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ABSTRACT

A theory is presented for the calculation of the velocity
potential of a harmonically oscillating delta wing having subsonic
leading edges in a supersonic flow. The velocity potential is ex~
panded in a power series in powers of the reduced frequency.
Two modes of oscillation, plunging and pitching, are considered.
For both modes the analysis is carried through the term linear
in reduced frequency, this being generally sufficient for dynamic
stability analyses. The results thus obtained for the pitching mode
verify those of Miles (Ref. 9) obtained by an integral transforma-
tion of the steady-state solution. In addition, the term that is
quadratic in the reduced frequency is presented for the plunging
mode to illustrate the general procedure.

Lift and pitching moment coefficients are calculated from
the velocity potential and numerical results valid for low fre-

quency oscillations are presented.
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I. INTRCDUCTION

As a consequence of the current rate of increase of the
high speed performance of aircraft, the problems of dynamic
stability and flutter of finite wings moving at supersonic speeds
are becoming increasingly important. These problems have
yielded to analysis for certain planforms (Ref. 1, Ref. 2, Ref. 3).
However, although procedures for their solution in the case of
the delta wing with both leading edges inside the Mach cone from
the wing vertex have been outlined (Ref. 4 and Ref. 5) and have,
by one author, been partially carried out (Ref. 6), no practical
engineering solution has been obtained. It is the purpose of this
thesis to present such procedures for a narrow delta wing per-
forming (i) harmonic plunging oscillations and (ii) harmonic

pitching oscillations in a supersonic stream.
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II. ASSUMPTIONS

The development presented in this thesis is based upon the
following assumptions:
i) The wing under consideration is flat.
ii) The wing has zero thickness.
iii} Small perturbations are assumed:
a) The fluid at each point on the surface of the wing
moves with a velocity whose vector representation
‘makes a small angle with the plane z= 0.
b) The motion of the wing is such that at all times
any point on the wing lies at a distance from the
plane z = 0 which is small compared with ¢, so that
all boundary conditions in the plane of the wing
may be applied in the plane z = 0.
iv) The flow is isentropic and non-viscous.
Assumptions iii) and iv) allow the existence of a velocity potential,
¢ , and the application of tangency of flow to the wing surface as
a boundary condition.
Eecause of assumption iii) the equation that must be solved
is linear.
The boundary condition off of the wing but in the plane of the
wing follows from the fact that, because of assumption ii), ®:

is even in z and ¢, and ¢ are odd in z.



III. GENERAL THEORY

The ccordinate system and wing that will be considered are
shown in Figure 1.
Making use of the assumptions stated in Part I, the equations

of motion, continuity and energy may be combined into
/ b-474
a5 B by B (3-1)

Harmonic oscillations of the wing are to be considered, there
fore a potential of the form ¢ (x,y,z,?) = (x,y,2) ém” is assumed,

and if the space coordinates are normalized by the introduction of

5=% , p-¥ ,x-% equation (3-1) becomes

/5@;'7%'%52%?27“2%%% (3-2)

s
a

Introducing the notation 7/=%£, M the equation is, finally

L By Y= MG, (3-3)

Initially, an expansion of 57(;,12,5) in the powers of the reduced

frequency, # , will be assumed to exist,

PERL) =§ 2’0 5,0 3) (3-4)



Substitution of this expansion into equation (3-3) and the equating

of like powers of # on both sides of the equation yields the fol-

lowing infinite set of equations
2 & @ @
@) By~ FHs =9
2 7 W W o)
(6) By~ By~ B =~ 2iM G

(r~2) (h1-1)

() L -Gy~ - T 2img

Ed

=22z

(3-5)



IV. PLUNGING OSCILLATICN

Consider a narrow delta wing performing pure harmonic
plunging oscillations. The downwash on the wing surface is given
by w=m2*“?  and therefore , in addition to the specification that
the potential and all perturbation velocities vanish on the Mach
cone, boundary conditions can be specified for the following re-
gions:

(i) S < the wing surface

(ii) R < the region in the plane of the wing that lies between

the wing leading edge and the Mach cone
A . Boundary Conditions

The boundary conditions for equation (3-1) are

‘o i 1 t—
On S: = -w(z, )42“;¢¢‘“' where wW=uj, = constant
Z y F-4

On R: Following the consequences of assumption ii), the pres-

sure must vanish since no discontinuities are tenable in
the fluid off of the wing.

The boundary conditions for equations (3-5) follow from
those given above and the transformations employed in de-
riving equations (3-5).

On S: ¢;)= -nw,c = constant; gp?)=0 forn=>1

On R: fgjz}g = ¢é- + U@Y = e"w;g- (HP +Mcg_]= 0

Employing equation (3-4) and equating like powers of # :



L. ¢O)+ M %(/}_: 0

( . . .
C/7o) is the potential for the narrow delta wing in stationary
flow and is equal to zero on R.

Therefore,

gﬂ;)= 0 on R

Repetition of this procedure of equating like powers of #/

yields

) )
gﬂ;= gﬂ(ZO on R

To summarize the boundary conditions for equations (3-5)

(i) On S: g%@= -m,¢ = constant

forn=>1
(4-1)

6_7) (4

(ii) On R: & f=0 for n>0

. ) ) () ()
iii) On Mach cone : ¢=§0=¢”=¢”=0 forn= 0
5 77 7%

B. Solutions of Equations (3-5)

gp(a), satisfying equation (3-5a) and its boundary conditions,
is the potential for a narrow delta wing in stationary supersonic
flow (Ref. 7).

Since equations (3-5b) and (3-5c) are linear and non-homo-

geneous, the solution of each may be considered to be the sum of
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I (1)

a particular integral, gﬂl,, and a complementary solution, ¢ZL . The

(1)
boundary conditions to be satisfied by Sﬂc”are dictated by equations
‘ ()] ”)
(4-1) and the values assumed by gﬂ; and % on the appropriate boun-
daries. In deriving the particular integrals extensive use is made of
the fact that, from equations (3-5), equations (4-1) and the knowledge

(),
that tﬁ is homogeneous of degree 1, ¢¥ is homogeneous of degree
(n+1) in the space variables. The detailed derivations of pertinent -
particular integrals is presented in the appendix; only final results
are presented below.

gﬂm: The particular integral for equation (3-5b) is

- }Aj s (4-2)

2
Now, gﬂ/satisﬁes boundary conditions (4-1ii) and (4-1iii), but on S
M
9= L5 (4-3)
Therefore, a solution, gﬂc , of the homogeneous wave equation must

be found such that

(i) On s: ch "8 wics
(i) onR: =0 (4-4)

(iii) On Mach cone: ¢(" o

Such a/solution is that presented in reference 8 for a pitching narrow

delta wing where the "pitching' velocity, q, of that paper is to be re-

placed by - -;;L/IWC . From reference 8, then

¢/} ‘ch('f /__'“'_"gé?z on S (4-5)

where (- [/ 2 [(é)'*/-ﬁ/(/é)] (5!¢ 573) Therefore,

§ﬂ/3 --‘ffﬂ“ ’M"/"(’;W on S (4-6)
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) o7, ()

and, defining & =¢J, = gg% ,
al (M (o @], M zZ.2 4 -
a‘"/g? §0)f I/{ZA ('[;f/ 4% /_7,_-,] on S (4-7)

¢ (nzZ): Use will be made of their homogeneity properties
in determining these components.

Since ga(”)is homogeneous of degree (n+l),

) ) ) (i7) ( 4- 8)

(/7+/)¢(0)2,5ﬂx+)/§0/+5% -3‘% +f¢z +5° 5
On S, where Z=0

o /) )
=ﬂ+/ 4 f{J”J (4-9)
Now, differentiating equation (3-5c¢) with respect to x and y and de-

fining 7% gﬂ, nd "t " , the following equations are obtained:
g Yy g

(n-2)

2 ) (3} (n) (r=1)
(i) Auy 4/ Y S gp! -
(4-10)

900 . (-2) -9
(11)/’: ” i/ =z % Z%ZZ;

The boundary conditions for these equations are easily derived from

47)

equations (4-1). On R and on the Mach cone #Zy#0 and on §
¢ 0y
Y=o n=0 (4-11)

In accordance with previous discussion, the solutions of equations

(4-10i) and (40ii) will be

S Pl
VoL (#-12)
For n = 2,
e S e (4-13
It can be seen that éé=0 on R and on the Mach cone, but on S
) _“_4.3- (4-14)
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. _ /2]
Therefore, a solution of the homogeneous wave equation, &, ,

must be found such that

On S: Uy~ 5

E)
On R: é/f/’() (4‘15)

On Mach cone: L:}=0 .

The desired solution will again be that presented in reference 8 for

the pitching delta wing, but with q replaced by —Z/-g/":
St 5% €, CrV5ihyT on S (4- 16
so that
‘/"5?33'50@;&:3';”;//‘% 3‘50; Z/"A (’f/é:"_z_?—' on S. (4=17)
Vf/is given by
Ve 1 % g L (4-18)

This particular integral equals zero on R and on the Mach cone, but
on S

//z)_ -é—é’a 7. (4-19)
Therefore, 1{@ must satisfy the homogeneous wave equation and

the following boundary conditions:

On S: I/Z} ‘7"2 > Y
- OnR;: Vo (4-20)

On Mach Cone: ;{’20

In this case, the desired complementary solution is that pre-

sented in reference 8 for the rolling narrow delta wing with the

Mo

652

"'rolling' velocity, p, of that paper replaced by Then,
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K25 CpVTEEy on 8 (4-21)
where (- %zf(éy-,-_%/((é?](dﬁyi) , and

vz ﬂgdlc ?55@ /;foﬂ;’ /zf f;ﬂ/ 2% G 2 sl onS (4-22)

Therefore, from equation (4-9),

(2) C

P 5[ s s is- st z,;“ch/ T
%5[5&;1/‘;4 /507{ sz'sz ] on S (4-23)

The determination of 50 for n > 2 is based upon equation (4-9).
o 7 . . B}
y and V,~ are derived in a manner completely analogous to that pre-
sented in the appendix for L{f’ and Vf} . As stated above, the boundary

conditions that must be satisfied by L/:) and Vc(”/are partially specified

by L{f” and ¥ . The expressions for the latter two functions will be
¥ A .
polynomials in § and v - The general method presented in reference

8 is then utilized to determine //ﬁ”)and Vg’} .

To summarize the pertinent values on the wing:

P f 1556° (4-24)
Sp(/) :.Mh/c‘[cl E(éj]f 3—25?2 (4_ 25)

fz_);' /‘A[M(4 77, 21'(4’*;72‘9)]3'21’3’2 Vi
25 Coa) V5 } (4-26)

@)

: b T  5Ey (4-27)
// 4Mw[q e [,/ zéz z ¢ zéz I (4-28)

g
ca

SiLg vl g 1358y 7l sy (4-29)
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V. PITCHING OSCILLATICON

Consider a narrow delta wing pitching harmonically about
an axis located a distance mc downstream of the wing vertex (Fig. 2).
A . Boundary Conditions

The instantaneous angle of attack is given by

a=a,e’ (5-1)

where a , = constant. The Z coordinate of any point on

the wihg is
Z,= —a(x-mc) (5-2)

and the downwash necessary to preserve flow tangent to

the wing surface is

¢-2 + 025 a0 “Tiwtemer ] (5-3)
or
@ =57 (m-£) » -Ua, on S (5-4)
Therefore,
%zg;yfp@: "ij"c (M'j)ﬂ'jdo on S (5-5)

2!
# =0 onR and on the Mach cone, and the boundary

conditions on S for equations (3-5) are obtained by equating



]2~

like powers of #/ in equation (5-5).

(o)

on S: Cﬂ;: -JDx,¢C = constant
a
= LT (r-5) (5-6)
o)

§Z5=O forn= 2

B. Solutions of Equations (3-5)

Equation (3-52a) and its boundary conditions developed
above determine gﬂ@'as the potential for a narrow delta
wing in stationary flow.

The solution of equation (3-5b) for the pitching wing
will again be the sum of a particular integral, gﬂ,f), and a
complementary solution, gﬂc/” . %ﬁ/ will, of course,

be the same as for Part IV:

{/)__L/\_/l_ ©)
G- FIP (5-7)

This » @s stated previously, satisfies the boundary conditions
on R and on the Mach cone. On S

@ MOx,C
% - /52 5. (5 - 8)

“
Therefore, (ﬁcl/ must be a solution of the homogeneous wave

equation that vanishes on R and on the Mach cone such that
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7
on S: C?%;= ZMz/Z72( cF+ ‘,?42" n7 (5-9)

_¢N¢

This complementary solution may be considered to be the

sum of two such solutions,

"

ot A (5-10)

4

’ 7
where %/// and g@/ vanish on R and on the Mach cone and

w0’ [ Ja.c
¢%= A7 77
on S: (5-11)
w” . 2mZ/

%5 = M/5 Wdcj
The first, 50;} , is evidently a multiple of c,ﬁ(")

W im @)
H=-n7 &L (5-12)

The second is of the same form as gﬂcw for the plunging

wing but with a different '"pitching'" velocity.
g p g Yy

72 2, Ui
On S: ey i—’;’/:;i—%‘—q/(j GEb%* (5-13)

Therefore, on S

a) LM @ ¢ o), 2mi Ta.C /——-——"
D= G IL TP g b KT (5-14)
Then,

MRS iR R T ] 6e1s)
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Only the first two terms of the series will be presented
for the pitching case since the velocity potential may be rep-
©) 0) . .. .
resented as gﬂ(+u¢ with sufficient accuracy for use in sta-
bility analyses.
The values of the pertinent functions on the wing surface

are

(o)
Te 7 g (5-16)
__J: P Uaoc 2 0‘;(4 772 2
D=L 3 wsEkT VI e / T/(ﬂf—éi (5-17)
o Jote
U= GEa bf(é’);/’z"b_? (5-18)

o [ im] Tke M Tte. o
“ ='[7’2‘ ]bf&z’) Gy - ,az 3E@)V5

+/ ZM- Udo/‘/[

e

“7“/727] (5-19)
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VI. AERODYNAMIC COEFFICIENTS

/The determination of the lift and pitching moment coefficients
may be outlined as follows:

(A) Calculation of overpressure on the wing

(B) Integration of the overpressure over the wing with
suitable weighting factors to obtain lift and moment

(C) Conversion of the lift and moment to coefficient form

(D) Division of the lift and pitching moment coefficients
by the quasi-steady coefficients
In detail :

A) The overpressure is given by

“‘é’ﬁ:’L= ¢[+U¢3(=(z'w¢+ U’gox)é"'w{ (6-1)
Introducing equation (3-4)
Aezhr [wgp”;p’”i 0*”:2: Y Ll (6-2)
This may be expressed as
k) (), (6-3)
where

(’%O?é)n _ [L’wz/f/’i U-?sz{w)]e[(dzr (6-4)



B)

-16<

L[] ft iy (6-5)

Wi /'/7_7

The integration-is simplified by the introduction of

new coordinates

Then

i (6-6)
z=f
/£
Vo 46//f At ot ol (6-7)

The diving moment about the wing vertex is given by

22~ [ x fich chdy (6-8)

Wing

Upon transforming to ¥ , t coordinates, this becomes

Z-- 4c%2%f At df (6-9)

These functions may be expressed as

h and % hf %), (6-10)

(,%,,,=4c%(%"‘2 dtdF



N

and

(%) - 4%’({;:@ dtdF (6-11)

C) The coefficients are defined in the conventional manner,

being based upon wing area and maximum chord:

C = 26 L
3 D2c2 /2
(6-12)
o -Zb
o %3 /%

D) The quasi-steady lift coefficient, Qs , is obtained by mul--

tiplying the stationary value of ¢ as found in Ref. 7 by

ol

cawt
the instantaneous angle of attack, X.,¢ “

_ 2 ‘el
C,= 528 ¢ (6-13)

The stationary ¢, was derived from the results of Ref. 7.

N )
- 4r fat
Con™ Z5200) %€ (6-14)
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VII. CALCULATICNS AND RESULTS

The equations for the first three potential components and

the corresponding free stream perturbation velocity components

have been determined. In addition, expressions for Q/Qs and (m/(;,s,

were obtained using (i) ¢°), (ii)g/fy;ﬂ(:) and (iii);/i’z);ﬁ{gzzzg/z). All of

these expressions are tabulated below.

a. Plunging Oscillation
S e VY
9%';zfcc'ﬂw]f/7;??
(2} = [Mi(f(/’ wa)*l(cr' fa))}f /—527;
‘;7‘@?([))7 Wiy

=[5 A k)] 2£ )2 ke

0 e 5
U TEW) Vregag
o Mg

=/dzé [C-E_a—() [|j’£ zfz“"/;i Az?z]

/?) 2}/;/4‘6[(/ ZMZ)((; HA;)].?’P 2/ /450/(; !ﬁé/)m

(Y WALE
G/ AHGC/G) = "’/{ % z[cf(éﬂ-/ﬁ # } ;,/;’-fz[c,f(éj-/}
€/, )+(C/C)+(C/G ) =1+ i ch@7-/]+ i}

“Z { ((’[(é}/) L24] /(’[(é//)* (Kf/é)- }

4/{42

y;wf[,tf[zgfw-f] ta‘fcflé7+/} vl [élf(é)“/]?

(7-1)

(7-2)

(7-3)
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(C,',,/m)o=/+3—ﬁ—4—

g

(G M (G o)1+ 3 j" [(’[657—/}#} ;%Z[Cf(w-/]
(G o h (G /) (G fCn )= 1+ ”‘"{ 2 [(’f(é}/}ﬁ}
{ [¢ece)- /] 121 rt) ]+ ! o ew)- —’]}

,;@«{M’[zcsz-;] vilo ] -£T qm?-/}}

« Pitching Oscillation

L _.”“/c["/ 742
@ = zay VIAY”

0 (Te 2 oot 12
§ﬂ=4§/;r[@M-dg-f(é) 56757 - iza ir

(01 U&a
77 ;f?;f

(TXKs M

74y

/)‘;/’1[(”/}(” £) ][‘ %y /‘22—] bi(k)M[/'z’z'z'

€/ )15

V4 /(, ) « /(, )=/+ zzJ (2’ uria) M2 1 J + 2[4 [/77 o /)cfa/- ]

Gl =145
(e [/‘77_,) +(, /C' )-/ 2 9(2M /)G/."(é}-Mz m]

[WL?&/)('_W.M]

(7-4)

(7-5)

(7-6)

(7-7)

(7-8)
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Termination of the potential series with the ¢(// term
should introduce only a slight inaccuracy into the aerodynamic
coefficients for #< 0.50. Since, for dynamic stability analyses,
the reduced frequency is considerably lower than 0. 50 (ng"’ '))Q
should represent the velocity potential with sufficient accuracy
for this purpose. In practical applications of this theory to engi-
neering problems the most useful form for the force and moment
coefficient ratios is that in which the partially represented high-
est order frequency terms are omitted. Thus

a. Plunging Oscillation

€/C,)=/
(/)0 fe) s+ 2 [ B larwri] -4

(7-9)
((‘/[‘;)o*((“/c’z«;(q/ = [+ I/{/z [(’E(é)-/]*‘f
o 2 leus] 52 [c,fw-/]tj—fz[f}ffé?'é}
(G /!
(G o)+ G o)1+ 85 [ e ) 1+1f (7-10)

G i * G/ o), +(€,,/(,5)2 - /+ 22 [ o) e/}
2 lorw) g 22 -+ 4 Toew)-#1}



wd] -

b. Pitching Oscillation

(a/)=/

7-11
(G ) ()6 =1+ F [EEAFE ] (=
GG )=/

(71-12)

: NCEE)-ME 5
(G (6 ) = 1445 [ 3 LEEE 2]

1+ (/) and G,/

s

are the values of (C/¢) )‘,+(C,,,/C,',§), , to be used

‘s
for stability analyses.
In the case of the pitching wing, the diving moment coefficient
ratios based upon the moments about the axis of pitch are of great
interest. They are useful in determining whether the damping is

stable.

(Confomg), = Con/ -1 (. [ ) = (Gon - -m(C /6, XC/C,) (7-13)

Since this is useful only for dynamic stability studies, this ratio

will be presented here us1ng(C'/C) (('/ +( , , and(f,,,/f’ )= (C',,,/ *( / /s

4s’o
as found in equations (7-11) and (7-12).

(zM-/Jff(é/ ’] L+Z (.W-’/)(‘,E(é?-/i//z}

Cof =1~ 557

(7-14)

“{
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The damping is stable (C”f 0) it Im(¢,/G,)=0.

It can be seen from equation (7-14) and the stability criterion
above that below a certain critical Mach number, the damping will
be negative (unstable) for pitch axes located between two points ly-
ing fore and aft of mid-chord (m = 0.5). At the Mach number spec-

ified by
C L)
M =V Z )T (7-15)

these two points coincide at m = 0.5. For greater Mach numbers
Im (C'”/C’;’s)ﬂ >0 for all values of m. These results, presented in
figures 10 and 11, agree with those of reference 9 and fair smoothly

into the results of reference 2 as k approaches 1.
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VIII. CONCLUSICNS

By expanding the velocity potential in a series in powers
of the reduced frequency one oan, within the limitations of lin-
earized theory, develop a practical engineering solution for the har-
monically oscillating narrow delta wing in supersonic flow. The
method of solution is, in fact, applicable to any wing planform
for which the stationary supersonic flow velocity potential is
known. In general, for stability analyses the series may be termi-
nated with the term linear in the reduced frequency without great
loss of accuracy.

The results for the harmonic pitching oscillation indi-
cates that for the wing moving at supersonic speed there is a
critical Mach number above which there is no pitching axis
about which the damping in pitch is unstable for sufficiently
small frequencies,

It is to be noted that Brown's (Ref. 12) quasi-stationary
results were obtained by retaining only part of the terms that
are linear in frequency. In the present paper, all first order

frequency terms are retained.
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NOMENCLATURE

A Wing Area

a Acoustic Velocity

b cot *

c Maximum Wing Chord

E(k") Complete Elliptic Integral of the Second kind of
Modulus k'

K(k") Complete Elliptic Integral of the First Kind of
Modulus k!

i V-1

K Constant, defined on page

8 #/b
k! /i-K2

L Lift
m Defined on page
M Free Stream Mach Number
7 Pitching Moment
P Static pressure
L2 .
q4=72 pOU Dynamic pressure
R Defined on Page
S Defined on Page

t=vy/x :7/5 Conical Coordinate
1 Time

u,v,w Perturbation Velocities in the x,y, directions
respectively
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U Free stream velocity

X,¥,Z Wing coordinates

a Angle of attack

A vevea

w Vibrational frequency

p Density

b4 Reduced frequency

o] Complete Perturbation Velocity Potential
@ Time Free Perturbation Velocity Potential
Y Wing Semi-~vertex angle

5=x/¢

;’?=.y/c Non~-dimensional coordinates

4= 2/

5 Defined on Page

Superscripts:

(C]

()

Subscripts:

(o
(),

(),

Component in series expansion of ¢@ or u having
” . .
z"as a coefficient

Free Stream
Quasi-Stationary Value

Particular Integral
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( )c Complementary Solution

( )p About the axis of pitch
Coefficients:
Cy, Lift Coefficient
C Pitching Moment Coefficient

m
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APPENDIX
7 (
Derivations of §ﬂ/,/ , é/;} , and If/

The differential operator, L, will be defined as follows

LA gt 5 (a-1)

It will be noted that
W zlsFl-zg s LIF]
i) £ [Fleestrgsirp s ulF]
(1) LlpFl=-25+pLIF] -
() dlrprls g 5255 +y L]
(v) g0
i) L[] -zinrgs”

Since gﬁ;” is homogeneous of degree 2, it may be of the

£
formﬁﬂ(z’z’/,fs@@ﬁ 55?0;) , Fo ;:: , and so on. fgﬂ(” will be investi-

o

gated first. From equations (A-2i) and (A-2v),
@} _ z (o)
sg”]= 254 (A-3)

Therefore, since it is desired that

%(/}: _/%_2/\_/_/3,¢@) (A-4)

@ 2) )
Because ¢, is homogeneous of degree 3, ¢/ and l{f

are homogeneous of degree 2. It is desired to find a function, U;Z) )

such that



(A-5)

@
Assuming §0”j to be known before ¢/“and V" are to be de-

termined, a wider selection of functions that are homogeneous of

(o)

degree 2 is available for use in this task; f;/f;ﬂ ,{%,y;ﬂ f;p("’ ;7%, ,

and so on. The function fgﬁ "will be examined first. From equations

(A-2i) and (A-2iv),
Usg]-28%, -2 Ms gy (A-6)

Therefore, L[ %3 3'] yields one of the required terms. Equa-
tion (A-2ii) indicates that a function of the form ;%- Z/‘d‘f 5’ Qf/ will allow

cancellation of the undesirable term in equation (A-6):

z[gﬁf ]/ﬁ p. ’”;ﬂ‘ (A-7)

From equations (A-2i) and (A-2v),

Z[f§0(°}]= 55%” (A—S)

H

M? o, 2,
so that é[-;—;;;ga‘ )] will cancel the undesired ,o‘—g %{) term

of equation (A-7) and Z[z 7 5’5/"’} will complete the requirements

of equation (A-5). Therefore,

e / o) M 2 ra) M
TP T s 3'5”3’ (A-9)
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é')must satisfy the following relation.

Lyt g, (A-10)

From equations (A-2i) and (A-2vi),

) (o)
Uy |-y -2 5 oty (A-11)
To cancel the undesired term in equation (A-11), consider equations

(A-2ii) and (A-2v),

Z'z‘c 541 ;ﬂ;’ =z ;;e,? (4-12)

There remains the task of eliminating a term of the form ——cpg)

and’adding a term of the form 'c'"/'fﬂ;)

Llye” ]--2 ("’ (A-13)

Therefore,

(o, @ 2 ‘
L7 ;,zc)g - 2P] - E Py (A-14)
/?} s 2%’0}- LA_/ ) ( N 15)

The particular solutions for all higher order components are obtained

in a completely analogous manner.
Yy g
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