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ABSTRACT

The problem motivating this investigation is that of pure axi-
symmetric torsion of an elastic shell of revolution. The analysis is
carried out within the framework of the three-dimensional linear the-
ory of elastic equilibrium for homogeneous, isotropic solids. The ob-
jective is the rigorous estimation of errors involved in the use of ap-
proximations based on thin shell theory.

The underlying boundary value problem is one of Neumann
type for a second order elliptic operator. A systematic procedure for
constructing pointwise estimates for the solution and its first deriva-
tives is given for a general class of second-order elliptic boundary-
value problems which includes the torsion problem as a special case.

The method used here rests on the construction of '""energy in-
equalities'' and on the subsequent deduction of pointwise estimates
from the energy inequalities. This method removes certain draw-
backs characteristic of pointwise estimates derived in some investi-
gations of related areas.

Special interest is directed towards thin shells of constant
thickness. The method enables us to estimate the error involved in a
stress analysis in which the exact solution is replaced by an approxi-
mate one, and thus provides ﬁs with a means of assessing the quality
of approximate solutions for axisymmetric torsion of thin shells.

Finally, the results of the present study are applied to the
stress analysis of a circular cylindrical shell, and the quality of
stress estimates derived here and those from a previous related pub-

lication are discussed.
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il
I. STATEMENT OF THE PROBLEM

1. Introduction

The present thesis is concerned with the problem of axisym-
metric torsion by ferminal loads of a class of elastic solids which we
shall call shells of revolution. Such solids occupy a region of three-
dimensional space, which consists of all points whose distances from
a given surface of revolution -- called the midsurface -- do not ex-
ceed h/2 ; h is the shell thickness. . Our interest is directed especi-
ally to the case in which the shell is thin in a sense to be made precise
later. The analysis is based on the classical linear theory of elastiq
equilibrium for homogeneous and isotropic materials, and it may be
regarded as an extension of that reported in [1]. The present study
represents a continuation to the development of methods for the as-
sessment of the quality of approximate solutions of thin shell problems.
The problem of axisymmetric torsion is perhaps the simplest one
suitable for this purpose, and simple approximate solutions, con-
structed from two-dimensional shell theories or otherwise are llcnown.2
Our results p-rovide estimates, based on three—dimensional elasticity
theory, for the error involved in a stress analysis when the exact so-
lution is replaced by an approximate one.

From another point of view, the present work described here
may be regarded as an extension of that in [3], where a systematic
procedure was given for constructing a pointwise estimate of the so-

lution of a problem of Neumann type for a class of second order

Precise geometrical details are given in the next section.

See, for example, Love [2].
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elliptic boundary value problems in two independent variables. In
order to assess the stresses in the problem of axisymmetric torsion
of solids of revolution, a pointwise éstimate is required for the first
derivatives of the solution of such a boundary value problem. While
such stress estimates were given in [1] for a certain class of axi-
symmetric torsion problems, they were based on mean value theo-
rems, as in previous recent work concerning Saint-Venant's princi-
ple [4, 5]. Pointwise estimates constructed on this basis suffer sig-
nificant dfawbacks, as pointed out elsewhere [4, 5, 67; the estimates
for the solution itself constructed in [3] avoid these drawbacks. The
major extensions necessary to obtain estimates for the first deriva-
tives which are comparable in character to those derived in [3] are
presented here.

Because we are concerned directiy‘ with the calculation of
bounds on errors due to approximate solutions of the differential
equations involved, we shall encounter circumstances which did not
arise in [1] or [3]

The method which we use rests on the derivation of "energy
inequalities' and on the deduction of pointwise estimates from the re-
sults pertaining to energies. We shall obtain most of our results in
the general context of second-order elliptic operators of divergence
type on rectangular two-dimensional domains as in [3]. These gen-
eral results are presented in Chapters II - IV, following the formula-
tion in Chapter I of the axisymmetric torsion problem and the ques-
tions we wish to ask about it. In Chapter V we return to the shell

problem for the detailed application of the general estimates derived
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in Chapfers I -1V.

In §2 of the present chapter, we introduce the natural coordi-
nate system for shells of revolution and state the necessary geomet-
rical preliminaries. The differential equations of elasticity in shell
coordinates and the boundary value problems to be considered for
these equations are formulated in §3. Although Michell's theory of
axisymmetric torsion [7] has been considered in detail for cylindrical
coordinates in [1] and elsewhere, 3 we rederive it here in §4 in the
form appropriate for shell coordinates. In order to exhibit the small
parameter which measures the thinness of the shell, we introduce di-
mensionless variables and reduce the boundary value problem to its
final form in §5. In §6 we construct an approximate solution to the
axisymmetric torsion problem for a thin shell, and we frame the
"residual problem' appropriate to the difference between the exact
and the approximate solution.

Finally, we summarize our results in §7, and in §8 we relate

them to other work in this general area.

2. Geometric Preliminaries. Shell Coordinates.

To describe the shell of revolution, we shall first describe its
meridional cross-section. Let 1, 6, z be cylindrical coordinates, and
let 8 be fixed. Let C be a smooth curve in this half-plane of con-
stant 6 with parametric equations

C: r=ro(§), z=z0(§), 0o<sg=<41, (2 1)

where £ is arc length on C, { is the length of C, and T and z
3

See, for example, Mindlin and Salvadori[87.
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are twice continuously differentiable functions on [0, 4] with zO(O) = 0.
(See Figure 1. ) If h is a‘give;,n constant, ‘the meridional cross-section
of the shell of revolution consists of all points (in the half-plane of
fixed 0) which lie on some line segment of length 'h whose midpoint
lies on C and which is perpendicular to C at their common point.
The set of all points in this plane wlllich are interior points of the
meridional cross-section is denoted by M ; the closed cross-section
is denoted by M .-
The shell of revol.ution is now geﬁeralted by rotating M about
the z-axis (see Figure 2 ). It should be noted that the ""ends"
of the shell are not plane; they are conical surfaces whiéh we shall
call the terminal surfaces. The terminal surfaces correspondihg to
the ends £§=0and §= 4 of C are denoted by L and m, respectively.
- The remaining portions of the surface forming the boundary of the
shell are surfaces of revolution parallel to and equidistant from the
mid-surface S obtained by rotating C about the z-axis. Let ‘Sl de- .
note the outer surface; SZ the inner surface. The region consisting
~of interior points of the shell is denoted by R; its closure is R. The
boundary 9% of R is OR = m +m, + S, +85,.
In shell theory, it is cus,’coma,ry'4 to use an Qrthogonal curvi-
linear coordinafe systerh which we shall call shell coordinates; the co-
ordinates of a typical point P are den(ﬁte'd by (£,0,(). Here, £ and 8
are, ‘respectivelly, the arc length alohg C and the cylindri‘ca.l polar

"angle already introduced, while the coordinate ( is the perpendicular

distance from P to the midsurface S (sée Figui‘e 1). Points on one
See, for example, [9, 10]. i ' '

’
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side of S are associated with positive values of ( , while those on the
other side of S are associated with negative values. The shell coor-

dinates of P are related to its cylihdrical coordinates r, 6, z by

(€, C) = r (£)-C sin B(E) 0sg=<t |
: ’ : (2. 2)
z(£, ) =z (EH( cos B(E) -h/2<¢<n/2

i

r

N
Il

where

11z o(é)
B(E) = tan l[r—"(g] ' (2. 3)

o

is the angle measur_ed from the "r-axis'' in the plane of (r, z) to the
tangent to C in the directio'n of increasing £ (see Figure 1). The
metric of the orthogonal curvilinear coordinate systern5 (E,8,C) is

given by the differential form

2 2
=(1+§%)dgz+tro(g)12(1+f§—)dez+dc", (2. 4)
0

where ds refers to the local Euclidian distance and

1 _ sinfB(§)

@'g)' = 'ﬁ(g):m (2. 5)

o
are the principal curvatures of the midsurface; the superscripted
comma indicates differentiation with respect to the argument.

Some further notation is convenient. Denote by I‘l and 1"Z the
respective intersections of the surfaces S1 and SZ with the meridion-
al half-pla.ne of fixed 6, and let L, and LZ be the corresponding in-
tersections of ™ and T with this half-plane (see Figure 1).

3 The fact that - - () and z_(E) are twice continuously differentiable

on [0,4] assures Ehat (€, 0, 8) do form a coordinate system for suf-
ficiently small h. The orthogonality is easily demonstrated. See

[9,10].
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3. The Elastostatic Boundary Value Problem.

In terms of the shell coordinates (E, 8, C) the basic field equa-
tions of linear elastistatics take the following form in the case of ro-
tational symmetry.

(i) Equation of equilibrium:

2 £ |
—'g[r (3 e )ngj o B [(HP\% ¢! +§€_)¢ng +
&gR ° (1 i-)— Begg[r (1+~L)] (3. 1)

3 -3 3
9E [=ol1+ R, )Tge] + 7o 37 L 1+§§g)(1+§€3)fregj *

. |
+¢g9§5[r0(1+§%)1+ Tegﬁg(l'figg) 20, (3. 2)
K]
gz [r 1+ “r 14 rO-E[(1+I—{€§-)(1+§§-)T€gj "
: oy 1' ‘ 3 :
-i—g‘i( —Q—)ng 22 (1+—§-g~)'r99 = 0. (3.3)

In these equations, ‘ng , etc., denote the components in the coordi-
nate system (£, 0, () of the stress tensor T. We assume that 7 is
independent of 0.

(ii) Stress-strain relations.

Tep = (x+zg)egg +Megg tec ) (3. 4)
Tao = OtZulegg tAle . +eg,) | (3. 5)
ng = (H.Z“)egg +)\(egg +eee), | (3.06)
Teg = 2Megg s - : (3.7)

6 See [107.



; " i (3. 8)

ng = Zuegg g (3.9)
where g&,& , etc., denote the components in shell coordinates of the
strain tensor e, a.nd-}\ and |1 are the Lamé constants character-
istic of a hom'ogen.eous, isotropic elastic material.

(iii) Strain-displacement relations.

1 (B“e ) (3. 10)
& &= & s 3 1
€ g V% R
g
eee_m[ug(1+—r§gw{ro(1+i€g)}+roﬁ%}, (3.11)
o Re
ou ,
eggz_gg_g , | - (3.12)
R .
ee=_;: 9%[ 8 ] , (3.13)
€ 1+f{€_ ro(l+§g— '
£ 8
lge £y 8 "o
eeC_2(1+Re)BC(1+§§—) o (3. 14)
9
. »8u€ +(1+_£_)_3_ (__ué_) (3.15)
CeT? (.5 BB R '8CN , C /7 '
Re Re

where ug s Ug s and u. are the components in shell coordinates of

C

the displacement vector u.
In equations (3. 1) through (3. 15), it has been assumed that

ug 5 ue, and u., and therefore the components of strain and stress,

¢

do not depend on 6.

Our objective is to determine a displacement field u, a strain
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field e, and a stress field T, each defined and continuously differen-
tiable on R, and satisfying (3. 1) - (3. 15). In addition, we require
that the outer and inner.surfaces be traction free, so that

'rgg='rgg='rge=0 on Sl and SZ.’ (3.16)

while over the terminal surfaces T and T, we impose the boundary

conditions as follows:

Here, f.l is a given function defined and continuously differentiable
on [-h/2, h/2].

A necessary condition for the above-bou.ndary value problem to
have a solution is that torques produced on the terminal surfaces by
the applied shear tractions fi be self-equilibrating. Thus, it is
necessary that

f r’fd¢ = j r?f,d; = ‘EC'EF o (3. 18)
Loy Ll
Here, T stands for the scalar torque due to the applied tractions.

If a solution {u, e, T} of the foregoing boundary value problem
exists, it is unique, apart from arbitrary additive rigid-body dis-
placements, provided the shear modulus |4 and Poisson's ratio v

satisfy

w0 , =l<y<i, (3..19)

4. Michell's Theory in Shell Coordinates.

To reduce the problem formulated in the preceding section, we

restrict u by requiring that
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| ug—ug =0 4 ue(§:€)= 1‘(&. Q)“-P(Eng). (47- 1)
‘where r(§, () is given by the first of (2. 2).7 We retain the terminology

of [1] and refer to ® as the twist function. From (4. 1) and (3. 4) -
(3. 9) we find that

(4. 2)
and
&p
_ 8 _HT e . -
T = = T = . 4.3
co pr C £0 1+__§_ ( )
Re

For stress fields 7 of the form (4. 2), (4.3), two of the equilibrium

equations (3. 1) and (3. 3) are identically satisfied,

while the remain-
ing one (3. 2) can be reduced to

0 V. g .2 _ ,
gt (r Tge)+¥[r‘(1+%—{%)¢g6] = 0 | (4. 4)

Substituting from (4. 3) into (4. 4) provides the differential equation
satisfied by ¢ :

8 - 3 £ o e B .3 G 8P _
= : d
The boundary conditions associated with ¢ are obtained from (3. 16),

(3.17), (4. 2), and (4. 3). On the lateral surfaces

o o BE oy _
C— :E‘Z . BC - 0 . (4- 6)
On the terminal surfaces
3 2
o T
=0: B S g e . 4, 7
€ i BE M 1(€) A ( )
R E
=
3 2
E =4 ~r

— % - Eﬁ-fz(é) : ' (4. 8)
Re
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We require a function @, continuously differentiable once on M and
twice on M, which satisfies (4. 5) on M and the boundary conditions
(4. 6) through (4. 8). To fix the arbitrary constant which may be added
to any solution of the foregoing boundary value problem, we must add
a normalization condition. Many different conditions, such as the re-
quirement that ¢ have a zero average on M, will serve this purpose.
Since the type of normalization best suited to our purposes is not
clear until some of the subsequent analysis has been carried out, we
defer until later an explicit statement of this condition.

We now deduce from (4. 5), (4.6), and (3. 18) a useful formula
describing the conservation of torque on sections £ = constant. Inte-
grating (4. 5) with respect to ( from { = -h/2 to { = +h/2 and using

(4. 6), we find that

h/2 3
o
—E 4t df = constant, 0<E<L .
1+ L %8
~-h/2 R
£
Using (3. 18) and (4. 7), we conclude that
h/2 ’
T o Jt
— df = === , 00X Ex 4. 4,
-h/2 R,g

The above reciuction of the torsion problém thus leads to a
second-order boundary value problem of Neumann type for the twist
function . An alternative reduction to a second order problem of
Dirichlet type begins with the following representation, guaranteed by
(4. 4) and the simple connectivity of M, of the stresses in terms of a

stress function V.
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o
oy u-é-é—
T = T =2 (4. 10)
g6~ 2 '8% co r2(1+RL)
g

A comparison of (4. 10) with (4. 3), followed by the elimination of ¢,

furnishes the differential equation for { in the form
-1
) -3 0 9 -3 9
gg‘[l‘ (1+~R-%‘) -gg-]'l'-s—g—[r (1+§gg)§‘é—] = 0 on M. (4. 11)

The boundary conditions associated with (4. 11) follow from (3. 16),

(3.17), (4. 2), and (4. 10).

¢ =h/z: §=C¢C, (4. 12)

¢ =-h/z: §y =¢C,, (4. 13)

£ =0 y = ﬁ-f rzfl(g')dg'+C3 i (4. 14)
-h/2

£ =2 = i—f r,(¢")dgHC, (4. 15)
-h/2

where Cl, C C3, and C4 are integration constants. As a conse-

2’
quence of the assumed continuity of § on M and the overall equilibri-

um condition (3. 18), we must have

i

Og =8y =0y =0y ~ g

» 3 (4. 16)
Since | in (4. 10) is defined up to an arbitrary additive constant, one

of the four constants in (4. 16) is at our disposal. Choosing C1 —

T/2wu , we obtain the boundary conditions for (4. 11) in the simpler

form
C=h/2: V= (4. 17)
¢ =-h/2: v=0, (4. 18)
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¢
£=0: v =&f rzfl(c')dC' ; (4. 19)
-h/2
1 B i v
E=4: q’:'ﬁ rf,(¢")dC’ . (4. 20)
-h/2

Equations (4. 11) and (4. 17) through (4. 20) describe a problem of
Dirichlet type for V.
If the shell is a hollow circular cylinder, the curvature l/Rg

vanishes, and the differential equations (4. 5) and (4. 11) are identical

with the equations of Michell's theory in cylindrical coordinates [17.

5. Dimensionless Variables. The Boundary Value Problem's Final

Form.

Since our ultimate interest is in the thin shell, we shall intro-
duce new independent variables which make clear the sense in which

the notion of thinness is intended. Let

R = mi min |R.{(€)|, min |R.(§) (5. 1)
n{to,ﬂl € [[o,ul 8 [}

be the minimum principal radius of curvature of the midsurface of
the shell, and let

L = min(R, 1) , (5.2)
where 4 is the length of the meridian curves of the midsurface S.
Define

e = h/L . {(5.3)

We speak of the shell as thin if ¢ << 1. To put in evidence the role
played by €, we use the following dimensionless quantities:

xagfl: , ya2¢/h , L=224/5L . (5. 4)
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The open meridional domain M now corresponds to the rectangular
domain R given by
R fex<d , -%<y<-§;. (5.5)

It is also convenient to set

p(x,yie) = e‘zr3(Lx, hy)[ 1 + %{;5 ]_1 : (5. 6a)
q(x, y;e) = r3(Lx, hy)[ 1 + f@i—; 1 s (5. 6b)
where
p(x) = Rg(Lx)/L . (5.7)

We note that, according to (5. 1), the dimensionless radius of
curva.turé p(x) satisfies

lpx)| 21 , 0<xsT . (5. 8)

In the new notation, the differential equation (4. 5) for the twist func-

tion @ takes the following form.

[P, yiekp (¢ yie)] + [alx, yie )CPY(X,V;G:)]Y =0 on R . (5. 9)

The boundary conditions (4. 6) - (4. 8) become

F=dgs ¥,=0. (5. 10)
) 2 Z '
x=0: PO = g Lru(O,hy) fl(hy) = (5.11)
2 2
x=21: PO = & LT.J. (4, hy) fz(hy) . : \ (5.12)

The torque conservation formula (4. 9) now appears to be
1
2

Ip(x,y;e)wx(xay;e)dy = % , 02xsL . . (5. 13)

L
2

7 ] A . ;
We now regard ¢ as a function of x,y and € without introducing

the new notation which is suggested by the transformation (5. 4).
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In (5. 9) through (5. 13) and in the seq;uel, the subscript x or y at-
tached to a quantity indicates differentiation with fespect to the cor-
responding coordinate.
While it is clearly possible to recast the Dirichlet type prob-
lem for ¥ in the new variables, we shall not do so explicitly because

our main interest is in the problem for ©.

6. An Approximate Solution for the Thin Shell.

In the case of the thin shell, ¢ is small compared to unity,
and p is therefore small compared to q, according to (5. 6). To
construct an approximate solution of the boundary value problem which
takes advantage of the thinness of the shell, it is therefore natural to
investigate the result of neglecting the first term in the differential
equation (5.9). Using a tilde to connote an approximation to ¢, we

consider the following mutilated version of (5. 9):

(qﬁy)y = 0 on R . (6.1)

In replacing (5. 9) by (6. 1), we lose the capacity of satisfying all of the
original boundary conditions, as is commonly the case with approxi-
mating procedures which alter the type or reduce the order of the
governing differential equation. To (6. 1) we add the boundary condi-
tions (5. 10),

= 0, (6. 2)

[

y =%

but we discard the boundary conditions (5. 11) and (5. 12) at the ends of
the shell. We thus expect that the approximation C?; will be of poor
quality near the ends. This corresponds to the anticipated '"boundary-

layer' character of the exact solution.
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Together, (6.1) and (6. 2) are equivalent to the statement that
® is independent of y. To complete the determination of $ , we en-
force the torque conservation formula (5. 13), which reads as follows

when applied to EH :

3
- ¢ eT
Cpx(x;e) 1p(x,y;e)d)r =T (6.3)
-2
Thus, "
X 2 =1
® = % j [‘Jﬂ'p(x',y;e)dy] dx' + constant , (6. 4)
o Lty

where the arbitrary additive constant corresponds to an infinitesimal
rigid body rotation and can be taken as zero.
To convert the formula (6. 4) to thenotation pertaining to the

original geometry, we use (5.6a), (5.7), and (5. 4) to write

B2 3o e
e L r 5 £ )AL 1
? T Zm U T+ g/Rg(a')]dg ’ imity
0 -h/2

In [2], Love derives a general, two-dimensional approximate
theory of shells and applies it, in particular, to deformations of shells
of revolution. For the case of axisymmetric torsion, B his theory
leads to a formula for the value at the midsurface of the circumferen-
tial displacement. If in (6.5) we neglect terms of the form (/R in
comparison with unity, so that 1'3(&,, C) is replaced by rj(g) and
1 < —R—é:‘m is replaced by unity, we are led immediately to Love's
formula.

The approximate stress associated with the approximation @

of (6.4) [or (6.5)] would be computed from (4. 3) a;fter replacing @ by
See Love [27], page 56T.
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a. Thus,
h/2 :
T T £ r<€€) r(£, C)dC
TCe_O’ T¢o T Zn T+ C/R_(E) R j‘ WQ—;KTE, . (6.6)
-h/2

The methods to be developed in the sequel permit us to esti-
mate rigorously the errors Cp—a ) T‘C,B_?QG , and Tge-?ge at each
point in the domain. We will find that the anticipated boundary-layer
character of the solution is confirmed, and at points away from the
terminal surfaces, the twist- and stress-errors are small as ¢ = 0.
Moreover, our upper bounds on the errors will exhibit the order of
this smallness in ¢ explicitly., Thus, ® is an "interior approxima-
tion'' to the exact solution ®. Set

$ = 0-0 on R ; (6.7)
the analysis to follow is applied to the boundary-value problem satis-
fied by the error . From (5.9) and (6. 1), we find that § satisfies
the differential equation

(pd, ), + (ad )y = F on R , (6. 8)
where the known nonhomogeneous F is given by

F(x,yie) = -[plx, Y;e)ax(x;e)]x . (6. 9)

The boundary conditions satisfied by c’ﬁ are obtained from (5. 10) -

(5.12) and (6. 2). They are

y=%3 @y=0. (6. 10)
2 z
A T ~
5 = 0 3 pO_ = i%fl -pY_ = gl(y;e) (6.11)
2 2
— " L 7
x =4 1 PP, = e—p_i— 'PCP = g,lyie) - (6. 12)

Since the approximate twist function EpJ was forced to satisfy the torque

conservation formula (5. 13), and since fl and fz satisfy (3. 18), it
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follows that the boundary values g, and g5 appearing in (6. 11) and

(6.12) are '"'self-equilibrated'":
1

2

g, (vie)dy = jgz(y;e)dy = 0 . (6. 13)
1

rulln- Tl

a
This is an important feature of the boundary value problem (6.8) -
(6. 12). In fact, this is the principal reason that we employ ©® as giv-
en in (6. 4) as our approximate solution, rather than the function ob-
tained from ® by retaining only the leading terms in €. If this latter
function were to be used in place of §, the torque conservation formu-
la would be violated, the functions &1 and g5 appearing in the fore-
going "'residual boundary value problem' would not be self-equilibrated,
and the subsequent analysis would be more difficult.

In view of the self-equilibration (6. 13) of the ""end-loads'' in the
"residual boundary-value problem, ' it is to be expected that a neces~
sary condition for the existence of a solution to this problem is that F

satisfies

o

A
j‘ Fx, y;e)dydx = 0 . (6. 14)
0%

The necessity of this condition is readily confirmed. Moreover, it is

easily verified with the aid of (6. 3) that

2
J‘F(x,y;e)dy = i 0<x=<27 , (6.15)
L

2

from which (6. 14) follows.
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7. Summary of Results.

In the sequel, we shall aim at quantitative estimates, valid on

the closure M of M, for the error stresses ?56 and ? , which

ce

are proportional to the derivatives of the error C’(\) according to (4.3).

9

The main results of this investigation sta.‘cel0 that on M

kO kO
A T, " )
lo(x, y)| = K +K e +K e . (7. 1)
kox ‘ ko
- = - =2 (T-x)
|6 e y)| S K 4K e S , (7. 2)
‘ k x k
o Q =
A " Te8 s o i
]mybgyols K +Kge +Kge L, (7. 3)
where
3 e 1y,
b2 (1"77)‘
k = w e , (7. 4)
° r13(1 +£—1-)
“p

and the constants ¢ and 4 are given by (5.3) and (5. 4), respectively.

In (7.4), r T, and S are constants such that

1* 4

r,<srly)sr, . ps|px)]  on M, (7. 5}

2

with p(x) defined by (5.7) and in (7. 1) - (7. 3), the constants Kl

through K9 are fully determined. In fact, we can show from (29.9) -
(29. 17) that for fixed (x,y) on 0 < x< 7 and -% Ssys< % £ Kl through
K.9 satisfy

K, = s 2300 T P jenp [0t IE] 55 B0, « (2.5

? See also (32.1).

10 see (23.1) - (23.4) and (30.12) - (30. 14).
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K, = oe>/%), x, = o*/%), x, =062 asc-0, (7.7)
K, = O(1), K, =0(1) 48 = (7. 8)
K, = o(e5/2)+0(e Jexp[-O(e " )T 45 & 0, (7. 9)
and
| K8=O(€3/z), K9=O(e3/2) o B (7. 10)

Inequalities (7. 1) - (7. 3) are derived from energy-like ine-
qualities which are given in detail in Chapters II and III. When (7. 2)
and (7. 3) are coupled with the basic relations between stresses and

the twist function, they yield, in terms of the variables (x,Vy) ,

k x k _

A M € i B 28 - ueg({’-x) :
|Txe(x,y)| s B2 1+;1(/;7 K, tK.e tK e . 17,113
kox ko

‘ - — - — (L-x)
~ P'_E €8 e
|Tye(x,y){ < 55 | K +Kge +Kge ‘ {7« 12)

where | is shear modulus, and L is defined in (5. 2).

In §32, we shall further show that (7. 11) and (7. 12) remain
bounded as the point (x,y) approaches the boundary of M. This im-
portant result implies that the estimates for the error stresses are

uniformly valid on the closure M of M.

8. Relations to Previous Work.

Energy inequalities of the type (10. 2) were first derived in
connection with problems of elasticity theory independently by
Ruowlen [4] and Toupin [5]. The main purpose of the analyses in [4]
and [5] was to precisely formulate certain quantitative versions of

Saint Venant's principle applicable to a class of elastic solids.
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This type of Saint Venant's principle was also investigated in
[1] for the problem of axisymmetric torsion for elastic solids of
revolution with plane terminé.l sections. Two particular cases of
bodies of revolution were considered; a hollow body and a solid body.
Based on the methods de.veloped in [4], stress inequa.liti-es of the fol-

lowing type were constructed in [1]:

-5
‘ < 304 |H U(o)
| r(x, 8, 2)| = 304/K S5 ——,—— x| - | \/‘k‘(g‘dg : (8. 1)
0
where T stands for any one of the stress .comp onents in cylindrical

coordinates (r, §,z); 4 and v are shear modulus and Poisson's ra-

tio, respectively; c(v) is a constant defined by

c(v) = min [1, '11-T2\:)] i (8.2)

-$<y<l
The constant U(0) represents the total strain energy contained in the
body and can be bounded in terms of the load data and the geometry of
the body; the function k(() is determined. by the geometry and is posi-
tive for (e[0,4] where 4 is the length of the cylinder; and finally, the
constant 6 represents the radius of a sphere which has the interior
point (r, 8, z) as i"cs center and which lies within the ela.;stic solid,

We first note that the stress inequality given by (8. 1) ié char-
acterized by a pure exponential decaying term. In contrast, the
stress inequalities given by (7. 11) and (7. 12) contain non-decaying
constant terms as well as pure exponential decaying terms., This dif-
ference arises from the nature of the basic differential equations

' dealt with. The differential equation, (6.8), governing the error C’B
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in the approximation, is n('at homogeneous and the nonhomogeneous
term is responsible for the non-decaying parts of the stress inequali-
ties. On the other hand, the basic differential equations dealt with
in [1] al;e homogeneous,and this fact is reAsponsiblei for the absence of
non-decaying terms in the results of that reference.

The stress inequality (8. 1) was obtained by combining an en-
ergy inequality of expénential decaying type with a suitable mean value
theorem of elasticity theory. As was mentioned in §1, stress esti-
mates constructed on this basis suffer significant drawba.cics. We can
now clarify this point with the help of (8. 1), where the distance &
from the boundary to the point at which the estimate is to be made al-
ways occurs in the denominator when meq.h‘value theorems are used.
As the point at \;vhigh stress estimates are required approaches the
boundary of the elastic body, © tends to zero, and the estimates fail.
To amend such defects for the problem treated by Toupin in [5])s &
method based on the as-sessment.of .S:Z norms of the derivatives of
the unknown functions, and also on Sobolev's lemma [127], was uéed
by Roseman in [6]. To avoid such dra.w‘;:tacks for the type of problem
treated in [1], we develop a method which is an extension of that em-
ployed in [3]. This method leads to the e‘sta.blishment of useful
pointwise estimates for the stresses; see (7. 11) aﬁd (7. 12). They are
fully determined and uniformly valid i;.p to the bodndary of the cylin- .

der.
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II. ENERGY INEQUALITIES FOR A C.LASS OF

SECOND-ORDER BOUNDARY-VALUE PROBLEMS

9. Preliminaries.

Let R denote the open rectangle 0 <x <4, -3 <y <+ in the
%,y plane, and let p and q be positive, continuously differentiable
functions on the closure R of R. Define the operator L by writing
Ly = (pux)x + (un)Y on R, (9. 1)
for any function u which is twice continuously differentiable on ®. In
this chapter and the following one, we shall be concerned with the

boundary value problem for L which we now state.

ILu=F on R , (9. 2)
Pu_= g at =0, (9. 3)
Pu_ = g, at x =4, (9. 4)
uy=0 at y =+ 3, (9. 5)

where F is a given continuous function on ® , and g, and g, are
given and continuous on [-%4,1]. A necessary condition which must be
satisfied by g1° 8> and F for the existence of a solution of the fore-
going boundary-value problem is easily obtained by integrating (9. 2)

over R and using thle boundary conditions. There follows

D4

(g,-gq)dy = deA. (9. 6)
o R

|

We assume the existence of a solution u of the boundary value
problem which is continuously differentiable once on ® and twice on R.
For some of the results to be derived in the sequel, we shall require

more restrictive smoothness assumptions than those stated above.
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These will be stated explicitly as the need arises.

The '"residual boundary-value problem' (6.8) - (6. 12) govern-
ing the difference €\p between exact and approximate solutions of the
shell problem is a special case of the foregoing general problem. !
The necessary condition (9. 6) is fulfilled in the shell problem; in fact,

reference to (6. 13) and (6. 15) shows that

: !
g1dy = |gydy =0, (9. 7)
b he!
2 2
and 5
2
fF(x,V)dY = 0, 0=x=4 , (9. 8)
1
o 1

so that the three integrals in (9. 6) vanish separately. Therefore, in
our subsequent discussion of the general problem (9. 2) - (9. 5), we
shall expressly assume that the given functions F, gy and ‘gz satisfy
(9.7) and (9. 8). This important assumption permits an essential de-
composition of the basic boundary-value problem into '""subproblems, '
as we now indicate.
We let

u = vt+tw, (9.9)
where v and w are solutions of the following two boundary-value
problems.
Problem 1.

ILv = 0 on R , (9. 10)

b In the shell problem of §6, the functions p, q, F, g, and g, depend

on the parameter e¢. Since this parameter is of no éirect importance
in the arguments used in the present chapter, we suppress it in the
notation.
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PVX
Py = 8;
v. =0
y
Problem II.
Lw = F
PW, = B
pw_ = 0
w =0
¥

=

at x

at x

at y

on R

at x

at x

at y

(9.

(9.

(9.

(9.

(9.

(9.

11)

LZ])

13)

14)

15)

16)

17)

The remainder of this chapter is devoted to the derivation of

energy inequalities for Problems I and II which are roughly analogous

to those of [3]. The present analysis differs from that of [3] in sev-

eral important respects. Apart from a change of coordinates, Prob-

lem I is precisely the problem examined in [3].

The objective in [3],

however, was to obtain a satisfactory pointwise estimate for v, and

this required the consideration of first and second order energies

(see below). We are now concerned with pointwise estimates for the

first derivatives of L and Vi and this will require the use of an as-

sociated third order energy.

Problem II involves the nonhomogeneous term F in the differ-

ential equation, and its treatment accordingly requires significant

modifications of the analysis as given in [3].

10. First Order Energy for Problem L.

We define the first order energy V

by writing

associated with Problem I
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1
2

z
Vl(z) = jj (pvx2 + quz)dydx . (10. 1)
0:

e

Problem I is identical with the problem considered in [3], except that
the nonhomogeneous boundary condition occurs at x = 0 in [3], rather
than at x = 4. We can, thus, appropriate directly the results of [3]
after changing the variables in (9. 10) - (9. 13) from x,y to x',y',

where x'=4-x, y'=y. After such a tra.nsformation,z we conclude

from §3 of [3] that

-2k(4-z)

Vi(z)s vV, (1)e (10. 2)

where

kzvr,/qo/pl ) (10. 3)

and q, Py are positive constants such that

plx,v) < P > q(x,y) = q, on R/ . (10. 4)

The constant Vl(t) represents the total (first order) energy

associated with the boundary value problem. An upper bound for
Vl({,) is required before the inequality (10. 2) becomes fully deter-
mined. We shall repeatedly encounter the question of finding an upper
bound for total energies. We defer the calculation of such bounds
until a later chapter.

Expression (10. 2) provides mean square estimates of the first

derivatives of v.

We omit the details of the transformation and we do not repeat in
detail the arguments in [3].
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11. Second Order Energy for Problem I.

In analogy with the procedure in [3], the second order energy

Vz(z) associated with the boundary value problem is defined by

i

Z
" 2
VZ(Z = g + quy)dydx s (11.1)

NIH

In order to obtain an exponential decay inequality for Vz(z) , we need
more stringent assumptions concerning the smoothness of the func-
tions p, q, and g5 appearing in the statement of Problem I, as well
as the solution v. We assume, in fact, that p and q are twice con-
tinuously differentiable on R_, that gz is continuously differentiable on
[-4, 1], and that v is continuously differentiable twice on ® and three
times on ®. The assumed continuity of vxy on W, in particular, im-
plies that the condition

p(t, £3)g)(#3) - p (L, £3)g,(3) = O , (11. 2)
must be satisfied by p and g, -

According to §4 of [3], Vz(z) satisfies the inequality
Vo (z) S [V, (0)+ 2k o, e-2)V (4)]e " 2KE2) (11.3)

where the decay constant k is again given by (10. 3) and Vl({,) and

Vz(»f,) represent the total first- and second-order energies respective-

ly. The constants o, and a, are such that on ®

‘pxpy_

P xy

< @ on R , (11, 4)

1
Vra

and

< Q on R ., {11.5)

_l vy _ qw YY_,_SZf

2| pq P
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When the total energies Vl({,) and VZ({,) are estimated, (11.3)
provide mean square estimates of ny and vyy' A mean square

estimate of V., €an be computed by using (11. 3), (10.2), and the dif-

ferential equation (9. 10).

12. Third Order Energy for Problem I.

The inequalities (10. 2) and (11. 3) provide mean square esti-
mates of first and second derivatives of v respectively. These are
sufficient to establish pointwise decay estimates for v itself, as
shown in [3]. If pointwise information concerning the first deriva-
tives of v is required, it is necessary to analyze the third order en-

ergy defined by

N

2
V3(z.) = (pv + qvxyy)dydx . (12: 1)

xXyx

OC—ﬁN

o

To establish a decay inequality for V3(z), we begin by setting

v=vxy . (12 2)

We assume that the given functions p, q are three times continuously
differentiable on ® , and that the solution v of Problem I is continu-
ously differentiable three times on ® and four times on R.

By differentiating the basic differential equation (9. 10) once
with respect to x and once with respect to y, we find that v satisfies
an equation of the form

Iv = H , on R , {12, 3)

where H is given by
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H= - v - v - # v =2 v =2 v -p.V - -
Paocy V™ Geyy Yy T Proc Sy Ve T2y Yy T PPy Ve Py Vo Ty Viyy

g S S (12. 4)
From (12. 2) and the boundary conditions (9. 11) - (9. 13) satis-
fied by v, we derive the boundary conditions satisfied by v :
v = 0 it 2 = O , {12. 5)
P (L, YV (L, ) = pL, y)gh(y)

L, {12.6)

i

- P, (L Yigyly) at x

(12, 7)

[

v = 0 at vy = +£
Thus, v is the solution of a problem of Dirichlet type described by
(12.3), (12.5) = (12.7). Continuity of the boundary value of v is as-
sumed by the smoothness assumptions already made concerning p and
g, and by the assumption (11. 2).

The definition (12. 1) can be written

1
7 =

Vyiz) = JJ (p-‘;i' - cﬁ; )dydx . (12.8)

=2

bt

Now

—J (N0

Z -
V,(z) = Jﬂ [pvxv)er(quv)y-;Lﬁdydx ,

so that integration by parts and reference to (12.3), (12.5), and (12.7)

yields

1

V3(z) = (p_\dr; ) ,Jﬁj’; Hdydx . (12.9)
0 -

nof=

! at X=Z 1
2

Ni

Furthermore, differentiation of (12.8) furnishes
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Jv|=

Vé(z) = (p-{r-z + q?z) dy . (12.10)
x
atx=z

o[

For any positive constant k3 , we find from (12.9), (12.10)

1 Ll
2 E 2
R | - k.
-V! = - 7 -
Vi(z)+ 2k, V,(2) J‘(pvx+qu 2kypvv,)  dy 21<3j LJ"deydx
i atx=z 0 i
2 2
1 1
L o |
= - | [plv_-k $)2+(q$2-pk2’$2)]dy-2k A vHdydx . (12.11)
PR y P¥3 3/ '
3 0-2
Bearing in mind (10. 4), we have
1 L ]
-3 B2 _2 2 |
- = '
1(qu pk3v )ay qoflvydy p1k3 flv dy . (12.12)
-z =2 -~
Recalling that
1 1
f?r_;dy % 5™ | gy , (12. 13)
1

for any function v which is continuously differentiable on [-1,2] and

vanishes at the end points, 3 we choose for k3 in (12. 12) the value

kg =k=-n’\fq0/p1 (12. 14)

as in (10.3). Combining (12.12), (12.13), and (12.11) then provides

the inequality

[

z
-Vé(z)+2kV3(z) < Zkl j‘ dedx’ . (12.15)
0 =

N[ <]

In Appendix A, it is shown that

A See, for example, [11] or [137.
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1
Z 2
NN ik
| [ VEdyds| < B[V (2)V,(2)134B,V ,(214B, Vi(a) (12. 16)
0 -%
where the positive constants {3 s ﬁz , and [33 are such that on ]
2
lp | 2lp P | 2lp qvl I, | 2P
4 Xy~ x ¥y X _ 2
E31“”3_“"‘“[ * z 3/2 12" 2 | % Pxx‘
) p p
e, | j2p, la o1 1ol
Yy Xy _
+p3/2q1f?-l -qu[ N " 5q f P pw‘ ¥
la | P
vy .
e | ey |
P ctay,y | 2lp [T Ipyal lp, | 2p_q
-BZmax[xxy-F XY + LTy — .x-’
S y g - p EIEMICE I
P g 2la | la,. | lp,. |
O R p o g ey
vy P [pq ¥ ®
la | o lp_a_l qu | P
Y - x Lyl 11
o 172 372 ‘ qyl+ pq 172 3./2+ Zp‘( 3 )x] ’
—p |P | +__|__l (12J17)
B3 = = 2 p 2 g ’ s

Substitution of (12. 16) into (12. 15) provides the differential inequality

1
~Vilz)+ 2kV,(2) s 2k[B,{V (2)V,(2)}24 8,V ,(2)+ B, Vi(2)] . (12.18)

From this it follows immediately by integration that

V,(2) S V(L) ~2k(t-2) o1 e Zkszl Zkg[v (CIV,(C) )1Zac +

Z

i Tog 5" ﬁpze'Zkaz(g)+p3e"2k‘-:v'z(g)]dg . (12.19)

If the last term in the integral on the right side of (12.19) is integrated
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by parts, we find

2k(L-z)

V,(z) < [V3(&)+2kf33V2({,)]e— ~2kp,V,(2)

<

@ i
+2ke ™ 1075 (g [V, (OIV,(0)]2+(B,+2Kp, )V, (0]AC - (12.20)

z

Replacing Vl(g) and Vz(g) in the integral in (12. 20) by their upper
bounds according to (10. 2) and (11. 3), and discarding the term
-ZkﬁBVZ(z) in (12. 20), we obtain

Vo(a) s [V4(e) + 2B,V (a)]e ™ 2520 4

| ML

4
+z1<e‘Zk“'z)I{plvf(&)[vz(»z,)+zk(al+a2)(é-g V(2]

z

+(B,+2kB, )V, (L) 2k(a, +a, )2~V (2)]}dC .

In the remaining (-integral, we replace z by zero throughout to
establish the final third order decay inequality

-2k(4-2)

Vi(z)= Ce {12, 21)

where the constant C is given by

G = V(042K (2B, +{14ke)B, IV, (L) 4k (B, +2KB, )0 +a, ) 2V (2)+

+2k£l31[Vl(%)]%[Vz(é)ﬂk(alwz)&vl(&)] : (12.22)

In this formula, Vl(é), VZ(%), and V3({,) represent the total energies

of various orders; k is given by (12. 14), ﬁl, ﬁz, and [33 by (L2, 170

and oy and o, are defined through (11. 4) and (11. 5).

13. First Order Energy for Problem IL

In order to establish suitable inequalities for the energy distri-
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butions of various orders of Problem II, it is convenient to convert
the problem from one with boundary conditions of Neumann type to one
of Dirichlet type. Referring to (1.14) - (9.17), we accordingly intro-

duce a new unknown function t through the equations

tx = -qu
s (13.1)
ty = pwx+ G
where
L
Gx,v) = jF(é,Y)dg on R . (13. 2)
x

The existence of a solution t of (13. 1) is assumed by the fact that w.
satisfies (9. 14). Elimination of w from (13. 1) yields the differential

equation for t :
L= (2t) +(3t) =(26) o B . (1% 3)
g = P Y P
x Y ¥

Expressing the derivatives of w in (9. 15) - (9f 17) in terms of G and
the derivatives of t with the aid of (13. 1) provides boundary conditions
for t in a form which can be easily integrated. Performing this inte-
gration and adjusting the constants of integration to assure the con-

tinuity of boundary values of t, we find4

I
S

[g,(n) + G(0, n)]dn at x=0, (13. 4)

-2
t=20 at x = 14, (15:5)
t=20 at y =+ 1 (13.6)

% The arbitrary additive constant which may be added to any solution

t of (13. 1) has been chosen so that the constant value of t along x = 4
is zero.
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We now direct our attention to the boundary value problem (13. 3) -

(13.6). It is convenient to decompose the problem by writing

t = n+s , (13.7)
where n satisfies
L*a = 0 on & , (13. 8)
n = Jﬁ[gl(n) + G(0, n)]dn “at =0, (13.9)
~E
n = 0 at x=4, (13: 10)
n =0 at y==+1, (13.11)
while s satisfies
Lo = (G/p), o B, (13.12)
s = 0 at x=0 , =4, (13: 13)
s = 0 at y=%x1. (13. 14)

The legitimacy of this decomposition of the boundary value problem
for t is a consequence of (9. 7), (9.8), and (13. 2).

We now introduce the first order energy distributions associ-

ated with the boundary value problems formulated in this section. De-

fine first order energies Tl(z), Nl(z) , and Sl(z) by setting

£
1. 2 1 2
'I‘l(z) = ff[atx +5(ty-G) Jdydx , (13.15)
z-%
2 L
_ 1 2 r 2
NI(Z)— J l(anx +5-ny )deX 3 (13. 16)
zZ-2
%%
5 le2:1 _g)?
Sl(z)u J lqux +p (Sy G)” " Jdydx . (13. YT}
Z=z
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An easy application of the Schwartz inequality shows that

TI(Z) < ZNl(z) + ZSI(z) s (13.18)

As an upper bound for Sl(z) , we employ the simple estimate

S,(z) = 5,(0), (13.19)

based on the monotone decreasing character of Sl(z). Since the dif-
ferential equation satisfied by s is nonhomogeneous, we would not
expect Sl(z) to decrease exponentially.

To analyze Nl(z) , we proceed as in [3]. An integration by
parts in (13. 16), together with the boundary conditions (13. 10) and

(13.11), shows that

Nl(z)= - | {(=nn ) dy . (13. 20)

atx=z

S Y

Q|-

LYl

Moreover, we also have from (13. 15) the formula

z
Wigie = [{onZsdnmy . 92ase , (13. 21)
1 , 4 x Py
=
for the derivative N'l(z) . Thus, for any non-negative constant kl .
1
3
2k
1 2 1
N'l(z) + ZkINl(z) = (—nx +—n 2'+——nnx) dy
1 Py 4 atx=z
=
1
= 2
2w | [ide k5 2_k1 “s
A q x 1 P q 4
=
% I = 2 kf 2
s - —n_ =-——n )dy . L3. 22
1(p w % )dy ( )
-2

Recalling the definitions (10. 4) of the constants p, and q_, we infer



1 1
2 kZ 2
Ntlz)+ 2k N (m)se) L | nfdy - -2 | nlay! . (13. 23)
1 gl Py 7y
1 o 1
=g ~2
Since 1 1
2
nzdy 2 172 nzdy ; (13. 24)
Y
L e 4
2 z

for any continuously differentiable function of y on -3 <y < % which

vanishes at the endpoints, = we may again choose

k, = k = -n"qu/pl (13. 25)

and conclude that
Ni(z)+ ZkNl(z)S 0. (13. 26)

Thus,

N, (z) < Nl(O)e_ZkZ i (13. 27)

Combining (13. 19) and (13. 27) in (13. 18), we have

-2kz

Tl(z)S 2[Sl(O)+N1(0)e 1, 054, (13, 28)

In the analysis of the present section, we have assumed that
P, 4, and G are continuously differentiable on R , and that each of
the boundary value problems for n and s possesses a solution which

is continuously differentiable once on R and twice on R.

14. Second Order Energy for Problem IIL.

We define w on R by

\;(xs Y) = WY(X:Y) ’ (14. 1)

2 See [117 or [13].
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and we obtain the differential equation satisfied by w by differentiating

(9. 14) with respect to y. Thus,

Lw = H on R , (14. 2)
where
P_P P Fp
g5 (LEY Fe'y . __z ¥
H=( D ny)wx+( = q_y )w + ( qy)w +F =
(14. 3)

In addition, the boundary conditions satisfied by w are found from

(9.15) - (9.17) and (14. 1) to be

_ g;(y)
= ! - 0 = .
p(0, Y)WX(O: y) gl(y) mpy( ,Y) at x 0, (14. 4)
w =0 at x=4, (14. 5)
x
w = 0 at y=+%. (14.6)

We now define a second order energy Wz(z) by

1

L
W, (a) = j L T (14.7)
x y
z-%
Again,
z
Wy(z) = j(PW2+qw ) dy , (14. 8)
y
) atx=z
2

while an integration bjr parts and (14. 2), (14.5), and (14.6) give

N
¢S,
=

Wz(z) (pww_) dy - fjv_vﬁdydx . (14. 9)
x
atx=z

[
™

For any constant kZ’ we therefore have
1

4
—2 —3 - —_
W‘Z(z)+2k2W2(z) = - j(pwx+qu+2k2pwwx)dy— Zsz wHdydx . (14.10)
z -

2 at x=z



e

Arguing as in the preceding section, we choose k

5 & k as in (13. 25)
and find that

I

W'z(z) + ZkWZ(z) = Zk’

-

e

Jv‘_dydx~ {14, 11)

We now require a useful estimate of the integral appearing in
(14, 11).

In Appendix B, it is shown that
Lz
|J(‘ Hdydx
z-3

T
< v;Ti(z2) + v,[T(z)]2, (14.12)

where Tl(z) is the first order energy defined by (13. 15) and Y; and
Y, are such that

oyt o, Sy ‘onﬁ,
f(F —EX)ZldA %Sy on R . e
gy P q 2
In (14.13), P &, are given by (11.4) and (11. 5), while F is given in
(9. 14).

From (14.11), (14.12), and (13. 27) we find

Wi (2 2kW (=) = 2Ky, [S,(0HN (0)e™ 2

=

J+2ky, (S, (0)+N, (0)e 2%

< 2k{y,[8, (01N, (0)e ™% T4y, [S,(0)] %4y, [N, (0)]% 2]

(14. 14)
Integrating (14. 14) provides
W, (z) < y131(0)+y2[sl(0)]%+2y2[N1(O)]%e"kz+{W2(0)+2k-{,le1(O)—
-2\(2[1\11(0)]a ¥15,(0)-v,[8,(0)]2 } (14. 15)

Here, k is given by (13. 25).

Expression (14. 15) represents our main
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result concerning the second order energy for Problem II. In order

to obtain it, we have had to assume that p,q and G are twice continu-
ously differentiable on ®, and that w is continuously differentiable

twice on ® and three times on R.

15, Third Order Energy for Problem II.

The final inequality pertaining to the distribution of energy
which we require is obtained by considering the function w defined on
R by

= W, =W . (15. 1)
% Xy

g

We assume that the given functions p,q, and G are three times con-

tinuously differentiable on R, and that the solution w of Problem II is

continously differentiable three times on R and four times on R.
Differentiating the differential equation (14. 2) with respect to

x, we find that w satisfies

sl
o}
8
3

Lw = (15. 2)

where

TN T -2 B - .
= F ey Py ™x " Yeyy ™y P Uy Wy ™2y W " 2P W PO e

- -pP W -q W . 15.3
LV xyy P Vxxy” WV yyy ( )

The boundary conditions satisfied by w are easily determined from

T

(14.4) - (14.6) to 5e

w(0, y) = Bt By p (0,y) at=x=0, (15. 4)
PO Y)  2(0,y) " ¥

w = 0 at x =1, (15. 5)

w = 0 at y = 3. (15.6)



-39
In analogy with the discussion of the preceding section, we find

that the third order energy defined by
Lz
W3(z)= ‘f (pw +qw )dydx s (15.7)

1
zZ -2

satisfies the differential inequality
L3

Wi(z) + 2kW,(z) < Zk’f v::/f-idydx} (15.8)
1

N
1
]

where

k = wyfa /e (15.9)

as in (13.25). In Appendix C, it is shown that

i 1
< By [T (2)W,(2)]2+ B, W,(z)- B, W (Z)+ B LW, (2)]2,
_7‘1’7 ’ (15.10)

wHdydx

la l-1F [ 1F | e | |2Fp, 2lp  F|
P, = max st £ et §oggy -| | ~———¥"—
CIE 17z o p3/Z 372

(15.11)
(15.10) in turn converts (15.8) into the form

ook 7 i
W1 (z)+2kW,(z) < Zk{ﬁl[TI(Z)WZ,(Z)]‘°‘+ﬂ2W2(z)—133W'2(Z)+l34[W2(z)]"‘} .
(15; 12)

Integrating (15. 12) yields
, z
Wolz) < [w3(0)+zk¢s3w2(0)]e‘2kz+zke‘2kz{pljBZkCETl(C)WZ(C)]%dg+
0

Z Z
5 |
+(pz+2kﬁ3)j‘ e Zkng(g)dg+p4fe2k€ [wz(g)]zdg} . (15. 13)

0 0
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Substituting (13. 27) and (14. 15) into (15. 13) and simplifying
the result, we find ‘ ‘

-kz/2 ~kz -2kz
< :
W3(z) K1+nze +n3e +;c4e . (15, 14)

where the constants ny KZ’ H3s and 74.4 are such that

1 %
wy = (By+2kBy){v,S(0)+y,[5,(0)12}+p, Jvlsl(omztsl(on = ¢

+ 7B, "YIESI(O)]2+v2[51(0)]3/2, (15. 15)
T
"y = %{;34 JZ\{Z[Nl(O)]H\/? 5151(0)[2\!2‘}1\11(0)+w2(0)]+

+4J2 (1+2kL)B, v, S5, (0N, (0)+ \[Zﬁlyle(O)[JSI(O)' +JN1(O)‘]+

+\/E'ﬁlNl(O)[WZ(OHZk{,lel(0)]} , (15, 15
1 s
g = 4v,(B,+2kB, [N, (0)] 242, [W,(0)+2kty, N (0)1Z , (15. 17)
and
K, = ZkL(B,+2Kp, )L W, (0)+2kty N (0)1+[ W, (0H2kB,W,(0)] . (15.18)

We now turn to the question of estimating the total energies of
various orders appearing in the energy inequalities derived in this

chapter.
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III. BOUNDS FOR TOTAL ENERGIES

16. Fundamental Minimum Principles

The inequalities pertaining to the distribution of energies of
various orders which we have derived in the preceding chapter involve
the total energies as undetermined quantities. While it is not ex-
pected that these can be computed exactly, it is possible to obtain up-
per bounds for them by applying suitable minimum principles. This
was done in [1], [3], and [4] for the problems considered in these
references, and our procedure here is similar to that of [3]. In the
present section, we collect the minimum principles necessary for our
purposes. Throughout this discussion, L represents an operator of
the form (9. 1) where p and g are positive continuously differentiable
functions on the closure R of R.

Theorem 16. 1.

Let ¢ be continuously differentiable once on R and twice on

R, and suppose
Iep = @ on R, (16.1)

where & is continuous on R. Then for any E\p which is continuously
differentiable on ® and satisfies @ = c?) on the boundary 9R of R we

have

. 2 2
j(pwx+qmy+2m@)dA = j(p@x+qu+2m§ A, (16. 2)
R R

with equality holding if and only if C?) =EQP.
We shall apply this theorem to the problems of Dirichlet type

formulated in Sections 12, 13, and 15.
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Theorem 16. 2.

Let § be continuously differentiable once on ® and twice on

R, and suppose that
Ly = ¥ on R, (16. 3)

where ¥ is continuous on R, and that
y =0 at y=%1. (16. 4)

Then for any \j’}~which is continuously differentiable on ® and for

which
@Y = ol at x = 0,4 (16.5)
we have
] AZ
dA = + +2, s .
JGuzeleh f(pu ab 2+ 24w )aa (16. 6)

with equality holding if and only if

N
Y_.-pq;x and \yx—q\],!y on R .

<>

We shall apply this inequality to the boundary value problems
formulated in Section 14.

The proofs of the two theorems stated above follow along
standard lines. See, for example, [11] and [14]; see also Section 6

of [3].

17. Total First Order Energy for Problem I.

From (10.1), the total first order energy Vl(L) for Problem

Iis given by

Vl({’,) = ‘J‘Lr + qv )dydx g (17.1)

.

i

By the application of an appropriate minimum principle, it has been

shown in [3] that



w3

v,i) = (5’— +Z;— )rn?:Z, (17. 2}
o o]
where m, is such that
m, 2 | g,(y)| -zSysz, (17.3)
and
on R . (17. 4)

wa2p0>0» Mmﬂ2q0>0

Total Second Order Energy for Problem I.

18.
The total second order energy Vz(&) for Problem I is found

from (11.1) to be
1
2

{4
Vo) = | | vE + qvl
2 - PVyy Yyy)dydx . (18.1)
0

-

o)

It was shown in [3] by an application of Theorem 16. 2 that

L 1 2 2
V,t) = ('5'; 4 r‘o)(m?’ + 2y;m,), (18. 2)

is such that
g,(y)
m, = lg'Z(V) - mpy('ﬁ,y)[ on [-3,3], (18.3)

and vy, and m, are given by (14.13) and (17.3), respectively.

where m,

Total Third Order Energy for Problem I.

19.
Referring to (12. 1) and (12. 8), we have the expressions
1 1
1z Lz
Vol = | |{ovo. +ove. Jyde= | | (pvedars)dyds (19. 1)
3 (Vg Wiy )Y (vt avydyds, .
e 4 0-%

for the total third order energy. In order to establish V3(f,) with the

aid of Theorem 16. 1, we identify ¢ and & of that theorem with v

and H of (12.3), respectively. Inequality (16. 2) then shows that
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=

1
2

(M

4 2 £
V3(»f,) < JI (pc?Jx2+q$;)dydx+ 2| ‘J'v vHdydx | + 2| j
=3 0 - 0

y (19,2)

=

DHdydx
z

n
(M

for any C?) admissible under the hypothesis of Theorem 16. 1,

In Appendix D, it is shown that

ff,‘;'
lj' “dedx’ :} PHda sv3+vl[:Vl(»{,):]%-i-\)Z[VZ(L)]%, (19.3)
0-% R(0)
where
1
iz ~n
pP Lyt y) py(&,y)gz(y)} l
Vg Jl p(L,y) g20) - 5wy ¥
~2
3
(L. y) . P (L. y)g,(y)
+‘ 511—7cm.y) [g'(y)- = ]dyl, (19. 4)
Jl q(t, y 2 P, v)

|

and vy and v, are given by (22. 4) and (22. 5), respectively.

Substituting the inequalities (19. 3) and (A. 24)of Appendix A
into (19. 2), we find that
4z

A i
AOE j"j:(pc?a}qcoj)dydm 20 _+B, [V, (LIV,(£)1Z4B,V, (1)} +
0z

|

1 1
+2{\)3+\)l[Vl(‘l’,)]""-i-\)Z[Vz(&)]"'} . (19. 5)

One admissible @ is given by

S, y) = [gé(y) ) py(é, y)gz(y):l
P(’Lr Y) PZ(’L'Y)

7 (19.6)

Compute @X and c'ﬁy_ from (19. 6) and upon substitution of these quanti-
ties and (19. 6) into (19. 5), we find that

2

v, s (- =3 2)+2 [V, (@IV,(L)]3 4B,V

3t 'I;_z_x,'+q1*“m4)+ LB R LV (aV o 1= 43,V p0el] +
o X L

+2{v+v [V, ()34, [V, (2)]%) , (19.7)



.

where
gxtv) g,y (L, y)
e ’ [p(ZL y) 2z . :l ’ on [-7:Z] (19.8)
’ p (L,y) A
P; 2 ply) v a2 absy) on R, (19. 9)
p, and m, are given by (17. 4) and (18. 3), respectively, and '\')_3 is
such that
L L
2 2 2
- Mg m,
Vg = — [Px(&,Y”dy-i- |q,y(‘t,y)|dy, (19. 10)
Py -1 Polo Y1
-1 e

while v; and ;2 are obtained from v} and v} respectively after

replacing mg by mg and m, by m, in (22. 10) and (22. 11).

4

20. Total First Order Energy for Problem IIL

To complete the energy inequality (13. 28) for the first order
energy Tl(z) associated with Problem II, it is sufficient to provide
upper bounds for the total energies N,(0) and Sl(O) associated with
the boundary value problems (13.8) - (13. 11) and (13.12) - (13. 14),
respectively.

The boundary value problem (13.8) - (13.11) for n is one of

Dirichlet type. From (13. 16), the associated total energy is given by
N,(0) = fj(in +—n )dydx. (20. 1)
1
-2

In order to find an upper bound for N,(0), we shall apply Theorem
16.1 with ¢ = 0, @ =n and with the operator L in that theorem re-
placed by L%* as defined in (13.3). Thus, if ‘-‘3 is a continuously dif-

ferentiable function which coincides on the boundary of R with the so-



i

lution n of (13.8)-(13, 11), inequality (16. 2) asserts that

1A 1 P a2yl 2
- — dA = + = dA = N.(0) . 20, 2
Iq PP ) J ™ Tpry) 1{0) (R 1)
R®
To obtain an explicit estimate of N, (0), we choose
A i
P00 y) = (22%) | [gy(n) + G(0,m)]dn (20. 3)
1
-2

The fact that ® is admissible follows from the smoothness properties

of 81 and G and from (9.7), (9.8), and (13. 2)
into (20. 2) leads in s

a

Substitution of (20. 3)
straightforward way to

N, (0) = 2(m1'2+ MO

g (20. 4)
o LqO

where m, and M are such that
igl(y)‘ s ml on [".‘1:'! %] E]
B (20. 5)
|Gx,y)|] =M on R,
and P+ 4, are as in (12. 4). Expression (20. 4) provides a bound for
N.(0) in terms of quantities pertaining to the given data

To complete the estimate (13. 28) we must also consider the

total energy Sl(O) associated with the boundary value problem (13.12)-

(13.14) for s. From (13.17)

L%.' ‘L% 2
1 2.1 1. 2.1 2 2G G
S.(0) = jﬂ - —(5. ~-G)“]dydx = j‘ o e~ s 4 Nau
g Lasxtpley )*Jayax qux 2% T Sy p/rex
0-3 0-3
L% 43 2
- j T . zs( ) Jdydx + jﬂ S aydx (20. 6)
q x P Y P
O__l. Y 0 s
3 2

In this computation, we have used the boundary conditions (13. 14) satis-
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fied by s at y = = 3 in the integration by parts.
To estimate SI(O), we again use Theorem 16.1 with L re-
placed by L*, with ¢ = s and with

= (G/p)y. (20.7)

Thus, from (20.6) and (16. 2), we have
i

'
+ =8+ z@(%) Jdydx + Jr‘j‘ G—p dydx , (20. 8)
y 0-

for any sufficiently smooth @ which coincidés with s on the boundary
of R. An integration by parts in (20. 8), together with the vanishing of
c‘?) at y = £% converts (20. 8) to
1z
S,(0) = JP [%bez + = (cp - G)Zjdydx ’ (20.9)
0 =

ol

To make (20. 9) explicit, we choose

¥
A
cp(x,y):—xTxe—j‘ G(x,n )dn . (20. 10)
s
Clearly c’ﬁ =0 at y = -1 ; from (9. 8) and (13. 2), it follows that
Cp(x, 2) =0, 0<x<{. Finally, the definition (13. 2) implies that

% =0 when x = 4. Thus, ® is admissible. Substituting (20. 10) into

(20. 9) leads, after some manipulation, to

g 108 = 25 I ¢ P mrtey 4 28 11 % 25 (20. 11)
1 - B

where M is given by the second of (20.5), and M' is such that

M' = |G | = [F| on R . (20.12)

When (20. 11) and (20. 4) are combined in (13. 28), there results a
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decay inequality for the first order energy TI(Z) associated with

Problem II. Furthermore, setting z = 0, we find the total first

order energy to be

T (0) < 4l - (vfeefmef) + L (1+2%)M% + (m PeMP)( 2+

1
==} «
(o} o Ps {'qo

(20.13)

21. Total Second Order Energy for Problem II.

The total second order energy WZ(O) for Problem II is found

from (14.7) to be

(B

e
_ o el
WZ(O) = f (wa + qu Mdydx . (21. 1)
0 -

o=

Along lines similar to those used in establishing the estimate

for VZ(&) in §18, we find by an application of Theorem 16. 2 that

L3
W(O)sf (L1424 1% 2)ayax + 2(y, T,(0) + v,[T,(0)]%} . (21.2)
2 qa'x " pVy 11 ¥pk g . y
b5

An admissible {I\l is given by

b g,

A a n)
U (x, y) = (%i) Lgyn) - E%E?Ypy(o’n)]d” . (21. 3)

b
2
Substituting (21. 3) into (21. 2), we find

1
W, (0) < ('5% + rio)mé +2{y, T (0)+y,[ T (0)]} , (21. 4)

where P,» 4, are given by (17. 4), Y3 and Y, by (14.13), and Tl(O)

by (20. 13), while m g is such that

g,(y)
mg 2 |g}(y) - Sosy Py ¥)[  on [-h31. (21. 5)
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22. Total Third Order Energy for Problem II.

Along lines analogous to those used in establishing the esti-
mate for V (af,) in §19, we find, with the aid of Theorem 16. 1, that

the total third order energy W (0) for Problem II satlsfles
1

L3 4

A2 2
w0 = [ | o8 24ad Prayaxez| [
0- 0 -

i 22 1)

Nl'—‘ o)
0

1%
I'-H_Idydx‘ +2‘ jj IfIdydx
0%

[

for any ® admissible under the hypothesis of Theorem 16. 1.

In Appendix D, it is shown that

2
H’ $Adydx i = ljcpHda‘ < v v, [T (0)]’—+v (w (0)]5 (22.2)
0-1 R(0)

A
F J{y_cpda.
0)

p X Fu A A Fp
v2| [ edaals| [0 (B) basls| [ 0 8, -—0)aa
R(0) ®(0) R(0)

R

P

]dy| +

1

TP 0 yR0y) P (0,y)g(y)
.,E p(0,y) Le1 ) -~
T2

%_O_ch(o y)lg}(y)- =105} ]dy‘ . (22, 3)

<
s
[\
—  \
ey
55
~<~—'
o)
=38
ST
o
P
| SIS |
i
| VO |
——y
G
‘4\-—
v
al®
o
P
, M
™
+
N
I
N"’J
N
go}
NV
™
%
Wl ™
A
)
o

1
2Py Y8, as]*
+|R‘J;O)(qy) ( qyy) 3 X (22. 4)
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and
A2 L AP 1 A2 1
v [y e ot i P2 ] for ]
®(0) R(0) R(0) P
» (P ¥, 1% e 2 . P,ad 124, |3
o [ $%aa] | [ (52 -0 )9%a] 4 [ [(25)]
J 3 Z P P ‘) q
R(0) P R(0)P 4 R(0) Y
1 1
B Zdad® T r, 2, Gl
£ § O P i +{ L, ®). ] ——}+[ (q,) (-—I—JX-ZqY) —gda] +
R(0) 2(0)
+[ ( p)zﬁdaﬁ [(a, B8 1%9 : (22. 5)
YPx! 2 U LAY '
®(0) Pd R(0)
Substituting (22. 2) and (C. 11) of Appendix C into (22. 1), we
find
&L
WOSI 8 2hed 2)dydxt 2{B. [T (0)W.(0)]%+p. W (0 W O]
305 | | o rab Sdaydir 2By [Ty (O0W (015, W, (0)+p LW, 00 %48 ]+
0-2
i 3
+2{v _+v [T (0)]2+v,[W,(0)]%} . (22.6)

An admissible Q,;\) is given by
g1ly) PY(O,Y)gl(Y):l

A _1-x
Plx, y) = ( Z )[P(O’Y) - p‘z’(o’ o) {(22.7)

Compute E\px and @y from (22. 7),and upon substitution of these

quantities and (22.7) into (22.6) and after elementary reductions, we

IO kW 2 0)W.(0)]% 0 0)]%
W,(0) < (;z—z—*ql’vme, 2{B;[ T, (0)W,(0)]%+p, W, (0)+B,[ W, (0)]2+B,}+
o
1 1
+2{v!+v [T (0)]%+v5[W,(0)]2} , (22.8)

where p; and q; are given by (19.7); 'By and B, , B, and B; ave
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given respectively by (12.17), (15. 11), and (C.12) of Appendix C; \Jz),

\)'l , and \;"2 are such that

P xy

Tt gt Fl ot T 1o (E
\’025: J IrxyidanLZI dat | lpy(;)xlda-{’j

_—pd
qu(F - )|da.
R(0) R(0) R(0) R(0)

2 1 p_(0,y)|da + == qu(O,y)idy], (22.9)

|-

e 2 2 3 2 2
Lo PG ) S ] D n) B[

R(0) P q ®(0) E

L0 Z(E)fl ..qw)zﬁf} , (22.10)

- 3 1 4
vh = ‘fn‘é { [j‘(px;qyy)z%] 2+2U4 (qXY)Zd—;] a+2[j(pxy)2q d—%] g
) P

°  R(0) R(0) R(0

=

2

& 2dal? 2, %Py Zda] >, Pyl
+[J Pyay) _71 +[f(py) % 7ty I3 e
(0) AR ©

R(0) y

& qoﬁkj(olqyyldaw;; jlpxxld”[ﬁ (‘)ly) (—px_zq}')?} *
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- [{_g_ & Z e ]
(0) ®(0)
‘]_2 " a ‘[_?_ :
+ rné[ a, J 5 |py|da+ a, Ilq_y‘da.:l : (22.11)
R(0) R(0)

p, and q_ are given by (17. 4); mg is given by (21.5), while m, is

(o}

such that

gily) g.ylp (0,y)
{ - it } on [-1,17 . (22.12)

Yy
When the upper bounds of total energies of various orders
derived in this chapter are combined with the inequalities pertaining
to the distribution of energies of corresponding orders established in
the preceding chapter, the inequalities become pointwise decay esti-
mates in terms of parameters pertaining to the given data of the basic

boundary value problem.
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IV. POINTWISE ESTIMATES

23, Preliminaries,

In this chapter, we are concerned with pointwise estimates of
the values of the solution u and its derivatives u and uy at any
point (x,y) in the closure ® of . The results to be obtained state

that

kx
lulx, y)| s K, + Kpe 4 K3e'k(’ﬁ'x) , (23.1)
kx
N -k(4L-x)
lu (o y)| s K, + Kge + Kge ’ (23.2)
Lk
8 -k(4-x)
|uy(x,y)| < K, + Kge + Kge £ (23. 3)
where

k = Trqqo/pl ; (23. 4)

as in (10. 3), and the constants Ki (i=1,2,...,9) are given explic-
'1’cly1 in terms of known data. The pointwise estimates of the solution
u and its derivatives u_ and uy given by (23. 1) - (23. 3) are thus fully
determined, and they do not deteriorate near the boundary of R. In
fact, they hold everywhere in the closure R of R.
We first present the method used in establishing (23. 1) -
(23. 3), the details of which will be given in the subsequent sections.
Recall from (9. 9) that
U= v+ w. (23.5)
We now differentiate (23. 5) with respect to x to find
W, = Vx+wx’ (23.6)

and then differentiate (23. 5) with respect to y to find

See (29.9) - (29. 17).
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u = v tw . (23.7)
¥ ¥ ¥y

In view of the triangular inequality, the following are true:
lul = |v[ + [w], (23. 8)
lu | = |v |+ w,|, (23.9)

and

. (23.10)

Obviously, in order to estimate u and its derivatives, it is
sufficient to estimate v, w, and their respective derivatives, and
then take the corresponding sums in accordance with (23.8) - (23.10).

In estimating v and w , the general procedure coincides with
that of [3] in a broad sense. We first write

vix,y) = vix)+ $xy), (23.11)
and
wix,y) = wx)+ wix,y), (23.12)

where v and w are defined by
1

2
vix) = J"V(x,y)dy i , (23.13)
1
and ,
z
wix) = J‘w(x,y)dy ‘ (23. 14)
1

]

It follows from(23. 11) and (23. 13) and from (23. 12) and (23. 14) that
1

)
JPQr(x,Y)dy = 0, (23. 15)
-1

and
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&ix,y)ddy = 0 . (23. 16)
s
Next, the averages v and w will be estimated in terms of the

first order energies Vl(x) and Tl(x), respectively; the deviations ¢

and W will be estimated in terms of the first- and second-order en-

ergies V](x) and Vz(x) and Tl(x) and Wz(x), respectively. We
shall then extend the procedure with minor modifications to estimate
the derivatives Vo vy, W and Wy . It is for these estimates that ap-
propriate normalization conditions on v and w will be introduced to
assure their uniqueness.

We shall consider v first, because the associated differential

equation is homogeneous and admits a simpler treatment.

24. Pointwise Estimate of v(x,y).

v is the solution of Problem I given by (9. 10) - (9. 13). Al-
though we can appropriate directly the results of [3] for the pointwise
estimate of v as pointed out in §10, we prefer to present the analysis
in detail, because it differs significantly from that of [3] and because
we shall often refer to it in later sections.

We first introduce the average of p by
z
pix) = |plyMdy , (24. 1)
1
-z

where p is given by (5. 6a).

Upon differentiating (23. 13) with respect to x , we find



Vx(x) = jv (x, y)dy . (24, 2)

xE = vxdy . (24. 3)

The differential equation (9. 10) and the boundary conditions

(9. 13) imply that

pv_dy = 0 . (24. 4)

The difference of (24. 3) and (24. 4) yields

v, = [(ER)yay . (24. 5)

Upon integrating (24. 5)from x=0 to x =2z, we find

v(z) - v(0) = J“J'(E_:_R) v dydx . (24. 6)

In (24.6), if v(0) vanishes, then v(z) can be estimated in terms of the

first order energy Vl(z) given by (10, 1) after an application of

Schwarz's inequality. At this point it is clear that the natural normal-

ization condition on v(x,y) is

=

v(0) = |v(0,y)y = 0 , (24.7)

o]

(24.6), (24.7), and Schwarz's inequality imply

F
|¥(z)| = c IV (2)]2

—%e-k(l,—z)

< C,[V,(1)] § (24. 8)
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where the constant C, satisfies

1
2 1
2
. (24.9)

1
L

1

— dx
ffp ”.
0 -

»U.[g'

1
2
Next, we estimate the de}viation % . Consider a point (%, y) fixed in

R. For any constant & , such that
8¢y and -31<6< (24. 10)

=
o
-

the following identity holds true:

&
oay) = - | g [0 - L5 R0e 0)34C © (24.11)

: ¥
When the indicated differentiation is carried out, Schwarz's inequality

and the triangular inequality imply
1

[

: \ r
|¥(x, y)| = (J"x‘rzdy) ]6-y| T2y (f%yzdy) |6-y]2. (24.12)
3 3
Upon differentiating (23. 11) with respect to y , we find
v (xy) = ¢y(x,y) . (24. 13)
In view of (9. 13), we also find
; (24. 14)

A 1
v (lx43)=0.
Y( z |
It follows from (23. 15), (24. 14), and the continuous differentiability of

2
¢ on [-1,1] that

(24. 15)

(24.12), (24.13), and (24. 15) imply

See, for example, [11] or [137].
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l

1 1
| %=, v)| s( & dy)z(l—ﬁ—;)i[f + |6-y|%). (24. 16)

o

Since the left hand side of (24. 16) is independent of &, we can mini-
mize the inequality with respect to |6-y| over all admissible 6 of
(24. 10). A straightforward computation shows that this minimum

value occurs at

_ 1 .
|8-y| _in =% > (24. 17)
whence
1
|90, )| s =25 [T(x)17 , (24. 18)
mw
where "
2z
Fe) & | vy . (24. 19)
LY
-3

If we differentiate (_24. 19) with respect to x and then integrate the

result from x=0 to x =z, we find

=

zZ
V(z) = V(0)+2 J v Ldvdx . (24. 20) -
0-

va-

Schwarz's inequality and the triangular inequality, together with (10.1)

and (11. 1), imply

z Z 1 2% 1
Vi(z) = V(0) + Z(kJ'I v dydx) (I v dydx)
0-% 0-%
< T(0) + —2s [V, (2)V ,(2)]7 (24. 21)
quO l

where the positive constants P, and q, are such that

PSP “and 4, % 4 on R . (24.22)
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Our task is then reduced to finding a useful upper bound for

the constant V(0), which can be expressed as
6

Vi) = ~ ax[‘“ Vi) Jdx (24. 23)
0

where V¥ (x) is any function which is continuously differentiable on
0 < x=< 1 and satisfies
vy(o)=1 , v(1)=0, (24. 24)
while & is a constant such that
0<6<4. (24. 25)
Now we carry out the indicated differentiation in (24. 33), and then

'computa.tions similar to those leading to (24. 21) yield
5% 63
¥(0) = -z“\v(a)v v, dydx - ¢ fwé)v dydx
0

1
=

2y ‘&’
0

P9

(e gle]

where the positive constants \lfo and \,1/1 are such that

v, = rr(;ax [ ¥ix)| and ¥, = max v x)| . (24. 27)

Ll 2
Substituting the energy inequalities (10. 2) and (11. 3) into (24. 26) and
simplifying the result, we ’find

2k4

V(0) = U Q(d)e” . (24. 28)
In (24. 28),
U
Q(8) = (1+—62-)e2k6 ’ (24. 29)
2¥ 1
U, = ——— {V, )V, (L)+2ke(a+0,)V,(L)]] 2, (24.30)
P4



-60-

: 1
P_V V(L) z
. =lv X 1 - - 24.31
2 %V¥Wa V¥, [VZ(L)+ZkL(a1+aZ)V1(L)] ( )

The independence of V(0) on & enables us to minimize Q(d)

and

over all admissible & of (24. 25). Computations then lead to
9)

2 2
ﬁmin_—z-( ”WE'”’ (24. 32)
and .
- l, - 2
Qmin = [1+kU2( 1+'1?ﬁ; + I)Jexp[kUz( 1 +}?U_z_ = i )]
‘ (24. 33)

1f (24. 25) and (24. 32) are to hold simultaneously, then

Ik = Tr"éo/pl > 1/2¢8 . (24. 34)

We shall assume, hereafter, that the given functions p and q
satisfy (24.34).

Noting that for any x>0,

’ 2 v L
1+;< 1+;, (24. 35)

and
x(‘/1+;2c--1) SR (24. 36)
L4
X
we can bound QQ - by
2
Qmin < [1+kU (2 + )]exp =
3, o sl 8, B e
kU2
< 6(1 + kUZ) P ' (24.37)

Combining (24. 28) and (24. 37), we find

T(0) < 6U,(14kU,Je 2Kt (24. 38)
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It follows from (24. 18), (24. 21), and (24.38) that

|55, y)| = —%{"éUl(lkaz)e'kL_l_ (__i?_ﬂz (v v, o1 4}
Podo (24. 39)

The expressions (23. 11), (24.8), (24.39), (10.2), and (11. 3)

lead to, after simplification,

lvix, v)| = |vix, y)| + |(>(x,y)| <D e'ku’-x)+D e-kf’ ; (24. 40)
1 2

where 1 1 1

D, = cltvlmjzu‘/g(poqo) v XV (e, v, (W 4. 41)

and

" 1 1 1
D, = 4‘[%' o, IV IV iactia ta, v, 0 g TV 027
(24. 42)

25. Pointwise Estimate of vx(x, %)

For convenience, we let
Blx,y) = Vx(x,y) . (25.1)

The arguments used in the pointwise estimation of B(x, y) are

parallel to those used in estimating v(x,y). We therefore set

p=7P+h , (25.2)

where the average P is given by
1

2
A

Blx) = J B(x, y)dy , (25.3)

e

A
and the deviation B satisfies

(M1

ﬁ(x,v)dy 2 0 . (25. 4)

[

In view of (9. 11), (25.1), and (25. 3) we find

B(0) = 0 . (25. 5)
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It follows from (24. 4) and (25. 1) that

|-

p(x, y)B(x,y)dy = 0 . (25.6)

(S

Differentiating (25. 3) and (25. 6) with respect to x, we find
1

2
px = ‘prdy ’ (25.7)
=3
and
1
2
(PR, tp By = O, (25.8)
3
respectively.
Recalling (24. 1), we can write the product of (24. 1) and (25. 7)
as 1
2
Plx)B (x) = | p(x)B_(x,y)My . (25.9)
-z
(25.8) and {25. 9) imply
3 B 1
B = i P
B, = |(ER)pdy- | Px
ble -%: 5 S _% 5 Bdy . (25.10)

Integrating (25. 10) from x = 0 to x = z and using (25.5), we find

ol —

zZ
o = P
B(z) = ‘J‘ (P—_P-)pxdydx - J' X pdydx . (25.11)
0-3 P 0-3 P
In view of (9. 10),
1
ﬁx = - 5 (vax + quY + quy) . {25: 12)

Upon substitution of (25. 12) into the first integral of (25. 11)
and an easy application of Schwarz's inequality and the triangular in-

equality, it follows from (10. 1) that
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1
2

1
|B(z)] = C,[V,(2)]3+(C4+C [V (2)]

1 L _ &
s {C, [V, (Lhzkt(a +a, )V ()T ZHC 4G IV, ()] 2] e 072

(25. 13)
where the constants CZ’ C3, and C4 are such that
g z
C, = II(E{-) qdydx | , (25. 14)
0_% PP
13 _ 2 1
s 2
Cy2 If[(p—z)%] dydx 1, - (25. 15)
= q
0_% P .
and L %_‘ > "
PX 'i )
J" = 2 2 ¥ e (25. 16)
0-1P
(9. 13) and (25. 2) imply
5 .
CHES 1) = Ve o 1) . : (25.17)

The conditions (24. 4) and (25. 17) and the continuous differentiability

of ﬁ imply (sée footnote 2)

p g 1
F3 2
By = x° | By . (25. 18a)
Y
o Hy, :
2 2
or
1 X
2
2 2 Paz
P
vyxdy g g dy . . _ (25. 18b)

Then, calculations analogous to those leading to (24. 18) and (24. 21)

yield

Nlr-

1B v)| s —2= [B(x)]

\l?

(25. 19)

where



-

2 —
B(x) = vaydy and B(0) = 0 , (25. 20)
=2
and
1
B(z) < E%[VZ(Z)V3(’.‘”2 : (25. 21)

(25.9), (25.21), (11.3), and (12.21) imply

|Bix, y)| < C5e"k“"x) N (25. 22)
where the constant C5 is given by
1/2
2 1/4..1/4
05 2 2(;-{-5——) [VZ(L)+Zk&(G.I+qz)V1(aL)] C o (254 23)

o
Combining (25. 2), (25.13), and (25.22), we find

-k(L-x) |

lv (xy)| s Dje (25. 24)

D3 is a constant such that

> 1 ' 1
D3 = CZEVZ(L)+2k%(al+a2)V1(&)]2+(C3+C4)[V1({,)J3+C5 . (25. 25)

26. Pointwise Estimate of vy(x,y).
The boundary conditions (9. 13) and the twice continuous dif-
ferentiability of the solution v on R imply
1
2

2
dy . .
_— v Y (26.1)

Then, along the same steps leading to (24. 18) and (24. 21) we reach

1
v b y)| § Z=IXG)I% (26. 2)
L

where

See, for example, [11] or [13],
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2
? 2
X = dy , 26.3
(x) 1vyy y ( )
.
and
i ,
X(z) = X(0) + Z[V,(=)V5(a)1% (26. 4)
and
X(0) < 6U3(1+kU4)e_2kL i (26.5)
where
o ik
U, = —a-;- [VZ(L)+2kL(a1+aZ)V1(L)] G (26.6)
Vo EVo (L) 2kalo 40, )V - (4) 1
_ 11t Yz il |
U4-§¢,;l: = ] . (26.7)
and C is given by (12. 22).
Substituting (26. 4) and (26. 5) into (26. 2), we find
-k(4- -k
v xiy)| < De (4 x)+D5e 1 (26. 8)
where 1 1
2 [,z I
D, = W ‘/—q: C [VZ(L)+2kp(a1+az)vl(L)] , (26.9)
and ‘
.2 1
D, = —= [6U,(1+kU,}]%. (26. 10)

m
The inequalities (24. 30), (24.31), {26.6), and (26. 7) involve
the constants \Po and 1{/1 , which in turn depend on the function V(x)
defined in (24. 24). A function V¥ suitable for the present need is

given by
Vix) = (l-x)exp -( = 1)x R (26.11)

from which and (24. 27) we find



.

P
v =E'13ax H/(x)[ =i \]rl = max |\P'(x)| = L (26.12)

° ,1 0,1 o

27. Pointwise Estimate of w(x,y).

The procedure used in estimating w(x, y) is akin to that used
in §24, except for some modifications which arise due to the non-
homogeneous term, ¥, in (9. 14).

Upon differentiating (23. 14) with respect to x, and taking the

product of this derivative and (24. 1), we find
1

W B = pwxdy . (27. 1)

(UL

Next, the differential equation (9. 14), the boundary conditions (9. 17),

and the assumption (9. 8) imply

o=

Plx, y)w_(x,y)dy = 0 . (27. 2)

(N1

It follows from (27. 1) and (27. 2) that

(S0
ol

P ) w dy . (27.3)

m\

o

Integrating (27.3) from x =2z to x =4 , we find

P)w dydx . (27. 4)

N|»-Lj =
'U I
o I

L
FiL) - wiz) = f

We observe that a natural normalization condition for the solution w

of Problem II is given by

o=

wil) = w(L,y)dy = 0 . (27. 5)

]
W=
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‘Recalling (B. 3) and (B. 4) of Appendix B, we apply Schwarz's inequal-

ity to (27. 4) and keep (27. 5) in mind to find
1 1 2 S
|%(2)] = € [T (2)1% = G, {[25,(0)]2+[ 2N, (0)]%e™**} , (27.6)

where the constant C, is given by (24. 9).
To estimate the deviation ® , a procedure analogous to that

leading to (24. 18) and (24. 19) yields

|wix, y)| < -Z——WEW(X)]%, (27.7)
T
where "
2
W(x) = wzdy ; (27. 8)
. y
-2

Differentiating (27. 8) with respect to x and then integrating the re-

sult from x =2z to x =4, we find
1

i3z
w =W£-ZII dydx . 2 Y
@)= We)-2 | | ww dyax (27. 9)

z-2

A result similar to that of (24. 21) states

' 2

NP0,

To find a useful upper bound for the constant W({), we introduce an

Wiz) < W)+ [Tl(z)WZ(z)]% " (27.10)

identity as follows.
L

W) = f = VS ) Wi lax (27. 11)
£-8

where V(x) is continuously differentiable on 0 < x < { and satisfies
¥(0) = 1 ’ v(t) = 0, (&, 12}
and & is any constant such that

0<bd<4. (27. 13)
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Then, a result similar to that of (24. 26) states
2y

o) L\I/

1
W)= [Tl(a-a)wz(x,-a)]hga-(l; T, (4-6) , (27. 14)

Pdg

where the constants Y _ and ¥, are given by

¥, = max [vix)| . ¥, = max |¥'(x)] . (27. 15)
[0,4] [0,2]

After substitution of (13. 27) and (14. 15) into (27. 14), we are tempted
to minimize the result over all admissible & as we did in (24. 29). If
we try this in the present case, we have to determine 5min from a

transcendental equation as follows.

k 2
exp{-i Bmin} e | +a26min+a3 min °* (27. 16)
where the constants ays @y and a.3 are known. A closed form of
amin such as that obtained in (24. 32) is beyond our means in the

present case, but a suitable choice of an admissible & is given by
6 = £J2. (27.17)

With this choice of &, (27.14) becomes

- 2y 1 2‘{’1
W(t) s —=== [T, (t/2)W,(£/2)]% + — T, (t/2). (27. 18)
| q
By, o

A suitable choice of the function V(x) satisfying (27. 12) and the

smoothness assumption is given by

Vix) = 1 —32- . (27. 19)
Then
y_oo= x |yx)|] = 1,
o [raaul x) |
(27. 20)
¥, = max [V'(x)| = 1/¢.

3

In view of (27.7), (27.10), (27.18), and (27. 20), we find



L

[ty < 2Y2 )1 1 [T W51 e —Lg [T (3017 +

+-—~.1__T [Tl(x)Wz(x)]4 ) (27. 21)

o)

Combining (23. 12), (27.6), (27.21), (13.27), and (14. 15), we find,

after simplification,

|w(x,y)| s Dy + Doe + Dge ; (27. 22)

where the constants D6 . D7, and D8 are such that

1
1 1 1
< 25, (0)
D, = 01[251‘0)]2+4\[§[ Polqo 4{y151(0)+y2[5 (0)]2} +
1
2S,(0)
Ll I
+z€[ | (27. 23)
1 il .
D, = 2‘/% %(P;O )Z[SI(OHNI(0)]4[2y2N13(0)+W2(0)+2k1’,ylNl(O)—
1 1 1 1
1 Bl o B
-2¥,N 2(0)-7,5,(0)-v,5,2(0)] "+(5 * [N, (0)7* [v;5;(0)0+y, 5] o+
) (e ligle
1
2N, (0) 1=
1 2
+[*'qo ] ; ’ (27. 24)
and

N a(0)+W 5(0)+2kcty N, (0)-2y,N; -’-(0)

1 1 1 1

1 , L
~y,5,(0)-y,,5; (0)34*‘(;)%;’4EN1(°H4[Y151(°)+Y251"‘(°)14+

+C, [2N1(0)]E$ . (27. 25)
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28. Pointwise Estimate of wx(x,y).
Guided by the procedure used in estimating Vi in §25, we let

d(x,y) = wx(x,v) ’ (28.1)

and define

A

d =d+d., (284 2)

where the average d is given by

Nllv-v(_'_hu |+

d(x) = d(x, y)dy , (28. 3)
~
and the deviation d satisfies
3
N
J‘d(x,y)dy = 0 . (28. 4)
P
~Z

It follows from (9. 16), (28.3), and (28. 1) that

d) = 0 . (28. 5)
Then, computations analogous to those leading to (25. 13} yield
1 1
J 2 F3
[dx)| = Cy + C,[W,(2)]2 +(C4+C [T (2)]%, (28.6)
where the constants CZ’ C3, and C4 are given by (25, 14) - (25. 16)
and C, is such that
6 1
Lz
Cy = |J (222 )Fayax| . (28.7)
oy B
Similarly, we find
A 2 L
ld(x, y)| s == [D(x)]?, (28. 8)
\r
where
1
2
D(x) = wi’ydy and D) =0, (28. 9)

=



™

and also

2 1
D(x) = -2j wxywxxydydx < z W, ()W (x)]2 . (28.10)
x—

]

It follows from (28. 8) and (28. 10) that
A 2 1/4
|dex, y)| = z‘fﬂfo[wz(x)wg,(x):i . (28.11)

Combining (28. 1), (28.2), (28.6), (28.11), (14. 15), and (15. 14),

we find kx
8
|w (o y)| = Dy + D) ge ) (28.12)

where the constants D9 and DlG are given by

L’ 1
D, = cz‘/ylsl(O)+yztsl(0)32+\ﬁ<c3+c4)[s1(on2+<36+

[ £.1/4

and

T —
D, = CZJZYZENl(O)]2+W2(0)+2kl,le1(0) + (C3+C4)\’2N1(0)

’ 2 1

1/4_

-i—nl(Zyz[Nl(0):]%:+W2(0)+2k&\11N1(0))] (28. 14)

29. Pointwise Estimate of wy(x,y).

Finally, we estimate wy. The main ideas in this case are
similar to those of §26 and §27. Guided by the procedures of those

two sections, we find

¥
|wy(x,v)| et [Y(x)]?, (29. 1)
T

where



_ 2
Y(x) = 1Wyydy " (29. 2)
-2
and
Y < Y@+ 2 (W, (2)W4(2)]2 . (29.3)

The constant Y({) is estimated by

Y(&)sucf; [wz(%)w:«,(fg)-J bl A (29. 4)

Then, combining (29. 1), (29.3), and (29. 4), we find

= % - kx
1 8
[wy(x,y)l < Dy;+Dj,e +D, ;e ; (29. 5)
where the constants Dll’ DlZ’ and D13 are given by
1 Ll —
_ 4 4 14, [ 2 %
Dy, = \/——‘(“1) {v151(0)+v2[51(0)] } +2‘ f-“——%q Jvlsl(o)wz[sl(o)]" ,
e = (29. 6)
_ f 2
D, = 2 ?TE; {(nz+u3+u4)[y151(0)+\(2\/51(0)]
1
4
3, [ 2y, VN (0 + W, (0)+2kty; N, (0)]}
1
2 2
42 "‘—m&qo EZYZ\/NI(O)'+ W, (0)+2kty;N,;(0)]7 , (29.7)
and
_ 2
D,, = ‘/ﬁ; (gt S (0)+y,+/5 (0] ]
L
[ 2y V(0T +W, (0)1+2kty, N, (0)]} . (29. 8)

If we now apply the triangular inequality to (23.5) - (23.7) and
employ the various estimates of the preceding sections suitably, we

find (23. 1) - (23.3). The constants Ki (i=1,2,...,9) can now be ex-



plicitly written down as

and

+ D

=73 -

(29.
(29.
(29.

{29

(29.

10)
11)
12)
13)
14)
15)

16)

17)
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V. THE SHELL PROBLEM

30. Decomposition of the Error ®(x,y ).

In this chapter we return to the shell problem formulated in
Chapter I. We shall apply the results of Chapters II and III to derive
pointwise estimates of the first partial derivatives, ébx and Eby' of
the error $ These partial derivatives in turn are proportional to

the errors in the shear stresses associated with the approximate solu-

tion.
Guided by the results of Chapter II, we decompose the error C/I}
into:
A A
Blxy) = By, y) +&,(x¥) (30. 1)
where c?)l and c?bz satisfy
A
pp,, = 0 ' at x =0, (30.3)
pc'blx = gz 4 . at x :Z 3 (30_ 4)
A _ 3 1 ;
Pig = © at y=*3, (30. 5)
1
2
Jl P(X, Y)Clblx(x, Y)dY = 0 s, ; 0=sx= .Z i (30. 6)
4
and
A ~ _ _
PPyl ¥ (2P )y = F on R, (30.7)
pd, = g, at =0, (30. 8)
pd, = 0 at x =1, (30.9)
A _ _ 1
P = B at y=dg , (30.10)
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L
2

plx, ¥, (o, y)dy = 0, 0=x=<1, (30. 11)

[~

vrespectively. Here, p, q, F, g1 and g, are given by (5. 6a, b),
(6.9), (6.11), and (6. 12). We note that the ''residual boundary value
problem!' (6.8) - (6.12) for C?) haé, in fact, been decomposed into two
subsidiary problems for c?:l and c?)z along lines similar to those used
in connection with the problem for u in Chapter II.

In §9, we pointed out that the ""residual boundary value prob-
lem' (6.8) - (6. 12) was a special case of the general problem (9. 2) -
(9. 6) and became identical when (9. 7) and (9. 8) held. The fact that
g1 &y and F in (30.8), (30.4), and (30.7) satisfy (6. 13) and (6. 15)
and that the necessary conditions (30. 6) and (30, 11) must hold en-
ables us to consider the problems governing ‘31 and c’f)z as para.llel.
cases to Problems I and II of §9.

In our subsequent discussion of the solutions ?pl and epz , we

shall expressly set

Cpl = v, (30.12)
and .

A 1

CPZ = Wy (30. 13)

so that it is appropriate to write

® = u. (30. 14)

1 In adjusting the constants of integration associated with the solution
t of (13.1), we have chosen

G(x, yie) = plx, yie) @_(x;€)-p(T, yse ko (Tie) ; (30. 15)

see (6.9) and (13.2). (30.15) implies w(Z,y) = 0. See footnote 4 of
§13.
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We can now apply the results in Chapters II-1IV for the solution u
after changing the constant { to

Such an application immendiately

i
: : . ; A A
gives us pointwise estimates for cpx and cpy.

31. Uniqueness of the Twist Function ®.

In §4, we pointed out that the twist function © satisfying the
boundary value problem (4. 5) - (4. 8) is unique up to an arbitrary con-
stant whose determination has been postponed. We can determine
this constant as follows. |

The twist function ® , the approximate solution ® , and the

error c?) are related by

®» = F+P . (31. 1)

® = P+ +P,, (31. 2)
where, according to (30.12) - (30. 13), (24.7), and (27. 5), c%i (i=1, 2)

are made unique by normalization conditions

i

2

®,(0,y)dy = 0 , (31.3)

=

and

i

a M
A pu— ¢
CQZ(%, ydy = 0, * - (31. 4)
1 '

=2

Conditions (31. 3) and (31. 4), when converted to the notation pertain-

ing to the original geometry, become
h/2 :
j‘c“pl(o.lc)dg =0, (31. 5)
-h/2 -

and



“ 7=
h/2

fébz(a,g)dg = 0. (31.6)
-h/2

Equations (6.5), (31.5), and (31. 6) define EE, CApl , and ?pz, respective-
ly, and hence also ® through the relation (31. 2). Thus, @ is uniquely

determined.

32. Limiting Estimates for the Error Stresses as ¢ = 0.

The error stresses ’?%8 and "Fga are computed in terms of the
error c’,B from (4. 3) by
A .
D
' KT 3 A od
A : P
i = —_— T = ur =% . 32: 1
T I co T MTEC B

"t

In this section, we shall compute the limiting estimates of the
error stresses for points (x,y) with 0 < x < L and —% sys -é— in terms
of the thinness parameter ¢ as € approaches zero. During this
limiting process, the positions (x, y) relative to each other, of the
points in the shell, remain fixed. The algebraic calculations for such
estimates are lengthy but straightforward. We shall not exhibit these
calculations in detail, but shall point out the main steps leading to the
final results.

In our procedure, we shall first determine the limiting esti-
mates for the energies Vi(x) and W.l(x) (i=1, 2,3) from the results of
Chapters II and III after replacing £ by . We then apply the limiting
energy estimates to obtain bounds for the error stresses in accord-
ance with the formulas established in Chapter IV and the relations

(32. 1).
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To estimate Vl(x), we first read off from (5. 6a,b) and (10.3)

that

o(c%) , q = O(1) an g =0, (32. 2)

ge]
1

and
k = O(e'l) as € =0 . (32.3)
Next, we assume that the load-functions fi (i=1, 2) which are

introduced in (3. 17) satisfy

Il

%

P O(1) (i=1,2) as ¢ » 0. (32. 4)

From (32.2) - (32.4), we find

T .= Ofe) as ¢ =0, (32.6)

G = O(e?) as gD, (32.7)
and

g. = O(ez) (i=1,2) as ¢ —~ 0 , (32.8)

i
where the scalar torque T is given by (3. 18); G and g; are given by
(30.15), (6.11), and (6. 12), respectively. (32.2), (32.8), and (17. 2),
after replacing £ by ¥, imply

v, (@) = o) as ¢~ 0. (32.9)

We can now observe from (10. 2), (32.3), and (32. 9) that the

first order energy associated with c’bl satisfies

V,(x) = O(c®)exp[-O(e 1 )T-x)] as ¢ ~0. (32.10)

Similarly, we find that y, of (14.13) and VZ(Z) of (18. 2) satisfy
v, = O(e”) as € -0, (32.11)
and

VZ(I) = 0(63) as ¢ » 0, (32.12)

Then (11.3) asserts that the second order energy of c?)l satisfies
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3 -1, -
V,(x) = O(e”)exp[-O(e™ )T-x)]  as e ~0. (32.13)
In estimating the third order energy V3(x) of $1 , it is con-

venient for us first to summarize the following results. From (11, 4),

(11.5), (A.25) of Appendix A, (12.17), (17.4), (19.8), and (19.7), we

find
oy + o, = O(ez) as € — 0, (32. 14)
ﬁo=0(e4) » By =0(), B,=0(1), B;=0(1) as ¢ »0, (32.15)
m, = O(c®) , m, = O(?) as € -0, (32.16)

and
V,(T) = o(e?) as ¢ - 0. (32. 17)

Combining (12, 21) and (12, 22) with (32. 14) - (32. 17) and the
limiting estimates for Vl(-f_,) 5 VVZ(Z) , and k, we find

V3(x) = O(e)exp[-O(e-l)(:fj-x)] . as € = 0. (32.18)

Likewise, limiting estimates from (14.13), (15.11), (C. 13) of Ap-

pendix C, (20.5), (20.12), (21.5), and (22. 12) give

v, = O(”) as ¢~ 0, (32.19)
p4=0(e2) . Bg = O(c?) — (32. 20)
_ 2 _ 3
ml-O(e ), M=0(") as ¢~ 0, (B2, 21)
M!' = 0(63) as ¢ =0, (32, 22)
and
3 2,
m5—O(€ Y . m6=0(e ) as e~ 0, (32. 23)

Computations analogous to those leading to (32. 10), (32. 13),

and (32. 18) then yield
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5 2 -1 2
Wl(x) = O(e”) + O(e7)exp[-O(e " )x] as ¢ » 0, (32. 24)
W, (x) = ol 214+ ol 3 exp[-0(c " ] 28 ¢ +0, (32. 25)
and ‘
W _ 9/2 -1
3(:u:) = O(e )+ O(e)exp[-Ofe " )x] as g 0, (32. 26)

where Wi(x) (i=1,2,3) are the three orders of energies associated
with c?:z :

With the energy estimates given by (32, 10), (32.13), (32.18),
and (32. 24) - (32. 26) at our disposal, we find, from (25. 24), (28.12),

(26.8), (29.5), {(30.12), and (30.13), that

$x = Ol 10t fesp[=Ote e+ Ol exp[=Ofs " HT )] (32. 27)
as € — O )
and
0, - ol 5/ 2)+0(c Jexp[-Ole~ L)x]+O(c Jexp[ -Ole ™ 1 )E-x)]

+O(e)exp[-0(e_1):€] as ¢ - 0. (32.28)
Finally, the two non-vanishing error stresses ?ge and %Ce 5

in terms of the variables x and y , become, after combining (32. 1),

(32, 27), and (32, 28),

%o = 0> 2)ro(l)expl-0(e ™ )x1+O(1)exp [-Ofe ™1 )(T-5)] (32.29)
as ¢+ 0,
2,6 = Ole>/21r0l)expL-0le ™ 1xI+0(1)exp[-Ole ™ )(T-x)]
+O(1)exp[-O(e " 1)T] as &= 0. (32.30)
In (6. 6), the approximate stress ?ge = 0; hence, (32.30) actually gives

the estimate for the exact stress component Tye .

Note that Wl(x) = Tl(x). See (B. 4) of Appendix B.
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33. Application to a Cylindrical Shell.

In the last section, we obtained limiting estimates for the
stresses; now we shall exhibit stronger estimates by finding upper
bounds for the stresses in terms of the thinness parameter ¢.

To minimize the algebraic compléxity, we shall deal with a
circular cylindrical shell whose meridional cross section is shown in
Figure 3. In Figure'3, P, Ty and r, are constants. They stand
for the distances respectively from the mid-surface and the lateral
surfaces of the shell to the axis of symmetry. The angle B(§) (Fig-
ure 1) becomes w/2 in this case.

From (2. 5), we have IR&,[ = 0o and |R9| = p. Then, accord-
ing to (5.2), we find

L = min(p, L) . (33.1)

In order to simplify the algebra which follows, and for the
convenience of comparison of the results to be derived here with
those from previous publications, we assume hereafter that 4 < p
and, thus, take

L= & . (33. 2)
Expressions (5. 4) and (33. 2) imply
T=1. (33.3)
it follows from (5. 6 a, b) that
p(x, yie) = e(p-tye)® , alx,yie) = (p-1ye) . (33.4)
From Figure 3, we can write down immediately that

- le _ e
l‘l—p+7 ’ rz—p-—z—. (33.5)

Next, from (6. 4), after setting the constant of integration equal to

zero, we find
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T 3 .3 2 2.1
) x

P(x) = Z_HE(p +7pL% : (33.6)
where
T = Ble » (33. 7)
(32.6) and (33.7) imply that
T' = O(1) as ¢~ 0 . (33.8)

Since p and q in (33. 4) are independent of x, and $ in (33.6) is linear
in x, we conclude at once from (6. 9) and (13. 2) that

F(x,y;e) = Glx,yje) = 0, (33.9)
which implies that both of the solutions @l and E\pz in (30. 1) satisfy
homogeneous differential equations (30. 2) and (30. 7) after setting F
equal to zero in (30. 7). The boundary value problem (30. 2) - (30. 6)
of Clbl and that of (30.7) - (30.11) of ’q\)z are almost identical except
for the different boundary conditions at x =0, 1. 3 We shall first find
upper bounds in terms of the thinness parameter € for quantities as-
sociated with the solution E\pz and shall then directly appropriate these
results to find the upper bounds for the quantities associated with the
solution E‘Bl .

From (33.4) and (33. 5), we take

P; = €2r13 § B, ® E:Zr; ; (33.10)
© and
3 3
9 = Ty - Qs = Eg 4 (33.11)

where Py» Py 49y and q, are such that

o
< < < <
Po P PI s qo q ql 2 (33. 12)

as defined in (10, 4), (17. 4), and (19. 9). (10. 3) and (33. 10) - (33.11)

3 T=1 according to (33. 3).



imply
(33.13)

We now proceed to estimate the various orders of energies
; A : A 5 .
associated with the solution ¥, - Since ®, for the circular cylinder

satisfies a homogeneous differential equation, we can omit considering

Sl(z) of (13.17) in estimating the first order energy Tl(z) and can
simply take

T,(z) = N(z), (33. 14)

where Tl(z) and Nl(z) are given by (13. 15) - (13, 16) with G =0 in
(13.15) according to (33. 9).
After lengthy but straightforward computations, we find from

(20. 4), (21.4), and (22. 8) that

41'4 2 1‘2
1 2. 2 T! 1 2
Nl(O) < > 3(JL h1 +——2 —6-)6: 3 (33.15)
T, 4 p
4 2
2 r Z x
4 1 i A 4
rs, 47" p
and
2 4 3
4 L r T
5 1 2 2,607 "1
W3(0)S > (843———-6-—h1 +4h1 ¥ 3 _Zhl+
Mo, T, TP r,
()T'Z:'-:l6 i
+— le (33.17)
TpoT,
where the constant h1 is such that
2
h1 = max1(|£1|, rllfl'l,rllfi'[). (33.18)
-3%)

We now appropriate the results of (33. 15) - (33. 17) to conclude that
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the various orders of total energies Vi(»f,) (i=1, 2, 3) associated with

the solution $ satisfy

4 2
41'1 T,Z r 2
V,(1) s —— (fuh by e JE (33.19)
2 4 p
4 2
2 o
4 =1 i 1, 4
v (l)s 2 ?(14’(111 —-—2-—'6—)6 ’ (33. 20)
4m p
Y2
and
& s ¥y 5, 60T 6132y
V3(1)s (843L _Eh +4h +"'—T"’Zh +_Z"“‘6)€ ,
ut T2 & = Gl
(33.21)
where hZ is given by
h, = 6 by ) 5 ey 12 l,r |£51) . (33. 22)
[- %.%]

For the sake of complieteness, we record below the estimates
for the constants ﬁi (i=1,2,3,4) and Yj (j =1, 2) which are defined

in (12.17), (15.11), and (14. 13}):

214
ﬁ1=p3=ﬁ4=0a pZS__Z-_’ (33. 23)
t2
324 2
YI:G,I-I-G,ZS—-Z—G ’ Y2=0. (33-24)
I
Z

Now, to simplify the algebra in the sequel, we define a new constant {
which is such that

£ = max(hl,hz) . (33. 25)

Combining (33. 14) and (13. 27) with (33, 15), (14. 15) with
(33.15) and (33. 16), and (15.14)-(15. 15) with (33.15}-(33.17), and

keeping in mind (33. 23) - (33, 25), we find
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4 2

4r 2r
1 2.2 ! 1 2| -2kx
Tl(X)S[ 5 ({, f +'—'—-2--—°6—)€ ]e » (33. 26)
U o v p
2
4 2
2 r 2 r
2.2 3 4, T 1 3. 4 -2kx
WZ(X) S%._]'s. [8'{4 f (36 +7e )+———2——6-(6€ +e )}e ’ (33. 27)
T T p :
and
{,41'13 2%1.2,.2,_3,5 4 42T'zr13 2, 3, BY
(VI T Tp T
2 2 2
1 -
+r1fze4+602T3'{’ fs4]e ke (33. 28)
T p
Similarly, we find
4 2
4r 2 %
1 22 TV 1 21 =-2Kk(1-
vV, (x) € [ﬂm gty oL e }e (1-x) (33. 29)
Ty 4 p
2 r4 r 2 r 2
1 2.2 3, 4, T 1 3 4 -2k(1-
v, ) < £ Ll 8% v ety I 1 (6ete )]e (1-x) " (33.30)
TR L T P
. 3
4 r T 2r 4
> 1 271 .2 2 3.5 4, 42T 1 2. 3. ¢
T S T Tp T
2 2 2
. ; _ _
rlfze4+602T3{’ fe4]e 2k(1-x) (33.31)

" p

To further simplify the algebra, we assume

e s

. 3
N N SO i S Y o W WY ( T2y 33.32
min e 5 93 3 A 1oV 3 (Foges) |- (33.32)
1 wLfp 2 5 1

Then, from (25.24) and (26.8), we find

9&21'14 T'r

18t yse)| s (et +——L)zre)[e e R X (33.33)
HpT, 21p
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and

54Ty T'r) " /4. sk, <ki{l-x)
& (x,y:e)]| = 24JF g (Ut—=)|4f7-€” [e te 1+
y ur \:2

2mp

+ﬁ(l+3"% e , (33.34)

Finally, from (32.1), (33.33), and (33. 34), we find, in terms
of the variables x and y, the pointwise estimates of the error

stresses to be
4 '

T
~kx
|4 g 00 yie)| S ﬂ —%—uf+ L)2+e)(p-tye)le Fie
2wp

'k“"’”] , (33.35)

an

l YG(X’ Y:G)I = 24J— “’f+2-;r 3)(9 -tye) ‘/—ri- 81/4[e_kx+e_k(1_x)j+

+\j—(1+3" e ) . (33.36)

Since 'r(;e = 0 in (6. 6), it follows that (33. 36) actually gives the upper

bound for the exact stress component T in terms of the variables

A
x and y.

34, Comparison with Previous Work.

In [1], the upper bounds for stresses in axisymmetric torsion
are found by an energy method coupled with a mean value theorem of

linear elasticity. Such estimates are of the form

|T(x, y)| = C“ exzn[ J\fl (g)dg] , (34.1)

(1} C is a known constant which depends on the load data and

where

the geometry of the problem:;
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(2) h is a constant to be defined as follows. The hollow body
of revolution considered in [1] is of va.rying4 thickness
along the axis of symmetry whi'ch coincides with the z-
axis. Let rl(z) and rz(z) measure the distances from the

z-axis to the outer and inner lateral surfaces of the body.

Then

h = max Irl(z) - rz(z)l : (34. 2)
O=szs4{

(3) 6 is the radius of a solid sphere centered at (x, 8, z) and
lying wholly in the body; and
(4) )\0 is the decay function replacing the constant k of the
present work.
In (34.1), T1(x,vy) can stand for either TXG or TYG ’
Let us apply (34. 1) to a circular elastic shell of constant
thickness h (see Figure 3). We shall examine two limiting processes.
Case (1): Let (x,y) be the dimensionless coordinates and (§,()
be the coordinates pertaining to the original geometry of the elastic
body. The two systems of coordinates are related as given in (5. 4).
Then (5. 3) and (5. 4) imply that (x, y) depend on the thinness parameter
€ . Now, we consider the limiting case of stresses at a fixed interior
point (€, ) of the body as ¢ = 0. We find, from (34.1), interms of
(= ¥)s
&§ = Ofe) , KO=O(€-1) as ¢ —» 0, (34. 3)

and

T(x, y) = O(e-l)exp[-O(e-I)x + O(1)] as €=+ 0. (34.4)

See Figure 1, Case 1 of [1].
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Case (2): Let the thickness h be fixed, and let the point (x,y)
approach the boundary, namely, the lateral surfaces of the shell.
This implies that & approaches zero. Then, (34. 1) deteriorates and
breaks down completely on the boundary. This drawback is common
to all stress estimates obtained with the aid of a mean value theorem.

The problem just considered is a special case of that treated
in [1]; it is clearly also a special case of the shell problem of the
present thesis upon setting fz =0 in (3.17), ® = 0 in (6. 4), and the
shell to be circular cylindrical.

Applying the techniques developed in this thesis, we find, from

(33.35) and (33. 36), that

T(x, y) = O(l)exp[—O(e_l)x] as € -0, (34. 5)
whenever Case (1) is concerned; and the upper bounds of T %0 and
T are given by (33.35) and (33. 36) with the term e—k(l_x) deleted,

v

since fz = 0 whenever Case (2) is concerned. We see that these esti-
mates remain valid up to and including the boundary points. Hence,

we have repaired the deficiency of the pointwise estimates obtained in
[1]. Furthermore, by direct comparison, (34.5) is a better estimate

than (34' 4).
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|~

z
APPENDIX A. Estimate of |I vHdydx | .
0

i
)=

We derive here expression (12.16), after introducing further

notation. Let

(M

zZ
I dydx . (A. 1)
0-

1
2

R(z)

Then from (12. 4) we have

R(z) R(z)

l j;HdA| < | j‘ pxxyvx;dAl-‘—l I ?xyyvy;dAl + |Rk(r ()pn+q_yy)vxy;r_dAl+
R(z z

+|J 29, v vdA|+|j2p ?dA|+|jpyvm$dA|+
R(z) Ri{z)

+|J v, yyvdA|+| fp Vo vdA|+|j qu Yyv<:1A| (A.2)
Z

Upper bounds for each of the nine integrals on the right of

(A.2) are to be derived as follows:

From Schwarz's inequality, (10.1), (11.1), (12.2), and (A. 1),

we have

ere P Pxx IR
| ‘J"PxxyvxvdAl < ] I__Xp | ]szxi lpzvxy dA <
R(z) R(z)

P 3 g P 11
< (max |22 | ) [pv2anl’( [pvZ aa) < (max| 22|y fz)v 3

(z).
R R(z) R(z) ®

(A.3)
Similarly,



= O e

1 1
lj' Ly vdA | < (maxquyyl)vla(z)vza(z) : (A.4)

R(z) & [ \’P—q
| q_y )v vdAI < (max}—hl)\f (z), (A. 5)

R(z)

n 2
| quyv vdA | £ (max| qu] )Vz(z) . (A.6)

JJ Yy _ "
R(z) R VP4

In estimating [ j. Zp

Y vdAl » we first find v from (9.10) and

Xy

obtain R{z)

_ 1

Yo = O (p v + 9% + quy) . (A.7)

Then,

PP
|j2pxyvxx7dAl <2 j [-’%—X|- v |- |v|dA+I|ELﬂ| |- |v|da+
R(z) R(z) ‘ R{z)

Pyyd _
+J’ |22 v, |- [¥]aa
R(z)

P P, 1 1 b i 3 1
2 [(rrla.x I—%)E[)Vf(Z)Vf(Z)+(max|;}%:rz| )Vf‘(z)VZ‘:’"(zH-
174

®
L
Py
[ p2
Differentiating (A.7) with respect to x and rearranging, we have
2
2p P Zp
v, = (=3 - EE)v_+( "qy~q"y)v-§1
plote'd 2 P x Z P VY P Xy
P P
Zqgp q_x
x .
+ . X . A.
( 2P Yyy T Vayy (A9}

Then
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i
[J\PYVdeAI s‘f I_XI I—-p |+ v |- |v|dA+‘J" |.)f[|v JdA+

R(z) R(z) R(z)
j|_z| |__°iv_ Gy |+ vy |- [l an+ [ |2 gy e 1¥lan+
R(z) R(z)
+| f—zv vdA] < (maxl—x| I———-p I)VZ(Z)V Z(Z)"'
R(z)P ™Y R p

P P, 2P 1 i
+<max|l§X|)v2(z)+(maxlll- |~"—q>1—qx |V E@)V F

P 29p_,
+(max|——z|'| -qx|
) P P " pa

The last term on the right of (A.10) is obtained by integration by parts

)vz(z)+(ma,x|(—¥) zpl)v (z) . (A.10)

as follows:

Z
qp _ qp
__p_Xv vdA = K -I—Dlv v dydx =

xyy J J Xyy Xy
R(z) 0-%
i 1
Arap 5 A qp
=[2G vyt vyt O
Py L J RN P LEY P OAYY
0 Yooy =5
qp
=3 (=X)viaa . (A. 11)
P xy
R{z) v
Hence,
ap 1, 2 ap 1
1 Xy = — Y =
|I—X _— vdAl = j (p )Yp(vay)dAs (m_axl( = )Y 7 ])Vz(z) S
R(z) “R(z) [ (A. 12)
Similarly,
|f UV sy vdAI < (max‘iy—l)v ‘ (A.13)
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To estimate ] j'va vdA|, let us consider

XXy
R(z)
1
zZ 2
‘J" vax.xy dA = \J‘ vaxxyvxydydx . (A. 14)
R(z) 0-%

Integrating (A. 14) by parts with respect to x and using (12. 5), we

have
1
2 ‘
v _VdA = -lf o ek vZ da (A. 15)
PVxxy e ;px xy x=z'y 2 | Pyx xy 7 *
R(z) « =3 R(z)
Then,
1 "
2
— 2
|fp Vieyvdtl = 2 | e v dy+%f|pxx
R(z) -3 x=z R(z)
1
2
2
a(max]—l) Yy dy + Z(max}———] j‘PV dA
® -3 lx=z ® R(z)
1 px 1 pxx
< -Z-(ma.x|~—- | )Vé(z)+§(max|—| )Vz(z) . (A. 16)
T P = P
. ) ®
Now, differentiating (9. 10) with respect to y, we obtain v 5 given by
k
= —(av_+bv_+2c -p. V. _-pPVv -q Vv 5 A, 17
Vyyy T P Yyt A P oy TP sy T Yy V) B 9
where
P P
a :_jéiﬁ__p 4 B _._XEX
P xy Yyy o
O Vi NS 1)
P Y

From (A. 17) and (A. 16), we have



=%

quxv aA| = jl vyl [Flaat [ 2ol v, |- |7]aa

R(z) R(z)

%, B 4Py 2 L . -
”‘.ﬂ?c .|vw|.|v|dA+J| = lvxydA+l‘J'l(—qp)vxxyvdA|+
R(z) R(z) R(z)

b 1
ST

|- |v]aA s rna.x(| v a(z)vz%(zn

o |v
) i = Pa
R(z) R ‘{pq
qx 1 q'){c qu'y 1 qxp
+(m§a.x|~2—i|)vz(z)+ mg_x(2| : |+| o M‘E |(_.(i_)x|+
qPq

+|3‘—3’—|) V,(z) . (A.19)
VPq3

Substituting (A.1), (i=3,4,5,6,8,10,11, 13, 16, and 19), into

(A. 2 ) yields (12. 16):

"ot

5 1
UP VHdydx| < B[V, (2)V,(2)]134B, V(2 )4,V (2) | (12. 16)
0 -

where the constants f,, B,, and B; are given by (12. 17 )
, When z =4 in (12. 16), we can improve the estimate of
L2z
1f VHdydx| as follows. Replace z by 4 in (A.j), (j = 3,4, 5,6, 8, 10,
0

3), but we rewrite (A. 14) as

13
2

RYEI; o vdA I.Jﬁ P, Vaxy x;rdydx . : (A.20)
o

=

Integrating (A.20) by parts with respect to x and using (12. 5)

and (12.6), we have
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p
NP (’fu Y) 2
[pt. y)g5y)-p s y)g,(y) ] dy

PV vdA = —;_ 2
‘J(‘“x =y ‘J_p (2, y)
A 2 44 A
= pxxvxy' . (A.21)
R{L)
Then,
1 ’Y)
JERAECNE fl et V)ay)-p, (b Ve )] ay +
P
-i(rnaxl—-g-}f-[ WV,(L) . (A. 22)

R
Similarly, we find
® 1=y Bwv
| j'qxv vdA| [m;x(! = |+] = I ):lvl ('ﬁ)Vz (L
Pq

. p(&,y)qu(&yﬂ
t2 7 [p(t, y)g5(y)-p (2, y)g,(y)] "dy +

_%q(é,y)p (L, y)

c P p
+[m%x(z| % 14 p:Y1+7;.[(qu)x|+|qqu3|;]vzu,). (A. 23)
_ Jpq

" 5
Pq

It easily follows that -

Lz
| [ [Frayax| = p 43,0V, @IV, 00038,V 0 (A. 24)
where
. ,
Fle, v Pt y)a (e, y)]
T Al )[p(t,y)g'z(v)-py(%,v)gz(y)lzdy )
(A. 25)

B, = % ( +
° z_“g. P4(%:Y) q(L,Y)p4(L.Y)

while B; and B, are given by (12. 17)
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1
2

, 2
APPENDIX B. Estimate of | j L[—“‘dydx| .
z -3

Expression (14. 12) will be derived here after introducing

further notation. Let

da = j‘ dydx . (B. 1)
R(z) z

From (14. 3) we have

e P_P - Fp, _
|ijda[ < |j(—-x—-x -p_. W wda|+|I(F -—-Y-)wda‘+
P Xy’ ox Yy P

R (z) R(z) R(z)
+|ﬁj;[(—ﬂi—qw)w +(—’>1 -q ) Jwdal . (B. 2)
Now we digress here to define
:
W (z) = “:(pw,f‘mwf),dydx ; (B. 3)

It follows immediately from (13. 1) and (13. 15) that

Wl(z) = Tl(z) . (B. 4)

Arguing as in Appendix A, bounds of the integrals in (B. 2) are found

to be:
P_P . b e 3 1
[ g waa] s [ P2 Yp [ lpbw | [gfw |aa
P Xy X P Xy x ¥
R(z) R(z)YP4
< 0’.1( AJ’Ipw da qw da)
R(z) R(z)

< cclTl(z), (B. 5)
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F
[J‘(F —-—X)wda| < j F -—pl)-l—l\[a“wyma

i) y P ‘F;

o [ T30k ( Jafany

R(z) R(z)

1
= YZI:Tl(z)j]a s (B.f))

and after integration by parts, the last integral in (B. 2) yields

|‘f[ s +(__X ~q Jw, JWda| =
R(z)
2
P
_|J"_( PyYy _ qw 31;)’ +;%)(quz)da,| <a,T/(z). (B.7)
R(z)

In (B.5) - (B.7), , and Y, are given by (11.4), (11.5), and

G’l s a?.
(14.13), respectively.

Substituting (B. 5) - (B. 7) into (B. 2) and setting Y] = oy + a,

we obtain expression (14. 12).
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L
APPENDIX C. Estimate of |j‘ Hdydx| .
z

]
(M 5“ |-

Except for the terms arising from the nonhomogeneous term,
F(x,y), in the differential equation (9. 14), we can appropriate the ar-

gument leading to (12. 16) for the derivation of (15. 10).

From (15.3) and Appendix A, we can write down immediately

|JP§vaIda.| = IJFXY;daI+| fpxxywx\;dalﬂ Jrquywyv\zrdal-f
R(z) R(z) R(z) R(z)

+|j‘(P +q'yy)w wdal+lj2quw wda|+|JP2pxywxx$vda|+
R(z) R(z)

+|fpw wda|+|jq_yw wada.|+|fpw Wda.l+

R(z) R{z)

+|‘J‘q_yw wdal ) (C.1)

R(z)

|\, |da = (j"—lda) W,(=)1%, (C.2)

xy
R(z) R(z) \I—P‘ R(z)
= B i
| | Py oedal = (max|ZXNIT (20 ,(2)]7 (C.3)
R(z)
| | 2™ wda| = (maxl )T (Z)Wz(z)] , (C. 4)
&J;) Yy ¥ \/p—q
| " lp,ta,, |
15 (pxx+q_yy)wxyvt_zda| < (max ___x:_%h YW,(z) (C.5)

R(z)
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P . e F)P? &
I J prywxdoal = 2[([ P da.)aW 2 z)+(ma,x|—Y3—-’ W (z)
R(z) R(z) P

+{(max|—xL§‘)+(max|-—ﬂZl)} (T (2)W,(2)}? ]

7 yo’a (C. 6)

] (W, (z)]%+

=

ljpywxxxéda‘ S[ .F 15

R(z) R(z) P

2
P 2p
+[(maxl~?,§|-|—’i—p l)+(max| 2. [—qux l—~>J
P ; ‘\qu

R P
i P P qp
[Tl(z)WZ(z)]3+[(max|—y—§—Z|)+(maxl—1}i'] px-q_x[ 1 )+
R b [ VPq
1 ,9P
+(mj.x]§-5 (—I-TX) [)]Wz(z) ; . (C.7)
R Y ‘
| ] qywxyy\;dal < (m_a.xﬂ%% I )Wz(z) ; (C.8)
R{z) R
; P y P
| p W wda‘ < -%(max‘—x-l)W‘(z)+-§(max|—x-ﬁ[)W (z) , (C.9)
xxy . Z — ' P 2
R(z) R R
and

)
lquw wdal < I———X——da) W""(z) (max|2 I)W
[}

R(z) R(z) Pq

+[m%X(l |+IJ— }
+[maxce] = [+ | G 1+ 122w

e S S A e
e Pq (C. 10)

[TI(Z)WZ(Z)]%+
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Substituting (C. 2) - .(C. 10) into (C. 1), we obtain (15. 10).

When z=0 in (15.10), we can similarly derive

(V]

1
oy 1 1
lf wHdydx| < B[ T (0)W,(0)]2+p, W, (OB, [W,(0)]%+p, ,  (C.11)
0 -

(N

where B, , B,, and B, are given by (12.17) and (15.11), while By is

such that

1
Al (0, y) PO, y)]q (0,y)] ”
B- = % l: = + :l[P(O:Y)g'(Y)'P (0, y)g,(y)] ay .
> zJ‘ p*(0,y) a0, y)p*0,y) h Y .

3 (G 12)
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N[H
=

5 L
APPENDIX D. Estimates of | f Ada| and j ®Hda| .
0- 0-

1
2

rulv-

We first derive here the expression (22. 2). Recalling (B. 1) of
Appendix B and replacing w by & in (C. 1) of Appendix C, we find that

|fcpHda| < IIF cpdaj+|j wc'bda|+|jquywy€oda|+
R(0)

R(0) R(0)

+|J(P +qyy)wxmda|+|fquw cpda.]+|j2p W cpda.|+
Rf(0) R(0)

+] [pyw cpda|+|j’qywwcpda|+|jpw Pda ] [aw  8dal.

R(0) ®(0)
(D. 1)

To estimate the integrals on the right of (D. 1), we use Schwarz's in-
equality, (B.3), and (B. 4) of Appendix B and (14.7), with z replaced

by zero. Then

ofee

nZ
2
[J\Pxxyth?ﬁdﬂ S[ br(pm{y) % ] (]pw da)
R(0) ®(0) R(0)

Nib—*

s[ f(pxxy)z%da] [T,(0)] (D. 2)
(24

1
2 L
s[ J"(qxwﬁ%da]awl(onz, (D.3)
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AZ L L
|ty o s [ f oty ) 5 dﬂ | Pifda}z

R(0) R(0)
z
“'(p ottt S da] (W, (0)1% . (D. 4)
®(0) :
r A i 2 é\pz "% — %
1J2q_xywyycpda.| = 2 j"(q'xy) = da [ j‘qu da]
f(0) “R(0) = YR(0)
i 2 N2 n% 1
=2 [(q )28 aal"rw, (0] (D. 5)
LR(O) =
From (9. 14), we find
W e ™ % (F—pxwx-qywy—quy) = (D. 6)

Then

[N

Iher W chda| S 2

P A 2 c‘?JZ' % 2
I—%XFCPdaH[ I (B P —gda:[ [fpwxda]

®(0) ®(0) R(0) P R(0)
> A2 % 2 %
+[ j(px a,) %—da] ['J‘ qw da] &
y y
R(0) P q R(0)
_%
[‘J’ ) 9-— da [ qw da]
®(0) ®(0)
1 A2 %
< 2 IJP xVFcpda|+( j‘(pxy L T \:J(pxyq-y)z sz da} ).
R(0) R(O) R(0)
1
1 z i
ETI(O)]Z{J(pxy)z—%darth(o)]?' . (D. 7)
R(0) P

Differentiating (D. 10) with respect to x, we find
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2
2p, P 2p Ly 2qp
=(%)+( > 2= Jw_H o ST e Zx-k)w -

Z 2
xKK " P 5 P Y P oy pyy
-3 g (D. 8)
P Xyy
Then

)=

(p )
|IP w dea| = IfP (*'— CPda|+|:J ﬁ(—-p )co da:l
R(0) Px R(0) P

¥ ?_(Xqy )cpda [T(O)]a+ (_quV;cﬁzda%.
[ o v ot [

)pq f(0) P

)=

1 (p.) 1
[WZ(O)]?'+[ f ——l-—(————-—-qx) ® da.] [WéO)]3+
R(O)p q

L
[ f (—) ] —da} [W,(0)]% . (D. 9)
R(0)
In obtaining the last term on the right of (D. 9), we have used integra-
tion by parts and the boundary conditions wxy(x, i%) = 0. This method

also yields

1
|JP qywxyyc’bda] s{ J [( ®) ] —da} [W,(0)]% . (D. 10)
R(0) R(0) Y
Now consider integration by parts of
1 1
4 2 . 2 o sl {,_ .
‘J‘Ipanymdvdx ZI[chpr' - wa(chp) dXJ dy
0-3 -3 ==0 9 x
5 A L E
& (0,y)p(0,y) P (O,V)gl(y) .
RN Y (57! [gl(y) {0,y ff APy ) g
b 0-% = (D. 11)

We have used (14. 4) to compute the first term onthe right of (D. 11).

Then
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EPX(U.Y)C?J(O,Y)[ P
g1v)-

(0,y)g,(y)
e :ldYI

p(0,y)
R(0) ~%
1
U [6,) ] —da] [W,(0)]% (D. 12)
R(0)
Differentiating (9. 14) with respect to y , we find
21| Py | PyYy .
Yyyy T [ Poy Vo ¥ {57 "2y Jwy
_z ' My
+( qu )Wyy- - XY -p xxy+Fy- = ] ‘(D. 13)
Hence

| JP qvwwyc’bda| S[
£(0)

Combining (D.i), (i=2,3,4,5,7,9,10, 12, and 14),

we have (22. 2).

2 pp a2 5 1
f(%)(ipx -p )—-—da} [T,(0)]2
R(0) ,

+ j"(qy) (—QLZ “Gnr) °"—da]E[T (0)]2
“R(0)

-~

¢ J' () (G2 &5

2 = 1
:l (w,(0)]

z 0,y) , 3 P, (0, y)g,(y)
S L R e

EW (0)]2+]fqyéb(F —X)da{ :

®(0)
(D. 14)

with (D. 1),
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By comparing the definition of H in (12. 4) with that of H in
(15.3), we see that we can deduce the expression (19. 3) from that of
(22. 2) as follows. First, we set F and its derivatives equal to zero
in the surface integrals of (22. 3) and then we replace the argument
(0, y) by that of (£,y) and gl(y) and g'l(y) by gz(y) and g'z(y), re-
spectively, in the line integrals of (22.3). This establishes Va given
by (19.4). Next, we replace TI(O) by Vl({,) and WZ(O) by Vz({.) in

(22. 2) so as to establish (19. 3).
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