in the cross-flow plane. The pressure condition on the cavity 

arises from the longitudinal change in the velocity potential and 

• this condition is satisfied on the average at a circle representing the 
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cavity..-foil system in the cross-flow. The computational details of 

the theory are fairly tedious. Extension of this approach to unsteady 

flows would seem to be very difficult. Experimental investigations 

of cavitating delta wings were performed by Reichardt and Sattler (28). 

They indicate poor correlation with the Curnberbatch-Wu theory but 

due to the small size of the models the results of the experiment are 

not unquestioned. An experimental investigation of the forces on 

steady ventilated delta wings by Kiceniuk (29) indicates fairly good 

agreement. The problem seems to be open for more detailed 

res earch. 

The third type of flow investigated herein is planing of slender 

delta wing hydrofoils oscillating in heave. 	Planing of delta wings has 

0 received little attention. 	Previous investigations have been popularly 

interested in V-bottom hulls with some work being done on rectangular 

skis for operation on water-based aircraft. 	Some delta configuration 

foils were investigated for use on hydro-ski aircraft but they were 

mounted with the apex aft. 	The reason for this was to decrease the 

initial impact loads on landing. 

The one notable exception which deals with delta wings is a 

theory presented by Tulin (30) on the planing of slender bodies at 

small angles of attack. 	Tulin's idea for the representation of the 

planing cross-flow is interesting. 	It is unfortunate that the paper 

contains many errors and his final answer is believed to be incorrect 

which is also unfortunate since it gives a better prediction of 

experimental data than does the correct solution. 	This problem is 

• discussed more thoroughly and corrected in Section IV of this thesis. 



The problem of unsteady planing has received very little 

attention; the major effort has gone toward predicting impact loads 

on hydro-skis attached to aircraft. This area is in need of further 

investigation. 

C. Present Investigation 

In the present investiations the interest is primarily in the 

forces experienced by the foil during an oscillatory heaving motion. 

No investigations into the vortex motion were undertaken. Two models 

of different apex angle were tested. The apex angles were 15 0  and 

300 . In the fully wetted case, a term particularly apt here, the models 

were oscillated in heave at different angles of attack, free stream 

velocity, oscillation frequency, oscillation amplitude and depth of 

• submergence. Measurements were made of the unsteady lift and drag 

forces and pitching moments. With this many parameters, the data 

gathering and processing was time-consuming, but the lack of avail-

ability of data on these effects made the job that much more worth-

while. 

The data gathered for the ventilated delta wing were limited 

because of the additional parameter, cavity length, and because 

during the course of the experiments it was learned that the 15 0  

delta wing would not ventilate properly. It was felt that the influence 

of the ventilation strut on the flow field over the 15 °  model was the 

cause of the problem. It was decided that data would be taken only 

for the 30 °  model. It was further limited to one angle of attack 

( a = 200 ), one submergence depth (D = 0.83 chords) and one 

• 



oscillation amplitude. The term oscillation amplitude as used here 

applies to the heaving velocity. This means that the heaving dis-

placement decreases with frequency. 

The added parameter cavity length and associated parameters 

air supply rate and ventilation number cause the data gathering to 

still be a fairly large task especially since in all the investigations 

reported herein the experiment essentially had to be run twice, once 

with the lift and pitching moment balance and once with the drag 

balance. Pitching moment data are not reported for the ventilation 

tests because the data from both balances are required to calculate 

the pitching moment about a point on the model and the data were 

found to be so sensitive to cavity length that data at the exact con- 

e ditions of the "lift" runs were not gathered for drag. Instead the 

drag data are for slightly different conditions. 

Both models were used in the planing tests. They were run 

at angles of attack of six and 12 degrees. Since the forces are 

smaller for a planing body than for a fully wetted one the tunnel 

velocity was run as high as practical (i.e., U = 22 ft/sec) to ease 

the measurement task. 

The problem was further complicated by the fact that the 

unsteady forces are a direct function of the heaving amplitude. The 

desire for large unsteady forces for easy measurement was thwarted 

by the problem that if the model was allowed to perform large 

oscillations one of two things must happen: 1) the model exhibits a 

large wetted area change or 2) the model becomes submerged during 

• 	 part of the cycle. This second effect referred to here as part-cycle- 



-12- 

planing causes drastic changes in the unsteady forces as described 

in Section V. 

The tests were performed with a slight amount of deadrise 

and with the amplitude of oscillation as low as was practical. 

Cursory examination of the effects of deadrise and oscillation 

amplitude showed them to be small as long as the part-cycle-planing 

mode was avoided. 

In addition to the experimental investigations with the planing 

delta wings some theoretical calculations were also performed. 

These may be found in Section IV. The theory originally developed 

in reference (30) by M. P. Tulin is re-done correctly here and is 

also extended to quasi-steady heaving motions. The theoretical • 	flow is compared to the assumed model in Section IV and the 

calculated results are compared with the experimental measurements 

in Section V. 

• 
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II. EXPERIMENTAL APPARATUS 

A. Free Surface Water Tunnel 

The experimental work on the delta wings oscillating in heave 

was conducted in the Free Surface Water Tunnel at the California 

Institute of Technology. Reference (31) describes the tunnel in con-- 

siderable detail so only its major features will be discussed here. 

The tunnel is shown in Figure 1. It is closed loop, recirculating 

and has a useable working section approximately 20 inches by 20 

inches in cross section and about eight feet long. The distinguishing 

feature of the working section is that the upper surface is open to the 

atmosphere which enables the tunnel to be used for planing and near- 

• surface tests. 

The maximum velocity attainable in the working section is 

about 30 feet per second. This velocity is indicated on a manometer 

which gives the difference between the total head upstream from the 

nozzle and the static head in the working section. 

A feature of the tunnel which was added after it was built and 

consequently is not discussed in reference (31) is the skimmer. Its 

function is to remove the fluid decelerated in the boundary layer on 

the upper surface of the nozzle. This fluid is added back into the 

circuit downstream of the working section. The result is that the 

velocity profile of the flow in the working section is constant near the 

free surface, allowing meaningful planing tests to be performed. 

There are of course boundary layers on the bottom and side walls of 

•
the working section but these do not ordinarily interfere with the 
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experiment. Figure 2 presents an overall view of the working section 

and test equipment. 

B. Hydraulic Pump and Oscillator 

The model was made to oscillate hydraulically. A Dennison 

variable displacement pump supplied oil at 1250 psi for these experi-

ments. The pump and oil reservoir are shown in Figure 3. This oil, 

controlled by a servo valve, causes a double-acting piston to move up 

and down in a cylinder. 

The servo valve and actuating mechanism are shown in Figures 

4 and 6. It was designed and built by Team Corporation of El Monte, 

California. Not pointed out in the figures are the position and 

• 	

velocity transducers which sense the motion of the piston and provide 

feedback information to the servo controller. The position trans-

ducer is a linear variable differential transformer (LVDT) and the 

velocity transducer is nothing more than a magnetized iron core 

inside a coil of wire. The voltage generated is proportional to the 

number of lines of force being cut per unit time and hence the 

velocity. 

Co Servo Controller 

The device which took the input signal, compared it with the 

feedback and generated the signal to the servo valve is called the 

servo controller. It was designed and built by the McFadden 

Electronics Company of South Gate, California, and is Model 150A 0  

It was designed to be operated with position, velocity or force 

1111 	feedback. It was run throughout these tests on velocity feedback 
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because this gave the best response in the frequency range of interest. 

D. Models  and Attachment Fixtures  

The models, shown in Figure 5, are two sharp-edged delta 

wings with apex angles of 15 and 30 degrees. They were fabricated 

from one-quarter inch aluminum plate and are both approximately 

one foot in length. Their bottom sides are both flat and a two-stage 

bevel, rounded by hand, was used on the top. This produced quite 

sharp edges. The effect of camber is negligible, particularly in 

light of the leading edge separation which occurs in all three types of 

flow (i.e., planing, fully wetted and ventilated). 

Provision for running different angles of attack was accom-

plished through spacers placed between the model and the force 

balance. This assures a simple rigid system in which the angle can 

be reset at will. It does not have the flexibility of a continuously 

variable device, but has proved very workable here. 

E. Instrumentation 

1. Lift and Pitching Moment Balance 

The measurement of the unsteady lift and pitching moment 

forces was accomplished by a strain gage strut balance. That is, the 

balance is an extension of the support strut. The placement of the 

balance is shown in Figure 6. The balance was constructed so that 

the lift and pitching moment force would be taken out through two 

longitudinally spaced vertical links. The drag force was taken out 

by one horizontal link. On each of these primary load-carrying links 

• 
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was attached a conventional wire strain gage bridge. By summing the 

forces in the two vertical links the lift is obtained; by differencing 

them the pitching moment is obtained. It was found in static tests 

after the balance was constructed that the drag element had an 

unacceptable amount of lift interaction and consequently this balance 

was not used for drag measurements but rather a new one was 

designed. It is described in some detail in the next section. 

The lift and pitching moment balance is shown in Figure 7 

before the installation of the strain gages. The wires for the bridges 

pass through a hole in the top of the balance, up through the center of 

the support strut and piston to a connector at the top of the oscillator. 

After the installation of the strain gages metal plates were soldered 

• to the sides of the balance for mechanical protection and to provide 

support for the waterproofing which consisted of thin sheets of latex 

cemented around the outside of the balance. The balance was 

slightly pressurized via the hole carrying the wires to prevent water 

from entering the balance in the event of a leak. 

The balance is fairly rigid having no natural frequencies 

below 200 cps, but a dynamic calibration of both lift and pitching 

moment was provided at each of the operating frequencies to obviate 

the effect of a dynamic magnification factor. The calibration is 

discussed in more detail later. 

2. Drag Balance  

As was mentioned the existing balance was found to be 

• 
	unacceptable for drag measurements due to the lift interaction. As 



• 
-17- 

dynamic drag measurements are quite scarce a new balance was 

designed to measure drag only with the hope of isolating all other 

forces and moments and eliminating all interactions. 	The final 

balance showed in extensive static tests that it did just that to the 

least count of our equipment. 

The balance is shown in Figure 8. 	It consists of two over- 

lapping side plates which are about 0.2 inch thick and very rigid, one 

of which is attached to the support strut and the other to the model. 

The side plates are connected to each other in turn by a system of 

flexures and an instrumented link to measure the drag force. This 

drag link is shown in Figure 9. 

The flexure system consists of four thin metal sheets lying 

• in two vertical transverse planes. 	Each flexure is 0.8 inch high, 

0.005 inch thick and 0.2 inch in the lateral direction. 	They were cut 

from sheet stock and furnace brazed in position. 	They carry all loads 

except drag for which they are comparatively flexible. 	The instru- 

mented link carries most of the drag force providing high sensitivity. 

It is a flat bar approximately 0.3 inch high, 3 inches overall length 

and 0.050 inch thick except in the central instrumented portion where 

it is 0.030 inch thick. 	It is attached at the front to the grounded 

side and at the back to the model side. 	This puts the link in tension. 

Small "cut-outs" were machined into the link at each end just 

inboard of the attachments to prevent unwanted moments from getting 

to the instrumented section. 

The strain gages are of the solid state type of which two are 

• the P type and two the N type giving high gage factors and four active 
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gages. Their placement on the gaged section was further planned to 

cancel any moments which might creep in. Temperature compensa-

tion is also provided by gage matching but that is of little importance 

in this application. 

Because the gages could not be in place during the brazing 

the balance was designed so that the drag link could be inserted 

through an opening in the trailing edge after brazing and fastened in 

place by dowel pins and cap screws through access holes in the side 

pieces. The opening in the trailing edge was filled with a brass plug 

to provide support for the waterproofing. This has the added advan-

tage of easing maintenance should the gage fail. Waterproofing is 

provided as on the lift balance by thin latex sheets cemented to the 

outside of the balance. 

The balance was designed so that it is sufficiently rigid in the 

drag direction (i.e., its natural frequency is above 600 cps with a 

model attached) so that it could be calibrated statically and the same 

factor used at all frequencies. 

3. Voltage Supplies and Amplifiers 

Figure 11 will be helpful in showing how the electronic 

equipment is patched together. The excitation voltages for the strain 

gage bridges were provided by a Microdot Power and Balance Unit 

PB-200A for each. They have provision for patching resistors on a 

conditioning board to approximately balance the bridge. A poten-

tiometer was also provided for balance which was useful for nulling 

• 	
the steady load. Each unit contained a potentiometer for setting the 
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excitation voltage. A Microdot Voltage and Balance Monitor VB-300 

was used to monitor the excitation voltages and to null the bridge 

output during steady operation. 

The output of the strain gage bridges was fed through a series 

of Burr-Brown Model 1685 amplifiers. In the lift-pitching moment 

balance the outputs were summed and differenced in the first two 

amplifiers to produce lift and pitching moment. These outputs went 

to a selector switch so that only the signal being analyzed would be 

fed to two other amplifiers connected in series. The total gain was 

then 1000. 

4. Return Signal Analyzer 

•

The force signals and heaving velocity signals were 

analyzed in Boonshaft and Fuchs Model 711A Return Signal Analyzer 

(RSA). The signal being analyzed is compared internally to a signal 

of the same frequency as the command signal. A Fourier analysis 

is performed electronically and the components can be read out on 

meters or on an auxiliary voltmeter. 

5. Variable Phase Low Frequency Oscillator 

The command signal which was fed to the servo controller 

was generated by a Boonshaft and Fuchs Model 711.AP Variable Phase 

Low Frequency Oscillator (VPLFO). This has two outputs; one was 

fed into the servo controller, the other is also tied internally to the 

RSA. By varying the phase of the command signal while analyzing 

the output of the velocity transducer a velocity reference for the force 

• signals can be obtained. 
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6. Digital Voltmeter  

The output of the RSA was connected to a Non-linear 

Systems Series 2900 Digital Voltmeter. This is an integrating meter 

and the integrating times most frequently used were one and ten 

seconds, the latter used if the data were unsteady. 

7. Position  and Velocity Transducers 

The position and velocity transducers were mentioned 

earlier. The primary functions of the position transducer were to 

aid in the calibration of the velocity transducer and to provide static 

height stability in the servo controller. The velocity transducer 

provided the phase reference for the force data and was also used in 

• 

	
the normalization of the forces. 

F. Support and Ventilation Struts  

The support strut tying the model and force balance to the 

piston of the oscillator is a NAGA 0010 section of 10 percent thickness 

and 4 inch chord. It was designed to - minimize ventilation from the 

free surface. The force balances had similar contours to continue 

the strut profile to the model. The angle changing spacers were also 

contoured similarly. 

For the ventilation tests a means was needed to provide a 

known quantity of air at the suction side of the foil without otherwise 

interfering with the flow. The method finally chosen was a hollow 

bi-convex strut fabricated from two sheets of aluminum 0.040 inch 

• 	thick rolled into cylindrical sections which were subsequently heli- 
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arc welded at the leading and trailing edges. This was slipped over 

the support strut and attached to it above the balance. A means was 

provided to seal the upper end and air supply and pressure fittings 

were provided. The ventilation strut is shown in Figure 10. 

G. Ventilation Measuring Apparatus 

1. Air Supply Measurement  

The air supplied to the cavity during the ventilating runs 

was measured by a Fischer-Porter flowrneter and the supply pressure 

was measured on a Heise Bordon tube pressure gage. The reduction 

of the data is discussed later. 

2. Cavity Length Measurement  

• The cavity length was measured with a tape rule held 

against the working section side. This method probably is not 

accurate to less than an inch but considering the difficulty in defining 

the termination point for the cavity this accuracy was quite acceptable. 

3. Cavity Pressure Measurement  

The cavity pressure was measured by a water-filled 

U-tube manometer open to the atmosphere on one end and connected 

to the top of the ventilation strut on the other. There was a pressure 

drop from the point of measurement to the cavity which was accounted 

for by running tests with the tunnel dry. This allowed the pressure 

drop which is a function of the air supply rate to be subtracted out. 

• 



• 	
-22- 

III. EXPERIMENTAL PROCEDURE 

A. Calibrations  

1. Position Transducer 

The position transducer was calibrated using a microscope 

attached to a lead screw and counter. The lead screw and counter 

were geared together so that the counter read directly in thousandths 

of an inch. The microscope could be set with the cross hairs aligned 

to a mark on the oscillator shaft; a number of position and voltage 

readings would then be made and the data least squares fit with a cubic 

polynomial. The linear term is the only one which is used since over 

the range covered in the velocity transducer calibration only the linear 

• 

	 term is important. 

2. Velocity Transducer 

The velocity transducer was calibrated using the position 

transducer since the motion was simple harmonic. At each of the 

frequencies used in the experiment the velocity and position signals 

were analyzed using the Return Signal Analyzer. Since for simple 

harmonic motion the velocity amplitude is just the angular frequency 

times the position amplitude, and since we know the position cali-

bration factor, we can then infer the velocity calibration factor. 

3. Lift and Pitching Moment Balance 

The lift and pitching moment balance was calibrated both 

statically and dynamically. Static tests were run to determine the 

electrical position of each of the force links and the excitation • 
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voltages were chosen so that both of the lift gages (N
1 and N

2 ) had the 

same output/unit force. This must be done, otherwise the balance 

will have a lift-pitching moment interaction. 

The dynamic calibrations were done at each frequency because 

even though the balance's natural frequency was well above those used 

in the experiment this afforded an easy way to obviate errors due to 

dynamic response. A two piece calibration mass shown attached to 

the strut in Figure 10 was fabricated specifically for this task. The 

upper part, made of aluminum, was bolted to the strut at the model 

attachment holes. The bottom part, much heavier and fabricated of 

brass, was made so that it could be attached to the aluminum bar at 

any of six different positions to vary the longitudinal center of gravity 

• of the total live mass. Using Newton's second law and the character-

istics of simple harmonic motion the forces were inferred from 

knowing the mass and the velocity transducer output. By oscillating 

the mass at two different longitudinal positions (generally the end 

ones) the pitching moment calibration coefficients and the longitudinal 

electrical center were determined. This also allowed a check on the 

sensitivity of lift to pitching moment changes. 

4. Drag Balance  

The drag balance presented a much easier calibration 

problem. Because of its designed-in constant response over the test 

frequency range the calibration could be and was done statically. 

This consisted of bolting a fixture to the bottom of the balance and 

. 

	
running a line from this fixture over a pulley to a hook on which shot- 
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• 

bags could be hung. The problem of assuring that the line was pulling 

in the drag direction was handled by levels on both the fixture and the 

line. Having only one load-carrying element in the drag direction 

no matching of outputs was required as in the "lift" balance, therefore 

the excitation voltage was changed to maintain a fixed calibration 

coefficient over the period of drag testing. 

As a check for whipping of the strut the balance was oscillated 

with the tunnel dry and no sensible drag output was noted. 

5. Return Signal Analyzer 

The manner in which the force coefficients were normalized 

meant that the Return Signal Analyzer processed a signal in the 

denominator as well as the numerator. This means that an absolute 

• calibration was not required (in fact, it was checked against an rms 

voltmeter and appeared to be within two percent of scale) but only 

variations from scale to scale. These relative coefficients were 

obtained using a signal from the Velocity Phase Low Frequency 

Oscillator and leap-frogging from scale to scale. Except for the two 

lowest scales they were within one percent of the ratio of scales so 

even had they not been accounted for, and they were, the effect would 

hardly have been noticed. 

6. Air Supply Apparatus 

The ventilation tests required that three additional pieces 

of apparatus be calibrated. They are a flow meter, a supply pressure 

gage and in this case we also had to account for the pressure drop in 

• the ventilation strut. 
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The flow meter was a Fischer-Porter product with tube No. 

FP-3/4-27-G-10/80 for which a calibration curve was provided by 

the manufacturer. It was double-checked against another flow meter 

which had been previously calibrated and was within the five percent 

tolerance, over the working range, that these instruments are good 

for. 

The supply pressure, which never exceeded 70 psi at the flow 

meter, was measured by a Heise gage No. H1665. This gage was 

checked with a dead weight tester and found to be within 0.1 psi from 

zero to ninety-five psi. This was the accuracy to which the gage 

could be read. 

The cavity pressure was given by a water manometer less the 

• pressure drop in the ventilation strut. This pressure drop was 

accounted for by running various air supply rates through the strut 

with the tunnel dry and calculating the relationship between pressure 

drop and mass flow rate. This drop was then subtracted from the 

apparent cavity pressure in the final data reduction. 

B. Parameters Investigated  

There are basically six parameters whose influence on the 

force coefficients was investigated. They are angle of attack, 

aspect ratio, reduced frequency, submergence, oscillation amplitude 

and air supply rate. Not all combinations of the parameters were 

run due to the time involved, however representative checks were 

made where it was felt appropriate. 

•
The basic angles of attack which were investigated varied 
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depending on the type of flow. 	For instance, in the fully wetted runs 

angles of zero, six and twelve degrees were run for each of the 

submergences. 	The planing runs, however, were done only at six 

and twelve degrees since proper planing cannot be established at zero 

degrees. 	The ventilated runs were performed at twenty degrees 

angle of attack because this is near the lowest angle that the model 

could be fully ventilated under the test conditions. 

In addition to the basic data runs, tests were done at minus 

six and minus twelve degrees with the model fully wetted and at the 

deepest submergence. This was done to give some justification to 

the assumptions that the camber and strut effects were small. 

Two different models were used. 	They were both fabricated 

• from 0.250 inch aluminum plate and have sharp edges all around to 

insure flow separation. 	Both models were approximately one foot in 

length and had apex angles of 15 and 30 degrees. 	The aspect ratio 

of these two models is 0.526 and 1.071 respectively. 

One of the most varied parameters in the tests was the 

reduced frequency. 	In all of the runs except the ventilation tests the 

reduced frequency was the one varied, by means of the frequency, 

having fixed the other variables. 	In addition to the fundamental 

influence of the reduced frequency on the force coefficients, various 

tunnel velocities were run to determine the effect of obtaining the 

reduced frequency by different frequency-velocity combinations ° 	This 

was done only at an angle of attack of twelve degrees, 30 0  model and 

at maximum submergence since this was thought to provide the 

• severest test. 



• 	
-27- 

The effect of the free surface was investigated in the fully 

wetted tests by running the models at approximately two, six and ten 

inches submergence. These large submergence changes were 

accomplished by inserting spacers between the box holding the 

hydraulic oscillator and the tunnel. 

For the data reduction it was desirable to normalize the force 

coefficients with the heaving velocity but to do this it was necessary 

to establish that the effect on these coefficients of changing the 

amplitude was negligible. Since it was impractical to do this at every 

combination of parameters the case of the 30 °  delta wing, 12 0  angle 

of attack, 0.83 chord submergence and 16.5 ft/sec tunnel velocity 

was chosen as at least representative if not a worst case. In the 

• planing runs the oscillation amplitude was more constrained by other 

things to small values, consequently the effect was that it was not 

practical to measure but was thought to be very slight. 

In the ventilation runs a whole new group of parameters was 

introduced. They are the air supply rate, the cavity length and the 

cavity pressure. These parameters are all directly related to each 

other so the situation is not quite as complicated as it sounds. The 

basic variable chosen was the air supply rate but the other data were 

also computed. 

C. Data Runs 

In this section we will be concerned with the actual steps of 

data gathering. For the most part the steps are the same for both 

•
fully wetted and planing tests. The basic parameter varied for these 
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two in any particular run was the frequency whereas in the ventilation 

runs the air supply rate was varied. 

Before the start of a run we must select and fix the following 

"variables": 

1. Model 

2. Angle of attack 

3. Submergence 

4. Oscillation amplitude (fully wetted) 

5. Tunnel velocity 

At some time during the testing each combination of model and 

attachment fixtures must have its mass determined because the force 

due to the "live" mass and the acceleration must be accounted for to 

• determine the fluid mechanical forces. 	This was accomplished by 

assembling the model and fixtures as for a test and then with the tunnel 

dry the model would be oscillated and the live mass tare determined. 

Having fixed the above parameters and with the tunnel full and 

operating at the chosen velocity but with the model stationary, the 

bridge excitation voltages are checked and the bridges balanced to 

limit the DC input to the RSA. 	With the static bridge outputs zeroed 

the amplifiers are balanced. 	Now the model can be oscillated. 

• 

The frequency is chosen on the VPLFO and the voltage for the 

desired oscillation amplitude is dialed in. 	With the input shorted 

each output channel of the RSA is zeroed to limit the tare. 	Now the 

signal from the velocity transducer on the oscillator is applied at the 

input of the RSA and the phase of the command signal varied so that 

the RSA output appears only on one channel. 	By varying the phase in 
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this way a velocity reference is obtained. 	The force is applied to the 

RSA. 	That part of the force signal observed on the channel previously 

containing the velocity has the same phase as the velocity. 	The second 

output channel gives the quadrature component of force. 

In a typical data block zeros are taken for each channel with 

the input shorted. 	The heaving velocity is applied to the RSA and read. 

The force signal is applied and each channel read. 	The input is again 

shorted and zeros again taken. 	When using the "lift" balance, the 

first force taken is the lift. 	After the second set of zeros another 

velocity is taken and then the pitching moment. 	This routine is 

repeated again at constant frequency so that redundant lift and pitching 

moment readings are obtained with sets of zeros before and after each 

force reading. 	The data taking is similar for the drag balance except 

that only one force is being read. 	This process is repeated at each of 

the frequencies investigated. 

The ventilation runs are similar in that the bridges and 

amplifiers are balanced with the model stationary and the RSA outputs 

are zeroed with shorted input. 	The primary difference lies in that the 

frequency is fixed not just for a "block" of data but for an entire 

"run". 	The parameter varied within the run is the air supply rate. 

D. Data Reduction 

The data reduction was accomplished for the most part with the 

aid of an electronic digital computer. The repetition makes the job 

boring which encourages errors when done by hand. The computer is 

• 	
ideal for this type of work. The data were reduced on the Institute's 
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IBM 7094 computer which is something like killing flies with a steam 

shovel but it was the only one of convenient accessibility. 

The calibrations and data reduction are intimately tied 

together, consequently some overlap with the previous section on 

calibrations must be expected. The equations defining the calibration 

coefficients and their use in the data reduction are presented here. 

1. Force Coefficients 

We will assume that the hydrofoil is performing a simple 

harmonic heaving motion. The vertical displacement transducer 

output is then given by a relation of the form 

• 	y = FrA sin cot 
	

( 1 ) 

where y is the vertical displacement transducer output, F 1  the 

displacement calibration coefficient obtained as described previously 

and A is the amplitude. Feeding this displacement signal into the 

RSA we get (all RSA output signals will be denoted by tildes) 

= C AF 1 	 (2) 

where C is some constant associated with the Fourier analysis 

performed by the RSA. 

Because the motion is simple harmonic the velocity transducer 

output can be written in the form 

= F2A o.) cos cot 	 (3) 

•
This can also be thought of as the defining relation for the velocity 
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calibration factor
' 

F
2 . The signal becomes, after processing by the 

RSA, 

= F
2 

C A co 	 (4) 

or substituting equation (2) into equation (4) we get 

= F 	co• 	 (5) 2 F 	' 1 

Solving equation (5) for F
2 shows us explicitly how we may obtain 

this calibration factor. 

F 
1 y 

—= — F2 	(A) (6) 

• 	 The acceleration is also directly related to the velocity and 

since we know the value of the calibration mass we can use Newton's 

Second Law to infer the force output. 

'2 F = - m F
3 A co sin cot 	 (7) 

This equation defines the lift force calibration factor F 3  and m is 

the calibration mass (toa1). The signal as processed by the RSA is 

= - m F3  C A co2  . 	 (8) 

Substituting equation (4) into equation (8) the RSA output becomes 

= - m F o.) 	 (9) 3 	F
2 
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and solving this expression for F 3  we get equation (10). 

F 
2 F F3 = - — — 	 (10) 

The rms dynamic lift is then related to the RSA output signal through 

the factor F
3* 

. = L . • F 	 (11) r, 1 	r, 1 	5  

The subscripts r and i have been used to denote the force 

components in-phase with the apparent change of angle of attack 

and 90°  out of phase. 

The apparent change of angle of attack is given by • 
- 	Y  

U P
2 

(12) 

The in-phase lift coefficient is then defined by and calculated 

using equation (13). 

L
r 	 2 F

2r C
La- 	1 

P U 
2

.A PU A F
3 	.Sr 	

(13) 

The quadrature lift coefficient is then defined by and calculated using 

equation (14). 

	

L. 	 2 F
2 	 

( 

	

- 	
1 	 m F 3  

	

C
L 	

co 

1 

	

 
a 	

pUA F
3 	 F2 ) 	

(14) 

	

i 	PU A 	Et  • 
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The second term in parentheses in equation (14) represents the force 

due to the acceleration of the model's mass and the live mass of the 

balance. The total live mass is m . 

The pitching moment calibration is similar. The calibration 

mass m has its center of gravity at a distance 	from the 

electrical center of the balance. This offset causes a moment as the 

mass is accelerated vertically. The moment signal can be expressed 

in the form 

t  
M = 	F

4
A c

2
o sin cot . 	 (15) 

This equation defines the pitching moment calibration factor F
4 

and the processed signal can be expressed as • 
1■71 = m F

4
C A

'
co

2 
. 	 (16) 

Substituting equation (4) into equation (16) and solving for the 

calibration factor F
4 

we get 

F2  F
4  = 
	 (17)  m P CJ 

The rms dynamic pitching moment is related to the RSA 

output signal through the factor F 4  . 

1■4'. . = M . • F
4 	 (18) 1", 1 	 r, 1 

The in-phase pitching moment coefficient is then defined by and 

• calculated using equation (19). 
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M
r  2F2 	Mr  

M- 	
PU 

1 	2Acce - 	p UA F
4

c 	 (19) 
r 	-2-  

The quadrature pitching moment coefficient is defined by and 

calculated using equation (20). 

M. 	 Z F
2 cm_ - 	 

a 	1 	

na .e F m 

	

1 	 4(')  

	

PU
2 
 Ac 	

= 
pU A F4 	c  F2 	

(20) 

The distance of the total live mass from the electrical center of the 

balance is / and m is as for the lift. The pitching moments 

as given above are for moments about the electrical center of the 

balance. To obtain moments about a parallel axis through the model 

• 	 planform's centroid we must have drag data. 

The drag is reduced in much the same way. The drag 

calibration factor is obtained statically and is the same for all 

frequencies. Also, because the motion is perpendicular to the 

direction that the force is being measured there is no live mass tare. 

The drag force is related to the RSA output by 

	

. = D . • F
5 	 (21) r, 	r, 

and the drag coefficients are given by 

D. 	 2 F
2 	i5 

D 	

. 

	

r, 1 	 I', 1 C
a-   -  	 • 	 (22) 

	

1 	2 - 	pU A F 5 	-:- 

	

—2 PU A a 	 Y r, i 
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2.  Ventilation Parameters 

The additional data taken during the ventilation runs were 

reduced to dimensionless parameters as follows. 

The cavity length was measured with an ordinary rule and 

the number divided by the model chord length to produce a dimension-

less cavity length. 

The air supply rate was measured with a Fischer-Porter flow 

meter and the supply rate reduced to standard cubic feet per second 

using calibration information provided by the manufacturer. An air 

supply coefficient was defined as 

• 

	

	 C
- 	  

Q 	UA sin a • 

This has the meaning of a column of air of cross-sectional area 

equal to the projected frontal area of the foil and moving at free 

stream velocity. 

The ventilation number is analogous to the cavitation number 

and is defined by 

Pco pc 
v = 1 ,2 7  p u 

The cavity pressure was measured by a manometer connected to the 

ventilation strut. The pressure drop in the strut was calibrated as a 

function of the air flow rate so that the cavity pressure reading could 

be adjusted accordingly. 

• 
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IV. A THEORY OF UNSTEADY PLANING OF SLENDER 

BODIES AT SMALL ANGLES OF ATTACK 

A. Preliminary Remarks 

We digress somewhat here to develop some theoretical 

results so that they can be referenced in the course of discussing the 

experimental data. As was mentioned in Section I Tulin (30) has 

previously presented a theory for steady planing of slender bodies 

at small angles of attack. It is unfortunate that the paper containing 

Tulin's efforts has quite a few errors. Some of these are algebraic; 

others are perhaps conceptual. The paper nevertheless contains an 

interesting approach to the problem and the method used is basically 

correct. 

The purpose of this section is two-fold. It is intended that 

Tulin's original problem be corrected. It is also intended that the 

problem be extended to unsteady planing and it is shown how the 

unsteadiness affects the validity of the approach. The specific cases 

of uncambe red delta wings at rest and oscillating in heave are treated 

in detail. 

B. The Coordinate System  and Bernoulli Equation 

The coordinate system used for the solution of this problem 

is shown in Figure 12. It is fixed to the foil with its origin at the 

foil's apex. The x-axis passes through the mid-point of the trailing 

edge. The y-axis is normal to the plane containing the apex and the 

• 	 trailing edge and the z-axis completes the right handed set. The foil 
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may have a small amount of camber but is assumed to be unyawed. 

Neglecting the effect of gravity the equation of motion of the 

fluid in this frame of reference is given by: 

DI 	-Z.. 	1 
vb = 	T VP (23) 

The term v
b ' not usually encountered in steady problems, is 

required because Newton's Second Law must be applied in an inertial 

reference frame. This term represents the acceleration of the 

previously defined coordinate system with respect to an inertial one. 

The velocity of any fluid particle with respect to the 

coordinate system of Figure 12 is q . This velocity is expressed • 	in terms of a potential such that the gradient of the potential yields 

the velocity. 

= 	 (24) 

Using this definition of .1, we can re-write equation (23). 

1p 
V Pt + 2- (v10) + —p  + 	( y cosa - x sina )] 	= 0 	(25) 

It should be noted that in the above equation motions normal to the 

free stream have been assumed. We can integrate equation (25) to 

get 

1 	 p + 7 	2 + — + b  ( y cos a - x sina ) = B(t) . 	(26) • 



The function B(t) is often called the Bernoulli constant since in 

steady problems it is a constant. Here it may be a function of time. 

At infinity the velocity potential 	tt 	is given by 

= (U cos« + v
b sin a )x + (U sin a - v

b cos a )y 	(27) co 

From this condition on the potential at infinity we get upon 

substitution into equation (26) the value of B(t) . 

1 B(t) = L
p
—c° + —

1 
(U ccs 	 2 

	

+ v
b sin a ) + 	(U sin a - v

b cos a )
2 

2 

(28) 

By subtracting the potential at infinity we can define a new 

"perturbation" potential as in equation (29). 

= 	- 	 (29) oo 

Re-writing equation (26) in terms of the new potential c we get 

the exact unsteady Bernoulli equation for this problem. 

1 	 2 	1 + 	( 9 + U cos a + v
b 

sina ) + .2. ( 	 + U s in a - vb  cos a ) 2 
t 	c 	x 

1 	2 	p 	1 + 	( 9 ) + — = — ( U cos a + vb  sin a ) 2 
z 	P 	2 

1 co 
(30) + 	( U sin a - vb  cos a )

2 
+ - —p- 
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C. Laplace's Equation and The Boundary Conditions 

Although it has not been stated we are taking the fluid to be 

incompressible and inviscid. The condition of incompressibility 

simplifies the continuity equation and the irrotation.ality following 

from the inviscid assumption allows us to write the velocity as the 

gradient of a scalar potential. The equation then that the velocity 

potential must satisfy is the well known Laplace's equation (31). 

'7
2 

(x, y, z; t) = 0 	 (31) 

It is easily shown that the perturbation potential also satisfies the 

same equation. 

• The boundary conditions on the perturbation potential will now 

be constructed. From its definition the perturbation potential is seen 

to vanish at infinity. On the foil we have the condition that the flow 

must be tangent to the boundary, which gives: 

/ 	=  y 	x 	yo (32) 

where yo (x) is the camber function and the prime denotes differen-

tiation with respect to its spatial argument. Equation (32) can be 

re-written as shown below. 

= 	Yo 

= ( sox  + U cos 	+ vb  sina ) yo 	 (33) • 
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This boundary condition on the foil is exact. The boundary conditions 

on the free surface require some approximations. They will be 

discussed in the next section. 

D. Approximations 

From this point on we will assume that we are treating a 

"slender" body. What we mean by slender will become clear as the 

approximations are made. If we can assume as a result of this 

slenderness that q, 	<< 	
' 	it can then be neglected in xx 	YY 	z z 

 

Laplace's equation and x becomes a parameter entering the problem 

only through the boundary conditions and the potential is not affected 

by conditions upstream. Laplace's equation can now be written as 

v z 
Co(y, z; x, t) = 0 . 	 (34) 

The problem has been reduced to a two dimensional boundary value 

problem in the so-called "cross-flow" plane. 

We can also simplify the boundary condition on the foil under 

the assumptions: 

1) a << 1 so that sin a 	a 	and cos a = 1 

2) cp
x 

« U 	and 	3) a vb « U. 

Equation (33) then becomes 

4, 	L. 99 + U a - vb 	U y 

or we can re-write this as 

• 

co 	= vb  + U yo  - U a • 	 :35) 
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We have still to satisfy boundary conditions on the free 

surface. 	The nature of the problem dictates that we should have free 

stream pressure everywhere on the free surface. 	The position of the 

free surface, not known a priori, will be taken to lie along the z-axis. 

In the actual case, sketched in Figure 15, the free surface boundary 

is at 	y = a x 	at infinite distances from the foil and acquires a 

complicated shape near the foil. 	The approximation that the boundary 

conditions can be applied to the z-axis is necessary to keep the 

problem tractable. 	Figure 14 presents a photograph of a 30 0  apex 

angle delta wing planing at a small angle of attack. 	The spray can be 

seen. 	Because of the difficulty of determining the shape of the spray 

and the flow in the spray region, the spray will be represeAted as a 

• singularity. 	The separation of the tips of the spray depends on the 

static height of the apex above the free surface, a slight amount of 

which will exist in any real situation. 

As is shown in Figure 13 the spray singularity is taken at 

z = b
1 	(i.e., 	= b). 	Outside of this point the flow is assumed to 

be undisturbed or rather that 	q) z 	= 	0 	for 	I z I > b 1 	and since 

so 	= 	0 	at infinity, 	ci? 	= 	0 	for 	I z 	I 	> 	b
I 	also. 

In the region between the leading edge, 	z 	= 	a(x) 	and 

z = b l 	we must determine a velocity boundary condition which at 

least approximates the pressure condition. 	This will be our next 

concern. 

Let us define a new velocity potential in terms of coordinates 

normalized on the local semi-span, 	a(x), 	since the flow will be 

• approximately conical. 
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(00 (y, z; x, t) = a(x) f 	t) 	 (36) 

The coordinates are given by: 

Ti = —Y
a 	

and 	= — 	 (37) a • 

The derivatives of co expressed in terms of f and appropriate 

coordinates are given below. 

x 
= a

x 
(f - rif 	- 	f) 

1 

= 

(38)  

• 	=f 

t = a(x) f 1 

On the foil and in the region near the leading edge the pressure 

equation becomes 

2 
	 = - U(P

x 
- —

2 
(U yo ) - —

2 (50z ) 

1 
+ 	(uct - v

b
)
2 

 (39)  

where the (92
x

)
2 

term has been neglected along with the assumptions 

following from the smallness of a • Replacing derivatives of (P by 

the appropriate functions of f and setting p = p c°  we get that at the 

• 	free surface near the leading edge the following relation holds. 
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. 

'2 - 2U a
x 

(f - 	- (U yo ) 	- (f)
2 

	

+ (U a - v
b

)
2 

- 2a(x) f
t 

= 0 
	

(40) 

We will now estimate the value of each term in this equation 

so that some of them can be dispensed with. Near the leading edge 

-1- 1. Taking the distance from the leading edge to b to be E 

and assuming f is approximately constant in that region we get that 

f(1)-; - cf (1) near the leading edge. Taking Ua
x

— 	(1), 

U y o 0 (6 ), U a — er( 6) and v
b 

er ( 6 ) where 6 <<1 we 

re-write equation (40) where the order of each term is noted. 

2 

• 	
1+ 

0 = 2 U a
x 

(1 + ) f 

6
2 	 1 

I  
- (UY )

2 
	- 	(f )

2 

6
2 	

k (5 2 

+ (U 	- vb )
2 

+ 2a(x)ft 	 (41) 

The reduced frequency has been denoted by k. The order of the last 

term in the above equation has not been shown yet. It will be shown 

later when c is calculated. Since we will seek a quasi-steady 

solution of this problem we can reasonably neglect this term until a 

time when the proper restrictions on its importance can be shown. 

Keeping only terms of tY ( 1 ) equation (41) yields the following 

condition. 

= 2 Uax  Sgn(; for 1 Lc_ 1 1 < b 	 (42) 
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Conditions on f have now been specified along the entire 	-axis. 

They are shown on Figure 13. 

E. The Solution of the Boundary Value Problem 

The boundary value problem is seen to be, except for the 

unsteady parts, identical with Tulin's. The method of solution pro-

posed by him and indeed part of his solution are used more or less 

directly. It is intended that the confusion in his paper has been 

removed in this solution. 

The specified boundary conditions may be satisfied by a 

distribution of vorticity of strength 'Y t) along the -axis 

between -b(x, t) and +b(x, t). 

1 	 (r,, t) 	d  
= 	 J 	(, _ 	(43) 

-b 

	

We can also re-write equation (43) below since y( 	t) = 2f (-0, ; t). 

-1 	, 	, 	 1 i 3.0) 	 d + 	i f00 
Trf (0 = 	1   (:) /1 	 i 

- 	
( 	- )

b  

b 

+ 1._I'

. f 00 
	ci 
( 	- 0 (44) 

We can apply the known conditions on f 	and f , namely 

= vb  + Uyo  - U a = v 	for 10 .<1 71 

• 

• 
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f (e) =Ua
x 

Sgn (e) 	 for 1 <j < b • 

Equation (44) then becomes the following where the only unknown is 

f 	for 	I e I <1 . 

-1 

Try = - 2Ua
x 	

f 	dr,  

- 
+ 2 U a

x 
f 	 

e 	 - 
-b 

1 i  foo 
+ 	  

-1 	

izi 	 (45) i ( e - 0 

Re-writing this in the form of the conventional airfoil equation we have 

the following: 

1 
f 

= e - 

-1 
, - 21Ja 	f 	dr 
	 + 21.Ja

x x 	( - 	 f ( - 
1 	 -b 

for 	I e I <1 

The formal solution of this equation can be found in Tricomi (32) and 

is taken from Tulin's work in the form given below. 

• 
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	 4 

(t) 
1 	 1 - E.

2 

2 IT — 	\ 	_ 	t )  
TI 

11 1 	t , 

b 	 -b 
dT -2a f  	f 	d T  ] (1  } 

	

X 	( t - T  ) + 2a
X 	 - T ) 

1 	 -1 

The vortex sheet limit b is determined later to make f (1) 

bounded. 

If we combine integrations equation (46) becomes 

1 f 	 1 	 I/ 	 
2 1  

Tr a 	2a 

	

2 	 f d T U 	x 	 - 	7) 
1T 	- 

-1 
 y  + 2a

x 	f d T 	

1 
	1 i_ 2 ' 

 

t)( 	 } • 

-b 	-1 

Using the following identities: 

I 	1 	 1  
1  

- 7) 	
_ 	[ 

(t - T) 	( - t ) 
+ 

 (t - 7)
] 

1 	1 	. 

fli 1  -  
q - 0 d' -- 

- r 	Tr t 	for 	1 I < 1 
-1  

1 	1 	2
. 

• 	f 1 , _ ,  

	

, _ 	7) 	
dt = 

Ir.( - T - 	T 	 T < -1 

1 

11 	- 1  ) 2  	. 
2 	t  

Tr ( - T T AIT - 1  ) 	T > 1 - 

(46)  

(47)  
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the following equations can be shown to be true: 

_ a fb r f,(0 = 	1 	 2 v 	 - + 117 2  - 1 
j  

	

u 	Tr2 
d Tr 2

111 - e 	 _ T) 1 

	171 
 

T T - 1  
1-2a 	 C1T X f-1  + 	 - 	 (48) 

-b 	
T) 

 

f & (0 
	 _ 	1 	1 _Dv_ + 47 ax 	f .. __ ,r  

b 	
2 1 	dT  } (49) U 

111  - 2  \ 	 1 	(T - 	) 

0 
With the substitution 111 - 2l tan 0 = 71:2-7-TI. 	it can be shown 

. 
for b

2 
 = 1 (i. e., E << 1 ) that the integral in equation (49) can be 

evaluated approximately. 

f ( 1 

	

—
4 

a 	b 2  - 1 U 
1 - 	 11- X  

1 	b
2 

-1 - 	1 - e tan -  

	

- 	
< 1 	(50) 

1  

To keep f (1) bounded b must have a particular value; namely, 

• 	 -yfv  + ax 1137---7  = 0 	 (51) 
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If we write b as 1 + E and take E << 1 we get the 

following relation for E . 

Tr E = 	 (52) 
2 

32 	U 	a
x ) 2  

2 
Tr 	Vb UY0 	) 2  

U a
x 	

(53) 

Previously we have assumed that Ua x, 	(1), vb , 6)- (,) , 

Uyo ,..,& ( a) and U a— 	(6) where 6 << 1 . From equation (53) 

then we get directly that E 	( 6 2
) which certainly justifies taking 

b 	1 for the solution of equation (49) and it also justifies neglecting 

• 	E compared to 1 in the first term of equation (41). 

It was stated without proof in equation (41) that the last term of 

the equation was 	(k 6 2
). This will now be shown. The term is given 

below. It has been assumed f 	is constant in the region 1 < 	< b 

thereby neglecting any waves, therefore: 

-2a(x) f
t 

= 2a(x) f 	 (54) 

We can evaluate E from equation (53). 

2 	(v + 	- U ) 
TV c = 
16 

(U ax)
2 	  Vb 

Assuming simple harmonic motion for vb  we get I i71D 1 = 	I, 

and a(x) is limited to c a
x where c is the root chord of the foil. 
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Substituting this into equation (54) we get the following estimate 

for the order of that term. 

Tr2 (vb U3ro U")  - 2a(x) f t  — 2(cax 	x  )(2Ua)-17  
(Ua)

2 	 c")vb x  

- 	 ( 1(6 2 ) 	 (55) 

We may conclude then that for k 	EY (1) we are certainly justified 

in neglecting the contribution of this term to the boundary condition. 

Substituting in the required value of b we get the final solution 

for f 	. 

• 

f(° 	4 _ 1  [ 114 Uva 
= 	a x 	tan 	xl 	for I I <1 	(56) 

11  1 -
2 

We can also express this in unreduced coordinates. 

Ua q) z 	 - 
	 - 4 a 	tan -1 L 	 x 	

for IzI < a 	(57) Tr x a 
11 1 - (z/a) 2  

This is the solution for so z as given by Tulin. 

F. The Calculation of Forces  

The normal force on each incremental section will be found 

by integrating the pressure across the span. 
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a 
dN f [ p (0, z; x, t) - p oz) 	dz dx 

-a 

Using equation (39) this can be re-written as shown below. 

a 
dN 

= 	
1 	I f [U (ox  + 

l  
7  ( coz )

2 
+ (p t.  + 7  (U y) 2  dx 	- P 

-a 

1 
- 2- (U a - v

b
)
2 	

clz 

The first term of the above integral is evaluated using the relation: 

410 
,(0, z; x, t) = 

a(1+ C) 

a 761-- 99(O, 	x, t) dr 

= - 2 aEUa
x 

+ 	f 	(0, 	x, t) d. 

a 

And by an application of Leibnitz' rule we get 

a 	 a 

f so (0, z; x, t) dz = 	f 99(0, z; x, t) dz ax 
-a 	 -a 

+ 4 a EU a
x

2 
• 

(58)  

(59)  

(60)  

(61)  

• 	To use this we will need to integrate (i2 over the span. 
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-a 

a 	 a 	a 
CP (O, z; x, t) dz = -4a 2 

 0 

 cUa - 2 f dz f (P (0, 	x, t) 

a 

= - 4a2 
EUa

x - 2 f Tz (0, z; x, t)dz f 
0 	 0 

a 

= - 4a2
cUa

x - 2 f z (Pz (0, z; x, t) dz 	(62) 
0 

Now substituting equation (62) into equation (61) we get 

• a 

- p 	f • U 49xdz 	- p U 	[- a2  EUa
x 

-a  

a 

- 2 f z goz (O, z; x, t) dz] + 4aElia
x

2  } 
0 

a = pu2  4a  .a3z  (aEax) + 2  p u 	 z (pz ( o, z ;  x, t) dz 

0 

(63) 

The remaining integral can be evaluated by reduction to known 

form. The solution given in reference (30) is repeated here. 

• 
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. 
7 v  a 	 a a 

z Soz  (0, z; x, t)dz = -- 1-741j- ..
x 	f 

z
2 tan -1 	4 Ua f 	 [ - 	x  ] 
	, 	 dz 	(64) 

0 	 0 	 11 1 - (z/a)
2 

ir 	V 
Let us substitute k = k(x, t) = 

4 Ua 

(64) is then equal to 

1 
4U 2 	f 2 -1 = —a a

x 1-r 	 7 tan 

0 

and 7 = —a . Equation 

	 dT . 	 (65) 

11 	
7-2s 

1  

The integral from zero to one is then solved where the last step is 

from reference (33), p. 246. 

• 	 1 

f 7 2  tan 	 d 7 d 7 

0 	
1  — 72  

1 
72 	11  - 7

z 
Ic 

f dk f 	dT 

0 	0 	[ (1 + kz
) - 721 

(66) 

1/2 
1 	 (7+ 	1/2)(T — 1/2)  = f dk f 	 d 7 

0 	-1/2 	[(1/2 + k
2

) - T 

IT f [ 1 	k
z 

= -2- 	 + --2- - k 	1 + k21 ] dk 	 (67) 
0 

This can be easily integrated to give the following approximation. 

1 
/ 72 tan -1 	k 	 IF  dT 41110 0 	11 	72'  - 	

= 	(k - k 2 ) + @(k 3 ) 	 (68) 
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Then to a (k2
) we have 

a 

• z coz (0, z; x, t)dz = - 	a 
2 	Tr2 v2a2  

v  + r6 U a 	 (69) x  
0 

Gathering terms equation (63) becomes finally 

a 
a 

- p
x dz = PU

2 
 4a— (a€ ax ) 

ax 
-a 

Ti z a 	(Tr a2 v 	Tr2 v 2 a2 ) 
- 	r 	 - 

X 	 U 	
U

2
a
x 

2 Tr 	 Tr 

	

= - 7  PIJ 
a 

— (a
2  v)- 	pay  2 

(70)  

The next term in equation (59) is evaluated approximately. Now, 

Tr 	v 
2 	a 

	

( 4U ax 	 2 	
-1 (- -4- U ax 	 

12 
a 

(P 2  dz -  
	

f () [an 
	 dz 

0 	 0 	
11 	(I)  2 

(71)  
Tr 	v 

If we again let k = 	
U a 	and let p = 	- (z/a) 2'

, equation 4 	
x 

(71) becomes 

(4U ax )
2 1 

-1 k 

	

a f p 1777 	

2 

[tan 	dp 	 (72) Tr 
0 

The inverse tangent can be expanded in the two regions as shown 

below. 

• 



• 
co 	 2n+ 1 

tan -1 	= 	- E 
(2n+ 1) 

1) 	P 	 for p < k 

n=0 

2n+1 = E  
n=0 	

+ 1) for p > k (2n 	 p 

The integral can then be split into two parts. 

1 	 2 
	2 %  [ 	-1k 1  dp p 1 - p 	tan 

0 	Pj 

oo 	 2n+ 1] 2  
, 	

P  
	
zn 1 

( -1 )n   ( P = f P 	 7 	 dp 

0 	 n=0 

1co 	 2n+ 1] 

dp  

2 

+ f p 	- p 2‘  [E  (-1)n  ( k) 
2n + 1 p 

n=0 

(73) 

We will first treat the integral from zero to k. In this 

2 % 	. region Al 1  - p will be replaced by 1 since the next contribution 

is 	(k2 ) compared to the part retained. Expanding this integral 

we get the following expression. 

co 	 2n+ 11
2 

dp fP 721..  E 	 (13, 
0 	 n=0 	

) 

• 
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k 	 co 
211+ 3 Tr 2 	E 	(-1) n p2n+ 2 

—p - Tr 	
k2n+ 	1 	E A P  	dp 4 	 2n + 1 	 n k2n+ 2 

Of  [ 	 n=0 	 n=0 

(74) 

The value of A
n is given by 

A
n = (-1)n  E 	 1  

	

(2m + 1)(2n - 2m + 1) 	 (75)  
m=0 

Equation (74) can now be easily integrated term by term. 

	

co 	 co 2 	 A 

•
= 	 n  —Tr - 8  - Tr E 	(..un 

(2n + 1)(2n + 3) 2n + 4 k2 	(76) 

	

n=0 	 n=0 

The region from k to 1 is treated in a similar manner. 

3;. 	 oo 	 2n + 
p .1T7p-2-1  [E 2n(+ )n 7)() 

dp 

n=0 

	

1  	oo 

= /13  11 1 - P2'  E A n (17

k)2n+2 
 dp 

n=0 

Interchanging integration and summation we get 

	

co 	
z 1  A k2n + 2 

k •
p2n 	+ 1 dp 

n=0  

(77)  

(78)  
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For the case n = 0 we have 

1 
2 11 ' 

k2 	f 	1  p-  P 	dp
2
11 1 k

z` 
+ k

2 
log (1 	1 - k2 

k  

and for general n > 0 the leading term of the solution is 

1 j 	
4 

k
2n+2 f 2 dp P

` 	
= 	 (k  ) • 

	

Zn + Z 	 2n 

tb... 
Then to cj (k

2 
 ) we have 

1  	 2 

•
f p 	- p22  [tan -1  -_rk  dp = - .A 0k2  - A 0k2  log k 

cx 
A 

+ 
2 E  n  

k 	
Zn 	 (79) • 

n=1 

The integral over the whole region from zero to one is then 

finally 

1  	 2 

	

f p 111 - p2' [tan-1  —pk 	dp = 	 - 1 + log 2 

0 

co 

	

-iT 	

(..1 ) 11 

(Zn + 1)(2n + 3) 
n=0 
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a 	n 

+ (2n + 4)(2m + 1)(2n - 2m + 1) 
n=0 m=0 

CO 	n 

+ 	E
(_,)n 

E n(2m 	+ 1)(2n - 2m + 1) 	
log k k2  +  

n=1 m=0 

(80) 

The two double sums do not converge particularly rapidly so we set 

them up on a computer (an application it is eminently suited for). 

With an execution time of less than one second we are given the 

following result. 

•
1. 	 

p 11 1 - p
2' [

tan
-1

(—
k
)] dp -L- - [0.04+ log k] k2 	 (81) 

0 

.After substituting for k we have the solution for equation (71). 

a 

	

( 	 V 	- p 	(/) dz = p a y 
4 U a 

2 
O. 04 + log 	 (82) 

x 

) 

0 

The third term in equation (59) is evaluated as follows. 

a 	 a 
a f c dz 	 (83) P 	f (P t  dz = - p T-t 

-a 	 -a 

•
This can be expressed using equations (62) and (69) in the following 
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form. 

a 
a TF

2 
v a  
22 

-P 	f 	dz = - p a 	- 4 a
2
EUa + TT  a 

2
v + at 	 x 	-2- 	—8—  U a

x -a 

TF  - - ,z  p a2 y 	
(84) 

The other terms in equation (59), being constant across the 

span, are easily integrated. Equation (59) can then be written 

finally as 

ciN 	Tr 	8 	2 	2 

• 	

TIT = - PU -57z  (a v) - _8_1r  p a v  2  

+ p a v2 
[O. 04 + log ( Tr 	V  ) 	- 	pa 2 i, 4 U a

x  

2 	 2 
- p a (Uy o ) + p a (U a - vb ) 	. 	 (85) 

G. Specific Cases  

For the case of a stationary (vb  = 0), flat (y:p  = 0) delta wing 

of apex angle p (ax  = p/z) equation (85) is 

2 	dN 	Tr 	2 	2 2, 
c-TT = "E a P x 	-T a  Px  

iT 
• 

	

+ a z
px [0. 04 + log .-- log a 	+ a

2
f3x . (86) 

	

2 	 a 
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The normal force is obtained by integrating equation (86) from the 

apex to the trailing edge. The normal force is reduced to a coefficient 

by dividing by the dynamic pressure and the foil planform area. The 

normal force coefficient is then given to be 

CN = 	P 	+ [0.26 - log aP 	a2 (87) 

The lift and drag coefficients can be obtained by projecting the normal 

force vector since there are no tangential forces from this theory. 

The normal force coefficient curve slope is given by 

ac N 	Tr = 2- p + [1. 52 - 2 log --P] a . 	 (88) 
a a  

If we oscillate the hydrofoil such that 

v
b 

= v sin wt 	 (89) 

the sectional lift given by equation (85) becomes 

2 	dN 	Tr 23.7 	 /r2  
—2- 	= 	T P x (a  ---u sin cot) - 	x ( — sin wt - a )2 

pu 

- 	()t- a ) Tr 	U  
+ Px ( — sin 	- a )

2 
O. 04 + log ( 2-  

2 	Tr 2 2 	v 
+ 13x ( --u- sin wt - a ) 	- 	13 x 	--2- cos cat 	 (90 ) 

• 
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If in the last term we write the reduced frequency as k, the time 

dependent normal force coefficient is given by 

7:r 	 2 	 2 
C

N
(t) = 	P ( 	- — sin c 	

Tr
ot) - —g- ( a - Tr  sin cot) 2 

2 
Tr + ( a - 	sin cot) 	O. 04 + log -2- - log —13 	+ log (1- --13c,  sin cot) 

2 V. 	 Tr 	V 	 ( 91 ) + ( a - — sin cot) - 	Pk 	cos cot . 

We might note that previoludy we have restricted the size of 

U a and v
b compared to Ua

x . More specifically, in terms of 
2 

delta wing parameters, we have said that 	« 1 and 
(ai3  

v
b 

2 

— << 1 . We have not said anything about the ratio (v
b
/U a). Up 

Because of the time dependent argument of the log term in equation (91) 

it will prove useful to take (v
b /U a ) < 1 so that we can expand the 

argument about one. The first term is clearly the dominant one of 

frequency w . Let us consider only that part of C
N

(t) which is 

changing at the angular frequency co and normalize the unsteady 

force coefficient components by dividing by the apparent change in 

angle of attack which is 

v
b = - 	

(92) 

The unsteady coefficients then become 

Tr 

• 	
C
N r 
	

2- 3 + 2 a [O. 76 - log 
a
l 
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and 
	

(9 3 ) 

Tr 

CN - 
= 

a 

The subscripts r and i denote the component in-phase with the 

apparent angle of attack and the quadrature component respectively. 

Figure 16 presents the theoretical value of C
Na- 

/(3 as a 

acN i 
function of a /p . It should be noted that C

Na- 
and 	 

a a 'stationary 

have the same value. This is not entirely unexpected for a quasi-

steady theory. A comparison of the theoretical and experimental 

values is given in the next section. • 
H. Conclusion 

It is useful to recapitulate the differences in the assumed flow 

model and that observed in practice. Referring again to Figure 15 

which is a sketch of the "actual" cross-flow, the free surface lies 

above the foil not in the plane of the foil. The spray extends over 

the foil but does not form a closed cavity. It should also be mentioned 

that the flow is not conical near the trailing edge. This effect is 

similar to the ventilated cases shown by Kiceniulc in reference (29). 

A slight lift loss over the aft portion of the foil results and this 

produces a pitch up moment compared to the theory. 

The unsteadiness of the flow is represented in two alterations 

of the boundary conditions, one explicit, the other implicit. The 

• explicit change is the addition of the heaving velocity at the foil. The 
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implicit change is in the spray position which is allowed to change 

with time. The unsteady behavior shows up in the "Bernoulli" 

equation but since the fluid is incompressible, time enters Laplace's 

equation only as a parameter. 

The theory is limited because of the slender body assumption 

to values of p << 1 . It is further limited by other assumptions, 

particularly the spray position, to values of (-p-a,  ) 2  << 1 . The model 

may have a small amount of camber and the heaving velocity must be 

small v
b < U a . 

It is interesting to note that the second term on the right hand 

side of equations (70) or (85) expresses the effect of the spray on the 

term. It yields a decreased force perhaps due to the momentum 

•
transferred to the upper half plane which is not recovered by the top 

side of the foil in the planing case. Tulin had suggested that the 

spray yielded an effective widening of the foil. His answer has an 

incorrect sign on this term. In view of this his conclusion seems in 

error. 

• 
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V. DISCUSSION OF THE EXPERIMENTAL DATA 

AND THEORETICAL CALCULATIONS 

A. Fully Wetted Flow 

The experimental results are separated into three parts: fully 

wetted, ventilated and planing. The division is a natural one due to 

the quite different flow around the foil in each case. The fully wetted 

data and theories are considered first. 

The fully wetted data constitute the largest portion of both 

the experimental data and the theoretical studies of previous authors. 

The effect of submergence has not been dealt with in these theoretical 

• studies as they were motivated by aeronautical considerations, but 

they are otherwise applicable due to the small influence of the 

Reynolds number as was discussed by Smith (4). 

The fully wetted data are broken down into that for the 15
0 

 

delta wing and that for the 30
0 
 delta wing. Figures 17, 18 and 19 

present the unsteady lift, drag and pitching moment about the model's 

planforrn centroid for the 15 0  delta wing at 0.83 chords submergence. 

Figures 20, 21 and 22 present the same data at 0.50 chords submer- 

gence and Figures 23, 24 and 25 are for a submergence of 0.17 chords. 

Also shown on Figure 17 is the effect of reduced frequency 

on the unsteady lift as calculated by Lawrence and Gerber (24). 

Because they did not present data for the aspect ratios tested, the 

results used here are interpolated from their tabular values. Their 

•

results agree quite well, as can be seen from the figure, with the data 
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for zero angle of attack. 

There is a sizable non-linear angle of attack effect on the in-

phase lift but almost no effect on the quadrature lift. The non-linear 

effect is presumably due to leading edge separation since the foils 

have sharp edges. The quadrature lift seems to be an apparent mass 

effect since it is linear in reduced frequency but the slope is somewhat 

smaller than that calculated using the "linear" model. 

The in-phase drag data also exhibit a non-linear effect greater 

than the projection of a linear value of normal force. One expects 

the lift and drag forces to be related by the angle of attack since due 

to the separated edges the loading should be mostly normal to the foil. 

The in-phase drag exhibits a fairly large reduced frequency effect 

•
at non-zero angles of attack. This is believed to be a real effect, 

not an experimental problem. The quadrature drag is about as 

expected except for reduced frequencies less than one where the data 

are independent of angle of attack. 

The in-phase pitching moment is very small for the 15 o 
delta 

wing. A slight pitch-up moment is noted probably due to the lack of 

conicality near the trailing edge. The reason for the unusual behavior 

of the quadrature pitching moment with angle of attack is not known. 

Figures 20, 21 and 22 illustrate that the free surface effect 

is negligible at 0.50 chords submergence. At 0.17 chords submer-

gence, illustrated in Figures 23, 24 and 25, there is a noticeable 

free surface effect. All of the values are reduced slightly. What is 

particularly noticeable, however, is that the quadrature lift and drag 

• are negative at low reduced frequency, particularly at the largest 
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angle of attack. It might be expected that since this is a surface 

effect it might be Froude number dependent but no investigations 

of this were undertaken. 

Recent theoretical treatments of delta wings have been 

primarily concerned with the description of the flow resulting from 

the leading edge separation. This separation produces a sizable 

non-linear effect as was noted in the data. Figure 26 presents a 

summary of the major steady theories calculated for the 15 0  delta 

wing at each of the angles of attack tested. Also presented for 

comparison is the mean of the experimental data at different reduced 

frequencies for each of the angles of attack. 

The zero angle of attack value is fairly well predicted by 

Jones' method. The agreement with the Brown-Michael theory is 

not good and appears to get worse with increasing angle of attack. 

The Mangler-Smith theory also does not show good agreement but it 

may be better at even higher angles of attack. The theory which is 

by far the best is that of Gersten. The symbols actually overlap at 

six degrees. The Gersten result lies under the experiment at twelve 

degrees. This might indicate that Gersten's theory is better for 

small angles of attack, say a < 13 . It would be interesting to 

compare the Mangler-Smith theory for a > 
; unfortunately no 

data were taken for that range of angles of attack. 

Figures 27, 28 and 29 present the unsteady lift, drag and 

pitching moment coefficients for the 30 0 delta wing at 0.83 chords 

submergence. Figures 30, 31 and 32 present the same data at 0.50 

• 	 chords submergence and Figures 33, 34 and 35 at 0.17 chords 
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submergence. 

Figure 27 also shows the effect of reduced frequency as 

calculated by Lawrence and Gerber. As for the 15 0  foil the agree-

ment with the zero angle of attack data is quite good for both in-phase 

and quadrature lift. 

There is a significant non-linear angle of attack effect on the 

in-phase experimental data. As for the more slender model the 

quadrature lift is almost independent of angle of attack. 

The in-phase drag exhibits marked angle of attack and reduced 

frequency effects. The reason for the negative in-phase drag at zero 

angle of attack is not known. The nearness of the quadrature drag to 

zero at zero angle of attack seems to indicate that the foil is perpen-

dicular to the oscillation. The effect, or lack thereof, of angle of 

attack on the quadrature drag for reduced frequencies less than one 

is much the same as for the 15 o 
foil. 

The pitching moment exhibits a larger value for the 30 0 
 foil 

presumably because the model is not really a slender body and the 

reduced loading on the aft of the foil increases the moment. 

Figures 30, 31 and 32 present the data for 0.50 chords sub-

mergence. The submergence effect is very small but the data serve 

as a useful check on the data at 0.83 chords submergence. 

The effect of the free surface is quite noticeable in Figures 33, 

34 and 35 which are for a submergence of 0.17 chords. The effect 

is most noticeable at the largest angle of attack for which the free 

surface is quite distorted. These three figures illustrate the facts 

• 	 that the effect of the free surface is small unless the foil is quite 
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close and also that if the foil is close the effect can be large. 

Figures 36, 37 and 38 present the effect of oscillation 

amplitude. The oscillation amplitude is labeled with a voltage since 

it is that which is fed into the force servo controller. The nominal 

voltage was 4 v. and this series of runs was accomplished at 2 v. and 

3 v. to establish the linearity of the effect so that the coefficients 

could be normalized by the apparent angle of attack change. The 

validity of this assumption is well substantiated by the data with only 

a few spurious points not collapsing together. 

Figures 39, 40 and 41 present the effect of using different 

frequency-velocity combinations to obtain various reduced frequencies 

wc (k = u  ) . As can be seen from the agreement of the data at the 

same reduced frequencies and the smooth behavior with reduced 

frequency, this is the proper reduction parameter. 

Data were also taken at negative six and twelve degrees angle 

of attack. These data are presented in Figures 42, 43 and 44. Little 

effect of reversing the sign of the angle on the quadrature lift is noted. 

The in-phase lift changed more particularly at the intermediate angle 

of attack. In fact all three coefficients showed the greatest change 

for six degrees angle of attack. 

The reason for the negative angle effects is obscured by the 

parameters involved. It could be due to the support strut, the camber 

or not quite having zero lift at the defined zero angle of attack or 

even the tunnel boundary effects, though that seems highly unlikely. 

It seems more likely that at this relatively small angle of attack the 

• 	 camber is affecting the separated flow slightly but that is just a guess. 
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Figure 45 presents a summary of the major steady theories 

calculated for the 30 0  delta wing at each of the angles of attack tested. 

Also presented for comparison is the mean of the experimental data 

at different reduced frequencies for each of the angles of attack. 

The zero angle of attack value is not as accurately predicted 

by Tones' theory, presumably because the 30 0 
 wing is not really 

"slender". Both the Brown-Michael and Mangler-Smith theories 

give poor agreement with the experimental data. As for the 15 °  

model Gersten's theory is by far the best. His theory overpredicts 

the coefficient at six degrees but is almost exact at twelve degrees 

angle of attack. Even though his model does not depict the actual flow 

field, it would be useful to develop an unsteady counterpart of 

• Gersten's theory since it predicts the forces fairly well. 

B. Ventilated Flow  

It was originally intended to test both models with ventilated 

cavities but only the 30 0  apex angle delta wing was tested for reasons 

described in Section I. Also due to the additional parameter cavity 

length, and associated parameters cavity pressure and air supply 

rate, the tests were limited to one submergence and one angle of 

attack. These investigations were not intended to be as extensive as 

the other measurements but were intended as a first look into an 

uninvestigated area. 

Figures 46 and 47 present the unsteady lift and drag 

coefficients at various cavity lengths and reduced frequencies. The 

• 

	
behavior of the coefficients with cavity length is odd but not entirely 
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unexpected in view of the findings of Klose (2). Projections of the 

steady values of C, calculated by Kaplan, et al (26) using the 
'a 

Cumberbatch-Wu theory at a cavitation number of zero are also 

presented on the figures. It can be seen from the figures that this 

underpredicts the experimental data at the lowest reduced frequency 

and largest cavity length (i.e., lowest ventilation number). 

Although it was not possible in this series of investigations 

it would be very interesting to have measurements of the unsteady 

cavity pressure during the oscillation cycle. 	Before a valid model 

can be established to attempt the calculation of the unsteady forces, 

more investigation needs to be done to find the proper boundary 

conditions. 

• Also presented are the measured average ventilation number 

and average air supply coefficient. 	These are presented as functions 

of cavity length in Figures 48 and 49. 	There is a direct correlation 

of ventilation number with cavity length independent of reduced 

frequency. 	The same situation seems to exist for air supply 

coefficient at least at the lower cavity lengths. 	At the higher cavity 

lengths the correlation appears to be non-existent. 	This may be due 

to the relatively small working section area compared to the cavity 

area at long cavity lengths. 	It may also be due in part to the 

difficulty in determining the cavity termination point especially when 

the cavity is long. 

High speed flash photographs of four ventilated flows are 

presented in Figure 20. 	Photograph a) 	shows a low reduced 

• frequency and fairly short cavity. 	The bursts of bubbles entrained 
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in the wake are due to the basic flow, not the forced oscillation. The 

frequency of the heaving oscillation is much lower than the shedding 

frequency. 

Photograph b) presents a higher reduced frequency and 

slightly shorter cavity length. The oscillation may be seen in the 

sinusoidal mean position of the wake. As can be seen in all the 

photographs the entrainment in the region of cavity closure makes 

determination of the cavity length difficult. 

Photograph c) shows a higher reduced frequency still and a 

cavity length about the same as in the first case. The bubbles 

entrained into the shed vorticity are clearly seen. 

Photograph d) shows the same reduced frequency as c) but 

with a longer cavity length. The waves on the cavity wall are easily 

seen. The large quantity of air in the wake illustrates why this case 

has the largest air supply coefficient. 

It might be noted that all the cavities are smooth along the 

first half chord and not over the aft part. The reason for this is that 

the septum (see the illustration in Kiceniuk's report) sprays onto the 

cavity wall providing this effect. 

C. Planing Flow  

Measurements for planing flow presented their own unique 

problems. The contents of the section after this are a result of one 

of these problems. The effort taken to make sure that the data are 

meaningful is discussed in the section on experimental procedure 

• 

	 and will not be repeated here, but it will be emphasized that where 
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the theory and data do not agree the theory must be inadequate. 

Both the 15 °  and 30 0  delta wing models were tested in planing. 

Angles of attack of six and twelve degrees were run for each of the 

models. Only one free stream velocity was run (U = 22 ft/sec) 

since this was as high as practical and the heaving amplitude was 

kept as small as practical to lessen the wetted area change. 

Figures 51, 52 and 53 present the unsteady lift, drag and 

pitching moment coefficients for the 15 °  delta wing. Also shown on 

the figures are the theoretical calculations of Section IV. The 

agreement of the theory and the in-phase lift is poor which is not too 

surprising for this foil since the theory was developed for small 

angle of attack to apex angle ratios. The logarithmic behavior of 

IP the theory is too strong compared to the other non-linear term. 

The coefficient is underpredicted. 	The quadrature lift, on the other 

hand, is quite accurately predicted with the experimental points lying 

along the predicted line. 

The drag is slightly better predicted by the theory although 

the smallness of the values makes the agreement seem better than 

it really is. The quadrature drag is negative below a reduced 

frequency of one-half for the experimental data. It is unknown if 

this is a real planing effect. The pitching moment data exhibit much 

the same behavior as for the fully wetted flow. 

High speed flash photographs of the 15 °  delta wing planing at 

three reduced frequencies are presented in Figure 54. The dis-

turbance of the cavity shape due to the oscillation is seen in the 

4110 	bottom two photographs. 
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Figures 55, 56 and 57 present the unsteady lift, drag and 

pitching moment data for the planing 30 0  delta wing. Also presented 

are the results of Section IV calculated for these cases. It would be 

expected that since the angle of attack to apex angle ratio is sub-

stantially less than one here the theory would predict accurately the 

experimental values. Unfortunately such is not the case. 

It is seen from Figure 55 that the in-phase lift is also under-

predicted for this foil. Again the logarithmic behavior causes the 

coefficient to be too small. The quadrature lift is predicted quite 

accurately as for the other foil. 

The in-phase drag seems again to be predicted more 

accurately than the lift but the gain is more apparent than real. 	The 

• quadrature drag is somewhat overpredicted by the theory, perhaps 

because the 30 °  foil is not really a very slender body. 	The pitching 

moment data are for the most part as expected. 

Figure 58 presents high speed flash photographs of the 30 °  

delta wing planing at three reduced frequencies. 	The angle of attack 

is only six degrees in this case, consequently the cavity is shallower 

than for the other case where the angle of attack was twelve degrees. 

The distortions in the cavity due to the oscillation are evident in the 

bottom picture, especially the one of higher reduced frequency. 

The failure of the theory of Section IV to accurately predict 

the forces seems probably due to the inadequacy of the cross-flow 

model. 	Representation of the spray by singularities of this form may 

be satisfactory as a limiting case but it does not stand the test of 

41/ experimentation. 	A new cross-flow model needs to be developed 
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which does not have this logarithmic term or at least a stronger term 

quadratic in angle of attack. 

D. Part-Cycle-Planing  

In the course of the planing experiments it was discovered that 

if the foil was oscillated such that it was planing during the upper part 

of the cycle and fully wetted during the lower part of the cycle, the 

phase of the lift force would change drastically. This effect was so 

striking that it was decided it should be reported and for convenience 

it was named part-cycle-planing. 

During this part-cycle-planing operation the in-phase lift 

coefficient becomes negative which means that an oscillation could 

• start for an elastically mounted foil. It was obvious that the 

oscillation amplitude could not grow too large so a series of runs 

was made at different free stream velocities and frequencies to 

determine the amplitude at which no net energy was received by the 

foil from the fluid. The results of this survey are presented in 

Figure 59. 

The data presented in Figure 59 are not intended to be an 

accurate representation of the boundary but only a cursory look at 

the effect. It is difficult to make measurements in this case due to 

the basic instability of the flow. Even though reduced frequency is 

used to plot the data in Figure 59 it is clear that this is not the 

proper reduction parameter. There is undoubtedly a Froude number 

effect. 

•
Two high speed flash photographs of the 30 0  delta wing 
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operating in the part-cycle-planing mode are presented in Figure 60. 

In the upper photograph the foil has just ceased to plane. The cavity 

is almost unchanged except at the front of the foil. In the lower 

picture the cavity has collapsed and only the ventilated leading edge 

vortices remain. 

The point of this section is that unless they are designed to 

operate with sufficient static apex height, planing delta wings could 

lead to a very rough riding hydrofoil craft even if nothing catastrophic 

happened. 

• 

• 
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VI. SUMMARY AND CONCLUDING REMARKS 

In this thesis we have traced the history of previous theoretical 

studies of the separated flow about delta wings. We have discussed 

the development of the Legendre model, the Brown-Michael model and 

the Mangler-Smith model and we have noted the Gersten model which 

is a separate type of theory. In addition to discussing these fully 

wetted flow models we have seen that flow models for fully ventilated 

and planing delta wings exist (i.e., the Curnberbatch-Wu and Tulin 

models respectively) but have received less attention presumably 

because they do not have aeronautical application (barring landing 

gear use). 

• In the current experimental investigations the unsteady lift, 

drag and pitching moment were measured for the two delta wings 

oscillating in heave while fully wetted, ventilated and planing, and 

the data are presented as a function of reduced frequency. For the 

ventilated flow, measurements were also made of the cavity pressure 

and air supply rate and these effects have been presented. The 

experimental apparatus is discussed, though only in detail for non-

standard items. 

A theoretical investigation of the forces on a planing delta wing 

was accomplished using Tulin's model. The problem was extended 

to unsteady motions by neglecting waves on the free surface. The 

unsteady motions were represented in the flow model through time 

dependence of the boundary conditions on the foil and through time 

• dependence in the spray position. 



• 
-76- 

The poor agreement of the Brown-Michael and Mangler-Smith 

models with the fully wetted data leads to the conclusion that little is 

to be gained by extending them to unsteady motions. By far the best 

agreement in the fully wetted case was obtained with the Gersten model. 

An extension of this theory to unsteady motions could be useful even 

though the dissimilarity between the theoretical flow field and that 

actually observed seems to indicate that little would be learned about 

the basic fluid mechanics. 

An extension of the Cumberbatch-Wu theory able to produce the 

loop-shaped curves presented for the ventilated case seems doubtful. 

• 

Additional investigations of the cavity pressure are needed to deter-

mine the appropriate boundary conditions before a realistic modeling 

of the flow could be attempted, if then. 

The flow model of the planing delta wing produces logarithmic 

dependence of the force coefficients which is too large compared to 

the quadratic effect of angle of attack. 	Another cross-flow model, 

perhaps one which appears more like the actual flow described herein, 

is needed before accurate predictions can be made. 

• 
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Figure 2 - View of the tunnel working section and the electronic 
apparatus. 

Figure 3 - The hydraulic pump and reservoir. 
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• Figure 4 - Top view of the hydraulic oscillator. 

Figure 5 - The two delta wing models. 
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Figure 6 - Cross-section drawing of the hydraulic oscillator 
showing the tunnel mounting, balance (dynamometer) 
location and hydrofoil location. 
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Figure 7 - The lift and pitching moment balance, seen from both 

• 	 sides, before affixing the strain gages, 
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Figure 8 - The drag balance, sen from both sides, without 
waterproofing. 
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Figure 12 - The coordinate system used to calculate 
planing loads. 

Figure 13 - The boundary value problem in the reduced 
cross-flow plane. 
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Figure 14 - Photograph of the 30 0  delta wing hydrofoil 
planing at a small angle of attack. 

Figure 15 - Sketch of the actual crose-flow. 
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Figure 17 - Unsteady lift coefficients for the 15 °  delta wing at 
0.83 chords submergence. 
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Figure 19 - Unsteady pitching moment coefficients for the 
15 °  delta wing at 0.83 chords submergence. 
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Figure 22 - Unsteady pitching moment coefficients for the 
15 delta wing at 0.50 chords submergence. • 
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Figure 23 - Unsteady lift coefficients for the 15 0  delta wing 
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Figure 24 - Unsteady drag coefficients for the 15 0  delta wing 
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Figure 25 - Unsteady pitching moment coefficients for the 15 0  
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Figure 29 - Unsteady pitching moment coefficients for the 30 °  
delta wing at 0.83 chords submergence. 
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Figure 30 - Unsteady lift coefficients for the 30 0  delta wing 
at 0.50 chords submergence. 
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Figure 31 - Unsteady drag coefficients for the 30 °  delta wing 
at 0.50 chords submergence. 
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Figure 33 - Unsteady lift coefficients for the 30 0  delta wing 
at 0.17 chords submergence. 
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Figure 34 - Unsteady drag coefficients for the 30 °  delta wing 
at 0.17 chords submergence. 
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Figure 36 - Unsteady lift coefficients showing the effect of 
heaving amplitude. 
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Figure 37 - Unsteady drag coefficients showing the effect of 
heaving amplitude. 
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Figure 38 - Unsteady pitching moment coefficients showing 
the effect of heaving amplitude. 
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Figure 39 - Unsteady lift coefficients showing the effect of 
free stream velocity. 
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Figure 41 - Unsteady pitching moment coefficients showing the 
effect of free stream velocity. 
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Figure 42 - Unsteady lift coefficients for negative angles of 
attack. 
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Figure 43 - Unsteady drag coefficients for negative angles of 
attack. 
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Figure 44 - Unsteady pitching moment coefficients for negative 
angles of attack. 
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four reduced frequencies. 
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Figure 51 - Unsteady lift coefficients for the planing 15 ()  
delta wing. 
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Figure 52 - Unsteady drag coefficients for the planing 15 °  
delta wing. 
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planing at three different reduced frequencies. 
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Figure 55 - Unsteady lift coefficients for the planing 30 0  
delta wing. 
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Figure 56 - Unsteady drag coefficients for the planing 30 °  
delta wing. 
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Figure 57 - Unsteady pitching moment coefficients for the planing 
30 0  delta wing. 
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k = 0.0 
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k = 2.84 

Figure 58 - High speed flash photographs of the 30 0  delta wing 
planing at three different reduced frequencies. 
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Figure 60 - High speed flash photographs showing examples of 
part-cycle-planing. 
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APPENDIX 

Symbols and Notation  

a(x) local semi-span 

A foil planform area 

A '  heaving amplitude 

A
n coefficient defined by equation (75) 

b spray position in reduced coordinates 

b1 a(x) b 

B(t) Bernoulli "constant" 

c model chord length 

C RSA factor 

• 
C 

D- a unsteady drag coefficient 

C La- unsteady lift coefficient 

C 
M- a unsteady pitching moment coefficient about foil 

planform centroid 

C
N normal force coefficient 

C Q air supply coefficient (see p. 35) 
33  

processed drag signal 

f reduced perturbation velocity potential 

F 1 displacement calibration factor 

F2 velocity calibration factor 

F 3 lift calibration factor 

F4 pitching moment calibration factor 

• 
F

5 drag calibration factor 
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,  

all  

c.oc k 	 reduced frequency, TIT  ; also dummy variable 

I 	 calibration mass offset 

tare mass offset 

processed lift signal 

total calibration mass; also summing index 

tare mass 
j\.4. 

processed moment signal 

summing index 

normal force 

pressure; also dummy variable 

velocity vector in foil coordinates 

air supply rate corrected to atmospheric pressure 

• 	 time 

free stream velocity 

vb 	 velocity of foil coordinate system with respect to an 

inertial system 

heaving velocity amplitude 

x, y, z 	coordinates attached to foil (see Figure 12) 

Yo(x) 	 foil camber function 

angle of attack 

apparent change of angle of attack 

delta wing apex angle 

() 	 local vortex strength 

lbr 	
6 	 ordering parameter 
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€ 

c
l 

rl, 

b() - 1 

a(x) E 

dummy variable 

reduced cross-flow plane coordinates (see Figure 13) 

0 dummy variable 

V I 
defined to be 	vb + 	U y

o 	- 	 U at 

p density of water 

a
v ventilation number (see p. 35) 

T dummy variable 

perturbation velocity potential 

t. total velocity potential 

co oscillation angular frequency 

• Subscripts 

x, y, z, 71, 	differentiation by the subscripted variable (Note: dot 
t 

above symbol sometimes used for time differentiation 

and prime sometimes denotes differentiation by 

argument) 

cavity conditions 

component 90 0 out of phase with apparent change of 

angle of attack 

component in-phase with apparent change of angle of 

attack 

co 	 free stream conditions 

• 


