
ENERGY INEQUALITIES AND ERROR ESTIMATES FOR 

AXISYMMETRIC TORSION OF THIN ELASTIC 

SHELLS OF REVOLUTION 

Thesis by 

Chee Leung Ho 

In Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy 

California Institute of Technology 

Pasadena, Califorz:iia 

1968 

(Submitted September 19, 1967) 



-11-

ACKNOWLEDGMENTS 

The author wishes to express his sincere gratitude to Profes­

sor James K. Knowles for the constant guidance and supervision given 

him during the course of his graduate studies and the writing of this 

thesis. Both his professional competence and friendship have been 

great sources of encouragement and inspiration. 

Thanks are also due Mrs. Roberta Duffy for her competence 

and perseverance in producing the manuscript. 

The author is deeply grateful to the California Institute of 

Technology for the award of tuition scholarships, teaching assistant­

ships, and Ford Foundation Fellowships which provided generous 

financial aid throughout his graduate education. 



-iii-

ABSTRACT 

The problem motivating this investigation is that of pure axi­

symmetric torsion of an elastic shell of revolution. The analysis is 

carried out within the framework of the three-dimensional linear the­

ory of elastic equilibrium for homogeneous, isotropic solids. The ob­

jective is the rigorous estimation of errors involved in the use of ap ­

proximations based on thin shell theory. 

The underlying boundary value problem is one of Neumann 

type for a second order elliptic operator. A systematic procedure for 

constructing pointwise estimates for the s elution and its first deriva­

tives is given for a general class of sec;ond-order elliptic boundary­

value problems which includes the torsion problem as a special case. 

The method used here rests on the construction of "energy in­

equalities 11 and on the subsequent deduction of p ointwise estimates 

from the energy inequalities. This method removes certain draw­

backs characteristic of pointwise estimates derived in some investi­

gations of related areas. 

Special interest is directed towards thin shells of constant 

thickness. The method enables us to estima te the e rror involved in a 

stress analysis in which the e xact solution i s r e placed by an approxi­

mate one, and thus provides us with a m e ans of a ssessing the quality 

of approximate solutions for axisymmetric torsion of thin shells. 

Finally, the results of the present study are applied to the 

stress analysis of a c i rcular cylindrical shell, and the quality of 

stress estimates derived here and those from a previous r elated pub­

lication are discussed. 
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1. STATEMENT OF THE PROBLEM 

1. Introduction 

The present thesis is concerned with the problem of axisym-

metric torsion by terminal loads of a class of elastic solids which we 

shall call shells of revolution. Such solids occupy a region of three­

dimensional space, which consists of all points whose distances from 

a given surface of revolution - - called the midsurface - - do not ex..: 

ceed h/2 ; h is the shell thickness. 
1 

Our interest is directed especi­

ally to the case in which the shell is thin in a sense to be made precise 

later. The analysis is based o:z:i the classical linear theory of elastic 

equilibrium for homogeneous and isotropic materials, . and it may be 

regarded as an extension of that reported in [ 1 ]._ The present study 

represents a continuation to the development of methods for the as -

sessment of the quality of approximate solutions of thin shell problems. 

The problem of axisymmetric torsion is perhaps the simples.t one 

suitable for this purpose, and simple approximate solutions, con­

structed from two-dimensional shell theories or otherwise are known. 2 

Our results provide estimates, based on three-dimensional elasticity 

theory, for the error involved in a stress analysis when the exact so-

lution is replaced by an approximate one. 

From another point of view, the present work described here 

m~y be regarded as an extension of that in [3 ], where a ·systematic 

procedure was given for constructing a pointwise estimate of the so­

lution of a problem of Neumann type for a class of second order 

Precise geometrical details are given in the next section. 

2 
See, for example, Love [ 2 ]. 
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elliptic boundary value problems in two independent variables. In 

order to assess the stresses in the problem of axisymmetric torsion 

of solids of revolution, a pointwise estimate is required for the first 

derivatives of the solution of such a boundary value problem. While 

such stress estimates were given in [ 1 J for a certain class of axi­

symmetric torsion problems, they were based on mean value theo­

rems, as in previous recent work concerning Saint-Venant's princi­

ple [ 4, 5 ]. Pointwise estimates constructed on this basis suffer sig­

nificant drawbacks, as pointed out elsewhere [ 4, 5, 6 ]; the estimates 

for the solution itself constructed in [3 J avoid these drawbacks. The 

major extensions necessary to obtain estimates for the first deriva­

tives which are comparable in character to those derived in [3] are 

presented here. 

Because we are concerned directly with the calculation of 

bounds on errors due to approximate solutions of the differential 

equations involved, we shall encounter circumstances which did not 

arise in [l J or [3]. 

The method which we us e rests on the derivation of "energy 

inequalities" and on the deduction of pointwise estimates from the re­

sults pertaining to energies. We shall obtain most of our results in 

the general context of second-order elliptic operators of divergence 

type on rectangular two-dimensional domains as in [3]. These gen­

e ral results are presented in Chapters II - IV, following the formula ­

tion in Chapter I of the axisymmetric torsion problem and the ques­

tions we wish to ask about it. In Chapter V we return to the shell 

·problem for the detailed application of the general estimates derived 
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m Chapters II - IV. 

In § 2 of the present chapter, we introduce the natural coordi-

nate system for shells of revolution and state the necessary geomet-

rical preliminaries. The differential equations of elasticity in shell 

coordinates and the boundary value problems to be considered for 

these equations are formulated in §3. Although Michell's theory of 

axisymmetric torsion [7] has been considered in detail for cylindrical 

coordinates in [ 1 J and elsewhere, 
3 

we rederive it here in §4 in the 

form appropriate for shell coordinates. In order to exhibit the small 

parameter which measures the thinness of the shell, we introduce di-

mensionless variables and reduce the boundary value problem to its 

final form in §5 . In §6 we construct an approximate solution to the 

axisymmetric torsion problem for a thin shell, and we frame the 

"residual problem" appropriate to the difference between the exact 

and the approximate solution. 

Finally, we summarize our results m §7, and in §8 we relate 

them to other work in this general area. 

2. Geometric Preliminaries. Shell Coordinates. 

To describe the shell of revolution, we shall first describe its 

meridional cross-section. Let r, 8, z be cylindrical coordinates, and 

let 8 be fixed. Let C be a smooth curve in this half-plane of con-

stant 8 with parametric equations 

C: r = r (s) ' 
0 

z = z (s) , 
0 

( 2. 1) 

where s is arc length on C , -!, is the length of C , and r and z
0 

3 See, for example, Mindlin and Salvadori[8 ]. 
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are twice· continuously differentiable functions on [O, -l] with z (0) = O. 
. 0 

(See Figure 1.) If h is a ' given constant, the meridional cross-section 

of the ·shell of revolution consists of all points (in the half-plane of 

fixed 9 ) which lie on some line segment of length h whose midpoint 

lies on C and which is perpendicular to C at their common point. 

The set of all points in this plane which are interior points of the 

meridional cross_;section is denoted by M; the closed cross-section 

is denoted by M . · 

The shell of revolution is now genera~ed by rotating M about 

the z-axis {see Figure 2 ) . It should be noted that the "ends" 

of the shell are not plane; they are conical surfaces which we shall 

call the terminal surfaces. The terminal surfaces corresponding to 

the ends s = 0 ands=.{, of C are denoted by 'lfl and 'lfz respectively. 

The remaining portions of the surface forming the boundary of the 

shell are surfaces of revolution parallel to and equidistant from the 

mid-surface S obtained by rotating C about the z-axis. Let S 1 d e -

note the outer surface; s
2 

the j,nner surface. The r egion consisting 

of interior points of the shell is denoted by R; its closure is R. The 

boundary 8iiY, of iiY, is 8R. = 'lfl + 'lfz + S 1 + S 2 • 

4 
In shell theory, it is customary to use an orthogonal curvi-

linea r coordinate system which we shall call shell coordinates; the co-

ordinates of a typical point P ·are denoted by (£, 9, C ). Here, s and 9 

are, respectively, the arc length al'o:hg C and the cylindrical polar 

' angle already introduced, while the coordinate c is the perpendicular 

distance from P to the midsurface S (see Figure 1 ). Points' on one 
4 

See, for example, -[9, 10]. I . 
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side of S are associated with positive values of (; , while those on the 

other side of S are. associated with negative values. The shell coor-

dinates of p are related to its cylindrical coordinates r, e, z by 

r =. r(s, (;) = r (s)-(; sinj3(s) 
0 . 

.:.h/ 2 ~ ' ~ h/ 2 ' 
( 2. 2) 

z = z{s, (;) = z (£)+(;cos {3{s) 
0 . 

where 

(2. 3) 

i s the angle measured from the "r-axis" in the plane of {r, z ) to the 

tangent to C in the direction of increasing s {see Figure 1). The 

5 
metric of the orthogonal curvilinear coordinate system {s, e, (; ) is 

given by the differential fo rm 

2 2 
ds 

2 = { 1 + .,;- ) ds 
2 

+ [ r { s ) ] 
2 

{ 1 + ~R ) d 9 2 
+ d(; 

2 
, 

s 0 e 
{2. 4) 

where ds refers to the local Euclidian distance and 

1 · - I 1 _ Sinr~r) 
R rn) - -(3 {s)' R rn) - :- r ' s . . e o 

{2. 5) 

are the princip al curvatures of the midsurface; the superscripted 

comma indicates differentiation with respect to the argument. 

Some further notation is convenient. Denote by r l and 1 
2 

the 

respective intersections of the surfaces S 1 and s 2 with the meridion­

a l half-plane of fixed 8, and let L
1 

and L
2 

be the cor r esponding in­

tersections of 'If 
1 

and 'If 
2 

with thi s half-plane (se e F igure 1 ). 

5 The fact that · r (s) and z
9

(s) a re twice continuously differentiable 
on [O, t J assures ~hat {s, 8, ~ ) do form a coordinate system for suf­
ficiently small h. The orthogonality is easily demonstrated. See 
[9, 10]. ' 
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3. The Elastostatic Boundary Value Problem. 

In terms of the shell coordinates (s, 9, C) the basic field equa:-

tions of linear elastistatic's take the following form in the case of ro-

t . 1 . t 6· ta iona symme ry . 

. (i) Equation of equilibrium: 

(3. 1) 

~ (r 0 ( 1 +-ie )TS e] + r 0 -Jc [ ( 1+~}(1 +-ie )T SC] + 

a ._L ro _L 
+ TS e 8£" [ r o ( 1 +Re ) J + T ec R 8 ( 1 +RS ) = 0 ' (3. 2) 

a1- [ro(l+-iehsc] + ro'.a~ [(l+~ )(l+~hcc] + 

r r 

- Ro (1 +f-)rss - Ro (1+if-h99 = 0. s e e s 
(3. 3 ) 

In these equations, '. T SS, etc. , denote the components 'in the coordi­

nate system (s, e, C) of the stress tensor T. We assume that. T is 

independe nt of e . 

(ii ) · Stress-strain relations . 

T SS = (/ ... +Zµ )ess + A.(eee + ecc )' 

T ee= (),.+Zµ)eee + >._ (eCC + eSS )' 

T (:;C = ( >._ +2µ)eC(:; + A. (eSS + eee ), 

TS e = 2tJ.eS e .' 

See [ 10]. 

(3. 4) 

(3. 5) 

(3 . 6) 

(3. 7) 
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(3. 8) 

(3. 9) 

where ess, etc ., denote the components in shell coordinates of the 

strain tensor e , and A. and µ are the Lame constants character-

istic of a hom.ogeneous, isotropic elastic material. 

{iii) Strain-displacement relations.· 

(3. 10) 

(3. 11) 

. (3. 12) 

(3. 13) 

r - 1 -'- a ( u9 ) 
e e, -Z { l + R ) 8C° _L . e 1 + 

Re 
(3. 14) 

{3. 15) 

where us , u 9 , and uC are the components in shell coordinates of 

the displacement vector ~ . 

In equations (3. 1) through (3. 15 ); it has been assumed that 

us J ue J and u' J and therefore the components of strain a nd stre.ss, 

do not depend on e. 

Our objective is to determine a displacement field u, a strain 
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field e, and a stress field 'T, each defined and continuously differen-

tiable on 6l-, and satisfying (3. 1) - (3. 15 ). In addition, we require 

that the outer and inner surfaces be traction free, so that 

(3. 16) 

while over the terminal surfaces rr 
1 

and rr 
2 

we impose the boundary 

conditions as follows: 

on rr. , 
1 

i = 1, 2. (3. 17) 

Here, f. · is a given function defined and continuously differentiable 
1 

on [ - h I z , h I z J . 

A necessary condition for the above boundary value problem to 

have a solution is that torques produced _on the terminal surfaces by 

the applied shear tractions f. be self-equilibrating. Thus, it is 
1 

necessary that 

T = Zrr . • (3. 18) 

Here, T stands for the scalar torque due to the applied tractions . 

If a solution [ u, ~· _'.!:_} of the foregoing boundary value problem 

exists, it is unique, ap~rt from arbitrary additive rigid -body dis-

placements, provided the shear modulus µ and Poisson's ratio v 

satisfy 

µ > . 0 , - -1 < v < -k • (3. 19) 

4 . Michell's Theory in Shell Coordinates. 

To reduce the problem formulated in the preceding section, we 

restrict u by requiring tha~ 
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= 0 , ue (£, 0 = r(s , c >-iJ(£ , 0 , ( 4. 1) 

·where r(£, C) is given by the first of (2. 2). We retain the terminology 

of [ 1 J and refer to cp as the twist function. From (4 . 1) and (3 . 4) -

(3. 9) we find that 

= 0 1 (4. 2) 

and 

(4. 3) 

For stress fields T of the form (4. 2), (4. 3 ), two of the equil ibrium 

equation·s (3 . 1) and (3. 3) are identically satisfied, while the remain-

ing one (3 . 2) can be reduced to 

a 2 ) ac ·2 --'--- > J-~ (r TS 9 + ac r . ( 1 + ~S 1" C 8 - 0 • (4. 4) 

Substituting from (4 . 3 ) into (4 . 4 ) provides the differential equation 

satisfied by cp: 

( 4 . 5) 

The boundary conditions a ·s s·ociated with cp are obtained from (3 . 16 ), 

(3 . 17), (4. 2 ), and (4. 3). On the lateral surfaces 

acp -ac -. o . (4. 6 ) 

On the terminal surfaces 

s = 0 : 
3 8cp 

2 
r r 

fl (0 = 
1 + _L ]£" . µ ' 

Rs 
( 4. 7) 

3 acp 2 
r 

rµ fz(O = 
1 + _L 8£. 

RS 
(4. 8 ) 
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We require a function cp, continuously differentiable once on M and 

twice on M, which satisfies (4. 5) on M and the boundary conditions 

(4. 6) through (4. 8). To fix the arbitrary constant which may be added 

to any solution of the foregoing boundary value problem, we must add 

a normalization condition. Many different conditions, such as the re -

quirement that cp have a zero average on M, will serve this purpose . 

Since the type of normalization best suited to our purposes is not 

clear until some of the subsequent analysis has been carried out, we 

defer until later an explicit statement of this condition. 

We now deduce from (4. 5), (4. 6 ), and (3 . 18) a useful formula 

describing the conservation of torque on sections s = constant. Inte -

grating (4. 5) with respect to C from C = - h / 2 to C = +h / 2 and using 

( 4. 6 ), we find that 

h / 2 

I c onstant, 

- h/2 

Using (3 . 18) and (4. 7), we conclude that 
h/2 

3 s _r ~ dC 
T 0 s: s s: .f, (4. 9) = 2lfµ l+ _L 

- h/2 RS 

The above redu ction of the torsion problem thus leads to a 

second- order boundary val ue problem of Neumann type for the twist 

function cp . An alternative reduction to a second order problem of 

Dirichlet type begins with the following ·representation, guaranteed by 

(4. 4) and the simple connectivity of M, of the stresses in terms of a 

stress function tit . 
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( 4. 10) 

A comparison of (4. 10) with (4. 3), followed by the elimination of cp, 

furnishes the differential equation for tlr in the form 

- 1 
a-% [ r -

3 
( 1 + J-) * ] + a[ [ r -

3 
( 1 + J-) it J = 0 on M . ( 4. 11 ) 

s s 
The boundary conditions associated with ( 4. 11) follow from (3. 16 ), 

(3. 17 ), ( 4. 2 ), and ( 4. 10 ). 

' = h/2 tlr = c1 ( 4. 12) 

-h/2 
' 

' = tlr = c2 ' ( 4 . 13) 

s = 0 : tlr = ~ 1 r 2
f

1 
(C ' )d C •+c

3 
( 4. 14) 

-h/2 

s = t : IP = ~s r
2

f 2 (C ')dC'+C
4 

( 4. 15) 

-h/2 

where c
1

, C 2, C3' and c
4 

are integration constants. As a conse­

quence of the assumed continuity of tlr on M and the overall equilibri -

um condition {3. 18), we must have 

T 

' 
C

2 
= C

3 
= C = C - -4 1 Zirµ • ( 4. 16) 

Since IP in (4. 10) is defined up to an arbitrary additive c ons t a nt, one 

of the four constants in {4. 16) is at our disposal. Choosing C 
1 

= 

T/Zrrµ, we obtain the boundary conditions for (4. 11) in the simpler 

form 

' = h / 2 : 
T 

tlr - 2irµ (4 . 17) 

' = -h/2 : tlr = 0 ' ( 4. 18) 
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' I r
2

f 1(C')dC' 
-h/2 

* = .!_ f r 2 f ( C ' )dC ' µ. 2 

-h/2 

( 4. 19) 

( 4. 20) 

Equations (4. 11) and (4. 17) through (4. 20) describe a problem of 

Dirichle t type for ~ . 

If the shell is a hollow circular cylinder, the curvature 1 /RS 

vanishes, and the differential equations (4. 5) and (4. 11) are identical 

with the equations of Michell's theory in cylindrical coordinates [l]. 

5. D imensionless Variables. The Boundary Value Problem's Final 

Form. 

Since our ultimate interest is in the thin shell, we shall intro-

duce new i ndependent variables which make clear the sense in which 

the notion of thinness is intended. L et 

( 5. 1) 

be the minimum principal radius of curvature of the midsurface of 

the shell, and let 

L = min(R, -t ) , (5. 2) 

where .{, is the length of the meridian curves of the midsurface S . 

Define 

e = h/L . (5. 3 ) 

We speak of the shell as thin if e << 1. To put in evidence the role 

played by e:, we use the following dimensionless quantities: 

x=s /L, y=C/h, -t =-t/L. (5 . 4) 
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The open meridional domain M now corresponds to the rectangular 

domain R given by 

where 

R: O<x<t, l l -z- < y < z 

It is also convenient to set 

p(x, y;e:) = e: 2 r 3 (Lx, hy)[ 1 + ~ J-l , 
P\XJ 

q (x, y; e: ) :::: r 3 ( Lx, hy) [ 1 + __£Y_ J 
p(x) 

( 5. 5) 

(5. 6a) 

(5. 6b) 

( 5. 7) 

We note that, according to (5. 1 ), the dimensionless radius of 

curvature p(x) satisfies 

Jp(x)i ~ 1 (5. 8) 

In the new notation, the d_iffe rential equation ( 4. 5) for the twist func -

tion ep takes the following form. 
7 

[p (x, y; e: )cp (x, y; e:) J + [ q (x, y; e: )cp (x, y; e:) J = 0 
x x y y 

The boundary conditions (4. 6) - (4. 8) become 

y=±i: ep =0 , 
y 

2 2 
x= 0 pep = e: Lr (0,hy) fl(hy) 

x µ 

2 2 
pep = e: Lr (t, hy) fz(hy) . 

x µ . x = -l : 

on 61, • 

The torque conservation formula· (4. 9) now appears to be 

l 
z I p(x, y;e: )epx(x, y;e: )dy = 
l -z-

e: T 
Znµ 

(5. 9) 

( 5. 10) 

( 5 . 11) 

( 5. 12) 

( 5. 13) 

7 
We now regard ep as a function of x, y and e without introducing 

the new notation which is suggested by the transformation (5. 4). 
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In (5. 9) through (5. 13) and in the sequel, the subscript x or y at-

tached to a quantity indicates differentiation with respect to the cor-

responding coordinate. 

While it is clearly possible to recast the Di;:ichlet type prob-

lem for ~ in the ·new variables, we shall not do so explicitly because 

our main interest is in the problem for cp. 

6. An Approximate Solution for the Thin Shell. 

In the case of the thin shell, E: is small compared to unity, 

and p is therefore small compared to q, according to (5. 6). To 

construct an approximate solution of the boundary value problem which 

takes advantage of the thinness of the shell, it is therefore natural t .o 

investigate the result of neglecting the first term in the differential 

equation (5. 9). Using a tilde to connote an approximation to cp, we 

consider the following mutilated version of (5. 9): 

on ~ ( 6. 1) 

In replacing (5. 9) by (6. 1 ), we lose the capacity of satisfying all of the 

original boundary conditions, as is commonly the case with approxi-

mating procedures which alter the type or reduce the order of the 

governing differential equation. To (6. 1) we add the boundary condi-

ti on s ( 5. 1 0 ) , 

y = ± i : (6. 2) 

but we dis card the boundary conditions ( 5. 11) and (5. 12) at the ends of 

the shell. We thus expect that the approximation cp will be of poor 

quality near the ends. This corresponds to the anticipated "boundary-

layer" character of the exact solution. 
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Together, (6. 1) and (6. 2) are e quivalent to the statement that 

cp is independent of y. To complete the determination of cp , we en-

force the torque conservation formula (5. 13), which re ads as follows 

when applied to cp : 

( 6. 3) 

Thus, 
1 

x a J _1 S [ J
1

p(x', y;e )dy dx' + constant , 

0 --z 
(6. 4) 

where the arbitrary additive constant corresponds to an infinitesimal 

rigid body rotation and can be taken as zero. 

To convert the formula (6. 4) to thenotation pertaining to the 

original geometry, we use (5. 6a), (5. 7), and (5. 4) to write 

f h/2 1 
~ - T r

3 (s ', ( )d( - I 

cp - 27111 [J i + c /R rn,) J <ls . 
0 -h/2 s 

(6. 5) 

in [2], Love derives a general, two-dimensional approximate 

t heory of shells and applies it, in particular, to deformations of shells 

of r evolution. For the case of axisymmetric torsion, 
8 

his theory 

leads to a formula for the value at the midsurface of the circumferen-

tial displacement. If in (6. 5) we neglect terms of the form {; /R in 

comparison with unity, so that r 3 (£, C) is replaced by r
3

(s) and 
0 

c 1 + R H(s) is replaced by unity, we are led immediately to Love's 
s 

formula. 

The approximate stress associated with the approximation cp 

of (6. 4) [or (6 . 5)] would be computed from (4.3) after replacing cp by 
8 See Love [2], page 567. 
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q:> . Thus, 

( 6. 6) 

The methods to be developed in the sequel permit us to esti-

mate rigorously the errors q:> -cp, ,. ,
8

-1=',
8

, and ,.s
8

-T's e at each 

point in the domain. We w ill find that the anticipated boundary-layer 

character of the solution is confirmed, and at points away from the 

terminal surfaces, the twist- and stress-errors are small as e - 0 • 

Moreover, our upper bounds on the errors will exhibit th~ order of 

this smallness in € explicitly. Thus, cp is an "interior approxima-

tion" to the exact solution q:>. Set 

A 
q:> = q:> - q:> on ~ (6. 7) 

the analysis to follow is applied to the boundary-value problem satis­

fied by the error cp. From (5. 9) and (6. 1 ), we find that cp satisfies 

the differential equation 

on ~ , (6. 8) 

where the known nonhomogeneous F is given by 

F(x, y;e) = -[p(x, y;e:)cp {x;e)] • 
x x {6. 9) 

The boundary conditions satisfied by cp are obtained from {5. 10) -

(5. 12) and (6. 2). They are 

y=±i (6. 10) 

x = 0 .: (6. 11) 

x=.t : (6 . 12) 

Since the approximate twist function q:> was forced to satisfy the torque 

conservation formula (5. 13), and since f 1 and f 2 satisfy (3. 18), it 
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follows that the boundary values g 1 and g 2 appearing m (6. 11) .and 

(6. 12) are "self-equilibrated": 
1 .!. z: ~ I gl (y;e:)dy = I g2 (y;e:)dy = 0 . 
1 1 -z: -z: 

(6. 13) 

This is an important feature of the boundary value problem (6. 8) -

(6. 12). In fact, this is the principal re as on that we employ cp as giv-

en in (6. 4) as our approximate solution, rather than the function ob-

tained from cp by retaining only the leading terms in e:. If this latter 

function were to be used in place of Cf, the torque conservation formu-

la would be violated, the functions g 1 and g
2 

appearing in the fore­

going "residual boundary value problem" would not be self-equilibrated, 

and the subsequent analysis would be more difficult. 

In view of the self-equilibration (6. 13) of the "end-loads" in the 

"residual boundary-value problem, 11 it is to be expected that a neces-

sary condition for the existence of a s elution to this problem is that F 

satisfies - 1 
-l z: I I F(x, y;E:)dydx = 0 . 

0 -t 
(6. 14) 

The necessity of this condition is readily confirmed. Moreover, it is 

easily verified ?Vith the aid of (6. 3) that 
z: 

JF(x,y;e:)dy = 0, 
1 -z: 

from which (6. 14) follows. 

(6. 15) 
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7. Surnmary of Results. 

In the sequel, we shall ·aim at quantitative estimates , valid on 

- /\ " the closure M of M, for the e rror stresses 'r se and 'rs e , which 

A 9 
are p r oportional to the derivatives of the error cp according to (4.3). 

The main results of this investigation state lO that on M 
k k 

- ~x - ~U-x) 
i~{x,y)!:5:K 1+K2e 4 e +K

3
e 8 (7.1) 

whe r e 

k x k 
- _ o_ - ~ (-t-x) 

l~)x, y) I :5: K 4+K5e 
88 

+Kfre 
8 

k x k 
- _ o_ - ~ {-t -x) 

l~y (x, y) I :5: K 7+K8 e 
88 

+K
9

e 
8 

. , 

k = 1f 
0 

r 
3 (1 - .£ _!_) · 
2 2 " 

r 
3 

(1 + .£ ..!.. ) 
1 2 (\ 

p 

{7. 2) 

(7. 3) 

(7. 4) 

and the constants e and .{, are given by {S. 3) and (5 . 4), respectively. 

" In (7. 4), r 1 , r 
2

, and p are constants such that 

/\. :5: p on M , (7. s) 

with p{x) defined by {S. 7) and in (7. 1) - (7 . 3), the constants K
1 

through K
9 

are full y determi ned. In fact, we can show from (29. 9) -

(29. 17) that for fixed (x, y} on 0 :5: x :5: t and -i :5: y :5: i, K
1 

through 

K
9 

satisfy 

2 1/2 -1-
Kl = O(e )+O(e )exp[-O(e )t] 

9 See also (32. 1). 

10 
See (23. 1) - (23. 4) and (30. 12) - (30. 1 4 ). 

as E: __, 0 , . (7 . 6) 
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K
5

=0(l), K 6 =0(l) 

K = O(e:
312

) as e; -o 
4 

as e; .... 0 , 

5/2 -l-
K7 = O(e: )+O(e;)exp[-O(e: ):t] as e; - 0 

K - O(e3/2) 9 - as e; .... 0 • 

(7. 7) 

(7. 8) 

(7. 9) 

(7. 10) 

Inequalities (7. 1) - (7. 3) are derived from energy-like ine-

qualities which are given in detail in Chapters II and III. When (7. 2) 

and (7. 3) are coupled with the basic relations between stresses and 

the twist function, they yield, in terms of the variables (x, y) , 

[ J
-1[ - kox - k0 (t-x~ 

l~xe (x,y)j s:y l+:Yx) K4+K5e e:8+K6e e: j· (7. 11) 

kox - ko (I-x~ 
e8 +K9e 8 J (7. 12) 

where µ is shear modulus, and L is defined in (5. 2). 

In §32, we shall further show that (7. 11) and (7. 12) remain 

bounded as the point (x, y) approaches the boundary of M. This im-

portant result implies that the estimates for the error stresses are 

uniformly valid on the closure M of M. 

8. Relations to Previous Work. 

Energy inequalities of the type (10. 2) were first derived in 

connection with problems of elasticity theory independently by 

Knowles [4] and Toupin [5]. The main purpose of the analyses in [4] 

and [ 5 J was to precisely formulate certain quantitative versions of 

Saint Venant's principle applicable to a class of elastic solids. 
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This type of Saint Venant's principle was also investigated in 

[ 1 J for the problem of axisym1netric torsion for elastic solids of 

revolution with plane terminal sections. Two particular cases of 

bodies of revolution were considered; a hollow body and a solid body. 

Based on the methods developed in [ 4], stress inequalities of the fol -

lowing type were constructed in [ 1 J: 

I 'r(r, e. z)j ~ 30 (8. 1) 

where '!" stands for any one of the stress components in cylind_rical 

coordinates (r, 8, z); µ and v are sh.ear modulus and Poisson's ra-

tio, respectively; c(v} is a constant defined by 

c ( v } = m i.n [ 1 , 

-±<v< l 

l-2v J 
l+v 

(8. 2) 

The constant U(O} represents the total strain energy contained in the 

body and can be bounded in terms of the load data and the geometry of 

the body; the function k(C} is determined by the geometry and is posi-

tive for CE: [ 0, .t J where .t is the length of the cylinder; and finally, the 

constant o represents the radius of a sphere which has the interior 

point (r, e, z) as its center and which lies within the elastic solid. 

We first note that the stress inequality given by (8. 1) is char-

acterized by a pure exp-onential decaying term. In contrast, the 

stress inequalities given by (7. 11} and (7. 12) contain non-decaying 

constant terms as well as pure exponential decaying terms. This dif-

ference arises from the nature of the basic differential equations 

dealt with. 
I\ 

The differential equation, (6. 8), governing the error cp 
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in the approximation, is not homogeneous and the nonhomogeneous 

term is responsible for the non-decaying part's of the stress inequali-

ties. On the other hand, the basic differential equations dealt with 

in [ 1 J are homogeneous,and this fact is responsible for the absence of 

non-decaying terms in the results of that reference. 

The stress inequality (8. 1) was obtained by combini.ng an en-

ergy inequality of exponential decaying type with a suitable mean value 

theorem of -elasticity theory. As was mentioned in § 1, stress esti-

inates constructed on this basis suffer significant drawbacks. We can 

now clarify this point with the help of (8. 1 ), where the distance o 

from the boundary to the point at which the estimate is to be made al-

ways occurs in the denominator when mean value theorems are used. 

As the point at which stress estimates are required approaches the 

boundary of the elastic body, . o tends to zero, and the estimates fail. 

To amend such defects for 'the problem t.reated by Toupin in [ 5], a 

method based on the as.~essment of S., 
2 

norms of the derivatives of 

the unknown functions, and also on Sobolev 1s lemma [12], was used 

by Roseman in [ 6 ]. To avoid such drawbacks for the type of problem 

treated in [ 1 ], we develop. a method which is an extension of that em-

ployed in [ 3 ]. This method leads to the establishment of useful 

pointwise estimates for the stresses; see (7. 11) and (7. 12). They are 

fully determined and uniformly valid up to the boundary of the cylin-

der. 
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IL ENERGY INE QUAL I TIES FOR A C.wASS OF 

SECOND-ORDER BOUNDARY-VALUE PROBLEMS 

9. Preliminaries . 

Let &t. denote the open rectangle 0 < x < {, , -i < y < i in the 

x, y plane, and let p and q be positive, continuously differentiable 

functions on the closure R of 6t. Define the operator L by writing 

Lu = (pu ) + (qu ) 
xx y y 

on R, (9. 1) 

for any function u which is twice continuously differentiable on R . In 

this chapter and the following one, we shall be concerned with the 

boundary value problem for L which we now state . 

Lu= F on iR, ' 

pu = gl at x = 0 
' x 

pu = g2 at x = .t ' x 

= 0 at y=± l u z ' y 

( 9. 2) 

( 9. 3) 

(9. 4) 

(9. 5) 

where F is a given continuous function on R, and g 1 and g
2 

are 

given and continuous on [ -%, tJ. A necessary condition which must be 

satisfied by g1, g 2 and F for the existence of a solution of the f ore­

going boundary-value problem is easily obtained by integrating (9. 2) 

over R and using the boundary conditions. There follows 
1 

f (g 2 -g l )dy = JFdA. 
l ' --z R 

( 9. 6) 

We assume the existence of a solution u of the b oundary v alue 

problem which is continuously differentiable once on R and t wice on R . 

For some of the results to be d e rived in the sequel, we shall require 

more restrictive smoothness assumptions than those stated above . 
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These will be stated explicitly as the need arises. 

The "residual boundary-value problem" (6.8) - (6. 12) govern­

ing the difference ~ between exact and approximate solutions of the 

. 1 
shell p roblem is a special case of the foregoing general problem. 

The necessary condition (9. 6) is fulfilled in the shell problem; in fact, 

reference to (6. 13) and (6. 15) shows that 

and 

l z 

I gldy 
1 --z 

1 z 

l z 
= s g2dy 

1 --z 

s F(x, y )dy = 0 , 
1 -z: 

= 0 
' (9,. 7) 

(9. 8) 

so that the three integrals· in (9. 6) vanish separately. Therefore, in 

our subsequent discussion of the general problem (9. 2) - (9. 5), we 

shall expressly assume that the given functions F , g 1 , and g
2 

satisfy 

(9 . 7) and (9. 8). This important assumption permits an essential de-

composition of the basic boundary- value problem into 11subproblems, 11 

as we now indicate. 

We let 

u=v+w, ( 9. 9) 

where v and w are solutions of the following two boundary-value 

problems . 

Problem I. 

Lv = 0 on ~ , (9. 10) 

1 
In the shell problem of §6, the functions p, q, F, g and g

2 
depend 

on the parameter e. Since this parameter is of no ~irect importance 
in the arguments used in the present chapter, we suppress it in the 
notation. 



pv = 0 
x 

pv = x gz 

v = 0 
y 

Problem II. 

Lw = F 

pw = x gl 

pw = 0 
x 

w = 0 
y 
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at x = 0 , 

at x = -l , 

at y = ± 

on R. , 

l z . 

at x = 0 , 

at x = -l 

l at y = ± -z 

(9. 11) 

(9 . 12) 

(9. 13) 

(9. 14) 

(9.1 5) 

(9. 16) 

(9. 17) 

The remainder of this chapter is devoted to the derivation of 

energy inequalities for Problems I and II which are roughly analogous 

to those of [3] . The present analysis differs from that of [3] in sev-

eral important re spects. Apart from a change of coordinates, Prob -

lem I is precisely the problem examined in [3 ]. T he objective in [ 3], 

however, was to obtain a satisfactory pointwise estimate for v, and 

this required the consideration of first and second order energies 

(s ee below). We are now concerned with pointwise estimates for the 

first derivatives of v and v , and this will require the use of an as -x y 

sociated third order energy. 

Problem II involves the nonhom.ogeneous term F in the differ-

ential equation, and its treatment accordingly requires significant 

modifications of the analysis as given in [3] . 

10. First Order Energy fo r Problem I. 

We define the first order energy V 
1 

associated with Problem I 

by writing 
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z t 
V 1 (z) = SS (pv~ + qv:)dydx. 

0-t 
(10. 1) 

Problem I is identical with the problem considered in [ 3 J, except that 

the nonhomogeneous boundary condition occurs at x = 0 in [3 ], rather 

than at x = t. We can, thus, appropriate directly the results of [3 J 

after changing the variables in (9. 10) - (9. 13) from x, y to x 1
, y 1

, 

where x 1 = t -x, y' = y. After such a transformation~ we conclude 

from §3 of [3 ] that 

V 1 (z) ~ V 1 (t) e -Zk(t -z), 

where 

and q
0

, p 
1 

are positive constants such that 

p(x, y) ~ p 1 ' q(x, y);;::: q 
0 

on~. 

(10. 2) 

(10. 3) 

(10. 4) 

The constant V 
1 

(t ) represents the total (first order) energy 

associated with the boundary value problem. An upper bound for 

V 
1 
(t) is required before the inequality (10. 2) becomes fully deter-

mined. We shall repeatedly encounter the question of f inding an upper 

bound for total energies. We defer the calculation of such bounds 

until a l ater chapter. 

Expression (10. 2) provides mean square estimates of the first 

derivatives of v. 

2 
We omit the detail s of the transformation and we do not repeat in 

detail the arguments in [3 ]. 
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11. Second Order Energy for Problem I. 

In analogy with the procedure in [3], the second order energy 

V 
2

(z) associated with the boundary value problem is defined by 

z .!. rJ 2 z v
2
(z) = J. (pv + qv )dydx . 

yx yy 
0 -± 

(11. 1) 

In order to obtain an exponential decay inequality for V 2 (z) , we need 

more stringent assumptions concerning the smoothness of the func-

tions p, q, and g
2 

appearing in the statement of Problem I, as well 

as the solution v. We assume, in fact, that p and q are twice con-

tinuously differentiable on lit, that g
2 

is continuously differentiable on 

[-±, 1-J, and that v is continuously differentiable twice on 6t and three 

times on 6t . The assumed continuity of v on R, in particular, im-xy 

plies that the condition 

(11. 2) 

must be satisfied by p and g 2 . 

According to §4 of [3], V 
2

(z) satisfies the inequality 

(11.3) 

where the decay constant k is again given by (10. 3) and V
1

(t ) and 

V 
2

(-e,) represent the total first- and second-order energies respective-

ly. The constants al a nd az are such that on R 

1 I p~y - p I ~ 6t 

~ 
al on ' p xy 

(11.4) 

and 
2 

1 1~- ~y_:rr+:Xj 2 pq q P P2 
::;; a2 on in, • (11. 5 ) 
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When the total energies V 1 (-!, ) and V 
2

(-l) are estimated, (11.3) 

provide mean square estimates of v and v 
xy yy 

A mean square 

estimate of v can be computed by using ( 11 . 3), ( 10. 2), and the dif-
xx 

ferential equation (9. 10 ). 

12. Third Order Energy for Problem I. 

The inequalities (10. 2) and (11. 3) provide mean square esti-

mates of first and second derivatives of v respectively. These are 

sufficient to establish pointwise decay estimates for v itself, as 

shown in [3 ]. If pointwise information concerning the first deriva-

tives of v i s required, it is necessary to analyze the thi rd order en-

ergy defined by 

2 
qv )dydx 

xyy 
( 12. 1) 

To establish a decay inequality for V 
3 

(z ), we begin by setting 

v=v 
xy 

( 12. 2) 

We assume that the given functions p, q are three times continuously 

differentiable on 6x., and that the solution v of Problem I is continu-

ously differentiable three times on ~ and four times on 6x.. 

By differentiating the basic differential equation (9. 10) once 

with respect to x and once with respect to y, we find that v satisfies 

an equation of the form 

Lv = H , on 6x. , ( 1 2. 3 ) 

where H is given by 
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H = -p v -a v -(p +q __ )v - 2a v - 2p v -p v -q _ _v -
xxy x 'XYY y xx -yy xy 'XY yy xy xx y xxx -y xyy 

-p v -q __ v 
x xxy -y yyy • 

( 12. 4) 

From (12. 2) and the boundary conditions (9. 11) - (9. 13) satis-

fied by v , we derive the boundary conditions satisfied by v : 

v = 0 at x = 0 , ( 12. 5) 

2 -
P (-t, y)v(-t, y) = p(-t, y)gz(Y) 

- py({,, y)g 2 (y) at x = {, , (12. 6) 

v = 0 at y = ±t. ( 12. 7) 

Thus, v is the solution of a problem of Dirichlet type described by 

(12. 3), (12. 5) - (12. 7). Continuity of the boundary value of vis as-

sumed by the smoothness assumptions already made concerning p and 

g
2

, and by the assumption (11. 2). 

Now 

The definition ( 12. 1) can be written 

Iz ~ -2 -2 J (pvx + qvy )dydx 

0 -± 
l 

z z: 

JJ [ (pvv) +(qvv) -vLv]dydx, 
x x y y 

0 -± 

( 12. 8) 

so that integratio~ by parts and reference to ( 12. 3), ( 12. 5 ), and ( 12. 7) 

yields 
1 z: 

= J (pvv) dy 
i atx=z -z: 

1 
z z: 

I I vHdydx 

0 -± 
Furthermore, differentiation of ( 12. 8) furnishes 

( 12. 9) 
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3 

I z 
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J 
... -2 -2 

(pv + qv ) dy 
1 x Y atx=z 

-2 

Bearing in mind (10. 4), we have 

.1. 

f -2 2-2 
(qv -pk

3 
v )dy 

l y 
--z 

Recalling that 

J.1. -2 
v dy ~ 

l y 
-2 

2J.1.-2 
7f v dy ' 

l 
-2 

(12.10) 

( 12. 11) 

( 12. 1 2) 

(12. 13) 

for any function v which is continuously differentiable on [ -i, ±] and 

vanishes at the end points, 
3 

we choose for k 3 in (12. 12) the value 

k = k = 7f '1 q /p . 
3 0 1 ( 1 2. 14) 

as in (10. 3). Combining (12. 12), (12. 13), and (12. 11) then provides 

the inequality 

3 

z .1. 

-v3(z)+2kV 3 (z} ~ 2kl J jvHdydxl 
0 -i 

In Appendix A, it is shown that 

See, for example, [11] or [13]. 

( 12. 15) 
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l 
z 2 

I J J vHdydxl 

0 -t 

l 

~ !31[V1(z)V2(z)]"Z+J32 V 2(z)+J33 Vz(z) , ( 12. 16) 

where the positive constants 13 1 , 132 , and 13
3 

are such that on N" 

' · [ 'pxxy I 2 jpxyp) 2 lpxyC!y I ~I 2p~ I 
131 "'" max + 2 + 3 / 21./ 2 + 2 - -pxx 

~ p p p q pp 

+ Ip y I I 2p x Y - I+ I ~YY I + ~ Ip xp y - I + 
3 I 2 1I2 p ~y _ r,:::;; pq p P xy 

p q "\' pq 

'q) 1~ I] + 1 I 2 3 I 2 p - ~y 
p q 

IPyl 12pxq I 
+ 3/2- 1/2 - p - -~ 

p q 

J3 ~ max [_!_ I P x ~ + _!_ I ~ I J 
3 - 2 p 2 q 

&x. 

( 12. 1 7) 

Substitution of (12. 16) into (1 2. 15) provides the differential inequality 

( 1 2. 18) 

From this it follows immediately by integration that 

{, 

V3(z) ~ V3 (-l )e - 2k({.. -z)+2ke2kz Jf31e -2kC[v 1(C)V2(C)]idC + 

z 

{, 

+ 2ke 2kz Jc J32e - 2kCv 2(C)+f33 e -2kCvz (C) ]dC . (12. 19) 

z 

If the last term in the integral on the right side of ( 12. 19) is integrated 
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by parts, we find 

{, 

+ 2ke 2kz J: - 2kC ( f31[V1 (C )V 2 (C) ]i+(f32+2kJ33 )V 2 (C )} dC (12.20) 

z 

Replacing v 1 (C) and v 2(C) in the integral in (12. 20) by their upper 

bounds according to (10. 2) and (11. 3), and discarding the term 

- 2kj3
3 

V 
2 

(z) in ( 12. 20 ), we obtain 

V3(z) ~ [ V3(-l ) + 2kj33V2(-?,)Je-2k({. -z) + 

{, 

+2ke -
2

k(-?,-z) J ( 13
1 
Vf (t ) [V 

2 
(t)+ 2k(a.

1 
+a.

2 
)(t-c )V 

1 
(-t) J ± 

z 

In the r e m aining \: -integral, we replace z by zero throughout to 

establish the final third order decay inequality 

V 3(z) ~ C e - 2k(t-z) ' ( 1 2. 2 1) 

where the cons tant C is given by 

c = v 
3

(t )+2k[-l{3
2

+ (1+kt ){3
3

Jv 
2
(t)+4k

2 (13
2

+2k13
3

)(a.
1

+a.
2

)t 
2

v 
1 

(t )+ 

l l 

+2k-t (3
1 

[V l (-l)]"?:[V 
2

(-t )+Zk(a.
1

+cx.
2

)-tV l (t )J Z". (12.22) 

In this formula, V 1 (-l ), V 2 (-t ), and V 
3 

(-?, ) represent the total energies 

of various orders; k is given by (12.14), (3 1 , {3
2

, and {3
3 

by (12.17), 

and a. 1 and a.2 are defined throu gh (11. 4) and (11. 5). 

13. First Order Energy for Problem II. 

In order to establish suitable inequalities f or the energy di s tri-
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butions of various orders of Problem II, it is convenient to convert 

the problem from one with boundary conditions of Neumann type to one 

of Dirichlet type. Referring to (1. 14) - (9. 17), we accordingly intro-

duce a new unknown function t through the equations 

t = -qw 
x y 

(13. 1) 
t = pw + G y x 

where 
{, 

G(x, y) = f F(s, y)ds on R (13. 2) 

x 

The existence of a solution t of (13.1) is assumed by the fact that w · 

satisfies (9. 14). Elimination of w from (13. 1) yields the differential 

equation fo r t : 

>:C 1 1 1 L t = (- tx) + (- t ) = (- G) 
q x PYy Py 

on ~ . (13. 3) 

Expressing the derivatives of w m (9. 15) - (9. 17) in terms of G and 

the derivatives of t with the aid of (13. 1) provides boundary conditions 

for t in a form which can b e easily integrated. Performing this inte-

gration and adjusting the constants of integration to assure the con­

tinuity of boundary values of t , we find
4 

t = 

t = 0 

t = 0 

at x = 0 , 

at x = {, , 

a t y = 1 ± 2. 

(13. 4) 

(13. 5) 

(13. 6) 

4 
The arbitrary additive constant which may be added to any solution 

t of ( 13. 1) has been chosen so that the constant v alue of t along x = {, 
is zero. 
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We now direct our attention to the boundary value probl em (13. 3) -

( 13. 6 ). It is convenient to decompose the problem by writing 

where n satisfies 

n= 

n = 0 

n = 0 

while s satisfies 

s = 0 

s = 0 

t = n + s , 

>'' 
L "n = 0 on 6l, , 

' at x = 0 , 

-·-
L '" s = (G/p)y 

at x = -t , 

l 
at Y = ± 2 I 

on R , 

at x = 0 , x = -t , 

at y = ± i. 

( 13. 7) 

(13. 8) 

( 13. 9) 

(13. 10) 

(13. 11) 

(13. 12) 

(13. 13) 

(13. 14) 

The legitimacy of this decomposition of the boundary value problem 

for t is a consequence of (9. 7), (9. 8), and (13. 2 ). 

We now introduce the first order energy distributi ons assoc i -

ated with the boundary valu e problems formulated in this section. De-

fine first order energies T 
1 

(z ), N 
1 

(z) , and s
1 

(z ) by setting 

I,e,Il. 1 2 1 2 
T

1
(z) = [- t + - (t -G) ]dydx , 

q x p y 
z -2 

.{, .!. 

SJ 1 2 1 2 
(- n + -n )dydx , 

l q x p y 
z - 2 

.{, t rs 1 2 1 2 
J [ - s +- (s -G) ]dydx. 

q x p y 
l z - z-

(13 . 1 5 ) 

(13. 16) 

(13. 17) 
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An easy application of the Schwartz inequality shows that 

(13. 18) 

As an upper bound for s
1 

(z) , we employ the simple estimate 

sl (z) ~ sl (0)' (13. 19) 

based on the monotone decreasing character of s
1 
(z). Since the dif­

ferential equation satisfied by s is nonhomogeneous, we w ould not 

expect sl (z) to decrease exponentially. 

To analyze N 1 (z) , we proceed as m [3 ]. An integration by 

parts in (13. 16), together with the boundary conditions (13 . 10) and 

(13.11), shows that 

Moreover, we also have from (13. 15) the formula 

l z 

I 1 2 1 2 
N' (z) = - (- n + ~ n )dy , 

1 q x p y 
l -z-

(13. 20) 

(13. 21) 

for the derivative Nl (z) • Thus, for any non-negative constant k
1 

, 

l 

1 z 

J 1 . 2 
~ - (- n 

1 p y 
-z-

Jz i 2 1 2 2k1 
- (-n +-n +-- nn ) dy 

1 q x p Y q x a t x=z 
-z-

2 
kl 2 

- - n )dy • 
q 

(13. 22 ) 

Recalling the definitions (10. 4) of the constants p 1 and q
0

, we infer 



from (13. 22) the inequality 

Since 1 z 
2 I 2 Tr n dy , 

1 -z-
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(13. 23) 

(13 . 24) 

for any continuously differentiable function of y on --k ~ y ~ -k which 

h d . 5 . h vanishes at t e en points, we may again c oose 

k = k = Tf ~q /p I 1 0 1 
(13. 25) 

and conclude that 

N l ( z ) + 2kN l ( z ) ~ 0 • {13. 26) 

Thus, 

(13. 27) 

Combining (13. 19) and (13. 27) in {13. 18), we have 

{13. 28) 

In the analysis of the present section, we have assumed that 

p, q, and G are continuously differentiable on ~, and that e ach of 

the boundary value problems for n and s possesses a solution which 

is continuously differentiable once on ~ and tw~ce on R. 

14. Second Order Energy for Problem II. 

5 

We define ;;; on R by 

w(x, y) = w (x, y) ' y 

See [11] or [13]. 

( 14. 1) 



-36-

and we obtain the differential equation satisfied by w by differentiating 

(9. 14) with respect to y. Thus, 

Lw = H 

where 

on~ , 

PXP p __ q__ qp Fp 
H = ( ~ - p )w + ( ___2'..__2'.._ - q __ )w + ( _:_y_ _ q _ _)w + F - _:_y_ 

p xy x p -YY Y P -Y YY Y P 

( 14. 2) 

( 14. 3) 

In addition, the boundary conditions satisfied by w are found from 

( 9. 15) - ( 9. 1 7) and ( 14. 1) to be 

g 1 (y) 
P < o, Y >:W) o, Y) = g 1 < Y) - P < 0 , Y) PY< o. Y) at x = 0 , 

Again, 

w = 0 
x 

w = 0 

at x = -t. , 

at y = ± i. 
We now define a second order energy W 

2
(z) by 

t .!. 

SJ -2 -2 
. w 2(z) = (pwx + qwy )dydx 

z-i 

1 z 

I -2 
= - (pwx + 

1 -z 

-2 
qw ) dy 

Y atx=z 

while an integration by parts and (14. 2), (14. 5), and (14.6) give 

.!. -l .!. z. z. 

w 2(z) = - I (pwwx) dy - Is wHdydx. 
1 atx=z i -z z -z 

For any constant k
2

, we therefore have 

i .ii 

(14.4) 

( 14. 5) 

( 14. 6) 

( 14. 7) 

( 14. 8) 

( 14. 9) 

w2(z)+2k2W 2(z) = - J<pw;+qw:+2k2pww)dy-2k2J I wHdydx. (14.10) 
l 1 

-z at x =z z -z 
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Arguing as in the preceding section, we choose k
2 

= k as in ( 13. 25) 

and find that 

( 14. 11 ) 

We now require a useful estimate of the integral appearing in 

(14. 11). In Appendix B, it is shown that 

-i i 
I J J wHdydxl s: y 1 T 1(z) + y 2 [T1(z)]i, 

1 
z-2 

( 14. 12) 

where T 
1 

(z) is the first order energy defined by (13 . 15) and y
1 

and 

y 
2 

a re such that 

on R , 

( 14. 13) 

on R. 

In (14. 13), a.
1

, a.
2 

are given by (11. 4) and (11. 5 ), while F is g iven in 

(9. 14). 

From (14. 11), (14. 12 ), and (13. 27) we find 

( 14. 14) 

Integrating ( 14. 14) p r ovides 

.!. .!. - kz w 2(z ) s: y 1 sl (O)+y 2[ SI (O)J 2 +2y2 [N l (O)] 2 e +(W 2(0)+2kty1N1 (O)-

( 14. 1 5 ) 

Here, k is given by (13. 25). Expression (14. 15) represents our main 
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result concerning the second order energy for Problem II. In order 

to obtain it, we have had to assume that p, q and G are twice continu-

ously differentiable on R, and that w is continuously differentiable 

twice on ~ and three times on R. 

15. Third Order Energy for Problem II. 

The final inequality pertaining to the distribution of energy 

which we require is obtained by considering the function w defined on 

R by 

= (15. 1) w = w = w x xy 

We assume that the given functions p, q, and G are three times con-

tinuously differentiable on ~, and that the solution w of Problem II is 

continously differentiable three times on 6t and four times on 6t . 

Differentiating the differential equation (14. Z) with respect to 

x, we find that w satisfies 

Lw = H on~, ( 15. l) 

where 

:H = F -p w -a w -(p +q __ )w -2a w -2p w -p w -
. xy xxy x 'XYY y xx -yy xy 'XY yy xy xx y xxx 

-q __ w -p w -q__w 
-y xyy x xxy -y yyy • (15. 3) 

The boundary conditions satisfied by w are easily determined from 

{14. 4) - (14. 6) to be 

g].{y) gl {y) 
w{O, y) = p(O, y) - 2 py{O, y) 

p {O,y) 

= w = 0 

= w = 0 

at x = 0 , 

at x = -l , 

at y = ±%. 

(15. 4) 

{ 15. 5) 

( 15. 6) 
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In analogy with the discussion of the preceding section, we find 

that the third order energy defined by 

t i 
W 3 {z ) = SS (jn~;+q~:)dydx 

z -! 
satisfies the differential inequality 

t i 
w3(z) + 2kW3(z) ~ 2kl Is ~~dydxl 

1 
z --z 

whe re 

as in (13. 25). 

{., i 
In Appendix C, it is shown that 

{15. 7) 

( 15. 8 ) 

( 15. 9) 

I Is ~Hdydxl 1 l 

~ f31[T1(z)W2(z)J-Z+{32W2(z)-{33Wz(z)+{34[W2( z)]Z"' 
1 z -z-

where {3 1 , 132 , 13
3 

are given by ( 12. 17) and 

{15. 10) 

~ [l~I· IFyl . IFxyl IP I 12Fpx I 2JpxyFI] 
{3 4 max l / 2. -r + +z · -- -F x + 3 I 2 
. ~ p q ...JP p p p 

(15. 11) 

(15. 10) in turn converts {15. 8) into the form 
1 l 

W}(z)+2kW 3 (z) ~ 2k({3 1 [Tl (z)W 2 (z)JZ"+J32 W 
2

(z)-{3
3 

Wz(z)+j3
4

[ W 
2

(z)JZ} • 

(15. 12) 

Integrating. ( 15. 12) yields 

z 

w 3 (z) ~ [W 3 (~)+2kJ33 w 2(0 )]e -2kz+2ke - 2kz{131fe2kC [ T 1 (C )W 2<C )] tdC+ 

0 

z z 

+{J32+2kJ33) f e 2kCw 2<CldC+J3 4J e 2kC [W 2<C )] tdC} .• ( 15. 13) 

0 0 
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Substituting (13. 27} and (14. 15} into (15. 13} and simplifying 

the result, we find 

(15.14) 

where the constants ){ 1, ){
2

, ){3 , and ){
4 

are such that 

l l 

l{. l = (f32+2kf33H-v1s1 (O)+-y2[Sl (O)]Z}+f34 ylsl (O)+y2[Sl (O)JZ + 

_[7' I 2 3;2· 
+ "\J~ l31 "Y1[Sl(O}] +y2[Sl(O}] ' (15. 15) 

){ 2 = i { f3 4 ~ 2 y 2 [ N 1 (.0 }] i~ "2' f31 S 1 ( 0 ) [ 2 y 2 ~ N 1 ( 0 ) + W 2 ( 0 ) J + 

+ '12' (1+2kt }f31Y1 sl (O)N 1 (0}+ ..JZ'131YzN1(0)[ ~ + ~]+ 

+ V2' 131 N l ( 0 ) [ W 2 ( 0 }+ 2kt y l N l ( 0 } ] } , ( 1 5. 16 ) 

l 1 

tt
3 

= 4y 2 ({32+2kf33 }[N l (0 )]2 +2f3 4 [W 2 (0 )+2kt y l N l (0 )JZ , (15. 17) 

and 

(15. 18) 

We now turn to the question of estimating the total energies of 

various orders appearing in the energy inequalities derived in this 

chapter. 
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III. BOUNDS FOR TOTAL ENERGIES 

16. Fundamental Minimum Principles 

The inequalities pertaining to the distribution of energies of 

various orders which we have derived in the preceding chapter involve 

the total energies as undetermined quantities. While it is not ex-

pected that these ca.n be computed exactly, it is possible to obtain up-

per bounds for them by applying suitable minimum principles. This 

was done in [ 1 ], [3 ], and [ 4] for the problems considered in these 

references, and our procedure here is similar to that of [3]. In the 

present section, we collect the minimum principles necessary for our 

purposes. Throughout this discussion, L represents an operator of 

the form (9. 1) where p and q are positive continuously differentiable 

functions on the closure ~ of R. 

Theorem 16. 1. 

Let cp be continuously differentiable once on ~ and twice on 

R , and suppose 

on R, ( 16. 1) 

where qi is continuous on R. Then for any ~ which is continuously 

- I\ 
differentiable on R and satisfies cp = cp on the boundary ost of R we 

have 

S "2 "2 "-(pep +qep +Zcp<I>)dA ~ 
x y 

R 
S 2 2 

(pep +qep + Zcpi!i )dA , 
x y 

R 

, A -with equality holding if and only if cp = cp. 

( 16. 2) 

We shall apply this theorem to the problems of Dirichlet type 

formulated in Sections 12, 13, and 15. 
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Theorem 16. 2. 

Let o/ be continuously differentiable once on R and twice on 

R, and suppose that 

on R, (16. 3) 

where '11 is continuous on ~, and that 

* = 0 aty=±i. ( 16. 4) 

Then for any ~ · which is continuously differentiable on R and for 

which 

at x = 0, -l ( 16. 5) 

( 16. 6) 

with equality holding if and only if 

A 

1jr = -p o/ y x 
and on R. 

We shall apply this inequality to the boundary value problems 

formulated in Section 14. 

The proofs of the two theorems stated above follow along 

standard lines. See , for example, [11] and [14]; see also Section 6 

of [3 J. 

17. T otal First Order Energy for Problem I. 

From ( 10. 1 ), the total first o rde r energy V 1 (-t) for Problem 

I is given by 

(17. 1) 

By the application of an appropriate minimum principle, it has been 

shown in [3 J that 
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t 1 2 
V 1 ( t) s ( - + -:r- )m 

2 
, 

Po qo 
(17 . 2) 

where m 2 is such that 

m2 ~ I g2 <Y> I 1 1 (17. 3) - z- sys z- , 

and 

p{x, y) ~ p > 0 , q(x, y) ~ q > 0 on &t, • ( 1 7. 4) 
0 0 

18. Total Second Order Energy for Problem I. 

The total second order energy V 2 (-t) for Problem I is found 

from ( 11. 1) to be 

.{, t 
v 2<-t> = IS (pv!y + qv~y)dydx. 

0 -t 
It was shown in [3] by an application of Theorem 16. 2 that 

where m 3 is such that 

(18.1) 

( 18. 2) 

on [ - i, i J , ( 1 8. 3 ) 

and 'Yl and m 2 are given by (14. 13) and (17. 3), respectively. 

19. Total Third Order Energy for Problem I. 

Referring to (12. 1) and (12. 8), we h ave the expressions 

v
3

(-t )= J {..J±(pv 2 +qv2 )dydx= J.{,f.!.(pv2 +qv2 )dydx, (19.1) 
xyx xyy x y 

o-t o-t 
for the total third order energy. In order to establish V 

3
(t ) with the 

aid of Theorem 16. 1, we identify cp and qi of that theorem with v 
and H of {12. 3), respectively. Inequality (16. 2) then shows that 
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" for any cp admissible under the hypothesis of Theorem 16. 1. 

In Appendix D, it is shown that 

.t .!. 

I Ii ~Hdydxl = 
0-± 

I JcpHdal 
~(O) 

where 
l 

I 
~p).t,y}$(.t,y) 
J p{.t, y) 

l -z-
l 

l l 

~ v3+v1[V1(.t)]Z"+v2[V2(.t)]Z", 

I S
z- ~(.t, y ) A [ py(.t, y)g2(y) J I 

+ l q(.t,y)cp(.t,y) gZ,(y) - p{.t,y) dy ' 

--z 

and v
1 

and v
2 

are given by {22. 4) and (22. 5), respectively. 

( 19. 3) 

(19.4) 

Substituting the inequalities ( 19. 3) and (A. 24 )of Appendix A 

One admissible ep is given by 

/\ x [ gz. (y) _ Py<
2
.t· y)g2(y) J 

cp (x, y) = ,e, p(-l, y) 
p (.t, y) 

( 19. 6) 

/\ ,.... 
Compute cp and cp from ( 19. 6 ) and upon substitution of these quanti-x y 

ties and ( 19. 6) into ( 19. 5 ), we find that 
2 

P1 m3 2 ± 
V3(.t ) ~ (---z T"°+ql-lm4)+ 2 (J3o+j3l[Vl(.t)V2(.t)J +132V2(.t )}+ 

p 0 l l 

+2[v
3

+V-1cv1 <-i)J 2 +V-2 cv2 <.t )J 2 J, (19.1> 
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where 

on [-i,iJ , ( 19. 8) 

p 1 ~ p (x, y) ' q 1 ~ q (x, y) on R, ( 19. 9) 

p
0 

and m
3 

are givenby(l7.4)and(l8.3), respectively, and \1
3 

is 

such that 

(19. 10) 

while \l l and \1 2 are obtained from \ll and \lz respectively after 

replacing m 5 by m
3 

and m
6 

by m
4 

in (22. 10) and (22. 11 ). 

20. Total First Order Energy for Problem II. 

To complete the energy inequality (13. 28) for the first order 

energy T 
1 

(z) associated with Problem II, it is sufficient to provide 

upper bounds for the total energies N
1 

(O) and s
1 

(0) associated with 

the boundary value problems (13. 8) - (13. 11) and (13. 12) - (13. 14), 

respectively. 

The boundary value problem (13. 8) - (13. 11) for n is one of 

Dirichlet type. From (13. 16), the associated total energy is given by 

,f, t 
= IS U- n 

2 
+ _!_ n 

2 
)dydx . q x p y 

0 -t 
(20.1) 

In order to find an upper bound.for N
1

(0), we shall apply Theorem 

16. 1 with <Ii = 0 , cp = n and with the operator L in that theorem re-

placed by L >!< as defined in ( 13. 3 ). 
I\ 

Thus, if cp is a continuously di£-

fe rentiable function which coincides on the boundary of 6t, with the so-
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lution n of ( 13, 8)-(13. 11 ), inequality ( 16. 2) asserts that 

SlA2 1A2 fl 2 1 2 ( - cp + - cp )dA ~ ( - n + - n )dA = N l ( 0) 
qx PY qx PY 

(20. 2) 

~ ~ 

To obtain an explicit estimate of N 1 (O), we choose 

(20. 3) 

The fact that ~ is admissible follows from the smoothness properties 

of g 
1 

and G and from (9. 7 ), (9. 8 ), and ( 13. 2). Substitution of (20. 3) 

into (20. 2) leads in a straightforward way to 

where m
1 

and M are such that 

I g 1 <Y) I ~ m 1 

I G(x, y ) I ~ M 

on c-t. tJ , 

on R, 

(20. 4) 

( 2 o. 5 ) 

and p , q are as in (12. 4). Expression (20. 4) provides a bound for 
0 0 

N
1 

(0) in terms of quantities pertaining to the given data. 

To complete the estimate (13. 28) we must also consider the 

total energy s
1 

(0) associated with the boundary v a lue problem (13.12)­

(13. 14) for s. From(l3.17) 

~t ~ t 

SJ 1 2 1 . 2 JJ(l 2 1 2 ZG G
2

) [-s +-(s -G) ]dydx= -s +-s --s +- d ydx 
iqxp y iqxpy p y p 

O-a O-z 
~t ~ t 

= J Jr[ ..!.s 
2

+..!.s 
2

+ 2s(G) ]dydx+ SS G
2 

dydx. 
qx PY Py 

1 
P 

0 -t 0 -z 
(20.6) 

In this computation, we have used the boundary conditions (13. 14) satis-
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fied by s at y = ± t in the integration by parts. 

To estimate s
1 

(0), we again use Theorem 16. 1 with L re­

pla ced by L >:<, with cp = s and with 

iP = (G/p) • 
y 

Thus, from (20 . 6) and (16. 2), we have 

t t t !. 

s 1 (O)::; J Jc ci ~; + ~ (p: + 2$(~) Jdydx + J l G: dydx , 

0 -t y 0 -t 

(20. 7) 

(20. 8 ) 

"' for any sufficiently smooth cp which coincides with s on the b ounda ry 

of R. An integration by parts in (20. 8), together with the vanishing of 

(pat y = ±i converts (20. 8) to 

t t 
S ( 0) ::; rs [ _!_ ~ 2 + _!_ (" - G) 2 ] d dx • 1 J q lf'x p cpy y 

0-t 
(20. 9) 

To make (20. 9) explicit, we choose 

y 

A X s cp (x , y) = x+ e: G(x,11 )d T) • 

1 

(20. 10) 

-z-

Clea rly ~ = 0 at y = -t ; from (9. 8) and (13. 2), it follows that 

cp (x, t) = 0 , 0 ::::;; x::; t . Finally, the definition (13. 2) implie s that 

~ = 0 when x = .t . Thus~ EP is admissibl e. Substituting (20. 10) in to 

(20. 9) leads, after some manipula tion, t o 

(20.11) 

where M is g iven b y the second of (20. 5 ), a nd M ' is such tha t 

on R . (20. 12) 

Whe n (20. 11) and (20. 4) are combined in (13. 28), there r e sults a 
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decay inequality for the first order energy T 
1 

(z} associated with 

Problem II. Furthermore, setting z = 0 , we find the total first 

order energy to be 

{. 2 2 2 {. 2 2 2 2 {. 1 
T (O}~ 4[-(M +t M' }+- (l+-e, }M + (m 1 +M }(- +z-)J. 

1 qo Po po qo 

(20.13} 

21. Total Second Order Energy for Problem II. 

The total second order energy W 
2

(0) for Problem II is found 

from (14. 7) to be 

{, i 
W 2 (0) = IS (pw~ + qw:}dydx • 

0 -i 
(21. 1) 

Along lines similar to those used in establishing the estimate 

for V 
2
(t) in § 18, we find by an application of Theorem 16. 2 that 

{. -1-

Is 1 "2 1 " 2 .!. 
W 2 ( 0 } :5: ( q ljl x + p ljl y }d ydx + 2 { y 1 T 1 { 0 ) + y 2 [ T 1 ( 0 } F } . 

0-t 
(21. 2} 

I\ 

An admissible * is given by 

(21. 3) 

Substituting (21. 3) into (21. 2), we find 

{, 1 2 i 
W 2 ( 0 ) ~ ( - + ~ )m S + 2 {y l T l ( 0 ) + -y 2 [ T l ( 0 ) ] } , 

Po qo 
(21. 4) 

where p
0

, q
0 

are givenby(l7.4}, l'l and y
2 

by(l4.13}, a nd T
1

(0) 

by (20. 13 ), while m 
5 

i s such that 

I 
gl(y) I 

ms ~ g]_ (y) - p(O, y) py(O, y) on [ --1-, -1-] . (21. 5) 
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22. Total Third Order Energy for Problem II. 

Along lines analogous to those used in establishing the esti-

mate for V 3 (-e,) in§l9, we find, withtheaidofTheorem 16.1, that 

the total third order energy W 3 (O) for Problem II satisfies · 

t~ ti -ii 
w 3 (O) s sf, (pip; +~:)dydx+ z I J J,~Htlydx I + z I JI, iPHtlydx I 

0-2 0-2 0-2 

for any cp admissible under the hypothesis of Theorem 16. 1. 

In Appendix D, it is shown that 

ti 
I J fai:Hdydxl =I JcpHdal s: v

0
+v 1 [ T 1(0)]i+\J 2 [ w 2(0)]i, 

0 -i R(O) 

where 

1 
2 /\ 

IS
P (O,y):p(O,y) py(O,y)gl(y) I 

+ xp{O,y) [gl(y)- p(O,y) ]dy + 
1 

-2 

( 22. 1) 

(22. 2) 

, (22. 3) 
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and 

v 2 ~ [J lpxx+'lyy>2li>: daj1'+2[J<'lxv>2li>: da]\2[J<Pxy>2~ dar· + 
6t-(O ) 6t- (O) 6t- (O) p 

[ r (pyy)2 "2 ] t [ s (py )2 (2qpx )2"2 ] ! I I [rpYqcP 12 da t 
+ j 3 cp da + 2 -p- - ~ cp da + \:: p ) J q 

R(O) p 6l, (O)p q Sl. (O) y 

+ I [('ly$)y ]2 d; -J: +{I [ (px$)x]2 .i; }i + [J ('ly)2(~L 2'1y)2 cp: da 1 i + 
Sl. (0) Sl.(O ) R(O) q 

+[J <'lyP)z iP \ da}
1

+{ J [(~ ~~) ]2 
d; }-! . (22. 5) 

R(O) pq R(O) x 

Substituting (22. 2) and (C. 11) of Appendix C into ( 2 2. 1 ), we 

find 

-l 1.. 

W 3 (0) ~ If (p~~ +qcP: )dydx+2{ (31 [ T 1 (O)W 2 (0 )]i+J32 W 2 (0 )+f3
4
[w2 (O)J -!+13

5
} + 

0 -± 
l l 

+ 2 { v 
0 

+v 
1 

[ T 
1 

( O)] z+v 
2 

[ w 
2 

( o)] 2} • (22.6) 

/\ 
An admissible cp is given by 

I\ _ -t-x [g]_(y) py(O,y)gl(y)] 
cp (x , y) - ( ~) p(O y) - 2 

' p (O,y) 
(22. 7) 

I\ /\ 
Compute cp and cp from ( 22. 7},an d upon substitution of these x y 

quantities and (22. 7) into (22. 6) and after elementary reductions, we 

l l 

+2{v~+v ]_[T 1 (0)J 2+v2[W2 (o)] 2} , (22. 8) 

where ··p
1 

and q
1 

are given by (19. 7); ·p
1 

and {3
2

, 13
4 

and 13
5 

are 
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given respectively by (12. 17), (IS. 11), and (C.12) of Appendix C; \J r 
0' 

\J l ' and \J z are such that 

\) 1 ;:::: ms [J IF jda+2J IPxyFlda+Jr IP (F) \da+J \q __ (F - FpY)!da 
o p xy p y p -y y p 

0 R(O) R (O) R(O) x R(O) 
l 1 

ms sz: ms Iz; J 
+- jpx(O,y)lda+- l~(O,y)ldy , 

Po i qo i -z: -z: 
(22.9) 

1 1 l 

v 1 ;:::: ms { [ J( )2 da] Z: + [ J( )2 da J z: + 2 [ J( )2 da J z: + 
1 p Pxxy p ~yy q Pxypx 3 

0 R(O) R(O) R(O) p 

.!. 2 2 2 .!. 

[ r 2da]z. [J 2cpx ) da]Z + 2 J (pxy~) -2- + (py) p -pxx 3 + 
R(O) p q R(O) p 

2 2 l 2 2 1 

+ [ s( ) 2 ( p x y - ) ~J z: + [ s (~) (~ - ) da] z: + 
Py p ~y 2 · q p P xy p 

R(O) p q R(O) 

[s 2 ~ )
2

da ]i} + (~) ( p - ~y 3 I 

R( 0) q 

(22. 10) 
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{22. 11) 

p
0 

and q
0 

are given by (17. 4); m
5 

is given by (21. 5), while m
6 

is 

such that 

on [-±,±J . (22.12) 

When the upper bounds of total energies of various orders 

derived in this chapter are combined with the inequalities pertaini ng 

to the distribution of energies of corresponding orders established in 

the preceding chapter, the inequalities become pointwise decay esti-

mates in terms of parameters pertaining to the given data of the basic 

boundary value problem. 
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IV. POINTWISE ESTIMATES 

23. Preliminaries. 

In this chapter, we are concerned with pointwise estimates of 

the values of the s elution u and its derivatives u and u at any x y 

point (x, y) in the closure R of 6t.. The results to be obtained state 

that kx 
-4 -k({.-x) 

!u(x,y)i ::=:K1 +K2e +K
3

e , {23. 1) 

kx 

I u)x, y) I :::: K
4 

+ K
5

e -S + K
6 

e -k({.-x>, {23. 2) 

kx 

I uy{x, y) I :::: K
7 

+ K
8

e -S + K
9

e -k({.-x) , (23. 3) 

where 

as in (10. 3), and the constants K. (i = 1, 2, • . . , 9) are given explic-
1 

itly
1 

in terms of known data. The pointwise estimates of the solution 

u and its derivatives u and u given by {23. 1) - (23. 3 ) are thus fully x y 

determined, and they do not deteriorate near the boundary of R. In 

fact, they hold everywhere in the closure 6i of R. 

We first present the method used in establishing {23. 1) -

(23. 3 ), the details of which will be given in the subsequent sections. 

Recall from (9. 9) that 

u=v+w. (23.5) 

We now differentiate (23. 5) with resp ect to x to find 

u = v + w x x x 
(23. 6) 

and then differentiate (23. 5) with respect to y to find 

1 
See (29. 9) - (29. 17). 
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u = v + w y y y 

In view of the triangular inequality, the following are true: 

lul ~ lvl + lwl • 

l u I~ Iv I+ l w I ' x x x 

and 

lu I~ Iv I + lw I . y y y 

(23. 7) 

(23. 8) 

(23. 9) 

(23. 10) 

Obviously, in order to estimate u a nd its derivatives, it is 

sufficient to estimate v, w, and their respective derivatives, and 

the n take the corresponding sums in accordance with (23. 8 ) - (23.10). 

In estimating v and w , the general procedure coincides with 

that of [ 3] in a broad sense. We first write 

v(x,y) = v(x) + t-(x,y)' 

and 

- " w(x, y) = w(x) + w (x, y) , 

where v and w are defined by 
1 

and 

z 
v(x) = I v(x. y )dy 

1 
-2 

1 z 
w(x) = J w(x. y)dy • 

1 --z 

(23. 11) 

(23. 12) 

(23. 13) 

(23. 14) 

It follows from(23. ll) and (23. 13) and from (23. 12) and (23.14) that 
l 

a nd 

z 
r" J v(x, y )dy = 0 , 
l -z: 

(23 . 15) 
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J ~(x. y )dy = o . 
1 --a 

(23. 16) 

Next, the averages v and w will be estimated in terms of the 

first order energies V 
1 

(x) and T 1 (x), respectively; the deviations ¢ 

and (N will be estimated in terms of the first- and second-order en-

ergies V 1 (x) and V 2(x) and T 1 (x) and W 2 (x), respectively. We 

shall then extend the procedure with minor modifications to estimate 

the derivatives v , v , w , and w • It is for these estimates that ap-
x y x y 

propriate normalization conditions on v and w will be introduced to 

assure their uniqueness. 

We shall consider v first, because the associated differential 

equation is homogeneous and admits a simpler treatment. 

24. Pointwise Estimate of v(x, y ). 

v is the solution of Problem I given by (9. 10) - (9. 13). Al-

though we can appropriate directly the results of [3] for the pointwise 

estimate of v as pointed out in § 10, we prefer to present the analysis 

in detail, because it differs significantly from that of [3] and because 

we shall often refer to it in later sections. 

We first introduce the average of p by 
1 
2: 

p(x) = J p(x, y)dy 
1 --a 

where p is given by (5. 6a). 

Upon differentiating (23. 13) with respect to x , we find 

(24. 1) 
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The product of (24. I) and (24. 2) can be written as 
1 z 

v~ = Jpvxdy • 
1 -z-

(24. 2) 

( 24. 3) 

The differential equation (9. 10) and the boundary conditions 

(9. 13) imply that 
1 z I pvx dy = 0 • 
1 -z-

The difference of (24. 3) and (24. 4) yields 
1 z 

v x = I ( p -p )v x dy • 
1 p -z-

Upon integrating (24. 5) from x = 0 to x = z , we find 
1 

z z 
v(z) - v(O) = I I( p-p) v xdydx • 

0-.!. ·P z 

(24. 4) 

(24. 5) 

(24. 6) 

In (24. 6), if v(O) vanishes, then v(z) can be estimated in terms of the 

first order energy V 1 (z) given by (10. I) after an application of 

Schwarz's inequality. At this point it is clear that the natural normal-

ization condition on v(x, y) is 
1 
2 

v(O) = J v(O, y)dy = 0 • 

-z-

(24. 6 ), (24. 7 ), and Schwarz ' s inequality imply 
1 

jv(z)j ~ c
1
[v 1(z)]'Z 

~ CI [VI (t)Jie -k(t-z) 

(24. 7) 

(24. 8) 
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where the constant C 
1 

satisfies 

c 1 :o? [J f ! (P-p )
2
dydxJ-k 

1 p . 0--z 

(24. 9) 

Next, we estimate the deviation ¢ . Consider a point· (x, y) fixed in 

~. For any con.stant 6 , such that 

0 I- y and 

the following identity holds true: 

0 

_.!.< "'"<.!. z 0 z , 

,.. J e ti"' v(x,y) = - af [(1 - y-o)v(x,,)]dC 

y 

(24. 10) 

(24. 11) 

When the indicated differentiation is carried out, Schwarz 's inequality 

and the triangular inequality imply 

Upon differentiating (23. 11) with respect to y , we find 

A 
v {x, y} = v (x, y) • 

y y 

In view of (9. 13), we also find 

¢ {x, ±i) = 0 • 
y 

.(24. 12) 

(24. 13) 

(24. 14) 

It follows from (23. 15), (24. 14), and the continuous differentiability of 

A [ i i] that2 v on --z,-z 

(24. 15) 

{24. 12), {24. 13), and {24. 15) imply 

2 S e e, for example , [11] or [13]. 
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1 

l~(x,y>I ~ ( J.~:dyt(1 6 ·;rt! + 16-ylt). 
-~ 

(24. 16) 

Since the left hand side ~f (24. 16) is independent of f>, we can m i n i ­

mize the inequality with respect to I f>-y I over all admissible o of 

(24. 10). A straightforward computation shows that this minimum 

value occurs at 

lo-yl . =..!. • min "If 
( 24. 17) 

whence 

l~(x, Yll ~ .(,; [V(x)J!, (24. 18} 

where 

V(x) (24. 19) 

If we differentiate (24. 19) with respect to x and then integrate the 

result from x = 0 to x = z, we find 

z i 
V(z) = V(O}+ 2JJv v dydx . y yx 

0-t 
(24.20) · 

Schwarz 1 s inequality and the tria ngular in e quality, together with { 10. 1} 

and { 11. 1), imply 

V(z} ~ V(O} + z(f iv:dydx)!(f f v~xdydx)f 
~ z 

where the positive constants p 
0 

and q
0 

are such that 

p s: p 
0 

· and q s: q 
0 

on R. 

(24. 2 1} 

(24. 22} 
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Our task is then reduced to finding a useful upper bound for 

the constant V(O), which can be expressed as 

6 

V(O) = -s:x [ 'f( ~ )V(x)]dx , (24.23) 
0 . 

where 'f (x·) is any function which is continuously differentiable on 

0 :s: x :s: 1 and satisfies 

'f(O) = 1 'f(l)=O, (24. 24) 

while 6 is a constant such that 

O< .o <t. (24. 25) 

Now we carry out the indi cated differentiation in (24. 33 ), and then 

·computations simiilar to those leading to (24. 21) yield 

6 t 6 i _ f I x 1 s r x 2 V(O) = -2 o/(5)v v xdydx - 6 j 'f'(5)v dydx 
1 y y 1 y 

0 -2 0 -2 

where the positive cons tan ts t 
0 

and t 1 are such that 

'+' =max lt(x)I 
0 [0,1] 

and t 1 =. max lt'(x)j • 
[O, l] 

(24. 26) 

(24. 27) 

Substituting the energy inequalities (10. 2) and (11 . 3) into (24. 26) and 

simplifying the result, we find 

In (24 . 28 ), 

Q(o) 
u 

= (l + ~ )e2ko 
0 

2o/ 1 

------
0

- (V 1 (t)[V 2<~)+Zkt(°i.+a.2)V 1(t)J} 2 , 
~poqo 

(24. 28) 

{24. 29) 

{24. 30 ) 
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and 

(24. 31) 

The independence of Y(O) on o enables us to minimize Q(o) 

over all admissible o of {24. 25). Computations then lead to 

and 

0 . 
min 

u2 ... / 2 I 

= 2 ( l l + kU - l ) ' 
2 

If (24. 25) and (24. 32) are to hold simultaneously, then 

(24. 3 2) 

(24. 33) 

k = Tr -~ > 1 /2-t . {24. 34) 1 '"io' l"' l 

We shall assume, hereafter, that the given functions p and q 

satisfy (24. 34). 

and 

Noting that for any x > 0 , 

~ 1 + X2 I < 1 ·+ 1 
x ' 

x( ~l + ! 
1

- 1 ) -
2 

we can::: ~Q7~:k~ ( 2 + kJ )]exp [ 2 ' ] 

2 i+-11+-2-
. " kU2 

Combi ning (24. 28) and {24. 37), we find 

(24.35) 

(24. 36) 

(24. 37) 

(24. 38) 
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It follows from (24. 18), (24. 21}, and (24. 38} that 

,. I 2 { ... J • - kt i2' 1 I 4} lv(x,y} ~ .JTi' 
1

6u
1
(l+kU

2
)e + 

174 
[V

1
(x)V

2
(x}] • 

1 . (po qo} ( 2 4. 3 9 ) 

The expressions (23. 11). (24. 8}, (24. 39), (10. 2), and (11. 3) 

lead to, after simpl{fication, 

\v(x,y)I ~ lv(x,y)I + i0(x,y)I ~ D
1

e-k(,f,-x)+D
2

e-k,f, (24. 40) 

where 1 1 1 

D 1 = cl [V 1(,f,}]
2 +2~(p 0 q) 4 ( v 1 (.t[V 2(t)+2k-l(a.l+a.2)V1 (t)] }

4 
,(24. 41) 

25. Pointwise Estimate of v x~· 

For convenience, we let 

J3(x, y) = v (x, y) • 
x 

(25. 1} 

The arguments used in the pointwise estimation of f3(x, y) are 

parallel to those used in estimating v(x, y). We therefore set 

- " J3 = /3 + J3 , (25. 2) 

where the average J3 is given by 
1 

" 

z 
J3(x) = J J3(x, y)dy , 

' 1 -z-

and the deviation J3 satisfies 
1 
z 
s~(x,y)dy = 0 • 

.!. -2 

In view of (9. 11), (25. 1), and (25. 3)'we find 

f3( 0) = 0 ~ 

(25. 3} 

(25. 4) 

{25. 5) 
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It follows from (24. 4) and (25. 1) that 
1 
2 I p(x, y ){3(x, y )dy = 0 • 
1 

-2 

Differentiating (25. 3) and (25. 6) with respect to x , we find 
l 

and 

respectively. 

1 
2 

2 

J3x = I J3xdy 
1 

-2 

J (pj3x +pxj3)dy = 0 ' 
l 

-2 

(25. 6) 

(25. 7) 

(25. 8) 

Recalling (24. l), we can write the product of (24. 1) and (25. 7) 

as l z 
p(x}j3x(x) = I p(x)J3x(x, y)dy 

l 
-2 

(25. 8) and (25. 9) imply 
.!. l 

jjx " f (P_=.E)~xdy - f px l'dy 

-t p -t j5 

(25. 9) 

(25. 10) 

Integrating (25. 10) from x = 0 to x = z and using (25. 5), we find 

z .!. If px 13dydx . 
0 _.!. p 

z 

{25. 11) 

In view of (9. 10 ), 

A = - .!. (p v + qv + q __ v ) • 
,...x p x x yy -y Y (25. 12) 

Upon substitution of (25. 12) into the first integral of (25. 11) 

and an easy application of Schwarz 's inequality and the triangular in-

e quality, it follows from (10. 1) that 
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l 1 

IJ3(z)I ~ C
2

[V
2
(z)JZ+(C

3
+c

4
)[V 1(z)JZ 

~ (C2[V 2(t)+2kt(a.l+a.2)Vl (t)]t+(C3+c 4)[Vl (t)Jt} e -k(t-:-z) ' 
(25. 13) 

and 
.r,.!. 2 Jl Zp -

c 4 ~ [ I J * dydx z 
0 _.!. p 

z 

(9. 13) and (25. 2) imply 

" ( 1) = J3 x, ±z-y 
v (x, ±}) • 

yx 

(25. 14) 

(25. 15) 

(25. 16) 

(25.17) 

The conditions (24. 4} and (25. 17} and the continuous differentiability 

II 
of 'f3 imply (see .footnote 2) 

or 
l 

j-v2 dy 
yx 

-! 

1 
2 

2 I "2 ;;: 'If jJ ' dy • 
1 --z 

(25. 18a) 

(25. 18b) 

Then, calculations analogous to those leading to (24.18) and (24. 21) 

yield 

A . 2 .!. 
lp(x,y)I ~ ~[B(x)]z, (25. 19) 

where 



B(x) 

and 

1 
z 

= r v2 dy J xy 
1 -z-
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and 

2 .!. 
B(z) ~ - [V

2
(z}V

3
(z)] 2 

Po . 

(25. 9), (25. 21), (11. 3}, and (12. 21) imply 

B(O) = 0 , (25. 20) 

(25.21) 

I ~(x, y) I · S: C
5

e -k(t-x) , (25. 22) 

where the constant C 
5 

is given by 

1/2 
c

5 
~ 2(-

2
-) [V

2
(t)+2kt(a.

1
+a.

2
)V

1
(t)J

1
/

4
c 114 . (25.23) 

'lfP 0 . 

Combining (25. 2), (25. 13 }, and (25. 22), we find 

Iv <x, Y> I x 
(25. 24) 

D
3 

is a constant such that 

1 l 

D3 = c 2 [V 2 (t )+Zkt (a.l +a.2 )V 1 (t )] z+(C 3 +c 4)[V 1 (t) J z+c 5 • (25. 25) 

26. Pointwise Estimate of v ~· 
y 

The bormdary conditions (9. 13) and the twice continuous d if-

ferentiability of the solution v on lit imply
3 

1 z 

Jv
2 

dy ~ 
1 yy . 

-z; 

1 z 
2 s 2 Tr v dy • 
. 1 y 

-z; 

Then, along the same steps leading to (24. 18) and (24. 21) 

2 1 
Iv (x,y)j s: .. C[X(x)]z, 

y ,Tr 

where 

3 
See, for example, [ 11 J or [ 13 J., 

(26. 1} 

we reach 

(26. 2) 
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and 

and 

where 

1 a 

-65-

= Jv
2 

dy, 
1 yy 

--a 

and C is given by ( 12. 22). 

Substituting (26. 4) and (26. 5) irito (26. 2), we find 

where 

and 

(26. 3) 

(26 . 4) 

(26. 5) 

(26.6) 

(26. 7) 

(26.8) 

(26. 9) 

(26. 10) 

The inequalities (24. 30), (24. 31), {26. 6), a nd (26. 7) involve 

the constants 'f 
0 

and 'f 
1 

, which in turn depend on the function 'f(x) 

defined in (24. 24). A function 'f suitable for the present need is 

given by 

(26. 11) 

from which and (24. 27) we find 



'¥ = max I 'f(x) I = 1 , 
0 [0,1] 
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'¥ 1 = max I If 1 (x) I = ~ {Pl . 
[0,1] "~ 

27. Pointwise Estimate of w(x, y). 

(26. 12) 

The procedu re used in estimating w(x, y) is akin to that used 

in §24, except for some modifications which arise due to the non-

homogeneous term, F, in (9. 14). 

Upon differentiating (23. 14) with respect to x, and taking the 

product of this derivative a nd (24. l),· we find 
l z 

w~ = Jpwxdy • 
l --z 

(27.1) 

Next, the differential equation. (9. 14), the boundary conditions (9. 17), 

and the assumption (9. 8) imply 
l 
~ J p(x, y)wx(x, y)dy = 0 • 
l --a 

It follows from (27. 1) and (27. 2) that 
l a 

w = J ( p-p ) w dy • 
x - x 

l p - -a 

Integrating (27 . 3) fr om x = z to x = .t , we find 

,f, i 
w(t) - w(z) = J J ( p-p) wxdydx 

z _.!. p z 

(27. 2) 

(27. 3) 

(27. 4 ) 

We observe that a natural n ormalization condition for the solution w 

of Problem 11 is given by 
l 
a 

w (t) = I w (t, y)dy = o . 
l --a 

(27 . 5) 
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.Recalling (B. 3) and (B. 4) of Appendix B, we apply Schwarz's inequal-

ity to (27. 4) and keep (27 . 5) in mind to find 

where the constant C 
1 

is given by (24. 9 ), 

To estimate the deviation ~ , a procedure analogous to that 

leading to (24. 18) and (24. 19) yields 

where 

I" I 2 - .!. w(x, y) ~ v; [W(x)]?. , 

W(x) 

1 
2: 

= fw 2dy 
1 y 

--a 

(27. 7) 

(27.8) 

Differentiating (27. 8) with respect to x and then integrating the re-

sult from x = z to x = t,. we find 

t i 
W(z) = W(-t) - 2 JS w w dydx • y yx . 

1 
z --z 

(27.9) 

A result similar to that of (24. 21) states 

- - 2 .!. 
W(z) ~ W(t)+ [T

1
(z)W

2
(z)]Z. 

VPoqo' 

(27. 10) 

To find a useful upper bound for the constant W(t ), we introduce an 

identity as follows. 
t 

W(t) = J . -Jx ['f( ~j~) W(x)]dx 

t-o 
(27.11) 

where 'f(x) is continuously differentiable on 0 ~ x ~ .!, and satisfies 

'f{O) = 1 'f(t) = 0 • (27. 12) 

and o is any constant such that 

O<o<t. ' (27.13) 
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Then, a result similar to that of (24. 26} states 

2\jr 1 t 
W(.t) S ~ [TI (,f,-6)W 2(.t-6)] .. + ~ - 1 

Tl (t-6} , 
p q qo 

0 0 

where the constants 'f 
0 

and 'It 1 are given by 

'It = max jt(x}j 
0 [O,t] 

'lt 1 = max I 'It' (x} I 
[O,t] 

(27. 14} 

(27~ 15} 

After substitution of (13. 27} and (14. 15} into (27. 14), we are tempted 

to minimize the result over all admissible o as we did in (24. 29). If 

we try this in the present case, we have to determine o . from a 
min 

transcendental equation as follows. 

k 2 
exp (--z 0min} = al+ a2°min + a3 °min ' (27. 16} 

where the constants a 1, a 2, and a 3 are known. A closed form of 

o . such as that obtained in (24. 32} is beyond our means in the 
min . 

present case, but a suitable choice of an admissible o is given by 

0 = ,f,/2. (27. 17) 

With this choice of o, (27. 14} becomes 

2t i 2t 
W(t} =:;; ~ [T 1(t/z}w2(t/2)J 2 + - 1 

T 1(t/2). 
p q qo 

0 0 

(27. 18) 

A suitable choice of the function 'f (x) satisfying (27. 12) and the 

smoothness assumption is given by 

Then 

x 
t(x} = 1 - t 

= max I 'f (x) I = 
[0,t] 

1 . ' 

'It 1 = max I 'It' (x} I = l / t . 
[0,t] 

In view of (27. 7), (27. 10), (27. 18), and (27. 20), we find 

(27. 19) 

(27.20) 
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1 

[T (t)]Z+ 
1 2 

(27.21} 

Combining (23. 12), (27. 6), (27. 21), (13. 27), and (14. 15), we find, 

after simplification, 

(27. 22} 

where the constants n
6

, D
7

, and D
8 

are such that 

1 1 i.!. 
2 ~ [zs1(O)J4{. . 2}4 

D 6 = Cl [ZS l ( 0}] + 4 7f y l S l ( 0 }+y z [ S l ( 0}] + 
poqo 

1 

[
zs1 (O}J-z 

+ 2 t ' qo 
(27. 23} 

1 1 

D7 = z.r;~(-2- f[sl(O)+Nl(O)J
4

[zyzNf(O}+Wz(O)+ZktylNl(O)­y:;r l Po qo 

(27. 24} 

and 

(27. 25) 
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28. Pointwise Estimate of w {x, y). x--

Guided by the procedure used in estimating v in § 25, we let 
x 

and define 

d{x,y) = w (x,y), 
x 

- ,... 
d=d+d, 

where the average d is given by 
1 

" 

d{x) = I d{x, y )dy , 
1 

-2 

and the deviation d satisfies 
1 
2 

S d{x, y)dy = 0 • 
1 . 

-2 

It follows from (9. 16), {28. 3), and (28. 1) that 

d{t) = 0 • 

Then, computations analogous to those leading to (25. 13) yield 
1 1 

id{x)i s:; c
6 

+ C
2

[W
2

(z)J 2 +{C
3

+C
4

)[T
1
(z)] 2 , 

( 28. 1) 

(28. 2) 

{28. 3) 

{28. 4) 

( 28. 5) 

{28. 6) 

where the constants C 2 , c
3

, and C 
4 

are given by {25. 14} - {25. 16) 

and c6 is such that 

ti 
c6 ~ Is I {p-p )Fdydxl 

x-i pp 

Similarly, we find 

where 

D{x) 

1 
2 

= Jw2 
dy 

i xy 
-2 

and 

{28.7) 

(28.8) 

D{t) = 0 , {28. 9) 
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a nd also 

D(x) 

. 1 
t-

= -Z sf w w dydx ~ 2 [Wz(x)W3 (x)Ji. xy xxy p 
1 0 X-z 

(Z8. 10) 

It follows fr~m (Z8. 8) and (Z8. 10) that 

!d(x,y)I ~ z-Lr [Wz(x)W
3

(x)J
1

/ 4 . 
~~ 

(Z8.ll) 

Combining (Z8. 1), (Z8. Z), (ZS. 6), (Z8. 11), (14. 15), and (15. 14), 

we find kx 

lwx(x,y)I ~ D9 + DlOe -8' 

where the constants D
9 

and D 10 are given by 

1 1 

D9 =CZ 'Y1S1(0)+yz[Sl(O)]Z+.VZ<c3+C4)[Sl(O)]Z+C6+ 

and 
1 

D 10 =CZ Zyz[N 1(0)Jz+Wz(O)+Zkt-y 1N 1(0) + (C
3

+C
4

).VzN1(of 

Z9. Pointwise Estimate of w ~· 
y 

(Z8. l Z) 

(Z8. 13) 

(Z8. 14) 

Finally, we estimate w • The main ideas in this case are y 

similar to thos e of § Z6 and § Z7. Guided by the procedures of those 

two sections, we find 

(Z9. 1) 

where 
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Y(x} (29. 2) 

and 

(29.3} 

The constant Y(-l} is estimated by 

(29. 4) 

Then, combining (29. 1 ), (29. 3 ), and (29. 4), we find 
k.{, kx 

-Tb - -I wy(x, y) I :5: D 11 + D 12e 
1 

+ n 13e 
8 

(29. 5) 

where the constants D
11

, n
12

, and n
13 

are given by 

1 

ylSl (O)+y2[Sl (O)JZ'' 

Dl2 = 2~ ((K2+K3+K4lh1S1(0)+y2~ 
1 

+;tl [ 2yl v'Nl (o}'+w 2(0)+2k.{,y1Nl (O)J} 
4 

1 

+ 2 ~ [ 2y 2 v'N l ( 0 )' + W 2 ( 0 )+ 2kt y l NI ( 0) J z , 

and 

Dl3 = 2~ ((K2h3+K4)[y!Sl(O)+y2v's1(0)'] 

1 

+ ;t l [ 2y 1;VN l ( 0 )' + W 2 ( 0 )+ 2k.f, y l N l ( 0)]} 
4 

• 

(29. 6) 

(29. 7) 

(29. 8) 

If we now apply the triangular inequality to (23 . 5) - (23. 7) and 

employ the various estimates of the preceding sections suitably, we 

find (23. 1) - {23. 3 ). The constants K. (i = 1, 2, .•• , 9) can now be ex-
1 
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plicitly written down as 
k,(, 

Kl 
-kt -8 

(29.9) = D 2e + n
6 

+ D 7 e 

K2 = DB, (29. 10) 

K3 = Dl (29. 11) 

K4 = D9 (29. 12) 

KS = DlO • (29. 13) 

K6 = D3 • (29. 14) 
kt 

K7 
-kt - TI> 

(29. 15) = Dse + Dll + Dl2e 

KS = Dl3 • (29. 16) 

and 

K9 = Dl4 . (29.17) 
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V. THE SHELL PROBLEM 

30. Decomposition of the Error cp(x, y ). 

In this chapter we return to the shell problem formulated in 

Chapter I. We shall apply the results of Chapters II and Ill to derive 

pointwise estimates of the first partial derivatives, cp and cp , of 
x y 

I\ 
the error cp. These partial derivatives in turn are proportional to 

the errors in the shear stresses associated with the approximate s olu-

ti on. 
,.... 

Guided by the results of Chapter II, we decompose the error cp 

into: 

I\ 
cp(x,y) = " " cp 1 (x, y) + cp 2 {x, y) ' (30. 1} 

I\ " satisfy where cp 1 and cp 2 

(pq\)x + (qcPly)y = 0 on Iii , (30. 2) 

i\ 
0 at x = 0' (30. 3) pcplx = 

I\ 
at x = .{, (30. 4) pcplx = g2 ' 

i\ 
y = ± i, (30. 5) cp ly = 0 at 

1 
2 

e " 0 OS:x~t; (30. 6) J p(x,y)cp 1x(x,y )dy = 
1 -z-

and 

A + I\ 
(pcp2x)x (qcp2y)y = F on Iii , (30 . 7) 

" PCt>zx = gl at x = 0' (30. 8) 

I\ 
0 at x=.f,, (30. 9) pcp2x = 

" y=±i (30.10) Ct>zy = 0 at ' 
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Jp(x,y>cP 2x(x,y}dy = 0 , 
1 -"i"' . 

(30.11} 

respectively. Here, p, q, F, g 1 , and g 2 are given by (5. 6a, b}, 

(6. 9), (6. 11), and (6. 12). We note that the "residual boundary value 

I\ . 
problem" (6. 8} - (6. 12} for c.p has, in fact, been decomposed into two 

subsidiary problems for tp
1 

and tp
2 

along lines similar to those used 

in connection with the problem for u in Chapter II. 

In §9, we pointed out that the "residual boundary value prob-

lem" (6. 8) - (6. 12} was a special case of the general problem (9. 2) -

(9. 6) and became identical when (9. 7} and (9. 8} held. The fact that 

g 
1

, g
2

, and F in (30. 8 }, (30. 4), and (30. 7} satisfy (6. 13} and (6. 15} 

and that the necessary conditions (30. 6} and (30. 11} must hold en­

ables us to consider the problems governing $
1 

and (p
2 

as parallel 

cases to Problems I and II of § 9. 

" " In our subsequent discussion of the solutions c.p 1 and c.p
2

, we 

shall expressly set 

/\ 

'-P1 = v ' (30 . 12} 

and 

" '-P2 = 
1 

(30. 13} w, 

so that it is appropriate to write 

" c.p == u • (30. 14) 

1 In adjusting the constants of integration associated with the solution 
t of (13. 1), we have chosen · 

G(x, y;e:} = p(x, y;e:} cp' (x;e: )-p(-L, y;e: 'i.P (-t;e:} : (30. 15} 
x . x 

see (6.9) and (13. 2). (30. 15) implies w(:f:,y) = O. See footnote 4 of 
§ 13. 
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We can now apply the results in Chapters II-IV for the solution u 

after changing the constant t to t. 

gives us pointwise estimates for cp 
x 

Such an application imm~diately 

I\ 
and q:> • 

y 

31. Uni queness of the Twist Function q:> . 

In § 4, we pointed out that the twist function q:> satisfying the 

boundary value problem (4. 5) - (4. 8) is unique up to an arbitrary con-

stant whose determination has been postponed. We can determine 

this constant as follows. 

,...,, 
The twist function q:> , the approximate s elution q:> , and the 

error ~ are related by 

,...,, " q:> = q:> + q:> (31. 1) 

From (30. 1) we also have 

(31. 2) 

" where, according to (30. 12) - (30. 13), (24. 7), and (27 . 5), q:>. (i= 1, 2) 
l 

are made unique by normalization conditions 
l z 
s~l (O. y)dy = 0 

' 
1 --z 

(31. 3) 

and 
1 
z J ~2(t, y)dy = o . . 

l • 

. (31. 4) 

--a 

Conditi ons (31. 3) and (31. 4), when converted to the notation pertain-

ing to the original geometry, become 

h/2 

and 

s cp l ( 0 '· C}d(;; = 0 ' 

-h/2 

(3 1. 5) 
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h/2 s (p 2 {t, C )dC = o . 
-h/2 

{3 1. 6) 

,.._. " " Equations (6. 5), {31. 5), and {31. 6) define cp, cp 1 , and cp
2

, respective-

ly, and hence also cp through the relation {31. 2). Thus, cp is uniquely 

determined. 

32. Limiting Estimates for the Error Stresse's as E: .... 0. 

" " The error stresses Tse and ,.,e are computed in terms of the 

A 
error cp from (4. 3) by 

a~ 
= µr~ 

1 + -'-
11 

8ep 
- µr af {3 2. 1) 

In this section, we shall compute the limiting estimates of the 

error stresses for points {x, y) with 0 ::;; x::;; t and -i::;; y::;; i in terms 

of the thinness parameter e: as E: approaches zero. During this 

limiting process, the positions {x, y) relative to each other, of the 

points in the shell, remain fixed. The algebraic calculations for such 

estimates are lengthy but straightforward. We shall not exhibit these 

calculations in detail, but shall point out the main steps leading to the 

final results. 

In our procedure, we shall first determine the limiting esti-

mates for the energies V.(x) and W.(x) (i= 1, 2, 3) from the results of 
1 1 

Chapters II and Ill after replacing t by t. We then apply the limiting 

energy estimates to obtain bounds for the error stresses in accord-

ance with the formulas established in Chapter IV and the relations 

(3 2. 1 ). 
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To estimate V 1 (x) , we first read off from (5. 6a, b) and (10. 3) 

2 
p = O(e: ) , q = 0(1) 

-1 
k = O( e: ) 

as e: _, 0 , (3 2. 2) 

a s e _, 0 • (3 2. 3) 

Next, we assume that the load-functions f . {i = 1, 2) which a r e 
l 

introduced in (3. 17) satisfy 

and 

f. = 0(1) 
l 

(i = 1, 2) 

From {32. 2) - {32. 4), we find 

T - O(e:) 
., 

G = O{e:-') 

2 
g . = O(e ) 

l 
(i = 1, 2) 

as € _, 0 • 

as e _, 0 , 

a s e _, 0 , 

as e: ..... 0 , 

{3 2. 4) 

{32. 6) 

(3 2. 7) 

{3 2. 8 ) 

where the scalar torque T is given by {3. 18); G and g. are given by 
l 

(30. 15), (6. 11), and (6. 12), respectively. {32. 2), (32. 8), and (17. 2), 

after replacing t by t , imply 

- 2 
V 1(t) = O(e ) as e: ..... 0 . ( 3 2 . 9) 

We can now observe from (10. 2), · (32. 3), and (32. 9) that the 

first order energy associated with $
1 

satisfies 

2 -1 -
V 1 (x) = O(e )exp [ -O(e; )(t -x)] as e _, 0 • (32. 10) 

Similarly, we find tha t -y 1 of (14. 13) and V 
2

(-t ) of (18. 2) satisfy 

-y 1 = O(e
2

) as e: ..... O, (32. 11) 

and 

- 3 v 2 (-t ) = O(e ) as e: ..... 0 . {32. 12) 

" Then (11. 3) asserts that the second order energy of cp 1 satisfies 
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3 -1 -
V 

2 
(x) = O(e )exp [ -O(e )(-t-x)J as e - 0 • (32. 13) 

I\ 
In estimating the third order energy V 

3
(x) of cp 1 , it is con-

venient for us first to summa.rize the following results. From ( 11. 4), 

(11.5), (A.25)ofAppendixA, (12.17), (17.4), (19.8), and(l9.7), we 

find 

as € - 0 , (3 2. 14) 

4 
j3

0 
= O(e ) , 13

1 
= 0(€) , 13

2 
= 0(1) , 13

3 
= 0(1) as e - o, (32. 15) 

3 2 
m

3 
= 0(€ ) , m

4 
= 0(€ ) as e: - 0 , (32. 16) 

and 

as e: - 0 • (32.17) 

Combining (12. 21) and (12. 22) with (32. 14) - (32. 17) and the 

limiting estimates for V 1 (-!,) , V2 (-t) , and k , we find 

-1 -
V

3
(x) = O(E:)exp[-O(e: )(t-x)] as €-+ 0. (3 2. 18) 

Likewise, limiting estimates from (14. 13), (15. 11), (C. 13) of Ap-

pendix C, (20. 5 ), (20. 12), (21.5), and (22. 12) give 

'Y 2 = O(e
3

) as € - 0 ' (32. 19) 

2 4 
e: - 0 , J3 4 = O(e: } ' '35 = O(e: ) as (32. 20) 

2 3 
e: - 0, m 1 = O(e: ) , M = O(e ) as (32.21) 

M• = O(e 3 ) as £ - 0 , (32. 22) 

and 

3 
m 6 = O(e: 

2, 
e: - 0 . m

5 
= 0(€ ) , I as (3 2. 23) 

Computations analogous to those lea ding to (32. 10), (32. 13), 

a nd (3 2. 18) then yield 
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W l (x) = O(e:
5

) + O(e:
2

)exp[-O(e:-
1

)x] as e: ..... 0 , 
2 

(32. 24) 

W
2

(x) = O(e:
1112

)+0(e: 3 )exp[-O(e:-
1

)x] as e: ..... 0 , (32. 25) 

and 

9/2 -1 W
3

(x) = O(e: )+O(e:)exp[-O(e: )x] as e: ..... 0 , (32. 26) 

where W . (x) (i = 1, 2, 3) are the three orders of energies associated 
l 

" with cp
2 

• 

With the energy estimates given by (32. 10), (32. 13), (32. 18), 

and (32. 24) - (32. 26) at our disposal, we find, from (25. 24), (28. 12), 

(26. 8), (29. 5), (30. 12), and (30. 13), that 

cp = O(e: 3 / 2)+0(l)exp[-O(e:-
1
)x]+O(l)exp[-O(e:-

1
)(:[-x)] 

x 
(32. 27) 

as e: ..... 0 , 

and · 

A 5/2 -1 -1 -cp = O(e: )+O(e: )exp[-O(e: )x]+O(e: )exp[-O(e: )(t-x)] 
y 

-1 -
+O(e: )exp [ -O(e: )t J as e ..... 0 • (32. 28) 

Finally, the two non-vanishing error stresses ~se and~ <;: e , 

in terms of the variables x and y , ·become, after combining (32. 1), 

(3 2. 27 ), and (3 2. 28 ), 

" 3/2 -1 -1 -
rxe = O(e: )+O(l)exp[-O(e: )x]+O(l)exp[-O(e: )(t -x)J (32.29) 

as e: -+ 0 , 

/\ 3/2 -1 [ -1 -
r ye = O(e: )+0( 1 )exp[ -O(e: )x]+O( 1 )exp -O(e: )(t-x)] 

-1 -
+O(l)exp[-O(e: )-l] as e:-+ 0. (32. 30) 

In (6. 6), the approximate stress -:re e = 0; hence, (32. 30) actually gives 

the estimate for the exact stress component rye. 

2 
Note that W 1 (x) = T 1 (x). See (B. 4) of Appendix B . 
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33. Application to a Cylindrical Shell. 

In the last section, we obtained limiting estimates for the 

stresses; now we shall exhibit stronger estimates by finding upper 

bounds for the stresses in terms of the thinness parameter €. 

To minimize the algebraic complexity, we shall deal with a 

circular cylindrical shell whose meridional cross section is shown in 

Figure 3. In Figure 3, p , r 1 and r 2 are cons tan ts. They stand 

for the distances respectively from the mid-surface and the lateral 

surfaces of the shell to the axis of symmetry. The angle J3(s) (Fig-

ure !)becomes Tf/2 in this case. 

From (2. 5), we have I Rs I = oo and I R
8 
I = p. Then, accord­

ing to (5. 2 ), we find 

L = min(p, t) . (33. 1) 

In order to simplify the algebra which follows, and for the 

convenience of compari son of the results to be derived here with 

those from previous publications, we assume hereafter that .t < p 

and, thus, take 

L = t . (33. 2) 

Expressions (5. 4) and (33. 2) imply 

.t = 1 . (33 . 3) 

It follows from (5. 6a, b) that 

z 3 3 
p(x,y;e:) = e: (p- .tye:) , q(x,y;e:) = (p-.tye:) (33. 4) 

From Figure 3, we can write down immediately that 

-- + .te: Pz .te: 
p - 2 . (33. 5) 

Next, from (6. 4), after setting the constant of integration equal to 

zero, we find 
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cp(x) T' ( 3+3 L2 2)-1 = -- p - p e x 
21f)..l 4 

(33. 6) 

where 

T' = T/f; . (33.7} 

(3 2. 6} and (33. 7} imply that 

T' = 0(1) as E: _. 0 • (33.8) 

Since p and q in (33. 4) are independent of x, and Cf) in (33. 6) is linear 

in x, we conclude at once from (6. 9) and ( 13. 2) that 

F(x, y;i::) = G(x, y;e) = 0 , (33. 9) 

which implies that both of the solutions cp 1 and tp 2 in (30. 1) s a tisfy 

homogeneous differential equations (30. 2) and (30. 7) after setting F 

equal to zero in (30. 7). The boundary value problem (30. 2) - (30. 6) 

" I\ of cp
1 

and that of (30. 7) - (30.11) of cp
2 

are almost ide ntical except 

for the different boundary conditions at x = 0, 1 . 
3 

We shall fi r st find 

upper bounds in terms of the thinness parameter E: for quantities as -

sociated with the solution ~2 and shall then directly appropriate these 

results to find the upper bounds for the quantities associated with the 

. I\ 
solution cp 1 • 

From (33. 4) and (33. 5), we take 

(33. 10) 

and 

(33.11} 

where p 
1

, p 
0

, q
1

, and q
0 

are such that 

(33. 12} 

as define d in (10. 4), (17 . 4}, and (19. 9). (10. 3) and (33. 10} - (33. 11} 

3 -
,f, = 1 according to (33. 3 }. 
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imply 

{33. 13) 

We now proceed to estimate the various orders of energies 

associated with the solution ~2 . Since ~2 for the cir cular cylinde r 

satisfies a homogeneous differential equation, we can omit considering 

s
1 

{z) of (13. 17) in estimating the first order energy T 
1 
{z) and can 

simply take 

{33. 14) 

where T 1{z) and N 1{z) are given by {13.15} - {13. 16) with G = 0 in 

{13. 15) according to {33. 9). 

After lengthy but straightforward computati ons, we find from 

{20. 4), {21. 4), and {22. 8) that 

and 

4 2 
4 rl 2 2 T 12 rl 2 
---z-3 { t hl + 4rr2 o )e 
µ r2 p 

4 t2 4 
_t_ {843 rl h 2 + 4h 2 + 60T'.t 

2 ~ 1 1 3 
µ r 2 r 2 rrp 

6T 12r~ 
+ 2 6 6 

Tr p r 2 

4 
) e: ' 

where the constant h
1 

is such that 

h 1 = max ( I f1 I , r 1 I fl I , r: I fi' I ) . 
[ -t.t J 

{33. 15) 

{33. 16) 

{33. 17) 

(33 . 18) 

We now appropriate the results of (33. 15) - (33. 17) to conclude that 
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the various orders of total energies V.(l) (i= 1, 2, 3) associated with 
1 

(33. 19) 

(33. 20) 

and 

where h
2 

is given by 

h2 = max (If 2 I , r i 1 £2, I , r 121 £21 ) • (33. 22) 

[ _.!.. .!.] 
2., 2. 

For the sake of completeness, we record below the estimates 

for the constants #}. (i = 1, 2, 3, 4) and 'I· (j = 1, 2) which are defined 
1 J 

in (12. 17), (15. 11), and (14. 13): 

(33.23) 

"2 = o. (33. 24) 

Now, to simplify the algebra in the sequel, we define a new constant f 

which is such that 

(33. 25) 

Combining (33. 14) and (13. 27) with (33. 15), (14. 15) with 

(33. 15) and (33. 16), and (15. 14)- (15 . 15) with (33. 15)- (33. 17), and 

keeping in mind (33. 23) - (33. 25), we find 
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(33. 26) 

(33. 27) 

2 4 60T'-t, 4] -2kx + r 1 f e: + 2 3 fe: e • 
7f p 

(33. 28) 

Similarly, we find 

[ 

4r 
4 

1 2 r 
2 

] 
V 

1 
(x) s; 

2 
1 

3 
( t 2£2 + ~ -\- )e:2 e -2k(l-x), 

µ r 2 4rr p 
(33. 29) 

Yz(x) ~ l-: r~ [sl-zfz(3e3+·7e4)+ T': ~ (6e3+e4)Je-2k(l-x)' 
µ r2 7f p 

(33. 30) 

3 3 

V3(x) st~ r~ [336t2 ~ £2(3e:2+7e:3+ie:4)+ 422T'62 rl2 (6e:2+e:3+~) + 

µ r2 r2 7f p r2 

. f 2 . 4 .J. 6 0 T It f 4] - 2k ( 1 -x) 
Trl e: ' 2 3 e: e • 

7f p 
(33. 31) 

To further simplify the algebra, we assume 

[ ~'ff/!; . I :i:-2 I r2 t rl l r2 
e: s mm b4 r ' 3 2 3 ' 4 r ' Tfb 3 ' 

I rrtfp 2 r
1 

(33. 32) 

Then, from (25. 24) and (26. 8 ), we find 

9-i2
r 

4 
T'r 

\~x(x,y;e:)! s 61 ( tf +~)(2+e:)[e-kx+e-k(l -x)J 
µpr 2 2rrp 

(33. 33) 
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and 

Finally, from (32. 1}, (33. 33 ), and (33. 34), we find, in terms 

of the variables x and y, the pointwise estimates of the error 

stresses to be 

r 
4 

T'r 
~ 9t ~(tf+--j)(z+e:)(p-tye:)[e-kx+e-k(l-x)], (33.35) 

p rz 2'1fp 

and 

s: 24 JY~(H+~~)(p-tye:) ~e:l/4[e-kx+e-k(l-x)]+ "1f 3 2'1f 3 2 r2 p 

+ ..J3 ( 1+3.,JJ;: )e -k (33. 36) 
\' r2 

Since TC 
9 

= 0 in (6. 6), it follows that (33. 36) actually gives the upper 

bound for the exact stress component '!"ye in terms of the variables 

x and y. 

34. Comparison with Previous Work. 

In [ 1 ], the upper bounds for stresses in axisymmetric torsion 

are found by an energy method coupled with a mean value theorem of 

linear eiasticity. Such estimates are of the form 

(3 4. 1) 

where 

(1) C is a known constant which depends on the load data and 

the geometry of the problem; 
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(2) h is a constant to be defined as follows. The hollow body 

of revolution considered in [ 1 J is of varying 
4 

thickness 

along the axis of symmetry which coincides with the z-

axis. Let r 
1 
(z) and r 

2
(z) measure the distances from the 

z-axis to the outer and inner lateral surfaces of the body. 

Then 

h = max Ir 1 (z) - r 2 (z) I . 
OS:z~t 

{34. 2) 

(3) o is the radius of a solid sphere centered at (x, 8, z) and 

( 4) 

lying wholly in the body; and 

A. is the decay function replacing the constant k of the 
0 

present work. 

In(34.l), T(x,y)canstandforeither Txe or Tye· 

Let us apply (34. 1) to a circular elastic shell of constant 

thickness h (see Figure 3). We shall examine two limiting processes. 

Case (1): Let (x, y) be the dimensionless coordinates and (s,C) 

be the coordinates pertaining to the original geometry of the elastic 

body. The two systems of coordinates are related as given in (5. 4). 

Then (5 . 3) and (5. 4) imply that (x, y} depend on the thinness parameter 

e: . Now, we consider the limiting case of stresses at a fixed interior 

point (s, C) of the body as e: .... 0. We find, from (34. 1), int erms of 

(x, y}, 

a = O( e:) , as e: ... 0 , (34. 3) 

and 

- 1 -1 
T(x,y)=O(e: )exp[-O(e: )x+O(l)] as e:-0. (34.4) 

4 
See Figure 1, Case 1 of [ 1 ]. 
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Case (2): Let the thickness h be fixed, and let the point (x, y) 

approach the boundary, namely, the lateral surfaces of the shell. 

This implies that 6 approaches zero. Then, (34. 1) deteriorates and 

breaks down completely on the boundary. This drawback is common 

to all stress estimates obtained with the aid of a mean value theorem. 

The problem just considered is a special case of that treated 

rn [ 1 ]; it is clearly also a special case of the shell problem of the 

present thesis upon setting £
2 

= 0 in (3. 17), Ci)'= 0 in (6. 4), and the 

shell to be circular cylindrical. 

Applying the techniques developed in this thesis, we find, from 

(33. 35) and (33 . 36 ), that 

-1 
T(x,y) = O(l)exp[-O(e )x] as E: ... 0 , (34. 5) 

whenever Case ( 1) is concerned; and the upper bounds of T x e and 

Tye are given by (33. 35) and (33 . 36) with the term e -k(l-x) deleted, 

since f 2 = 0 whenever Case (2) is concerned. We see that these esti­

mate s remain valid up to and i ncluding the boundary points. Hence, 

we have repaired the deficiency of the pointwise estimates obtained in 

[ 1 ]. Furthermore, by direct comparison, (34. 5) is a better estimate 

tha n (34. 4). 
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1 
z z 

APPENDIX A. Estimate of I J JvHdydx I . 
0--} 

We derive here expression (12. 16), after introducing further 

notation. Let 

Then from (12. 4) we have 

1 
z z 
JI dydx • 

0 -!-
(A. 1) 

I s vHdA I s: I I p v vdA I+ I I q v vdA I+ I s (p +q__ )v vdA I+ xxy x 'XYY y xx -yy xy 
R(z) R(z} R(z) R(z) 

+ I Jr 2q v vdA I+ I J2p v vdA I + I I p v vdA I+ 'XY yy xy xx y xxx 
R(z) R(z) R(z) 

+I S q __ v vdA I+ I Sp v vdA I+ I I q __ v vdA I . -y xyy x xxy -y yyy 
(A. 2) 

R(z) R(z) R(z) 

Upper bounds for each of the nine integrals on the right of 

(A. 2) are to be derived as follows: 

From Schwarz' s inequality, (1 O. 1 ), ( 11. 1 ), ( 12. 2), and (A. 1), 

we have 

I r P 1 . 1 

I p v vdAI s: j 1~1· IP2 v I· lp2 v ldA s: xxy x p x xy 
R(z) R(z) 

1 1 

pxx I 2 2 S 2 2 S: (max l~I )( pv dA) ( pv dA) s: 
- p x xy 
R R(z) R(z} 

Similarly, 
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S 
~ 1 1 I a v vdAI ~ (maxl___yyl )V_f(z)V£(z), 

'Xyy y .r::: 
R(z) R VPq 

(A.4} 

I J<P +q__ )v vdAI ~ (max(xx+yyl )V
2
(z), 

xx -yy xy P 
R(z) ~ 

(A. 5) 

S 
2~ 

I 2~ v vdA I ~ (maxi . ~I )V 2(z). 
R(z) y yy R . VPq 

(A. 6) 

In estimating I I 2p v vdA I , we first find v from (9. 10) and xy xx xx 

obtain 
R(z) 

v = - .!. (p v + q _ _v + qv ) • 
xx p x x -y y yy 

(A. 7) 

Then, 

~ 2 [(max Ip x~p x ijv f ( z )V f ( z )+ {max Ip ly l I } V f ( z )V f ( z )+ 
R p R pzqz. 

(A. 8) 

Differentiating (A. 7) with respect to x and rearranging, we have 
2 2 
PX 

v = (--xxx 2 
p 

Then 

pxx Zpx~ ~y ~ 
- -- )v + ( - - )v - - · v + 

p x 2 p y p xy 
p 

Zqp ~ 
+ (--x - - )v - .9. v 

2 p yy p xyy 
p 

(A. 9) 
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2 

I JP v vdA I $ J I :'.Y_ I · I 
2P x - P I • Iv I · Iv I dA + J I fl Iv 

2 
dA + y xxx p p xx x p xy 

R(z) R(z) R(z) 

S p 2p q I p 2qp 
+ I : I · I ; J - ~y I· Ivy I· Iv I dA + 111 · IT- ~I· Iv yy I· Iv I dA+ 
~(z) R(z) 

2 
+ I J qp p 2p x .!. .!. 

_J_v vdAI $ (maxl:....Y.21· l---p . I )Vl2 (z)V22 (z)+ 
R(z) p xyy · R p P xx 

(A. 10) 

The last term on the right of (A.10) is obtained by integration by parts 

as follows: 

1 

I qp -
.::..iv vdA = 

p xyy 
R(z) 

r rqpYv v dydx = J J p xyy xy 
o-t 

l l 
z y=-z z 

=J'Jv2 I -Jv {(J) v +Jv }dy] L p xy xy p xy p xyy 
0 - l l y y---z -2 

(A. 11) 

Hence, 

I qp lJ qp 1 2 qp 1 I .::...Lv vdAI $ z (.::...L) -(pv )dA$ (maxl(....:..Y) z-l)V2 (z). 
p xyy p yp xy - p y p 

R(z) . R(z} R (A. 12) 

Similarly, 

(A. 13) 
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To estimate I Ip v vdA I ' let us consider x xxy 
~(z) 

1 
z z: 

I p v vdA = x xxy 
R(z) 

IS P v v dydx. 
x xxy xy 

0 -t 
(A. 14) 

Integrating (A. 14) by parts with respect to x and using (12. 5), we 

have 
1 

Sp v vdA = 
x xxy 

1 sz: z I 1 s · z -z: p v dy-z: p v dA • x xy xx xy · -± x=z R(z) R(z) 

Then; 

I Ip v vdA! x xxy 
R(z) 

1 
z: 

~ t I Ip I · v 
2 

dy + t s Ip I v 
2 

dA x xy xx xy 
-!- x=z R(z) 

(A. 15) 

1 
z: 

~ t(maxlpxl )Jpv
2 I dy+ ±(maxlpxxl )Jpv

2 
dA _ P 

1 
xy _ p xy 

R · -2 x=z R R(z) 

px i lpxx 
~ i(max 1-1 )VZ(z) + z:(max --1)V2 (z) . 

R P R p 
(A. 16) 

Now, differentiating (9. 10) with respect to y, we obtain v given by 
yyy 

1 
v =-(av +bv +Zcv -p v -pv -q _ _v ) , (A. 17) 
yyy q x y yy x xy xxy -y yy 

where 

p~ 
a=~-p , 

p xy 
b = ~ - q__ • 

p -yy 

1 qpy 
c = z:( -p 

(A. 18) 

From (A. 17) and (A. 16 ), we have 
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I sq v vdA I ~ J1 ~a I· Iv I · Iv I dA + J1 ~ b I· Iv I· Iv I dA 
~Yn q x q . y 

R(z) R(z) R(z) 

+ 2 J1 ~ c I · Iv I • Iv I dA + J1 ~p x Iv 
2 

dA + I r( ~ p )v vdA I + q yy q xy j ' q xxy 
R(z) · R(z) R(z) 

+Jl~l ·Iv I· lvldA ~ [max( I ~a l+I ~b I~ v{(z)V }(z)+ 
q yy R pq _/3 

R(z) ~pq 

+(maxlZCl>Vz(z)+tmax(21 ~c l+l~l+.f- l(~p) I+ 
R q ~ _(3 pq p q x 

"pq-

+ I ~ ~ I 0 V 2 (z) • (A. 19) 

QJ 
Substituting (A. i) , (i = 3, 4, 5, 6, 8, 10, 11, 13, 16, and 19), into 

(A. 2) yields (12. 16): 

( 12. 16) 

where the constants 13
1

, 132 , and 133 are given by ( 12. 17 ). 

tt 
When z = t in (12. 16), we can improve the estimate of 

IS JvHdydxl as follows. Replace z by tin (A. j ), (j = 3, 4, 5, 6, 8, 10, 

0 -t 
and 13), but we rewrite (A. 14) as 

ti 

Sp v vdA = s s p v v . dydx x xxy x xxy xy 
R(.t) 0 -t 

(A. 20) 

Integrating (A. ZO) by parts with respect to x and using (12. 5) 

and (12. 6 ), we have 
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ls 2 -z- p v dA xx xy 
R(t) 

Then, 

Similarly, we find 

I Ja v vdA I ~ rmax( I ~a I+ I ~b I )lvl±(t )V2±(t )+ 
"X YYY 1

1 

bi pq _[3 J 
~(t) l.. "pq 

f~ p(t, Y> I ~(t, Y> I 2 
+ t 4 [p(t, y)g2_(y)-py(t, y)g 2(y)J dy+ 

1 q(t, y)p (t, y) -z-

It easily follows that 

1 {, z 
I J JvHdydxl $; {30+1}1[v1(t)V2 (-t)]t+J32V 2(t), 

0-± 
where 

1 

(A. 21) 

(A. 22) 

(A. 23) 

(A. 24 ) 

i Jz(lpx(t, y)j 
{30~ z 4 

1 p (t,y) --z 

p(t, Y> I ~<.i. Y> I) 2 
+ . 4 [p(t ,y)g2(y)-py(-l,y)g2(y)] dy' 

q(t, y)p (t , y) 
(A. 25) 

while )3 1 and 13
2 

a re given by {12. 17 ). 



-95-

t t 
APPENDIX B. Estimate of J I I wHdydx I . 

z -z 

Expression (14. 12) will be derived here after introducing 

further notation. Let 

1 
ta 

= s Jdydx 

z -t 
From (14. 3) we have 

I S pp s Fp 
J ~ Hda J ~ J ( ~ -p )w wda J + J (F - ___:_y )wda J + p xy x y p 
R(z) R(z) R(z) 

+I J [ (TI -q__ )w +( qpy -q__)w ]wda I . 
p -yy y p -y yy 

R(z) 

Now we digress here to define 

t -1-

w 1 (z} = s J(pw~+qw:).dydx • 
1 

z -z 

It follows immediately from ( 13. 1) and ( 13. 15} that 

W 1 (z) = T 1 (z) • 

(B. 1} 

(B. 2) 

(B. 3) 

(B. 4) 

Arguing as in Appendix A, bounds of the integrals in (B. 2) a re found 

to be: 

I f ( p xp y -p )w wda I 
p xy x 

R(z) 

(B. 5} 



(B. 6) 

and after integration by parts, the last integral in (B. 2) yields 

I I [ ( :_u_ q__ )w + ( qp y - q __ )w J wda I = 
p -yy y p -y yy 

R(z) 

(B. 7) 

In (B. 5) - (B. 7), a. 1 , a.
2

, and y
2 

are given by (11. 4), (11. 5), and 

( 14. 13 ), respectively. 

Substituting (B. 5) - (B. 7) into (B. 2} and setting y 
1 
~ a.

1 
+ a.

2
, 

we obtain expression ( 14. 12}. 
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ti 
APPENDIX c. Estimate of Is s~ fldydx I • 

l 
z --a 

Except for the terms arising from the nonhomogeneous term, 

F(x, y), in the differential equation (9. 14), we can appropriate the ar-

gument leading to (12. 16) for the derivation of (15.10). 

From ( 15. 3) and Appendix A, we can write down immediately 

I Jr~Hdal s; I JF ~dal+I JP w ~dal+ I Jr q __ w ~dal+ xy xxyx ~yy 

R(z) R(z) R(z) R(z) 

+ I J<P +q ___ )w ~da I+ I J 2a w ~da I+ I S Zp w ~<la I+ xx -yy xy 'XY yy xy xx 
R(z) R(z) R(z) 

+I JP w ~dal+I Jq __ w ~dal+I Ip w ~~a l+ y xxx -y xyy · x xxy 
R(z) R(z) R(z) 

whence 

IF I F2 1 

I = J xy _ r;:: - ( J xv )a .!.. I F xy wda I s; • 1-v p w) da s; p da [ W 
2 

( z)] 2 , 

R(z) R(z) {P R(z) 

I JI (p +q__ )w ~da I s; (max xx -yy xy 
R(z) 

(C. 1) 

(C. 2) 

(C. 3) 

(C. 4) 

(C. 5) 
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I - [ I p 
2 

ZFp 2 Ji l I pywxxxwda\ :s: ~ <T-F J da [W 2 {z)]-Z+ 

~(z) ~(z) P 

[ 

p Zp 2 . p 2p Cly 1 ~ 
+(maxi~!· I~ -pxxl )+(max!--Y. I· I . x -~ 1--) · 
~pp ~ P _ p y~ 

i ~ p __ q__ p Zqp 1 
[T 1 (z)W z(z )JZ+ (max 1--.r+I )+(max !:..Y,. , __ x -~I_ c-' ) + 

~ p ~ p p -VPq 

1 qp ] +(max!2 (-=-Y-) !) w
2
{z), 

R' P P y 
(C. 7) 

(C. 8) 

I JP w ~da\ :s: -i(maxlpx I )W2' {z)+i(maxlpxxl )W2(z) , xxxy _ p _ p 
R(z) 6Y, R 

(C. 9) 

and 

. + [max(Zi ~ l+l~l+f I ('Y') l+I QI )lw 2 (z). 
~ 3 pq p q x 3 J 

pq pq {C. 10) 
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Substituting (C. 2} - .(C. 10) into (C. l}, we obtain (15. 10). 

When z = 0 in (15. 10), we can similarly derive 

t i 
I JI ~Hdydxl ~ J3 1[T 1(0)W2 (0)]i+J32W 2 (0)+J34 [W 2 (0)]i-+135 , 

0-t 
(C. 11) 

where 131 , .132 , and 134 are given by (12. 17) and (15. 11), while 13
5 

is 

such that 

1 r[IP (O,y)j p(O,y)j<ix(O,y)j] 2 
'35 ~ ± J_ ~ . + 4 [p(O, y)gl (y)-py(O, y)gl (y)] dy. 

i p (0, y) q(O, y)p (0, y} 
--z (C. 12) 
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ti 
APPENDIX D. Estimates of I SI cpHda I 

o-t 

1 
t z 

and IS J4>Hda I 

0 --!- . 
We first derive here the expression (22. 2). Recalling (B. 1) of 

Appendix B and replacing ~ by <$ in (C. 1) of Appendix C, we find that 

I JcPHda I ~ I J F cpda I + I J p w ~da I + I Sq __ w ~da I + xy xxy x -x:yy y 
R(O) R(O) R(O) R(O) 

+I Jr (p +q __ )w cpdal+I Jzo w cpdal+I Jzp w cPdal+ xx -yy xy "XY yy xy xx 
R(O) R(O) R(O) 

+I JP w cpda.l+I Jq __ w cpdal+I JP w cPdal+I Jq__w $ dal. y xxx -y xyy x xxy -y yyy 
R(O) R(O) R(O) R(O) 

(D. 1) 

To estimate the integrals on the right of (D. 1), we use Schwarz's in-

equality, (B. 3), and (B. 4) of Appendix Band (14. 7), with z r e placed 

by zero. Then 

(D. 2) 

(D. 3) 
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(D. 4) 

(D. 5) 

From (9. 14), we find 

1 
w = - (F-p w -q__w -qw ) • xx p xx-yy yy (D. 6) 

Then 

~ 2 I J p;YF~daj+([ S (px,."f <$: daj+[ S (pxy~)2 ~2 
da]±) . 

~(O) R(O) p R(O) P q 

[ T 1 ( 0)] i+ [ S (p xy) 
2 ~ da Y [ W 2 ( 0)] i 

R(O) p 

(D. 7) 

Differentiating (D. 10) with respect to x, we find 
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2 
2 

2 2 
= ( F) + ( P x _ p xx )w + ( p x ~ _ CScy )w _ _1 w + ( qp x _ ~ )w 

w xxx p 2 p x 2 p y p xy 2 p yy 
x p p p 

- .9. w 
p xyy 

(D. 8) 

Then 

I J p w ~daj ~ y xxx 
R(O) 

(D. 9) 

In obtaining the last term on the right of (D. 9), w e have used integra­

tion by parts and the boundary conditions w (x, ±i) = 0. This method 
xy 

also yields 

(D. 10) 

Now consider integration by parts of 
1 l 

t z z x=-l t 

J_J pxw>e<yq,dydx = L[px$wxlx=O- f wx(i>x~)x dx] dy 
Z Z 

.!. I\ .ii 
- ~ px(O ,y1P(O,y) [ ' py(O,y)gl (y)] ss- /\ -- J p(O,y) gl(y)- p(O,y) dy- wx(pxcp)dydx. 

-i- O-i x (D.11) 

We have used ( 14. 4) to compute the first term on the right of (D. 11 ). 

Then 
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I J p w cpda I ~ x xxy 
R(O) . 

Diffe rentiating (9. 14) with respect to y , we find 

w = _!_ r( p ~ y -p )w + ( ~ - q__ )w 
YYY q L P xy x P -yy y 

Hence 

+ ( -=.L - 2q __ )w -p w -pw + F - _:_:t_ • 
qp . . Fp ] 

p -y yy x xy xxy y p 

1 

Jz <iy{O, y} " [ py(O, y)gl (y)] 
+I ~ cp{O, y} gJ. (y}- p(O, y) dy I 

. _ 1. 
· z 

(D. 12) 

{D. 13 ) 

+(J L(~~cP)] 2 ~da)irw2(0)Ji+1 J ~cp(FY - F;YJ<la l . 

~(O) . x R(O) . 
(D. 14) 

Combining .(D. i), (i = 2, 3, 4, 5, 7, 9, 10, 12, and 14), with (D. 1), 

we have (22. 2). 
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By comparing the definition of H in ( 12. 4) with that of H in 

(15. 3), we see that we can deduce the expression (19. 3) from that of 

(22. 2) as follows. First, we set F and its derivatives equal to zero 

in the surface integrals of (22. 3) and then we replace the argument 

(0, y) by that of (-l, y) and g 1 (y) and g]. (y) by g
2

(y) and gZ,(y), re­

spectively, in the line integrals of (22. 3). This establishes \J
3 

given 

by (19. 4). Next, we replace T 
1 

(0) by V 
1 

(-l) and W 
2

(0) by V 
2
(t) in 

(22. 2) so as to establish (19. ,3). 
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