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ABSTRACT

oo
Let {2.} __, be a stochastic process with state space

Sl = {0,1,...,D-1}. Such a process is called a chain of

infinite order. The transitions of the chain are described

by the functions

(0), . . (0) (0 ,
Qi(l ) = P(zn-l | Zn_l—l g Zn_2~l 2 yuxwd L4 B sl),

0 PO
where i(o)= (i(l),i(g),...) ranges over infinite sequences

from s, 1£ iM= 1 3y forn = 1,2,..., then

; (), 5 (0)

means that for each Kk, i(§)= itﬁ) for all n suf-

ficiently large.

Given functions Qi(i(o)) such that

(0)

(1) 05 Qi ")

IA
Y
A
-

(0)

. = 1 -
(ii) a Qi(l )

It
=

[ A =
[ e I

H

(1i1) Q1™ » o 11"y whenever 1™ 1%

we prove the existence of a stationary chain of infinite

grder {Zn} whose transitions are given by

P(Z =i | 2 Z cal) = 2,8 ...
( n 3 n-1* "n-2° ) Qi( n-1 gk )

with probability 1. The method also yields stationary
chains {Zn} for which (iii) does ‘not hold but whose tran-

sition probabilities are, in a sense, '"locally Markovian."



iv
These and similar results extend a paper by T. E. Harris
[(Pac. J. Math., 5 (1955), 707-724].
Included is a new proof of the existence and unique-
ness of a stationary absolute distribution for an Nth order
Markov chain in which all transitions are possible. This

proof allows us to achieve our main results without the

use of limit theorem techniques.
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I. INTRODUCTION

A discrete-time stochastic process {zn}:=-m with in-
finite past and with a finite number of states is called a
chain of infinite order. If the states of the chain are
denoted by 0,1,+:+;80-1; where D 2 2, then the transition
probabilities have the form

)} = Prob (Zn=i | 2 =i_,Z =

(n) ..
Q" n-1 1> n-2 "2°°°°

i 1’12,.-0

Thus the future behavior of such a chain depends in general
upon its entire past history.

We consider here only those chains of infinite order
whose transition probabilities are temporally homogeneous—
that is, those chains for which the transition probabili-

ties

(11) . 5 - s :
Q i (11,12,...) Qi(ll,l o)

2’

are independent of n. Given Qys-- it seems natural

"QD41’
to ask whether there exists a chain of infinite order {Zn}
with the Q;'s as transition probabilities, such that {Z,}

has a stationary absolute distribution. More precisely,

the question is the following: 1If Qo(il’iZ"")""’
(i.,,i.,...) are non-negative functions such that
D 1 1., 2’ g
D-1 1
z =
I 9, =1,

- - - . . S
does there exist a chain of infinite order {Zn}n__Oo such

that



® Prob (Z =1 A s gy o Z Z .o
) ( n | n-1’ n-2’ Qi( n-1" n-2’ )
with probability 1 and such that the probabilities
Prob (Z =i) = p.
rob ( E. i) P,
are independent of n for n=0,*1,... and i=0,...,D-1? Such

a chain {Zn} is called a stationary chain of infinite
order. If (,S,P) is the underlying probability space on
which the Z 's are defined, the stationarity of {Zn} is
equivalent to the validity of the invariance equation

¢

(**) P(Z =i) = JQ QB B ,...)dP
foyr el £l,, .. B0 T=20,. ., D=1,

The problem of constructing a probability measure P
such that (*) and (**) hold is in general quite difficult.
Fortunately the problem can be simplified conceptually by
representing {Zn} by a suitable Markov process on [0,1].
The representation makes use of a familiar device in the
theory of stochastic processes: that of replacing the
original state space of a process by the space of all prob-
abilistically distinguishable "past histories" of the pro-
cess. For example, if {Y_ } is an Nth order Markov chain on

the state space S, we can replace S by

T i) t i ,...,i e S}

1,---,N l,

and consider a new process {Yﬂ} on S' with transition prob-

abilities



N . S ,
Prob (Yn (JO,...,JN_l) I Yn-l (11,...,1N))
Prob (¥ = j Y - C Y -

rob (Y =3, | Y ;=15 noN oW
= iF i=5 ... i =)

s M Rkt de™ % W

0 , otherwise.

Each past history of the Y -process is compressed into a
single state of therYﬁ-process, with the result that the
latter process is Markovian. No information is lost by
means of this transformation; the principal disadvantage is
that S' is larger than S.

In the case of a chain of infinite order with state
space S, the space S' must consist of infinite sequences
from S, due to the dependence of the transition probabili-
ties on an infinite past, Thus if 8 = {0,.,.,D-1}, then

gt = {{i ) : i ,i_,...e S} is actually uncountable.

1’12"'. l Z
S' does have the advantage, however, of admitting a natural

mapping

k
i i LRI > i D
( 3 L] ) ]’ /

1" 2 k

ne8

onto the unit interval [0,1]. This mapping allows us to
régard the elements of 8' as simply real numbers in [0,1].
To the sequence (il,iz,...) e S' we associate the real num-
ber x with D-ary expansion ‘iliZ"' . Unfortunately the
correspondence is not 1-1, since D-adic rational numbers

have two D-ary expansions. However, this discrepancy turns
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out to be incidental, because a stationary chain of infi-

nite order assigns zero probability to all sets of the form

= =0}

e T it T P e T L
where %<# 0, and all sets of the form
{Z B eisegl =i Z =2 =,..=D-1}

n-.k k’ n*k'l n-k-2

where ik# D-1. Thus in a natural way we can represent a

S S P %

= =00

stationary chain of infinite order {Zn};
by a Markov process {Xn}:=—m on [0,1], and {Xn} is itself
stationafy.

Corresponding to the transition

(i, 5d, gusn) * [1;1 ;1

1’72 1 2"")

on S' with probability Qi(il,iz,...] is the Xn-transition

X = 'iliZ"' * (i+x)}/D = .i1i_1

the probability of which we denote by fi(x). Thus the
transition probabilities for the Xn—process are simply real

functions £ £ ecn [0,1]. For convenience we let

0ttty

= (f £ T
S~ FOPPIE S, P

6, (x) = (0+x)/D,...,0,  (x) = (D-1+x)/D,

then the transition function for the Xn—process is given by

X _eB | X =x) = P+(x,B) = £ £ (x 35
Prob (X  eB | X =x) = P+(x,B) = .2, £ (x)x,[¢, (x)]



5

llence, for Borel-measurable fi's, a probability measure u
on the Borel sets of [0,1] gives a stationary absolute dis-

tribution for {Xn} if and only if
i
() ulB) = JO u(dX)P;(X,B)

for every Borel set B. In this manner, the problem of

studying existence and uniqueness of stationary chains

{z_1}> with prescribed Q,,...,Q reduces to the problem
n n=-w 0 b~1 5

of studying solutions u of (***) for a given f.

A standard method of obtaining stationary absolute
distributions for a Markov process {X } is the following:
Start the process at time n = 0 with an arbitrary initial
distribution

My (+) = Prob (X; € (+));

let the process evolve in time; then observe whether the

absolute distributions

M (s) = Prob (X e (-))

tend (in the usual sense or in a suitable Cesaro sense) to
a limiting distribution u as n + «, If they do, u is a
stationary distribution for the process. Furthermore, if u
is independent of My» then u is the unique stationary abso-
lute distribution for {X_}.

Using this technique, T. E. Harris proved the follow-

ing theorem in [4, p. 712]: Let fo,...,fD 1:[O,l] + [0,1]



such that

and such that one of the fi's is bounded away from 0. De-
fine the sequence €15€0, 00 by setting
€ = max sup | £:(x) - £:(¥)]
& 0<ig<D-1 (x=y) * + ’
m
where (xEy)m if x and y have the same (terminating) D-ary

expansion to at least m places. If

© m
by gy B WRe ] ==
then there is a unique stationary Markov process {X_} on
[0,1] with transition function PE(X’B)'

This theorem generalized a theorem of Doeblin and
Fortet (see [1]), who proved a similar result under the

stronger hypothesis

oo

Harris' condition on the em‘s seems somewhat unnatural.
A more natural and less restrictive condition to impose
would be that {sm} form a null sequence. This is equiva-
lent to requiring that the f;'s be right-continuous with a
left-hand 1limit at each D-adic rational less than 1, and
continuous everyﬁhere else. In the context of chains of

infinite order this condition becomes the following natural
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requirement of continuity: If i(0)= (i(g),i(g),...),

gltds gl gl L, M8 a0 M S vee B Thal
for each k, i(§)= i(g) for all n sufficiently large, then
(n) (0)

Qi(i ) Qi(i )

as n ~ «, Roughly this says that the transition probabi-
ties of the process depend only slightly upon the remote
past.

By a method quite different from that of Harris, we
prove that e + 0 implies the existence of a P%-invariant
measure y, provided the f,'s are bounded away from 1. Fur-
ther, we show that even the condition e, ¥ 0 is inessential,
provided the discontinuities of the_fi‘s are sufficiently
separated.

Our approach is as follows: We consider the relation
A which associates to each transition function P% those
measures W which satisfy (**#*). Then we study the ques-
tion: In what sense is the graph of A closed? More pre-
cisely, suppose that a sequence of transition vectors %(n)
converges in some sense to a transition vector ?. Suppose
further that measures Mo exist such that My and P%(n) are
A-related for each n, If the un's have a limit measure u
(in some sense), does it follow that u and PE are A-
related? With suitable definitions of convergence, the

answer is affirmative.



The organization of the sections of the thesis is gen-
erally as follows: In Section II we standardize our termi-
nology. In Section III we introduce the general notions of
a transition function P and of a measure u invariant with
respect to P, in the sense of (***), 1In Section IV we de-
fine the so-called D-ary transition functions P; which re-
flect the structure of a chain of infinite order, and we
classify the points at which‘P;-invariant measures can have
positive mass. In Section V we discuss in detail the rela-
tionship between chains of infinite order on {0,...,D-1}
and Markov processes on [0,1] with D-ary transition func-
tions. These results are known [4, p. 710], but heretofore
a detailed proof of them has not appeared. In Section VI
we use a functional analytic fixed-point theorem to prove
the existence of a P;—invariant measure for vectors f with
continuous components. Then we prove our major existence
theorem (Theorem 30) using the '"closed graph" approach de-
scribed earlier., In Section VII we give a new proof of the
existence and uniqueness of a stationary absolute distribu-
tion for Nth order Markov chains in which all transitions
are possible. The proof requires an application of Theorem
30, and the theorem is phrased in the terminology of the
preceding sections. Finally in Section VIII we apply the
theorems of Sections VI and VII to obtain wide classes of
vectors E for which there exist Pz-invariant measures. In

corollaries we describe the corresponding results for
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chains of infinite order. In particular, we prove the ex-
istence of certain stationary chains of infinite order with

"locally Markovian'" transition probabilities.
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IT. PRELIMINARY NOTATIONS AND REMARKS

R denotes the collection of real numbers, and RO de-
notes the collection of non-negative real numbers. Z de-
notes the collection of integers, ZO denotes the collection
of non-negative integers, and Zl denotes the collection of
positive integers. D denotes a fixed but arbitrary integer

~greater than or equal to 2. For N € ZO’ Sy denotes the set

\

{8,000, D013,

If @ is a set and B is a subset of @, then Xg denotes
the indicator function of B. If C is a collection of sub-
sets of Q, then o(C) denotes the o-algebra in @ generated
by €. If {# } is a collection of real functions on &, then
o({Z,}) denotes the smallest c-algebra such that each 2z is
o({2,}) -measurable.

The notation "x" replaces the notation "{x}" for sin-

gleton x, whenever the context permits.
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III., TRANSITION FUNCTIONS AND INVARIANT MEASURES

The probabilistic structure of a Markov chain
{Xn}n:—m with stationary transition probabilities and a
stationary absolute distribution is completely determined
by the transition function P and the invariant absolute
distribution y of the process. Customarily P(x,B) denotes
the probability of a transition from the point X into the

set B; that is,
P(x,B) = Prob (X, e B | Xj.q = X).

On the other hand, y(B) denotes the absolute probability
that the process lies in B, under no assumptions about the

past; thus
u(B) = Prob (X, € B).

The quantities P(x,B) and u(B) are independent of n by the
stationarity assumptions.

The requirement that y be a stationary absolute dis-
tribution for the process is equivalent to the requirement
that y and P be related by a certain functional equation.
This equation is introduced, and several of its features

are briefly studied, in Section III.

Definition i: Let B denote the collection of Borel sets in

[0,1]. Let F denote the collection of bounded B-measurable

functions mapping [0,1] into R, and let Fo denote the
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collection of non-negative functions in F. Let M denote
the collection of probability measures on B. If u e M, let

FU denote the left-continuous distribution. function of u.

Definition 2: A function P : [0;1] x B + R 1s called a

transition function on [0,1] if

(i) Pl=;B) & F for each fixed B € B

and

(ii) P(x,+) e M for each fixed x ¢ [0,1].

Let T denote the collection of transition functions on

[0,1], and let
A= {(u,P) € M x T 3 J%p(dx)P(x,B) = B (B ¢ B)}.

If (u,P) e A, then y is said to be P-invariant.

Given a probability measure u and a transition function

P, we may call a Borel set B (u,P)-invariant if
jgucdx)P(x,B) = u(B).

Thus u is a P-invariant measure if and only if all Borel
sets B are (u,P)-invariant. It is useful to note that the
(u,P)-invariant sets always form a monotone class, even

when p is not P-invariant.

Lemma 3: Let uw e M and P € T. Then the collection

C ={BeB : féu(dx)P(x,B) = u(B)}
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is a monotone class.

Proof: The verification is the same for increasing or de-

o]

creasing sequences. If, for example, {C_ } _; is an in-

creasing sequence of sets in C, then

1 oo
Jo u(dXJP(X.ngl C)

1
[ p(dx) 1lim P(x,C )
n 0 n-+ n

= lim Jl p(dx)P(x,C )
0 n
= 1lim w(C ) = wu( U C )
n n=

by the countable additivity of P(x,+) and u, and by mono-

tone convergence.

In Section V we shall show how to construct a chain of
infinite order from a set of transition probabilities with
certain properties. This construction rests heavily upon
Kolmogorov's Consistency Theorem, which is stated as Theorem
18, The following two lemmas, which depend only upon gen-
eral properties of transition functions and probability
measures and, in the case of Lemma 4, upon the invariance
equation, are needed for the application of Kolmogorov's

Theorem to our construction.

Lemma 4: If (u,P) € A, then

i =
J JBI... B, p(dx)P(x,dxl)...P(xk_l,dxk)

= STar u(dx JP{X 8% }...PLx ,dx )
Bl Bk L 1 2 ] 3
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fOI‘ Bl,---,Bk e Bv
Proof: The B-measurability of each function
£(x) = fBj...kaP(x,dxj)...p(xk_l,dxk) (j=1,...,%
follows from the B-measurability of P(+,B). For B e B set
Hy = (£ e F o [fu(an [pPGx,anE0) = [puansm.

Then Hy 2 {XBO}BOEB because

Il

[ortan) [gpix,ang () = [Gu@0pex,zazg)

W(B nBg) = fBucdy)xBO(y).

Also HB has the properties

(i) fl’fZ?HB > oaqfy + a,f ety (ul,azeR)
and
(ii) 0 % fneHB, £ tEeF = feHB.
By the usual approximation argument it follows that Hy = F.

Thus fzeHB1 and

1 -
JO jBl...JBku(dx)P(x,dxl)...Pka_l,dxk)

éu(dx) fBlp(x,dxl)fz(xl) - fBlu(dxl)fz(xl)

fBl...kau(dleP(xl,dxz)...P(xk_l,dxk).

k ' ¢
Lemma 5: Let [0,1]X = X [0,1], and 1et (1) 8(2)  =po,17K

J=1
such that nng(n) = [0,1]k and (™ o p(m _ @ for n # m.
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Let (™ = X

B(?z where B(?),...,B(i) € B. Then

j=1

n&1 IB(?)...JB(E)u(dxl)P(xl,dgz)...P(xk_l,dxk) =
for ne M, P e T,

Proof: Set

(o]

= nél JB(?)---IB(ﬁ)u(dxl)PCxl,dxz)...P(xk_l,dxk)

o
|

® 1' i i ) k
nE1 fo...fOp(dxl)P(kl,dxz)...P(xk_l,dxk)jgle(?)(xj).
Repeated application of the monotone convergence theorem

gives

i 1 o k
= - ax. JP(X,_ ;9% ) v P (X s OX 1 (X)) .
o = [ore- [outexIRlx ax ) Plx, k)ngljgle(?)( )

Since {B(n)};=l forms a partition of [O,l]k, it follows

that

ol k _ oo
ngljgle(?)(xj) = ZiXp(n) (Xqseee,xy)

X &
U
n=1B

(n)(xl,...,xk) e 1.

Thus

1 1
p o= JO'"JO“(dXI)P(xl’dxz)"‘P(Xk—l’dxk) = 1.
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IV, D-ARY TRANSITION FUNCTIONS

We turn now to studying the particular transition
functions appropriate to our topic. For us the D-ary ex-
pansion of a real number x € [ 0,1] represents a possible
past history in a chain of infinite order. Hence we study
only those Markov chains {Xn}:=_°0 on [0,1] in which the

transition

Xn M Xn+1

preserves the D-ary expansion of X, - Thus if

%5 = il
then Xn+1 must lie among the points
_ 2 © k :
¢i(Xn) i/D + kEZ lk-l/D (i e 51).

This restriction leads to the following definition, in
which f; (x) represents the probability of a transition from

the point x to the point ¢i(x).

Definition g: Let

FOP) o (F= (£ £. .3 § & £ e F.3 T £ =1}
O,nan, D_l . 0’...,D—l O . —_ -

)

The elements of will be called D-ary transition vec-

> ®) : : .
tors. For £ € F define P% : [0,1] x B + R by setting
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D-1
P%(X,B) = iEofi(x)XB[¢i(XH {x & [0,1], B & B),

where

$3(x) = (i+x)/D (x e [0,1]; 1 e 5p).

Proposition 7: P? e T for T ¢ F(D).

Proof: The B-measurability of P%(-,B) follows from the B-
measurability of foseeesfp1sXgsbgs--rsrbp.q- For fixed
x © L0171, P%(x,-) is the discrete measure assigning proba-

bility fi(x) to the point ¢i(x), ie §5q.

In Sections VI, VII, and VIII the question of ultimate
concern to us will be the following: Given a D-ary transi-
tion vector ¥, when does there exist a P%—invariant proba-
bility measure H? Lemma 9 simplifies our procedure for
testing whether a given measure u 1is actually P¥-invariant.

First we make a useful definition.

Definition 8: For N e Z; and j € SN set

[3/DN, (5+1)/DY) 18§ = Wha
I(j,N) = , T ,
e [i/pN, (j+1)/DN)] if j = DN-1,

Lemma 9: Let p e M and T e F(D). Then [u,P%) e A if and

only if .
(%) Jl(j,N)fi(X)“(dx) = UEI-(iDN+j’N+1):}

for j e Sy, N ¢ ZO’ ie Sl'
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Proof: Since

-1 N {I(j,N) if k= i
¢, [I(iD +j,N+1)] =
k P if k # i

it follows that
I

Jl(j,N) g il

i N
[0 u(dx)P%(K,I(iD +jaliel])) =
Hence if C' is the collection
' = {403, ¢ § & SN, N € Zl},
then (%) 1is equivalent to
1 ’
(r) [0 u(dX)PE(X,C’) = p(C")

for C' € ¢'. Thus the necessity of (*) is clear.

| Suppose conversely that (**) holds. Assume, in other
words, that the collection C of (u,P%)-invariant sets con-
tains the semi-algebfa C'. Since C contains all finite
disjoint unions of its elements; this implies that C
actually contains the algebra a(C') generated by C'. But
by Lemma 3, C is a monotone class; therefore C must
contain the o-algebra generated by a(C'). Since

o[a(C')] = B 2 €, it follows that C = B. Thus CU,PEJ e A.

It is interesting to observe that a PE—invariant mea-
sure y can have point masses only at certain points; for
example, no D-adic rational other than 0 or 1 can have posi-

tive u-measure, However, stationary Markov processes with
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P%—transitions can have '"orbits" of the type shown below:

«RII0LL: 4 ==———uyp 10110144

N —

o 1 4 0 a2 FR

in which case the chain can be decomposed into a chain con-
sisting entirely of orbits and a chain whose absolute dis-
tribution is continuous. By belonging to such an orbit a

point with cyclic D-ary expansion can have positive p-mea-
sure. Interestingly enough, this is the only situation in

which point masses can occur.

Definition 10: Let Q(D) denote the collection of D-adic

rationals in [0,1], and let Q(B) =0 n (0,1). Let
(L) _ (D)
I 0 - [6,1] & 0 0

Lemma 11: Let u e M and fe F(D) such that (u,P%) e A,

Then u[Q(g)) =

[wn]

Proof: Since

o
e
Hh
l._!
Il
(=)

637 (0)

it follows that

u(0) = 255 [58, 00 fo; N IuC@n = £,(0Iu(0).

0

Hence p(0) > 0 implies fO(O) = 1, Similarly u(l) > 0
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implies fD_l(l) = 1, Let

where i_ > 0. Clearly

n
_ n-j. k. .
oM k| L JEitees/P AE 1=
T lkej-l @ if 14 i
for j=1,...,n-1; and
0 if i= i
¢;l(in/D) = {1 if i= i -1

0} otherwise.

Therefore

I

n-1 n-j. k ]
I f. |.Z D £
{j=1 1j(k=11k+j/ ]J s

u () (0u(0) + £, _3(Du(1)]
bol

n
by repeated application of the invariance equation for .
But u(0) > 0 implies £. (0) < 1 - fO(O) = 0, and pu(1l) > 0
n
implies f; _1(1) <1 - fD—l(l) = 0; so that
n
£ (On(0) + £ ;(Du(D) = 0.

n

Thus u(x) = 0.

Theorem 12: Let u ¢ M and % £ F(D) such that (U,P%) e A.

If u(xg) > 0 for some x; ¢ [0,1], then

) N

%5 = whs pE1'%



for some finite sequence (iq,

21

...,iN) of elements of §;.

XpyeeeyXy  arTe defined by
- % mN+k = ]
Xj mzo k£11k+j/D _ (3=LyaunsN=1)
then
nixg) = u(xl) - = ulxy_q)
and
£, (x) =1 LIl e oo, =] 4
3 4
Proof: Suppose x, € [0,1] such that u(xy) > 0. Then
Xy € I(g) by Lemma 11. The elements of I(g) have a unique
D-ary expansion; hence the function ¥ : I(g) * I(g) defined
by setting
© k _ © k ’ © k [D
w[kéllk/D ] kE11ke1/D [(Ey20" € 1B
is well-defined. Note that
w[ £ i /Dk] if i=1i
-1 A _ k=17k 1
47 B DS
= i o) if i# iq.

Therefore, if
= .Y i. /DK
o = xE11y/Ds

then

u(xg) = fiILW(XO)]u[w(XO)]



2.2

1A

Ufw(xo)]

fiz[wz(xo)]u[wz(xo)]

IA

ulw2(x,)]

In short,
5 0 1 2
0 < ulxg) = w[v (xg)] < ulv (xy)] < uly (XO)] < .
Since u is a finite measure, the set
W00xg) s vhixg), vExg), ...
must be finite; so that
W (xg) = ¥I*P(x)

for some j € Z0 and n € Zl' Set

J =min {j e Z : wj(xO) ¢j+n(x0) for some n € Zl}’

and set

N = min {n € Z) wJ(xO)

v x ) )

Suppose J > 0. Since wJ(xO) = wJ+N(xO) but wJ"l(x
J+N-1

o)

F Y (xg), it follows that iy # ij . Now fiJ[wJ(xo)]

> 0 because

0 < w¥ T = £y [V G Tulv (xp)]

Therefore
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£,
1

[ J+N( 0)] = f.

J - J
. o 0] 108 D)) < 1

But then

A

ul v J+N-1

Ly (xg)] < (xg)]

= £, 7 N Tule? N x )

(x,)
1J+N 0

A

uv N (x )]

w7 (x) 1,

which is contradictory. Thus J = 0 and

N
X = X )z
0 wto),
that is,
OO. k 0 k
= _X D™ = _Z "
XQ k=11k/ k=1lk+N/D

From the uniqueness of the expansion and a simple inductive

proof it now follows that

= 1

mN+k T Tk
for k= 1,..:,N and m e Z;. Thus

_ “ N mN+k
X = sdn ey T

Next, recall the definition of x

1""’XN—1 in the statement
of the theorem, and observe that
- gt = gN—1
I N A WP

Since
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Mixg) € ulP (x ] < .o sl Hixg)]

1A

u[wN(xO)] = ulxg),

it follows that

nixy) = u(xl) = uw u(xN_l).
Finally, set X_1 = Xy.13 and note that
0 < u(xj_l) = fi_ij)u(xj) = fi_(xj)utxj_lJ

J J

implies

Lo § = Ui 4 neyN=1

Since motion within an orbit is deterministic, we can guar-
antee the non-existence of orbits by requiring that all
components of the D-ary transition vector be less than 1.
With no orbits, the chain must then have a continuous abso-

Jute distribution.

Corollary 13: Let py € M and e F(D) such that (u,P;) e A.
If fi(x) < 1 for all x e [0,1] and i e S;, then Fy is con-

tinuous.

Proof: If x € [0,1] such that u(x) > 0, then by Theorem 12

there is a finite sequence (iq,...,iy) of elements of Sq

such that
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oo N . k
X = mEO k)zllk/D

and

fiN(X) = L.

But fi (x) < 1 by assumption. Therefore u(x) = 0 and Pu is
N
continuous.
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V. CONSTRUCTION OF STATIONARY CHAINS OF INFINITE ORDER

In this section we define formally the concept of a
chain of infinite order, and we give conditions under which
a stationary chain of infinite order can be constructed
with prescribed transition probabilities. The construction

is carried out in detail in Theorem 19.

Definition 14: Let (%,S5,P) be a probability space, and let

S = {co,...,cD 1} be a finite set. A doubly infinite se-

quence {Zn}:;_Oo of random variables on (2,S,P) with values

in S is called a chain of infinite order. The chain {Zn}

is said to be stationary if the probability

P{w e 9 : Zn(w) = c, seees B (W) = Ci_}
o k
is independent of n € Z for each choice of k € 20 and

1gseeesly € Sl'

The next definition makes precise the correspondence
between possible past histories in & chaln of infinite or-
der and real numbers x € [0,1]. Since D-adic rationals
have two D-ary expansions, the correspondence must exclude
either those past histories other than (0,0,...) which ter-
minate in 0's or those other than (D-1,D-1,...) which ter-
minate in (D-1)'s. Fortunately, as is shown in Lemma 17, a
stationary chain of infinite order assigns zero probability

to all such sequences, so that no difficulties arise from
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this discrepancy. We have arbitrarily chosen to exclude

sequences terminating in (D-1)'s.

(o]
Definition 15: Let Q; = x S , and let § = o({2 ¥,
“_ k=1 1 1 k k=1
where {Zk} is the sequence of co-ordinate functions on Q

1°
Let % &4 [0,L] + B

V(1)

1 be defined as follows:

(D-1,D-1,...); and if 0 € x <1

, then

v(x) = (il,iz,...), where .iliz... is the unique D-ary ex-

pansion of x which does not terminate in (D-1)'s,

By means of this correspondence between {; and [0,1],
we may now regard the transition probabilities in a chain
of infinite order either as functions Q; on Ql or as func-
tions £, on [0,1]. The latter point of view seems concep-
tually simpler. In either case the transition probabili-
ties should be measurable functions on their domain. The
next lemma shows that Sl-measurability of the Q;'s is

equivalent to B-measurability of the f;'s.

Lemma 16: Let Q : Ql + R and £ : [0,1] - R such that

f(x) = Qv(x)] (x e [0,1]).
Then f is B-measurable if and only if Q is S,-measurable.
Proof: Since
v i{w, e q : 2 (w,) =1
i 1 L~k

l,...,Zk(m ) = 1.}



k . k=]

L
it follows that v is a measurable transformation from
([0;1]:8) to (ﬂl,Sl). Hence if Q 1is Sl—measurable, then £
is B-measurable,.

Suppose conversely that £ is B-measurable. Clearly

1

I 2 /Dk is § -measurable, so that f[ Tz /Dk] is 8.~
k=1 k 1 1 k
measurable. Note that

w k
: T 2 D°| = = A
{wl . k=1 k(wl)/ } Q(wl)} 1’

where

Al = {(D-1,D-1,...)} U 1lim {wl ; zk(wl) # D-1} ¢ sl

k=
and
Q VA = U u . 0 P, A T 0 IR 8
5 k=1 ; : 1 k
11,...,1keSl
For a € R set
f{(il,...,ik,D-l,D-l,...)}
G&(il"..’ik) if Q(il,---,ik,Dfl,D‘l,...)fG
\ )} otherwise.
Clearly Ga(il""’ik) e §;. Hence
(1) (2)
{wl : Q(wl) < a}l = C g YL
where
Ccl) = { A f ; 2. ( )/Dk] < ol 8
MUt W R § =5 T e | S Ry

and
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2) , . .
c(2) - U G (i.,...,i.) € S_.
oL k:l = = o 1’ ,k l
11,...,1k681
1k#D-1

Thus Q is Sl—measurable.

Lemma 17: Let {Zn}

Z=_W be a stationary chain of infinite
order on the probability space (&,S8,P) with values in Sl'

Then

P( E {w : 2 (w)#D-1, Z (w)=2 (w)=...=D-1}| = 0.
n n-1 n-2

n=-x

Proof: For i e §; let Qi = Qi(ll,lz,...) be a version of

the conditional probability

Z =1 Z Z awl) = Z =1 Z = Z =1 .
Pl i | n-1° n-2’ ) PL 5 | ﬁn—l ll’ n-2 1o
Fix N € Z, and let
) . B ofwoz 2 el = D3l
k=1 N-k
Also let
N (N
C(‘) = dm & & ) : 2 (w) = i} (i & 8 ),
1 N ‘ 1
and note that
N
ol e o i Pl 2 B ) = ews = B (@) = D-1}
D~ koo N N-k+1

Il
o)

1
=
—

5 iiﬁ Plw : 2 (w) = ... = Z (w)

= P[C(N)l
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by the stationarity of {Zn}. From (*) it follows that

1

&% (N} f
( ) P[C i ] C(N) Qi[ZN—l(M)’ZN_Z(N)""]P(dw)

= Q. (D-1,D-1,...)P(dw)
JC(N) =

]

Qi(D-l,D~l,...)-P{C(N)};

in particular,
(N)] [ (N)} (N)
PlC = P|C E 50 I » O O B .
[ ' D-1 QD—l( y )

Thus either P(CM) = 0 or q_;(D-1,D-1,...) = 1; that is,
either P(c(™M)) = 0 or ;(D-1,D-1,...) = 0 for i = 0,...,D-2.
In either case, P[C(§)} =0 for i = 0,...,D-2 by (*%),

Since N € Z was arbitrary, it follows that

© D-2 (N)
Pl u u C =
N=-% i=0 i

The next theorem, which we state without proof, is
known as Kolmogorov's Consistency Theorem [5, p. 92].
With its aid we can construct, for any D-ary transition
> . (ee]
vector f, a stationary Markov process {Xn} _ o, on [0,1]
with D-ary transition function Pz and P§~invariant absolute

£
distribution .

Theorem 18: Let Q = x [0,1], and let {X 1 be the
e n=-o n n=-®
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~
sequence of co-ordinate functions on . For n € Z and

~

ATl
ke 2, let Cn+ denote the semi-algebra of subsets of Q of

0
the form

k

{oef: X (0 €eB,...,X (0) € B |
n n n+k n+k

€ B, Suppose there is defined on each

where Bn""’Bn+k
an . AT
i a set function Pn+k such that
ATl . A ~1l AN A ATl A
(i P ) =0; Ce C e B (€) » #z P £) = 1
) n+l<(gJ n+k n+k( ) n+k( )
and
(ii) €,€ ,C et ,C= 10U C,C nC =p (it
ii i = =
3 1’ 2, n+k’ 1=l iJ i J 1 J
ATl A o ATl A
-+ P E)y = P C.Dx
n+k( ) i=1 n+k( 1)
Suppose further that
. An_l A A A
(iigf) P lo 3 X (o) 6B  eanyX (w) € B }
n+k n n n+k n+k
A X (&) ¢ B X % B}
" Bk w w) € WITETT N k(m) € —
p" {o: X (&) ¢B X (&) B
= w w) € w) € .
n+k+1 n n’ >Tn+k n+k
Then if
C = u u Co°

n=-° k=0 n+k’

there exists a unique probability measure P on o(C) such

that



>
—~
(@
f—
]
@]

for 6 e cB .
n+k

The question whether there exists a (unique) station-
ary chain of infinite order with prescribed transition

probabilities Qp,... can now be reduced to the ques-

*Qp-1

tion whether there exists a (unique) P;—invariant measure
—-

W, where f = (Qoov,...,QD_lov).

Theorem 19: Let QO"" Q. » RO be Sl-measurable

Rpey ¥ %
functions such that

D-1 5 &1
i=0 i’

and let f = (£4s+-»£y ) be defined by setting
£.(x) = Q V()] (x e [0,1]5 i e §)).

Suppose there exists u £ M such that (U,P%) £ A, Then
there is a probability space (2,8,P) and a chain of infi-

nite order {Zn}:=-m on (2,8,P) with values in §, such that

(1) s = o({Z,})

(ii) P(Zn =i | zn_l,zn_z,...) = Qi(zn'l,zn_z,...)
almost surely on &
and

(idif) {Zn} is stationary.

Furthermore, if u is the only P%-invariant measure in M,
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then P is the only probability measure on S satisfying (ii)

and (iii).

D
Proof: Note that f F( ) by the properties of the Q;'s
and by Lemma 16; thus P% e T. Define Q, {Xn}, G, {Cg+k} as
in Theorem 18. On C" define PM as follows: If
n+k n+k
A~ ATl
cecC nd
n+k 4

C={w:X(w €B,...,X (0) eB _},
n n +k n

n +k

set

P (D)= dx )P=(x_,d
n+k( )—JB...{B u( xn) f(xn, % 3

n+k

)...P%(x

n+l n+k-1’dxn+k

Clearly (i) of Theorem 18 holds for ﬁ2+ Also (ii) holds,

k'
. : AN .
as can be seen from the following observation: C 15 @
n+k
. ~ ST o
semi-algebra on &, and Lemma 5 states that Pn+k is count-

ably additive on each countable partition of 9 by sets in
ATl . :
i By a simple and well-known result in measure theory,
n
this implies that e _is countably additive on et . -
n+k n+k

ATl
nally, the first half of (iii} holds Ffor {Pn+P} by Lemma 4,
and the second half holds trivially. Thus, by Theorem 18,

there exists a unique probability measure ? on o¢(C) such

that
e A ATl
P(C) = &
(&) =7 (O
~ An
for C € Cn+k‘
Let @ = x S , and let {2 3 be the sequence of

n=-« 1 n n=-«
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co-ordinate functions on Q. Define ¢ : © -+ by setting

X [e(w)] = . %
n =

. Zn_k(w)/Dk (neZ, weQ).

1
¢ is 1-1, as the following argument shows: If w), W, are
distinct elements of §{, then

zn-l(wl) 7 Zn—l(MZ)

for some n e Z. If

§oegUigd ® B 5 ()

but
co k oo k
X Z D = _I Z D
ooy 2ngtid TN L8 P
then
z % @ = 1
n-l(wZ) n-l(w )
and
Tz (e 30" = § osaiin® = 1
k=1 -k-1"1 k=
0 = _Z 0/D = L Z i
7 k=1 / k=1 n—x—l(wz)/

Thus either

X [o0w ] # X Lole, )]

or

Xn_l[chl)] # Xn—l[é(wz)l’
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so that

¢(wl) # @(wz).

imilarly if 2 Z th ® oj .
Similarly i n»lcwl) > N l(wz), en (wl) # (wz) Thus

¢ is 1-1.

Observe next that

range (%) = ﬁ@,

where

Q= n _Ul {w: X (W) = [1i + X (G)]/D}.
0 n n-1

Indeed, since

© k
(2, () + X _[¢D/D=2 («)/D+ E E (/D

X_[o(w)]

for w e Q and n € Z, it is clear that range (@) = ﬁ@- On

the other hand, if 0 € ﬁé, let w € © have co-ordinates

4 w) = 1
n—l( ) .7 S

where

X (&) = [i_ .+ X (@®1/D.

Then

a8
e 8

Z  (w)/D" = [X @yt - x @y
k=1 n-k & k n-k+1 = n-k - ]
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= X (w),
n

= ®(w). Thus range (¢) =2 ﬁQ.

From this it follows that range (¢) has full P

measure, S

a,
@

ince
i
@ p-1 ® DN-1. . .
n U n U {w : X (w) € I(JaN),
n=-« i=0 N=1 j=0 n-1

~ N
Xn(m) € I(iD +j,N+1)}

and
D‘l DN_l ~ A~ A N
Plu u {8 :X (@) e I(i,N), X (6) e I(iD +j,N+1)}
i=0 j=0 " n-1 n
D-1 DN-1 .. R . N
= I I Plw : X (w) € I(j,N), X (w) € I(iD +j,N+1)}
i=0 j=0 n-1 n
T (ax)P=(x,1¢iD *j ,N+1)]
= ¥ X)P*ix iD #* +
i=0 j=0 JI(j,N) RS &
Bt L Bl fl (ax) (x) £ (x) [6 (x)]
= L K z p(dx)X X XX - ¢ (x
i=0 j=0 k=0 JO I1(j,N) k I(iDN+3,N+3) X
D-1 DN-1 o
= I I £f (x)u[Ii.N)] = 1.
i=0 j=0 i '
Let S = 0({Zn}:=,w)' Then ¢ maps S-measurable sets
onto c(a)-measurable sets because
Tlis & W@ 3 Zn_l(w) B 1n-1""’zn+k-1(w) B 1n+k—1})
w el X (@ I iy SR o I(d 1
foef X (0)eI(i ,,1),e..,X (@) eI(i . ..1},

AN

which belongs to 0(6). Therefore, since P(Q@) = 1 and
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since ¢ ; Q » §¢ is 1-1 and onto, the set function

F ¢ 8 » R defined by settang
P(A) = P[e(A)] (A e 8)

is a probability measure on S.

Set S(n) = U({Zn—k}§=l)' Clearly the mapping

(n)

w - (Zn_l(w),zn_z(w),...) is measurable from (2,S ) into
(91,81), and by assumption the mapping Qi : Ql > RO is Sq-
measurable. Therefore the mapping
(n)

Qi(E _1s2 5 9see+) ¢ 8 > Ry is S -measurable.

Note that
{w : £ [ ; Z (m)/Dk' = Q |2 (w) , 2 (w) } 28
" Tilk=1 k } i[n-l >“n-2 ] I

where

A = {kf {w : 2 k(wj = D—l}l U {lim{w : Zn_k(m) # D-11}

N >

k-)oo
and
Fimag = Olj U Z = R4 sl
( : P(k_l 1 R T fa n—l(w) l]_’ ’t‘n_k(w) lk’
123 ’ k 1
lk7é -
E = z - L. = . )
n-k—l(w) n-k-2(w) L 1})
A 00 ) R " J .
b il"")i\-gsl n J::l ]
bt



by Lemma 11. Hence if

C={w: ﬁn"l(w) = 11, ,nn_k(w) = lk}’
then
JC Q,[2_ (@),2  ,(u),...1P(dw)
2 k

- = [ I %2 (w)/D ]P(dw)

c - ilk=1 n-k
. J . ST £, [X, (@) 1P (dw)

{w Xn(w) £ Itjél 13 , }
- £5 () u(dn)

K k-j
1] £, 1 D 5
j=1 ]
- k =
= p[I(iD # & i.D . k+1)]
=1 ]
~ . k ~]
= P{w X (w) € I(iD + E£_ i D , k+1)}
+1 =l ]

= P{w : 2 =i, 2 m 4 L ees sk = i

(w2 (@) =1, 2 (0)=1i,..,2 (=i}
= P{w € C : Zn(w) = i}.

Since the sets of the form C generate S(n), it. follows that
Qi(zn_l,zn_z,...) = P(Zn =i | zn_l,zn_z,...)

almost surely on 2. Note also that the probability
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]( 1\
P(C) = ulI] .2 41D 3 kJJ
=L 3

is independent of n, which shows that {Z,} is stationary.
Thus P and {Zn} satisfy (ii) and (iii) of the theorem. By

definition {Zn} gatisfies (4i).

It remains to prove that P is unique if py is the only
P%-invariant measure. Let Pl and P2 be distinct probabil-
ity measures on S such that (ii) and (iii) hold with

P= P P Since

10 Pae
{w: Q. [2 _(©),2 _(w) 1€l 3 2 (/oD
w QL jle),E L), kel “n-k
s U {w: 2 (w) # D-1,
k=1 n-k
2 G =3 @)= ... =D},

it follows from Lemma 17 that

P_{m . Q[Z (w],z
Gl n

(@) ,...] = f[ P oz (/o =1
i i n- 2 k

- k=1 n-

for i = 1,2. Now Pl and P2 induce probability measures 51

and ﬁz on ¢(8) by means of the formulas

~ ~ —1 ~ ~ ~ .
Py = P ¢ (A)] (Aea(®; i=1,2).
For il""’ik € Sl’ observe that the probabilities
~ A k k"J
P {w : X (w) € I(_Z i.D 5 k]}
i n i=1 3

=P w2 (@) =di,..02 L (w) = i)
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are independent of n because {Zn} is stationary on

k k-j
(R,8;F }» Since the intervals I( fl i Db J, k} generate B,
&= J

it follows that the probabilities

P {w : X (0) € B}
i n

are independent of n for every B e B, Set,

L. (B) = P.{& : X (&) e B} (B e B; i =1,2).

i i n
_ N  N-&
Clearly w_, u_e M. If ke S and j= £ 10D E S5 , set
1 2 14 =1 & N
C= {w: 2 W) = 1 ,...,2 w) = i }
n—l( , 1 n—N( ) N

and note that

MESINEEY £, [X_(8) 1P, (d)

JI(j,N) f{a X (@)el(3,N))

i oo v
. } fk[£E 2, ()/D7|P (aw)

jc QL2 (@), (w),...1P (4]

P{weC: 2 (w) = k}
i n

~ L~ - o N “
= Pi{w 3 kn+1(w) € I(kD +j,N+1)}

P[I(kDN+5 ,N+1) ],

Hence Cui,Pg) e A by Lemma 9. Since Pq and PZ are dis-

tingt, ‘there exist il,...,ik € S1 such that



SE (@) = i)
ot Pz{m : Z () = & ,esn;B (w) = ik}.
But then

Kk k-3 k
H [I( I_ 1D , kl] # uz[I( z

K- ]
. . £ i1 k| ]
17 =1 "j j=1 "3 ’ 1

so that My # Mo Thus there are two distinct P%—invariant

measures.
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VI. EXISTENCE THEOREMS FOR PE—INVARIANT MEASURES

In Section V we showed that the question whether there
exists a stationary chain of infinite order with prescribed

transition probabilities QO,...,Q is equivalent to the

D-1
question whether there exists a P=x-invariant measure, where
f - (Qoov,...,QD_lov). In this section we give conditiocns

on a D-ary transition vector f which ensure that there
exists a P%—invariant measure.

We approach the problem from two standpeints, both of
which rely upon the notion of weak convergence of measures.
In the first approach we use several standard results from

=

functional analysis. Given any D-ary transition vector f,

we can define an operator U from M into M by the formula
i
Uu(B) = JOUCdX)PE(X’B) (B & B)s

Clearly every fixed-point of U is a PE—invariant measure.
Now M may be regarded as a convex weak®-compact subset of
the space of all bounded linear functionals on C[0,1],
where C[0,1] is the Banach space of continuous functions on
[0,1] with the sup norm. As an operator on this space, U
turns out to be weak*-continuous. By invoking a well-known
fixed-point theorem, we conclude that U has a fixed point

= -
whenever f has continuous components.

The following lemma, a proof of which can be found in

[2, p. 456], records the fixed-point theorem in the form in
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which we shall use it.

Lemma 20: Let K be a compact convex subset of a linear

topological space X, and let T be a .continuous linear oper-
ator on X such that t(K) € K. Then there exists L £ K such

that t(L) = L.

Lemma 21: Let fe F(D). Let F be regarded as the Banach

space of bounded B-measurable functions on [0,1] with the

sup norm, and let T be the linear operator on F defined by
1
Tg(x) = |, Pz(x,dy)g(y) (x e [0,1]; g & F).

Let H be a closed subspace of F such that T(H) € H, and let

TH be the restriction of T to H. Let H* be the adjoint

space of H, and let Tﬁ be the adjoint operator of TH' Then
if K is any weak*-closed convex subset of the unit ball in
H* such that T;(K) € K, there exists L € K such that

Tﬁ(L) = L.

Proof: Since

1A

1
o3uR, Jo Pg(x,dy)ogggllg(t)i = |lgll,

o3up, 1Tg () |
the operator T is a bounded linear operator on F; hence Ty
is a bounded linear operator on H. The adjoint
operator T§ of TH‘is a weak*-continuous linear operator on
H*. By Alaoglu's Theorem [2, p. 424] K is weak*-compact in

H*. Thus the theorem follows from Lemma 20 by setting
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X = H* with the weak*-topology and T = Tﬁ.

Theorem 22: Let % € F(D) such that each fi is continuous

on [0,1]. Then there exists u € M such that (u,P%) e A,

Proof: VLet H be the collection of continuous functions on
[0,1]. Then H with the sup norm is a closed subspace of F,
and H* may be regarded as the collection of countably addi-
tive set functions on B with finite total variation. For

g € H and u € H* set

<g,u> = J; g(x)u(dx).

Let T be defined as in Lemma 21, and observe that

D-1
Tglx) = iio fi(X)g[¢i(X)] (x € [0,1]; g € H).

Since f4,...,f e H, it follows that Tg e H

1 Py s®p g

when g € H, i.e., T(H) € H.
Let K = M € H*, C(Clearly K is convex; also K is a sub-

set of the unit ball in H*, because ||u|| = 1 for u e K.

Moreover, K is weak*-closed in H¥*, since
K= ({u e H* : <1,u> = 1})

A LN {us#*™ 3z =g,p> = B}
getl
g0

Now let TH and T; be defined as in Lemma 21. For

U e K set
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WO Jé W(dx)P(x,) € K,

and observe for u € K and g € H that

<g,Thu> = <T g,u>

g i §
JO b (dx) JO P(x,dy) g(y)

I

h
fo g(y)ul(dy) = <g,ul>

by a simple variant of Fubini's Theorem. Thus Tﬁu = u., £ K

if ne K, i,8., Tﬁ(K) = K.

By Lemma 21 there exists p € K such that u

]
—]

ju g
=

My Hence
(8) = w (B) = |& u(dx)P=(x,B)
= = X —)—X
E "1 o " e
for every B € B, and (u,P;) € A.

By Theorem 19, the result of Theorem 22 implies the
existence of stationary chains of infinite order with tran-
sition probabilities satisfying certain continuity condi-
tions. These chains are described in Corollary 24. First
we define the natural notion of convergence in @

1°

Definition 23; Let {i(n)}:=l be a sequence of elements of

Q,, where i (i(?),i(g),...) for each n. Then {i(n]}z

: : . (0 (o
is said to converge to 1( 1 - @ 1)’

L) - i(o)) if, for each k, i(i) = i(i) for all n

=1
icg),...) E Ql (in sym-

bols, i

sufficiently large.
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Corollary 24: Let QO,...,QD_l s B = RO such that

1
(i) 51 q, =1
i=0 i
(i1) 1M > 1000 impiies q;(i(™)y » q, (1(0)) (ies)

(LY Qo iy pvwnadpaDLyBoLyened = Quliypwensly#l0,0,uxs)
(i € S;; i, # D-1).

Then there exists a stationary chain of infinite order
{Zn}:=_m on a probability space (?,S,P) with values in S;

such that

almost surely on Q.

_),
Proof: Conditions (ii) and (iii) ensure that the vector f
= (Qoov,...,QD_lov) has continuous components; therefore,
by Theorem 22 there exists a P%—invariant measure u. Also

by Lemma 16 the functions QO,...,QD_1 are Slfmeasurable.

lence the corollary follows from Theorem 19.

Condition (ii) of Corollary 24 seems natural. If at
time n two ''past histories'" in a chain of infinite order
coincide back to time n-k, where k is large, it seems rea-
sonable to assume that they have nearly the same transition
probabilities. On the other hand, condition (iii) appears
quite unnatural. In general there is no reason to assume

that two distinct '"past histories" should have exactly the
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same transition probabilities. Thus the class of D-ary
transition vectors with continuous components corresponds
to a somewhat restricted class of transition probabilities
for chains of infinite order. The techniques of functional
analysis do permit a generalization of Theorem 22 asserting
the existence of an invariant measure for every D-ary tran-
sition function; however, in this generality the measure
may be only finitely additive.

o0

Theorem 25: For every f € there exists a finitely

additive probability measure u on B such that

1
[0 u(dx)P;(x,B) = u(B)
for B £ B.

Proof: Let H = F, so that H®* = F* may be regarded as the
collection of finitely additive set functions on B with fi-
nite total variation., Clearly T(H) € H., Let K be the col-
lection of finitely additive probability measures on B. As
in the proof of Theorem 22, K can be shown to satisfy the
hypotheses of Lemma 21; hence there exists u € K such that

T*u = 4, i.€.; such that
- (dx) P~ (x,B) (B)
X =13 =
g " £ 8
for B € B.

A simple but interesting example of a D-ary transition
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vector f all of whose invariant measures are only finitely
additive is the following: Let D = 2, and let T = (fo’fl],
where £ = and £ = ¥

o *(0,1] 1 %oy
ure £or %, then

IFf w is an invariant meas-

u(0) = £(0)-u(0) = 0-u(0) = 0

hence for B £ B we have

B ; + £ d
WB) = I fo NEOPRINEIMCE

1=0

1
J [x (x) + X (x) p(dx)
0 ¢61(B)ﬂ(0,1] ¢i1(B)ﬂ{O}

1]

o1
u[¢0 (B} ]

Now if B n (0,6} = (0,8) for some 6§ € (0,1), then

¢6n(B] 2 (0,1] for some n € Zl; 56 that

-7 .
(B = wleg (B)1 = ... = uley (B] 2 u((0,11) = 1.

Regarding u as a continuous linear functional on F, we have

that
e 1.

Since <-,u> is linear, it readily follows that
<> = €

for every simple function f € F such that f£f(x) = ¢ for x in

some interval (0,8). Using the continuity of <-+,u>, we can
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then show that
<f,u> = ¢

for every function f € F such that f(x) - c as x + 0. This
shows how <-,u> is defined on the subspace of F consisting
of all functions f € F having a right-hand limit at O.
Clearly u 1is not countably additive, since

lim u((0,1/n)) = 1im <x

yu> = 1 # 0 = u(@).
-0 n+  (0,1/n)

This completes our study of the existence of invariant
measures by means of fixed-point theorems in functional
analysis. Henceforth we adopt a different point of view.
Roughly our approach is as follows: Suppose that %(n) is a
sequence of D-ary transition vectors converging in some
sense to a D-ary transition vector ;. Suppose further that
each vector %(n) has a P+(n)-invariént measure U . Is
there a subsequence of {in} which converges in some sense
to & P%-invariant measure p? With suitable definitions of
convergence in F and M, the answer is affirmative; and a
general result of this type is given in Theorem 30.

The next definition specifies the type of convergence

in M appropriate to our task. This is actually weak®-

convergence 1in M ¢considered as C[0,1]1%.

Definition 26: A sequence MisH,,e- € M is said to converge

2’
weakly to u e M (in symbols, up 2 W) if
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: 1
[3 Eu (dx) > [ £(u(Ax)

for every continuous function f on [0,1].

The next two propositions, which we state without
proof (see [5, p, 116] and [3, p. 261] respectively), give
familiar properties of weakly convergent sequences of meas-

ures.

Proposition 27: Let HoHysHy,en€ M. Then

W
—
n H

if and only if
F. (x) = Fu(x)

Mn

at every point x € [0,1] at which F, is continuous.

Proposition 28: 1If MisHp,...€ M, there exists a subse-

quence u_ ,u

L. »+++ and a measure u € M such that u .~
T 3 B

k
The following proposition concerning weak convergence

of measures is less familiar, and we prove it here for the

sake of completeness. It is quoted in [5, p. 119].

Proposition 29: Let p,uy,H;,...€ M such that ug Ly . If

B € B such that u(d9B) = 0, then

b

fB FGu_(dx) > [ £00u(dx)
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for every continuous function £ on [0,1].

Proof: Without loss of generality assume that 0 < £ < 1

b

and let € > 0 be given. By the regularity of u there exist

a closed set H and an open set 0 in [0,1] such that
HeB<3B <o

and
max {u(ﬁ v H), u(0 ~ B)} < e.

By Urysohn's Lemma [2, p. 15] there exist continuous func-

tions g5 8y ¢ (0,1] = [0,1] such that

I
}._I

g (H) gz(g)

and

gZ([O,l] w @) 2 0.

1

g, ([0,1] ~ B)

Clearly

Note that

w(B ~ H) + u(3B) < e

IA

p(B ~ H)

A

f £(x) 1 (dx)
B~H

and

A

u(0 ~ B) + u(3B) < e.

IA

J £(x)u(dx) s u(0 v B)
0~vB
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Also

1. 1
[; £ Gon (a0 + [ £0ag outan (= 1,2

because fgl, fgz are continuous. Hence

1

J £(x)u(dx) - e < J £(x)u(dx) < J £(x) g (x)u(dx)
B H 1

0

n—H)O nh}m

1
- 1im [0 £00g, (DU (dx) < lin [B £(0u_(dx)

and

i
J f(x)u(dx) + € > J Fx)uldx) 2 J f(x)gz(x)u(dx)
B 0 0

.
= 1im f(x)gzﬁx)u (dx) > Tim Flx)n. (dx) .
n+e |0 e n»e |B R
Since € > 0 was arbitrary, it follows that
lim f(x)u_(dx) = f(x)u(dx) < lim f£(x)u_(dx).
n+« |B S B n- |B i

Thus

:
j f(x)u (dx) ~+ j f(x)u(dx).
B 4 B

With these results we can prove the following general
existence theorem for P%-invariant measures.

Theorem 30: Let HisHysee € M and fcl),ftz),...e F(D) such

2)

that (u ’P+(n)) e A for each n. Suppose Mo 5 4 e M such
n f

that FU is continuous, and suppose Bl,BZ,...E B are dis-

joint sets such that
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(i) u[u B]=l
m=1 m
and
(13] U(BBI) = u(aBz) = oaew = O
. 5 D
Suppose there exists f € F such that
. ~(n) : .
(iii) £ .7 - £, uniformly on B (me Z_; i€ 8.),
1 1 m 1
m n
and suppose for each m there exist functions_gco),...,gé i
continuous on the set B_ such that
g™ (x) = £ (x) (xeB ; i€ S_).
i i m’ 1
Then (u,P%) e A
. (m) (m)
Proof: Note first that g ou e g8 can be extended to
. (m) (m)P-1
continuous functions h 0 yeesyhp 7 on [0,1] by Tietze's
151

By (i) there exists M e Z. such

Extension Theorem [2, p.
lLet € > 0 be given.

(M)

that
M
ul U B > 1 - g/4,.
m=1 m
(M) M
Set B = U_. B , and observe that
m=1 m
M
U(BBCM)) < T u@B ) =0
m=1 m
by (ii). Thus
- I p (dx) = 1 u(dx) = u(B(M))
B(M) n B(M)

u, (B
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by Proposition 29, Hence there exists M' € Z. such that

1
-

un(B(“)) > 1 - €/4 (n > M").
From (iii) it follows that f(?) > fi uniformly on B(M) for

each 1 € Sl' Let M" € 21 such that

su - - (n) - o
p sup.. | £ (%) XY | o= gfd (n > M").
%M) i i

ieS1 XEB
Now if N € ZO and j € SN, then
U[ai(j:N)] =0
because Fu is continuous; therefore

W[9(I(i,N) N B2l 2 w[AI(j,N).] + u[aBm] = @

S

form=1,...,M by (ii). Since are contin-

0 D-1
uous on [0,1], it follows that
(m)
£ .(xJu [(dx) = h™ " (x)u_(dx)
1 n i ] 1
I(J,N)ﬂBm I(J,N)ﬂBm
- n ™ oucan - £, () u(dx)
I(j,N)NB I(j,N)NB
m m

by an application of Proposition 29. Thus there exist in-

tegers Nl""’NM € Z1 such that
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sup J £ (x)u(dx) - J £ 00U (dx) | < /4
3 1 1
1

1eS
I(j,N)NB I{j;N}NB
m .

it (n > N )
m

form = 1,...,M. For any i € §; and n > max {M’,M”,Nl,...,NM}

it now follows that

r

J £ (xjptdx) - J FOl s Rdad ’

1 1 Il
I(5,N) I(j,N)

1(j,85)nB (M)

< £ (X)u(dx) - £, (x)u_(dx) l
Gl
1(5,mn8

: £ ou (@) - [ £ Gou_(axn) |
1(j,MnsM 1(j,0)np (™
: £ ou@ - [ £ o (ax) |
L. 1 n
1(5,N)B 00 1(j,M)n8 00

y
< I | { £,00u(dn) - J £ (w, (@) |
1(3,M08, 1(3,N)0B,

- 500 - £ P00 | uyen
1(j,N)nsM

. g oouan + [ £ o e
1(5,N)~5 1(5,N)np M
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M ~(n)
< m£1(€/4M) + sup Ifi(X) -

) (x) | u (dx)

5 (%)

+ 1 u(dx) + | Hn(dx)
(0,178 W (0,178 M)

(M)
< ef4 + (e/4) - sup un(B :

neZ1

u(10,11 ~ 3% 4 sup u (10,17 ~ 309,

n>M!'
< efd + /4 + €/4 + €/4 = g,
This shows that

@

I(j,N)

n)
i

(x)un(dx) . J fi(x)u(dx).

I(j,N)

N
But p[3I(iD +j,N+1)] 0 and (uh,P%(n)) e A for each n, so

that

: . . ;
lim Un[l(lD ] N+1] ]

38 St

W[L(iD +5,N+1)]

= Tim £ o ax
11 -+00 1 n
I(j,N)

[ fi(x)u(dx).
I(j,N)



57

Hence (p,P%) € A by Lemma 9.

One drawback of Theorem 30 is that the limit measure u

must have a continuous distribution Pu. Corollary 32 gives
+(n : _

general assumptions on the f( )'s which ensure that F, will

be continuous. The corollary depends on the following

proposition.

Proposition 3l: Let 1/D £ € < 1, 4and let {%(a)}aeA ke 2

family of D-ary transition vectors such that

range (f(?)) s [0,£] (ieS;;aeh.

ILE 4y ) is a family of measures in M such that
o agh

(uu,P—g(a)) e A (o € A),

then the family of distributions {Fu }aeA is uniformly
a

equicontinuous.

Proof: For N e Z let P(N) be the proposition that

N

g ] S - ‘A .

B II(3.N)] ¢ & (3 & S5 o e'A)
Clearly P(0) holds. If P(N) holds and k € Sn+1 then
k = iDN+j for some 1 ¢ S and j € Sy and

M [I(k,N+1)] = £, () u (dx)

o : I(j,N) *

N+1

A

& - u [I(j,M)] <& >
o
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so that P(N+1l) holds. By induction P(N) holds for all
N e ZO-

1/DN, where ZEN < e, If

Given € > 0, set §

x,y € [0,1] such that 0

A

y - x < 6, then
x,y € I(j,N) u I(j+1,N)

for some 0 < j < DN-l; and

o
1A

(x)

B, t¥) >~ F
ua o

M

IA

u 1G]+ [1(5+1,0]

N .
ZE‘ < €

A

for all a € A, Thus {Fu } is uniformly equicontinuous.

a acA
1
Corollary 32: Let 1/D < £ < 1, and let $00) 3(2) ¢ (D
such that
(n) e
range (f i 3 = 10,§] | (i€ Sl; n e Zl).
Let u,ul,uz,...e M such that
A S z

and such that un > u. Then Fu is uniformly continuous.

Proof: By Proposition 31 the family {Fu 3 is uniformly

A n=1
equicontinuous; hence, given € > 0, there exists § > 0 such

that
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~ F Z
| Fun(X) PnCY) L % 5 (n e 1)

whenever x,y € [0,1] such that |x-y| < 8. By Proposition
27 and the monotonicity of PU there is a countable set

B € [0,1] such that

F“n(x) - Fu(x) (x € [0,1] ~ B).

If x,y € B = [0,1] ~ B such that |x-y| < &, it follows

" that
F (x) - F(y) |.=1im | F. (x) - F._ ( < E.
l " el S | F, ( o ¥ | <
n T
Now BC is dense in [0,1] because B is countable. Therefore,

if %,y € [0,1] such that 0 ¢ ¥ - x < 8§, there exist points

C
X1,¥, € B~ such that X, £ X<y <yp and Y1 - X1 < §; and
0 < F - F (x) ¢ F - B (% < E.
< u(y) u( ) u(yl) MEP -
Thus Fu is uniformly continuous.

We conclude Section VI by making a simple application
of Theorem 30. This corollary will be useful in the next
section, where we give a new proof of the existence and
uniqueness of stationary absolute distributions for a wide

class of Nth order Markov chains.

Corollary 33: Let 1/D < £ <1 and N € ZO, and let
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30 (1) 3(2) £ (D)

g % & 9B such that

(n)y o | _
range (f i 12 {D,%] (i € Sl’ n e 20)

and such that each function f(g) is constant on the inter-

vals I(j,N), where j = 0,...,DN-1. Suppose that

£z » £t
1 i1

() (x & [0,1]; i e 8,),
and suppose there exist uy,U,,...€ M such that

i - ) € A for n € Z_. Then there exists uy e M such
n’ £(n) 1

that (UO’P%(O)) e A.

Proof: By Proposition 28 there exists a subsequence

© o T
{”nk}k=l of {u }, .7 such that My > uy for some uy € M,

Observe that Fu is continuous by Corollary 32. For
0

m=1,...,0N set B_ = I(m-1,N). Then
N
D
u[ U_ B ] = u([0,1]) = 1;
= m
also
u(BBl) & axx u(SBDN) = 0
because Fu is continuous. Now the functions

n n
f(g)’f(il)’f(iZ)"" are step functions with the same in-

; (nx) (0) o
tervals of constancy; hence f£*. > £ 5 pointwise on [0,1]
n
implies that f(ik) - f(g) uniformly on [0,1]. In particu-

lar, f(?k) - f(g) on each set B¢ Furthermore, each func-

: 0 : .
tion f(i), i g Sl’ can be extended to a constant (hence
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continuous) function g(?) on Bm by setting
m _ (o) N —
e ™ = 29w e B,
i i m
Thus (“O’Pf(O)) € A by Theorem 35.
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VII. STATICNARY ABSOLUTE DISTRIBUTIONS FOR NTH ORDER

MARKOV CHAINS

If S is a denumerable set and {Xn} is an Nth order
Markov chain on §, then {X_ } can be regarded in a natural
way as a Markov chain {Xﬁ} on the set S' consisting of all

N-tuples from S. The transition probabilities

saw i o3 | X' . = €1 et J)

P (X' = (i
(n ( N-1 n-1 g N

0’
in the new process are merely equated to the transition
probabilities

P(Xn =1, | Xn-l = 11,...,k = 1

in the original process, and all other Xﬁ—transitions are
assigned zero probability. If S is finite and if all tran-
sitions are possible in the X -process, the Xﬁ-process is
an irreducible aperiodic chain in which all states are per-
» sigstent., (For definitions see [6, p. 52].) Then from the
Erd8s-Pollard-Feller Theorem [6, p. 57] it follows that
{Xé} (hence {Xn}) has a unique stationary absolute distri-
bution.

In this section we give a new proof of the fact that
a finite-state Nth order Markov chain in which all transi-
tions are possible has a unique stationary absolute distri-
bution. Such a chain may be regarded as a chain of infi-

nite order in which the transition probabilities
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Qgs+++»Qy.q depend upon only their first N arguments. The
functions £, = QOOV,...,fD_l = QD_lov are then constant on
each of the intervals I(O,N),...,I(DN—l,N). As 1is proved
in Lemma 37, a P%—invariant measure W for such a vector

t - (Qoov,...,QD_lov) is completely determined by its val-
ues on the intervals I(O,N),...,I(DN-I,N); hence the prob-
lem of establishing the existence and uniqueness of u re-
duces to the problem of proving the non-singularity of a
certain DN x DN matrix A(%). In Lemma 36 we demonstrate
the linear independence of the first DN-l rows of A(%);

from this the non-singularity of A(%) follows readily. The

main result of the section is contained in Corollary 39.

Definition éﬁ: A function f € F is said to be a D-ary step

function of order N (N ¢ Zl) if £ i1s constant on each of
the intervals I(O,N),...,I(DN—l,Nj. A vector f ¢ F(D) such

that each f; is a D-ary step function of order N is called

. . (D
a Markovian transition vector of order N. Let k(N) be the
collection of those vectors in F(D) which are Markovian

o
transition vectors of order N. If f ¢ K(g)

N N-k
value of £f: on I| T i D ,N| will be denoted by
1 k=1 k

, the constant

£{iy il,...,iN).

Definition 35: For N € Z4q and il""’iN € Sl set

. . N  N-k
k(ll,...,lN) = kgl lkD + 1,
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(D)

Then for each % e K N let A(%) be the DN X DN matrix whose

TOWS

11
¥
¥

= R
> pN A(D-1,...,D-1)

are given by

¥

E
Y RIRRIGE ¥ TR 1T MR

Dil £( ) ) _)+
- ol L R S | 1)e
i=0 12 7227ty Mgy sraaigs £

" . N
(1 < A(ll,...,lN) < D)
and

= b
T8 % I %, |, S NP

N

-> = ¥ 5 o
where El,...,EDN are the unit co-ordinate vectors in R

» » (D)
Lemma 36: Let f € K N such that
range (£ ) € (0,1] (1 e Sl).
i

- -+
Then the rows R_,...,R

10 oN_1 of A(%) are linearly independent.

Proof: Suppose cl,...,cDN 1 € R such that
s LIS S
oz o R. = 8
j=1 3]

. oM .
where 6 is the zero vector in R . Equating components

gives



Cc

A(d,eeniy)

C - -
A(ll,...,lN)

and

Thus if CDN =

C
ST g D13

D-1
I X A . =
i=0 1 N" aqi,i,. FEN
5 : N
(l < A(ll: . :lN) < Dl -D))
D-2
- I f(diz;i_, W =
i=0 = N A(i,i ,.. ’lN—l)
N . . N
(D -D < A(ll,. .,1N) < D),
D-2
- & f(i;D-1,...,D-1)c =
i=0 - A(i,D-1,...,D-1)

is defined to be 0, then

b= L

c _ = & f(i;il,...,iN)c o
A(ll,...,lN) i=0 A(l,ll,...,lN_l)
. . N
{1 = A(ll,...,lN) < D)
Since
f(i;il,...,lN) > 0
and
D-1
I f(izi ,...,i.) =1,
i=0 LEEEE

it follows that

[(*) gmin ¢

ie§ Al a4
i (1,1l



D-1
< L f(i;il,.. ,iN) c _
i=0 A(l,ll,. ’lN—l)
= C - -
X(ll,...,lN),
with equality if and only if
(%%} < ‘ = ¢ (i E Sl].
A(l,ll,...,lN_l) R(ll,...,lN)
DN
Let V = {Cj}j=l' Let Ck(jls""jN) = min {c : ¢ & V}, and
let ¢ be arbitrary in V. B ®
ACKY v e v s k) y y (%)
min c¢ < C

kESl A(k,jl,...,jN_l) ) A(jl;"':jN)’

and equality holds by definition of c There-

X(jla"':jN)‘
foxe,; by (%),

C = C

S T U Wh. S ¥ C RN X, 3

Repetition of the argument gives

Cc B Ig

A(kN_l)kN’Jll"‘)JN_z) }\(kN’Jl".',JN‘l)

c = i€ .
Ay, eee, k) ARy, e, Ry, 00

Thus

A(k k. )

S 3 A pseeesdyd
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Since ¢ was arbitrary in V, it follows that all
A(kl,...,kN)
elements of V are equal. Their common value must be 0, be-

cause CDN = 0.

- + wgh
Lemma 37: Let f e K V such that
DIl A )

range (f;) € (0,1] (1es)),

-+
and let M(f) be the collection of P%-invariant measures
u e M, Let L be the collection of DN X 1 column vectors of
real numbers, and let LO € L be the collection of positive

solutions X to the matrix equation

2
A(E)*X = Y,

where Y is the DN x 1 column vector with final entry 1 and

other entries 0. Then the function 2 ; M(%) -~ L given by

u[ICO,N)]
Sy = I (u e M(E))
u[I(ON-1,N)]

is a 1-1 mapping of M(%] onto LO.

Proof: To see that ¢ maps M(%) into L let y ¢ M(?) and

0’
set X = &(p). The positivity of X follows readily from the

invariance equation and the positivity of the step func-

tions fO""’fD-l' If X has components xl,...,xDN, then

=3
R ) X
A(il,...,lN)



+i, N)]

= 1.

D-1
= X o B Bl Bl x s dangh) B
AL ,..,i)  i=0 iR N
i N
N © N-k
=u[I(: iD , N)]
k=1
D-1 N-1 N-k
~ & B(i 3% yassgd JIJWEIL B2 1 D
i=0 1 2 N k=1 k+1
N N-Kk
= plIL & 1D »,; M)
k=1 k
D-1
- I £. (xX)nldx)
i=0 N-1 N-k A
i £ 1 D +i, NJj
k=1 k+1
N N-k
=uwlICZ 1D , N)]
= k
D-1 N N+1-k
- I wul[ICZ i D i, N+L)]
i=0 k=1 k
N N-k N N-k
=piItz 1D , N}] = mwfICE 1B , N}]
k=1 k=1 k
; : N
- 0 (L £ K{E yonsyd) 5 T
and
. oV D1
R sk = E ; ®m ¥ ulI(i,N)]
A(D-1,...,D-1) j=1 9§ j=0

Thus ¢(u) € LO.

To see that & maps M(f) onto LO’ let X & L

ponents xl,...,xDN. Note that

0

This shows that @ maps M(%) into LO‘

with com-
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D-1
)2 L Flistiayvanobaal )
: ; N . 1242 s 1IN . .
LR {dy 5o v I 8DN 120 Ry w5 4 gy 1)
D-1
= z X s B ik 8 o L 3
N [ at f(ll,lz, ,1N,1)]

15A(i2,...,iN,i)sD i,
€
A(lz,...,lN,i)

= ) L ) N X
lsx(lz,...,lN,l)sD A(lz,...,lN,l)

= b}

\ X
LA LR, ounvd N

) <D A(il,...,iN).

N

Since X € LO’

i) = X
A(lz,...,lN,l) A(il,...,iN)

(8 & KL, yesnyid B

Adding these last DN-l equations and subtracting the result

from the preceding equation gives

D-1
: £f(D-1;D-1,..,D-1,1i)x = X
i=0 A(D-1,..,D-1,1i) A(D-1,..,D-1).
Thus
D-1
X @ F O£ [A 3. yeeepl A%
' : o N s ; s
A(ll,...,lN) i=0 12 A(lz,...,JN,l)

: ; N
L @ A(ll,...,lN) % D‘).

Now let C be the collection of intervals I(j,N+k), where
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k € Z0 and j € SN+k; and let u be the set function on C de-

fined by setting

~ N+k N+k-j

QLI 1D, M)
J=1L 3
[ f e, g WRY
= E(L 54 sws gl o)
j=1 SR 5 S ‘S P ’

1k+l""’lN+k)

where an empty product (in case k = 0) is defined to have
the value 1. Clearly u is non-negative on C. Also ﬁ is

additive on C, as follows from the equations

.  N+k+t N+k+£-j
z plIf 2. 31D oN+k+£) ]

i i =1
1N+k+1""’1N+k+zesl ? :

i voesd es § grareveaiaiugdd
N+k+1’ ’"N+k+2 1
*X

k(ik+£+l""’iN+k+£)

- 7 [ B #£li. 3. ews e o]
i ’.._-’i _ €S ¥ J’ J+1’ 2 N+J
N+k+1 N+k+£-1""1

Lz " f(igapiigeers s o Inagal)
lN+k+£E J.
x _ ]
A(lk+£+1""’lN+k+£)
k+p-1
= z P B #8388, . sensesd, J]

y . - +1 N+
INek+1? 2 IN+k+p-1857 =1 s 4 ’
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Two other important properties of are
- DN
®d I wlI(j,M)] = I x =1
jesy =1 ]
and
5 N+k = N+k-j k
(**) wpfi( E_ 1.D » N+k)] < &7,
=i 4
where

E = max {fi(x) r 0 ¥ x £ 13 1 B Sl}.

Property (**) follows from the definition of py and the fact
that each xj < 1. Since no fi is ever 0, no fi 18 ever 13

hence & < 1 because the fi's are step functions.



T2
Now let Fa - Q(D) + R be defined by setting Fa(O) = 0 and

Fa(l) = 1 and

A N kol oo
FUCR/D ) = WII(j,N)]

j=0
whenever 1 < k < DN such that k / D. From the non-
negativity and additivity of 1 on C, and from (*) and (*%),
it follows that Fﬁ is non-negative, non-decreasing, and
uniformly continuous on Q(D);-hence Fﬂ has a unique exten-

sion to a continuous distribution function F, on [0,1].

Let y be the unique measure in M such that

u(l0,x)) = F (x) (x e [0,11).

By construction

W[ICi,M] = ulI(,N)] = x,
: j+l

(j & 89,
so that ¢{(u) = X. Also if 1 € §; and

N+k N+k-¢
1. B £ S

J = gEl L N+k’

then

S N+K
plICiD +j ,N+k+1) ]

1]

FLL3d, gmwmpd
( . N)

)1-x

k
«[,m. £( , :
A(1k+l""’lN+k)

£2=1 12;1£+1”"’1N+£

]

f(l;ll:‘"’lN)U[I(J:N+k)]

[1¢5 ne10) FLCOMEX),
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so that u € M(%) by a slight variant of Lemma 9. Thus ¢
maps M(f) onto LO.

It remains to show that @ is 1-1. If My and M, are
elements of M(E) which agree on the intervals
I(O,N),...,I(DN-I,N), then they agree on all of C (hence on
all of B) because they are both invariant measures for a
vector E whose components are D-ary step functions of order
N. Thus @(ul) = @(uz) implies ul = uz, which shows that ¢
15 1=l

g (D)
Theorem §§: Let £ € K N such that

range (fi) € (0,1] (1 e Sl)'

Then there exists a unique yu e M such that (U,P%) e A.

D
Proof: The collection H(N) of vectors £ = (fo,...,fD_l)

such that each fi is a D-ary step function of order N is a

Banach space under the natural norm

[1£]] = max C[|€;]] : i e S;3,

~ AD
where i[fili denotes the sup norm of f;,. Let K = K(N)
>

. (D)
denote the collection of vectors f € K N such that range

~

(f;) = (0,1] for i e S§;. Clearly K is connected. Let K’
-)- ~

denote the collection of those vectors f € K for which

there exists a unique P+-invariant measure p € M. The

theorem asserts that K' = K. 8Since K is connected, it suf-

fices to show that K' is non-empty and open and closed in
pty b



74

~

K. If ¥ e K is the vector whose components are identically
equal to 1/D, it is easy to see that Lebesgue measure is
the only P%-invariant measure in M. Thus K' # @.

To see that K' is open in E, Let ; e K'. By Lemma 37
there is a unique positive column vector X € L such that
ACE)+X = Y. Then [A(E)] ' exists and X = [A(D)] 1-v. By
the continuity of the determinant function and of matrix
multiplication there is a neighborhood N of F in K such
that g € N implies that [A(Zg’)]-1 exists and that [A(E)]-I'Y
has positive components. By Lemma 37, N = K'. Thus K' is
open in g,

To see that K' is closed in ﬁ, let ¥(1),%(2),... be a

~

-3
sequence of vectors 1in K' converging to a vector £ £ K.

i 10 | _
Eventually the vectors f( ) must have components bounded

uniformly away from 1; hence by Corollary 33 there exists
u € M such that (p,PE) € A. Thus there exists
3

[ (0)
%
%

0
XC )

(o)
x

\ N

J

by Lemma 37. Since by Lemma 36 the rows Rl,...,R of

a1
-
A(f) are linearly independent, the solution set {X} of the

matrix equation



D'-1

N
is a line L through the origin in RD « EClearly

(0) (0) : (0) (0)y - .
(x 1 ,...,xDN ) € L. But if (Ax . ,...,AXDN ) is any point
of L whose co-ordinates sum tc 1, then

N N

D (0 D :

A= AL X _) = I Ax(9) = 1%
j=1 ] j=1 j
so that (XXEO),...,AX(%)) = (x(O),...,xch). This shows
0y  * D! 1 DN

that X( is the unique solution X of the equation
A(%)-X = Y. Thus Ly has exactly one element, so that f has
exactly one P%-invariant measure by Lemma 37. Hence
- A

f e K', and K' is closed in K,

Corollary 39: Let QO""’QD—l y Ql - RO ~ {0} such that

and such that each function Qi depends upon only a finite
number of its arguments. Then there exists a measurable
space (f,S) and a sequence of S-measurable functions
{En};=_m on § with 8§ = o({2,}) such that there is exactly

one probability measure P on S for which
(1) {2,} is stationary

and
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[11) P&

I
=
(L]
N

poeed = QAR 4B _svas)

n n-1’ n-2 1 geg*”

almost surely on § (i e Sl).

Proof: By assumption on the Qi;s there exists N € Zl such
that the components £, of the vector £ = (Qoov,...,QD_lov)
are D-ary step functions of order N satisfying

range (fi) € (0,1]. By Theorem 38 there exists a unique
P%-invariant measure. Also the functions QO,...,QD_1 are
Sl—measurable by Lemma 16. Hence the corollary follows
from Theorem 19.
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VIII. ADDITIONAL EXISTENCE THEOREMS FOR P%—INVARIANT
MEASURES

In this section we apply the reéults of Sections VI
and VII to obtain further existence theorems for P%—
invariant measures. As a consequence, we obtain further
existence theorems for stationary chains of infinite order.
In particular, we prove the existence of a stationary chain

of infinite order for every set QO,.. of transition

¥ ,QD"l
probabilities satisfying the natural continuity condition

(ii) of Corollary 24, provided the Qi's are bounded away
from 1. We prove a similar result for Q;'s which are, in a
sense, ''locally Markovian."

We begin the section by introducing, for each D-ary
-+ - ‘ >
vector £, a sequence El(f),ez(f),... which gives a sort of

>
modulus of continuity for the components of f.

Definition 40: For each vector % = (f ) with com-

gaes=afs s
ponents in F let el(%),ez(f),...~be the sequence of real

numbers defined by
e () = max max sup | £ (x) - £ (y) |
m iESl jeSm x,yeI(j,m) i i

(m € Zl).

In [4, p. 712] T. E. Harris showed that a D-ary tran-
-
sition vector £ with at least one component bounded away

from 0 has a P+-invariant measure whenever
f
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111 - /e (B
- E - :00.
m=1 k=1 Kk
Under the slightly different assumption that every fi L8
bounded away from 1, we relax Harris' condition to the

weaker condition
e (H) + o.
m

Of considerable use 1is the following proposition,
which characterizes those D-ary transition vectors ¥ for
which {En(%)} forms a null sequence.

(D)

-
Proposition 41: For f € F the following three state-

ments are equivalent:

(i) The functions fo,...,fD i are continuous on
D
I(g) and right-continuous on Q( ), with a left-
D
hand limit at each point of Q(O);
s = +
(i1) Em(f) v+ 0 as m » «;
(iii) There is a sequence of vectors %(1) € K(?),
+(2) (D) (n) .
f e K*,",... such that £ g & fi uniformly

on [0,1] for each i e Sl'

Proof: Clearly the sequence sl(f),sz(%),... is always non-

increasing. To see that (i) = (ii), assume that
(B + 0
> D
em( ) €

Then for some 1 € Sl there is a sequence of intervals
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I(jl,l),I(jz,Z),... with jk € Sk such that

£. ) - f. > k Z .
x,Y€§??k,k) | l(X lCY) 2 b l)

Let X, be any cluster point of the sequence jl/D,jz/Dz,...,
and let 0 < e' < e. 1If fi had right- and left-hand limits
at Xgs there would exist intervals Ji = (XO - 6,x0) n [0,1]

and J2 = (xo,xo + 6) n [0,1] such that

x,y e J + | £.(x) - £(y) | < ¢ (k = 1,2).
k < i
But by definition of X, there is an interval 1(jN,J) con-
tained in either Jl or Jz; and for this interval
sup | £5(x) - £5(0) | 2 e > €',

x,yeI(jN,N)
Thus either i%§0 fi(x) or %%&0 fi(x) does not exist, By
contraposition (1) -+ (ii).
To see that (ii) > (iii), let e () + 0 and let
£ $(2) | be defined by

f(S)
3

N
(x) = £ (j/D ) (x e I(j,bN); jeS,N¢elZl).
i N 1
Clearly E(N) > K(g) for each N. Furthermore if € > 0 be

~given and ENO(%) < €, then for n > N

max sup | fi(x) - f(?)(x) [
isS1 O<xx<1 %

= max max sup [ £,0x) - fi(j/Dn) [
ieSl jesS, %el(j,1n)
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—
1

> fi uniformly on [0,1] for each i € Sq.

To see that (iii) - (i), assume that (iii) holds for

%, and let XO = j/Dh for some N € Z1 and 0 < j < DN. Given
e > 0, let N' > N such that
. N’
max sup | f£.(x) - f(. )(x) | < er2,
ieS, 0gxsl % A

1 !
Then X, = j'/DN for some 0 < j < DN : and &£ 4 € S, and

x & I{i "K'},
| £.(x ) - £.(x) |
i 0 1

: (N
s | £ 0) ~ £ &) |

(N") (N")
Harhe CATEE ol c 5l
(N")
¥ | £ “{x] - £1x] |
i B i &
< e/2 + 0+ g/2 = €.
D
It follows that each fi is right-continuous on Q[O). The

other assertions in (i) are verified in a similar fashion.

(D)

+
Theorem 42: Let 1/D s £ <1, and let £ € F such that
range (fi) € [0,&] (i =& Sl)

and such that one of the conditions (i), (ii), (iii) of

Proposition 41 holds for %. Then there exists u £ M such
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that (u,P;) e A.

Proof: By Proposition 41 there is a sequence of vectors
%(l) € K(?),g(z) € K(g),... such that f(g e fi uniformly
on [0,1] for each i e §,. If necessary, the (M5 nay ve

modified so that

BatES (f(?)) = (0,€] (i €S mnel).

1°?

By Theorem 38 there is 4 sequence U € M such that

peFganns
(it P> ) ¢ A for each n. By Proposition 28 some subse-
n’ £(n)
quence {p, } of {u,} converges weakly to a measure y e M,
k
and Fu is continuous by Corollary 32. In order to show
that (p,P;) g A, it suffices (by Lemma 9 and the closing

remarks in the proof of Theorem 30) to show that
(ny)
£ i (X)un (dx) -> fi(X)p(dX]
I(j,N) k I(j,N)

(F = SN’ N ¢ ZO; i e Sl).

Fix i ¢ S§q, N e Zy, J ¢ Sy» and let ¢ > 0 be given. Choose

K € Zl such that

(n,)
sup | £;(x) - £ ;5 () | < €/3 k 2 X]
0sxsl
Note that this implies
(n (ny)

sup | £ % (x) - £

i ;0 (x) | < 2¢/3 (k > K).
O<xx<1
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For some L ¢ ZD there is a decomposition of I(j,N) into in-

. ., . (ng)
tervals I(jD”,N+L),...,I(jD"+D"-1,N+L) on which £ i isg
i T
constant. On each of these intervals f iK can be extended

to a constant (hence continuous) function on [0,1]. Since
Fu is continuous, these intervals have boundaries with zero

py-measure. Therefore, by Proposition 29,

(ng) pl-1 (ny)

S (uy (dx) = % £0 (Quy (dx)
K £=0 ¢ k

I(j,N) | I(jD"+&,N+L)

pl-1 (ny) (n,)

@ 3 £° ® fofmid £ X (x)u(dx).
£=0

f
i

I1(3DM+k,N+L) 1(j,N)
Consequently,

g (nlf)
1im £ (x)u(dx) - £ .0 (x)unk(dx) ’

koo
I(j,N) I(j,N)

1

Iy (n )
< lim £.(xu(dx) - f K (xuax) .
I(j,N) I(j,N)

f (HK) (HY)
+ lim ‘ £ 0 (Qu(dx) - £ 3> (x)unk(dx) ’

k+00
JI(i,N) ELd 10

[ (n.) (n )
+ 1im , £ 50 (x)unk(dx) . £ ik (x)unk(dx) l

¢
< | £, - £ .7 () | u(dx)

I(j,N)
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+ 0
_ (ny) (ny)
+ iiz £ - £ .0 (x| unk(dXJ
I{] ,N)

< /3 + 2e/3 = g.

Since ¢ > 0 was arbitrary, it follows that

(n) ‘
55 Gy (@0 > | £ 0ue0).
LT M) I(j,N)
Corcllary 43: Let 1/D ¢ £ < 1, and let Qo,...,QD_1 : Ql+R
such that
(1) irq =1
L =
i=0 Qi
(i1) range (Q;) = [0,&] ' (i€ Sl)
and
0 0
(1ii) i(n) - iC ) implies Qi(i(n)) - Qi(i( ))
(i e Sl).

Then there exists a stationary chain of infinite order

{Zn}:=_m on a probability space (2,S,P) with values in S,
such that
P(Zn=1 | zn—l’zn—z"") = Qi(zn_l,zn_z,...) (i € Sl)
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almost surely on Q.

Proof: Conditions (ii) and (iii) ensure that the vector
} = (Qoov,...,QD_lcv) satisfies the conditions of Theorem
42, (With regard to (i), (ii), (iii) of Proposition 41,
it is easiest to see that % satisfies (i).) Therefore,
there exists a P%-invariant measure yu € M., Clearly the

fi's are B-measurable, so that the Qi's are Sl-measurable

by Lemma 16, Hence the corollary follows from Theorem 19.

Theorem 44; Let T be the collection of intervals of the

form I(j,N), where N € Z0

disjoint subcollection of I whose union is [0,1]. Let

and j € SN. Let I' be a pairwise

1/D < £ < 1, and let } € F(D) such that

range (fi) = [0,£] (i e Sl)

and such that fO""’fD-l are uniformly continuous on each

interval of I'. Then there exists u € M such that

(u,P'f*) € A.

Proof: For I € I' the uniform continuity of £ f on

prxesaty, g

I implies the existence of a left-hand limit for fo,...,fD 4

at the right endpoint of I; hence by Proposition 41 there

exist vectors E(l) € K(?),%(Z) € K(B),... such that

=
f(?) -+ fi uniformly on [0,1] for each i € S The f(n)|s

1.
may be assumed to satisfy

range (f(?)) € (0,&] (1 e Sl; n e 21).



85
As in the proof of Theorem 42, there is a sequence
ul,uz,... € M such that (“n’P}[n)

s+« Converging weakly to a

) € A for each n; further,

there is a subsequence u_ ,u
By Ay
measure y € M with Fu continuous. By assumption

wl 0 I = HC[0:1]) = 1;
Iel'!

and since Fu is continuous,
u(@I1) = 0 (I'& I').

(n) ; ' (n)
Now f g % fi uniformly on each I € I' because f s Ty

uniformly on [0,1]. Also, if I e I' has right endpoint b,
(D)

then £; on I can be extended to a continuous function g 5

on I by setting

fi(x) if x e 1
I
g(.)CX)
1 lim £ (y) if x = b
y+b

By Theorem 30 it follows that (U’PE) e A.

Corollary 45: Let C = {Cm}:=1 be a disjoint collection of

subsets of Ql of the form

(m) ()
1 ,...,Zk (wl)—l " }

C =4dw. 0 : 2 (w)=1
11 1 " »

m

such that
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Let 1D £ € < 1, and let QO""’QD-l : €, » R, such that

1 0
D-1 & 51
i=0 i
and
range (Qi) € [0,E] (i & Sl)-

Suppose further that

5 K . (0) (1) (0

(*) e 5] implies Qi(i y # Qi(i )

(0) (1) .(2)

whenever 1 51 s | .€ C_ for some m. Then there

‘ — n
exists a stationary chain of infinite order with transition

robabilities aperie (5 :
p QsevsQy

Proof: Condition (*) implies that each function fi = Qiov
is continuous on each interval v"l(Cm), with a left-hand
limit at the right endpoint of v_l(Cm). Henice each fi is

uniformly continuous on each interval vﬂl(Cm). By the

usual argument the corollary follows from Theorem 44.

Theorem 44 affirms the existence of a D-ary transition

vector T with a,P%-invariant measure such that

em(fj 4 0,

In fact, if

1/2 » nl > no B awwm 5 D

is any non-increasing sequence of non-negative terms, let

D = 2 and define
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(178 + B (! e 2™yt
+* P 1 - <
k=1 K ) = =
+1 F2
£ (x) = { < (2120 me )
0 ) 0
1/2 if 1/2 < x < 1
and
fl(x) = 1 - fo(x) (0 4 x ¢ 1).
It is easy to check that
£ Z
Em( ) = nm il 1)

and that % = (fo,fl) satisfies the hypotheses of Theorem 44.
This example of a vector E whose components are step
functions with countably many values suggests an interest-
ing application of Corollary 45 to a class of chains of in-
finite order. The application concerns a generalization of
the notion of an Nth order Markov chain. By definition the
transition probabilities in an Nth order Markov chain de-
pend upon only a fixed finite segment of the past. For a
chain of infinite order with transition probabilities which
are not Markovian of any order, it may nevertheless be the
case that in some neighborhood of each sequence (il,iz,...)

the functions QO,...,Q depend upon only a finite number

D-1
of their arguments. In this case we may say that the chain

has '"locally Markovian'" transition probabilities,

Definition 46: Let QO,...,QD_1 : Ql o RO such that
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Pilg =1
i=0 1
Then the functions QO,...,QD g are said to be locally Mar-

kovian if every sequence

belongs to a cylinder set of the form

{ Q : 2 =4 L ensE = 3
15 %  (0) =i, B (0] = i)

on which QO""’QD-I are constant.

Corollary 47: Let 1/D < g < 1, and let QO,...,QD_1 - Ql+RO
such that

D-1 o g

ifo % °
and such that

range (Q,) = [0,£] (i€ Sl)-

If QO""’QD-I are locally Markovian, there exists a sta-
tionary chain of infinite order with transition probabili-

ties QO""’QD-l'

Proof: Since the Qi's are locally Markovian, the cylinder
sets on which they are constant form a (countable) cover of
Q. It is easy to select a subcover C of sets which are

pairwise disjoint., On each set of C the continuity condi-

tion (*) of Corollary 45 is trivially satisfied; hence
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Corollary 47 follows from Corollary 45.
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