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ABSTRACT

Theoretical and experimental studies were conducted to
investigate the wave induced oscillations in an arbitrary shaped
harbor with constant depth which is connected to the open-sea.

A theory termed the "arbitrary shaped harbor' theory is
developed. The solution of the Helmholtz equation, V% + k% = 0,
is formulated as an integral equation; an approximate method is
employed to solve the integral equation by converting it to a matrix
equa tion. The final solution is obtained by equating, at the harbor
entrance, the wave amplitude and its normal derivative obtained from
the solutions for the regions outside and inside the harbor.

Two special theories called the circular harbor theory and the
rectangular harbor theory are also developed. The coordinates inside
a circular and a rectangular harbor are separable; therefore, the
solution for the region inside these harbors is obtained by the method
of separation of variables. For the solution in the open-sea region,
the same method is used as that employed for the arbitrary shaped
harbor theory. The final solution is also obtained by a matching
procedure similar to that used for the arbitrary shaped harbor theory.
These two special theories provide a useful analytical check on the

arbitrary shaped harbor theory.
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Experiments were conducted to verify the theories in a wave
basin 15 ft wide by 31 ft long with an effective system of wave energy
dissipators mounted along the boundary to simulate the open-sea
condition.

Four harbors were investigated theoretically and experimentally:
circular harbors with a 10° opening and a 60° opening, a rectangular
harbor, and a model of the East and West Basins of Long Beach Harbor
located in Long Beach, California.

Theoretical solutions for these four harbors using the arbitrary
shaped harbor theory were obtained. In addition, the theoretical
solutions for the circular harbors and the rectangular harbor using the
two special theories were also obtained. In each case, the theories
have proven to agree well with the experimental data.

It is found that: (1) the resonant frequencies for a specific
harbor are predicted correctly by the theory, although the amplification
factors at resonance are somewhat larger than those found experi-
mentally, (2) for the circular harbors, as the width of the harbor
entrance increases, the amplification at resonance decreases, but the
wave number bandwidth at resonance increases, (3) each peak in the
curve of entrance velocity vs incident wave period corresponds to a
distinct mode of resonant oscillation inside the harbor, thus the
velocity at the harbor entrance appears to be a good indicator for
resonance in harbors of complicated shape, (4) the results show that
the present theory can be applied with confidence to prototype harbors

with relatively uniform depth and reflective interior boundaries.



Chapter

TABLE OF CONTENTS

INTRODUCTION

LITERATURE SURVEY

2,1

Wave Oscillations in Harbors of Simple Shape

2.2 Wave Oscillations in Harbors of Complex Shape

THEORETICAL ANALYSIS FOR AN ARBITRARY
SHAPED HARBOR

3.1

Fa 2

Development of the Helmholtz Equation

Solution of the Helmholtz Equation for an
Arbitrary Shaped Harbor

Wave function inside the harbor
(Region II)

Wave function outside the harbor
(Region I)

Matching the solution for each region
at the harbor entrance

Velocity at the harbor entrance

The Numerical Analysis

2 3 1

Region II: Ewvaluation of matrices
defined in Eq. 3. 15

Region II: Method of solution for
wave function f,

Region I: Ewvaluation of matrix H
defined in Eq. 3. 33

Harbor Entrance: Matching
procedure

Page

15

15

20

22

30

36
38
41

41

48

459

50



-vii-

TABLE OF CONTENTS (Cont'd)

Chapter Page
3.4 Confirmation of the Numerical Analysis 51
3.4.1 The {irst example: a circle 53
3.4.2 The second example: a square 59

4. THEORETICAL ANALYSIS FOR TWO HARBORS WITH

SPECIAL SHAPES 62
4,1 Theoretical Analysis for a Circular Harbor 63
4.1.1 Wave function inside the circular harbor 63

4, 1.2 Wave function outside the circular

harbor 70
4. 1.3 Matching the solution for each region at

the harbor entrance 73
4.2 Theoretical Analysis for a Rectangular Harbor 75

4.2.1 Wave function inside the rectangular
harbor 76

4.2.2 Matching the solution for each region
at the harbor entrance 80
S EXPERIMENTAL EQUIPMENT AND PROCEDURES 82
5.1 Wave Basin 82
5.2 Wave Generator 84
5.3 Measurement of Wave Period 87
5.4 Measurement of Wave Amplitude 87
5.4.1 Wave gage 87
5.4.2 Measurement of standing wave amplitude 92

for the closed harbor



Chapter

-viii-

TABLE OF CONTENTS (Cont'd)

Measurement of Velocity

Wave Energy Dissipating System

Harbor Models

Instrument Carriage and Traversing Beam

PRESENTATION AND DISCUSSION OF RESULTS

6. 1

6.2

Characteristics of the Wave Energy
Dissipation System

Cigcular Harbor With a 10° Opening and a
60~ Opening

6.2. 1
6.2.2
6. 2,3

6.2.4

6.2.5

Introduction
Response of harbor to incident waves

Variation of wave amplitude inside the
harbor: comparison of experiments
and theory

Variation of wave amplitude inside the
harbor for the modes of resonant
oscillation

Total velocity at the entrance of the
circular harbor

6.2.5.1 Introduction

6.2.5.2 Velocity distribution in a
depthwise direction

6.2.5.3 Velocity distribution across
the harbor entrance

6.2.5.4 Velocity at the harbor entrance
as a function of wave number
parameter, ka

Page

93
i
102

106

110

110

118
118

119

132

150

3 7

172

175

179

184



—ix-

TABLE OF CONTENTS (Cont'd)

Chapter

6.3 Rectangular Harbor

6s 3.1

By 3.2

Introduction

Response of harbor to incident waves

6.4 A Harbor With Complicated Shape: A Model
of the East and West Basins of Long Beach

Harbor

6.4.1
6.4.2

6.4.3

Introduction

Response of harbor to incident waves
Variation of wave amplitude inside the
harbor for one mode of resonant

oscillation

Velocity at the harbor entrance as a
function of wave number parameter, ka

i §" CONCLUSIONS

LIST OF REFERENCES

LIST OF SYMBOLS

APPENDIX I:

APPENDIX II:

APPENDIX III:

APPENDIX IV:

WEBER'S SOLUTION OF THE
HELMHOLTZ EQUATION

DERIVATION OF EQ. 3.12

EVALUATION OF THE FUNCTIONS

£f.,f ,J , ANDY
jo’ "yo' "¢ o

SUMMARY OF THE STROKES OF THE
WAVE MACHINE USED IN
EXPERIMENTAL STUDIES

Page

192
192

193

197

197

200

210

213

217

223

231

237

245

249

253



5:3

5.4

- -

LIST OF FIGURES

Description

Definition sketch of the coordinate system
Definition sketch of an arbitrary shaped harbor

Definition sketch of the harbor boundary approximated
by straight-line segments

Change of derivatives from normal to tangential
direction

Definition sketch of a circular domain

Definition sketch of a square domain

Definition sketch of a circular harbor
Definition sketch of a rectangular harbor
Drawing of the wave basin and wave generator
(modified from Raichlen (1965) )

Overall view of the wave basin and wave generator
with wave filter and absorbers in place

Wave generator and overhead support with wave
filter and wave absorbers in place

Motor drive, eccentric, and light source and
perforated disc for wave period measurement

Schematic diagram and circuit of photo-cell device
(from Raichlen (1965) )

Drawing of a typical wave gage
(from Raichlen (1965) )

Circuit diagram for wave gages
(from Raichlen (1965) )

Page

16

21

27

43
54

54

65

17

83

83

85

85

88

88

90



Number

5. 20

—xi-
LIST OF FIGURES (Cont'd)

Description

Typical calibration curves of a wave gage

Photograph of a hot-film sensor
(from Raichlen (1967) )

Hot-film anemometer, linearizer, and recording
unit

Wave energy dissipators placed in the basin
Section of wave filter

Bracket and structural frame for supporting
wave absorbers

False-walls and supporting frames representing
the '"'coastline"

Rectangular harbor in place in the basin
Circular harbor with a 10° opening
Circular harbor with a 60° opening

Model of the East and West Basins of Long Beach
Harbor (Long Beach, California)

Map showing the position of the East and West
Basins of Long Beach Harbor and the model
planform. (The harbor model is shown with
dashed lines.)

Instrument carriage and traversing beam shown
mounted above 100 opening circular harbor

Reflection coef., Ky, as a function of the
incident wave steepness, Hj/L, for Dissipator A
(m=38)

Reflection coef., Ky, as a function of the
incident wave steepness, H;j/L, for Dissipator B
(m=50)

The variation of the measured reflection coef.,
Ky, with the measured transmission coef., Kt,
for various wave dissipators

Page

91

94

94
98
9%

99

103

-103

105

105

107

107

109

114

114

116



Number

6.4

6.6

6.8

6.9

6. 10

6. 11

6, 12

6. 13

6. 14

6. 15

6. 16

6. 17

6.18

-xii-
LIST OF FIGURES (Cont'd)

Description

Response curve of the circular harbor with a 10°
opening at the center

Response curve of the circular harbor with a 10°
opening at r=0. 7 ft, §=45°

Response curve of the circular harbor with a 60°
opening at the center :

Response curve of the circular harbor with a 60°
opening at r=0.7 ft, 6=45°

Wave amplitude distribution inside the circular
harbor with a 10° opening for ka=0. 502

Wave amplitude distribution inside the circular
harbor with a 10° opening for ka=1, 988

Wave amplitude distribution inside the circular
harbor with a 10° opening for ka=3. 188

Comparison of wave amplitude distribution along
r=0. 7 ft for the circular harbor with a 10° opening
for three different incident wave amplitudes

(ka=3. 188)

Wave amplitude distribution along six fixed
angular positions inside the circular harbor
with a 10© opening for ka=3.891

Wave amplitude distribution inside the circular
harbor with a 10° opening for ka=3.891

Wave amplitude distribution inside the circular
harbor with a 60° opening for ka=0. 540

Wave amplitude distribution inside the circular
harbor with a 60° opening for ka=2. 153

Wave amplitude distribution inside the circular
harbor with a 60° opening for ka=3. 38

Wave amplitude distribution inside the circular
harbor with a 60° opening for ka=3.953

Contour drawings of water surface elevation for
three modes of free oscillation in a closed
circular basin

122

125

126

133

136

13%

139

141

142

143

145

147

148

153



Number

B 19

6.20

6.21

6,22

6: 23

6.24

6,25

6.20

6.27

.29

o~

I 3

-xiii-
LIST OF FIGURES (Cont'd)

Description

Contour drawing and photographs showing the water
surface for the circular harbor with a 10° opening,
Mode No. 1, ka=0, 35

Contour drawing and photographs showing the water
surface for the circular harbor with a 60° opening,
Mode No. 1, ka=0.46

Contour drawing and photographs showing the water

surface for the circular harbor with a 10° opening,
Mode No. 2, ka=1.99

Contour drawing and photographs showing the water
surface for the circular harbor with a 60° opening,
Mode No. 2, ka=2. 15

Contour drawing and photographs showing the water

surface for the circular harbor with a 10° opening,
Mode No. 3, ka=3.18

- Contour drawing and photographs showing the water

surface for the circular harbor with a 60° opening,
Mode No. 3, ka=3.38

Contour drawing and photographs showing the water
surface for the circular harbor with a 10° opening,
Mode No. 4, ka=3.87

Contour drawing and photographs showing the water
surface for the circular harbor with a 60° opening
Mode No. 4, ka=3.96

Typical record of the wave amplitude and of the
velocity after using the linearizing circuit

Velocity distribution in a depthwise direction at the
entrance of the circular harbor with a 109 opening

Velocity distribution across the entrance of the
circular harbor with a 10° opening

Velocity distribution across the entrance of the
circular harbor with a 60° opening

Total velocity at the harbor entrance as a function
of ka for the circular harbor with a 10° opening

156

158

159

161

164

165

168

169

174

176

180

183

187



Number

B, 32

6.33

6. 34

6.35

b. 36

6. 37

6.38

6. 39

6. 40

6.41

6.42

6.43

6. 44

-xiv-
LIST OF FIGURES (Cont'd)

Description

“Velocity at the harbor entrance as a function of ka:

comparison of theory and experiment (10° opening
circular harbor)

Total velocity at the harbor entrance as a function
of ka for the circular harbor with a 60° opening

Velocity at the center of the harbor entrance as a
function of ka: comparison of theory and experiment

(60° opening circular harbor)
Response curve for a fully open rectangular harbor

The model of the East and West Basins of Long
Beach Harbor, Long Beach, California

Response curve at point A of the Long Beach
Harbor model

Response curve at point B of the Long Beach
Harbor model

Response curve at point C of the Long Beach
Harbor model

Response curve at point D of the Long Beach
Harbor model

Response curve of the maximum amplification for
the model of Long Beach Harbor compared with the
data of the model study by Knapp and Vanoni (1945)

The theoretical wave amplitude distribution in the
Long Beach Harbor model (ka=3. 38)

Wave amplitude distribution inside the harbor model
of Knapp and Vanoni (1945) for six minute '‘waves
(ka=3.30) (see Knapp and Vanoni (1945), p. 133)

Total velocity at the harbor entrance as a function
of ka for the Long Beach Harbor model

187

190

190

194

199

201

202

203

204

208

211

211

214



Number

A.l. 1
A. 1.2

A. 2' 1

A.2.2

-XV-

‘LIST OF FIGURES (Cont'd)

Description

Definition sketch for a bounded domain
Definition sketch for an unbounded domain

Definition sketch for an interior point approaching
a boundary point of a smooth curve

Definition sketch for an interior point approaching
a corner point at the boundary

248

248



Number

3¢ 1

-XVi-

LIST OF TABLES

Description

Comparison of the approximate solution with the
theoretical solution of the Helmholtz equation in

a circular domain.

Comparison of the approximate solution with the
theoretical solution of the Helmholtz equation in

a square domain.

Model wave energy dissipators

57

60

113



CHAPTER 1

INTRODUCTION

1.1 BACKGROUND
A natural or an artificial harbor can exhibit frequency- (or

period-) dependent water surface oscillations when exposed to incident
water waves in a way which is similar to the response of mechanical
and acoustical systems which are exposed to exterior forces, pressures
or displacements. For a particular harbor, it is possible that for
certain wave periods the wave amplitude at a particular location inside
the harbor may be much larger than the amplitude of the incident wave,
whereas for other wave periods significant attenuation may occur at the
same location. This phenomenon of harbor resonance has generally
been thought tc be caused by waves from the open-sea incident upon
the harbor entrance, although other possible excitations may be earth-
quakes, local winds, and local atmospheric pressure anomalies, etc.

These resonant oscillations (also termed seiche and harbor
surging) can cause significant damage to moored ships and adjacent
structures. The ship and its mooring lines also constitute a dynamic
system; therefore, if the period of resonant oscillation of the harbor
is close to that of the ship-mooring system, an extremely serious
problem could result. In addition, the currents induced by this

oscillation can cause navigation hazards.
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There have been natural and artificial harbors in various

locations around the world where resonant oscillations have occurred
and have caused damage to ships and dockside facilities, e.g. Table
Bay Harbor, Cape Town, South Africa; Monterey Bay, California and
Marina del Rey, Los Angeles, California. In order to correct an
existing resonance problem one must first be able to predict the
response of that particular harbor to incident waves, i.e. the expected
wave amplitude at various locations within the harbor for various wave
periods, so that the effect of any change of the interior can be investi-
gated. Until quite recently such a study was done using a hydraulic
model alone. If an acceptable analytical solution of the problem could
be developed it could be used in conjunction with a hydraulic model to
provide a guide for the most effective and efficient use of the laboratory

model,

1.2 OBJECTIVE AND SCOPE OF PRESENT STUDY

The major objective of this study is to investigate, both
theoretically and experimentally, the response of an arbitrary shaped
harbor of constant depth to periodic incident waves. The harbors are
considered to be directly connected to the open-sea with no artificial
boundary condition imposed at the harbor entrance. The laboratory
experiments are conducted in order to verify the theoretical solution

for different harbors.
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In Chapter 2 previous studies of the harbor resonance problem
are surveyed. A theoretical analysis is presented in Chapter 3 by
which one may predict the response of an arbitrary shaped harbor of
constant depth to incident wave system. In Chapter 4 a theoretical
analysis is presented for two harbors with special shapes: a circular
harbor and a rectangular harbor. These analyses provide theoretical
results which can be compared to those of the general theory developed
in Chapter 3. In Chapter 5 the experimental equipment and procedures
are described. The experimental and theoretical results are presented

and discussed in Chapter 6. Conclusions are stated in Chapter 7.



CHAPTER 2

LITERATURE SURVEY

2.1 WAVE OSCILLATIONS IN HARBORS OF SIMPLE SHAPE
A significant amount of work has been done on resonant

oscillations in harbors of idealized planform such as a circular harbor
or a rectangular harbor. The methods of approach used for solving
these problems ranged from imposing a prescribed boundary condition
at the harbor entrance to matching, at the harbor entrance, the solution
obtained for the regions inside and outside the harbor.

McNown (1952) studied both theoretically and experimentally some
of the response characteristics of a circular harbor of constant depth
excited by waves incident upon a small entrance gap. The analysis was

to solve Laplace's equation:

928 , 9%3% , 9°% _
o "oy T 822 - O (2.1)

with certain prescribed boundary conditions. The boundary conditions
used included the linearized free surface condition at the water surface
and the condition that the velocity normal to all solid boundaries was
zero. However, the assumption was made at the harbor entrance that
the crest of a standing wave occurred at the entrance when the harbor
was in resonance and the water surface remained essentially horizontal

across the small entrance. Thus, for resonant motion, this hypotheses
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led to a boundary condition identical to that for a completely closed
circular basin. Therefore, the wave frequencies associated with
resonant oscillations would be those eigenvalues for the free oscillation
of a circular basin. Based on this assumption, McNown computed the
amplitude variation inside the harbor for various modes of oscillation
and found the theoretical results compared reasonably well with the
experiments. This imposed condition at the harbor entrance is not
satisfactory in the sense that the slope of the water surface at the
harbor entrance should be part of the solution of the problem and
should not be imposed initially. However, it can be shown that the
resonant frequencies (or the wave numbers) associated with the circular
harbor are indeed close to that for the free oscillation in the closed
basin if the entrance is very small.

Using the same idea of assuming an antinode at the harbor
entrance for resonant oscillation, Kravtchenko and McNown (1955) have
studied seiche (wave oscillations) in a rectangular harbor. In that
study the definition of resonance was similar to that used by McNown
(1952), i.e. the modes of oscillation corresponding to the closed basin
configuration were termed resonant all others termed non-resonant.
For non-resonant os}cillaﬁons the boundary condition, at the harbor
entrance would have to be determined from observations in the
laboratory.

Extending McNown's work for circular harbors, Apté (1954,
1957) investigated, both experimentally and theoretically, the problem

of the rectangular harbor with a wide entrance. Both the experimental
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and mathematical models consisted of a rectangular harbor with an
asymmetric entrance to which a relatively long wave channel was
connected. A theoretical solution was obtained for the amplitude
distribution within the partially closed harbor by matching up the
entrance velocities between the two domains: the harbor and the
attendant wave channel. Good agreement was found between the
theoretical solution and the experimental data. However, the solution
obtained was not for the more realistic problem of a harbor connected
directly to the open-sea.

Biesel and LeMehaute (1955, 1956) and LeMehaute (1960, 1961)
studied the resonant oscillations in rectangular harbors with various
types of entrances: fully open, partially open, change in depth at the
entrance and combinations of these as well as a sloping beach inside
the harbor. The harbor was connected to a wave basin having a width
less than half of a wave length and an infinite length in the direction
of wave propagation. The method which was used was based on
complex number calculus with a direct application of the superposition
of the various incident, reflected, and transmitted waves. An
expression was developed for the amplification factor (defined asthe
wave amplitude at the rear of the harbor to the incident wave
amplitude). However, in order to use that result an empirical
reflection coefficient and attenuation parameter are needed, in general
the values of these parameters are not obvious.

The problem of a rectangular harbor connected directly to the
open-sea has been ably treated, theoretically, by Miles and Munk (1961).

Their work was an important contribution since it included the effect of
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the wave radiation from the harbor mouth to the open-éea. This
effect limits the maximum wave amplitude within the harbor for
the invicid case to a finite value even at resonance. They considered
an arbitrary shaped harbor and formulated the problem as an integral
equation in terms of a Green's function. This Green's function ,

g(x,vy,§), must satisfy the Helmholtz equation inside the harbor:

0°%¢g 0°g
) + aya +k%g = 0 (2:2)

and have a vanishing normal derivative on the boundary of the harbor
except at the entrance where the normal derivative of the Green's
function is a delta function. Uﬁformnately, as they have noted, the
Green's function for an arbitrary shaped harbor is beyond reach. Thus,
they have applied this general formulation to a harbor of simple shape:
a rectangular harbor, and found most interestingly that a narrowing of
the harbor entrance leads not to a reduction in harbor surging
(oscillation), but to an enhancement. This result was termed by them
the "harbor paradox'. At that time, there were considerable
differences in opinion as to the existance of the paradox. LeMehaute
(1962) suggested that if it had been possible to introduce the effect of
viscous dissipation into the anlysis the paradox would become invalid.
(However, the present study on circular harbors, both theoretically
and experimentally, has supported the "harbor paradox', although

the experimental data also show that viscous dissipation of energy is
most important for harbors with small openings. (see Subsection

6y 2.2} )



-8-

Ippen and Raichlen (1962) and Raichlen and Ippen (1965) have
studied, both theoretically and experimentally, the wave induced
oscillations in a smaller rectangular harbor connected to a larger
highly reflective rectangular wave basin. The solution was obtained
by solving the boundary value problem in both regions, i.e. the region
inside the harbor and the region in the wave basin, using the matching
condition that the water surface is continuous at the harbor entrance.
Because of the high degree of coupling between the small rectangular
harbor and its attendant wave basin the response characteristics of
the harbor as a function of incident wave period were radically different
from a similar prototype harbor connected to the open-sea. The
former was characterized by a large number of closely spaced spikes
as opposed to the latter that would have discrete resonant modes of
oscillation. Those results most emphatically demonstrated the
importance of adequate energy dissipators in the model system when
investigating resonance of a harbor connected to the open-sea. It was
pointed out that in order to reduce the coupling effect of the reflections
of the wave energy which is radiated from the harbor entrance,
efficient wave absorbers and wave filters in the main wave basin are
necessary. A subsequent study by Ippen, Raichlen and Sullivan (1962)
showed that the coupling effect is indeed significantly reduced by the
use of artificial energy dissipators in the main wave basin.

Ippen and Goda (1963) also studied, both theoretically and experi-
mentally, the problem of a-rectangular harbor connected to the open-

sea. In that analysis the waves radiated from the harbor entrance to
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the open-sea were evaluated using the Fourier transformation method
which was different from the point source method employed by Miles
and Munk (1961). The solution inside the rectangular harbor was
obtained by the method of separation of variables and expressed in
terms of the slope of water surface at the harbor entrance. The
solution in the open-sea region was obtained by superimposing the
standing wave and the radiated wave (also expressed in terms of the
slope of the water surface at the harbor entrance). Thus by matching
the wave amplitude, at the entrance, from the solutions in both
regions the final solution was obtained. Fairly good agreement was
found between the theory and the experiments conducted in a wave
basin (9 ft wide and 11 ft long) where satisfactory wave energy dissi-
pators were installed around the boundary to simulate the ''open-sea'.

These previous studies oi the wave induced oscillations in a
harbor with a special shape have helped to understand some of the
characteristics of the harbor resonance problem. However, the
practical application of these studies is limited simply because it is
not probable that the shape of an actual harbor will be as simple as
those studied.

In the following section previous studies on harbors of more

complex shape will be surveyed.
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2.2 WAVE OSCILLATIONS IN HARBORS OF COMPLEX SHAPE

Knapp and Vanoni (1945) conducted a hydraulic model study
in connection with the harbor improvements at the Naval Operating
Base, Terminal Island, California (The present East and West Basins
of Long Beach Harbor). The initial phase of that study helped to
choose the "optimum'' mole alignment and an extensive series of
experiments was then conducted to completely determine the water
motions in the basin so defined. A harbor response in which the
maximum vertical water motion anywhere within the basin was plotted
against incident wave period was obtained for a range of prototype wave
periods from 10 sec to 15 min. Contours of water surface elevation
throughout the basin were determined for various wave and surge
periods. These measurements have delineated the characteristic
modes of oscillation of the basin and established the regions of maxi-
mum and minimum motion in the basin. That study demonstrated the
need and the merit of a model study to determine the location and the
magnitude of the amplification in a harbor of complex shape ‘when
exposed to incident periodic waves.

Research and model studies on the surging problem in Table Bay
Harbor, Cape Town, South Africa were conducted by Wilson between
1942-1951. (That work was made known in two papers: Wilson, 1959,
1960.) In that study Table Bay Harbor was shown to be affected by two
forms of surging, one of which was responsible for the ranging of
moored ships, the other for a pumping action of the basin and attendant
navigational hazard. These model studies helped to reduce the surging

inside the harbor.
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Although model studies can provide many answers and are by far
still the most reliable way of obtaining information concerning the wave
induced oscillations in harbors, they are generally very expensive and,
most importantly, require a considerable amount of time. Therefore,
many researchers have searched for methods of theoretically analyzing
the wave induced oscillations in a harbor of arbitrary shape which
although perhaps not replacing the model tests at least provide a useful
guide for the experimental program.

Wilson, Hendrickson and Kilmer (1965) have studied the two-
dimensional and three-dimensional oscillations in an open basin of
variable depth. For the two-dimensional oscillation the method is
similar to one used earlier by Raichlen (1965b) in which attention is
directed to free oscillations in a closed basin. In the analysis they
have assumed that the wave lengths are large compared to the water
depths; the equation of continuity combined with the linearized dynamic
free surface condition was written in the form of a difference equation.
The periods of oscillation and the variation of the water surface
elevation within the harbor were obtained by solving for the eigenvalues
and eigenvectors of the resultant system of difference equations. How-
ever, in this approach, an artificial boundary condition was assumed
at the entrance to the harbor or bay. The boundary condition which
was used results either from an assumed nodal line at the entrance or
using certain observed amplitudes. Although this method of approach

gives some useful answers, it is not a complete solution to the problem.
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An ideal solution would automatically take care of the entrance
condition by matching the wave amplitudes and velocities at the harbor
entrance derived from solutions for the domain of the harbor and of
the open-sea.

Leendertse (1967) has developed a numerical model for the pro-
pagation of long-period waves in an arbitrary shaped basin. In that
study, the partial differential equations for shallow water waves
(continuity and linearized momentum equations) were replaced by a
difference equation to operate in spatial- and time- coordinates on
definite points of a grid system. The results agreed well with certain
field measurement; however, the water surface elevations at the open
boundary still must be given.

Most recently a study conducted by Hwang and Tuck (1969)
developed an analytical method to solve the harbor resonance problem
for harbors of arbitrary shape and constant depth connected to the
open-sea. Their method of approach is to superimpose scattered
waves which are caused by the presence of the boundary on the standing
wave system. The scattered waves are computed by a distribution
of sources (chosen as the Hankel function H(()l)(kr) ) with an unknown
strength to be determined along the coastline and the boundary of the
harbor. Thus the potential function cpt(;) at any point ;(x,y) in space
can be expressed as:

2, = v G) + [a@ ) HVk |3 - % |1as &), (2.3)

s
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where cpo(;) represents the standing wave system and q(;O) is the
source strength along the entire coastline which includes the boundary
of the harbor. The strength q(;c)) was determined numerically such
that the boundary condition é%: 0 was satisfied along the entire
reflecting boundary. This method did not require a matching condition
at the harbor entrance; the calculation of the source strength q(}—zo)
along the entire reflecting boundary must be terminated at some
distance from the harbor entrance (q(;Zo) = 0 between that location and
j_-m). Physically, this implies that the influence of the source distri-
bution at some distance away from the entrance is negligible; however,
for an arbitrary shaped harbor the position at which the source strength
becomes zero is not obvious unless trial calculations are made.
Although the theoretical solutions for wave induced oscillations
in harbors, especially for an arbitrary shaped harbor, are limited,
there is a considerable amount of literature in other fields such as
optics, acoustics, electromagnetics, and mechanical vibrations which
‘deal with similar physical problems. Some of these studies which are
pertinent are concerned with the scattering of acoustic waves by
surfaces of arbitrary shape (Friedman and Shaw (1962), Banaugh and
Goldsmith (1963 a,b), Shaw (1967), etc.), sound radiation from an
arbitrary body or vibrating surfaces (Chen and Schweikert (1963),
Chertock (1964), Copley (1967), Kuo (1968), etc.), and the scattering
of electromagnetic waves by cylinders of arbifrary cross section

(Mullin, Sandburg, and Velline (1965), Richmond (1965), etc.).
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Mathematical equations which describe these problems are nearly
identical to those for the water wave problem. Thus, similar
analytical techniques may be used for the harbor resonance problem.
In fact, the investigation of Hwang and Tuck (1969) as well as this
independent study are closely related to some of the literature just

cited.
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CHAPTER 3

THEORETICAL ANALYSIS FOR AN ARBITRARY SHAPED HARBOR

The theoretical solution for the wave induced oscillations in
an arbitrary shaped harbor with a constant depth is presented in this
chapter. The solution to the boundary value problem is formulated
as an integral equation, and an approximate method is presented to
“solve this integral equation by converting it to a matrix equation
which can be solved using a high-speed digital computer. The final
solution is obtained using a matching condition at the harbor entrance,
i.e. equating, at the harbor entrance, the wave amplitude and its
normal derivative obtained from the solutions in the regions outside
and inside the harbor. The numerical analysis is described in this
chapter and examples are presented which confirm the numerical
techniques used; a comparison of the theoretical and experimental
results dealing with the full problem of the response of a harbor to

incident waves will be presented in Chapter 6.

3.1 DEVELOPMENT OF THE HELMHOLTZ EQUATION

In order to solve the problem mathematically, the flow
is assumed irrotational so that a velocity potential ¢ may be defined,
such that the fluid particle velocity vector can be expressed as the

gradient of the velocity potential, i.e. U = V3, where u is the velocity
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vector with components u, v, and w in the x, y, and z directions

respectively, and V is the gradient operator defined as

8, Be Iz . g T T o ;
B L + By J 32 k, in which i, j, and k are the unit vectors respec-

tively in the directions x, y, and z. A definition sketch for the coordi-

nates is presented in Fig. 3.1. From the continuity equation for an

z
Still water I
level :
- o _ /rﬂ_(;, y;t)
g=0 = ¥ i

A.
i
-~
W
)— v h
u
velocity

Bottom (z=-h) components I

Fig. 3.1 Definition sketch of the coordinate system

incompressible fluid, V = u = 0, and the definition of the velocity
potential, Laplace's equation is obtained:
Ved=v28=0 . (3.1)
Therefore, the problem is to find the velocity potential &, which
satisfies Laplace's equation, Eq. 3.1, subject to a number of pre-
scribed boundary conditions; one of these is that the fluid does not
penetrate the solid boundaries which define the limits of the domain of
interest. Therefore, the outward normal velocities at the boundary of
03

the harbor, at the coastline, and at the bottom are zero, i.e. 5m - 0

on solid boundaries.
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The form of the solution of the velocity potential ¢ which is

sought is:

- ot
B(x,y,23t) = == £(x,y) Z(z) ¢ 7° | (3.2)

2m

T (T is the wave period),

where 0 is the angular frequency, defined as

A is the imaginary number ﬁ, and f(x,y) is defined as the wave

function which describes the variation of ¢ in the x and y - directions.
Substituting Eq. 3.2 into Laplace's equation (Eq. 3. 1) the

following expression results:

] /8%% 82f>_ 19z
f—<8x‘?’ Yo7 T ZaaE (5.3}

It is expected from consideration of small amplitude water wave
theory that the function Z(z) will be in an exponential form rather than
in a sinusoidal form. Therefore, since the left-hand-side of Eq. 3.3
is independent of z and the right-hand-sideis independent of x and vy,
each side can be set equal to the same constant chosen here as -k®
to insure Z(z) varying exponentially. Thus the following set of

equations is obtained:

< d®z

(i) —;—gzzzkaz, e, I3 -k*Z =0 (3.4)
2 2

(i) ——gxg + —gyﬁ F K2 =0 (3. 5)

The boundary condition at the bottom is j—z-(x, y,-h;t) =0, in
which the depth is assumed constant. Eq. 3.4 and the boundary
condition at the bottom suggest the solution: Z(z) = Ao cosh k (h+z),

where Ao is a constant to be determined. The dynamic free surface
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condition from small amplitude wave theory, neglecting surface

tension, can be combined with this expression and Eq. 3.2 to give:

- L) .1 [ - 4ot
n = g \at o == A cosh (kh) | f(x,v)e ]

A f(x,y)e_mt S (3.6)

i

where 1 is the wave amplitude at the position (x,y) and at the time t,
Ai is the wave amplitude at the crest of the incident wave (see Fig.
3.1), and g is the acceleration of gravity.

From Eq. 3.6 the constant Al is:

A.go

10
Ao ~ 7 cosh kh

Therefore, the function Z(z) in the velocity potential, Eq. 3.2, can
be expressed as:
Aig cosh k(z+h)

Z(z) = - . (3.7}
cosh kh

Thus the velocity potential ¢ becomes:

Aig cosh k (z+h)

stk LR - 1o cosh kh flx,y)e

-Aict

(3.8)

Substituting Eqs. 3.6 and 3.8 into the linearized kinematic free

surface condition obtained from the small amplitude wave theory:
, (3.9)

the well known ''dispersion relation' for water waves is obtained:

0% = gk tanh (kh) . (3.10)
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The dispersion relation relates the wave frequency to the wave number
and the depth of the water; therefore, the arbitrary constant, k, used
in Egs. 3.4 and 3.5 is the wave number, k, which appears in the
dispersion relation, where k is defined as ZTTT » (L is the wave length).

In order to complete the expression for the velocity potential

9, i.e. Eq. 3.2, thé main problem which remains is to determine the
wave function f(x,y), which satisfies Eq. 3.5, commonly known as the

Helmholtz equation (Eq. 3.5 is repeated here for clarity. ):

9%f  9%f . . a.
g rgge TRt =l (3. 5)

subject to the following boundary conditions:

(1) %f—l- = 0 along all fixed boundaries such as the coastline and
the boundary of the harbor (where n denotes the outward
normal from the boundary).

(ii) as /x® +y® ==, there is no effect of the harbor on the wave
system; this is defined as the radiation condition. Physi-
cally, the radiation condition means that the outgoing
radiated wave emanating from the harbor entrance will
decay at an infinite distance from the harbor. Mathemati-
cally, the radiation condition is needed in order to ensure
a unique solution of wave function f (x,y) in the unbounded
domain.

In the following section (Section 3. 2) the method for solving the

Helmholté equation, Eq. 3.5, for an arbitrary shaped harbor will be

presented, thereby allowing one to determine the wave induced

oscillations in such a harbor.
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3.2 SOLUTION OF THE HELMHOLTZ EQUATION FOR AN
ARBITRARY SHAPED HARBOR
The procedure in the development of the theory of the
response of an arbitrary shaped harbor to incident wave systems is
as follows:
(i) The domain of interest shown in Fig. 3.2 is divided into
two regions: the infinite ocean region (Region I), and
the region bounded by the limits of the harbor (Region II).
The coastline which in part forms the shoreward limit of
Region I is located along the x-axis and is considered to
be perfectly reflecting and perpendicular to the bottom.
(ii) The wave function f; is determined in Region I in terms
of the unknown normal derivative g% at the harbor
entrance. Likewise, the wave function f; is evaluated

in Region II in terms of the unknown normal derivative

-a—n‘g at the harbor entrance.

(iii) The condition is used that at the entrance the wave
amplitude and the slope of the water surface obtained
from the solution in Region I must equal to these quantities
obtained from the solution in Region II, i.e. with reference
to Fig. 3.2, at y=0 in the region between A and B, f, =f,

. -—=. This "continuity condition' is used to

on on
solve for the unknown normal derivatives of the wave

and

function f, at the harbor entrance: -%E-l . (Note that the
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Fig. 3.2 Definition sketch of an arbitrary shaped harbor
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negative sign results from the sign convention that the
outward normal to the domain of interest is considered
to be positive. )
(iv) Once the normal derivative of the wave function .gi_z at
the harbor entrance is obtained, the wave function f, in
Region II, i.e. inside the harbor, can then be evaluated.
In the Subsection 3.2. 1, the solution of the wave function f,
inside the harbor is presented, followed by the solution of wave
function f; in the infinite ocean region presented in Subsection 3. 2. 2.
In Subsection 3. 2.3 the procedure for matching the solutions at the
harbor entrance is shown, leading to the desired result of the

response of an arbitrary shaped harbor to incident wave systems.

3.2.1 Wave Function Inside the Harbor (Region II)

In Region II Green's identity formula (see Appendix I,

Eq. A.1.1)is applied and the Hankel function of the Ist kind and
zero order, Hgl)(kr), is chosen to be the fundamental solution of the
two-dimensional Helmholtz equation, Eq. 3.5. The function Hél)(kr)
is chosen because it satisfies the Helmholtz equation, and possesses
the proper type of singularity at the origin, which will be discussed.
Therefore, the wave function f; at any position in the domain of
interest can be expressed in integral form as a function of the value

of £, and the value of gﬁ at the boundary. (This derivation has been

n

discussed by Baker and Copson (1950) and is referred to as Weber's

solution of the Helmholtz equation; ‘it is presented in Appendix I.)
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6 =-2[[LE )2 (H(()”(kr)) - H5Ver) & (& (5{’0))] as(z) (3.11)

s
where: f, (:E") is the wave function f; at the position % shown in Fig
Fig. 3.2,
X is the position vector of the field point (x, y) inside the
harbor,

i, (;o) is the wave function f; on the boundary at the position

—
X

o
;o is the position vector of the source point (xo,yo) on the
boundary (the significance of the source point will be

discussed presently),

Bf, (X )
“73”;;‘9‘ is the outward normal derivative of f; at the boundary

=
source point X

r is the distance between the field and source points, X - X

ol’

and
A is the imaginary number of /- 1.

The integration indicated by Eq. 3. 11 is to be performed along
the boundary of the harbor traveling in a counterclockwise direction
as indicated in Fig. 3.2.

It is worthwhile to point out that similar to the arguments used
in potential theory, Eq. 3. 11 represents the potential at the position
X as a combination of the contributions from the two different kinds of
singularities (or source points). Looking first at the second part in
the integrand of Eq. 3. 11, it is seen that this represents a simple

source or a sink located on the boundary with strength ‘é‘%‘fz (;o)- On
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the other hand, the first part in the integrand of Eq. 3. 11 represents
the contribution of the distribution of doublets located on the boundary
with a strength f, (;o). These singularities are evidently represented

by Eq. 3.11 because the asymptotic behavior of the imaginary part of

the Hankel function Hél)(kr) for very small kr is a logarithmic
singularity:
" {+x(1) ) 2
[ ~ —
Imaginary \Ho (kr) o log (kr)

From Eq. 3.11, it is clear that in order to be able to determine
the wave function, f,, at any interior point of Region II, either the value
f, or the value ?Tig on the boundary of the region must be known. The
boundary conditions set previously stated that the normal derivative
of the wave function on the solid boundary is zero, i.e. g% = G, but
its value at the harbor entrance is unknown. At this point in the
derivation the value of the wave function f; everywhere on the
soundary is also unknown. In order to determine the wave function
f. on the boundary, Eq. 3.11 is modified by allowing the field point
¥ to approach a boundary point ;i(xi,yi) from the interior of the
harbor (see Fig. 3.2). If the boundary is sectionally smooth, the

following expression can be obtained: (This derivation is presented

in Appendix II.)

o AT g a8 T D = 1) 4= = 1,0 [ -
ta(x; )= -i‘(% = (xo)-a—n [HC(J )(klxi—xol )}Hf) '(klxi-xol )é_n Lf‘? (Xo)}}ds(xo)

51, &) (3 12)
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Rearranging Eq. 3. 12 one obtains:
AT 11 - . 9 (1) (1) pie = ) =+ -
fB0)=-3) {fz *1on [:Ho (klxi-xol ):l - (klxi'xol)‘a_n[f‘? (xo)}}ds(xo)'
s

(3. 13)

To solve Eq. 3. 13 for the value of f; on the boundary for an
arbitrary shaped harbor, an approximate method is proposed. In the
approximate method the integral equation is converted to a matrix
equation. (Similar approaches used in solving an integral equation
have been employed by others, e.g., Banaugh and Goldsmith (1963),
Chertock (1964), Copley (1967), Mikhlin and Smolitskiy (1967).) This
is accomplished by dividing the boundary into a sufficiently large
number of segments where along each segment the average value on

LiGeed), isusedt, The

that segment of £, (¥ ), ooty (% ), H Vkr), 52!
line integral of Eq. 3.13, which represents the wave function f,, is
approximated by a finite summation of the contributions of the
singularities from each segment, where the singularities are the
average values just mentioned and are considered to be located at
the center of each segment.

Writing the integral equation Eq. 3. 13 as a summation one

obtains:
N
£2(%,) = %Z[ ( g”(krij))-Hé” e %1, &) ]AS (3. 14)

where the boundary is divided into N segments, and:

r:‘._j is the distance between the points ;j and ;i and is defined
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;i is the position vector for the field point on the boundary,
;j is the position vector for the source point on the boundary,
and

Asj is the length of the jth segment of the boundary.

The segments of the boundary will be numbered counterclockwise
starting from the right-hand-side of the harbor opening; with reference
to Fig. 3.3 the starting point is point B. It should be noted that because
of this approximate representation of the boundary, the original curved
boundary is replaced by a boundary approximating it and composed of
straight-line segments.

Eq. 3. 14 can be written in a matrix form as:
I P
x=b |G x-GB] , (3. 15)

or rearranging this expression:

(b G -I)x=b GP (3. 16)
O n o L) -
where bo = -% and the following notation is used:
X=1, (;i) i= Ui Bssmnea N {3: 17a)
i( (1) \ =3 T T,
(Coks = Balo Byl be; = 1,2,0000. N {3+ 17}
P:—a[f (2)] j=1,2 N (3. 17¢)
P = 5o fa & Been e .
- agtd) R P R,
(G)y; = Hy (k) s, e g (3. 17d)
_ 0 if i#] 1% 1L Bcness
= 613‘{1 if i=j §2 1,20 0000 N O dTe)
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Fig. 3.3 Definition sketch of the harbor boundary approximated by
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The evaluation of these matrix elements will be discussed in Section
3.3 which deals with the numerical analysis. It should be noted that
special care mus.t be taken in evaluating the matrices,especially the
elements when i=j.
If the inverse of the matrix (boGn-I) exists, where I is the

identity matrix, the vector X can be expressed as:

-1
X= (b G -7 (b _GP) , (3.18)

in which (b G -I)™
o n

is defined as the inverse of the matrix (bGn—I).

The vector P in Egs. 3.16 and 3. 18 involve the unknown normal
derivatives of the wave function at the harbor entrance as well as the
normal derivatives of the wave function on the boundary. These latter
values are zero, 1i.e. the values of the normal derivative of the

wave function f, for the segment i=p+1,..... N are zero. The vector

P can be represented in the following way:

8fs (
oo *p) Cq
(100 . 0]
010. 0
001. 0
° Cl
8f,
e O .
an *p) Pl loo0. .1 P
P- = |= “lo = U_f= § 8.6 (3. 19)
My 4 00. .0 me 0
o Epi1 0 ! J=1
00. .0
L] . Lc
° - L] e p
b8 . . 8
0f, - 0
L_E_);I—(XN)‘
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in which, U_ = 6., = {0 for ?fJ. (the index i =1,2,..... N, and the
m ij 1 for i=j
index j=1,2,..... Pp)- Since the total number of segment into which the

harbor entrance is divided is defined as p,the values of CJ- for
=L, 2y 5 i p are the unknown normal derivatives of wave function f,
at the harbor entrance, which is represented by the unknown vector
C.

Substituting Eq. 3. 19 into Eq. 3.16 and Eq. 3. 18 the following

matrix equation results:

(boGn-I)_?_C_ = (boGUm) i o " {3.20)
'or rearranging:
X=(G-I)"*(b GU_)C=MC , (3.21)
= o n o m'— -
where M = (b G -I)"'*b GU__ isa N=x p matrix and can be computed
o n o m

directly.
Eq. 3.21 shows that the wave function on the boundary, f; (;i),
can be expressed as a function of the unknown normal derivative of f,

at the harbor entrance, i.e.:
P

E)=) M.C (3. 22)
j:

where 1=1, 2, 56 v ns s« N

If the normal derivatives of the wave function Cl’ CZ’ C3, .....
C_ at the entrance of the harbor .(which at this point are
unknown) can be obtained, then the wave function f, on the boundary
of the harbor can be computed directly from Eq. 3.22. (It should be

noted that Eq. 3.22 can also be interpreted as the contribution to the
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wave function on the boundary at a particular point from the super-
position of the effect of p small harbor openings). Once the wave
function f; on the boundary is known, the wave function in the interior
of the harbor can be evaluated from Eq. 3. 11 expressed in discrete

form as:

[f( )an (1)(k_[ -#5 V) 2 [f 6o )]:] bs; . (3.23)
1

= A
fa(x) = Z

"ﬁ[\/JZ‘

where % is the field point inside the harbor, r is the distance between
the field point and the source point. Eq. 3.23 will be discussed in
more detail in Subsection 3. 2. 3.

In order to evaluate the normal derivatives at the harbor entrance:
Cp in Eq. 3.22, the wave function f; in Region I at the
entrance of the harbor must be expressed as a function of the same
normal derivatives: Cl’ CZ’ ..... C_. By matching these wave
functions f; and f;, at the harbor entrance,the normal derivatives

C Cp can be evaluated from the resulting expression and

1’

the complete solution to the response problem can be obtained.

3.2.2 Wave Function Outside the Harbor (Region I)

In Eq. 3.6, the wave amplitude 1 is expressed as a product
of the incident wave amplitude at the crest Ai" the wave function f(x, y),
and the time varying function e-j'ct. Because the analytical treatment
is linear, the wave amplitude in Region I can be considered as
composed of three separate parts: an incident wave, a reflected wave,

(from the ''coastline'' with the harbor entrance closed), and a radiated

wave emanating from the harbor entrante. Thus, the wave function
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in Region I can be separated into three parts:

£, = +1_+1 (3.24)

where: fi represents an incident wave function,
fr represents a reflected wave function considered to occur
as if the harbor entrance were closed,
fs represents the radiated wave function due to the presence
of the harbor.
It should be noted that Eq. 3.24 implies that the wave amplitude in
Region I, n, = Ai i, e-’wt, is equivalent to N, = Ai(fi+fr +£3)e-’{'0t.
This implies that any differences among the wave amplitudes for the
three portions: Ny» Moo and N3, compared to the amplitude of 1,
are incorporated in constants contained in the wave functions: fi, fr’
and fj.
The incident wave function, fi’ can be specified in an arbitrary
fashion; for example, a periodic incident wave with the wave ray at
an angle o to the x-axis (the coastline in Fig. 3.2) can be represented

as fi(x,y) = cos (ky sin a) e/LkX o

The reflected wave function fr,
can be represented by fr(x,y) = fi(x, -y). For the case of a periodic
incident wave with the wave ray perpendicular to the coastline (cc=90°),
the function which represents the x and y variation of the incident
wave, fi(x,y), can be represented by 3 cos ky. This is the case which
was treated experimentally in this study .and therefore the following

discussion will be concerned with periodic waves normally incident

to the coastline.
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The wave function f; in Eq. 3.24 must satisfy the Helmholtz

equation in Region I (Eq. 3.5):

_a_z_fl_ + 0°1,

+%3%f, =0 (3.25)
0x= y= .

with the following boundary conditions:

(i) of, _

B

0 on boundary AC and BC' (as shown in Fig. 3.2),

(i1) gf—l = -g—iz on boundary AB (harbor entrance) .
n

(iii) lizm £, =fi+fr , and the radiation condition (where r® =x®+y?) .
r<-w

Boundary condition (i) states that the normal velocity is zero at
the coastline. The second boundary condition (ii) states that the slope
of the water surface is continuous at the harbor entrance and the value
from Region I is equal in magnitude to that obtained at the entrance
from Region II. The negative sign is specified for the adapted sign
convention that the outward normal to the domain of interest is con-
sidered positive. For the case of normal wave incidence in Fig. 3.2
it is noted that the normal to the boundary in Region I is in the direc-
tion of the y-axis. The last boundary condition (iii) specifies that
the radiated wave in Region I emanating from the harbor entrance |
will decay to zero at infinity, hence at infinity only the standing wave
resulting from the incident and reflected waves remains.

As mentioned earlier, the reflected wave function fr is known
once the incident wave function f; is specified. Therefore, to complete
the evaluation of the wave function f,, the main problem is to evaluate

the radiated wave function fz. Since the analytical treatment is linear,
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the functions fi’ fr’ and f; all must satisfy the same differential
equation, Eq. 3.25. In addition the boundary conditions in Region I
can be simplified since the normal derivative of the wave function is
zero on the impermeable boundaries being considered. With reference

to Fig. 3.2, bn the boundary CABG off, + £)=-2f, + £.]1=0, and
i o Jdy 1 T

on
hence boundary condition (ii) can be replaced by f_gf_a = —%i at harbor
n n
entrance (boundary AB) . Thus, the radiation function f; in Region I

can be formulated as satisfying the Helmholtz equation:

%%-+~2—§§5—+ Kf, =0 , (3.26)
with the following boundary conditions:
(i) g—i@ =0 on boundary AC and BC' (as shown in Fig. 3.2),
(ii) % = -%f—; on boundary AB (harbor entrance) ,

(iii) 1;1'1'1 f; = 0 and the radiation condition (where r® = x*® + y?).

r -0
It is noted the these boundary conditions are reduced from those
associated with Eq. 3.25.

To construct a solution for the radiated wave function f3 in

Eq. 3.26, Green's identity formula (Appendix I, Eq. A. 1. 1) will be
(1)

used again and the fundamental solution I—Io

(kr) used in previous
section will be used here also. The fundamental solution Hél)(kr) also

satisfies the radiation condition at infinity, i.e. boundary condition

(iii), since as kr—» it asymptotically goes to zero:

e
Hc()l)(kr)~,\/;(-21;;—)e'('\kr_4> . (3.27)
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If the fundamental solution is multiplied by the time dependent function
e-kot, the resultant expression represents an outgoing radiated wave

satisfying boundary condition (iii) (see Appendix I):

: pr— T
Hgl)(kr)e'*0t~JTil,r e’“(kr'c’t '4) , (3. 28)

The radiated wave function f; in Region I can be expressed
using Weber's formula in a similar fashion as Eq. 3.11 was used

for the expression of the wave function f, in Region II:

£ {x) -éi[fa"' _58_< 1)(kr)-Hél)(kr)a%(fs(;0)>jds(;o), (3.29)

where ;0 is the source point (xo, 0) along the x-axis, % is the field

point (x,y) in Region I, and r is the distance between the field point

and the source point, i.e. r = J(x-xo)z + y° (see Fig. 3.2).

In order to find the radiated wave function f; on the x-axis, the
field point (x,y) is allowed to approach the x-axis at the point (Xi’ 0).
(This approach is the same as in the treatment of Region II.) Thus,

the following equation can be obtained (see Appendix II):

{ d 1 1 0
fa (Xi’ O) = —%i [fa (Xo, 0)8_11 (H(() )(kr)> - H(() )(kr)-(,m<f3 (XO, 0))] dS(XO, 0) .
(3..30)
0 (1) 3 L :
The term oy Ho (kr) | in the integral can be expanded to become

kE{ D k) g—;.

However, because the field point ;i(xi’ 0) and the
source point ;O(xo, 0) are all on the x-axis, the term -g—:l is equal to
zero. Therefore, the first term inside the integral in Eq. 3.30 is

equal to zero and can be eliminated. In the second term, g—fls(xo, 0),

the normal derivative of the radiated wave function f3, is equal to zero
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everywhere except across the harbor entrance. The integral unit
ds(xo, 0) becomes dxo because the integration is to be performed along

x-axis. Thus, Eq. 3.30 can be simplified to:

folx;,0) =% | H(()l)(kr)—a%[fs (xo,O)]dxo . (3.31)

AB
Using boundary condition (ii) of Eq. 3.26, Eq. 3.31 can be rewritten
as:

fax;,0) = -& [ BN ger) 25y, 0) Jax (3. 32)
AB

Eq. 3.32 shows that the radiation wave function f; at the harbor
entrance can be expressed as a function of the unknown normal deri-
vative of the wave function at the harbor entrance computed from

. " " 9
Region II, i.e. in terms of Snfz (xo, 0).

Eq. 3.32 can be expressed in summation form similar to Eq.

H:.G

fgix;,0) = - ij 3 / (3.33)
1

(TP
S~

where the matrix Hij = H(l)

5 (krij)Asj, is a p x p matrix (the evaluation

of the elements of this matrix especially for i=j will be discussed in
Subsection 3. 3. 3), rij is the distance lxi-le wherein X, xj are the
midpoints of the ith and jth segments of the harbor entrance respect-
ively. The term CJ. in Eq. 3.33 is the normal derivative of the wave
function f, at the jth segment of the harbor entrance, Asj is the length
of the jth segment of the harbor entrance, and p is the total number

of segments into which the harbor entrance has been divided.
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Because the incident wave function plus the reflected wave
function at the harbor entrance, fi + fr’ is a constant, by substituting
Eq. 3.33 into Eq. 3.24 the wave function f; at the harbor entrance

can be represented as:

P
2y o A
HE)=1+(-3) ) H.C, (3. 34)
J=d

where i=1,2,.....p. The first term at the right hand side of Eq. 3. 34
represents the incident wave plus the reflected wave if the entrance

is closed and for convenience it is chosen as unity; the second term
represents the contribution of the radiated wave to the total wave
system.

3.2.3 DMatching the Solution for Each Region at the Harbor

Entrance

Eq. 3.22 shows that from the solution in Region II, the
wave function at the boundary of the harbor can be expressed in terms
of the normal derivatives of the wave function f, at the entrance of the
harbor, Cj. The corresponding equation in Region I, Eq. 3.34 shows
that the wave function at the harbor entrance can also be expressed as
a function of Cj. Since the water surface must be continuous at the
harbor entrance, the wave functions from Regions I and II must be
equal at the entrance,i.e. f; = f;. Thus, by matching the two solutions
at the harbor entrance, one is able to determine the unknown function
Cj' This is done in the following fashion:

Take the first p equations from Eq. 3.22 for the wave function

f, at the harbor entrance:



p
fg(;.)=ZM..C.=M - Cc (3.35)

in which the index i=1,2,..... P, (p is the number of segments into
which the harbor entranceis divided). The matrix Mp in Eq. 3.351is a
P x p matrix obtained from the first p rows of the matrix M.

Equating Eqgs. 3.34 and 3. 35, i.e. f (§i) = f, (;éi), for i=1,2,....p
the following matrix equation is obtained:

M _C = 1+b HC , (3.36a)
pe T & TS

C=(M_-bH™ 1

e - ’

(3.36b)

where Mp and H are each p x p matrices, (Mp—boH)-l is the inverse
of the matrix (Mp—boH), the term bo is equal to -%’ as defined earlier,
and 1 is the vector with each p element equal to unity. Therefore, the
value of the normal derivative of the wave function at the harbor
entrance for each of the p-segments, C, can be obtained from Eq.

3. 36b,

With the normal derivatives of the wave function f, at the harbor
entrance obtained by this matching procedure, the wave function on the
boundary can now be calculated from Eq. 3.22 and the wave function at
any position inside the harbor can be determined from Eq. 3.23 or the

equivalent expression:

N
£, (%) = -izl_fg Golaan 2] - m1Voa) & (QJ.)MASJ_
7=
N
=—-§{E [fz(;;’j)[ D ikr) ]]A ZI—I Dicrys G s, } .
j=1 j=1

(3.37)
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where ;J is at the mid-point of the jth segment of the boundary, x is
the position of the interior point and r is the distance between ;{.j and
x, i-e. r= i§j-§l~ It should be noted that Eq. 3.23 is written in the
form of Eq. 3.37 because the normal derivative of the wave function
at the boundary is zero except at the harbor entrance.

In order to determine the response of the harbor to incident

waves, the wave amplitude inside the harbor is usually compared to
the incident plus the reflected wave amplitude which exists in the ''open-
sea'' in the absence of the harbor, i.e. the harbor entrance is closed.
A parameter called the "amplification factor' is defined as the ratio of
the wave amplitude at any position (x,y) inside the harbor to the incident

plus reflected wave amplitude at the coastline (with the entrance closed).

-/Lot]

) lnz (x,y;t)l _ lAif2 (x,v)e

s -4
IA. E.4£ e
1 1 T

In Eq. 3.38, R is defined as the amplification factor. The wave

= |fa(x, )] - (3. 38)

function f, (x,y) is a complex number; therefore, in computing the wave
amplitude the absolute value is taken.

3.2.4 Velocity at the Harbor Entrance

With the wave function f, (x, y) determined in Subsection
3.2.3, the calculation of the velocity potential $(x, vy, z;t) for the region
inside the harbor is now complete:

1 A.g cosh k(z+h)
Rl vy, Z3k) = — 2

i, (x )e-,i,crt
AC cosh kh 2%y

(3« 59)
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In accordance with the definition sketch presented in Fig. 3.1,
the velocities at the position (x,y, z) in the directions of x,y, z are
defined as follows:

—_1. Aig cosh k(z+h)_8i2
L AC cosh kh ox

' 7/
u(x, v, 2z;t) = Real (%) = Real (=, y)e-’{'ct],,(3.40a)

- 1 A.g cosh k(z+th) ,
oy 8@) _ i of2 -AOt]
v(x, v, z;t) = Real <_8y = Real b ook Fh —ay (x,v)e »(3.40Db)
- 1 kA.g sinh k(z+h)
08 -iot
w(x, v, z;t) = Real (—Bz> = Real b t:osh T f.(x,vy)e AT ], (3.40c)

and the total velocity at any position (x,y,2z) and time t, can be

expressed as:

V%, v, zit) = /a2 + V2 + w2 . (3.404)

The velocity at the harbor entrance is of interest because it is
directly related to the kinetic energy transmitted into the harbor. This
total velocity V* is a periodic function of time. In order to find the
maximum total velocity for all time, the function V*(x, v, z;t) is differ-
entiated with respect to time and the derivative is set equal to zero;
from this condition one can determine the time for which the velocity
is a maximumr. Thus, the maximum total velocity, which is denoted
as VZ:;, at a particular position (x, 0, z) at the harbor entrance can be

calculated as follows:

A gAY +AS+A]

B I 1/ :
vV, (x,0,2) = — [ 5 TZ—\A§+A‘5+A§+2A§A§ cos 2 (o, -ap)

192
+ 2AZ AZ cos 2(0,-0a3) + 2AZ A3 cos Z(al-aa))2] (3.41)
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T A @ 8£g| cosh k(z+h)

ox cosh kh

-

>
W

Iafg l cosh k(z+h)
cosh kh

k sinh k(z+h)
cosh kh

Az =|le

(8f2>
- %)
(o #Y =tanlL;X

(52 )
. (afE)RJ

sz 5
/1

Rw

oy = tan

Qs = tan-l[- :?;R ]
=71

wherein the subscripts R and I which appear in the expressions for
Qy, Gg, Q3 -denote the 1;eal part and imaginary part respectively.

As will be discussed in Subsection 6. 2.5, experiments were
conducted to measure the velocity at the harbor entrance using a hot-
film anemometer. The hot-film sensor was oriented with its long-
itudinal axis parallel both to the '‘coastline'' and the bottom, and, hence,
it was primarily sensitive to the velocities in the y and z directions
(the v and w components respectively). For comparison with the
experimental data the theoretical value of the maximum resultant
velocity of fhe v and w components, which is denoted as Vo’ can be
determined by setting u® equal to zero in Eq. 3.40d (or A, = 0 in

Eq. 3.41):
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i

A.g 2 2 1
- [A’ sl +2l{Ag + A5 + 2 A5 AZ cos 2((12-&3))2]

Vo (x,0,2)
(3.42)

where A;, Az, a0, and a; are defined in Eq. 3.41.
3.3 THE NUMERICAL ANALYSIS

Section 3.2 was concerned only with the transformation of
the Weber's solution of the Helmholtz equation (Eq. 3. 11) into an
integral equation (Eq. 3. 13) and the formulation of an approximate
solution to this integral equation. In this section the methods for
evaluating the elements of the matrices defined in Egs. 3. 15 and 3. 33
will be discussed as well as the numerical method for solving the
wave function f, in Region II and the matching procedure.

3.3.1 Region II: Evaluation of Matrices Defined in Eq. 3. 15

i) Off-diagonal elements of the matrix G,

As defined in Eqg. 3. 14 the notation }?i(xi,yi) is used for
i=1,2,..... N, to refer to the field points, and the notation ;J (xJ., yJ.)
for j=1,2,.....N is used to refer to the source points. The elements

(Gn)ij for i#j can be evaluated as follows:

(G ); 3

-ain[Hc(al)(krij)]Asj

(1) or..

; __ij
KHy (ler; ) 5 s, ’ (3. 43)

in which rij = "/(Xi-xj)z + (yi -y*j)2 is the distance between the mid-
points of the ith segment and the jth segment of the boundary. The
Hankel function H,(.l)(krij) in Eq. 3.43 can be expressed in terms of the

Bessel functions by the equations:
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B, ) = 3y (ke ) 44, Geryy) (3. 44)

Hence, Eq. 3.44 is known once the argument krij is known.

or..
The term —ﬁl in Eq. 3.43 can be evaluated as follows:

or. or. or. .
(e (i) + 5 ke (3. 43)
on /. axj on 5 dy. \on 3 ’ ’

In the right-hand side of Eq. 3. 45 the differentiation with respect to

the outward normal direction of the boundary, n, i.e. (%;31) and (%%) 5
j J

can be changed into differentiation with respect to the tangential
direction along the boundary, ais Therefore, according to the

definition sketch of Fig. 3.4, Eq. 3.45 can be rewritten as:

or. . or.. o0%...

Referring to the definition of rij and performing the differentiation of

Brij Brij
ey and By, Eq. 3.46 becomes:
J J
(o) = . 5% (8r) 4 Zi%(ex) 5.47)
on 3 Ty ds 3 rij os 3 ‘ :

Writing the terms (%%) and (-g%} in difference form Eq. 3.47 becomes:
J j

T« . =X =Y.

Therefore, the off-diagonal elements of the matrix Gn can be evaluated

by substituting Eqs. 3.44 and 3. 48 into Eq. 3.43.
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=cos B
on 1

%v =gin @, = sin (9OO+81 ) =cos 8,

* 9n s

Y o g

3n sin 8,
ox

9

S - cos 85 =cos (9OO+91)= - sin 9,
5y. . 9%
on  0s

Fig. 3.4 Change of derivatives from normal to tangential direction
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ii) Diagonal elements of the Matrix Gp

For matrix G,, since the source and field points are located
at the mid-point of the straight-line segments which have been used
to approximate the boundary, the diagonal elements of the matrix G,
correspond to the condition of the coincidence of a particular field
point and source point. Due to the singular behavior of the Hankel
function Hgl)(kr) as kr—0, special attention must be given in
evaluating these diagonal elements.

The function Y, (x) in Eq. 3.44 can be expressed as a series as
(see Hildebrand (1962) p. 147):

3
¥, (x) = %{(log Z49) 35 (x) - = §+f1+(21+§); . 1. 3.49)

in which y = 0.577216...is termed Euler's constant, and the logarithm
is to the Naperian base e (=2.7128), (all logarithms will be to this
base unless indicated otherwise). The real part of Hankel function
H:(Ll)(kr) presented in Eq. 3.44 is J; (kr) which is approximately equal
to 2 4 when kr becomes very small; therfore, J, (kr)~0 as kr-0. Thus,

2
from Eq. 3.49 as kr—0 the function Y, (kr) can be approximated as:

Y, (kr)~-§—<%> for kr-0 . (3. 50)

Thus, the diagonal elements of the matrix G,, can be evaluated as

the limiting value as r approaches zero (Eq. 3.43 for i=j):

(Galy; = 2 (rmr{M er)ZE) s, = B0 k{1, kr) +27, (ex) |22 4

or
lim ©n
0+,L A gl) :] (3.51)
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Therefore, in evaluating the diagonal elements of the matrix Gn’ the

L

or
most important step is to evaluate the term 1;1’%%1-1 ih Bq. 3. 51.

The definition of r is:

r = lx-x, )2 Hy-y, )

4

1 % - “ . .t
where (xi, Yi) are the coordinates of the mid-point of the i 4 segment on

the boundary thus the term 9z can be expressed in a form similar to

on
Eq. 3.47:
or _9rdx Brdy_ TN (ay), Y7Vi( ox) 3. 52)
n xdn dydn K8s)' r \8s/ ° )

The terms (x-xi), (y—yi), —g%, and —g% in Eq. 3.52 can be expanded in a

Taylor's series in the neighborhood of (xi, yi):

o (As) | (8s)® | 3. 53

x-—xlm(xs)iu | ss) ST ( L ik Tow 5 @ 0w (3. 53)

B ) +x ) as +(x ) LSl (3. 54)
0s ~ s’y ss’y sss’s 2! S :

where the subscript s refers to differentiation with respect to s. (The

index i means that the values of interest are evaluated at the mid-point

of the itﬂ segment. ) The expansion (y—yi) and %\Si can be done in exactly
the same way by changing x to y in Eqgs. 3.53 and 3. 54.

or
lim 9n
r—0
of r, Eq. 3:52, and Eqs. 3.53 and 3. 54 to give:

Thus the term in Eq. 3.51 can be evaluated using the definition

ar ar
limdn _ lim on
r-0 r  As-0 T
Croe 3 2 i Y i (Bl % o v s \/ . (As)?
NK(ys)i.(yss)i&§+.../-\(xs)iAs;(xss}i 51 .../-a\(xs){r(xss)iAs../\(ys)iAsi(yss)i ST +..
~ N ﬂs)g 2 N (LS)E R )d
<(xs)i/ls - (Xss)i STt ; ((y )IAs - (yss)1 5T
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The numerator of Eq. 3.55 can be arranged as:

(-Xssy ) -—LAS + O(&Sa)

where o(As®) means terms of order As®
The denominator of Eq. 3.55 can be arranged as:
(x2 + y'g)_(As)z + o(as®)
s s/i
this expression can be simplified farther to become (As)® + o(As®)
because in reference to Fig. 3.4 the term xz 3 y: is equal to unity.
Thus, neglecting the higher order terms in Eq. 3.55, this
expression can be approximated as:

& ey 4xy.)
lim _6n ss’s " ®s¥ss /i
As=0 r ~ 2

(3.56)

Therefore, the diagonal elements of the natrix Gn can be found from

Eq. 3.51 and the approximation described in Eq. 3.56:

-4 _ =
(Gn)ii R (Xsyss *ss s/ L\'S 5 (3.57)
In Eq. 3.57, the first and second derivatives ofx , v , x , y__ are

| g’ Yg” Ts8" ‘ss

evaluated at the mid-point of the ith segment of the boundary.

For a boundary which is originally composed of straight lines
the value of Yo and ¥ s in Eq. 3. 5:? are both equal to zero
(because the second derivatives s and Voo 2Fe both zero); therefore
the diagonal elements of the matrix G are equal to zero. For a
curved boundary which has been approximated by straight-line segments
the expression of thé first and second derivatives, X and X g Can be

written in a difference form as:



vy

K, 1 = XK 1
. Tits i-5
xs ok b —u--ﬁ----——---E--Asi (3.58a)
6 x.+ljx. > R N
xss = As + As. + As [ Als +1As - Als + t}sl :l (3. 58b)
i+1 i i-1 i+1 i i i-1

where X, is the x coordinate at the mid-point of the ith segment of the
boundary, X 1 is the x coordinate at the beginning of the ilCh segment
=2

of the boundary, and x, is the x coordinate at the end of the ith

i+s
segment of the boundary, Bs; s Bs;, and Asi+

i ang gt

| are the length of the (i- 1)th

segments of the boundary. The derivatives Vgr Vgg €21

be evaluated in exactly the same way by changing x to y in Egs. 3.58.

iii) Off-diagonal elements of the matrix G

The elements (G)ij for i#j can be evaluated directly by the
following expression:

=gt
(G);; = Hy

‘5 (ex ) s, = l:.]'o(krij) +,Lyo(krij)}Asj " (3.59)

J
For a given value of krij’ in Eq. 3.59, the function Jo(krij) and Yo(krij)
are known functions.

iv) Diagonal elements of the matrix G

The diagonal elements of the matrix G correspond to the case of
i=‘j in Eq. 3.59. As before, due to the singular behavior of the function
Yo(kr), special attention must be given in evaluating the diagonal
elements of matrix G. Using the asymptotic formula of Jo(kr) and
Yo(kr) as the argument for kr approach zero, the following approxi-

‘mations are obtained (see Hildebrand (1962) ):



.11
Jo(kr) ~ 1 ’
(kr) ~— <log L + y)
Therefore, as kr—0 the Hankel function H(()l)(kr) can be expressed as:
(1) _ ; r 2 kr

Ho (kr) = Jo(kr) + ,(,Yo(kr) 1+ /L lo g + v (for kr—0)
where vy is the Euler's constant as mentioned earlier.

Using this asymptotic formula for the Hankel function H(()I)(kr),
the diagonal elements of the matrix G can be evaluated by performing
the following integration to determine the average of this function over
the length of the segment of interest:

s0s.
_ 1 == 2_( kr) )] .
)y = ["E—r [1“'« 1°g('2_ ty)]ar] « s

—

= [1 -i-j.%[log (kisi )-1+ «,] ] As, (3.60)

l:l + 4= [log<kAs ) -0. 42278] :lAsi

where i=1,2,.....N.

3.3.2 Region II: Method of Solution for Wave Function £,

In Subsection 3. 3. 1 the methods for evaluating the elements
of the matrices G and Gn have been discussed; thus, the next step is to
evaluate the matrix M, as defined in Eq. 3.21, in order to determine the
variation of the wave function f, along the boundary of the harbor. As
shown in Eq. 3.22 the wave function f, along the boundary of the harbor

can be expressed as a function of the unknown normal derivative of the

wave function f; at the harbor entrance, i.e. Cl’ CZ’ & w6 Cp; Eq.

3.22 is repeated here for clarity:
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P
£6)=) MG, (3. 22)
j=1

wherein Mij is a N x p matrix which is the solution of the following
matrix equation, rearranged from that shown in Eq. 3.21:

(b G, - DM =bGU_ . (3.61)

The matrix (boGn-I) is a N x N matrix, its elements can be determined
as described in Subsection 3. 3. 1 using the definitions of bo and I given
in Subsection 3.2.1. The right-hand-side of Eq. 3. 61, matrix bOGUm,
is a N x p matrix, where Um is defined by Eq. 3.19. (It should be
noted that the matrices G, G_ and M shown in Eq. 3. 61 are all complex
numbered matrices.)

To solve Eq. 3.61 for the complex numbered matrix M, a sub-
routine for the IBM 360/75 digital computer: ""CSLECD/Complex System
of Linear Equations and Complex Determinant' was used which is .
available at the Booth Computing Center of the California Institute of
Technology. The subroutine is based on the Gaussian elimination
method where rows are interchanged leading to the conversion of the
left-hand side matrix in Eq. 3. 61 to an upper triangular matrix. The
solution of M is then obtained by backward substitution.

3.3.3 Region I: Evaluation of Matrix H Defined in Eq. 3.33

The matrix H defined in Eq. 3.33 can be evaluated in the
same way as was matrix G. The matrix H will be called the ''radiation
matrix' because it is the main part of the radiated wave function f; (}—;')
described in Eq. 3.33; it is a p x p matrix and its off-diagonal elements

can be evaluated in a manner similar to that shown in Eq. 3.59:
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(D) = Hf)l)(krij)Asj - [Jo(krij) ; ,LYO(krij):IAsj (3. 62)

(for ifj and 4, §=1,2,+xvss P)
The diagonal elements can be evaluated in a manner similar to that

shown in Eq. 3.60:

/k/ﬁ\s.

(H),; = [1 +,€,%<10g (— 1) _o. 42278)} bs, (3. 63)

(for i=1,2,.....p)

3.3.4 Harbor Entrance: Matching Procedure

After solving Eq. 3.61 for the N x p matrix M and evaluating
the elements of the matrix H as outlined in Subsection 3.3. 3, the next
important step is the matching of the two solutions from Region I and
Region II at the harbor entrance. Eq. 3.36a is the result of this
matching procedure and the object of this section is to describe how
the vector C (the normal derivative of the wave function at the harbor
entrance) is obtained.

Eq. 3.36a is first rewritten as:

(M, -bH) C=1 (3. 64)

in which Mp is a p x p matrix as explained in Subsection 3.2.3. To
solve Eq. 3.64 for the vector C again involves the subroutine '""CSLECD/
Complex System of Linear Equations and Complex Determinant'', but
this time the matrix size is only p x p and the solution Cisapx 1
vector.

After evaluating the vector C, the procedure for determining the
quantities of interest such as the response of the harbor, the

amplitude distribution, etc. are described in Subsection 3. 2. 3.
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3.4 CONFIRMATION OF THE NUMERICAL ANALYSIS
The theory for an arbitrary shaped harbor has been pre-
sented in Sections 3.2 and 3.3. However, prior to evaluating the wave
induced oscillations of an actual harbor, it is necessary to make sure
that the method presented in Subsection 3.2. 1 and the numerical pro-
cedure presented in Subsections 3. 3.1 and 3.3.2 are correct. There-
fore, the approximate solution obtained using the method developed
will be tested by comparing it with the exact solution of the Helmholtz
equation for two different shapes. These two shapes are a circle and
a square. They are chosen for several reasons: (1) the theoretical
solution for both shapes can be obtained easily, (2) the boundary of a
circle represents an extreme case for which the tangent to the boundary
is continuously changing direction, and (3) the boundary of a square
(or a rectangular) represents another extreme case that is composed
of four straight lines; along each line the direction of the tangent to
the boundary remains the same.
The procedure for this test program can be outlined as follows:
1) A theoretical solution is selected for the wave function,
f, that satisfies the Helmholtz equation, V?f + k*f = 0,
in the domain of interest (either a circle or a square).
2) Based on this theoretical solution the value of the wave
function, f, at the boundary of the domain, the value of
its normal derivative at the boundary of the domain, g—i,

and the value of f at any position inside the domain are



4)

5
calculated. (It should be noted that the boundaries for
these two test examples do not necessarily represent
solid boundaries. )

The boundary of the domain is divided into N segments;
the average of the theoretical values of f and g—i on
each segment are calculated.

These averaged theoretical values of the normal
derivative g% for each segment on the boundary are
used to calculate the value of f for each corresponding
segment by the method described in Subsection 3. 2. 1.
One test of this approximate method is the comparison
of this computed value with the theoretical value of f on
the boundary of the domain. Any difference between
these two results which is found can be attributed to the
approximations resulting from converting the integral
equation (Eq. 3. 13) to the matrix equation (Eq. 3. 15).
The computed value of £ (Step 4) and the theoretical
value of gfg on the boundary of the domain are used to
compute the value of f at various locations inside the
domain using Eq. 3.37. The values of f so obtained are
compared with the theoretical values. The difference
is the error admitted in Step 4 plus the error due to

using Eq. 3. 37 which has been used as an approximation

to the exact solution, Eq. 3. 11.
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6) The theoretical values of f and %{E at the boundary of the
domain are used to caluclate the value of f at some
points inside the domain by using Eq. 3.37; the values
of f so obtained are compared with the theoretical
values. The difference is solely due to the use of Eq.
3.37 which approximates the exact equation, Eq. 3.11.

It should be noted that these two examples (circle and square) are
not directly connected with the actual problem of wave induced oscill-
ations in harbors, since the boundary conditions imposed by this test
program (steps 2 and 3) do not correspond to the boundary conditions
prescribed for the harbor oscillation problem (as described in Section
3.1). Rather, these examples are employed in a mathematical sense
serving as an analytical check for the approximate method that will be
used in solving the problem which is of major concern: wave induced
oscillations in an arbitrary shaped harbor.

3.4.1 The First Example: A Circle

The first example that will be investigated is a circular
domain, a definition sketch of which is presented in Fig. 3.5. The
Helmholtz equation is written in polar coordinates as:

1.0(,86), 12 4pap.
rar(rar tragr tEP£=0 . (3. 65)

The steps outlined previously are followed; the following parti-
cular solution which satisfies the Helmholtz equation, Eq. 3.65, is

selected:

f(r,B8) = J, (kr) cos B (3. 66)
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Fig. 3.5 Definition sketch of a circular domain
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Fig. 3.6 Definition sketch of a square domain
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thus, differentiating Eq. 3. 66 with respect to r one obtains:

;_r [f(l‘, 9)} = [kJo(kr) “ %J’l (kr)j|cos 5 . (3.67)

Suppose a boundary of the domain is located at r=a, then the value of f
and g—fr-l- on the boundary can be expressed as:

f(a, 8) = J, (ka) cos 8 ¥ (3.68a)

U (e, 0) =L (2,0) = [x7_(ka) - L1, (ka) | cos 0. (3. 68Db)

The boundary is then divided into 36 segments (each segment

includes 10° of the central angle). On each segment the average

theoretical value of the functions f(a, §) and %f;(a, 8) can be evaluated

as follows:

— (ka) 6. .1
()i:B J_ ];a J 2 cos 646
i+:§' ’ i‘% ei___l_
=
sin 61 1 - sin 81-i
= J, (ka) 5 _— —= , (3.69a)
it Ti-% :

(i) K ka) - 15 (ka)J.GH;
on /.

= 5 < cos 8d6
it3 © Vi-3 81_%
1 sin 8._,__1_ - sin Bi 1
= | kJ (ka) - =7, (ka) 172 2 , (3. 69b)
o a“1l 8. 1 -8
itz Vi-3

(3L

where (f—)i and \8n) are the average theoretical values on the boundary

of the domain of f and g—i for the ith segment, (a, Bi 1) are the coor-
-2

dinates of the beginning of the ith segment of the boundary, and

(a, ei_‘_;) are the coordinates of the end of the ith segment of the
T2

boundary.
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In Step 4, the value of (g:i>, presented in Eq. 3.69b for each
segment is used to calculate the \talue of f of each segment on the
boundary by the approximate method of Subsection 3.2.1. These
computed values will be denoted as f'c. The value of f_c and f should
be very close if the approximate method is to be useful. Three
different values of ka, i.e. ka=0.30, 2.25, 3.75 have been tested
(where k is the wave number in ft'' and a is the radius of the circular
domain and chosen as 0. 75 ft for this case). The approximate result
(f—c) agreed with the theoretical values (f) within 0. 1% to 3% for ka=0. 3
and 3. 75 respectively. The effect of the magnitude of ka on the
solution will be discussed more fully in Chapter 6.

After the values of f on the boundary, i.e. f_c:' have been
obtained, the value of f at any interior point can be computed using
Eq. 3.37 (Step 5). The results for ka=0.30, 2.25 and 3.75 are
presented in Table 3. 1. For each value of ka, the value of f at five
interior points are computed. The theoretical value of f at each
interior point is calculated using Eq. 3. 66 and presented in Col. 3.
The results of Step 5, i. é..the computed approximate values of f at
each interior point, are presented in Col. 4. The difference between
the value in Cols. 3 and 4 can be attributed to: (i) the error admitted
in the approximate solution, Eq. 3. 15, which is used to approximate
the integral equation (Eq. 3. 13) in evaluating the value of f on the
boundary (Step 4), and (ii) the error admitted in the use of Eq. 3.37 to
approximate the exact solution, Eq. 3. 11, in evaluating the value of

f for the interior points.
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The results of Step 6 are shown in Col. 5; they are obtained by
using the theoretical values of f and -gin at the boundary (Eqs. 3.69) to
compute the value of f at the interior point by applying Eq. 3.37. The
difference between the theoretical results of Col.3 and the approximate
results in Col. 5 is solely due to the use of Eq. 3.37 which approxi-
mates the exact solution of Eq. 3.11.

It should be noted that Step 6 applied to a given domain does not
correspond to a mathematically realistic boundary value problem,
simply because both the value of f and g—i on the boundary are usually
not given in advance; usually one or the other is given. However, it
does give an indication of how good the approximation of Eq. 3.37 is,
if the correct boundary values f and g—i are provided. Step 5 does
correspond to a mathematically realistic boundary value problem and
in fact it is basically the procedure used for solving the harbor reso-
nance problem, that is: given a particular value of g—i at the boundary,
calculate the value of f at the boundary and finally calculate the value
of f at any interior point (r, 6).

It is expected that if the number of segments into which the
boundary of the domain is divided is increased, the results of the
approximate method will agree better with the theoretical results.

The results for N=45 (each segment includes 8° of the central angle)
are presented in Cols. 6 and 7 of Table 3. 1. By comparing Cols. 3,
4, and 6 (also comparing Cols. 3, 5, and 7) it is seen that as the

number of boundary segment is increased the results of the approxi-

mate method compared to the theoretical results are improved only

slightly.
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3.4.2 The Second Example: A Square

Suppose the square has sides of length b as shown in Fig.
3.6, then a simple particular solution of the function f that satisfies

the Helmholtz equation, Eq. 3.5, can be chosen as:

f(x,y) = cos (%TE- x)cosh (,\/(-i%)e— k= y) (for k <5 ) (3.70a)
f(x,y) = cos (Zb )cos (Jka (%)2 y) (for k >2b ) (3. 70b)

thus, the outward normal derivative of the function f at the boundary of

the domain can be evaluated as following:

g—i:-g—é_-, for y=0, -b=x<0
%L%, for y=-b, -bsx<0
g—i:gf?, for x=0 -b<y=<0
8- %, forx=-b, -bsys0

The steps outlined previously are followed. The boundary of the
square domain is divided equally into 40 segments. The theoretical
value of f at any interior point (x,y) can be calculated by Eqgs. 3.70
once the value of wave number k is fixed. The results for two different
values of kb, i.e. kb = 0.50 and 2. 0. (where k is the wave number and
the length of sides of the square domain is b = 0. 50 ft) are presented in
Table 3.2. For each value of kb the value of f at nine interior points
are computed. The theoretical values of f at each point for kb = 0. 50
are computed using Eq. 3.70a; the theoretical values of f for kb = 2.0
are computed using Eq. 3.70b. These theoretical values are presented

in Col. 3 of Table 3.2. The approximate results of the value of f in
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Step 5 are shown in Col. 4, while the results of Step 6 are shown in
Col. 5. Comparing the results in Cols. 3 and 4, it is seen that
dependent upon the position of the interior point the results agree
within 1% to 3%, and, as expected, the results in Col. 5 are closer
to the theoretical results (Col. 3).

The results for N=48 (each side of the boundary contains 12
boundary segments) are presented in Cols. 6 and 7. Comparing the
results in Cols. 3, 4, and 6 (also Cols. 3, 5, and 7) it is seen that the
results for N=48 agree better with the theoretical value than when the
boundary is divided into 40 segments.

From the results of these two examples, a circle and a square,
which were used it is seen that this numerical method and the approxi-
mations it entails can be used to solve the Helmholtz equation with
reasonable accuracy. Thus, the real problem of determining wave
induced oscillations in an arbitrary shaped harbor which may have
both curved and/or straight lined boundaries can be approached with

confidence.
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CHAPTER 4

THEORETICAL ANALYSIS FOR TWO HARBORS

WITH SPECIAL SHAPES

Two theories which deal with the wave induced oscillations in
a circular and a rectangular harbor are presented in this chapter.
A circular harbor represents one extreme case for which the tangent
to the boundary of the harbor is continuously changing direction; a
rectangular harbor represents another extreme case whose boundary
is composed of four straight lines and along each line the tangent to
the boundary remains in the same direction. Thus, these two
special theoretical solutions provide a useful analytical check for
the approximate theory developed in Chapter 3 for an arbitrary
shaped ﬁarbor as well as being used to compare to the results of
experiments conducted in the laboratory. The results for these
particular cases and their comparison with the theory developed
for arbitrary shapes discussed in Chapter 3 applied to these two

harbors will be presented in Chapter 6.
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4.1 THEORETICAL ANALYSIS FOR A CIRCULAR HARBOR

The theory developed in Chapter 3 can be used for any
arbitrary shaped harbor. However, if the harbor is a special shape
such as circular, the coordinates inside the harbor are separable
and a different method can be used to obtain a solution in Region II.
(For a list of separable coordinate systems see Morse and Feshback
(1953) pp. 656-666.) The theoretical analysis for a circular harbor
based on this approach will be presented in this section.

In the analysis, the wave function f; which satisfies the Helm-
holtz equation, Eq. 3.5, in Region II is found by the method of
separation of variables. The solution for the open-sea, Region I,
which is used for this development is the same as that presented in
Chapter 3. By matching the solutions in both regions at the harbor
entrance, the complete solution of the wave induced oscillation in

a circular harbor can be obtained.

4.1.1 Wave Function Inside the Circular Harbor

For the wave function f; inside the circular harbor,
the Helmholtz equation, Eq. 3.5, is written in cylindrical

coordinates:

e:+k2£2:0. (4. 1)

The boundary conditions that the function f; must satisfy are:

C(8) for | 6] <8
ﬁa_( ’5)_{ = (4.2)

0 for|8]>eo
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where a is the radius of the circular harbor, 280 is the central

angle of the harbor opening, and C(8) is the initially unknown normal

derivative of the wave function f, at the harbor entrance. A definition

sketch of the circular harbor showing both regions: Region I (the

"open-sea'') and Region II (inside the harbor), is presented in Fig. 4.l.
The solution of Eq. 4.1 will be constructed by Fourier series,

by first seeking the solution of f;(r,8) in the form of:
0 =) £ (@et™ (4. 3)
m=-w

Substituting Eq. 4.3 into Eq. 4.1, it is found that the function fm(r, )

must satisfy the following differential equation:

m*~

fm"(r)+—r1-;m' (r)+<k3- 5 )fm(r)=o. (4. 4)

This equation is a form of the Bessel equation; hence, its solution
can be expressed as:

fm(r) = ame(kr) + BmYm(kr) ; (4.5)

wherein the function Jm(kr) is the Bessel function of the first kind,

and Y _ (kr) is the Bessel function of the second kind; a__ and B
m m m

are arbitrary constants to be determined.

The functign Ym(kr) possesses a singular behavior at r=0, but
since the solution of the wave function f;(r, §) must be smooth and
finite at r=0, the constant Bm must be zero. Thus, from Eq. 4.3,

the solution of Eq. 4.1 can be expressed as:

o

fg(r,6)=§: a_J

_ m(kr)eme . (4. 6)
m=-



i

l Region I (Open-sea)
¥

vef, +k°%f; =0

Region II (Harbor)

Vi, + k¥, 240

Fig. 4.1 Definition sketch of a circular harbor
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Because J_m(kr) is equivalent to (-l)me(kr), Eq. 4.6 is equivalent
16}

@

f2(r,0)=) (A cosme+B_ sinms) ),  (47)
m=0

where Am and Bm are constants with real and imaginary parts to

be determined. For this particular case where the incident wave
propagates in the direction of §=0 the wave function f;(r, §) is an

even function of 8, i.e. the wave amplitude is symmetrical with
respect to the center line 8=0. Therefore, the constant Bm in Eq. 4.7
is set equal to zero. Hence, the general solution to Eq. 4.1 reduces

to:
[s+]

£, (z, 6) =z A_J_(kr) cos m§ . (4. 8)
m=0

Differentiating Eq. 4.8 with respect to r, and evaluating the resulting

expression at the boundary, r=a one obtains:

@

m=0
where: kJ_ '(ka)=kJ (ka)-=J (ka). The coefficients A__ must
m m-1 a m m
be determined such that Eq. 4.9 will satisfy the prescribed boundary
conditions, Eq. 4.2. To evaluate the coefficients Am, the method
of Fourier cosine transformation will be used, by first multiplying
both sides of Eq. 4.9 by cos nf and integrating the resulting

expression with respect to 6 from zero to 2m:



s

IO %fr (a, 8) cos nfdB = J Z [A cosmp *kJ (ka)Jcos el

(s]

Z j kJ (ka)Amcosm8c05n8d8
=0 O

X J kJ ka)A %(cos(mi—n)@ﬂ:os(m—n)e)de.
m=0 "0 (4. 10)

If m#n, upon integration Eq. 4. 10 is equal to zero, and if m=n=0,

Eq. 4.10 is equal to:

2T [.217

a1
jo (2, 0046 = [ KT, (ka)A 46 - (4. 11)

Therefore, the constant A0 can be evaluated as:

2w

J‘ of, 45
0 or (a e)
AO = (4. 12)

2wkJ '(ka)
o

on the other hand, if m=n#0, Eq. 4.10 becomes:

2T

B, |
JO 32 (2,0) cosmods = 3 kI '(ka)a_do . (4. 13)

Thus, the constant Am can be evaluated as:

2T

Jr %‘i(a,e)cosmeds
Am: 0 . (4. 14)
kI ‘'(ka)
m

Because the normal derivative of the wave function on the
boundary, g—i?(a, 8), is zero everywhere except at the harbor entrance,

as shown in Eq. 4.2, Egs. 4. 12 and 4. 14 can be simplified further.
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Using the relations:
JO'(ka) = -J; (ka);
1 = s B
kJm (ka) —kJm_l(ka) > Jm(ka.)

the constants Al Am in Egs. 4.12 and 4. 14 can be written in the

following forms:

g
|2 car
(o]

o - Zvrkz— Jq (ka))

’ (4- 156.)

J 8 C(8) cos mBd®
A

- — T (4. 15b)
. [k;rm_ [(ka) -7 (ka) |
where § is a dummy variable of integration and C(§) represents the
normal derivative of the wave function evaluated at the entrance.
Therefore, the solution to Eq. 4.1 and the boundary conditions,

Eq. 4.2,can be obtained by the substitution of Egs. 4. 15 into Eq. 4. 8:

~

8
Jo(kr) j_eooc(é“)de kr)Lj 8 e)cos deGWCOS m§f

+

fo(r,8)=
L1 "‘_[k‘]-m- l(ka)-:Jm(ka)J (4. 16)

Zwk( -J, (ka.))

If the harbor entrance is small, it is assumed that C(6) can
be approximated by a constant C, and hence, Eq. 4. 16 can be

expressed as:
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g e, ] Jo(kr)'C'GO ) Z'Jm(kr)'C'mnmeo'cos mb . (4. 17)
2\, T —

-mkJ, (ka): m=1 Wm[kJm_l(ka) -%Jm(ka)_l

In order to determine the coefficient C, i.e. the average of
the normal derivative of the wave function across the harbor entrance,
the wave function f, evaluated at the harbor entrance has to be set
equal to the wave function in Region I evaluated at the entrance. This
means that at the entrance the average of the wave amplitude across
the entrance must be the same when determined either in Region I
or Region II. For this purpose, the average of the wave function

f, across the harbor entrance (designated as ?2) is determined as:

6
f, = 5] © fa(a, 8)d8

o -80
¢ J_(ka)8 2 2J  (ka)|sin meo:lz
=c[—°—°—+2 m J] (4. 18)

m
-mkJ; (ka) m=1 TreongkJ'm_l(ka)—a—Jm(ka)

Eq. 4.18 is written in abbreviated form defining the bracketed term

on the right-hand-side as MC; therefore:

L, =0 M. . (4. 19)

The series Mc can be calculated once the radius a, the central angle
of the entrance 260, and the wave number k are fixed. It is noted
that Eq. 4. 19 is similar to Eq. 3. 35; in both of these equations the
wave function at the harbor entrance is expressed in terms of its

normal derivative at the harbor entrance. (It should be recalled
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that the normal derivative of the wave function is proportional to the
horizontal velocity.) The next step in the solution is to express the
average value of f; (for Region I) at the harbor entrance also as a
function of the average normal derivative of the wave function, C,
so that by equating the solutions at the harbor entrance in both regions

the value of C can be determined.

4.1.2 Wave Function Outside the Harbor

As mentioned in Subsection 4. 1. 1, the harbor entrance
is considered small. Thus, even though the harbor entrance is an
arc in Region II and a chord in Region I, the difference between the
length of the arc and that of the chord is assumed to be negligible.
As developed in Subsection 3.2.2. the wave function at the harbor

entrance obtained from the solution in Region I can be expressed as:

£ fx, 0) = 1+ (%) L%% (x,, O)H(‘)”(klx-xo,)dxo
AB
1+(-%) J.c L0 B D x-x_|ax_ (4.20)

where AB is the chord at the harbor entrance, the function C(xo, 0)

is the normal derivative specified in Eq. 4.2, the negative sign is
specified for the adapted sign convention that the outward normal
derivative to the domain of interest is considered positive. (Eq. 4.20
is an integral form of the Eq. 3. 34 that was developed previously. )

The first term on the right-hand-side of Eq. 4.20 represents the
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incident wave and reflected wave at the harbor entrance if the
entrance is closed; the second term represents the radiated wave
from the entrance.

In order to facilitate performing the integration in Eq. 4. 20,
the origin of the coordinate system is shifted to the left corner of
the harbor entrance (point A in reference to Fig. 4.1). To keep
the same approximation as mentioned in Section 4. 1. 1, the function
C(xo, 0) is approximated by a constant C. Thus, Eq. 4.20 can be

simplified by taking the constant C outside the integral sign:

£, (x,0) = 1-§E_£Hé”(k|x-xo| )ax . (4.21)
AB

The Hankel function H(()l)(kix-xoj ) in Eq. 4.21 can be separated into

its real and imaginary parts:

H V@ e ) = BV er) = 7_ger) + 47 1), (4.22)

where r=lx-x0[ is the distance between the field point (x, 0) and the
source point (xo, 0). Substituting Eq. 4.22 into Eq. 4.21 and per-

forming the integration across the harbor entrance, it becomes:

- i AS "
£, (x,0) = 1-2c[fjo(x,0)+,..nyo(x,0)] ' 25}

where the terms fjo(x, 0) and %fyo(x, 0) are the results of the inte-
gration of the real part and imaginary part of the Hankel function
H(l)(kr) in Eq. 4.21. The interested reader is referred to Appendix

(o]

III for the detailed derivation of fjo(x, 0) and fyo(x' 0), (see Egqs. A.3.3
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and A. 3.6). In order to determine the value of C by the matching
procedure, the average of the wave function, ?1 , across the harbor

entrance can be found as:

. 1 As
1 =35 falx,0)dx (4. 24)

0

where As is the length of the chord across the harbor entrance.

Substituting Eq. 4.23 into Eq. 4.24 one obtains:

T, =1 —%_(JC+,{,%YC)AS (4. 25)
where
@ n/kas)\
=Z (-17(5g=
e #=0 (n! )2 (n+1) (2n+1)
kAs¥ As kAs kL\.s\
=1-<2/+2)-< ) \2 /o (4. 26a)
6 60 1008 25920
® kA
(- 1)( S) As \ 1 1 ]

[1og\ 2 /'+ 2(n+1) T 2n+1

r
(o]

I
ferr]

“ Lo @) (2n+]) (ntl)

2n
+z (_1)n+lp(n)(k§s>
2, (@!)? (2n+1) (n+l)

5 (kAs>

_ kps), 3 k 197
= [10g (532) +v-3]-- 32) +v-12]
(kﬁm)‘* (kAs)s
Z kAs 55 2 kAs 353
: 4 log( >+y- - [log( >+y-———:]
60 [ 2 30 1008 2 168
(ks

\Z /T (lﬁ%y_% ... (4. 26Db)
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The development of the series for JC and YC are also presented in
Appendix III. (see Sections IIl. 3 and III. 4).

4. 1.3 Matching the Solution for Each Region at the Harbor

Entrance

With the average wave function f; at the harbor entrance
(f2) for Region II obtained from Eqg. 4. 19 and the average wave function
f, at the harbor entrance (f;) for Region I obtained from Eq. 4.25,
the two solutions can now be matched to solve for the average normal

derivative of the wave function, C. Eq. 4.25 is simplified as:

£ = 1+BOE s (4.27)

where B_ = -é(J $ 1Sy )/_\,s, in which J and Y_ are defined by
o 2 c T cC c c
Eqgs. 4.26a and 4.26b.

Equating Eq. 4.19 to Eq. 4.27, one obtains:

CM =1+B *C ; (4.28)
C [e]

thus, the average value of the normal derivative of the wave function
at the harbor entrance, C—J, can be determined from Eq. 4.28 as:
€ = (4.29)

M -B :
c (o]

where MC and Bo are defined by Egs. 4. 19 and 4. 27 respectively.

After the value of the average normal derivative of the wave
function at the harbor entrance, C, has been determined from
Eq. 4.29, the wave function f, at any position (r, 6) inside the harbor
can be calculated from Eq. 4. 17. It should be noted that the functions

C and f,(r, 8) are both complex numbers.
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Once the value of the complex number C has been determined
by Eq. 4.29, the amplification factor, R, at any position (r, §) for
a particular wave number k can be evaluated in exactly the same way

as discussed in Subsection 3. 2.3 (as shown in Eq. 3.38):

|na(r, 8;t) I IA-fa o e)e-’wt]
R(r,e;k): o = 2 =T :ffa(r,e)]
|A, (£4£ )e % | A 010674
ivir i
_ [ EI J'O(kr)eo . o Z.Tm(kr) sin mBO cos m#8 _ 15, 303

-k, (ka) rh=1 vm| kI (ka) 227 (ka)
It should be mentioned that the analysis presented in this
section so far is concerned only with one complex constant C which
is determined through the matching procedure. This means that the
quantities of interest are averaged over the full entrance; however,

if a better approximation is intended, the harbor entrance can be
divided into p segments. Thus, there are p complex constants Cl'
CZ' 555

for each segment, to be determined by the matching procedure. The

.o Cp, i. e. the average normal derivative of the wave function

average value of the wave function for each entrance segment is
expressed as a function of Cl’ C Cp; thus, a set of equations
similar to those used in the approximate method and shown in Eq. 3.35
can be developed. As for the solution in Region I, Eq. 3.34 developed
in Chapter 3 represents the wave function f; for each entrance segment
and can be used in the solution instead of Eq. 4.25. Therefore,
by matching the average value of f; and f; at each entrance segment,

a set of p simultaneous linear equations can be obtained; the value

of the normal derivative of wave function for each segment, i.e. Cy
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Cp’ can be determined by solving this set of simultaneous
equations similar to what was discussed in Subsection 3.2.3. After
evaluating the value of Cl’ CZ’ S Cp, the wave function f, (r, 8)
at any position inside the harbor can be calculated.

It should also be noted that even though there is no limitation
on the number of segments into which the harbor entrance can be
divided the entrance still cannot be very large. This is because to
use the theoretical analysis presented in this section the arc and the
chord at the entrance must be approximately the same length. In
addition if the harbor entrance is very large, the harbor geometry
can no longer be considered as circular and the method of separation
of variables cannot be applied. For such cases it is necessary to

resort to the approximate methods described in Chapter 3.

4.2 THEORETICAL ANALYSIS FOR A RECTANGULAR HARBOR
Another example for which the coordinates inside the
harbor are separable is a harbor with a rectangular shape. Similar
to the circular harbor, for a rectangular harbor the solution inside
the harbor (Region II) can be obtained in an eigen function expansion
with the coefficients to be determined by the boundary conditions.
The solution in Region II that will be presented below is the same
as the work of Ippen and Goda (1963), since it involves the standard
separation of variable method. For the solution in Region I, the
method discussed in the previous section, i.e. Subsection 4. 1.2, will
be used. This method is different from the Fourier transformation

method that Ippen and Goda (1963) used in their work. This theoretical
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analysis can be used as a check both of the theory developed by Ippen
and Goda (1963) as well as the theory developed in Chapter 3 for an

arbitrary shaped harbor.

4,2.1 Wave Function Inside the Rectangular Harbor

For the wave function f; (x,y) inside the rectangular

harbor, the Helmholtz equation, Eq. 3.5, is written in rectangular

coordinates:
8%f,  8°f; .
w+—5§,7+k £, =0 (4.31)

the wave function f; must satisfy the following boundary conditions:

.. 0fy ~ of, B
(i) B (0,y) =0, and Bx (b,y) =0 for -4 <y<0
.., of B
(ii) J-a. (x,-£) =0 for 0<x<b
¥ (4. 32)
9f 0 for 0<x<d ord +d<x<b
2 o o

(1) =2 (x,0) = {
y C(x) for d_sx=<d_+d

A definition sketch of the rectangular harbor showing both regions:
Region I and Region II, is presented in Fig. 4.2.

Using the method of separation of variables and considering
the boundary conditions (i) and (ii), the solution of the Helmholtz
equation, Eq. 4.31,can be represented by the following infinite

series:

f.{x,v) = z Am cos -r%lxcosh Bm(y +4) , (4.33)

m=0
mr

3
where B = (_,___) -k® , and A__ is an arbitrary constant to be
m b m
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determined. It is obvious that Eq. 4.33 satisfies the Helmholtz
equation, Eq. 4.31,and also satisfies the boundary conditions (i)

and (ii) in Eq. 4.32. Thus, the constants Am have to be determined
so that the solution f; (x, y) will satisfy the boundary condition (iii) in
Eq. 4.32.

Differentiating Eq. 4. 33 with respect to y, one obtains:
of, - -

‘g,‘(x,Y) :Z— Am'Br'n[cos z—glx sinh B__ (y+{;)_} . (4.34)

Evaluating Eq. 4.34 at y=0 and expanding, one obtains:

o1 = :
3y 0 0) =Aok(-sinku+z A_B_(sinhB_1)cosBTx . (4.35)

m=1
The coefficients AO and A _ can be determined by the Fourier
cosine transformation method which was used in Subsection 4. 1. 1.

Using this method the following expressions are obtained for Al and A

2 P as pe
EJ g?e(x,O)dx 13 C(x) dx
A &0 5 g Ayl : (4.36a)
o 2k (-sin ki) bk sin ki
b d+d
21 of
ngoé—&(x,O)cosm—bTr-xdx Id N C(x) cos—n%xdx
A_ = : . : 5 . (4. 36b)
Bm sinh BmL me sinh 8

If C(x) can be approximated by a constant C, as has been done
in Subsection 4. 1.1, the coefficients A and A_ in Egs. 4.36a and

4.36b can be evaluated as:
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Cd

Ao "Bk sin kL (4.37a)
=T . mn . mT
A 20 [sn'l —-g—(d+do)— Slano:] .
m mwB3__ sinh B_ 4 g (4.37b)
m m

Substituting Eqs. 4. 37 into Eq. 4. 33, the solution of the wave function

f, inside the harbor can be written as:

£06,y) = G| S_(e,y) +5_6x,y)] (4. 38)
wherein:
s = _dcos k (y+4)
o bk sin ki :
- <31n (d+d ) - sin™=T g )
z b 0/Icos&ﬁ coshB (y+4)
m B " "m'Y :

. m'rrB sinh Bm»&

The complex constant C, i.e. the average normal derivative of the
wave function across the harbor entrance, in Eq. 4. 38 has to be
determined by a matching procedure similar to that used previously.
The matching procedure used for the rectangular harbor is to
equate the average wave functign f, evaluated at the harbor entrance

(f5) to the average wave function f; evaluated at the harbor entrance

(f; ).

The average wave function f; across the harbor entrance (f;)

can be evaluated as:

d +d
L=3] ° &0
o
- B 453 , (4.39)
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where:
3 = .4
S0 = cot ki ;
i ‘2.b[:sinm (d+d,) - sin LN :]2
g = Z b " 0 b o
m
b (mm) Bm tanh Bm{,

4.2.2 Matching of the Solution for Each Region at the Harbor

Entrance

The average wave function, f,, determined in Region II
at the harbor entrance can be obtained from Eq. 4.39. For the
solution in Region I, the relation developed in Subsection 4. 1.2,
i.e. Eq. 4.27, can be used for the average wave function, ?1. Thus
by matching these two solutions at the harbor entrance, the average
normal derivative of the wave function across the harbor entrance, C,
can be determined. Equating Eq. 4.39 to Eq. 4.27 one obtains:

e (§0+§m) =1+ BOE ; (4. 40)

thus, the value of C can be determined as:

‘ (4. 41)

o 1
C== =
S +S_ -B
o m o

After the value of C has been determined from Eq. 4.41, the
wave function f; at any position (x, y) inside the rectangular harbor
can be determined using Eq. 4.38. The absolute value of the wave
function f; (x, y) is equal to the amplification factor at the position

(x,y) as was shown in Eq. 3.38 and Eq. 4. 30.
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It is noted that in the circular harbor theory developed in
Section 4. 1, the harbor entrance is limited by the requirement
that the arc is approximately equal to the chord at the harbor
entrance. This type of limitation does not exist in the rectangular
harbor theory developed in this section, since no matter how large
the harbor entrance is, the geometry in Region II is still rectangular
and the separation of variable method can be used. For the case of
a wide harbor entrance compared to the length of the harbor the
entrance can be divided into a number of segments using the matching
procedure to equate the average value of f; and the average value of f,
at each segment at the entrance. Therefore, a set of simultaneous
equations can be obtained; the value of the normal derivative of the
wave function C for each segment can be determined by solving
these simultaneous equations. After the normal derivative of the
wave function for each entrance segment has been determined, the
wave function f; (x,y) at any position inside the harbor can be

calculated.
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CHAPTER 5

EXPERIMENTAL EQUIPMENT AND PROCEDURES

5.1 WAVE BASIN

A wave basin 1 ft 9 in. deep, 15 ft 5 in wide, and 31 ft
5 in. long shown in Figs. 5.1 and 5.2 was used for the experiments.
The vertical walls of the basin were constructed of 3/4 in. marine
plywood with the floor constructed of 1 in. marine plywood. The
basin floor was located 10 in. above the laboratory floor. This can
be seen in Figs. 5.1 and 5.2 where a substructure supporting the
basin floor was built to allow for proper leveling of the basin floor
and to raise the basin to a more comfortable working level. This
substructure consisted of wood sills and joists; seven wood sills
(1-5/8 in. x 3-5/8 in. with the short dimension vertical) were
fastened to the laboratory floor, 2 ft 8 in. on center running the
length of the basin. Perpendicular to these sills, a system of
joists (1-5/8 in. x 7-5/8 in. with the long dimension vertical) was
fastened on 1 ft 4 in. centers. The upper face of the joists was
leveled to within © 1/32 in. by placing shim material between the
sill and the joist at each intersection. The 1 in. plywood was then
glued and screwed to the joists to become the basin floor and the
3/4 in.vertical walls and their supporting structure were fastened

in place. (For additional details of the construction of the basin, see
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Fig. 5.2 Over-all view of the wave basin and wave generator with

wave filter and absorbers in place
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Raichlen (1965).) In order to ensure watertightness and to provide
a level bottom, before this study was initiated, a layer of polyester
resin ("CYBOND 2501 Part 1'" manufactured by American Cyanamid
Company) approximately 1/4 in. thick was poured into the basin.
The resin sought its own level before it solidified; therefore, a
bottom which was horizontal to within at least ~l-O. 02 in. was obtained
by this treatment. All the joints were sealed by fiber glass cloth and
resin and the interior of the basin was then painted with an epoxy
base paint. After this treatment the wave basin remained free of
leaks throughout the course of the experiments.

Also shown in Figs. 5.1 and 5.2 are wave energy dissipators:
a wave filter located in front of the wave machine and wave absorbers
located along two sides of the basin. The details of the construction
and the characteristics of these units will be presented in Sections

5.6 and 6. 1 respectively.

5.2 WAVE GENERATOR

The wave generator used for this study was a pendulum
type designed to operate either as a paddle- or piston-type wave
machine; its detailed description and design consideration were
given by Raichlen (1965). A photograph of the wave generator and
the overhead support is shown in Fig. 5.3. It is seen that the plate
of the generator is obscured by the wave filter; however, this shows
the arrangement of the filter relative to the generating surface. The

generating surface was an aluminum plate 11 ft 8 in. long, 2 ft high,



-85-

Fig. 5.3 Wave generator and overhead support with wave filter and
wave absorber in place

9333

Fig. 5.4 Motor drive, eccentric, and light source and perforated
disc for wave period measurement
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and 1/4 in. thick attached to a structural aluminum angle frame
which provided rigidity. As can be seen in Fig. 5.3, this assembly
was suspended from three pairs of arms connected to an overhead
structure which in turn was fastened to the reinforced concrete ceiling
beam. Each supporting arm was 2 ft 9 in. long with the upper end of
each forward arm able to be moved along a slot which was an arc of
radius 2 ft 9 in. Hence, when the forward arm at each support was
parallel to the rear arm the wave machine operated as a piston-type
generator; when the upper end of the forward supporting arm was
moved to the furthermost forward position, the wave machine operated
as a paddle-type wave generator with the bottom of the generating plate
acting as an imaginary hinge point. This arrangement facilitated the
generation of shallow water and deep water waves. The wave generator
was driven by two arms connected to independent eccentrics which in
turn were connected through a pulley system to a 1-1/2 hp variable
speed motor. This arrangement can be seen in Fig. 5.4. The
eccentrics allowed for a maximum wave machine stroke of 12 in., but
careful adjustment was necessary to insure that both eccentrics had
identical settings. This was accomplished by measuring the stroke of
the generator at two locations using dial gages, and it was possible
to adjust the eccentrics to within 0. 001 in. of each other. The motor
was a 1-1/2 hp U.S., Varidrive Motor with a 10:1 speed range and a
continuous variation over this range. Wave periods ranging from 0. 34

sec to 3.8 sec could be obtained with this system.
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5.3 MEASUREMENT OF WAVE PERIOD

A pulse counting technique was used for the determination
of the wave period. As can also be seen in Fig. 5.4, the pulse was
generated by interrupting a light beam, which was directed at a photo-
cell, by a disc with 360 evenly spaced holes arranged in a circle near
its outer edge. The disc was directly connected to one eccentric of
the wave drive mechanism. A schematic diagram and circuit of the
photocell device is presented in Fig. 5.5. The voltage pulses so
generated by the photocell circuit were counted over an interval of
10 seconds by a Beckman/Berkeley Division Industrial Counter Model
7351. The wave period in seconds was obtained simply by dividing
the product of the number of holes times the counting interval (3600)
by the number of counts registered by the counter in 10 seconds.
Hence, the period measured was an average over a 10 second interval;

throughout an experiment this period varied at most by 2y, 03%.

5.4 MEASUREMENT OF WAVE AMPLITUDE
5.4.1 Wave Gage
Resistance wave gages were used in conjunction with the
Sanborn (150 series) recorder for the measurement of wave amplitude.
A drawing of a typical wave gage is shown in Fig. 5. 6. The wave gage
consisted of two 0.010 in. diameter stainless steel wires 3-1/2 in.
long, spaced 1/8 in. apart. The wires were stretched taut and

parallel in a frame constructed of 1/8 in. diameter stainless steel.
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Fig. 5.6 Drawing of a typical wave gage (from Raichlen (1965) )



-89-
The wires were insulated electrically from each other, except that
current could pass from one wire to the other through the water in
which the gage was immersed.

A circuit diagram for the wave gage is shown in Fig.5.7. A
Sanborn Carrier Preamplifier (Model 150 - 1100 AS) supplied the
2400 cps - 4.5 volt excitation for the gages and in turn received the
output from the wave gages which after demodulation and amplification
were displayed on the recording unit. The displacement of the stylus
of the recorder was proportional to the probe resistance, which in
turn was proportional to the depth. of immersion of wires.

The wave gage was calibrated before and after an experiment
(approximately one hour apart). Three typical calibration curves
are presented in Fig. 5.8 for a wave gage with three different
attenuation settings of the amplifier, i.e. x50, x20, x10. The ordinate
shows the immersion plus withdrawal in centimeters while the
abscissa shows the stylus deflection of the recorder in millimeters.
The calibration of wave gage was performed manually by first
increasing its immersion 0. 05 cm, then returning to the original
position and withdrawing it 0. 05 cmm. The same procedure was then
repeated with a larger increment of immersion and withdrawal. A
calibration curve representing an average over the duration of an
experiment was used in the data reduction procedure. Most cali -
bration curves were essentially linear and showed very little change

during an experiment as can be seen in Fig. 5. 8.
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Fig. 5.7 Circuit diagram for wave gages (from Raichlen (1965) )
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5.4.2 Measurement of Standing Wave Amplitude for the Closed

Harbor

As mentioned in Subsection 3. 2.3, the amplification
factor is defined as the wave amplitude at a particular location inside
the harbor divided by the sum of the amplitude of the incident and the
reflected wave when the harbor entrance is closed; this latter is the
standing wave amplitude. Therefore, in order to determine the
amplification factor experimentally, both the wave amplitude inside
the harbor and the standing wave amplitude when the entrance is
closed must be measured.

The amplitude inside the harbor is measured in a straight-
forward manner using the resistance wave gages just described. Due
to the variation in the standing wave amplitude along a crest, caused
by the diffraction of waves off the edges of the wave machine and by
the wave absorbers (see also Ippen and Goda (1963)), it was necessary
to use an average amplitude of the standing wave across the entrance
in defining the amplification factor.

This average standing wave amplitude along the ''coastline’ was
obtained as follows. With the harbor entrance closed, three wave
gages were placed 1/4 in. from the false wall (which represents the
"coastline'') with the wires in a plane parallel to the wall. One wave
gage was located on the center line of the harbor entrance, and the
other two gages were located 2 ft to either side. After the wave

amplitude at these three locations had been determined, the wave
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amplitude at the two limits of the harbor entrance were determined
by interpolation after fitting a second order polynomial to the
measured values. The subroutine "AITKEN/Polynomial Interpolation
Function'' available at the Booth Computing Center of the California
Institute of Technology was used to accomplish this. The average of
the wave amplitude measured by the center gage and those interpolated
as just described was used to represent the standing wave amplitude.
Therefore, the amplification factor was determined by dividing the
measured wave amplitude at a given location inside the harbor by the

standing wave amplitude so determined.

5.5 MEASUREMENT OF VELOCITY

The velocity at the harbor entrance was measured using a
hot-film anemometer manufactured by Thermo-Systems, Inc. (Heat
Flux System Model 1020A). The system minimized the effect of the
thermal inertia of the probe by keeping the sensitive element at a
constant temperature (constant resistance) and using the heating
current as the measure of the heat transfer and hence the velocity of
the flow. The sensor was a glass cylinder (with a diameter of 0.001 in.
or 0.006 in. ) coated with a platinum film which in turn was covered
with a sputtered quartz layer; the platinum and quartz coatings were
each approximately 10.5 in. thick. The sensor was supported by two
insulated needles, and for the experiments, the sensor was aligned
with its longitudinal axis parallel to the bottom of the basin and per-
pendicular to the incoming wave ray. A photograph of one sensor is

shown in Fig. 5.9 with the associated electronics shown in Fig. 5. 10,
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Fig. 5.9 Photograph of a hot-film sensor
(from Raichlen (1967))

9334

Fig. 5. 10 Hot-fillm anemometer, linearizer, and recording unit
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The output of the hot-film sensor is not linearly proportional to
the flow velocity; instead, it has the following general relation (see
Hinze((1959)):
{5. 1)

- ® - Cs% ’
E=I *R_=(c;+c,V2)

where E is the output voltage of the anemometer, Ia is the current

to the sensor, RW is the operating resistance, V is the fluid velocity

normal to the axis of the hot-film sensor, and c, and c, are constants
which depend upon the properties of the hot-film and the temperature

difference between it and the fluid. In steady flow, the exponent ¢z in
Eq. 5.1 is usually taken as 1/2; such a relationship is referred to as
King's law (see Hinze (1959)).

For a constant temperature system, the operating resistance of
the sensor, RW, is kept constant by electronic feedback. The value
(RW-Rg)/Rg (wherein Rg is the cold resistance of the hot-film sensor)
is usually called the 'over-heat ratio'. For present experiments, an
over-heat ratio of 2% to 3% was used.

Assuming King's law applies for the present experiments (see

Subsection 6.2.5 for a discussion of the shortcomings of this

assumption), Eq. 5.1 can be written as:

Sl

E = (c1+cgJTf—) 4 {5.2)
providing a simple relationship which can be linearized so that the
output voltage is directly proportional to the fluid velocity. In order
to accomplish this, a linearizing circuit built by Townes (1965) was

used.
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The sequence of operation of the linearizer is as follows. The
output of the anemometer was first amplified to the best operating
level for the linearizer (approximately 10 volts) and used as the input
to the first squaring circuit of the linearizer; the output from the first_

squaring circuit, S;, can be expressed as:
81 = (¢ Ef? = ¢ (c; 4o/ V) (5.3)

where <, is the amplification by the preamplifier.

It can be seen from Eq. 5.3 that the output of the first squaring
circuit S; is not equal to zero when the fluid velocity is zero. There-
fore, a mean voltage was subtracted from that shown in Eq. 5.3,
when the velocity was equal to zero. Hence, the signal can then be

expressed as:

S =SI-C

b ch = cgcz,/v . (5.4)

a
This voltage was then amplified again to the best operating level
for the linearizer, and introduced to the second squaring circuit. The

final output voltage from that stage, S5, can be expressed as:
- 2 = 2 5 o
S, = (chb) = (cbcacz dVIE & U,VV : (5.5)

Thus, after the linearizing operation, the output voltage from
the second squaring circuit, S;, is linearly proportional to the fluid
velocity, V. It should be noted that the relationship shown in Eq. 5.5
implies that King's law (Eq. 5.2) applies. A calibration is required
if one is to determine the constant o, in Eq. 5.5 and thus the absolute

velocity; for the present experiments no attempt was made to calibrate
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the sensor. If the applicability of Eq. 5.5 is assumed, the relative
velocity at two positions can be obtained as the ratio of the final
output voltage S, at those two positions. For example, for the experi-
ments dealing with the velocity distribution across the harbor
entrance the output voltage at various positions can be normalized
with respect to either the value at the center or the average value
across the entrance; both normalizations yield information regarding

the shape of the velocity distribution across the entrance.

5.6 WAVE ENERGY DISSIPATION SYSTEM

Two types of wave energy dissipators were employed in
the present experiments: a wave filter placed in front of the wave
generator, and wave absorbers located along the side-walls of the
wave basin. This system was designed to simulate open-sea conditions
in the restricted laboratory basin, and the design criterion and
characteristics of the system will be discussed in Section 6. 1.

An overall view of the wave energy dissipators is shown in the
photograph, Fig. 5.11. | The wave filter, shown in front of the wave
generator in Fig. 5.11, was 11 ft 9 in. long, 1 ft 4 in. high and 5 ft
deep in the direction of wave propagation and was constructed of 70
sheets of galvanized iron wire screen in three sections each 3 ft 11 in.
long. The wire diameter of the screens was 0.011 in with 18 wires
per inch in one direction and 14 wires per inch in the other. As seen
in Fig. 5. 12 each section of the filter had three vertical stiffening
pleats located approximately 1 ft apart on each sheet; in addition,

right angle bends each 0.8 in. long were made at the top and bottom
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Fig. 5.11 Wave energy dissipators placed in the basin
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(a) Front view

9311

Side view

9337

Fig. 5.13 Bracket and structural frame for supporting wave absorbers
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of each sheet to further stiffen them. Seventy identical sheets were
then fastened together with 6 stainless steel rods of 1/8 in. diameter.
Spacers consisting of 1/8 in. I. D. lucite tubing 0.8 in. long were
placed on each rod to maintain a uniform spacing. These lucite
spacers can be seen from the side view of the filter in Fig. 5.12. The
right angle bends at the top and the bottom of each screen also served
as spacers. The 70 sheets were then tacked together by soldering to
become a relatively stiff unit that could stand by its own rigidity in

the wave basin, resisting the waves without fixed supports.

While the wave filter was built to stand in the wave basin by its
own rigidity without additional support, the wave absorbers, shown in
Fig. 5.11, were supported by structural frames outside the wave
basin. (One of these structural frames is shown in Fig. 5.13.) The
wave absorbers, placed along the side-walls of the basin, were each
1 ft 6 in. high, 1 ft 10 in. thick, and 30 ft long and consisted of 50
layers of the same galvanized iron screen as used in the wave filter.
To construct these wave absorbers, a unit of 10 screens, each 30 ft
long, 1 ft 6 in. wide spaced 3/8 in. apart was held together by
brackets at each end of the screens. The spacers were composed of
pieces of pressed fiberboard called Benelex (3/8 in. thick, 2 in. wide,
1 ft 6 in. long) placed between each screen. Benelex was used since
it absorbed only a small amount of water compared to some other
materials. A bracket was fastened over the screens and spacers
clamping the 10 screens together firmly as a unit. The screens in a

unit of 10 layers were then stretched taut by 3/8 in. diameter stainless
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steel rods which connected from the brackets at the ends of the units
to the structural frames located outside the basin. Holes were drilled
into the wall of the basin for the rods; fittings with "O'-ring seals were
mounted in the wall to prevent the leakage around the rods. Therefore,
the rods transmitted all the tension required to hold the screens taut
to the structural frames at each end; hence no significant forces were
applied to the basin walls. Five identical units (a total of 50 layers of
screens) were built in this manner along each side of the basin as
shown in Fig. 5. 11.

The wave energy dissipating system provided a large area of
galvanized iron in the wave basin, 9.0 ft® of wire screen per ft° of
basin water. Because of the chemical reaction between the wire
screens and the water when the screens were initially installed the
zinc in the galvanized screens deposited in the basin. This not only
decreased the amount of zinc that protected the wires of the screens
but the reaction also produced a coating of undissolved zinc on the
water surface. The latter effect led to undesirable operating charac-
teristics of the wave gages. For this reason, it was necessary to
introduce additives to the water to reduce and even prevent this
reaction. A series of experiments were conducted in order to find
a proper additive. It was found that a technical grade of sodium
dichromate (Na, Cr,Os)added to the water in a concentration of 500 ppm
(by weight) could accomplish this. The concentration of the sodium
dichromate was checked periodically by a light absorption technique

and if the concentration was found to be less than desired, more was
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added. In order that this additive could function properly as a
corrosion inhibitor, it was necessary to keep the pH of the water less
than 6.5; usually the pH was maintained in the range of 6.2 to 6.5 by
periodically adding hydrochloric acid (HCl). This treatment of the
basin wa.tel; proved to be successful in both preserving the wire
screens and eliminating the precipitate on the water surface, and it

had no observable effect on the wave gages.

5.7 HARBOR MODELS

Four different harbors with constant depth were investi-
gated experimentally: a rectangular harbor, a circular harbor with
a 10° opening, a circular harbor with a 60° opening, and a model of
the East and West Basins of the Long Beach Harbor (Long Beach,
California). The harbor models were designed so that each would
fit into a false-wall simulating a perfectly reflecting ''coastline' and
it was installed 27 ft 6 in. from and parallel to the wave paddle, i.e.
2 ft. 6 in. from the back-wall of the basin. The false-wall was made
of lucite 3/8 in. thick and 1 ft 3 in. high mounted to a frame composed
of galvanized iron angles constructed in two identical pieces: the
east-wing and the west-wing. Each wing extended 4 ft 9 in.from 1 ft
off the center of the wave basin to the inner most screen of the wave
absorbers. A photograph of the supporting frames and the walls is
presented in Fig. 5. 14. The walls were weighted to hold them in
place without direct connections to the basin floor. In line with the
false-wall, lucite spacers 3/8 in. thick, 1 in. wide and 1 ft 6 in. high

were placed between each screen of the absorbers. These spacers
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0335

Fig. 5.14 False-walls and supporting frames representing ''coastline"

9318

Fig. 5.15 Rectangular harbor in place in the basin
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which can be seen in upper left-hand-portion of Fig. 5. 13 were placed
to prevent waves penetrating through the absorbers to the still water
region behind the false wall thereby creating undesirable oscillations
in the basin.
In the following, a brief description of the harbor models is
presented:

(i) Rectangular harbor: The rectangular harbor was 12-1/4 in.

long, 2-3/8 in. wide with a fully open entrance and it was constructed
of 1/4 in. thick lucite. Fig. 5. 15 shows how the rectangular harbor
was placed in relation to the false-wall inside the wave basin. It
should be mentioned that the false-wall, ''coastline'’, shown in Fig.

5. 15 was different from the false-wall described in the previous para-
graph. This wall was constructed from plywood (3/4 in. thick) and-
painted with an epoxy based paint. However, it was found that this
wall expanded due to water absorption; therefore, after the experi-
ments with the rectangular harbor were finished this false-wall was
replaced by the one const;ucted of lucite just described which was
used for all subsequent experiments.

(ii) Circular harbors: The two circular harbors (a 10° opening

and a 60° opening), shown in Figs. 5. 16 and 5. 17, were each 1 ft 6 in.
diameter and 1 ft 3 in. high, and they were constructed of 1/4 in.
lucite plate which was heated and bent to shape. The cylinders were
each connected on the top and the bottom to two 1/2 in. lucite rein-
forcing plates with holes cut to an inside diameter of 1 ft 6-1/2 in.;

this is clearly shown in Figs. 5. 16 and 5.17. These two reinforcing
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9323
Fig. 5.16 Circular harbor with a 10° opening

9325
Fig. 5.17 Circular harbor with a 60° opening



-106-
plates were necessary to keep the planform of the harbors circular.
The two vertical plates shown near the harbor entrance in both Figs.
5.16 and 5. 17 connected to the harbor fitted into the two foot space
which had been left in the false-walls just described; thereby resulting
in a smooth ''coastline'" extending from the wave absorbers to the
limits of the harbor entrance.

(iii) Model of Long Beach Harbor: The model of Long Beach

Harbor shown in Fig. 5. 18 was also constructed from 1/4 in. thick
lucite plate. The shape of the planform of the harbor was cut from
two lucite sheets using dimensions such that when the vertical
boundary walls were cemented in place the inside dimension of the
harbor wéuld be as desired. | These supporting plates can be seen at
the top and bottom of the harbor model in Fig. 5. 18. This model was
composed of 15 pieces of lucite cemented to the supporting plates

and rubber cement was used as filets in the corners. The planform
of the model was simplified from the existing harbor and can be
compared to the prototype in the map (Fig. 5. 19) which was extracted

from the U.S.C. & G.S. map No. 5147.

5.8 INSTRUMENT CARRIAGE AND TRAVERSING BEAM

A photograph of the instrument carriage and traversing
beam is presented in Fig. 5.20; also seen in this photograph is the
frame which was placed outside the model of the harbor to support
the instrument carriage. This frame, constructed of galvanized
steel angles, was bolted to four pads that were cemented to the basin

floor. An aluminum plate 3/8 in. thick, 2 ft 4 in. square with a
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Fig. 5.18 Model of the East and West Basins of Long Beach Harbor
(Long Beach, California)

Nautical Mile
A
72
Yords

. -\ .

Fig. 5.19 Map showing the position of the East and West Basins of
Long Beach Harbor and the model planform. (The harbor
model is shown with dashed lines.)
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circular hole of 2 ft inside diameter was mounted to the top of the
structural frame. The carriage which was supported at three points
with ball bearings was free to rotate with the hole in the plate as its
guide and coupled with the traversing beam the wave gage could
therefore be moved to any position inside the harbor. The complete
frame could be moved toward or away from the false-wall so that the
center of the circular hole on the aluminum plate coincided with the
center of the circular harbor. In addition, the frame could be leveled
by adjusting the bolts on the supporting pads so that the wave gages
remained at the same immersion if moved to other positions within
the harbor.

The traversing beam shown in Fig. 5.20 consisted of an alum-
inum channel to which two lead screws (16 threads per inch) were
mounted. These screws were connected to a gear arrangement at
one end so that they could be rotated either alone or simultaneously.
The screws passed through two threaded blocks to which the wave
gages were attached. As the lead screws were rotated these blocks

moved in slots cut in the channel thus positioning the wave gages.
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9336

Fig., 5.20 Instrument carriage and traversing beam shown mounted

above 10° opening circular harbor
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CHAPTER 6

PRESENTATION AND DISCUSSION OF RESULTS

Experimental and theoretical results are presented in this chapter
which deal with the wave induced oscillations of three harbors with
specific shapes: circular harbors with 10° and 60° openings, a
rectangular harbor, and a model of the East and West Basins of Long
Beach Harbor located in Long Beach, California. All the harbors
investigated were of constant depth and were connected to the open-sea; -
thus, an effective wave energy dissipating system was necessary to
simulate these open-sea conditions in the laboratory. The character-
istics of the wave energy dissipators chosen for this system will be
discussed first, followed by the presentation and discussion of the
results for the three harbors mentioned. All numerical computations

were accomplished using an IBM 360/75 high speed digital computer.

6.1 CHARACTERISTICS OF THE WAVE ENERGY DISSIPATION
SYSTEM
The theories developed in Chapter 3 and 4 treat the case of
a harbor connected to the open-sea which lead to the existence of the
""radiation condition', i.e. the radiated waves which emanate from the
harbor entrance decay to zero at an infinite distance from the harbor.
However, in the laboratory, experiments must be conducted in a wave

basin of finite size; thus, the radiated waves from the harbor will be
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reflected from the wave paddle and the sidewalls of the basin unless
effective energy dissipators are provided. Indeed in the absence of
dissipators Ippen and Raichlen (1962) (also Raichlen and Ippen (1965))
have shown that the response curve of a rectangular harbor connected
to a highly reflective basin is characterized by numerous closely
spaced resonant spikes. This result is strikingly different from the
response curve for a rectangular harbor connected to the open-sea
which was subsequently studied by Ippen and Goda (1963) where fewer
modes of resonant oscillation were observed over similar ranges of
wave period. In this section the design considerations and character-
istics of the wave energy dissipating system (described in Section 5. 6)
which was used in these experiments to alleviate this problem will be
presented and discussed.

A theoretical and experimental investigation of wave energy
dissipators composed of wire mesh screens aligned normal to the
direction of wave propagation was conducted by Goda and Ippen (1963).
In their analysis each screen was considered to be composed of
numerous equally spaced circular cylinders aligned vertically and
horizontally; it was assumed that there was no wave reflection from the
energy dissipator, and the energy dissipated by each cylinder was
assumed to be independent of its proximity to the other cylinders.
Therefore, the total energy dissipation was taken to be equal to the
sum of that from each of the cylinders in the unit., Based on these
assumptions, Goda and Ippen (1963) developed the following semi-
empirical equation for the transmission coefficient of such a

dissipator:
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where: Kt = transmission coefficient, defined as the ratio of the
transmitted wave height to the incident wave height,
H, /H.
t 1

= number of layers of screens,
= diameter of the screen wire,

= center to center distance between wires,

= kinematic viscosity of the fluid,

m
D
S
o = circular wave frequency (2n/T),
V
L = wave length, and

L)

= depth effect factor which is a function of the ratio of
depth to wave length. (The interested reader is referred
to Goda and Ippen (1963) Eqg. 2.29 for this expression;
for deep water waves it is equal to 1.81.)

Based on the experimentally determined values of the transmission

coeffi_cient, Kt’ and the reflection coefficient, Kr’ for various dissi-

pators, an empirical relation was obtained to correlate these

quantities:

Kr ~K28 (6.2)

wherein Kr is defined as the ratio of the reﬂ(?cted wave height to the
incident wave height, Hr/Hi'

To confirm the validity of Eqs. 6.1 and 6.2 so that they could
be used with confidence in designing the wave energy dissipators for
this study (described in Section 5.6) a series of experiments using
model dissipators was conducted. These experiments were carried
out in a wave tank 1 ft 6 in. wide, 1 ft 9 in. deep, and 31 ft long using

a paddle type wave generator and using the procedures employed by
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Two model dissipators were tested, denoted

here as Dissipator A and Dissipator B; their characteristics are

presented in Table 6. 1.

Table 6.1 Model wave energy dissipators

Mesh (S)* Screen Wire | Distance Number
TiasTsatoe Averaged Center | Diameter Between of Layers
P to Center Spacing (D) Layers of of Screens
of Wires Screens
(in. ) (in. ) (in. ) (m)
A 0. 0625 0.011 0.5 38
0. 0625 0.011 0.375 50

“For this study the horizontal and vertical spacing of the wires were
not equal and the value denoted as S is the average spacing (see
Section 5. 6).

A dissipator is called a wave filter if it is placed between the

wave generator and the back-wall of the wave tank; it is called wave

absorber if placed against a reflecting surface of the tank.

In order

to determine the transmission and reflection coefficients of the wave

filter, two wave gages were used to measure the wave envelope in the

region ahead and behind the wave filter.

To determine the reflection

coefficient of the wave absorber one wave gage was used to measure

the wave envelope in the region in front of the wave absorber.

It can

be shown that the incident and reflected waves can be determined

simply from such wave envelopes (see Ippen, 1966, pp. 46-49).

The experimental and theoretical variation of the reflection

coefficient, Kr' with the incident wave steepness, Hi/L’ for Dissi-

pators A and B are presented in Figs. 6.1 and 6.2 respectively. In

both Figs. 6.1 and 6.2, the experimentally determined reflection
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coefficients are presented for each dissipator used both as an absorber
and as a filter. The former refers to the case where the dissipator
was placed against the back-wall of the wave tank, while the latter
refers to the case where the dissipator was located between the wave
machine and the back-wall. The theoretical curves presented in Figs.
6.1 and 6.2 are computed in the following way: first, the transmission
coefficient, Kt’ is computed from Eq. 6.1, and the reflection coeffi-
cient, Kr’ is then determined from the empirical relation, Eq. 6. 2.
The experimental data presented in Fig. 6. 1 show considerable scatter;
however, the data follow the trend predicted by Eqs. 6.1 and 6.2, i.e.
for a constant wave period the reflection coefficient, Kr’ decreases
as the wave steepness, Hi/L, increases, and for a constant wave
steepness, the reflection coefficient, Kr’ increases as the wave
period, T, increases.

Similar data are presented in Fig. 6.2 for Dissipator B where
the number of screens has been increased from 38 to 50 and the
spacing of the screens reduced from 0.5 in. to 0.375 in. By comparing
Figs. 6.1 and 6.2, as expected, it is seen that Dissipator B is more
efficient than Dissipator A.

In Fig. 6.3 the experimentally determined reflection and trans-
mission coefficients for these two dissipators are shown. The experi-
mental data obtained by Goda and Ippen (1963) which were the basis
for their empirical relation, Eq. 6.2, are also included in Fig. 6. 3.
Three relations: Kr = Kta, Kr = Ktz'5 and Kr = Kta, are shown in
Fig. 6.3 for reference. Itis seen that the experimental data show

considerable scatter; nevertheless, the results for Dissipator A agree
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best with the expression: Kr = Ktz's, and the results for Dissipator B
with: Kr = Kt3'°. This difference for the two dissipators suggests
that the wave energy dissipation characteristics might be affected by
the spacing between the screens which was neglected in the analysis
by Goda and Ippen (1963). The results also show that for a constant
reflection coefficient, Kr’ the transmission coefficients, Kt’ obtained
from the present experiments are somewhat larger than those obtained
by Goda and Ippen (1963).

The most important characteristic of the wave energy dissipators
in simulating the unbounded open-sea is the reflection coefficient, Kr'
It was suggested by Ippen and Goda (1963) that the reflection coefficient,
Kr, of wave filters and absorbers should be less than 20% for proper
simulation of open-sea conditions in a restricted wave basin. The wave
absorbers finally chosen for this investigation consisted of 50 layers of
screens with a spacing of 0. 375 in. between screens (as described in
Section 5. 6). Therefore, the wave energy dissipation characteristics
of the wave absorbers used are identical to those of Dissipator B used
in these preliminary experiments and shown in Fig. 6.2. With
reference to Fig. 6.2, except for very small incident wave steepnesses
the reflection coefficient of the absorbers is estimated to be less than
20% for the majority of the harbor resonance experiments which were
conducted.

The wave filter used, which has been described in Section 5.6,
consisted of 70 layers of screens with a spacing of 0.8 in. between
layers of screens. The reflection coefficient of the wave filter is

expected to be less than that of the wave absorbers for comparable
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incident wave steepnesses due to the smaller number of screens and
spacing in the latter. Therefore, it is expected that except again for
the case of an extremely small wave steepnesses, the reflection
coefficient of the wave filter used is less than 20%.

In order to ensure that the open-sea condition was properly
modeled in the wave basin using the wave energy dissipators described,
in initial phases of this study the response to periodic incident waves
of a fully open rectangular harbor (2-3/8 in. wide and 1 ft 1/4 in. long
and identical to that studied by Ippen and Goda (1963) ) was studied
experimentally. The results obtained agreed well with both the
theoretical '.'open—sea solution' and the experimental results obtained
by Ippen and Goda (1963). Thus, the open-sea condition for the
radiated wave was considered to have been simulated properly in these
experiments. The results of these experiments will be presented and

discussed in detail later in Section 6. 3.

6.2 CIRCULAR HARBOR WITH A 10° OPENING AND A 60° OPENING

6.2.1 Introduction

As discussed previously, the wave induced oscillations in
a circular harbor connected to the open-sea can be evaluated by using
either the special theory developed in Section 4.1 (if the chord which
represents the harbor entrance can be approximated by an arc of the
circle) or using the general theory developed in Chapter 3 for an
arbritrary shaped harbor. In this section, the theoretical results

obtained from these two theories are compared to the experimental
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results for harbors with a 10° and a 60° opening. In order to verify
the theory the following results will be presented and discussed:

(i) the variation of the amplification factor at a fixed position
inside the harbor as a function of incident wave number (or
wave period),

(ii) the variation of the wave amplitude inside the harbor for
various resonant modes,

(iii) the variation of the total velocity at the harbor entrance as
a function of incident wave number, and

(iv) the distribution of velocity across the harbor entrance for
various wave numbers.

6.2.2 Response of Harbor to Incident Waves

The response of a harbor is defined, for this study, as the
variation of the amplification factor, R, with the wave number para-
meter ka (wherein k is the wave number and a is a characteristic
planform dimension of the harbor, the radius for the circular harbor).
The function ka is of course dependent upon wave period and depth
whereas the amplification factor R is also a function of position. The
amplification factor R is defined as the wave amplitude at the position
(r, 8) divided by the standing wave amplitude which exists in the wave
basin with the harbor entrance closed for the wave number (or period)
of interest. Over some range of wave number the wave amplitude
inside the harbor may be amplified while over another range it may
be attenuated. Physically, for such a harbor this resonance results

from the trapping of incident wave energy inside the harbor at
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particular wave numbers (or wave periods) which depend on the
geometry of the harbor as well as the depth.

Two response curves for a circular harbor with a 10° opening
are presented in Figs. 6.4 and 6.5, where the two theories described
in Chapters 3 and 4 are compared to experiments. The experiments
were conducted in a circular harbor of 1.5 ft diameter with the depth
of water constant and equal to 1 ft in both the harbor and the "open-sea'.
In both figures, the solid line represents the theoretical curve
computed from the theory for an arbitrary shaped harbor (Chapter 3);
the theory for the circular harbor (Section 4. 1) is shown with dashed
lines. The theoretical amplification factor was calculated using Eq.
Eq. 3.38 and Eq. 4.30 for the arbitrary shaped harbor theory and
the circular harbor theory respectively. The experimental ampli-
fication factor was obtained by dividing the wave amplitude at the
point investigated inside the harbor (center of the harbor or the
position: r=0.7 ft, 8=45°) by the average wave amplitude of the
standing wave system at the harbor entrance. The standing wave
system was measured at the ''coastline' when the entrance was closed;
the procedure for obtaining the average wave amplitude of the standing
wave system was described in Section 5. 4.

Fig. 6.4 shows the response at the center of the harbor while
Fig. 6.5 shows the response at the postion r=0.7 ft, 6=45°, The center
of the harbor is a unique position to investigate because it is the
location having an equal distance to any point on the boundary.. The
position: r=0.7 ft, 6=45° is near the harbor entrance and was chosen

because it was of interest to know whether the harbor entrance had any
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special influence on the response that might not be predicted by the two
theories. In the experiments the wave amplitude at these two positions
was measured simultaneously; however, the gages were separated by
about one radius, thus any disturbance caused by one of the wave gages
would not be expected to seriously affect the other.

For the case of a circular harbor with a 10° opening the arc and
the chord at the harbor entrance are almost the same length, there-
fore the theory for the circular shaped harbor developed in Section 4.1
can be considered to be applicable. In using the theory for an arbi-
trary shaped harbor, the boundary of the circular harbor was divided
into 36 segments with each segment containing 10° of the central angle.
Since the harbor entrance was represented by one of these segments,
only one unknown complex constant of the normal derivative of the
wave function(%%) needs to be evaluated by the matching procedure.

In Figs. 6.4 and 6.5 reasonably good agreement is seen between
the experimental data and the theoretical results. Because the energy
dissipation due to viscous effects is not considered in the theoretical
analysis_, the theoretical values near resonance are, as expected,
higher than the experimental values; more discussion of this will be
presented later in this subsection. Four maxima in the range of ka
that were investigated can be seen in the curves in Figs. 6.4 and 6. 5;
the values of ka for these four are: 0.35, 1.988, 3.18, and 3. 87.
These correspond to four distinct modes of resonant oscillation; the

shape of the water surface for these modes of oscillation will be
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discussed in detail in Subsection 6. 2.4. It can also be seen in Figs.
6.4 and 6.5 that the response in region of ka a 3. 87 is very peaked,
i.e. a large amplification factor and a narrow wave number band-
width (range of ka); the theoretical amplification factor at the center
of the harbor is nearly 10.

As the width of the harbor entrance increases, the difference
between the length of the chord and the arc at the entrance increases
and the theory for the circular harbor developed in Section 4. 1 may
no longer be satisfactory. In order to examine the effect of the small
entrance approximation of the circular harbor theory on the harbor
response when the entrance to the open-sea is relatively large, a
circular harbor with a 60° opening was investigated. In this case the
length of the chord and the arc at the entrance differ by almost 5%.

Two response curves for the circular harbor with a 60° opening
are presented in Figs. 6.6 and 6. 7. Fig. 6.6 shows the response
curve for the center of the harbor; this position corresponds to that
shown in Fig. 6.4 and experimental data from two circular harbors
(1.5 and 0.5 ft diameter) are included. This smaller harbor was
used to obtain data at smaller values of ka than could be obtained
with the 1.5 ft diameter harbor. Fig. 6.7 shows the response curve
for the position: r=0.7 ft, p=45° corresponding in location to the
curve shown in Fig. 6.5; experimental data for only the circular
harbor of 1.5 ft diameter are included for that location. As before,
at both locations theoretical curves obtained from each of the theories

are shown.
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In using the theory for an arbitrary shaped harbor, the boundary
of the harbor (including the harbor entrance) was divided into 36
segments, and for this case the harbor entrance was represented by
six of these boundary segments. Therefore, six complex constants
of the normal derivative of the wave function (-g%?) at the harbor
entrance were determined by the matching procedure. However,
when applying the circular harbor theory, only one constant was used
at the entrance, i.e. the average normal derivative of the wave function
across the harbor entrance (C) obtained by the matching procedure
discussed in Section 4. 1.

The theoretical results presented in Figs. 6.6 and 6.7 show good
agreement with the experimental data. Note that in Fig. 6.6, data
obtained from experiments conducted in a circular harbor of 0.5 ft
diameter are denoted by solid circles. These data combined with the
data obtained in the harbor of larger diameter (1.5 ft) show that the
response curve of the harbor at a particular location is only a function
of ka.

From the theoretical results presented in Figs. 6.6 and 6.7,
it appears that for the two theories there is a small difference in the
value of the wave number parameter, ka, which is predicted at reso-
nance. This difference is probably caused by the different treatment
at the harbor entrance for the two theories: for the circular harbor
theory one segment was used whereas for the arbitrary shaped

harbor theory the entrance was divided into six segments. In fact,
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it is seen from Figs. 6.6 and 6.7 that in the location of the peaks
the experiment agrees better with the arbitrary shaped harbor theory.
The values of ka for the four modes of oscillation shown in these
figures can be denoted by ka = 0,46, 2. 15, 3.38, 3.96 which are the
average values from the two theories.

It should be noted that these four maxima are well defined in
Fig. 6.7 whereas the third maximum is not obviously shown in the
response curve for the center of the harbor (Fig. 6.6). This problem
of defining the resonant mode of oscillation solely by a response curve
such as this will be discussed more fully in Subsection 6.2.5.4. The
amplitude distribution corresponding to these resonant modes will be
discussed in Subsections 6.2.3 and 6. 2. 4.

By comparing Fig. 6.4 with Fig. 6.6 and Fig. 6.5 with Fig. 6.7
one is able to observe the effect of the size of the harbor opening on
the amplification of waves inside the. harbor. It is obvious from these
figures that the maxima which appeared in Figs. 6.4 and 6.5 for the
harbor with a 10° opening are replaced by peaks of smaller ampli-
fication factors and larger bandwidth for the harbor with a 60°
opening (see Figs. 6.6 and 6.7). This effect was called the "harbor
paradox'' by Miles and Munk (1962). In addition, in comparing these
figures it is seen that for the 60° opening, the values of ka of the
modes of resonant oscillation are larger than the values of ka for

the corresponding modes for the harbor with a 10° opening.
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Another characteristic that can be observed from a comparison
of Fig. 6.4 with Fig. 6.6 and Fig. 6.5 with Fig. 6.7 is that the
theoretical results agree with the experimental results better for the
harbor with the larger opening. In order to explain this, some con-
sideration must be given to the effect of energy dissipation at reso-
nance. In the theoretical analysis it was shown that the radiation
of energy from the harbor to the open-sea, limits the amplification
at resonance. In nature in addition to the radiation effect, viscous
dissipation of energy limits the maximum amplification even more.
Since the theory only treated the effect of radiation, one expects the
theoretical values of the amplification factor in the region of reso-
nance to be larger than the experimental values. Moreover, for the
same incident wave characteristics the energy dissipation at the
entrance due to viscous effects are relatively more important for the
harbor with a smaller entrance. Thus a better agreement between
the experimental and theoretical results is apparent for the harbor
with a 60° opening. On the other-hand the results in Figs. 6.4 to 6.7
demonstrate that the wave numbers (or periods) at resonance are
correctly predicted by the two theories. These effects for the harbor
are similar to those for a single-degree-of-freedom oscillator where
viscous dissipation affects resonant amplification much more than it
affects the natural periods of oscillation.

.The agreement between the theories and the experiment is even
more encouraging since the experiments conducted for the response

curves presented in Figs. 6.4 to 6.7 covered the range of waves
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from shallow water waves to deep water waves. The conventional
method of classifying waves is: shallow water waves for h/L < 1/20,
intermediate waves for 1/20 < h/L < 1/2, and deep water waves for
h/L > 1/2 (wherein L is the wave length, h is the depth); thus, the
experiments conducted for ka < 0.236 (a=0. 75 ft) are shallow water
waves, whereas those for 0.236 <ka < 2.36 are intermediate waves
and for ka > 2. 36 the waves are deep watei‘ waves. It should also be
mentioned that the experiments were accomplished using a wide-
range of stroke settings of the wave machine (see Appendix IV).
Since this range of stroke settings results in a wide range of incident
wave steepnesses the good agreement between the theories and the
experiments also emphasize the applicability of these linear theories
even quite close to resonance.

It was mentioned in Chapter 3 that in using the theory for an
arbitrary shaped harbor, the boundary of the harbor must be divided
into a sufficiently large number of segments. The word '"'sufficient™
implies that the results obtained using the approximate theory must
agree with the exact solution within an allowable limit. Obviously,
as the number of segments increases, the accuracy of the approximate
theory compared to an exact theory will improve; however, with this
increase both the required computer storage and computation time may
increase significantly. Therefore, these factors may place a practi-
cal lower limit on the length of the segments into which the boundary
is divided, ‘and therefore, consideration must be given to the relative

size of each segment.
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The following considerations are necessary in determining the
segment length: when the boundary is divided and replaced by
straight-line segments these must be a good approximation to the
actual boundary, and the length of each straight-line segment, As,
must be small compared with the wave length, L. To understand this
second criterion, it is recalled that in the approximate theory the
wave function along each boundary-segment is represented by a
constant value located at the mid-point of the segment; thus, the
length, As, must be small compared to the wave length, L. Therefore,
within the distance of one wave length there are a number of these
segments along which the wave function is evaluated, thereby assuring
the proper representation of the wave form. This criterion can be
represented best by the parameter kAs. It was shown in Subsection
3.4.1 (Table 3. 1) that by using the same number of segments the
approximate solution agreed better with the exact solution for a
smaller wave number k than for larger wave numbers. Thus, in
considering the size of As, the case of larger values of k (smaller
wave lengths) is more critical than the case of small k. For the
circular harbors studied experimentally and simulated theoretically,
thé length of the segments, As, used was 0. 13 ft (for N=36) and the
largest value of ka for which the experiments were performed was
approximately 4. 0 (which corresponds to k=5. 3 ft “!). Therefore,
the critical value of kAs in the present case is 0. 69. Judging by the

good agreement realized between the approximate theory and the
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experimental results, it is concluded that the boundary of the harbor
was divided into segments which were sufficiently small; this criterion
corresponds to the ratio: As/L*1/9. Therefore, a conservative
statement of the criterion for segment length can be stated as: the
harbor perimeter should be divided into a number, N, straight-line
segments such that the ratio of the length of the largest segment to

the smallestwave length to be considered is less than about one-tenth.

6.2.3 Variation of Wave Amplitude Inside the Harbor:

Comparison of Experiments and Theory

The results presented in Subsection 6.2.2 on the response
of the two circular harbors to incident waves demonstrate that the
theoretical results obtained from the arbitrary shaped harbor theory
and the circular harbor theory agree well with the experimental data.
Both theories will be tested further in this section by comparing the
theoretical results with the experimental results for the wave ampli-
tude distribution inside the harbor for various values of the wave
number parameter ka.

The wave amplitude distribution within the circular harbor with
a 10° opening is presented in Fig. 6.8 for a value of ka= 0.502. In
Fig. 6.8 the variation of wave amplitude with angular location is
shown along two circular paths: the upper portion of the figure for
r =0.7 ft (r/a=.935) and the lower portion for r = 0.2 ft (r/a=.267).
The abscissa in Fig. 6.8 is the angular position, 8, in degrees and

the ordinate is the wave amplitude normalized with respect to the
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ka = 0.502 h=1.0 ft.
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Fig. 6.8 Wave amplitude distribution inside the circular

harbor with a 10° opening for ka=0.502
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wave amplitude at the positionof r = 0,7 ft, § = 180°. (The wave
amplitude at r = 0.7 ft, B = 180° is chosen for normalization as it
is the maximum value which was measured along the two circular
paths, i.e. r = 0.7 ft and 0.2 ft.) In Fig. 6.8 and in other figures
throughout this section, the solid line represents the theoretical
amplitude distribution obtained from the theory for an arbitrary
shaped harbor (Chapter 3) applied to this special shape; the amplitude
distribution obtained from the theory described in Section 4.1 for a
circular harbor is shown by a dashed line. Since the theoretical wave
.function, thus wave amplitude, inside the harbor is symmetrical about
a diameter which bisects the entrance (6 = OO), the theoretical results
presented only cover the range of 6 from 0° to 180°.

Experiments were conducted to measure the wave amplitude for
0° < 6 < 360° along certain radii: in Fig. 6.8 the experimental data
for 0° < § < 180° are denoted by an open circle while the data for
180° < 8 < 360° are denoted by a solid circle. Reasonably good agree-
ment is seen between the theories and the experimental results; how-
ever, for r = 0.2 ft, the theoretical results calculated from the theory
for the arbitrary shaped harbor differ by about 10% from the results
of circular harbor theory, the experimental results agreeing better
with the latter. The experimental data for 0° <9 < 180° agree well
with those for 180° < 8 < 360° thus demonstrating the symmetry of the

wave amplitude inside the harbor with respect to the diameter at

B =0".
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rFig. 6. 9 shows the wave amplitude distribution along circular
paths with r = 0.7 ft and r = 0. 2 ft for ka = 1. 988 for the harbor with
a 10° opening. As in Fig. 6.8 the wave amplitude at various locations
is normalized with respect to the wave amplitude at the position of
r=0.7ft, 6= 180° which is again the maximum of points measured.
This value of ka corresponds to the second maximum in the response
curves shown in Figs. 6.4 and 6.5. It is seen that the theoretical
results agree well with the experimental data at the locations where
the measurements were made. At this value of ka, the wave
oscillation inside the harbor is termed the ''sloshing mode''; this
mode of oscillation will be discussed more fully in Subsection 6. 2. 4.
Fig. 6.9 shows, for r = 0.7 ft a region of negative water surface
displacements(negative wave amplitudes) in the region 0% <9 <97°
with positive displacements in the region 97° < 5 < 180°. Similarly,
for r = 0.2 ft two regions are seen with opposite phase, i.e. the
region 0° < 6 < 103° with negative displacements and the region
103° < § < 180° with positive displacements.

Similar results for a value of ka = 3. 188 are presented in
Fig. 6.10; this value of ka corresponds to that of the third maximum
in the response curves shown in Figs. 6.4 and 6.5. The ordinate
in Fig. 6. 10 is the relative wave amplitude normalized with respect
to the wave amplitude at the positionr = 0.7 ft, 6 = 950, where this
amplitude is the maximum which was measured along both circular

paths (r = 0.7 ft and r = 0.2 ft). For this mode of oscillation two
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ka= 1.988 h=10 ft.
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harbor with a 10° opening for ka=3. 188
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nodal lines exist in the harbor (see Subsection 6. 2.4 for a more
complete discussion); thus, the nodal lines cross the two circular
paths at two 1ocation;s along each path: § = 50° and 138° for r = 0.7 ft
and 5 = 73°2 and 123° for r = 0.2 ft. Therefore, in the upper portion
of Fig. 6.10 (r = 0.7 ft) negative water surface displacements are
evident in the regions 0° < § < 50° and 138° < § < 180° while positive
displacements are shown in the region 50° < § < 138°. Positive and
negative water surface displacements can also be seen for r = 0.2 ft.

To investigate whether the shape of the water surface is des-
cribed well by a linear theory experiments were conducted where the
wave amplitude distribution inside the harbor at r = 0.7 ft was
measured fdr various incident wave amplitudes. These results are
presented in Fig. 6. 11 for three different incident wave amplitudes:
Ai = 0.0023 ft, 0.0066 ft, and 0.0105 ft. The value of ka for these
experiments was 3. 188 which corresponds to the third resonant mode
of oscillation (see Figs. 6.4, 6.5 and 6. 10). The theoretical curves
which are shown in Fig. 6. 11 are the same as those presented in the
upper portion of Fig. 6. 10. The agreement of the experimental data
among themselves and with the two linear theories additionally
support the linearity assumption made in the theory (for these
experiments the incident wave steepnesses are: 0.003 < Hi/L < 0.014).
The major deviation from other data appears to be for the results
corresponding to the smallest incident wave amplitude where experi-

mental problems of accurate measurement may arise.
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The variation of the wave amplitude radially at six, fixed,

(o]

angular positions: 8 =0, 30°

o]

, 45°, 90°, 135°

, 180° is shown in
Fig. 6. 12 for ka = 3.891. The abscissa in Fig. 6. 12 is the relative
radial position, r/a,and the ordinate is the relative wave amplitude
normalized with respect to the wave amplitude at the center of the
harbor where a maximum occurs. Experimental results are also
shown for 6 = 270° and are included along with the data and theory
for 8 = 90° as the oscillation is symmetric about 8 = 0°, It is seen
that the theoretical results agree well with the experimental data

for all of the values of § which were investigated. In Fig. 6. 13 these
results have been replotted in a manner similar to Figs. 6.8 through
6. 11 again showing the amplitude variation along the two circular
paths: r = 0.2 ft and r = 0. 7 ft.

The previous discussions have shown the applicability of the
theories developed in predicting the wave amplitude distribution in a
circular harbor with a small opening (100). In a similar manner
experiments were conducted using a harbor with a 60° opening. The
theoretical distribution of wave amplitude within the harbor is com-
pared to the results of these experiments in Figs. 6. 14 through 6. 17.

Fig. 6. 14 shows the wave amplitude distribution along r = 0.7 ft
and r = 0.2 ft at ka = 0. 540 for the harbor with a 60° opening. This
value of ka is approximately the same as that which corresponds to the

first maximum in the response curves presented in Figs. 6.6 and 6. 7.
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Fig. 6. 12 Wave amplitude distribution along six fixed angular
positions inside the circular harbor with a 10°

opening for ka=3., 891
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Fig. 6.13 Wave amplitude distribution inside the circular
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Fig. 6. 14 Wave amplitude distribution inside the circular

harbor with a 60° opening for ka=0.540
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The Wave amplitude is normalized with respect to the wave amplitude
at the position: r =0.7 {t, § = 180°. Note that the theoretical curve
at r = 0.7 ft computed using the arbitrary shaped harbor theory covers
only the region 30° < g < 180°, The experimental data obtained along
the circular path r = 0. 7 ft for the region 8 < 30° are in fact outside
Region II as defined in the arbitrary shaped harbor theory (see Fig.
3.1). Therefore, it is unrealistic to compare these experiments to
this theory for 6 < 30° and r = 0.7 ft. However, in the theory for the
circular harbor it was assumed that the arc was approximately equal
to the chord at the harbor entrance, implying that the region along

r = 0.7 ft for 6 < 30° is also contained in Region II. Therefore, only
the theoretical curve computed using the circular harbor theory is
presented for comparison with the experiments in this region. It

can be seen that the wave amplitude is relatively constant along these
circular paths except in the region near the harbor entrance and that
the theoretical results agree well with the experimental data. As
expected, there is some disagreement between the experimental data
and the circular harbor theory in the region near entrance (8 < 30° and
r = 0.7 ft)

Similar results are presented in Fig. 6. 15 for a value of ka
equal to 2. 153. This value of ka is the same as for the second maximum
in the response curves presented in Figs. 6.6 and 6.7. It can be seen
that the general shape of the water surface (wave amplitude distribution)

is similar to the one shown in Fig. 6.9 for the case of a 10° opening.
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For this case the intersections of the nodal line with the chosen
circular paths occur at a larger value of 6: 105° for r = 0.7 ft and
116° for r=0.2 ft. This indicates that the nodal line for this mode
of oscillation is located closer to the back wall region than for the
case of a 10° opening.

Theoretical and experimental results are presented in Fig. 6. 16
for ka=3.38, which corresponds to the value of ka at the third
maximum in the response curve of Fig. 6.7. The wave amplitude has
been normalized with respect to the wave amplitude at the position of
r=0.7ft, 6= 1000, where the amplitude at that location was the maxi-
mum of those measured. The shape of the water surface for the
harbor with a 10° opening which corresponds to this mode of oscillation
has been shown in Fig. 6. 10. By comparing Fig. 6. 16 with Fig. 6. 10
certain similarities and differences between the shape of water surface
for the two different openings readily can be seen: the general shape
of the wave amplitude distribution is similar. However, the inter-
sections of nodal lines with the circular path r = 0.7 ft occur at a
larger value of & (§ = 54° and 1450) for the harbor with a 60° opening
and for this case the nodal line does not intersect the circular path
for r = 0.2 ft. It is seen that the theories agree well with the experi-
mental data throughout.

Fig. 6. 17 shows the results at a value of ka = 3. 953; this
corresponds to the value of ka for the fourth maximum in the response

curves shown in Fig. 6.7. The wave amplitude shown in
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Fig. 6. 16 Wave amplitude distribution inside the circular

harbor with a 60° opening for ka=3. 38
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Fig. €.17 Wave amplitude distribution inside the circular
harbor with a 60° opening for ka=3,953
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Fig. 6. 17 has béeen normalized with respect to the wave amplitude
at the center of the harbor, AC. It is seen that the agreement is
somewhat poorer between the two theories. To understand this,
recall that in the fourth peak of the response curve shown in Fig. 6.7,
some disagreement is evident between the theories, and the value
of ka at resonance predicted by the two theories also differs slightly.
Hence one would expect that for the same value of ka the two theories
could predict slightly different shapes for the amplitude distribution.
By comparing Fig. 6. 17 with Fig. 6. 13 an obvious difference between
the two can be seen: atr = 0.7 ft in Fig. 6. 17 there is a limited
region, i.e. 100° < 5 < 130° in which a different wave phase is seen.

In Subsections 6.2.2 and 6.2.3 the agreement between the theo-
retical results and the experimental data has been shown. The most
questionable element in the circular harbor theory (see Section 4. 1)
is the small entrance approximation where the arc and chord at the
harbor entrance are considered to be identical. It is not surprizing
that this approximation should apply well for the case of a 10°
opening; however, the results have shown that this approximation
still applies well for the case of a 60° opening. Thus, it appears
that the small entrance approximation can be applied at least up to
a 60° opening. The good agreement between the two theories as well
as between the experimental data and these theories shown in these
two subsections confirms the applicability of the arbitrary shaped

harbor theory to the first extreme case: a curved boundary with a
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continuously varying tangent. The application of the arbitrary shaped
harbor theory for the second extreme case, a harbor composed of
straight-lined boundaries will be presented and discussed in
Section 6. 3.

6.2.4 Variation of Wave Amplitude Inside the Harbor for the

Modes of Resonant Oscillation

As mentioned in Subsection 6. 2.2, there are four distinct
modes of oscillation shown in the response curves for the circular
harbor with a 10° opening as well as 60° opening within the range of
ka that has been investigated. In Subsection 6. 2.3 wave amplitude
distributions along two circular paths inside the harbor for various
modes of oscillation have been described in order to compare the
theories to the experimental data. However, the complete shape of
the water surface inside the harbor for various resonant modes has
not been presented yet. In order to understand more fully the shape
of the modes of resonant oscillation for circular basins and how they
change with changes in the width of the entrance, for each resonant
mode described by the response curves of Figs. 6.4 through 6.7, a
figure will be presented showing the contour lines of the free surface
(lines of constant water surface elevation) along with photographs for
these modes.

It is of interest to compare the shape of water surface for each
mode of oscillation for the closed circular basin with the corres-

ponding modes for a circular harbor with a 10° opening and with a
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60° opening. This comparison will indicate the effect of the size of
the harbor opening on the variation of the wave amplitude inside the
harbor.

The wave oscillation in a closed basin is usually referred to as
the free oscillation in a basin. Suppose the Wéve function in a closed
circular basin of constant depth is f(r, 6), which satisfies the Helm-
holtz equation, Eq. 4.1, and also satisfies the condition that fluid does
not penetrate the boundary of the harbor, i.e. g_rf (a,8) = 0, where
a is the radius of the harbor. As was discussed in Chapter 4, a

solution of the wave function f(r, ) can be expressed as:
f(r,8) = Jm(kr) cos mS$ i (6.3)

where m is zero or a positive integer.
The boundary condition and Eq. 6.3 indicate that the following condition

must be satisfied:

[58; <Jrn(kr)>1 = Jm‘(ka) Rt ) (6.4)

wd
r=a

This condition requires that in order to get a nontrivial solution for the
wave function f(r, 8), the values of ka must be restricted to those which
satisfy Eq. 6.4; these roots are often referred to as the eigenvalues.
The values of ka which satisfy Eq. 6. 4 have been tabulated, e.g. see
Morse and Feshback (1953), and several of these eigenvalues are:
=0, kia= 3.83, T.02, « o 555
m=1l, ka= l.84, 5.83, « « &« »

(6.5)
m=2, ka=3.05, 6.70, . . . .

m=3, ka =4.20, 8.02, . ...
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The value of ka for the free modes of oscillation that will be
used to compare with the wave induced oscillations in the circular
~ harbors are: ka = 1.84, 3.05, 3.83. Thus, the wave functions which

correspond to these values of ka are as follows:

(15 8) = Jg (6: 11%) (for m=0, ka = 3. 83)
f(r,98) = J, (2. 45r) cos § (for m=1, ka = 1. 84) (6.6)
f(r,6) = J5(4.065r) cos 26 (for m=2, ka = 3.05)

In deriving these, the value of '""a' is taken as 0. 75 ft, the radius of

the circular harbor (100 opening and 60° opening) that was investigated
experimentally. As shown in Eq. 3.6, the value of the wave function,
f, is proportional to the wave amplitude; thus, for the closed basin
the relative water surface elevation, % , can be obtained by eval-
uating f from Eq. 6.6 and normalizing vl’flﬁ respect to its maximum
value.

Contour lines for these three modes of oscillation at the time of
maximum water surface displacement are shown in Figs. 6.18 a, b, c.
The contour lines result from the intersection of a horizontal plane
with the disturbed free surface; the value of each line is the ratio of
the water surface displacement at that location normalized with respect
to the maximum displacement in the b;'a.sin. The positive water surface
elevations are represented by solid lines, while the negative water

surface elevations are described by shown dashed lines.
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The contour drawing of Fig. 6. 18 a shows a nodal circle located
at the position of r/a = 0. 628; in this mode of oscillation the contour
lines are a series of concentric circles, so that the wave amplitude
(or water surface elevation) does not vary with respect to 8. Fig.

6. 18 b shows a nodal diameter at the position § = 90° which divides
the basin into two regions of opposite wave phases; this is usually
referred to as the ''sloshing mode'. The contour drawing of Fig.

6. 18 c shows two nodal diameters at the positions § = 45° and 135°%;
the basin is divided into four regions with each quarter 180° out of

phase with its neighbor.

It should be noted that if the basin is no longer completely
closed, however small the opening may be, the solution of the wave
function f(r, 8) is no longer limited to the eigenvalues described
by Eqgs. 6.5. As discussed in Chapter 4, the solution of the wave
function f(r, §) inside thé harbor is continuously dependent upon the
wave number k (or the incident wave period). The response curves
presented in Subsection 6.2.2 show that resonant oscillations may
occur for particular wave numbers producing a large amplification
of the wave amplitude inside the harbor. Modes of resonant oscill-
ation will be described in the following discussions with corresponding
modes for the case of the 10° opening and the 60° opening discussed
together. Therefore, the similarities and differences between the

shape of the free surface for the two harbors readily can be seen.
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A contour drawing and two photographs showing the water surface
for the circular harbor with a 10° opening are presented in Fig., 6. 19
for a value of ka = 0.35. This value of ka corresponds to the first
maximum in the response curves presented in Figs. 6.4 and 6.5. The
value of the wave amplitude within the harbor presented in this contour
drawing (or in any other contour drawing that will be presented in this
subsection) is calculated from the circular harbor theory developed in
Section 4. 1. As mentioned earlier, the value of each contour line
represents the water surface elevatioﬁ normalized with respect to the
maximum elevation within the harbor; for this mode of oscillation
this maximum wave amplitude is located at the boundary of the harbor
(r = 0,75 ft) at § = 180°, It should be noted that all the contour lines
are perpendicular tol the solid boundary corresponding to the boundary
condition that no fluid penetrates a solid boundary. By observing this
contour drawing it is obvious that the wave amplitude is fairly uniform
throughout the harbor, and that either positive or negative water dis-
placements occur simultaneously within the harbor. Thus, this mode
of oscillation can be called the '"pumping mode'; there is no 'pumping
mode' in the case of the-free oscillation in a closed circular basin
because it is impossible to satisfy conservation of mass. The two
photographs provided in Fig. 6. 19 show the case of a positive water
surface displacement, i.e. above the still water surface. Photographs
generally show only displacement along the boundary of the harbor,

not the variation of the water surface in the interior of the harbor.
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In the photographs, positive water surface displacement appears as
dark stripes along the boundary of the harbor. Some indication of the
interior oscillation is provided by shadows on the bottom seen in
subsequent photographs; for this mode of oscillation the water surface
elevation is evidently so smooth that no such shadow appears in the
bottom.

For reasons of convenience, the pumping mode will be named
Mode No. 1, and other resonant modes which occur at larger values
of ka will then be named Modes No. 2, No. 3, etc. These modes of
oscillation will be discussed later in this section.

A similar figure for Mode No. 1 (the "pumping mode'') for the
harbor with a 60° opening is presented in Fig. 6.20. This mode of
oscillation occurs at ka = 0. 46, which is the value of ka at the first
maximum in the response curves presented in Figs. 6.6 and 6.7. As
can be seen from the contour drawing the water surface elevation is
fairly constant throughout the harbor and in the phase throughout. The
shapes of the water surface shown in Figs. 6. 19 and 6.20 are similar;
however, for the case of a 60° opening the variation is larger than for
the harbor with a 10° opening

The shape of Mode No. 2 ("'sloshing mode'') for the case of a
10° opening is presented in Fig. 6.21. This mode of oscillation,
which corresponds to the second maximum in the response curves
of Figs. 6.4 and 6.5 occurs at a value of ka = 1. 99. The contour

drawing shows a nodal line located near a diameter of the harbor at
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6 = 900. As before, the lines of constant positive water surface
elevation are represented by solid lines, while the surface contours
below the still water level are shown dashed. The two photographs
provided are for opposite phase: when the water surface displacement
is near a maximum or a minimum. The upper photograph in Fig. 6. 21
shows a positive water surface displacement approximately in the
region 90° < g < 180°, The lower photograph shows a negative water
surface displacement in this same region. In the photographs positive
water surface displacements appear as a dark stripe along the boundary
of the harbor; however, negative water surface displacements are not
easily seen. The shadows which appear on the bottom of the harbor
are caused by a series of short wave length ripples on the water
surface; however, because their amplitude is small compared with
the main water sur.face displacement, they are not easily detected by
measurement except near the nodes. For different modes of
oscillation, the pattern of the shadows change; this will be more
evident when other modes of oscillation are discussed.

A similar mode of oscillation is presented in Fig. 6.22 for the
circular harbor with a 60° opening. For this opening, this mode of
oscillation occurs at a value of ka = 2. 15 which corresponds to the
second peak in the response curve of Figs. 6.6 and 6.7. For the 10°
opening this mode occurs at ka = 1. 99, and for the completely closed
basin it occurs at ka = 1.84. Therefore, the trend is for the wave

number at resonance to decrease as the entrance width decreases,
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approaching the value of k for that mode for the closed basin. The
upper photograph in Fig. 6.22 shows a positive water surface dis-
placement in the region opposite the harbor entrance (approximately
100° < 9 < 1800) and the lower photograph, shows a negative water
surface in this region.

It is of interest to compare the contour drawings of Figs. 6.21
and 6.22 with the one shown in Fig. 6. 18 b for the case of a closed
circular basin where the three figures represent the same mode of
oscillation: the '"'sloshing mode'. A direct comparison of Figs. 6.18 b
6.21, and 6.22 reveals changes in the water surface shape as the width
of the harbor opening increases. In the case of a closed basin (Fig.
6. 18 b) the nodal line is a diameter at § = 90°, for a 10° opening
(Fig. 6.21) the nodal line occurs at a position slightly off the center
and closer to the region of the back wall; for the case of 60° opening
(Fig. 6.22) the nodal line occurs at a position further off the center
towards the back wall. Specifically, the relative wave amplitude at
the center of the harbor is: A/Ama;x = -0.08 for 10° opening,
A/Amax = -0. 18 for 60° opening. The wave amplitude at the harbor
entrance changes significantly for the three cases: for the closed
basin, (Fig. 6. 18 b) a maximum amplitude (antinode) occurs at the
boundary at 8 = Oo; however, this antinode does not exist for the
case of a 10° opening or a 60° opening. This disappearance of the
antinode at the entrance when the harbor is no longer completely

closed contradicts the assumption made by McNown (1952) in his
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solution of oscillations in circular harbors. (His assumption is that
an antinode exists at the harbor entrance for small openings.)

In Fig. 6.23, a contour drawing and two photographs for Mode
No. 3 are presented for the case of a 10° opening. This mode of
oscillation, which corresponds to the third peak in the response
curves shown in Figs. 6.4 and 6.5, occurs at ka = 3. 18. In the
contour drawing, there are two nodal lilnes; maximum wave amplitude

occurs at the boundary at § = 95° and its symmetrical counterpart is

-)

at § = 265°. (The wave pattern is symmetric with respect to 6 = 0°

The two photographs shown differ 180° in phase. The upper photo-
graph of Fig. 6.23 shows an oscillation with the same phase as the
contour drawing; thus, a positive water surface displacement is shown
in the photograph approximately in the region 50° < § < 140°. The
lower photograph of Fig. 6.23 shows a negative water surface dis-
placement in the same region. It is seen that the shadows on the
bottom for this mode of oscillation are quite different from those shown
in Figs. 6.21 and 6.22, and hence they must be related to the mode of
oscillation.

A similar mode of oscillation for the case of a 60° opening is
presented in Fig. 6.24. This mode occurs at ka = 3.38 and corres-
ponds to the third peak in the response curve of Fig. 6.7. Two nodal
lines are seen in the contour drawing; the maximum wave amplitude
occurs at the boundary at 6 = 100° (and 2600). The upper photograph

in Fig. 6.24 shows a wave motion in phase with that shown in the
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contour drawing; thus the positive water surface displacement along
the boundary is seen in the dark stripe in the region 55° < 5 < 145°,
The lower photograph shows the motion about 180° out of phase with
that on the upper photograph. The shadows on the bottom as seen in
the photographs are similar to those shown in Fig. 6.23; however,
they are certainly different from those shown in Figs. 6.21 and 6. 22
for Mode No. 2.

For the case of a closed basin (Fig. 6. 18 c), the position of the
maximum amplitude occurs at four points on the boundary of the basin
6 = 0%, 90°, 180°, and 270°, and the two nodal diameters (6 = 45°
and 1350) are perpendicular to each other. For the case of a 10°
opening (Fig. 6.23) the two nodal lines are shifted slightly and no
longer intersect, whereas for the harbor with a 60° opening (Fig.
6.24) the two nodal lines are shifted even further apart. The wave
amplitudes at the center have also changed considerably as the
entrance width increases: zero for the case of a closed basin,
A/Amax = -0. 125 for the case of a 10° opening, and A/Amax = -0.44
for the harbor with a 60° opening. As mentioned earlier, the wave
amplitudes at the harbor entrance also change with changes in the size
of the opening: for the case of a closed basin (Fig. 6. 18 ¢) a2 maximum
wave amplitude (antinode) exists at the boundary at 6 = Oo; however,
for the case of a 10° opening or a 60° opening an antinode does not
exist at the entrance. It should be noted that as the wave parameter

ka increases, the ratio of the harbor radius to the wave length a/L
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also increases; thus, it is expected that the effect of the size of the
entrance on the resonant mode of oscillation becomes more significant
with increasing ka.

A contour drawing and two photographs are presented in Fig.
6.25 for the harbor with a 10° opening. This mode of oscillation
(ka = 3.87) is termed Mode No. 4 and corresponds to the fourth maxi-
mum in the response curves shown in Figs. 6.4 and 6.5. From the
contour drawing it is seen that the maximum wave amplitude is at the
center of the harbor and the nodal line is a closed curve. The water
surface displacement shown by the upper photograph of Fig. 6.25 is
in opposite phase to what is shown in the contour drawing, however
the photograph at the bottom of Fig. 6.25 is approximately in the same
phase as the drawing. Although from the photographs it is difficult
to see the variation of wave amplitude at the interior of the harbor,
the variation around the boundary of the harbor can be seen from the
dark stripe in the upper photograph. The variation in the thickness
of the dark stripe appears to correspond to the amplitude variation
shown in the contour drawing. The shadows on the bottom are nearly
circular in the region near the center of the harbor, quite different
from the shadows shown for Mode No. 2 (Figs. 6.21 and 6.22) and
Mode No. 3 (Figs. 6.23 and 6. 24).

A contour drawing with two photographs for a similar mode of
oscillation for the case of 60° opening is presented in Fig. 6.26. This

mode of oscillation occurs at a value of ka = 3. 96 which is corres-
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ponding to the fourth peak in the response curves shown in Fig. 6. 7.
It is seen from the contour drawing that the maximum wave amplitude
is again located at the center of the harbor. The nodal line is no
longer a closed curve as for the case of a 10° opening but in this case
it interesects the boundary of the harbor. As in Fig. 6.25, the upper
and lower photographs in Fig. 6.26 are approximately 180° out of
phase. The variation of the water surface elevation around the
boundary again can be seen from the dark stripe in the upper photo-
graph; it shows a variation along the boundary similar to that shown
in the contour drawing, but with opposite phase.

It is interesting to compare the contour drawings of Figs. 6.25
and 6.26 and 6. 18 a: for the case of closed basin the contour lines are
a series of concentric circles and the nodal line is represented by a
nodal circle (Fig. 6. 18 a); however, for the case of a 10° opening
(Fig. 6.25) the contour lines are no longer represented by a series
of circles, although in the region near the center of the harbor they
are in fact close to circular. As the harbor opening increases to
60° (Fig. 6.26) a significant change in the contour lines can be
observed: the nodal line is no longer a continuous closed line as in
the case of a 10° opening, or a circle as in Fig. 6. 18 a; instead it
intersects the boundary of the harbor, and even contours near the
center of the harbor are no longer circular in form. However, the
center of the harbor still remains the position of the maximum wave

amplitude.
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The results presented in this subsection showed the wave
amplitude distribution for four modes of resonant oscillation in the
range of ka investigated for both the cases of a 10° and a 60° opening.
Except for Mode No. 1 (the "pumping mode'') which does not exist in
a completely closed circular basin, each mode corresponds to a free
mode of oscillation in the closed basin. The results in this subsection
can be summarized as:

(1) The corresponding modes of oscillation for the case of a

10° opening and a 60° opening are basically similar,
however, the detailed shape of the free surface is different.

(2) The value of ka at which a particular mode of oscillation

occurs in the harbor with a 60° opening is larger than the

value of ka for the corresponding mode for the case of a 10°
opening which itself is larger than the value of ka for the
corresponding mode in a closed basin. Hence the tendency
is for the wave number parameter (ka) at resonance to
approach the value for a closed basin as the entrance width
decreases.

(3) No antinode exists at the harbor entrance although an anti-
node might occur at that position in a closed circular basin.

(4) The effect of the width of harbor entrance on the shape of
water surface elevation inside the harbor is more pronounced
for those modes of oscillation at higher frequencies,

i.e. larger values of ka.
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6.2.5 Total Velocity at the Entrance of the Circular Harbor

6.2.5.1 Introduction

In Subsection 3, 2.4 the method for analytically evaluating
the velocity at the harbor entrance was discussed. The velocity at the
harbor entrance is of interest because it is directly related to the
kinetic energy transmitted into the harbor. For the present study, the
value of the wave function, f,, its normal derivative, g—irz’ as well as
the derivative %, evaluated at the harbor entrance are determined
during the process of computing the response curves for various values
of the wave number parameter, ka. Hence, the theoretical value of
the total velocity at the harbor entrance can be obtained readily from
Eq. 3.41.

As mentioned in Section 5.5, the ¥elocity was measured at the
entrance of the circular harbors (with a 10° opening and a 60° opening)
using a hot-film anemometer with a linearizing circuit. In steady flow,
either in air or in water, the output from a hot-film anemometer gener-
ally has been found to follow King's Law (Eq. 5.2). Thus, after em-
ploying the linearization procedure described in Section 5.5 the voltage
is directly proportional to the velocity as reported by Townes (1965),
Raichlen (1967) and Lee (1967). However, at the time of the present
experiments the use of hot-film anemometers in oscillatory flows had
not been reported in the literature. Considering the relation of these

velocity measurements to the major objectives of the experimental

program, a basic assumption was made in reducing these experimental
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data: King's Law was assumed to apply equally well for oscillatory
flows; thus, after using the linearizer the output signal was assumed
to be linearly proportional to the fluid velocity. Therefore, the ratio
of two output voltages from the linearizer was considered to be equal
to the ratio of the two corresponding velocities.

Recently, Das (1968) used a single hot-film sensor in water to
measure turbulence in an oscillatory flow. The results showed that
with one of the hot-film sensors which was used, the relation between
the voltage output and the fluid velocity was: E® ~ V°°2® (wherein E
is the hot-film anemometer output voltage #nd V is the resultant fluid
velocity in a direction perpendicular to the axis of the hot-film sensor),
while another sensor behaved as: E® ~ V°"%®, The latter relation
is close to King's Law (E® ~ V°"®) whereas the former is quite
different.

A typical output from the linearizing circuits as recorded on the
Sanborn recorder (described in Section 5.4) is presented in Fig. 6.27
(Column C). This velocity measurement was made at the center of the
entrance of the harbor with a 10° opening with a wave period of 0. 684
sec. The record corresponds to the velocity at three depthwise
locations: =z = -0, 10 ft, -0.15 ft, and -0.25 ft. As expected, the
velocity decreases as the distance between the hot-film sensor and
the water surface increases. In Fig. 6.27 also the wave amplitude
is shown at two positions inside the harbor, i.e. r =0.2 ft, 6 = 350,

andr=0.7£t, 8 = 215°. It is seen that the waves in these two
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Zero Velocity Timer Record

(A) (B) (C)
Wave Record — Velocity Record
8=35" 6=215" ) (Hot - film sensor placed
r=0.2 ft. r=07 ft. at the center of the

harbor entrance)

ka=1988
(T=0684 sec.)

(Run No. HF10~5)
9-3-68

Fig. 6.27 Typical record of the wave amplitude and of the

velocity after using the linearizing circuit
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positions are 180° out of phase (this was also shown in the contour
drawing of Fig. 6.21 evaluated for the same wave number). From Fig.
6.27, it is seen that within one wave period, the velocity reaches its
maximum value twice, since in a periodically oscillating flow the
hot-film sensor cannot differentiate the direction of the velocity.

In determing the velocity from such records the peak value of the
output signal from the linearizing circuit as recorded was averaged.
This average value, using the notation of Section 5.5, is denoted as S;.
If this value, S;, is truly linearly proportional to the fluid velocity,
then from Eq. 5.5 it is equal to OLVV. Therefore, assuming this
proportionality to be true, the relative velocity at any two positions
can be obtained from the ratio of the corresponding values of S, witﬁ—
out prior evaluation of o, from calibration. (This as sumption was
used to determine the relative velocities that will be presented in the
following subsections even though there is some conflict with the
results of Das, 1968.)

6.2.5.2 Velocity distribution in a depthwise direction

The vertical distribution of the velocity at the entrance
of the harbor with a 10° opening, averaged across the entrance, is pre-
sented in Fig. 6. 28 for three different values of the wave number
parameter, ka, (three wave periods): ka = 0.482, 1. 988, 3‘. 922. The
ordinate of Fig. 6.28 is the relative depthwise position, z/h, (where
z/h = 0 refers to the still water surface) and the abscissa is the

relative velocity normalized with respect to the velocity measured
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nearest the water surface (z/d = -0.03). The theoretical velocity
distribution was calculated using Eq. 3.42 (since the hot-film sensor
is primarily sensitive to the v and w velocity components); the value
of {5, and g—% at the entrance were obtained from the arbitrary shaped
harbor theory. In these experiments, measurements of velocity were
made at five lateral locations across the harbor entrance for each
vertical position (z/h) and each experimental point shown in Fig. 6.28
is therefore the average of the results at these lateral locations.
(The locations will be described fully in Subsection 6.2.5.3.)

According to the conventional methd;:‘: of classifying water waves,
the distribution curve for ka = 0,482 in Fig. 6.28 is similar to the
typical vertical distribution of fluid particle velocities for shallow
water waves. (For the present experiments, as mentioned in Sub-
section 6. 2.2, shallow water waves occur in the region 0 <ka < 0.236,
intermediate waves in the region 0.236 <ka < 2.36, and deep water
waves in the region ka > 2.36.) The distribution curve for ka = 1.988
belongs to intermediate wave category and the curve for ka = 3. 922
corresponds to deep water waves in which the velocity decreases
rapidly as the distance from the water surface increases. It is seen
that the experimental data for ka = 0.482 (wave period T = 1. 838 sec)
and ka = 1.988 (T = 0. 685 sec) agree well with the theoretical curves;
however, the experimental data for ka = 3,922 (T = 0.485 sec) differ

considerably from theory. This may indicate that the assumption of

linearity between the fluid velocity and the output voltage from the
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linearizer is reasonable for ka = 0,482 and 1. 988 but not for ka = 3. 922,
where the wave frequency is larger. In the following, some of the
weakness in the experimental procedure and the methéd of data
reduction will be discussed.

From Eq. 3.42, it is seen that the total velocity at the harbor
entrance is proportional to the incident wave amplitude Ai’ and
inversely proportional to the wave frequency 0. In the experiments,
for the same stroke of the wave machine, the standing wave amplitude
at the harbor entrance (with the entrance closed) for ka = 3.922 was
approximately one-half of that for ka = 1. 988 because the wave filter
is more efficient at higher frequencies; without the filter wavemaker
theory implies the reverse. Therefore, experimentally the velocity
at the entrance for ka = 3. 922 was small compared to the velocity for
ka =1.988. Specifically for the hot-film sensor placed at the center
of the entrance at the position z/h = -0.03, for ka=1.988 (T =0.685
sec) the output voltage from the linearizer was 28.5 volts; however,
for ka=3.922 (T =0.485 sec), the output voltage was only 2. 66 volts,
at this location. As the sensor was moved to the position z/h =-0.25
the recorded output voltage was less than 0.3 volts for ka=3.922. It
is felt that the'disagreement between the experimental and theoretical
results for ka=3,922 as shown in Fig. 6.28 could be due to experi -

mental error in measuring the small voltage or velocity.
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6.2.5.3 Velocity distribution across the harbor

entrance

The velocity distribution across the entrance of the
circular harbor with a 10° opening is presented in Fig. 6.29 for
ka=0.482, 1.988, and 3.922. The abscissa is the relative lateral
position, x/% (where d is the width of the harbor entrance; x/% =0
refers to the center of the entrance, and x/% = -!-1 refers to the
lateral limits of the entrance). The upper portion of Fig. 6.29 shows
the velocity distribution normalized with respect to the average
velocity across the entrance while in lower portion of the figure the
velocities are normalized with respect to the velocity at the center.
The theoretical curves shown are obtained from the arbitrary shaped
harbor theory (Eq. 3.42), where the entrance was divided into five
equal segments with each segment having a central angle of 2° and
the boundary was divided into 35 equal segments. The wave function

f, and its normal derivative L at the mid-point of each segment at

ay
the entrance were obtained by the matching procedure (Subsection
3.2.3). With these values of f; and g—fr?’ the velocity Vo at the mid-

point of each entrance segment was calculated from Eq. 3.42 for a
particular vertical position z. The average velocity across the
entrance, denoted as (Vo)ave' was obtained by computing the arith-
metic average of the velocities Vo at a particular elevation for the
five segments. In Fig. 6.29 the normalized theoretical velocities so

computed are denoted by ''plus signs' and a solid line fitted through
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these values is drawn for reference. For a specific value of ka, the
velocity Vo is a function of vertical position z (see Eq. 3.42); however,
in the range 0 > z/h > -0. 15 corresponding to the experimental data
shown, the relative velocity Vo/(vo)ave at the entrance is essentially
independent of z. Therefore, in Fig. 6.29 only one theoretical curve
is presented for each value of ka.

Experimental measurements were conducted by placing the hot-
film sensor parallel to 'the coastline'' and the bottom at five lateral

positions: x/izi-= 0, -0.32, -0.64, 0.32, 0.64. Inthe upper portion

of Fig. 6.29, these experimental data are shown in terms of

vV _/(V ) for each lateral position at: z/h = -0.03, -0.07, -0.10,
o' '"o’ave

and -0. 15. Comparing the theoretical and experimental results, the
experimental data are generally larger than the theoretical values, |
although they qualitatively follow the trend pljedicted by the theory,

i. e. the velocity increases toward the two limits of the entrance. It
is felt that in part the reason for the disagreement could be caused by
underestimating the experimental value of (Vo)ave' Due to the
relatively large value of the ratio of the length of the hot-film sensor
to the width of the harbor entrance, measurements could not be made
close to the edges of the entrance where the velocities were large.
Thus, the average value of the data at the five locations is probably
smaller than the true average velocity. In order to reduce the influ-

ence of the experimentally determined average velocity and to more

positively confirm the theoretical velocity distribution across the
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entrance, the same data were normalized with respect to the velocity
at the center of the harbor entrance, (Vo)c' These results are pre-
sented in the lower portion of Fig. 6.29 with the theoretical curves
shown for comparison. Itis seen that the experimental data quali-
tatively agree with the theory; the major disagreement again is for the
case of ka=3.922 (T=0.485 sec) where one possible reason for this
has been discussed in Subsection 6.2.5.2. From Fig. 6.29 it is seen
that for the case of a 10° opening the velocity distributions for these
three values of ka are similar in that the velocity increases toward
the entrance limits.

Similar results for the harbor with a 60° opening are presented
in Fig. 6. 30 for four values of ka, i.e. ka=0.64, 2.22, 3.30, and
4.01. In obtaining the theoretical curves the arbitrary shaped harbor
theory and Eq. 3.42 were used again with the harbor entrance divided
into six equal segments (each segment having a 10° central angle) and
the boundary divided into 30 equal segments. As before, in Fig. 6. 30
for each value of ka presented, a curve is drawn through the theoreti-
cally computed values of Vo/(vo)ave which have been plotted at the
mid-point of each segment. The theoretical curve for ka=0.64 can
be considered as representing the velocity distribution corresponding
to Mode No. 1 (the "pumping mode'). (For a description of the shape
of this resonant mode of oscillation the reader is referred to Sub-

section 6.2.4.). The velocity distribution for Mode No. 2 (the

"sloshing mode'') is represented by the curve for ka=2. 22, while
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Modes No. 3 and No. 4 correspond to ka=3.30 and 4.01 respectively.
It is interesting to note that the velocity distribution for the third mode
(ka=3.30) is strikingly different in appearance than those of the other
three.

For the harbor with a 60° opening, the length of the hot-film
sensor is much smaller compared with the width of the entrance than
for the 10° case just discussed; hence, measurements could be made
relatively closer to the entrance limits. Therefore, it is felt that the
experimentally determined average across the entrance, (Vo)ave’
is reasonably good, and the results are only normalized with
respect to the average velocity in comparing experiments to theory.
Experimental data at two vertical positions: z/h = -0.05 and -0. 15
are shown in Fig, 6.30. Considering the assumptions made in the
data reduction procedure it is somewhat surprizing that the experi-
mental data agree as well with-the theory as they do. The major
disagreement between experiments and theory again is at the largest
value of ka, i.e. ka=4.01.

6.2.5.4 Velocity at the harbor entrance as a function

of wave number parameter, ka

It is possible in determining the response curve for a
particular harbor that because of the location chosen the amplification
factor at that position is small for all incident wave numbers whereas
a nearby location has associated with it large amplification factors for

particular wave numbers. Therefore, one response curve alone may
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not always clearly indicate all resonant conditions. A parameter
which may be used as an indicator of resonance, which is independent
of location, is the total velocity at the harbor entrance. Since this
velocity is associated with the energy input into the harbor, a larger
velocity at the entrance at one wave number compared to another would
mean a larger kinetic energy input and resultant larger potential
energies and hence water surface amplitudes inside the harbor for
that wave number. Therefore, a curve showing the variation of the
entrance velocity with the incident wave number parameter, ka, may
prove to be a useful tool to indicate resonance. In this subsection
such curves for the case of a circular harbor with a 10° opening and
a 60° opening will be presented and discussed.

As mentioned earlier, Eq. 3.41 can be used to calculate the
total velocity at the entrance, V:, and if both sides of Eq. 3.41 are
normalized with respect to the maximum horizontal water particle

velocity for a shallow water wave, one obtains:

als
=2

v 2 2 2
0 - ofEBTAI AR 4 A 1 (he 4 Az 4 AS +242A2 cos 20y -0y)

i
vegh 4=

|

-

1%
+ 2AZ A cos 2(a, -agz) + 2A% AZ cos 2(q, —aa)){l (6.7)

wherein A;, Ay, Az, a1, 03, and az are defined in Eq. 3.41. In using

Eq. 6.7 the value of A, and Az at the harbor entrance are easily

8t

oy

from the matching procedure. The value of —g% in A, is approximated

obtained since f, and for each entrance segment are determined
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by %, wherein Af; represents the difference in the value of wave
function f, of two neighboring entrance segments and Ax represents the
distance between them.

Fig. 6.31 shows the variation of the total velocity at the entrance
of the circular harbor with a 10° opening as a function of the wave
number parameter ka. This curve is calculated from Eq. 6.7 for
z=0 (the water surface) and as before, the water depth,h, is 1 ft. The
ordinate in Fig. 6.31 is (Vz)ave/"/g_h% (wherein (V:)ave represents
the average total velocity, V:, across the harbor entrance); the
abscissa is the wave number parameter ka. There are four maxima
in the curve shown in Fig. 6.31, the value of ka associated with each
maximum is: ka=0.35, 1.98, 3.18, and 3. 87 and these values
correspond to those associated with the four modes of resonant
oscillation predicted by the arbitrary shaped harbor theory and shown
in the response curves, Figs. 6.4 and 6. 5.

In an attempt to compare the theory with the velocity me asure-
ments using the hot-film anemometer, Eq. 3.42 is used for the theo-
retical calculations. (Since the hot-film sensor in these experiments
was primarily sensitive to the v and w velocity components, it is

unrealistic to compare the experiments with Eq. 6.7.) Fig. 6.32

r
shows the variation of (V ) /i_(V ) —‘ as a function of
o’ave o’ave_, _
ka=1.988

ka; the curve shown as a solid line was evaluated from Eq. 3.42 using

values of £, and -g% at the entrance determined by the method discussed

in Chapter 3 (arbitrary shaped harbor theory). The velocity ratio
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computed from Eq. 3. 42 using the values of f; and g—f{? determined
by the method of Section 4.1 (circular harbor theory) is shown in
Fig. 6. 32 as a dashed curve. In using Eq. 3. 42, the value of the
incident wave amplitude Ai is taken as a constant for all values of
ka.

Experiments were conducted by placing the hot-film sensor at
z=-0.03 ft; for each value of ka, measurements were made at five
lateral locations across the entrance (x/-czl= 0.0, 0.32, 0.64, -0.32,
-0.64). The average of the output voltage from the linearizer at these
five locations is denoted as S;. As just mentioned in the theory the
incident wave amplitude was considered constant for all wave numbers.
However, in the experiment it is impossible to maintain this condition,
in fact for the range of ka investigated the wave amplitude varied
more than a factor of three. Therefore, to compare the experimental
data to the theory, this effect of the varying incident wave amplitude
must be eliminated. This was accomplished by dividing the voltage,
S,, by the incident wave amplitude at that wave number. This ratio
was then normalized with respect to that at ka=1. 988 and the resulting
data are shown in Fig. 6.32.

In Fig. 6.32 it is seen that the two theoretical curves agree well
and the experimental data agree reasonably well with these theories.
However, at large values of ka, again, the data and theories show

poorer agreement.
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The variation of the velocity at the harbor entrance with ka is
presented in Fig. 6. 33 for the harbor with a 60° opening. The curve
is again obtained from Eq. 6.7 evaluated at the water surface for a
total depth of 1.0 ft. It is seen that the values of ka for the four
maxima in Fig. 6.33 are: ka=0.50, 2.18, 3.38, 3.97. Again, these
values correspond to those predicted by the arbitrary shaped harbor
theory. (See the response curves in Figs. 6.6 and 6.7.) It should be
noted that the third maximum was not clearly defined in the response
curve shown in Fig. 6.6 because of the location chosen (it did appear
at the other location,see Fig. 6. 7); this clearly emphasizes the import-
ance of the entrance velocity as an indicator of resonance. Comparing
Fig. 6.33 with Fig. 6. 31, it appears that the average velocity across
the entrance at resonance is significantly less for the case of a 60°
opening; however, the wave number band-width associated with the
maxima is larger for the 60° case compared to the harbor with a 10°
opening. This phenomenon is similar to that shown by the response
curve presented in Subsection 6. 2. 2.

For the 60° opening, the velocity at the center of the harbor
entrance also was measured using th_e hot-film anemometer. The
sensor was located at a vertical position z=-0,05 ft at the center of
the entrance (the water depth again was 1.0 ft). The voltages from the
linearizer at various values of ka were then normalized with respect
to that at ka=2.25 using the same correction procedure as was just
described for the harbor with a 10° opening. These data are presented

in Fig. 6.34, in contrast to Fig. 6.32 where average velocities
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across the entrance were used, here the normalized velocity is that
obtained at the center of the entrance.

For this case only the theoretical curve obtained from the
arbitrary shaped harbor theory is shown, since the circular harbor
theory had not been used to determine the values of f; and -2%2 at the
center of the entrance (it was used only to determine the average

values of f, and g—fg across the entrancé).

n
Although the experimental data show considerable scatter, they
agree qualitatively with the theory. The results from experiments
performed at four different times are shown in Fig. 6. 34 providing
additional confidence in the experimental procedure. The value of ka
associated with the maxima in Fig. 6. 34 are different from that of
Fig. 6.33 especially the third and fourth peaks. This is because for

different values of ka, the shape of the velocity distribution across the

harbor entrance is not the same (see Fig. 6.30). Thus, the relative

velocity at the center of the entrance, (V) /r(V ) ] , 1s not
o'l L "ol
ka=2.25
necessarily equal to the relative average velocity across the entrance,

I 7
(vo)ave/l_(vo)ave.jka=2. 25

shown in Fig. 6.33.

The results presented in this subsection have demonstrated that
a maximum average total velocity at the harbor entrance corresponds
to a resonant mode of oscillation inside the harbor. It is obvious that
such velocity considerations will be even more useful for a harbor

with a complicated shape; more discussion of this will be given in

Subsection 6. 4. 4.
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6.3 RECTANGULAR HARBOR

6.3.1 Introduction

In the initial phases of this investigation a series of
experiments was conducted to study the response of a narrow, fully
open rectangular harbor to incident waves. As mentioned in Section
6.1, the primary purpose of these experiments was to ensure that the
""open-sea'' condition was simulated properly in the laboratory basin
when using the dissipators described in Section 5. 6. This was done
by comparing the experimental results to the experiments and the
theoretical analysis for a rectangular harbor presented by Ippen and
Goda (1963). Their theoretical solution had been confirmed reason-
ably well by experiments conducted by them using a fully open rectan-
gular harbor (2-3/8 in. wide, 1 ft 1/4 in. long) installed in a basin
11 ft long and 9 ft wide with ‘''satisfactory' wave energy dissipators
placed for the simulation of the ''open-sea'’. In this study the harbor
dimensions were identical to theirs and the only difference was the
basin was larger and the dissipators were more efficient than theirs
(see Sections 5.1 and 6. 1).

In addition these early experiments also served to provide data
to compare to the theory for an arbitrary shaped harbor presented in
Chapter 3 as well as the rectangular harbor theory presented in
Section 4.2. In the following subsection these theoretical results will
be compared to the experimental data of this study as well as to the

theory and experimental results obtained by Ippen and Goda (1963).
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6.3.2 Response of Harbor to Incident Waves

The response of a fully open rectangular harbor to
periodic incident waves is presented in Fig. 6.35. The abscissa is
the wave number parameter ki (whereZ is a characteristic dimension
of the harbor, in this case the length of the harbor). The ordinate
is the amplification factor, R, defined as the wave amplitude at the
center of the backwall of the harbor divided by the average standing
wave amplitude at the harbor entrance when the entrance is closed
(see Section 5.4 for a more complete discussion of the latter).
Experimentally it is not possible to measure the wave amplitude
exactly at the backwall; in fact the measurements were made at a
point 1/4 in. from the backwall and about 3/4 in.off-center. Since
the slope of the water surface so near the backwall is essentially zero
and the motion of this narrow harbor over the range of ki considered
is practically two-dimensional, this difference between the location
of the experiments and the point of definition of the theoretical value
of R is considered unimportant in the compérison of theoretical and
experimental results. The depth of the water was constant and equal
to 0. 844 ft in both the harbor and ''open-sea', and the range of the
stroke of the wave machine for these experiments is presented in
the table in Appendix IV.

In Fig. 6.35, the solid line represents the curve computed from
the theory for an arbitrary shaped harbor (Chapter 3); the theory for

the rectangular harbor (Section 4.2) is shown with long dashed lines,
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while the theory developed by Ippen and Goda (1963) is represented by
a line composed of short dashes. The experimental data obtained
from the present studies are denoted by open circles while the experi-
mental data of Ippen and Goda (1963) are shown as solid circles.

In using the arbitrary shaped harbor theory the boundary of the
harbor is divided into 47 segments (N=47) of unequal length including
three segments at the harbor entrance. Since the boundary of the
rectangular harbor is composed of straight lines, as discussed in
Subsection 3. 3. 1, the diagonal elements of the matrix Gn are equal
to zero, i.e. in Eq. 3.57, (Gn)ii =0 forizl, 2. au v 47. After following
the procedures described in Chapter 3 the response curve shown is
obtained.

In using the rectangular harbor theory the method described in
Section 4. 2 is used. For a fully open rectangular harbor, Eq. 4. 38,
which describes the wave function f; in the region inside the harbor,
can be simplified, since the entrance and the width of the harbor are
equal (b=d). Therefore, the term Sm(x,y) defined in Eq. 4. 38 is equal
to zero and can be simplified to:

f.(x,y) = C+S_(x,y) - (6. 8)
Thus, the average normal derivative of the wave function at the
harbor entrance shown in Eq. 4.41 can be simplified also as:

= —t— : (6. 9)

S -B
o o
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where 5= - cot kb and B = 8T + 45Y )4s as defined in Eq. 4.27.
o k o 2V ¢ T C

The Fourier transformation method used by Ippen and Goda (1963)
for the evaluation of the radiation wave function f; in the region outside
the harbor is different from the present rectangular harbor theory in
which Green's identity formula and the Hankel function are used.
However, the methodused for Region II, i.e. inside the harbor, is the
same. Therefore, the difference between the results of the theory of
Ippen and Goda (1963) and this theory can be attributed to the difference
between the methods used to evaluate the radiation function f;; from
Fig. 6. 35 any differences appear to be quite small.

From Fig. 6.35 it is seen that the three theoretical curves agree
fairly well with the experimental results, although the theoretical
curve obtained from the arbitrary shaped harbor theory agrees better
with the experiments near resonance than the other two theoretical
curves. This may be because in using the arbitrary shaped harbor
theory, the entrance was divided into three segments and the solution
was matched at each segment as compared to the other two theories
where only the average solution across the entrance was matched.
Another feature of Fig. 6.35 is that the present experimental data
agree better with the theoretical curves than do the experimental data
of Ippen and Goda (1963), especially in the vicinity of resonance. This
is probably because the wave basin for the present experiments is both
wider and longer than the wave basin used by Ippen and Goda, hence

the incident wave is more nearly two dimensional; also the present



-197-

energy dissipators are more efficient than those used by Ippen and
Goda (1963) and therefore the '"open-sea' condition is simulated more
satisfactorily. This is supported by the fact that the data of Ippen and
Goda (1963) show fluctuations in the region 1. 10 <k%4 < 1.70 indicating
that the 'open-sea'' condition is not properly simulated in this frequency
range where the incident wave length is large resulting in small wave
steepness. Such fluctuations do not appear in the data corresponding
to the present experiments.

As mentioned before, these experimental results led to the
conclusion that the open-sea condition was being properly simulated
in the laboratory and no additional modification of the wave energy
dissipators was necessary. Moreover, the agreement between the
theoretical and experimental results as shown in Fig. 6.35 has demon-
strated that the arbitrary shaped harbor theory can also be applied

successfully to a harbor with straight sides and sharp interior corners.

6.4 A HARBOR WITH COMPLICATED SHAPE: A MODEL OF THE
EAST AND WEST BASINS OF LONG BEACH HARBOR

6.4.1 Introduction

As discussed in Sections 6.2 and 6. 3, the theoretical
solution of the wave induced oscillations in the two specially shaped
harbors: circular and rectangular, can be obtained by using the
general theory for an arbi;crary shaped harbor developed in Chapter 3.
The theoretical results for these special harbors obtained from the

arbitrary shaped harbor theory have been shown to agree well with
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the more exact theories developed in Chapter 4, and with the
experimental results.

These two special shaped harbors are of importance because, as
mentioned earlier, the circular harbor represents an extreme shape in
which the boundary of the harbor is curved and the tangent to the
boundary is continuously changing direction whereas the rectangular
harbor represents the other extreme where the boundary is composed
of straight lines, along each side the tangent to the boundary does not
change direction. The boundary of any arbitrary shaped harbor is in
fact usually a combination of these two cases.

In order to test the arbitrary shaped harbor theory further, a
harbor of complicated shape was studied both theoretically and experi-
mentally. In planform this harbor model is slightly modified from the
existing harbor of the East and West Basins of the Long Beach Harbor
located in Long Beach, California; the horizontal scale is 1 to 4700.
Also it differs only slightly from the hydraulic model studied by
Knapp and Vanoni (1945) wherein a distorted hydraulic model was used
with attention given to the bathymetry.

A sketch of the model of the East and West Basins of Long Beach
Harbor which was used in this investigation is presented in Fig. 6. 36
which shows the width of the harbor entrance as 0.2 ft and the
characteristic dimension of the harbor, a, equal to 1.44 ft. The depth
of the water in the experiments was constant in both the harbor and

the '"open-sea'' and equal to 1 ft.
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The theory for an arbitrary shaped harbor developed in Chapter
3 is used to calculate the response curves, the wave amplitude
distribution inside the harbor, and the total velocity at the harbor
entrance. In applying the theory, the boundary of the harbor is
divided into 75 unequal straight-line segments including two segments
for the harbor entrance. The segments are numbered counter-clock-
wise starting from the right-hand limit of the harbor entrance and this
numbering system is shown in Fig. 6. 36.

6.4.2 Response of Harbor to Incident Waves

Response curves at four different locations inside the
harbor are presented in Figs. 6.37 to 6.40. The four points are
designated as point A, B, C, D and, for convenience, they are shown
in Fig. 6. 36 along with their coordinates in the model: A(0. 30 ft,
-0.525 ft), B(0.30 ft,-0.96 ft), C(1.32 ft, -0.96 ft) and D(-0. 45 ft,
-1.245 ft), where the first number inside the bracket is the x-coord-
inate and the second number is the y-coordinate. For all of the
response curves, the abscissa is the wave number parameter, ka
(where again k is the wave number, and '"a' is a characteristic length
equal to 1. 44 ft and shown in Fig. 6.36); the ordinate is the ampli-
fication factor R, as defined earlier.

It is seen that the theoretical results agree well with the experi-
mental data at all four locations and show that the response of this
harbor to periodic waves is much more complicated than the response

curves for either a circular or a rectangular harbor. As discussed
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in Section 6.2, the shape of the modes of resonant oscillation inside
a harbor is simpler for an incident wave of smaller wave frequency,
i.e. a smaller value of ka. As the incident wave frequency increases,
the shape of mode of oscillation inside the harbor becomes more
complex. The results shown in Figs. 6.37 to 6.40 also confirm this.
For example, at the first resonant mode (ka=0.61) the amplification
factors at the four different positions (Points A, B, C, and D) differ
only slightly. However, for the mode corresponding to ka=7.62, the
amplification factors at the four locations differ considerably; the
.alnplification factors at the points B and D are much smaller than those
at the points C and A.

One common feature of the four response curves is that while
the theory has predicted the frequency of every resonant mode of
oscillation correctly, the theoretical amplification factor at resonance
is slightly larger than the experimental data especially for the
resonant modes at larger values of ka. 'This can be attributed to the
observation made in Subsection 6. 2.2 that in using the same number
of segments for the boundary of the harbor at all wave periods, the
theoretical results for a smaller value of ka are more accurate than
the results which correspond to large ka; therefore, better agreement
between the theory and experiments is expected and observed for small
values of ka. (This means that the value of kAs is smaller for the
former case than the latter case.) In addition the energy dissipation is
larger at resonance for large values of ka, thus also tending to
decrease the experimental amplification factors compared to those

determined theoretically.
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It can also be seen from the response curves that the agreement
between the theoretical solution and the experimental data is reason-
ably good at each of the locations; there is no location where better
agreement is seen compared to another. This uniformity of the agree-
ment between the theory and experiments suggests that the theory has
also accurately predicted the wave amplitude distribution inside the
harbor for each mode of resonant oscillation.

In the application of the arbitrary shaped harbor theory
(Chapter 3) the singularities are always assumed to be located at the
mid-point of each boundary segment. Therefore if an interior point"
(x,y) is too close to the mid-point of a particular boundary segment,
the wave function f; (x, y) calculated from Eq. 3.37 might be in error
because of the excessive influence of that particular singularity
(possibly as large as 10 or 20%). To avoid this it was found that the
interior point investigated should be more than one-half of the length
of the segment ($As) away from the harbor boundary. If the wave
function desired is at a location very close to the boundary it can be
obtained either by: interpolating between the value at the boundary
(Eq. 3.22) and the value of f;(x,y) at a point which is at a distance
of approximately $As from the boundary or by reducing the length of
the segment to allow the interior point of interest to be closer to the

boundary.
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As mentioned before, a response curve at a particular location
inside the harbor does not necessarily show the maximum amplification
within the harbor. The variation of the maximum amplification within
the entire basin plotted as a function of the wave number parameter,
ka, is presented in the response curve of Fig. 6.41. The ordinate
is the ratio of the maximum wave amplitude within the harbor, regard-
less of location, to the standing wave amplitude with the entrance
closed. This curve shows every possible mode of resonant oscillation
for the range of ka that has been investigated, as well as the maximum
amplification for each mode. It is obvious that the maximum ampli-
fication does not always occur at the same location within the harbor
for different values of ka. This can be seen by comparing Fig. 6.41
with Figs. 6.37 through 6. 40.

The experimental data from a model study conducted by Knapp
and Vanoni (1945) are included in Fig. 6.41 for comparison. Data
corresponding to the harbor with a 600 ft harbor opening are repre-
sented by open circles while the data for a 2000 ft opening are repre-
sented by solid circles. The prototype gate opening corresponding
to the present model is 940 ft. It should be mentioned that the
original data (see Knapp and Vanoni, 1945, p. 89) were plotted as the
maximum amplification factor as a function of prototype wave period.
In order to compare these data with the present theory the wave period
has been converted to the wave parameter, ka. For this conversion,

the prototype water depth was taken as an average of 40 ft, and the



(6%61) uouep pue ddeuy
Aq Apn3ys [epow 2y3 jo ®iEp 9Yj yjim paredurod I0qIeH yoeayg
chHmoﬁmﬂoQHmﬂuhOw:oEMUﬂ:??QdHbsﬁﬂdeHwﬂuﬁuo>quem:oamom I¥°9 81

-208-

0
08 (O 09 0§ ot ol 0
T T _ T I 0
8 o o
0
(o] ¢ 0 o
v o'l
o
~ —07¢
— —10¢
|
ps c : - 0P
- — 06
buiuadQ 8409 13 0002 o
1uoupA g ddouy £q ApnyS |9poN *
- b buluadp 2409 1009 o 09
(1apow 10qupy jusseid 10}) Kiody | 10qioH padoyg Kinapiquy
| | | | | | 1 02

(*°*'y) uoypo1ldwy WNWIXD



-209-

prototype characteristic dimension of the harbor a = 6768 ft was used.
(The experimental data shown in Fig. 6.41 corresponds to prototype
wave periods which range from 23 min. to 15 min.)

The experimental data from Knapp and Vanoni (1945) show
decreasing amplification factors with decreasing harbor opening
contradicting one conclusion made in the study of circular harbors
(Subsection 6.2.2): decreasing the harbor opening increases the
wave amplification in the harbor at resonance. However, if one
considers the other conclusioﬁ made in Subsection 6. 2. 2 that the
viscous dissipation of energy is more important for a harbor with a
smaller opening this contradiction may be resolved. Since it is
entirely possible in Long Beach Harbor that energy dissipation for the
harbor with a 600 ft opening is so large compared to that for the
harbor with a 2000 ft opening that the increase in the resonant ampli-
fication due to closing the entrance is more than compensated by
energy dissipation. It is possible that if the harbor entrance were
much larger than 2000 ft, the amplification factor at resonance would
be less,thus, in agreement with the '"harbor paradox'. This has not
been investigated in this study.

Both the data and the theoretical curve presented in Fig., 6.41
more emphatically show an important requirement of harbor resonance
studies. That is,in order to insure that certain modes of oscillation
are not missed in hydraulic model studies, a sufficient small interwval

between wave periods must be used in evaluating the response.
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6.4.3 Variation of Wave Amplitude Inside the Harbor for One

Mode of Resonant Oscillation

Experiments were not conducted specifically to measure
the distribution of wave amplitude inside the Long Beach Harbor model °
at resonance as was done in the investigation of circular harbors.
However as mentioned previously, the theoretical amplitude distribution
inside the harbor had been reasonably confirmed by the experiments
shown in the response curves of Figs. 6.37 through 6.40. The
distribution of wave amplitude inside the harbor for one particular
mode of resonant oscillation determined from the arbitrary shaped
harbor theory is presented in Fig. 6.42 for a value of ka=3,38. The
magnitude of this resonant peak can be seen in any of the response
curves (Figs. 6.37 through 6.41); attention is directed to the fact
that this is the second largest maximum amplification among the nine
resonant modes presented in Fig. 6.41. In the prototype, for this
value of ka, using the a.vera.lge depth of 40 ft the wave period is 6.1
minutes.

In Fig. 6.42 the wave amplitude has been normalized with
respect to the wave amplitude at point C; the coordinates of this
position have been presented in Fig. 6.36. Positive water surface
displacements are shown by solid lines and negative displacements
by long dash lines. Two nodal lines are seen, one in the East Basin
and one in the West Basin with maxima occurring at the ends of each

basin and the minimum occurring near the confluence of the two. For
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Fig. 6.42 The theoretical wave amplitude distribution in the Long Beach
Harbor model (ka=3. 38)
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Fig. 6.43 Wave amplitude distribution inside the harbor model of
Knapp and Vanoni (1945) for six minute waves (ka=3.30)

(see Knapp and Vanoni (1945), p. 133)
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this mode of oscillation it can be seen that neither a node nor an
antinode exists at the entrance.

In the model study conducted by Knapp and Vanoni (1945) meas-
urements were made of the wave amplitude distribution inside the
harbor for various modes of resonant oscillation, and contour drawings
similar to Fig. 6.42 were constructed. One such wave amplitude
distribution is shown in Fig. 6.43. It is apparent from comparing
Figs. 6.42 to 6.43 that in this investigation the boundary of the model
has been simplified, especially the East Basin. The contours of
constant water surface elevation are shown as all solid lines in Fig.
6.43 since the positive and negative displacements were not different-
iated in that study. It is seen that two nodal lines exist, one in each
basin, and the maxima exist at the end of each basin as well as near
the entrance.

By comparing Figs. 6.43 to 6.42 the similarities in the ampli-
tude distribution are striking. Except for the region near the entrance
the location of the two nodes and the maxima are similar for the two
models even though the boundary of the model used for present study
has been simplified. Difference between the amplitude distribution
near the entrance can probably be attributed to the difference of the
""coastlines''for thetwo cases. Another difference between the two
models which may contribute to the differences between the amplitude
distribution shown in Figs. 6.42 and 6. 43 is that all boundaries were
vertical and the depth was constant in the model of this investigation
compared to the more realistic treatment of the boundaries and

bathymetry in the distorted hydraulic model of Knapp and Vanoni (1945).
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6.4.4 Velocity at the Harbor Entrance as a Function of Wave

Number Parameter, ka

The theoretical curves and the experimental data
presented in Subsection 6.2.5. 4 established the proposition that the
fluid velocity at the harbor entrance reaches a maximum when a
resonant oscillation develops inside the harbor. For the model of the
East and West Basins of the Long Beach Harbor, no velocity
measurements were made at the harbor entrance; however, theoreti-
cally this variation was investigated using the arbitrary shaped harbor
theory.

The variation of the average velocity at the harbor entrance
(normalized with respect to 4/gh —}%) as a function of the wave number
parameter, ka, is presented in Fig. 6.44. Recall that the harbor
entrance of the Long Beach Harbor model was divided into two
segments (see Fig. 6.36); thus, the ordinate in Fig. 6.44 represents
the average value of V: /,\/g—lq -—%- at the water surface for the two

entrance segments. (As before, the velocity is computed using

Eq. 6.7.)

It is seen that there are 9 maxima in the range of ka presented
in Fig. 6.44; the values of ka associated with these are: 0.61, 1.50,
3.38, 4.96, 5.30, 5.70, 6.60, 7.10, and 7.64. These values of ka
are exactly the same as those associated with the maxima in the

response curve of maximum amplification presented in Fig. 6.41.



-214-

[opouwr IoqIef]
yoeag Juor] 9Yj I0J ®Y JO UOT}OUNJ ® S® 9dUuBJIJUD IOqIRY DY} je

0y

08 oL 09 oS ot oe

o2 ol

f31o0704 TR301,  $F 9 “Frd

| I 1

[——bri=0

x_

(HO1=4"H00=2)
Kioay | io0qioy padoys Kiosjquy ———

19°0=DY

o¢

9AD 0

(A)



-215-
This clearly demonstrates that each maximum of the total entrance
velocity is associated with a mode of resonant oscillation inside the
harbor, no matter how small the value of the peak.

A curve like Fig. 6.41 is not easy to obtain, because in order to
obtain a value of the maximum amplification anywhere inside the harbor
for a particular wave number the amplification factor at many points
inside the harbor must be determined. However, the curve shown in
Fig. 6.44 is relatively easy to obtain since one needs only the values
of the wave function f,, the normal derivative g%, and the derivative gée
at the harbor entrance when evaluating the total velocity from Eq. 6.7.

For a harbor with a complicated shape, it is possible that an
interaction of wave motion between interconnected basins inside the
harbor may develop and produce a resonant oscillation with only a
small velocity at the harbor entrance. For example, the peak
associated with ka=1.50 in Fig. 6. 44 is indeed very small; however,
at this value of ka, a resonant oscillation does exist inside the harbor
as can be seen from the response curves in Figs. 6.40 and 6.41. The
same is true for ka=5.30 and 5. 70 at which the peaks in the velocity
curve (Fig. 6.44) are also small, but considerable resonant oscillation
does develop in the harbor as shown in the response curves in Figs.
6.38, 6.39, and 6.41 (for ka=5.30) and Figs. 6.40 and 6.41 (for ka=
5.70). Therefore, in using this method of determining the periods of
the resonant modes care must be taken that a small interval in wave

period is used in the computations.
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Fig. 6.44 shows that the velocity at the entrance for the pumping
mode (ka=0.61) is nearly four times that which exist for any other
mode of oscillation. Using the prototype dimensions described
previously the period of this mode of oscillation is approximately 33
minutes and could possibly be excited by tsunami. If the amplitude
of an incident wave were 0.5 ft (using the average depth of 40 ft) Fig.
6. 44 indicates that the maximum average entrance velocity for this
mode would be about 10 fps and for modes of smaller wave period the
velocities are in the order of 2 fps. Such velocities could cause
significant damage to structures located near the entrance.

The results presented in Section 6.4 have shown good agreement
between the theoretical analysis and the laboratory experiments demon-
strating again the applicability of the arbitrary shaped harbor theory
to harbors with complicated planforms and constant depth. The
variation of the velocity at the harbor entrance as a function of the wave
number parameter ka proves to be a good indicator for resonance
inside the harbor. It has also been shown that the present theoretical
results agree qualitatively with the experimental data obtained from a
model study conducted by Knapp and Vanoni (1945), although the plan-
form of the model investigated by them was more complicated and

also included depthwise variations.
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-CHAPTER 7

CONCLUSIONS

The major objective of the present study has been to investigate,
both theoretically and experimentally, the response of an arbitrary
shaped harbor (with constant depth) to periodic incident waves. In
order to ensure that the general theory which was developed (termed
the arbitrary shaped harbor theory) could be applied to a harbor with
a complicated shape 'this theory was first applied to two special shaped
harbors: a circular harbor and a rectangular harbor. For these two
cases different theories termed the circular harbor theory and the
rectangular harbor theory were developed and compared to the general
theory. Experiments were then conducted for the circular and rectangu-
lar harbors to verify the theoretical solutions. The general theory (the
arbitrary shaped harbor theory) was also applied to a harbor of more
complicated shape: a simplified, constant depth, model of the East
and West Basins of the Long B-each Harbor. Experiments were also
conducted to confirm the theoretical predictions.

From this study the following major conclusions, applying to the
circular harbors, the rectangular harbor, and the Long Beach Harbor

model, can be drawn:
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The present linear-inviscid-theory termed the arbitrary
shaped harbor theory predicts the response of an arbitrary
shaped harbor (with constant depth) to periodic incident
waves quite well even near resonance,
The theoretical prediction of the resonant frequencies (or
the wave number parameter, ka, at resonance) agree well
with the experimental data. The theoretical amplification
factor at resonance is generally somewhat larger than the
experimental data especially for the resonant modes at
larger values of ka.
The open-sea condition has been simulated properly in the
wave basin used for the experiments; the reflection
coefficient for the wave energy dissipators which were used
is estimated to be less than 20% for most of the experiments
which were conducted.
Because of the wave radiation from the harbor entrance to
the open-sea region which has been considered in this
inviscid theory, the amplification of the wave amplitude
inside the harbor at resonance is finite. The effect of
viscous dissipation, which has not been considered in this
theory, is to decrease the amplification near resonance
even more.
The average total velocity across the harbor entrance
reaches a maximum when a resonant oscillation develops

inside the harbor; thus, the variation of the velocity at the
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harbor entrance with wave number has been found to be a

good indicator for resonance.

Since a relatively more detailed study has been made for circular

harbors some of the important conclusions concerning this shape can be

stated as follows:

6.

The theoretical solution for a circular harbor with a 10°
opening obtained using the arbitrary shaped harbor theory
agrees well with those obtained from the circular harbor
theory and the experiments. These results included the
resonant wave numbers, the amplification factors, the
shape of water surface inside the harbor for various modes
of oscillations, and certain velocities at the harbor
entrance.

For the circular harbor with a 60° opening both theories
only differ slightly in the prediction of the value of the wave
number parameter (ka) at resonance; the arbitrary shaped
harbor theory agrees better with the experimental results
in this respect. The shapes of the modes of oscillation
also have been predicted correctly by both theories; thus,
the small entrance approximation for the circular harbor
theory can be applied at least up to a harbor opening with a
60° central angle.

As the width of the harbor entrance increases, the ampli-

fication at resonance decreases, but the wave number band-
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width at resonance increases; thus, the '"harbor paradox"
was confirmed both theoretically and experimentally for
this shape.

Experiments show that the effect of viscous dissipation of
energy which is neglected in the present theories is more
important for harbors with a smaller opening.

There are four modes of resonant oscillations in the range
of ka investigated for the harbors with a 10° and a 60°
opening. Except for the '"pumping mode', which does not
exist in a completely closed circular basin, each mode
corresponds to a free mode of oscillation in the closed
basin. The corresponding modes of oscillation for the two
harbors and the closed basin are basically similar; how-
ever, the detailed shape of the free surface differs among
the three.

The wave number parameter (ka) at resonance approaches
the value for a closed basin as the entrance width decreases.
No antinode, or node, exists at the harbor entrance
although an antinode might occur at that position for a
closed circular basin.

For a larger entrance width the distribution of the velocity
across the harbor entrance varies significantly for different

modes of oscillation.
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The experimental data regarding the variation of entrance
velocity with the wave number parameter agree reasonably

well with the theoretical results.

In addition to the general conclusions the following conclusions

can be added for the rectangular harbor:

15.

16.

17,

The theoretical results obtained from the present
rectangular harbor theory are almost identical to those
obtained by the theory of Ippen and Goda (1963); thus, any
difference in the two methods for evaluating the radiated
waves appear to be quite small.

The theoretical results obtained from the arbitrary shaped
harbor theory applied to the rectangular harbor agree
better with the experiments near resonance than the
rectangular harbor theory developed in this study or the
theory of Ippen and Goda (1963). Perhaps this is due to the
fact that when using the arbitrary shaped harbor theory
three segments were used in the matching procedure while
in the other two theories only the average solution across
the entrance was matched.

The present experimental data agree better with the theo-
retical results than do the experimental data of Ippen and
Goda (1963) especially in the vicinity of resonance, pro-
bably because the wave basin used for present experiments
is both wider and longer and the present wave energy

dissipators are more efficient than in that study; thus the
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incident wave is more nearly two-dimensional and the

"'open-sea'' condition is simulated more satisfactorily.

The following conclusions may be drawn for the model of the East

and West Basins of the Long Beach Harbor in addition to the conclusions

stated earlier.

18.

19.

20.

The theoretical results agree well with the experimental
data for the response at four different positions within the
harbor. The uniformity of agreement at the four locations
suggests that the theory has also predicted correctly the
shape of the various modes of oscillations.

The present theoretical results also agree qualitatively with
the experimental data obtained from a model study
conducted by Knapp and Vanoni (1945) although the planform
of the model investigated by Knapp and Vanoni was more
complicated and their study included depthwise variations.
The results show that the present theory can be applied
with confidence to prototype harbors with relatively uniform

depth and reflective interior boundaries.
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LIST OF SYMBOLS

A Wave amplitude.

Ai Incident wave amplitude.

Ama.x Maximum wave amplitude within the harbor.

Ay, Ag, Ag Functions representing the magnitude of the velocity

components (defined in Eq. 3. 41).

a Characteristic dimension of a harbor, the radius of a
circular harbor.

B A function representing the average radiation effect at
the harbor entrance (defined in Eq. 4.27).

bo A constant equal to -’—2.&.

b Width of a rectangular harbor.

C Normal derivative of the wave function at the harbor
entrance.

G Average of the normal derivative of the wave function

across the harbor entrance.

] A vector representing the normal derivative of the wave
function at the mid-point of each entrance segment.

€y 4C5;C3 Constants associated with the hot-film sensor and the

€Sy linearization procedure.

D Diameter of the screen wires of the wave energy
dissipator.

D, D, D, Used in Appendix I and Appendix II representing various
domains of interest.

d Width of the harbor entrance.

d Distance from left-hand boundary of the rectangular

= harbor to the left-hand limit of the harbor entrance.
E Output voltage of the hot-film anemometer.

e Base of the Naperian logarithm.
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LIST OF SYMBOLS (Cont'd)
Wave function which describes the variation of the velocity
potential in the x and y directions.
Wave function in Region I (in the open-sea).
Wave function in Region II (inside the harbor).
Radiated wave function.
Incident wave function.
Reflected wave function.
An infinite series defined in Eq. 4.23 and Eq. A.3.3.
An infinite series defined in Eq. 4.23 and Eq. A.3.6.

An N x N matrix defined in Eq. 3. 17d (elements of the
matrix are defined in Eqs. 3.59 and 3. 60).

An N x N matrix defined in Eq. 3. 17b (elements of the
matrix are defined in Eqgs. 3.43 and 3. 57).

Green's function.
Acceleration due to gravity.

Radiation matrix (a p x p matrix, see Eq. 3.33), the
elements of the matrix are defined in Egs. 3. 62 and 3. 63.

Wave height.

Incident wave height.

Reflected wave height.

Transmitted wave height.

Zero and first orders of the Hankel function of first kind.
Water depth.

Indentity matrix.

Electrical currents to the hot-film sensor.

1.
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LIST OF SYMBOLS (Cont'd)

Unit vectors in the directions x, y, x respectively.
Bessel function of the first kind and order m.

An infinite series defined in Eq. 4.26a and Eq. A.3.7.
Reflection coefficient.

Transmission coefficient.

Wave number.

Wave length.

Length of a rectangular harbor.

Logarithm to the Naperian base (e=2.7128).

A N x p matrix defined in Eq. 3.21.

An infinite series defined in Eqgs. 4. 18 and 4. 19.

A p x p matrix defined in Eq. 3. 35, (a matrix formed by
the p rows and p columns of the matrix M).

Number of layers of screens.

Total number of segments into which the boundary of the
harbor (including entrance) is divided.

Outward normal to the boundary of the domain.

Order of magnitude.

A N-dimensional vector representing the normal derivative
of the wave function at the mid-point of the straight-line

segments of the harbor boundary.

Total number of segments into which the harbor entrance
is divided.

A function used in Appendix II representing the contri-
bution to the value of wave function as the field point
approaching a boundary point.

Source strength along the reflecting boundary (see Eq. 2. 3).
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LIST OF SYMBOLS (Cont'd)

Amplification factor.
Radius of a large circle.
Operating resistance of the hot-film sensor.

Distance between points or radial position in a polar
coordinates.

Center to center distance between the screen wires.

Output voltage of the first squaring circuit of the linear-
izer of the hot-film anemometer.

Output voltage of the linearizer of the hot-film anemometer.
Output voltage of the bias control, after using the first
squaring circuit of the linearizer of the hot-film

anemometer.

Special functions defined in Eq. 4. 38.

Average of S , S across the harbor entrance (defined in
Eq. 4.39).

Tangent to the boundary of the domain in a counter-
clockwise direction.

Length of the boundary segments.
Wave period.
Time.

A N x p matrix with the diagonal of the first p rows equal
to unity, all other elements equal to zero (Eq. 3. 19).

Velocity components in x, y, z directions.
Velocity vector with components u, v, w.

Resultant fluid velocity in the direction perpendicular to
the longitudinal axis of the hot-film sensor.

L
Total velocity defined as (u? + v® + w?)=.
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LIST OF SYMBOLS (Cont'd)

Maximum total velocity with respect to time at a location.
Average of V; across the harbor entrance.

Maximum resultant velocity of the components v and w
with respect to time at a location.

Average of Vo across the harbor entrance.
Value of VO at the center of the harbor entrance.

A N-dimensional vector defined in Eq. 3. 17a representing
the wave function at the boundary of the harbor.

Coordinate axis in horizontal direction parallel to the
coastline.

Position vector for the point (x, y).
Bessel function of the second kind of order m.
An infinite series defined in Eq. 4. 26b and Eq. A.3.9.

Coordinate axis in horizontal direction perpendicular to
the coastline.

Function which describes the variation of the velocity
potential in depthwise direction z.

Coordinate axis in vertical direction.
Quantities at the jth segment of the boundary.

First,second partial derivatives with respect to the tangent
of the boundary.

Spatial average value.

A p-dimensional vector with each element equal to unity.
Interior angle of a boundary point (see Fig. A.2.2).
Phase angles defined in Eq. 3.41.

Calibration constant of the hot-film sensor.
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LIST OF SYMBOLS (Cont'd)

srn A constant defined in Eq. 4. 33.

T A large circle.

v Euler's constant (y=0.577216..... o

A Difference operator.

& Kronecker delta.

€ Radius of a circle.

n Displacement of water surface elevation from the mean

water level.

S Angular position.
v Kinematic viscosity of the fluid.
T 3.14159..... .
p(n) Sum of an infinite series, p(n) =z %
n=1
o A small circle or a half circle with a radius e.
o Circular wave frequency (2w/T).
@ Velocity potential.
w(h/L) Depth effect factor (Eq. 6. 1).
® Potential function for standing wave system (Eq. 2. 3).
0, Total potential function (defined in Eq. 2. 3).
v Gradient operator.
v2 Laplacian operator.
oD Boundary of a domain.

|| Absolute value.
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APPENDIX I

WEBER'S SOLUTION OF THE HELMHOLTZ EQUATION

The derivation of Weber's solution of the two dimensional
Helmholtz equation in a bounded domain (as used in Eq. 3.11) and an
unbounded domain (as used in Eq. 3.29) will be presented in this
appendix. This subject has been discussed by Baker and Copson (1950);
the interested reader is referred to that book for other related topics

as well.

I.1 Weber's Solution in a Bounded Domain

Let 8D be a closed curve bounding a domain D in the x-y
plane, if f and g are two functions whose first- and second-order partial
derivatives are continuous within the domain D and on the boundary 8D,

then Green's identity formula gives (see Kellog (1953)):

f(fvzg - gV3f) dxdy (& 1:3)

where 9/0n means differentiation along the outward normal to the
boundary of the domain.

If the functions f and g are both. solutions of the two-dimensional
Helmholtz equation,

V2f + k3£ = 0 (A. 1.2)
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then the right-hand-side of Eq. A. 1.1 equals to zero, thus, Eq. A. 1.1

reduces to:

J

an—gan)d . (A. 1.3)
8D

In particular, if g = Hc()l)(kr), where r denotes the distance from a point

i‘(x,y) and if the point ;(x, y) lies outside the domain D, one obtains
(1) Y _ 3stl) of .. .
J [f 2 (H (kr)) - H D er) & las = 0 (A 1.4)
oD
However, if ;(x, y) lies inside the domain D, Eq. A. l.4 no longer

holds since Hél)(kr) has a logarithmic singularity at the point ;(X, v)
(1) ; B . — . i
HO (kr) ~,(,;log kr,as r 0 ). To avoid this singularity, Green's

identity formula will be applied to the region D,,bounded externally by
0D and internally by a circle Po with its center at x and with radius ¢
(see Fig. A.1l.1). Thus, Green's identity formula, Eq. A. 1.1,
becomes:

I <f80 - g-ﬁ/ds +I (f%zgl- - dg—f)ds = rf (fvzg - gV3f>dxdy . £A:1.5)
oD Po D,

Since the singularity is now outside the domain D,, by taking g=H£1)(kr),

the right-hand-side of Eq. A. 1.5 is equal to zero. Thus, one obtains:

j [fain(ﬂf)”(kr)} : Hél)(kr)-g—f{ Y= - !"[fgaE (Hf)”(kr))- Hgl)(kr)—gin]ds

P
w (A. 1. 6)
Note that the direction of n on the boundary P, 38 shown in the right-

hand-side of Eq. A. l.6 is inward toward the center ;(x, y), i.e. out-
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ward from the boundary of the domain D; (see Fig. A.1l.1); for
convenience this differentiation is changed to the r direction (negative

n direction). Thus, one obtains:

J' l:fé% (H(()I)(kr)) ; Hc()l)(kr)%]ds . Hf-é% (Hf)”(kr) - H(l)(kr) gi ]ds

oD Po

(A. 1.7)

Since the integral around the boundary 9D does not depend upon the
radius e of the circle Py the right-hand-side of Eq. A. 1.7 can be
evaluated at a radius ¢ as small as desired. Thus the right-hand-side

of Eq. A. 1.7 can be written as:

1;_’;’5 (2 (8 Vaer)) - 5V & as (A. 1.8)

By using the asymptotic behavior of the Hankel function for r-0:
(1) 2
Ho (kr)~ 1+ Az log (kr) 5

2 (o) a2l

or T

the limit of Eq. A. 1.8 can be evaluated. Since the functions f and %

are continuous at ;(x,y), the second term and the first term of Eq.

A. 1.8 can be evaluated as follows:

2T ;

po 1), .8f r _ \ 5 o

61_:{3}; Hé )(kr)a—r dx :ef;la[o (1+,(,%log(ke)/ede(-g?(x)ﬁ)(g)) -0 (A. 1. 92)
(0]

Y f 2B D par))as =100 = EEap (£G)+0(e)) = 4G (A. 1. 9b)

€_.0P (kr))ds=__4 ! AT x)to(e) ) = x . 1.
a9

Substituting Eqs. A. 1.9 a and b into Eq. A. 1.7, one obtains:
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1) = -% [ [t52 (8N 0e)) -5 Dier) 8 s (A. 1. 10)
5D

This completes the proof of the following theorem due to Weber:
Let f be a solution of the Helmholtz equation

92f 9= f 2, _
'é—g"f‘-a?"l'k f= @

in a closed domain D, whose first- and second-order partial

derivatives are continuous within and on the closed boundary 9D.

Then the function of f at any interior point X can be expressed as:
- A _3( ) (1) E:‘
- 4] Lo (8070 - 5000 35 ] s
oD

where r is the distance from the interior point X to the boundary,
and 9/9n means differentiation along the outward normal to the

boundary 9D.

1. 2 Weber's Solution in an Unbounded Domain

Suppose the function f is a solution of the Helmholtz
equation, V2f + k®f = 0, outside the domain D, i.e. in the unbounded
domain, whose first- and second-order partial derivatives are con-
tinuous on/and outside the closed curve 8D. Then the Green's identity
formula can be applied to a region D, bounded internally by the closed
curve 9D and externally by a circle I' with radius RO which is so chosen
that the circle ' encloses the closed curve 9D (see Fig. A.1l.2).

Thus, from the theorem presented in Sectionl. 1 one obtains:
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- -5 [( J*D 21 Vwn) - mPoenEas |, (a1
oD

s
l
1}-

if x is in the domain D,, wherein n denotes the outward normal to the
bounding curves, 9D and I' (see Fig. A.1.2).
The outward normal to the circle I' is in r direction, thus Eq.

A.1l.11 can be rewritten as:

= _—jl_f (Hmkr)) HH ger 2L £ as
f[far ( (Drer )) Hgl)(kr)-g—f;]ds i (A. 1. 12)

For simplicity, the second integral in the right-hand-side of Eq. A. 1. 12
is denoted as J(;). The radius of the circle T, Ro’ can be made as
large as desired to cover the entire unbounded domain, i.e. Ro—m.

Thus the function J(}?) can be rewritten as:

: 27
= _ Alim 0 (1) (1) of
J{x) = 'Zr—mdo |:f—aT<Ho (kr)) - Ho (kr)—-—ar:l rdd . (A. 1.13)
The asymptotic behavior of Hf)l)(kr) and 8%(1—1(()1)(1(1-)) for r-» are:
(1) 2 _Alkr -F)
HO (kr) = Jﬁ (kr) e/(’ o 4 [
9 (.,(1) (1) [ 2 Alkr-Z-I) s
-5;\}10 (kr)) = -kH; (kr)~ 'k'\/-.r_(k_r)— 4 2

Substituting Eq. A. 1. 14 into Eq. A. 1. 13, one obtains:

2T

> Alim [“T 72 ,c(kri)ﬂ -:«1_@]
J(x) = - "b N7 (KT e 4’| -kfe "2 5r rdg

5 y3es BT
_4 [2 lim | (kr- Qf_
T ANtk r= J e’ [ -,c,kf]de . (A.1.15)
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Thus the function J(;) tends to zero, if the function:

N/?(gf? ka) — (A. 1. 16)

uniformly with respect to 4 as r » ». This condition, Egq. A.1.16, is
referred to as the ""Sommerfeld radiation condition''. A sufficient
condition for this is that the function f should behave like Hf)l)(kr) for

(1) of (1)

(kr), and =—— T -kH, ‘(kr), the

large values of r . Since for f = H

Sommerfeld radiation condition is satisfied as r — =:

a/—[—'-/..kf:l kJ—[H(l)kr +AH(1)(kr):]

'/—2‘- - )[ ]
~ -k,ka "4 —u.
= -k wi ok r-—)r i,'i'/i..] =0 .

This completes the proof for the following Weber's theorem in an

unbounded domain:

2 2
Let f be a solution of g + o7 f + k°f = 0, whose first- and second-
0x% = 0Oy=2

order partial derivatives are continuous outside and on a closed
curve 9D and let
JT (-éf—-,ikf) -0
or
uniformly with respect to , as r = @, then the function f(;) at a

fixed point % located outside the domain bounded by oD, i.e.

inside the unbounded domain,can be expressed as:
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5= & [ [ (580 0en) -5 2
£(x) = 4 j l:f 2 (5 Vo)) -uVaer & Jas
oD
where r is the distance between the fixed point x and the boundary
and n denotes the outward normal to the boundary 9D (in the

direction out of the unbounded domain).
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Fig. A.1.1 Definition sketch for a bounded domain

Fig. A. 1.2 Definition sketch for an unbounded domain



-245-

APPENDIX II

DERIVATION OF EQ. 3.12

The Weber's solution of the two-dimensional Helmholtz equation
expressed the wave function f at an interior point % as a function of the
wave function and its normal derivative at the boundary as follows

(see also Eq. 3.11):

[f(;o) 58; {Hc()l)(kr))— H(l)(kr)gg- (f(?co)ﬂds(}?o) (A.2.1)

£(x) = - :

b

r

|

J
s

In order to determine the wave function f(;o) along the boundary, the
field point % is allowed to approach the boundary at a point ;i; the path
of integration is deformed around a small half circle, Py with radius

e (see Fig. A.2.1). Then Eq. A.2.1 can be written as:

£(x,) = -ﬁ-f [f(i'o)ai H((Jl)(kr)) ; Hgl)(kr)a—an<f(;0)):!ds(§o)
s-p,
_%Jr[f(}?o)%ﬁqél)(kr)) H(l)(kr).é%<f(xo)>_]ds(xo) . (A.2.2)
Po

The radius of the half circle P,r €, can be made to approach zero,
i. e. €-0; using the definition of Cauchy principal value Eq. A.2.2 can

thus be rewzritten as:
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£(%,) = -—Hf ai (Hé”(kr)) _ Hé”(kr)é%f(;o)]ds(;o) + Q) (A.2.3)

where the first integral represents the Cauchy principal value and the
second term , Q(;i), represents the limit of the integration along the
small half circle P, @8 €™ 0. This limit value, Q(;i)’ can be evaluated
by the procedures which will be discussed in the following.

Since along the small half circle Po the direction of n is in the

o
direction of r, the function Q(X'i') can be rewritten as:

Q,) = Zlemgf [f ai (1) er )) : Hgl’(kr)f;(f(;o))]ds ) . (A2.4)

The asymptotic formulas of the Hankel functions for very small

argument (r = 0) are:

(1) - o )
Ho (kr) ~ 1+ Ao log (kr) ;

(A 2.5)
9 (1) (1) 2L
ar H/(kr)= -kH; '(kr) ~A5Z .
Substituting Eq. A.2.5 into Eq. A.Z2.4 one obtains:
- L 1i . 2 N D, =
Qlx,) = -% 61_?8 [f( (&— —) e (1+,{.F10g (kr)/‘g(f(xo))]ds(xo)
Alim (™. 2¢ - \
- 4 dim J; A2Ea8(5,) + o(e))
Al "
+ Zelm f \1+ ,Lg-log (ke))ede( g (Xi) + o(e))
= %f(;].) : (A.2.6)

since as ¢—0 the limit of the second integral in Eq. A.2.6 is zero.
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Substituting Eq. A.2.6 into Eq. A.2.3, it becomes:

£(%,) = & | [f()?o)é%<Hél)(kr)> ) Hgl)(kr)%(f(;:'o))lds(;o)+%—f(§i) (A.2.7)
S
where r = ‘;o - ;1| .

If the point ;i is a corner point on the boundary (see Fig. A.2.2),

the result of Eq. A.2.1 as x approaching ;i can be expressed as:

1) = & [[e@ r2 (8 V) - B D o) 2 (2652 ) Jas &)+ (1- 5201,
) (A.2.8)
where the interior angle @ is defined in Fig. A.2.2. For a smooth
curve ¢ is equal to w, thus Eq. A.2.8 is identical to Eq. A.2.7.
(The approach used for these derivations can also be found in a

number of books; for example, see Muskhelishvili (1946) and Dettman

(1965).)
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direction of
integration

Fig. A.2.1 Definition sketch for an interior point approaching a
boundary point on a smooth curve.

direction of
integration

Fig. A.2.2 Definition sketch for an interior point approaching a
corner point at the boundary
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APPENDIX III

EVALUATION OF THE FUNCTIONS £{. ,f ,J , ANDY
jo’ “yo’ “c c

III. 1 The Evaluation of the Function fjo

The function fjo in Eq. 4.23 is defined as:
£, (%, 0) = [‘jo . Jr kryar (A.3.1)
where As is the width of the harbor entrance. The Bessel function

Jo(kr) in Eq. A.3.1l.can be represented in an infinite series as:

= (-1)“-/&1:)Bn
T (kr) = z \2 ) (A.3.2)

n! n!

n=0
Substituting Eq. A. 3.2 into Eq. A. 3.1 and interchanging the order

of integration and summation one obtains:

e 015 LI [ (e [ ) )

:_l)n (E\anxzn+} . (As_x)znﬂ]

(n!)2 \2 2n+1 2n+1 (AL 3..3)

I
S~18

0

III.2 The Evaluation of the Function fyo

The function fyo in Eq. 4.23 is defined as:

x As-x
£ o0, 0) = [ "ro +fo ]%Yo(kr)-dr . (A. 3. 4)
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The Bessel function Yo(kr) can be represented in an infinite series as:

- kr\en
2 kr n+i T)
= 2 - -1 ettty (BeBeH
Y_(kr) n_[(log - +'y)Jo(kI_‘)+Z( " pm) 254 ] (A.3.5)
n=1
where: v = 0.5772157......is the Euler's constant,

p(n) = 1+%+3+......+% ,

and Jo(kr) is defined in Eq. A.3.2

Thus, substituting Eq. A. 3.5 into Eq. A. 3.4 and interchanging the

order of integration and summation one obtains:

=0 . 0 "o
(~ )n-i-:. m) (K 2n o
:;1 1 (n;’):‘ (2) I:U:_i_jo s X) rgndr]

8

AP 2 o (i) 1))
n=o'<_nz_>“2“<é'm[(2—‘) tog () +v)- 327 ]

+y (-1)"" () -x (kx)zn +m(—1)n+1;2(n)(As—x) {k(As-x))an

mP 2n+1) \2 @ P @2at+l) N 2

n=1 n=1

/k AS"X >2n

© g )n. -x) (As-x)\2 o —
+Z-o((nli )"3((2A:+: [(k —_— ) (1°g<¢-£f—i )+Y\)K_z__
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III. 3 The Evaluation of the Function J.

According to Egs. 4.24 and 4.25, the function JCAS is
equal to the average of fyo(x’ 0) across the harbor entrance. Thus,

the function JC can be evaluated as follows:

B (-1)" (k)27 As an4-1 (As X)znﬂ
‘\As)az n)8\2/ J 2n+1 2nt1 ]dx

(g
:IZ=O n! )2 (n+1)(2n+1)
kAs P kAsY kAs ¥ ks P
:1-(g>+ <6g -(10208/+2(59220) Foeene (A.3.7)

III. 4 The Evaluation of the Function Y

The function YCAS is equal to the average of fy_o(x, 0)
across the harbor entrance; therefore, the function Yc can be
evaluated as follows:

As

L T _ (A. 3. 8)

Ye TR, Tyo

Substituting Eq. A. 3.6 into Eq. A.3.8 and interchanging the order of
integration and summation, after performing the integration the

function Yc can be expressed as:
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o (1)n<kﬂs>2n Fogat

K i 2 As _ 1 1
TS O(n:)z(zn+1)(n+1)[1°g\ AR 2(n+1)'2n+1]

n:

® (- l)n+1 p(n)<kTAs)‘°"n

+Z @) 2ntl) n+1)
n=1

+m[log( 5 >+‘y-3601+ ..... (A.3.9)
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APPENDIX IV

SUMMARY OF THE STROKES OF THE WAVE GENERATOR

USED IN EXPERIMENTAL STUDIES

Stroke of Wave Range of ka
Harbor Model Generator Covered in
(inches) Experiments
0.128 3.180 ~ 3,190
0.295 3.767 ~ 3,959
0.424 3.188
i 1
Clrc‘f) BE Elariar 0.673 0.976 ~ 3.293
(107 Opening)
0.758 0.231~0.522
0.792 0.337~1.991
0.842 0.337 ~ 3.940
Circular Harbor 0. 425 0.365 ~ 4,123
o .
(60" Opening) 0. 758 0.129 ~ 0. 852
0.294 1.735 ~5,010
Rectangular 0. 675 1.49 ~2.08
Harbor
0.835 0.765 ~ 1. 648
Long Beach 0.423 3.746"’7. 985
Harbor 0.758 0.420 ~ 3. 600




