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ABSTRACT

Experimental and theoretical studies have been made of the
electrothermal waves occurring in a nonequilibrium MHD plasma.
These waves are caused by an instability that occurs when a plasma
having a dependence of conductivity on current density is subjected to
crossed electric and magnetic fields. Theoretically, these waves
were studied by developing and solving the equations of a steady, one-
dimensional nonuniformity in electron density. From these nonlinear
equations, predictions of the maximum amplitude and of the half
width of steady waves could be obtained. Experimentally, the waves
were studied in a nonequilibrium discharge produced in a potassium-
seeded argon plasma at 2000°K and 1 atm. pressure. The behavior
of such a discharge with four different configurations of electrodes was
determined from photographs, photomultiplier measurements, and
voltage probes. These four configurations were chosen to produce
'steady waves, to check the stability of steady waves, and to observe
the manifestation of the waves in a MHD generator or accelerator con-
figuration.

Steady, one-dimensional waves were found to exist in a num-
ber of situations, and where they existed, their characteristics
agreed with the predictions of the steady theory. Some extensions of
this theory were necessary, however, to describe the transient phe-
nomena occurring in the inlet region of a discharge transverse to the
gas flow. It was also found that in a discharge away from the stabi-
lizing effect of the electrodes, steady waves became unstable for

large Hall parameters. Methods of prediction of the effective elec-
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trical conductivity and Hall parameter of a plasma with nonuniformi-
ties caused by the electrothermal waves were also studied. Using
these methods and the values of amplitude predicted by the steady
theory, it was found that the measured decrease in transverse con-
ductivity of a MHD device, 50 per cent at a Hall parameter of 5 ,

could be accounted for in terms of the electrothermal instability.



—
TABLE OF CONTENTS

PART TITLE

1. INTRODUCTION

2. THEORY

2.1 Basic Equations

2.2 The Uniform Steady State

2.3 Ionization Relaxation

2.4 The Electrothermal Instability

(a) Small Disturbances
(b) Large Amplitude Disturbances

2.5 Calculation of Amplitude at Conductivity
Variation

3. APPARATUS

3.1 Measurement Techniques
4. EXPERIMENTS

4.1 Discharge Parallel to Gas Flow

(a) Steady Streamers
(b) Long Test Section

4.2 Discharge Transverse to Gas Flow

(a) Inlet
(a-1) Single Transverse Discharge

(a-2) Calculation of Inlet Relaxation
Length

(a-3) Prediction of the Mode of Operation
(b) Pre-ionized Discharge
(c) Multiple Transverse Discharges

(c-1) Effective Conductivity in the Nor-
mal Mode

PAGE

11

14

19
22
23
27
27
27

30

33

34

37
39
40

41

45



_vi_
PART TITLE
5. SUMMARY AND CONCLUSIONS
FIGURES
NOMENCLATURE
REFERENCES

APPENDIX A. Quantitative Interpretation of Photographs
and Photomultiplier Output

APPENDIX B. Calculation of the Effect of Nonuniformities
on Effective Plasma Parameters

A. Waves at an Angle to the Average
Current

B. Normal Mode

C. Isotropic Distribution of Nonuniformi-
ties

D. Change of the Average Conductivity

APPENDIX C. Averaged Energy Equation

PAGE
48
50
89
92

94

98

98
99

101

105

108



1. INTRODUCTION
Previous work has verified the possibility of obtaining non-
equilibrium ionization in a magnetohydrodynamic (MHD) plasma,and a
theory has been developed which accurately predicts the conductivity

of such a plasma under a wide range of conditions(l' 2 5).

In the
measurement of conductivity in these experiments, an electric field
was applied to the plasma and the resulting current measured. How-
ever, for such a plasma to be utilized in a generator or accelerator,
it must also be subjected to magnetic fields.

When such experiments (3, 4,9-11)

were tried either in order
to measure the Hall parameter, that is, the tangent of the angle be-
tween current and electric field, or in order to produce ionization by
UXB induction, serious discrepancies between theory and experiment
occurred for Hall parameters greater than two. As the magnetic field
was increased above the critical value, fluctuations appeared in the
electric field, the effective conductivity of the plasma decreased, and
the average Hall parameter reached a maximum of about two inde-
pendent of the applied magnetic field.

The cause of these fluctuations and the resulting changes in

(3)

to be an ionization

(5)

plasma parameters was suggested by Velikhov

(2)

instability. Also, Kerrebrock and Nedospasov found that pertur-

bations to the equations of the uniform state had a growth rate of

+5 -1
s

10 ec and a velocity of approximately 10 m/sec under conditions

when the instability occurred. The waves resulting from this insta-
1

bility are called 'electrothermal waves.

This instability results from the coupling between electrical
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conductivity and Joule heating which occurs in the nonequilibrium
plasma. That is, an increase in conductivity causes an increase in
Joule heating greater than the increase in energy losses, thus causing
greater increases in electron density and conductivity. Unlike the
ordinary ionization instability, however, this instability occurs only
when an adequately large magnetic field is applied to the plasma, and
then it occurs only for disturbances having a certain range of angles
relative to the current and field vectors.

Velikhov(3) and also Solbes(é) did more extensive work on the
waves to estimate the amplitude to which they would grow. Instead of
treating the growth of waves from the uniform state, the approach
used in this thesis will be to assume that steady, one-dimensional
waves result from the instability. Then, setting the time derivatives
in the energy equation equal to zero, obtain a set of solutions which
are the steady, one-dimensional waves. Fromthis analysis, the
characteristic width and the maximum amplitude of steady waves can
be determined. The'sta.bility of such steady waves, that is, whether
or not they actually exist, was not studied analytically. Instead, an
experiment was designed in which the choice of electrode configuration
would naturally stabilize such waves. Steady waves were observed in
this experiment, and their amplitude and half width agreed well with
that predicted for the steady waves.

Next, an experiment will be described in which the electrodes
were placed well outside the magnetic field so they would not affect
the current pattern in the test section. Under these conditions, waves

of the same characteristics were observed for Hall parameters in the
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range of two to three; however, this current pattern became unstable
as the Hall parameter was increased above three.

Experiments will then be discussed in which the arrangement
of electrodes was similar to that occurring in a MHD generator or
accelerator. That is, the electrical discharge, magnetic field, and
gas flow were mutually perpendicula;r. In order to explain the phe-
nomenon observed in the inlet region to such a discharge, it was
necessary to take into account ionization rate effects in the theory;
however, after a transverse .discharge was established, one-dimen-
sional steady waves were again observed. Now, however, they were
transverse to the gas flow and transported downstream at the gas
velocity.

Also, several methods of calculating the effective conductivity
of a plasma with such nonuniformities were explored and the predic-
tions compared with measured values in several of the experimental

configurations.
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2. THEORY OF THE NONEQUILIBRIUM PLASMA

In this section, the theory of a nonequilibrium plasma will be
discussed. TFirst, the basic equations will be presented, and then
their application to determining the uniform state of the plasma and
to determination of the ionization rate will be considered. With this
background theory established, the electrothermal instability will be
discussed, first by developing the equation of a ‘one-dirﬁensional dis-
turbance, and then perturbing this equation. Finally, large ampli-
tude steady solutions of the one-dimensional equation will be obtained
and the properties of these solutions relevant to predictions of plasma

behavior will be discussed.

2.1 Basic Equations

The plasma discussed here has been found(l' %4

to be ade-
quately described by a two-temperature model in which the ions and
neutrals are assumed to be in equilibrium at the neutral temperature,
and the electrons and excited states are in equilibrium at a higher
temperature, the electron temperature.

This assumption, along with the basic assumptions of magneto-
hydrodynamics, that is, that the induced magnetic fields and the ioni-
zation fraction are small, gives the following basic equations for the
plasma:

continuity: Vo _{ = 0 (1)

irrotational fields: VXE = 0 . (2)

General Ohm's Law

ZeeVn
d = SgiEtg o

(0]
~

(3)

e
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where E is the electric field measured in the gas frame of reference
and is equal to (E'+ UXB) in a frame in which the gas is moving at
velocity U.

For B in the z-direction, the conductivity tensor is:

/1-;30

1
g = Z \ g1 0 (4)
lerp o o 1+p%
eB Bo s o
where.the Hall parameter J = e B e A In addition, it is assumed
e e
that:
11 1
¢ o ‘o - (5)
s c

Here, OC is the conductivity based only on close encounters, and

8 e2 s
G ERE e -
e ¢ 4 nQ
=i -t
and o is the Spitzer conductivity,

3
Z 3

. - 8./Z (kTe) Y . /\2 ) 9(kTe) -

= 1r3/2 A/rne eZLnAZ Swnee

The above approximation to B is not quite correct due to
changes in collision frequency occurring at higher magnetic fields.
(7)
g

Feneber calculated that as B goes to infinity the error causes a

10 to 25 per cent reduction in the transverse coi‘nponent of 0. How-
ever, it will be shown that the plasma becomes unstable for B> 2 and
thus this error in calculating P is masked by the effect of the non-
uniformities resulting from the instability.

Also, the method of addition of o and o in eq. (5) to give
the resultant o, although widely used(l’ 2), is based only on intuitive

arguments. It gives values for ¢ within 20 per cent of more elabo-
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rate techniques which are based on cross section data which have
uncertainties of more than 20 per cent. Hence, this simple form of
eq. (5) is justified by uncertainty in basic cross section data.

Energy Equation. The energy balance équation for the elec-

trons is:
J+* Ve

] - e _ . TR .
-5-,5[(86+Ii)ne] "-j'e—- = i E-R-Q‘*‘V (?{.eévee). (8)

Here, the first term on the left hand side is the energy input into

ionization and the second term is the energy convected by the current.

The first term on the right is the Joule heating term; the second term

is the radiative energy transport which, in the form used by Lutz(s),

is: ' m -

R(x )——'n’Avm B (x) T(A\),./‘—_'j.' j‘d? IB tyle -mz|y- xld
S 1 e (9)

o
The third term is the energy loss from the electrons in elastic colli-

sions:

_ 8
Q =3

n

alma

8. (10)

»

Zyv_ (e
m Vm ‘€e
where Gm’ as used by Cool ), is the averaged collision frequency
for energy transfer. The final term on the right hand side is the
energy transfer by conduction in the electron gas, and Hg the con-
duction coefficient, is (neee)/(mev) .

Finally, the ionization rate equation for the plasma out of

equilibrium is approximately:
Bn n, 2

kbneq e -(n )) ? 21}
cq

where neq is given by the Saha equation:



i = ;’) ee.exp[-% XA . (12)

2. 2 The Uniform Steady State

In the case when all time and space derivatives are zero,
Ohm's law gives
J = opyk ;
the energy equation gives

J-E =R _+0

where Rex is the amount of radiation escaping from the plasma; and
Saha's equation gives

n, = neq(ee) .

In the coordinate system with B along the z-axis, the Ohm's

law becomes:

— c Al
I = 1462 (EPED 4
7 o= Gz(pE +E ) .
Y 14 x 7y

If, in addition, E is along the x-axis, that is, JY =0, then

B=-EJ/E_, (13)
J = oE_, (14)
X o :
and
JXZ . ° i
'—6'—' = Rex+ Q . (15)

For use later, define JL as the value of current, Jx , which

is the solution of these equations; EL as the value of E along JL R

o 1
that is, Ex ; and EL as the total field, (Ei‘kE;)a. Therefore, the
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tangent of the angle between EL and EL is B and

The procedure for calculating conductivity as a function of
current is first to calculate conductivity as a function of electron en-
ergy using the Saha equation (12) and the equations of conductivity,
(6) and (7). Then using the energy equation (15), calculate the cur-
rent required to obtain a given electron energy. This calculation is

relatively straightforward except for the calculation of Rex . Cool

approximated Rex by calculating the amount of radiation leaving a
uniform plasma on a bea.rn of a certain length and then by choosing an
average beam length, obtained an average energy loss. Using this
meilchod, a curve of 0 versus J of the type shown in Figure 1 can be
obtained. This figure, taken from Ref. 1, shows the good agreement
between theory and experiment when no magnetic field is applied.
For analytical purposes, this curve can be characterized for
relatively large ranges of 0 by o = UO(J/JL)n where J; is the total

current for 0 = 0‘0 s

2.3 Ionization Relaxation

Because ¢_ <<I and n_(dL /dt) << Ii(dne/dt)A (ses Cool*M), the
time-dependent energy equation for a uniform plasma is, to a good

approximation, ,
dne > .
I, =g = oE -R__ -0 .

Here, E is the total electric field if no magnetic field is present, or

if there is a magnetic field, it is the electric field along the current
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vector. Also, if ¢ is proportional to n, then
1 dne UOEZ neoli . .
. =  EPR - PYs - ] +n)> . (16)
n, dt neOIi UOEZ ex

Cool found that when an electric field of 2 or more volts/cm
was suddenly applied to the plasma, Saha equilibrium did not hold.
Thus, the rate of increase of ne could not be calcula.’céd directly from
eqn. (16) but rather depended on the rate equation (11). He found,
however, that the ionization rate (dne /dt)/ne was still roughly line-
arly dependent on the parameter (UOEZ)/(ne Ii) . That is, the fraction
of the Joule heating going into ionization wasoroughly a constant and
equal to about 0. 5. Thus, eqgn. (16), using the assumption that .ne is
proportional to o, gives:

%% = 0.5n a;i EZ (17)

(o]

where 0 = O’/GO .

2.4 The Electrothermal Instability

Velikhov(s) has shown that the solution for the uniform state of
the plasma is unstable for Hall parameters greater than about 2. Ker-
rebrock(z) and also Nedospasov(5) have determined the growth rate and
phase velocity of small one-dimensional disturbances by perturbing the
basic equations about the uniform state.

Stability will be studied here by first deriving the energy balance
for a one-dimensional disturbance. For such a disturbance, where

variables are functions of x alone (Figure 2), eqn. (1) gives Jx =

constant (JO) and eqn. (2) gives EY = constant (Eo) . Equation (3)
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then gives the other two components:

J = cE_+BJ_.,
vy o o
2 € On (18)
E = BE JMHB 5 2 e e
X o o o 3 en ox

Using equation (18), the Joule heating term
e on

2
J B=oRC+ZPIE 4B g i h 8.y 8
= = o o o o o 3ene o 0x

Also, assuming Saha equilibrium holds locally:

Thus, the energy equation (8) can be written in terms of n . Again

using the fact that ¢ <<1I,, eqn. (8) gives:
3

Iane 2 Jo% 8ne_ 4 3(&._?29)
i ot 3 en_ ox (1+13 )I 9x 5 ox
2 148° .2 &
GEO +2[3J'OEO + = J'O -0-R . (19)

Using the solution for the uniform case, eqn. (15) with

o= GO(J/JL)n gives:

v

. . J 5 2/n -1
Q+R__ = (E’) . (20)

(o} (o]

’

Substituting this into (19), the right hand side becomes
2 2/n -1
2 1+ 2 L g .
+ 2pJ E_ + —ﬁ—c 75 - T(Ec—)) -(R-R__) . (21)

Normalized by GoEi , the Joule heating in the uniform solu-
o
tion, the first four terms of (21) give the net electronic heating term,

s

| 5 :
q-—5 =3(E0)+2‘30E (E )+1+f \UE ) CRES
oFL o ° o (22)




Since Q must be zero for the uniform case, 0 = & substituting

0 = 1 and setting Q equal to zero gives:

~

EL 2
2
3 R R ey j E
(e} o O

S EL 1+p% (EL) ) R
(@] (o]

o[

Thus, the heating term, Q , is expressed as a function of the parame-

ters O, EO/EL , and B. The parameter Eo/EL is related to the
o

o
angle of the disturbance to the uniform current by EO/EL = cos ¢ +
o
B sin ¢ . The vectors Eo and EL are shown in Figure 2.
o

The additional approximation that B is independent of G will be
made. This is equivalent to assuming the collision frequency, v , is
independent of electron temperatures, which is approximately true
when the effect of the charged particles on the collision frequency is

small.

R—Rex is the radiative heat transfer term which will be called
'H'. Then eqn. (19) will be written:

an_ 3 on &* Bn

2 "o e 4 9 e e _
i Bt ~3en_ Cte 0x 'a_i( ax)+H‘Qs (24)

I > —
e 3me(1+}3 )Ii v

which, along with egns. (22) and (23), forms the energy balance equa-
tion for one-dimensional disturbances.

(2) Small Disturbances. - To linearize eqn. (24) about the uniform

solution, n_ =n and € = ¢ , define:
e e e e

o o -
n, = ng (1+n)
o
and
e, = &, (1+e) .

o
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From Saha's equation for small € and 7 and for € << Ii :

o
nh=23/4 (Ii/t~:e )¢ . Also, assume that 0 and n, are related through
o
a formula o = Oo(ne/ne )p . Then, inserting these equations into eqn.
o

(24) and taking only first order terms,

[} n
9n 2 Jo 0 4 €5 %o 32?: _
N T T T T b g T =
o me(1+[3 )\"Ii Ox
B 2 3F 2
2 o) 2 o 2 ~
GOEL [: T ) -(1+pB )(——-c = —(;l-— l}pn. (25)
o Lo o L0

1(wt+kx)

I.nserting n=n ; k= 2w/\ into (25), the growth rate,

-dm(w) , and phase velocity, Re(w)A /2w , of this wave can be found.

(8)

This is possible because e is an eigenfunction

term, H, and for A > &% = 6X 10-3 cm,
0.1m

of the radiation

_ }_@_[1. 24X 104] S12a, e o iluttien) _
? Ii o A =

where )\o is the wavelength in Angstroms of light at the resonant line.

Therefore, defining

(2070 )%

[0} ®)
7
me(l+{3 )v Lo E

— (27)
L
(o]
2
T Ava/m
wg = %ﬁ 11'6 W sl (28)

4 2 o0
3 O‘OEL

Wl

and

dQ
dn
e

e R et D I

(S
[0]

equation (25) gives:



0 By,
~dm(w) = 2| S -w_-w ' (30)
n_ L dn e R
e 1 e|n
(o] eo
and g
_ & Jo €o 72w
Refw) = % 2 g= (T} - {31)
1 e

o
When the growth rate, -J¥#m(w), is positive, perturbations to

the uniform solution grow; and since both W, and w, decrease with

R

increased A, for large enough A , the growth rate is positive when

d(.'),/dne In is positive. This condition occurs in the regime of B and
&
o
1 indicated in Figure 3. The minimum value of B at which in-
o

stability occurs depends on n, the exponent in the relation between o

E /E
o

and J. For the potassium and argon gas used in the experiments that
follow, n was between 0.6 and 0. 8 ; thus, onset of instability should

occur between B = 1.3 and 2. The value of the parameter EL /Eo is
o

related to the angle of a disturbance to the electric field, E in the

L E
uniform solution and can vary from a minimum of 1/ leB2 when the

disturbance lies along EL to a2 maximum of oo when it is perpendicular

to EL' Note that for each value of EL /EO the angle has two values
o

corresponding to the plus and minus signs in eqn. (23). Instability,
however, occurs only for the positive sign in egn. (23), which corre-
sponds to disturbances which lie between the electric field and the
current vectors of the uniform solution. The value of the growth rate
in this instability regime is of the order of (GoEi )/(ne Ii) , which is
: +5 =1 © ©
approximately 10 sec .

Steady waves are obtained, however, when their wavelength is

such that the damping terms, w, and W just cancel the source
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term, dQ/dne . In Figure 4 are plotted the values of w_ for =0
and of Wg - Comparing these with the value of the slope, Figure 5,
for EL /EO between O'.S and 0.3, the range in which steady waves
were observed, gives a value of A of the order of one cm. Figure 4
shows t.hat for B = 0,damping of the perturbations is either by elec-

tronic heat transfer, we » or by radiative transfer, w_, , depending on

R
the value of the electron ;cemperature. However, the coefficient of
electronic heat transfer decreases as 1/(1+ﬁ2) , which means that in
the instability regime,; B > 2, radiative damping is the most impor-
tant. -

The velocity ;)f the waves determined from the linear analysis
is (2‘/3)(Jo/e)(ee /Iine ) , which is of the order of 10 m/sec. There-
fore, in the rise (‘zime gf 10_5 sec, the wave has moved only T cm.
Thus, the waves can be considered essentially as stationary, and the
8ne/8x term which gives rise to the wave velocity in eqn. (24) can be
neglected.

Thus, from the linear theory of waves, the instability regime
Vca.n be determined. Also, the wavelength of steady waves and the fact
that the main damping mechanism is radiative transfer were deter-
mined. This, along with the fact that the velocity of the steady waves
is negligible, makes it possible to .sirnplii'y eqn. (24) for steady waves
to:

H =0 . (32)

(b) Large Amplitude Disturbances. - In the treatment of small

disturbances, the electronic heating term, Q, was linearized about

F 5 From this a.nalysis,. the amplitude of the disturbances cannot be
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determined because it is the shape of Q that fixes this amplitude.

In Figure 6, Q is plotted as a function of ¢ for various 3 and

ELO/EO. For B< B

tive; however, the absolute value of the minimum slope at B =1 is less

crpit’ Fligure 6a, the slope of Q at 0, is nega-
than that at = 0. This means that disturbances to the uniform so-
lution at i take longer to disperse as [3 is increased. For > ﬁcrit'
Figure 6b, the slope of Q at O’o is positive for a certain range of

EL /Eo , indicating that disturbances about o, will now grow. How-
evec;, zeros do occur on either side of 00 at which dQ/do is negative.
Call the upper and lower zeros Gu a'nd 01, respectively. If there is
no heat transfer, that is, H= 0, these zeros determine the amplitude
to which disturbances about 0'0 will grow. That is, for the equation

Ii (clne /dt) = Q, 0‘u , UO , and O’L are the only éteady solutions. Of
these, only - and 0., are stable; therefore, all points perturbed
about g, g° to either o, °r O, depending on where the perturbation
conductivity is below or above o,

When the heat transfer term is included, other steady solutions
are possible, e.g., solutions of eqn. (32). The term H, which
equals R-Rex in this equation, represents radiative transport of heat,
75 per cent of which occurs in the potassium resonant lines(l). The
mean free path of photons in these lines varies from 10“4 cm at the
line centers to infinity on either side of the lines. An approximation
to R was made by breaking the integral over mean free path, 1/m in
eqn. (9), into three parts. Call R1 the integral of m from 0 to 1/L,
R, the iﬁtegré.l from 1/L to 1/a\A , and R, the integral from 1/ah to

m_ ., where L is the characteristic dimension of the plasma volume,
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A is the wavelength calculated for small disturbances, and a is a
number not as yet defined. The first integral then represents pho-
tons with mean free paths larger than the plasma volume and is as-
sumed to be the same as the radiation escaping from the plasma with
uniform o. Thus, Rl just cancels Rex . The second term, RZ 3
represents heat transfer occurring over distances larger than the
size of the disturbances, and therefore cannot be approximated in
terms of the local va.lug or derivatives of the value of any plasma pa-

rameter. The third term, however, can be approximated, and using

the diffusion approximation gives:

dZB
o

WZA\)»\/mO 63/2(211')3/2 %E > (33)
d¢

R3=-

Wl v

where ( = (2wx)/A . This éxpression is obtained by expanding the

blackbody intensity, B0 , about its value at x in a Taylor series

dB a’B

2
2,00 = Bt + 2] e+ 2] U

de x .

and carrying out the integrals in eqn. (9). The second derivative is
the first term in the expansion to give a contribution and is the only
one that is kept. Note that a sine wave was an eigenfunction of the ex-
act radiation term and gives, eqn. (26), the same dependence on wave-
length as the approximation in eqn. (33). Also, if a is chosen to be
1/(4&-1-3')1/3 ; R.3 also gives the same wvalue of the damping coefficient
as the exact expression.

As an approximation to the nonlinear problem, solutions ne-
glecting the integral part, RZ , of the radiative transfer were calcu-

lated. That is, solutions of



_KR e = 0 (34)
where

2 2
Ky = "E'ﬁ s A\),\/nlo 2w/ Boo . (35)

Using Planck's equation and the Saha equation gives the ap-

proximate relationship

_ s
BO/BOo = (ne/neo) 5 (36)
where
4
4 1.24 X 10
p = 2 RELIAD (37)
io ‘

‘ o
XO is the wavelength of the resonant line in A .
o
For potassium, Ii = 4. 3 ravid 7\0 = 7690 A, which gives s = %_'

Substituting this into (34) gives
1
5 dxi
d|1 /7 %e & e _
MR ¢ 7(@) | ¢ O - (38)
o

This equation can be integrated twice to give:

. A MR r dne (39)
13 Zr J - o) .
<~ | -4 dn_ + C
Ne J n_/n €
o e e

o

Carrying out the integral for various constants, C gives the
change in wave shape for increasing amplitude. The results were cal-
culated for a particular Q , shown in Figure 7. The behavior is sim-
ilar to that of the doubly periodic elliptic function, in that at small
amplitude the waves are sinusoidal, curve A in Figure 8. However,
as their amplitude increases, the ratio of the width of the high n_ part

to the low n part becomes different from one, curve B. In this case,
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since the lower zero of Q was closer to < than the upper zero, the
trough of the wave becomes wider than the crest. As the value of o
in the trough approaches GL , a solitary wave solution, curve C, is
obtained. Amplitudes greater than that of the solitary wave require
that n, and thus ¢ drop off as in curve D ; however, since this can-
not occur inside the plasma, the maximum amplitude of a steady wave
if that of the solitary wave:

A check of the diffusion approximation was made by comparing
the results from it with a computer calcul;.tion of the actual radiation
term. For the computer calculation, the summation representation
derived by Lufz(s? for the radiation integral (9) was used. However,
this allows calculation of the radiation for a given wave shape but not
the calculation of a wave shape from a known Q. Therefore, the fol-
lowing calculation procedure was used. First, a wave shape similar
to one of those obtained by the diffusion approximation, Figure 8, was
chosen. Then, using the computer, the actual amount of radiative
heat transfer was calculated at each point in the wavé. This radiative
heat loss was then equated to - Q, and from eqn. (39) the wave shape
for the diffusion approximation was calculated.

In this way, ‘the wave shapes which were solutions of H= Q
for a given Q(ne) , with and without the diffusion approximation,' could
be compared. As would be expected, the results with and without the
diffusion approximation were the same for a sinusoidal wave and the
Q for such a wave was linear. However, for a solitary wave, Q is

nonlinear, Figure 9a, and the resulting wave shapes, shown in Figure

9b, were appreciably different. Although the width of the solitary
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wave is about the same in both cases, the amplitude of the wave cal-

culated by the diffusion approximation was a factor of 2 too small.
Thus, going from the sinusoidal waves to the solitary wave,

the diffusion approximation becomes worse and could produce as much

as a factor of 2 error in the calculation of the amplitude of the soli-

tary wave.

2.5 Calculation of Amplitude of Conductivity Variations

In the previous calculations a number of steady wave shapes
were obtained as a function of two parameters, the amplitude and the

angle, EL
o

steady waves would be required to determine which,if any, of these

/EO , of the waves. A detailed stability analysis of the

waves actually exist in a plasma. However, just from the steady
wave shapes of Figure 8 a few elementary conclusions can be made.

First, for a given angle, that is EL /Eo , there is a maximum am-

plitude at which periodic waves existc:). This amplitude is fixed by the
zero of Q nearest to the value cro for the uniform solution. Af_tso, the
peak-to-peak amplitude is approximately twice the difference between
g, and the conductivity at the nearest zero. This last approximation
will not be good for the solitary waves, as shown in the‘ check of the
diffusion approximation; however, it will be used for the closely
packed waves, and there it is much more accurate. Using this cri-
terion, we can then determine the amplitude of the wa\‘res as a function
of EL /Eo from a plot of the zeros of Q as shown in Figure 10. This
o}

plot was obtained by numerically solving for the zeros of eqn. (22).

In Figure 10 we see that in the region from EL /EO = 0.52 to 0. 2 the

o
lower zero fixes the amplitude, and from E /EO = 0.61 to 0. 52 the

L
o
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upper zero does. Since the maximum possible variation occurs when

the two zeros are equidistant, it follows that if EL /EO is allowed to

o
vary, the true maximum peak-to-peak amplitude is the difference in

conductivity between the upper and lower zeros occurring when

EL /Eo = 0. 52. For this case, AG/GO = 1. 2. This criterion was
o

used to obtain the solid curves in Figure 11.

This analysis then gives a maximum possible conductivity
variation ; however, it does not in any way take into account stability.
One simple approach to stability is to test the stability of a plasma
with the uniform set of waves previously described when it is per-
turbed by disturbances of a wavelength much larger than that of the

. steady waves. In this case, the plasma with waves can be considered
as a new uniform plasma with properties obtained by averaging over
the waves. In Appendix C it is shown that the averaged energy equa-
tion can be put in the same form as the original energy equation for
the plasma with constant conductivity. Thus, perturbing (o) of this
new plasma, we see that it, too, will be unstable if Beff is greater
than Bcrit' Therefore, we conclude that the Beff of the plasma with
waves must always be less than the original ﬁcrit for the plasma to
be stable. The effective values of B and 0 for a plasma with a set of
plane waves is calculated in Appendix B as a function of the ampli-
tude and angle of the waves. Using these expressions, the relation-
ship between E -/.Eo and ¢, and the curves of the type shown in

Figure 10 to relate EL /Eo to amplitude, Table I, was prepared.

o
It shows 'Beff as a function of Eq, /Eo for a given theoretical Hall
o
parameter. For both ﬁth of 3 and 5, the minimum {3e££ occurs for a
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TABLE I. Minimum ﬁeff

Angle (¢) ELO/EO | Ao /(o) s Bcs
Py, = 3
12° .63 .00 . 000 3.0
15° . 58 . 20 . 005 2.9
20° .51 1. 04 . 135 2.1 minimum
30° .42 . 60 . 045 2.5
40° « AH . 36 .016 2,9
B, =
$ .60 . 00 . 000 5.0
12% . 50 1.10 . 150 3.6
15° . 45 1. 04 . 135 3.3
20° .37 .80 . 080 3. 2 minimum
30° .30 .30 . 045 3.5
40° . 25 . 20 . 020 3.9

wave at 20° to the average current. The minimum Boss for Bth of 3

approximately equals ﬁcri , which was 2 in this case. However,

t
ﬁeff exceeds pcrit for ﬁth of 5. This implies that the uniform set of

waves predicted by the steady theory would not produce a stable plasma

for theoretical values of Hall parameter much greater than 3. Also

L
o

less than the value at which the maximum amplitude waves occur.

note that the value of E /E0 at which the minimum peff occurs is

The amplitude of the waves for minimum ﬁeff is shown by the dashed

line in Figure 11.
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3. APPARATUS

A schematic of the apparatus is shown in Figure 12. This
apparatus was discussed in detail in Reference 12,and only some of
the important features will be discussed here. The main flow of argon,
5.0 gm/sec, is heated by an arc jet which was operated at 90 volts and
70 amps for a gas temperature of 2000°K in the test section. Both the
cathode and anode were Water—cooled and were made of tungsten and
copper, respectively; No sputtering of either material was observed.

A secondary flow of 0. 17 gm/sec of argon was bubbled
through a potassium bath at 790°K and injected into the main flow just
after the arc jet. This stream carried the equilibrium vapor pressure
of potassium at the bath temperature.

.The two streams were allowed to come to equilibrium in a
mixing section wﬁich consisted of a 2.2 cm I. D. by 20 cm long
alumina tube. This tube was contained in a stainless steel jacket and
was purged with argon to prevent any oxygen from leaking into the
system.

Test sections were made of boron nitride pieces held to-
gether by a stainless steel enclosure. The test sections generally had
a l cm by 2 cm cross section, which was smoothly shaped into the
2. 2 cm mixing tube. This converging section was only 4 to 5 cm up-
stream of the test area; therefore, we would expect a very flat ve-
locity profile in the duct. The configuration of electrodes and voltage
probes varied from experiment to experiment; however, electrodes
and probes were consistently made from tungsten wire 0. 075 cm and

0. 050 ¢m in diameter, respectively. The actual configurations will
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be described in the section on the experiments.

The discharge circuits, in general, consisted of a bank of
12—=volt wet cells connected in series with a 100-ohm variable resist-
ance, an ammeter, and a pair of duct electrodes. In several experi-
ments, a number of parallel discharges were required. In this case,
several discharge circuits were used and allowed to come to a float-
ing potential independent of each other.

The magnetic field was supplied by a variable gap electro-
magnet with tapered, 10-cm diameter pole pieces. At a gap of 5 cm,
this magnet could produce a maximum of 10 Kg. A 1l.27-cm diameter
hole was bored in the pole piece, through which light intensity meas-
urements were made. However, the field in the gap was notnoticeably
changed by this hole and was measured to be uniform to 5 per cent
over a 9-cm diameter area.

The gas velocity in the test section was 100 m/sec, which
gives a maximum UB field of about 1 V/cm. The measured electri(lz
fields were corrected for the UB term, and the actual E values re-

corded were (E - UX B).

3.1 Measurement Techniques

Several standard techniques were used to monitor the con-
dition of the gas. The gas temperature was obtained by measuring
the temperature of a 0. 0l2-cm diameter tungsten wire with a pyrome-
ter and then correcting as in Cool(lz) for heat transfer to obtain the
gas temperature.

The potassium concentration was checked by passing the
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secondary flow through a cooled tube, 70 ¢cm long and 5 cm in diame-
ter, for a measured length of time. The amount of potassium con-
densed in the tube agreed to within 10 to 20 per cent of the value pre-
dicted on the basis of the vapor pressure of potassium at the potassium
bath temperature.

Electric field measurements were made by measuring
voltage differences between floating probes. These were measured
with a high impedance circuit, 1 megohm, and recorded as oscillo-
grams. Floating probes will give the correct electric field measure-
ment only if they are in regions of the same electron density. This
was often not t171e-case in the experiments described; however, the er-
ror introduced by these differences in electron density is of the order
of the differences in electron energy; or 0.1 to 0. 2 volts. Since the
voltage difference between probes was usually greater than 2 volts,
differences in electron energy would introduce a maximum error of
10 per cent.

Photographs of the discharge were taken in order to obtain
the spatial variation of radiation emitted. From these photographs,
the distribution .of electron temperature, thus electron density, and to
some extent, current density could be inferred. Only time-averaged
distribution could be obtained, however, since the growth rate of dis-
turbances in the plasma, ~ 10+5 sec—l , was fast compared to the ex-
posure time of 1/400 sec. In the normal photographic arrangement,
two 45° mirrors were used to obtain a view of the duct parallel to
the magnetic field. A quartz window in the duct allowed viewing of

the discharge. This window was not very satisfactory for quantitative
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measurements in that since it was cooler than the main gas flow, im-
purities in the gas tended to condense on the window, fogging it. Al-
so, the potassium, along with the high temperature, caused vitrifica-
tion of the quartz, so that the window had to be replaced after each
run. For these reasons, the windows were used only for qualitative
determination of the discharge pattern. To obtain quantitative data,
photographs were taken through narrow slits in the boron nitride wall
of the test section. These slits were purged with argon to eliminate
absorption of the light by cold potassium vapors in the slits or near
the duct wall. Quantitative interpre'tation of the photographs is dis-
cussed in Appendix A.

In order to obtain higher time resolution, the light intensity
was also observed with photomultiplier tubes. The apparatus used
for these measurements is shown in Figure 13. Here, two 0. 16-cm
diameter holes were made in the boron nitride walls and again were
purged with argon. The light emitted from these holes, after passing
through the hole bored in the magnet pole piece, was focused on an
aperture screen by a 50-cm focal length lens placed 67 cm from the
test section. The screen had two 0. 15-cm diameter apertures which
could be positioned so that each was covered by the image of one of -
the holes in the test section wall. The magnification of optical
system was three, giving a resolution of 0. 05 cm in the duct for the
0. 15 cm apertures. Behind each aperture was a 0. 3-cm diameter
plastic light pipe that conducted the light to an interference filter
placed in front of a photomultiplier tube. The interference filters

passed light to the phototubes only at the wavelength of the potassium
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o
line doublet of 7690 A. The output of each photomultiplier was read
on an oscilloscope which gave an overall time response of 1 ys.

The quantitative interpretation of these readings is discussed in Ap-

pendix A.
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4. EXPERIMENTS AND COMPARISON WITH THEORY

In this section, the experiments will be described and the re-
sults will be compared with the predictions of the theory. In the first
experiments described, the discharge is parallel to the gas flow.
These experiments were designed primarily to determine the validity
of the steady, one-dimensional theory of the preceding section.

Next, experiments of more practical importance, where the
discharge was transverse to the gas flow, will be discussed. Here,
extensions .of the theory had to be ma de to take account of the ioniza-
tion transient in the inlet region of the duct. However, in regions of
the plasma following this transient region, the steady theory of the

preceding section was again applied.

4.1 Discharge Parallel to Gas Flow

Two experiments were conducted with the discharge applied
parallel to the gas flow. In the first, the electrodes were placed in-
side the magnetic field in such a way that they stabilized a steady cur-
rent streamer pattern. In this way, the predictions of the steady the-
ory could be compared with the observed current pattern. In the sec-
ond experiment, the discharging electrodes were moved outside the
magnetic field so they would not influence the current pattern. This
experiment was used to determine the influence of the electrodes on
the current pattern of the first experiment.

(a) Steady streamers parallel to gas flow. - The purpose of

this experiment, as previously stated, was to obtain steady, one-

dimensional streamers that could be compared with the theory. The
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configuration of electrodes used is shown in Figure 14. Here, three
separate circuits discharge parallel to the gas flow to supply the axial
component of current. In addition, U-shaped tungsten wires con-
necting the top and bottom of the duct allow a perpendicular compo-
nent of current, J’o of the theory, to circulate. The anticipated cur-
rent pattern is illustrated in Figure 15, which shows that for the center
streamer this configuration is equivalent to an infinite wave train.

Expe rimer.lta.lly, it was observed that when the magnetic field
was zero, nonuniformities caused by current concentrations at the up-
stream electrodes rapidly dispersed and the discharge was uniform,
as seen in Figure l6a. However, as predicted by the theory, when the
magnetic field was increased from zero, but still for B less than that
at which instaﬁility occurs, the nonuniformities took longer to die out.
For [ greater than the critical value, the nonuniformities spread the
entire length of the test section to form the current streamers in Fig-
ure 16b.

The streamers appeared stationary in the laboratory frame in
this experiment because their small velocity, 10 to 20 m/sec, was
cancelled by the component of gas velocity perpendicular to them.

Quantitative information about the a;mplitude of the conductivity
variations across the streamer was obtained by photographing the dis-
charge through vevrtical slits in the test section wall. The photographs
were reduced as described in Appendix A, In Figure 17 are plotted
the measured values of the difference between the maximum and mini-
mum conductivity, A0 , in a streamer over the mean conductivity,

{(g) . These measﬁremen‘ts lie below the maximum possible amplitude
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predicted by the theory and are closé to the amplitude predicted for
minimum ﬁeff'

Also to check the theory, the electric field along the streamer
was measured as the magnetic field was increased. Keeping the aver-
age current density constant, the ratio of this field with zero magnetic
field, EL , to the value with magnetic field, Eo , forms the parame-

o
ter EL /EO of the theory. Theoretically, it was found that the insta-

o
bility occurred only for certain ranges of this parameter, and in Fig-

ure 18 it is shown that in fact when current streamers do occur, the

measured values of EL /EO do lie inside the instability regime. Also
o

note that the values lie slightly below the value for maximum ampli-
tude waves a.nd close to the theoretical curve for minimum ﬁeff' This,
along with the measured amplitude of the waves, suggests that waves
producing minimum ﬁeff are indeed preferred.

The predicted values of the parameters Ac/{0) and EL /IF_'.0
' o

depend only on the heating term Q of eqn. (24), and are independent
of the size or type of heat transfer term. The heat transfer term,
however, determines the streafner width. Since EL /IEIO is less than
that at which the maximum amplitude occurs, the streamers are lim-
ited by the lower zero of Q (see Figure 10). Thus, we have the con-
dition indicated in Figure 8 where, as the amplitude of the wave in-
creases, the width of the high conductivity region stays constant as
the distance between streamers increases toward the solitary stream-
er case. The width of the central streamer in Figure 16 is 0.3 cm,
which suggests a total wavelength of 0.6 cm for the sinusoidal waves.

For comparison, the theoretical value for the conditions of this ex-
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periment, g, = 0.24, Bp=4.0, and EL /Eo = 0,45, can be ob-

tained from Figures 4 and 5. Figure 5 g?ves d.Cl/dne = 1. 1. Using
this value in Figure 4 and remembering that w, would be decreased by
a factor of 1/17 at B = 4, it can be seen that the main heat transfer
mechanism would be radiation, Wp and the predicted wavelength for
steady, sinusoidal waves would be 0.8 cm. This is in good agreement
with the observed value.

In this experiment, the spacing of the upstream electrodes was
chosen by trial and error to give the most stable streamer configura-
tion and did not by itself determine the streamer spacing. This was
best illustrated by an experiment in which the electrodes were placed
well outside the magnetic field. The results of this experiment will

be described in the next section.

(b) Long test section. - The purpose of this experiment was

to determine what influence the electrodes of the previous experiment
had on the streamer spacing. The test section for this experiment
was 20 cm long so that the discharge electrodes could be placed 2.5
cm outside the magnetic field. ]'_n this way, the n;jnuniformities in-
troduced by electrodes could disperse before the discharge entered the
magnetic field region. To study the streamers, two light probes were
used. These were first pla._ced parallel, then perpendicular, to the
flow. With the probes parallel to the flow, the velocity at which the
streamers were transported down the duct was determined. To the

accuracy of the measurement, this was the gas velocity of 100m/sec.

From the light output with the probes perpendicular to the flow, Fig-
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ure 19, the angle of the streamers to the axis of the duct and the
streamer width could be determined.

For B less than three but greater than the critical value, the
streamers appeared at the expected angle of 20° to the axis of the
duct and were essentially one-dimensional. Correcting for the angle
of the streamers, their width perpendicular to the wave was 0.35 c¢cm
and their spacing was about 1. 0 cm. As would be expected, the
streamer width was the same as in fhe previous experiment; however,
the streamer spacing was also about the same. This indicates that
the streamer configuration studied in the previous experiment was
indeed the naturally occurring stable configuration and that the elec-
trodes did not produce it artificially.

One difference in the observed streamers between this and the
previous experiment that may be due to the lack of stabilizing elec-
trodes here is that for B > 3 the streamers started becoming unstable,
and for 3 > 5 steady, one-dimensional streamers did not exist.

A similar phenomenon, formation of one-dimensional stream-
ers at low P which broke up into secondary streamers at higher B,

(3)

was observed by Velikhov when studying the instability in a pulsed

discharge tube. N

The effect that the breakup of the one-dimensional streamers
had on the measured values of O off and pe‘ff is shown in Figures 20
and 21. The dashed curve in each figure indicates the effective values
calculated from eqns. B-8 and B-9 of Appendix B that would result

from waves of the measured amplitude at 20° to the average current.

The measured values of O otf lie considerably below this dashed
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curve for B> 3, and in fact for large B approach the theoretical value
calculated in Appendix B for a two-dimensional, isotropic distribution
of waves. The measurement of ﬁeff also agrees with the calculated
value for a two-dimensional, isotropic distribution. Note in particu-
lar that the measured values of ﬁeff rise with ﬁth until at 'Bth ~ 3,
when ﬁeff = 2, the measured ﬁeff levels off and in fact decreases
slightly with further increases in ﬁth . This behavi.or is consistent
with the theoretical observation that peff cannot exceed ﬁcrit' This
condition is fulfulled here by the one-dimensional streamers breaking
up into secondary streamers, thus effectively increasing the average
angle between the streamers and current and decreasing the effective
Hall parameter of the plasma.

(4, 9)

Measurements in other experiments showed similar re-
ductions in the effective values of conductivity and Hall parameter.
However, in those cases, the amplitude of conductivity fluctuations was

not measured; thus, the cause of the reduction could not definitely be

related to the electrothermal instability.

4. 2 Discharges Transverse to the Gas Flow:

As opposed to the experiments in thé previous section, in MHD
generators or accelerators, the discharge, gas velocity, and magnetic
field are mutually perpendicular. In the experiments described in this
section, the phenomenological behavior of such a discharge will be
observed, and application of the theory of steady, one-dimensional
waves will be made where possible. Some extensions to this theory

will be necessary to explain the transient behavior in the inlet region.
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(a) Inlet. - In these experiments, the pairs of electrodes
discharge across the gas flow. Photographs of the inlet of such a duct
are shown in Figures 22 and 23. In Figure 22, the effect of increasing
the magnetic field while keeping the external resistance constant is
shown. As the magnetic field is increased, the bright region of the
discharge (and hence the regions of large conductivity and current
density) move farther downstream in the duct. Since this increases
the current path length, the resistance of the duct goes up and the cur-
rent decreases. Also, it was observed that luminous layers extended
back from the electrodes along the electrode walls. For high B (Fig-
ure 22c), the light from the center of the duct decreased until only the
glow from these wall layers is seen. Alternatively, if the applied
voltage was increased for a constant B (Figure 23), the transverse
part of the discharge moved closer to the upstream electrode pair until
it appeared between them. This last condition could also be produced
by adding a pre-ionizing discharge upstream of the test area.

Thus, there were three modes of operation that could be dis-
tinguished on the basis of the length of duct required for the ionization
transient. In the first mode, where light is emitted only from the gas
along the electrode walls, the transient length is larger than the test
section 1ength,. and the entire duct operates in the shorted mode, as
described by Kerrebrock(ls). In the second mode, light appears in the
center of the duct, but considerably downstream of the first electrode
pair. This mode will be called the 'transition mode.' In the third
mode, the ionization length is short, and light is emitted the full length

of the test section. This mode will be called the 'normal mode;' how-
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ever, from photomultiplier observations, it will be shown that this
mode differs from that described by Kerrebrock in that the current is
carried across the duct in a series of transverse streamers.

Qualitatively, the same mode’s of behavior occurred with a
single tra.nsve;rse discharge: therefore, further study of the inlet
problem was carried out with a single electrode pair. In Figure 24
are shown recordings of the electric field normal to the gas flow, V_ ,
and the light output from a point on the centerline of the duct 1 cm
downstream of the electrode pair. For P = 0, the light intensities
and voltages were constant; however, as P increased, first closely-
packed streamers appeared, B = 2.0. This pattern could be produced
at higher values of B by increasing the electric field or by pre-
ionization, and is typical of the 'mormal' mode of operation. At higher
B, B=3and 4 in this case, a regular saw-tooth pattern appeared in
the normal component of electric field, and each sharp drop in this
field was followed by the passage of a solitary streamer. This be-
havior is typical of the transition mode. At Hall parameters larger
than 4, the period of the streamer formation became very irregular,
with some long periods where no transverse streamers occurred; that
is, the duct was operating in the shorted mode.

Since the shorted and normal modes are then limits of the pe-
havior observed in the transition mode, it was the transition mode
that was studied in most detail.

(a-1) A single transverse discharge operating in the transition

mode. - In Figure 25 are shown voltage drops normal, V; , and

parallel, V| , to the gas flow and the light intensities L,, L., and

| .
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L3 , from three points along the centerline of a duct operating in the
transition mode. The light intensities as functions of time in Figure
25 have been converted into light intensities as functions of distance
at given instants of time in Figure 26. From the two figures, it can
be seen that each sharp drop in the V voltage is correlated with a,
sharp increase in radiant energy a.b.out 0.5 cm downstream of the
electrodes. This has been interpreted as the formation of a new
streamer between the electrodes. As this streamer is swept down-
stream, a gradual increase in V; occurs. Also note that the Hall
voltage V| is very small during the gradual rise of the applied field
(the amplification of V| is twice that of V ) and does not begin to
rise until just before the formation of a new streamer. Measure-
ments of the time required for the streamers to be swept from one
light probe to the next showed that, to the precision of the measure-
ments, the streamers were being carried with the gas at the gas ve-
locity.

The behavior just described for the discharge in a magnetic
field is very similar to that occurring for an ordinary arc with no
magnetic field discharging across a gas stream. This is not sur-
prising because the basic cause of the behavior in both cases is a
highly nonlinear shape to the heating term, Q. In particular, Q must
be zero at least at two values of the temperature and be negative in
the region between them.

From the previous measurement, it is possible to construct a

more detailed qualitative explanation for the inlet phenomenon in this

discharge. As § is increased from zero, nonuniformities caused by
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the electrodes take longer to disperse, and thus high conductivity
paths are formed along the electrode walls. These streamer-like
paths tend to short out the Hall field which, if entirely shorted out,
would decrease the electronic heating rate for a given transverse field
by a factor 1/(1+[32). This decrease in the electronic heating
lengthens the ionization transient, thus shifting the discharge farther

downstream. For > » the transverse part of the discharge

crit
forms into a solitary streamer of the type described in the theory. On
either side of the streamer, the conductivity is at the lowest zero of

Q ; thus, there is no net electronic heating there. This means that the
streamer does not tend to spread out, but its width will stay constant
as it is swept downstream with the gas. However, as it is carried
downstream, the electric field between the electrodes rises, and thus
causes the electronic heating to again become positive there. This
causes an increase in the ionization rate which, if large enough, causes
the conductivity between the electrodes to increase above the value it
had on either side of the old étreamer. When this conductivity has in-
creased to approximately the mean value it had in the old streamer,

an increase in Hall field must follow in order to maintain the continu-
ity of current along the duct. This is because there are now two
roughly one-dimensional regions of different conductivity adjacent to
each other; the newly formed high conductivity region between the
electrodes, and the old region of low conductivity adjacent to the
strearnér. Since current density perpendicular to the interface be-

tween the regions must be the same, the Hall field in the higher con-

ductivity region must be larger than that in the low conductivity re-
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gion. This increase in the Hall field also causes an increase in the
electronic heating: thus, a feedback loop is formed which causes the
final, rapid rise of conductivity to form a new streamer.

The mechanism just described for formation of new streamers
is essentially the mechanism of the electrothermal instability with the
additional complication that the conductivity of the gas must first be
raised from the very low value of conductivity in the entering gas be-
fore the instability can take over. The time required for the conduc-
tivity to be increased from the value entering the test section to the
value at which the Hall field increases is the critical time, since it
varies greatly with conditions in the duct. It also determines in which
mode the duct will operate.

(a-2) Calculation of the inlet relaxationlength. - The time re-

quired for the first phase of the stream production process can be cal-
culated. Since the electric field parallel to the gas flow during this
phase is zero, the field along the current is E/JI;?, where E is the
field across the duct. Thus, eqn. (17) gives

%% E‘EZ

—°_9&_ | (40)
neoli 1+p%

do

'a_t' 0.5

In this equation, the effect of the magnetic field is to reduce the Joule
heating rate by a factor 1/(1+§32) , as expected.

The electric field, E , is calculated for the idealized circuit
shown in Figure 27. Here, the old streamer is considered simply as

a conducting path of constant resistance, r , per unit length, giving:

1+22
E = E — . (41)
0.
il+=a(v ttx)
w g




i

where
riw + 2v t )
g o

&= RT r(w+ 2v t_) (42)
gO

and Eo is the field along the streamer when it first forms. Since @
i
is also the ratio of the minimum voltage across the duct to the source
voltage, it is approximately equal to the expected loading factor for a
generator. Using (40) in (41) and integrating from the time a given
slug of gas enters the electric field (which is assumed to start on a
line between the electrodes) until it is at a point vg("r+t0)-x behind the
electrodes, gives:
2
0. 2

5 "ot (142%) 1 1
in o = - . (43)

g.
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This expression, plotted in Figure 28, gives 0 as a function of x at
a given time, T , since the formation of the last streamer. Note that,
as expected from qualitative arguments, a maximum does occur in
O(x) between the electrodes and the old streamer. The value of T at
which this maximum reachesr cro is taken as the time, "I‘S , for the
smooth rise in voltage, that is, the time for the first phase in the
streamer production process. Because of the EZ dependence of the
Joule heating term, the conductivity is rising rapidly when it crosses

the wvalue cro ; thus, Ts is not strongly dependent on the value of o

chosen.

The parameter that determines how the electric field increases
as the old streamer is blown downstream is the distance it has been
blown, vg'rs » normalized by the duct width, w. This parameter is

plotted in Figure 29 as a function of the reciprocal of the reduced
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Joule heating, E(Z) /(1+j32) , for several values of a. Note that as ¢
is increaseAd, thaﬂ:1 is, as the ratio of the electrical resistance of the
duct to the external resistance is increased, the time T increases.
This is because the qlectric field between the electrodes rises less
rapidly as the old streal;ner is swept downstream. Also note that T
increases when the magnetic field is increased or the applied electric
field decreased, that is, when the parameter (1+[32)/E2' is increased.
The theoretical curves show good agreement with the o‘c];se rved length
of the smooth voltage rise measured on the voltage traces, V, , such
as those in Figure 24. In Figure 29b, the measured total period of
the streamers is plotted and compared to the theoretical values of
ngs . The difference between the two represents the time, in this
case 50 to 100 us, required for the final growth of the new streamer
and the associated drop of the duct voltage due to its shorting of the
old streamer. Since this time depends on the growth rate of the elec-
trothermal instability in the gas used, it would not depend on vg or w.
Thus, at higher gas velocities, the distance vg"r over which the final
phase of the streamer production occurs may become long enough that
the two phases cannot be separated. However, in the case where they
can be separated, the length of s will determine the mode in which

the duct will operate.

(a-3) Prediction of the mode of operation. - In Figure 29a,

note that as (vg’rs)/w approaches 1/(20.) ; T starts increasing rapidly.
This is because the voltage between the duct electrodes is approaching
its maximum, which is the source voltage, V. As this limit is

reached, the field along the old streamer must decrease, which may
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cause it to extinguish before a new streamer is formed. Experiment-
ally, it was observed that for (vg'rs)/w > 0,25/a, the period of
streaﬁer formation became very erratic, and occasionally long peri-
ods occurred when the Hall field stayed near zero and no streamers
appeared. That is, the duct was in the shorted mode.

In the other limit, when the distance v P is less than the
wavelength of steady disturbances, A , the model again breaks down.
Here, the distance bétween streamers is determined by the steady
state equation for the streamers, and the duct is then operating in the
'normal' mode.

The condition for the existence of transverse streamers,
(vg’fs)/w < 0.25/a, means that the circuit must be operating nearly
as a constant current source. In the case o = 0, that is, a constant
current, an explicit expression can be obtained for the position of the
maximum conductivity in eqn. (43). Putting this expression back into

(43) and solving for the value of (vg"l‘s)/w at which o = Oo gives:

1
v T ) v T =
£ = 3{tzvion 520 -E2 gl - o} (44)

2

0.
1

8

This value of (ngs)/W can then be used to predict the mode of

where T the ionization parameter for = 0, equals (Iine )/(O'OE

operation of a discharge. That is:

if (vg‘l’s)/w > 0. 25/a , the duct is shorted;

if AM/w < (ngs)/W < .0.' 25/a , the duct is in the transition mode
and the length of the ionization region is v 'I'S ; and

if (vg'rs)/w < \A/w , the duct is in the normal mode.
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(b) Preionized discharge. - One way of decreasing vg'rs and
thus producing the normal mode is to increase the initial value of the
conductivity, o, in eqn. (44). This was accomplished by applying a
pre-ionizing discharge upstream of the test section. The pre-ionizing
discharge consisted either of a pair of electrodes discharging parallel
to the magnetic field or of a device similar to that used by Evans(14).
The latter consisted of a 0. 16-cm diameter ceramic tube, spanning
the 2-cm dimension of the duct and located just upstream of a regular
electrode pair.

As would be expected, the effect appeared to be independent of
the type of preionizer used. The effect of the latter type of preionizer
is shown in the photographs of Figure 30. Figures 30 b, c, both with
magnetic field, show the marked effect that the pre-ionizing discharge
has on the visual appearance of the downstream discharge. It appears
to have changed from operation in the transition mode with an ioniza-
tion transient of several duct widths, Figure 30b, to the normal meode,
Figure 30c, which visually appears very nearly the same as the dis-
charge without magnetic field in Figure 30a.

In Figure 31, the effect of pre-ionization on the photomultiplier
and voltage measurements is shown. Here, the preionizer was placed
two duct widths upstream,. so that the fields from it would cause a min-
imum of disturbance to the test discharge. As the pre-ionizing cur-
rent, Ipre , is increased, the time for the gradual rise of the voltage
de.creases, thus decreasing the voltage fluctuation. A limit is reached
at which further increases in the pre—ioniziﬁg discharge do not change

the test discharge. At this point, the streamers in the test discharge
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are closely packed and the voltage, V;J_ » 1s essentially constant. This
set of streamers now looks much like those predicted by the periodic
solution obtained in the theory, wher‘e the distance between fhe
streamers depends on their amplitude, and their maximum amplitude
is fixed by the lowest zero of Q. A duct with such a set of transverse
streamers has been defined as operating in the normal mode.

The light intensity and voltage seen at the test section when
only the preionizer was on is shown at the bottom of Figure 31. From
these measurements, Ui with pre-ionization was estimated to be 0, 1
to 0.2 of o_, which was 1.5 mho/cm. However, this is an increase
of about a factor of 10 over the o, without pre-ionization, which is
the equilibrium value of 0. 03 mho/cm for this plasma. In Figure 29,
the calculated effect on vg"rs of a factor 10 increase in o, is shown
and is consistent with the observed shorting of the ionization transient.

(c) Multiple transverse discharges. - The normal mode of

operation was studied in a duct with a series of circuits discharging in
parallel across the test-section. The visual appearance of such a
discharge for several values of B is shown in Figure 32. Here, four
pairs of electrodes spaced 1 cm apart can be seen. Gas flow is from
left to right. The first electrode pair on the left with the ceramic tube
placed immediately in front acts as the preionizer. The main change
that can be seen as [ is increased is that an asymmetry develops in
the bright regions around the electrodes. The bright regions at the
anodes, upper electrodes, shifts downstream and the bright region at
the cathodes, lower electrodes, shifts upstream. These photographs

were made for the magnetic field pointing into the plane of the paper;
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therefore, since the JXB force is in the direction of the gas flow, this
is an accelerator configuration. Reversing the magnetic field re-
verses the asymmetry of these bright regions. This is consistent with
the idea that there are certain ranges of angles relative to the cur-
rent and field vectors at which perturbations are unstable; however,
the important point is that there are high conductivity regions extend-
ing parallel to the electrode walls.

A test section with electrodes spaced every % cm, which is
less than the streamer spacing of 1 cm, was used for photomultipli-.
er and voltage measurements in the normal mode. The development
of the transverse streamer pattern is shown in Figure 33 as a func-
tion of B. When B was increased from zero to 1.4, which is still
below the value at which the instability develops, the electric field in-
creased and the light intensities decreased. This is due to the high
conductivity zones along the electrode walls previously mentioned.

As f is increased above the critical value of about 2, a set of
regular streamers appeared. These streamers have the same size
and spacing as those seen with a single pre-ionized discharge, Figure
31. The similarity of the two situations indicates that the upstream
discharges act mainly as preionizers for the following ones.

A regular pattern of transverse streamers was also observed
by Zaudere r(l 1) in high-speed photographs of a magnetohydrodynamic
generator with a similar electrode configuration, but with xenon gas
as the working fluid.

A detailed study of the streamers was made. In Figure 34 is

shown a comparison of the light traces at the centerline of the duct
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and at various points toward each wall. From these measurements,
it was found that streamers were distinguishable and essentially one-
dimensional to within 2 mm of the discharge electrodes. Also, sig-
nals shown in Figure 35 from light p'robes placed 1 cm apart along
the centerline of thé duct were compared. These signals are dis-
placed 100 ys relative to each other in Figure 35 to correct for the
time required for the gas to transverse the distance between the
probes. Note that occasionally a streamer will split into two; how-
ever, the streamers in general do not change much in this 100 pys.
This time is long compared to the instability growth time of 10 us ;
thus, the streamérs can be considered as steady.

Therefore, since the streamers in the center of the duct are
steady and one-dimensional, the conductivity and field variations
should be predicted by the theory. In Figure 36, these variations,
measured in the transverse streamers of a case for B=5, are
shown on a 0/(6) versus EL /Eo plot to lie within the calculated
instability regime. Note that,oa.s in the previously mentioned experi-

ments, the streamers again are found at a value of EL /Eo some-

what smaller than the one at which the maximum amplitoude occurs,
0. 52 in this case, and thus their amplitude is limited by the lowest
zero of Q.

Also as shown in Figure 37, the values of EL /Eo measured
lie close to the predicted value for minimum effectiveo Hall parame-
ter. This is consistent with the fact that the measured values of

conductivity variations again fall below the maximum possible value

in the range close to the value for minimum ﬁeff' It will be re-
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membered, however, that the minimum peff calculated for one-
dimensional waves was not small enough to produce a plasma that
was stable with respect to large amplitude disturbances. That is,
stable, one-dimensiocnal waves were not expected to occur for
ﬁth > 3 ; however, they were observed to the maximum 'Gth we
could produce,which was 7.3. One possible explanation is that since
the distance between electrodes was only about two wavelengths, the
electrodes may have had a strong stabilizing effect on the waves. A
fluctuation in V), shown in Figure 33, occurred as each streamer
passed an electrode pair. This field, for a truly one-dimensional set
of streamers, should be constant,and its fluctuation may be related
to the mechanism by which the electrodes stabilize the transverse
streamers. For these reasons, the streamer pattern in a larger
device may be considerably different than it is here.

No significant aerodynamic effects were observed when the di-
rection of the JXB force was reversed. Data are shown for the JXB
force parallel and anti-parallel to the gas velocity, indiéated by
'brake' and 'accel.', respectively. Also, the measurements when
normalized wére the same for currents from 2 to 6 amps/cmz.

Since the shape of the curves of the electronic heating term is inde-
pendent of the average current, the only effect that changing the av-
erage current should have is in the change in the exponent n of the

0 versus J formula. The change of this exponent between J = 2 and
6, however, was too small to have an effect distinguishable from the
normal scatter in the data. Note, however, that significantly differ-

ent results would be expected in other gases, where the n may be



considerably different.

(c-1) Effective conductivity in the normal mode. - In these

experiments, the transverse current was held constant as 3 was in-

creased; therefore, EL /Eo is equal to the ratio of the effective con-

ductivity, Oggg? tO the cc:)nductivity, o with = 0. To show that the
measured Y, is consistent with the observed amplitude and pattern
of conductivity fluctuations, a calculation of the effective conductivity
was made for a duct with hot boundary regions on either side of a re-
gion with transverse conducting paths. This was done by calculating
average fields and currents in each region from an analysis similar to

(15)

Rosa's and matching them across the division between the two re-

gions (Appendix B). This analysis gave eqn. (B-8) for the relationship
between O s and (o) . Using eqn. (B.43) to correct this expression

for the change in (o) gives:

> 213
off v+ 1/(1 - (c>chL)S B

- . (45)
% (y + B2)(1 +g)t/e

where y specifies the effective boundary region and is equal to

1
(UBL/(0> - 1)

= o
'y--l+6

Here, w is the width of the duct, & is the width of the hot boundary
region, and GBL is the average conductivity of the boundary. S is the
mean square deviation for a sine wave of the normalized peak-to-peak
amplitude plotted in Figure 38. With no transverse streamers, that is,
with Ac/{o) = 0, the o‘eff would decrease along the curve marked
1-D in Figure 39. This curve gives the effective conductivity for one-

dimensional nonuniformities parallel to the flow and the magnetic field.
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The actual data lie considerably above this curve, due to the beneficial
effect of the transverse streamers. The solid curves in Figure 39

show the Oe calculated from eqn. ( 45 ) with S = 0. 125, that is, for

ff
Ac/{c) = 1.0 and for y = 3.0 and 5.0. Most of the data are con-
tained in this range of y, which corresponds to two boundary regions,
each of thickness 0.5 cm and having a conductivity 1.5 to 2. 0 times
that in the main stream. These values are consistent with estimates
that could be made from photographs of the duct. However, <y cannot
in general be calculated with any degree of accuracy, and therefore
only S is known.
(16)

Louis has suggested that even though the actual conductivity
nonuniformities may display distinct regularity, the effective conductiv-
ity might adequately be predicted by assuming an isotropic distribution

of these nonuniformities. A calculation of O ¢f Was made following the

ff
suggestion of Louis (Appendix B). However, the calculation procedure

(17)

of Yoshikawa and Rose was modified by using the assumption that
the collision frequency was constant rather than the assumption used
earlier that it was dominated by Coulomb collisions. Although this as-
sumption is closer to the condition of this experiment, it does not

change the result significantly. From this calculation, again correct-

ing for the change of {0} ,

2 12/3
o 1+(SI)Z—E—S-1+(§£)
gL . B B ; (46)
% (1 - L s1+ psp)(1+s)t’?

p

where I as defined in eqn.(B.37) goes to w/4 for large P and S is

the mean square deviation of the conductivity. Equation (46 ) gives
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the curve marked 3-;D in Figure 39, where S = 0.125. This curve
was too high; however, when the above calculation is reformulated
such that only isotropic conductivity fluctuations in the two dimen-
sions perpendicular to the magnetic field are allowed, better agree-

ment was obtained. Here, the equation for Ot is:

2 2/3
S 2
Ueﬁ:" 1-S+Tp

= . (47)
% (1 - 22 g%+ =

This result, marked 2-D in Figure 39, agrees with the data at the
higher values of B . It should be noted that the duct used in these ex-
periments was only 1 cm wide in fhe direction of the magnetic field,
and thus would tend to stabilize the plasma against nonuniformities in
this dimension. However, no mechanism can be seen which would
tend to produce nonuniformities along the magnetic field even in a
larger duct, and in fact Zauderer has observed a similar two-

dimensional conductivity pattern in a duct 5 cm wide.



-48-

5. SUMMARY AND CONCLUSIONS

In a nonequilibrium plasma, the constant electron density so-
lution to the energy equation is unstable for Hall parameters greater
than about two. This instability is due to the strong coupling between
the electrical conductivity and the heating of the electron gas. How-
ever, a wave can be chosen with a wavelength such that the energy in-
put due to this coupling is just canceled by the damping effect of ra-
diative diffusion of energy. This wave is.then a steady solution.

Using the diffusion approximation to the radiative transport term in the
energy equation, a set of these steady solutions was calculated. In
these solutions, the non-linearity in the electron heating term pro-
duced a dependence of wave shape on wave amplitude and as a result
gave a limit on the amplitude of periodic solutions. This limit gave a
prediction of a maximum peak-to-peak amplitude, Ac/{c) of about one.
Also, the wavelength of steady waves was found to be on the order of
one cm.

If steady waves exist in practice,‘ these are the characteristics
expected; however, whether the waves actually exist or not depends on
their stability with respect to an arbitrary disturbance, and this was

not determined analytically. It was found that a plasma with a set
of steady waves would be unstable when perturbed by a disturbance of
a wavelength much larger than that of the steady waves, if the effec-
tive Hall parameter of the plasma with waves exceeded the original
critical Hall parameter of the plasma. This occurred for pth > 3, and

implies that the steady, one-dimensional waves would not be stable
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for larger Hall parameters.

To check the predictions for the steady waves, an experimental
configuration was designed in which the electrode geometry would
naturally tend to stabilize the steady waves. In this experiment,
steady waves were observed,and their amplitude and wavelength
agreed with predicted values.

Next, the waves were studied in an experiment where the elec-
trodes were outside the test section and could not stabilize the waves.
Here, steady waves with the same characteristics as before were ob-
served at Hall parameters slightly above the critical value. How-
ever, for values higher tha.ﬂ about three, the one-dimensional waves
became unstable and broke up into secondary waves.

With the basic predictions of the theory of the electrothermal
waves verified, the manifestation of this instability in a generator or
accelerator configuration was next studied. The main difference be-
tween this and the two previous configurations is that the electrical
discharges here are transverse to the gas flow. The most noticeable
effect of this change occurred in the inlét to the discharge region.
Three different modes of operation of the inlet were observed, de-
pending on the applied magnetic and electric field strengths, gas ve-
locity, and initial degree of ionization. These were: first, a shorted
mode in which high conductivity regions extended along the electrode
walls and conductivity in the center of the duct was very low; second,
a transition mode in which solitary current streamers were succes-
sively formed in the inlet, blown downstream, and e:;;tinguished; and

finally, a normal mode in which closely-packed transverse streamers
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existed the entire length of the duct. The behavior of the duct in the
transition mode was studied analytically, and it was found that the
main effect on the behavior of the inlet was the high conductivity re-
gions formed along the electrode walls. These regions, which were
caused by the instability amplifying the local heating at the electrodes,
shorted out the Hall field in the center of the duct and decreased the
Joule heating there by a factor 1/(1+[32'). Also, from this analysis,
it was shown that one way to produce the normal mode and thus in-
crease the transverse conductivity was to pre-ionize the gas entering
the duct. The effect of pre-ionization was verified experime;ntally.

The normal mode was studied in a duct with a number of
parallel transverse discharges. The characteristics of the streamers
here were shown to agree with those predicted by the steady, one-
dimensional theory. Also, several methods were explored for calcu-
lating the transverse conductivity of the duct. Experimentally; it was
observed that this conductivity at Bth =5 was about 40 per cent of the
theoretical value for a uniform plasma with no waves. This value was
found to correspond to a distribution of nonuniformities of the meas-
ured amplitude in planes parallel to the magnetic field, that is, in the
planes in which they were observed experimentally.

In conclusion, much of the anomalous behavior of a non-
equilibrium plasma when it is subjected to crossed electric and mag-
netic fields can be explained in terms of the electrothermal instability.
Useful quantitative estimates of effective plasma parameters can be
made using the predictions of the steady, one-dimensional theory for

the electrothermal waves.
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Fig. 16 Pictures taken though window in test section wall
(a) Uniform luminousity produced when only an electric
was applied.
(b) Current streamer pattern that appeared when a magnetic
field was added.
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Fig. 30 Effect of preionization on a transverse discharge.
(a) Preionizor on, test discharge on, B-=0.
(b) Preionizor off, test disclarge on, B=6Kg.
(¢c) Preionizor on, test discharge off, B-8Kg
(d) Preionizor on, test discharge on, B=8Kg.
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Fig. 32 Test section with multiple transverse discharges.
(a) B=0, (b) B=3Kg, (c) B=8Kg.
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NOMENCLATURE
o load factor of inlet circuit
B Hall parameter
‘Bcrit minimum Hall parameter at which instability occurs
Beff effective Hall parameter
Y hot boundary region parameter
6 thickness of hot boundary region
€, electron energy
ne electronic diffusion coefficient
‘R radiative diffusion coefficient
A wavelength of steady disturbances
)‘o wavelength of light at resonant lines of seed
M conductivity tensor
Voo electron-electron collision frequency
Ay width of resonant line
o] electrical conductivity
o Spitzer conductivity
O'C close encounter conductivity
O, upper zero of heating term
o1, lower zero of heating term
Ao peak-to-peak conductivity variation
(o) average conductivity
o, conductivity of undisturbed state
O initial conductivity

8" normalized conductivity , 0’/00
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boundary region conductivity

effective conductivity

time since formation of last streamer

time of smooth rise in voltage

angle between current streamers and average current
damping due to electl;onic heat diffusion
damping due to radiative diffusion

elastic collision loss

electron thermal speed

Boltzmann constant

mass of argon atom

mass of an electron

reciprocal photon mean free path at line center
exponent of J in 0(J) formula

electron density

undisturbed electron density

exponent of n, in G(ne) formula

resistance per unit length of a streamer
distance streamers form behind electrodes divided by v
gas velocity

duct width

blackbody radiation intensity

electric field along a streamer

total electric field in undisturbed plasma

electric field along J in undisturbed plasma



g P M

=

H I kB X
(0]
bS

.-

radiative heat tré.nsfer term

effective conductivity parameter (Appendix B)
ionization potential of seed
pre-ionizing current

current density normal to streamer
current density in undisturbed plasma
electronic heating term

collision cross section of nth species
resistance of external circuit
radiation term

escaping radiation

mean square conductivity variation
electron temperature

voltage perpendicular to gas flow

voltage parallel to gas flow
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APPENDIX A

Quantitative Interpretation of Photographs and

Photomultiplier Output

A. Photographs

In some experiments, variations in electron temperature and
thus electron density and conductivity, occurring when a magnetic
field was applied to the plasma, were inferred from photographs of
the discharge. Since the plasma was uniform and the conductivity was
known when the magnetic field was zero, the film could be calibrated
by photographing the discharge at various current levels with no mag-
netic field applied. From these photographs, the film density could
be calibrated as a function of conductivity. Figure A-1 gives a typi-
cal calibration curve. Using curves such as this, the film deﬁsity
variations in photographs of the discharge with magnetic field could
then be converted into conductivity variations.

One problem with using photographs was that the light intensity
variations emitted from the discharge ranged over several orders of
magnitude, and since photographic film generally has a linear re-
sponse over only two or two and one-half orders of magnitude, photo-
graphs were often exposed in the nonlinear response regions of the
film.

This problem was partially overcome by making calibration
curves over a large range of intensities for each film and for each
setting of shutter speed and f-number. However, the exposure was

still quite often in the dark or light wings of the response curve where
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the film is not very sensitive to intensity variations.

B. Photomultiplier Output

Photomultiplier data were much easier to interpret than the
photographs because the source voltage to the photomultiplier could
be varied so as to keep the tube operating in its linear range. Several
calibration curves are shown in Figure A-2 and indicate that to the
limit of accuracy of the measurement the response is linear. Also,
the response curve passes through the origin in Figure A-2, which
means the dark current was essentially zero. This condition was
obtained by packing the photomultipliers in dry ice. Since the re-
sponse curve was linear and passed through the origin, the parameter

AG/(G) was identical to AL/(L) where L is the output signal of the

photomultiplier.
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APPENDIX B

Calculation of the Effect of Nonuniformities on

Effective Plasma Parameters

A. Waves at an Angle to the Average Current

In the theory of the electrothermal waves, it was found that
these waves cause nonuniformities in the plasma which lie at an angle
to the average current. The effective plasma properties with such a
set of nonuniformities can be calculated following the scheme used by

(15)

Rosa Hére, the variation in Hall parameter S, is neglected in
comparison with variations in ¢ . This is because variations in
are due only to variation in collision frequency which is essentially
constant when the Spitzer term is small, whereas variations in 0 are
due to the variation in electron number density which is large.

We assume a distribution of nonuniformities as shown in Fig-

ure B-1 with the condition that the average current in the (-direction

is zero. Then we have the condition:

0 = J_ cos¢+ sin¢(Jy) (B.1)

(Jn) = J_sin¢ - cos ¢(Jy) (B. 2)

(En) = E_cos¢+ sincja(Ex) (B. 3)

(Eg) = -E_sin¢ + cos ¢(Ex) (B. 4)
Also, from the averaged Ohm's Law (eqns. 18),

(Jy) = -(c)Eo+ BT, (B. 5)

(Ex) = -BE_ + (1+52)J0(1/c> " (B. 6)

From (B. 1) and (B. 5)



w GG

_ sin ¢ (o)
by cosq‘n+[3sin¢Eo : (B 7]

Using eqn. (B.7), eqns. (B.2), (B.3), and (B. 4) can be written in

terms of E
o

- (o)
<Jn> ~ cosé + Bsing Eo
_ 1+((1/0)¢a) - 1)(1+B%)
<E'r]> B cos$ + Psing f3 =n ‘11 By
_ =B+ ({1/0) (@) - 1){1+p%) sindcosd
<EQ> - cosd + Psind 2 E
Then the effective values of ¢ and B are
i .
I = = {g (B. 8)
eff — (B, 1+((1/0) (o) - 1)(1+B)sin"¢
and
PR '<Eg> _ B-({1/a) (@) ~1){1+B%)sindcosd (B. 9)
o (B 1+({1/0) (o) -1)(1+8%)sin’}
If o = (o) +ézgsin Z;IX , then
2
_ 1 1 1 / Ag
(1/0) = <53 Ty ~ oy U3 (o) }
Therefore,
2
(1/0)¢0)-1 ~ 5(TF) = s (B. 10)

where Ac/{(0) is the calculated peak to peak conductivity variation

divided by the average and s is the mean square deviation.

B. Normal Mode

In a duct with a number of transverse discharges operating in

the normal mode, it was found that the pattern of conductivity varia-

tions consisted of a boundary region of high conductivity on either side
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of a central region in which transverse streamers existed. This pat-

tern is shown in Figure B-2. The Ohms law in regions 1 and 2 will be:

(1) J'x1 = GIExl + [3JY1 (B.11)
E_ =pBE_ + wp)’ , (B. 12)
Y1 1 %1 7
2) {(J_)=A(0,2E_ +BJ B. 13
(2) X, e3 X, Y, ( )
- aW 2
<EY2> ol " (1+8 )(1/cx2>JYZ . (B. 14)

The matching conditions across the boundary between the two regions

are.
T L = =3 I B. 15
y, 1 y, 2 ( )
I, = (.TX y (B. 16)
1 2
E = (E ) ' (B. 17)
Y1 72

From equations B. 11 through B. 17, the relationship between

current and field in region 2 can be solved for. The result is:

b

1 2 1 1
91l i <E;> P (<G_2> i Zc’2:)
{(J_ ¥ = (o )E
2 i?—_+(__1_>+132((_1)___1_) £
olLl oz a, cl -
Define
L
2 1
- t'i"f' 0'1<6,“"2"'>
- 1
Ul<6_'£> -1

and



-101~

and redefining L +L, =w, L, = h, B, =8 , and (02) = {gy ,
and remembering that for a sine wave nonuniformity : {(1/0) ~

’(Ele (1+8) we cbtains

R £ /<LT-1+S
BL
and
o« = [s—o—T57)5 -
BL
Then

o 2
<§§f = X 5% ) (B. 18)
y+p

C. Isotropic Distribution of Nonuniformities

To approximate the effective plasma properties of a plasma

with an unknown distribution of nonuniformities, Louis(l6)has sug-

gested assuming a random distribution and calculating phasma prop-
erties by the isotropic theory developed by Yoshikawa and Rose(”).
The calculation of Yoshikawa and Rose was done for a gas in which
Coulomb collisions dominate; thus, the collision frequency wa.vs pro-
portional to the electron density. To more nearly approximate the
conditions occurring in our plasma, the calculation was redone as-
suming a constant collision frequency. Also, the calculation was

done for an isotropic distribution only in the two dimensions perpen-

dicular to the magnetic field as well as the usual three-dimensional
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distribution.

Ohm's law can be written as:

oE-2(uxB) = 3. (B. 19)
The assumption that the collision frequency is constant means that o
is directly proportional to n, i thus:

o = (o) (?%) s (B. 20)

Expanding the electron density, electric field,and current in har-

monics;
n_ = (n) +2'nke1kr (B. 21)
E = (E) +Z'E_eF (B. 22)
I = (D +T g T (B. 23)

where L' indicates a sum over all k except zero. Substitution eqgns.

(B. 20) to (B. 23) in (B. 19) and taking the zeroth harmonic gives:

=y o £0) oy _
(I(E) + o5 & nkgk—%((_d?xlé) = (I . (B. 24)

This is the average Ohm's law with the effect of nonuniformities in-

cluded in the term Z'nkEk . This term is calculated from the equa-

tion of the kth harmonic in the Ohm's law

(O)Ek + —E%;- nkUE) + [...cross terms... ] - % (Ek X B) = T (B. 25)

To close this set of equations, the cross terms, terms of the type
E&nkEk—.f, , must be dropped. However, the effect of this approxima-
tion for waves of the amplitude observed could not adequately be pre-

dicted.
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Since the curl of E is zero, Ek Xk = 0, and writing y =

_1_(_/{1([ , we get

P T Ek Yy »
x
4 - < . 2
By S Yy PR ]
and L
Ek = Ek Y.z -

zZ
Using egn. (B. 26) and solving for the components of current from

(B. 25) gives:

_ (o) " ;
ka = 'IEZ [Ek('\/x'ﬁ\’y) + z;%((l*:»x‘p(]:)y)] ’ (B. 27)
7 = SO R (py Ay ) K (B(EY +(ED )] (B. 28)
ky T Tapl ok Yy T Tmy LRARATRE I '
I = (0>Ek\(z . (B. 29)

z
Here, it has been assumed that B is in the z-direction.
Also, the divergence of J is zero. This gives:

'Tk '\,lx+ Jk yy-l— Jk Yy = 0. (B.30)
x y z

Substituting (B. 27), (B.28), and (B.29) in (B. 30) and solving for Ek
gives:

1 Py

Ek = —W G‘)‘ [(E>X(YX+£3YY)+(E>Y(-ﬁ\{xi'.‘{y)] - (B.31)

Since the waves are assumed isotropic, nk is independent of vy ; thus:

T E . = - % [(E)x-p(E>y]<n>51(p) (B.32)

and

D E = -[(E), + 5 (B T(a)siep) (8. 33)
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where

YZ 'YZ
p) = p{ —5— ) = BY¢ L )
1+[52\/ & 1+]32‘yz2
and
s = % T4 B %
- ===
(n)

Substituting (B. 32) and (B. 33) back into the equation for the zeroth

harmonic, (B.24) then gives:

(o2 (1-SI/BXE)_+ (G)SI(E)Y (D _+ ﬁ(J)Y . (B. 34)

(G)SI(E>X—(cr>(l—SI/£3)<E)y ﬁ(J)x-<J>Y . (B. 35)

Fixing the x-axis along the average current, that is, (J')Y =0, eqgns.
(B. 34) and (B. 35) can be solved for the ratios (J’)X/(E)X and

<E)y/<L>x which are defined as T and —ﬁeff , respectively. This

gives:
2
O ge 1 4 {ST}* - z%ﬂ(%)
oy~ I sip (B. 36)
"B
and
_ p-a2sl
6 . = , (B. 37)
Y % + BSI

For the three-dimensional case,

I = -§-+(1 +Elz-_)71,_-tan_1(3 .

Note that as = oo, I(B) ~ w/4.
For the two-dimensional case,
I = p/z )

which gives:



o 1-s+§_+_5__pz
eff - 4: _24 (B.38)
(a, 5 .S
L=gdsp
and
_ (1-S) B
Pegt = T. 5,542 ° (B.39)
"2t 2P

D. Changes in the Average Conductivity Caused by Nonuniformities

The formulas just derived, (B.8), (B.18), and (B. 36), relate
the effective to the average conductivities, whereas experimentally
the ratio of effective conductivity to the conductivity with no magnetic
field was actually measured. The difference between these two ratios
is the amount that the average Conduétivity changes when nonuniformi-
ties appear in the plasma. This can be calculated from the average
energy equation as follows.

In a uniform plasma, time and space derivatives are zero;

thus, using eqn. (20), eqn. (19) gives:
2

2 — =1
o] - n
i- E = --—-G ( O_—-) . (B- 40)
o o
If the reference current, JL , is taken to be the current at 00 , then
I
Je E = — ,
= = o
o

For a nonuniform plasma, we average the energy equation;

thus, time and space derivatives will again disappear, giving:
it z-1
_ L o
-8 = =24 2 )
o o

For plane waves, the perturbations in J and E are mutually perpen-
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dicular; therefore,
(I-E) = (- (B,
and since O was defined as the ratio of the average current to the

eff

average field along (J) ,
2
(3) - (B) = S22

Therefore, if the average current was kept fixed, as it was in the

experiments,

N 2/n -1
= ((o/ao ) > .

0o/ Ocs
Writing
o/o_ = (Ko)/o N1+ Ag/(2{0))

where A0 is the peak-to-peak amplitude gives:

Golceff = {{a) /cro)zln B 1((1 + Ao/(2(0>)2/n =i ¥ &
Expanding gives
((1+AU/(2<G>) > ~ 1+ 3 <(2(O'>) ) 3

which will be valid if the mean square deviation of 0 is much less than

one. Interms of S, the mean square deviation, this gives:

1
(c)/oo = [(ceﬁ/co)(l + as)]l' 2/ " (B. 41)

where a = %_-(% - 1)(% - 2). Then eqns. (B. 8), (B.18), and (B. 36),

which are of the form ceff = f(S){o) , can be rewritten in terms of

g as
o 1.1
0 /o, = (£(S) 201+ a5y /2 (B. 42)

For our experiments, na 2/3, which gives

0 0, = ws)2/ 34713 . (B. 43)



-107-

o
‘ \‘( GB
: l\\\_\h &

FIG. Bl WAVES AT AN ANGLE TO
THE AVERAGE CURRENT

FIG. B2 CONDUCTIVITY PATTERN

IN THE NORMAL MODE



-108 -

APPENDIX C

The Averaged Energy Equation

To determine the stability of a plasma with a uniform set of
waves, the energy equation is averaged over these waves and the sta-
bility of the plasma with respect to perturbations of the average con-

ductivity studied. Using the results of Appendix B, Part G:
2
2 - -1
(l+aS) < > 2 613

O O

<J>
Q) = (3. (E) -

Also using Geff = £(S){o) and eqn. (B.41l) for a plasma with a uniform

average conductivity, (0)0 , we get:

{o) -2/n
2% = (1+aS)f(S)

( g
O

This, in egn. (C. 1), gives:

Z
(D1 1 Lard

A AR

2/

Q) = (- (E )

Now, writing {(J) . (E) in the form used in eqn. (19) gives:

1+
2 & B
Ol BV o+ 2B (E) (I) 4 oe; (g

where (E)O and (J’)O areranalogous to EO and JO of the uniform
plasma and O s and ‘Seff are the effective values of conductivity and

Hall parameter. Normalizing the equation by Ly Of(S)(E>i and

using 0 .. = 1(s){oc) , we obtain: °
2
(D) B (o) ( <E> ) + 28 ( <J>O i <E> )
oy sEmE Wy Wiy, ett TON&) By " Ty
o
1 + Bgfﬂ <J>O <O_> 2/]‘1 -1
GG (f(S)(c)O(E)L g = (z—r » (G 2)
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From the theory of the steady waves, S is a function only of B and
n , and therefore f(S) can be considered a constant with respect to

changes of {(g) . Now using the fact that {(Q) =0 at (o) = (0’)0

gives ! <E>L - :
i 2 o
S ICIIRE) - { Er )+ (G
o] eff o

Equations (C. 2) and (C. 3) are identical to eqns. (22) and (23) when
averaged fields and conductivities replace constant ones and the effec-
tive Hall parameter replaces the theoretical one. We can therefore
conclude that if the plasma described by eqns. (22) and (23) will be

unstable for values of B> f8 , then the plasma described by (C. 2)

cxrit

and (C. 3) will be unstable for ﬁeff > Bcrit .



