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Abstract

Multi-finger caging offers a rigorous and robust approach to robot grasping. This thesis provides

several novel algorithms for caging polygons and polyhedra in two and three dimensions. Caging

refers to a robotic grasp that does not necessarily immobilize an object, but prevents it from escaping

to infinity. The first algorithm considers caging a polygon in two dimensions using two point fingers.

The second algorithm extends the first to three dimensions. The third algorithm considers caging

a convex polygon in two dimensions using three point fingers, and considers robustness of this cage

to variations in the relative positions of the fingers.

This thesis describes an algorithm for finding all two-finger cage formations of planar polygonal

objects based on a contact-space formulation. It shows that two-finger cages have several useful prop-

erties in contact space. First, the critical points of the cage representation in the hands configuration

space appear as critical points of the inter-finger distance function in contact space. Second, these

critical points can be graphically characterized directly on the objects boundary. Third, contact

space admits a natural rectangular decomposition such that all critical points lie on the rectangle

boundaries, and the sublevel sets of contact space and free space are topologically equivalent. These

properties lead to a caging graph that can be readily constructed in contact space. Starting from a

desired immobilizing grasp of a polygonal object, the caging graph is searched for the minimal, inter-

mediate, and maximal caging regions surrounding the immobilizing grasp. An example constructed

from real-world data illustrates and validates the method.

A second algorithm is developed for finding caging formations of a 3D polyhedron for two point

fingers using a lower dimensional contact-space formulation. Results from the two-dimensional

algorithm are extended to three dimension. Critical points of the inter-finger distance function are

shown to be identical to the critical points of the cage. A decomposition of contact space into

4D regions having useful properties is demonstrated. A geometric analysis of the critical points of

the inter-finger distance function results in a catalog of grasps in which the cages change topology,

leading to a simple test to classify critical points. With these properties established, the search

algorithm from the two-dimensional case may be applied to the three-dimensional problem. An

implemented example demonstrates the method.

This thesis also presents a study of cages of convex polygonal objects using three point fingers.
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It considers a three-parameter model of the relative position of the fingers, which gives complete

generality for three point fingers in the plane. It analyzes robustness of caging grasps to variations

in the relative position of the fingers without breaking the cage. Using a simple decomposition of

free space around the polygon, we present an algorithm which gives all caging placements of the

fingers and a characterization of the robustness of these cages.



viii

Contents

Acknowledgements iv

Abstract vi

Contents x

List of Figures xiv

List of Algorithms xiv

Notation xv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Review of Existing Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Grasping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 Caging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Caging Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Current Uses and Limitations of Caging . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Thesis Organization and Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Two Fingers in Two Dimensions 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Preliminaries and Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Contact Space Formulation of Caging . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Contact Space Representation of the Caging Sets . . . . . . . . . . . . . . . . . . . . 15

2.4.1 Two-finger Equilibrium Grasps in Contact Space . . . . . . . . . . . . . . . . 16

2.4.2 The Inter-finger Distance Function in Contact Space . . . . . . . . . . . . . . 18

2.5 Rectangular Decomposition of Contact Space . . . . . . . . . . . . . . . . . . . . . . 21

2.6 The Contact Space Caging Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 The Caging Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



ix

2.6.2 The Augmented Caging Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 The Contact Space Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.8 Algorithm Walk Through . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.9 Graphical Depiction of Caging Set as Two Capture Regions . . . . . . . . . . . . . . 34

2.10 Caging Set Computational Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.11 Extensions of the Caging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.12 Summary and Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Two Fingers in Three Dimensions 41

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Preliminaries and Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Contact-Space Reformulation of Caging . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 The Caging Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Location of Important Grasps . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 The Caging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.1 Analysis of the Closed List . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.6 An Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 Characterization of Nodes of G . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.8 A Catalog of Immobilizing and Puncture Grasps . . . . . . . . . . . . . . . . . . . . 52

3.9 Sublevel Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9.1 Sublevel Equivalence of U and G . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.9.2 The Sublevel Equivalence of U and F . . . . . . . . . . . . . . . . . . . . . . 56

3.9.3 Sublevel Equivalence at False Immobilizing Grasps . . . . . . . . . . . . . . . 57

3.9.4 Sublevel Equivalence at False Puncture Grasps . . . . . . . . . . . . . . . . . 57

3.9.5 Tunnel Curve Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Three Finger Caging 59

4.1 Preliminaries and Robust Caging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Motivational Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 Robust Caging Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Single Triad Caging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.3 Multi-Triad Caging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 Divisions of Shape Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Puncture Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.4.2 Immobilizing Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4.3 Other Grasps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71



x

4.5 A Test of Caging Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Test for Feasibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.5.2 Test for Escape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.7 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Conclusion 80

5.1 Summary of Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Opportunities for Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Appendices 83

A Stratified Morse Theory Proofs 84

Bibliography 88



xi

List of Figures

1.1 A robot attempts to open a door. With an immobilizing grasp, the robots gripper must

accurately follow the trajectory of the door handle, which may prove difficult. Caging

the door handle gives the robot significantly more freedom in gripper trajectory while

still guaranteeing that the door may be opened. . . . . . . . . . . . . . . . . . . . . . 6

1.2 A robot arm attempts to grasp a pipe during the DARPA Autonomous Robotic Manip-

ulation program. If the robot bumps the pipe it may fall over and roll away. Achieving

a caging grasp prior to closing the gripper can guarantee that the object does not

escape during the grasping motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1 The immobilizing grasp along with the initial, intermediate, and maximal caging sets

of a polygonal object. Note that each of these sets is also subject to a constraint on

the maximum inter-finger distance, which cannot be represented in two dimensions. . 13

2.2 Critical points of dps1, s2q which are local minima in U . . . . . . . . . . . . . . . . . . 19

2.3 Critical points of dps1, s2q which are saddles in U . . . . . . . . . . . . . . . . . . . . . 19

2.4 Critical points of dps1, s2q which are local maxima in U . . . . . . . . . . . . . . . . . . 19

2.5 A subset of the immobilizing grasps, puncture grasps, and escape points of a polygonal

object. Values of the boundary parameter s are shown at selected vertices. . . . . . . 20

2.6 Contours of dps1, s2q in contact space U for the object shown in Figure 2.5. Note that

U represents a topological 2-torus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.7 Contours of dps1, s2q for the object in Figure 2.5. Contact space rectangles are delin-

eated with dashed lines. The nodes of G are marked with circles. . . . . . . . . . . . . 24

2.8 The caging graph G for the object in Figure 2.5. Circles represent the nodes of G,

shown in Figure 2.7. Lines represent the edges of G. Note that the graph has the

topology of a 2-torus: nodes on the left edge correspond to nodes on the right edge,

and similarly for nodes on the top and bottom edges. . . . . . . . . . . . . . . . . . . 24

2.9 A polygonal object B with a handle-like feature. Selected grasps are shown. . . . . . . 28



xii

2.10 Contact space contours of dps1, s2q and selected grasps for the object of Figure 2.9.

Portions of U¤d� are shown shaded; the two disjoint regions (which are connected in

the free c-space) are problematic. The dotted line represents a tunnel curve which does

not lie in contact space U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.11 A portion of the augmented caging graph for the object of Figure 2.9, corresponding

to the contact space region shown in Figure 2.10. The tunnel curve edge is depicted as

a thick red line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.12 Important grasps discovered during the exploration of the polygon shown in physical

space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.13 Important grasps discovered during the exploration of the polygon shown in contact. . 33

2.14 The capture regions surrounding an immobilizing grasp of B. . . . . . . . . . . . . . . 34

2.15 Input data to the caging algorithm: (a) 3D triangular mesh data, and (b) a 2D polyg-

onal projection of the point cloud data, with arc-length value of selected vertices. . . . 35

2.16 Critical grasps and escape point for the flashlight in physical space. . . . . . . . . . . 36

2.17 A portion of contact space U for the flashlight, showing nodes of the open list O and

the closed list X . Critical grasps in the closed list X are shown with the same symbols

as in Figure 2.16. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.18 A graph of dps1, s2q at the nodes of the closed list X , showing the exploration of the

object’s boundary along with critical grasps and the escape point. The graph’s local

maxima indicate puncture grasps (see text). . . . . . . . . . . . . . . . . . . . . . . . . 37

2.19 Two-finger immobilization and its puncture grasp. (a) Both fingers are placed within

a hole of B. (b) One finger is placed in a hole, the other finger is placed outside B. . . 38

3.1 Exploration of a polyhedron showing finger positions for explored nodes. Note that

nodes of G lie in R6 and cannot be fully visualized in R2, so pairs of finger positions

are shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2 A second view of the polyhedron. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Inter-finger distance of nodes in the closed list, X , vs. exploration step of the algorithm. 49

3.4 Geometry used to characterize point q0 � pp01, p
0
2q. Note that no surfaces of B are shown. 49

3.5 Construction of a path showing that if M2 is connected, then D� is connected. . . . . 49

3.6 A catalog of possible immobilizing grasps. Each contact represents a local minimum in

the inter-finger distance when the opposing finger is fixed. . . . . . . . . . . . . . . . . 53

3.7 A catalog of possible puncture grasps. Each contact represents a saddle in the inter-

finger distance when the opposing finger is fixed. . . . . . . . . . . . . . . . . . . . . . 53

3.8 A parameterization of two infinite planes, which demonstrates the convexity of dpsq. . 55



xiii

4.1 Parameterization of the hand shape for a three point-fingered hand. The pairwise

inter-finger distances are given by σ1, σ2, and σ3. . . . . . . . . . . . . . . . . . . . . . 61

4.2 A polygon, B, and two grasps: ρa cages B; ρb does not. Also shown is a decomposition

of free space around a convex polygon, B, dividing it into regions, Ri. . . . . . . . . . 62

4.3 A physical caging region for a polygon, shown in yellow. The red, green, and blue

regions shown in Fig. 4.3 are possible placements of f1, f2, and f3, respectively, which

satisfy both ρ P T 2,3,5 and σ P H (see Fig. 4.4). Starting from one of these positions,

the restriction σ P H guarantees that the hand will not leave T 2,3,5. . . . . . . . . . . 63

4.4 A shape space caging region, H for the polygon shown in Fig. 4.3. Restriction of the

hand shape to this region of S will prevent the hand from leaving the initial triad, T 2,3,5 . 63

4.5 A physical caging region for polygon B, considering the union of two triads U � T 2,3,5Y

T 2,3,6. If the fingers are initially placed in the red, green, and blue regions, restricting

the shape parameter to lie the region H P S (shown in Fig. 4.6) will prevent the fingers

from leaving U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 A shape space caging regions, H, for a set of triads, U , of the polygon shown in Fig.

4.5. Restriction of the shape parameters to this region, H will prevent fingers starting

in U from leaving U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Puncture manifolds which divide S into caging and escape regions. These manifolds

are generated by grasps shown in Fig. 4.8. . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Grasps in physical shape which result in puncture manifolds. Corresponding points in

S are shown as colored circles in Fig. 4.7. . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.9 A grasp in which one finger lies at a vertex of B while another lies at the perpendicular

projection of that vertex onto an edge of B, which allows the hand to transition from

one triad to another. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 A grasp in which one finger lies at a vertex of B while two other fingers lie on edges of

B, which allows the hand to transition from one triad to another. . . . . . . . . . . . . 72

4.11 An immobilizing grasp, whose hand shape lies on an immobilizing manifold. . . . . . . 73

4.12 Two grasps whose hand shape of these grasps does not lie on a boundary of the caging

region. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.13 A parameterization of grasps with two finger contacts. This provides tests of whether

a point is caging or escape, and feasible or non-feasible. . . . . . . . . . . . . . . . . . 76

4.14 Physical caging region for an initial caging region composed of eight triads. The caging

region associated with these triads is quite complicated, and is shown in Fig. 4.15. . . 76

4.15 Shape space caging region, H for the polygon shown in Fig. 4.14. Colored portions

are puncture manifolds; black portions are immobilizing manifolds. The region is quite

complex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77



xiv

List of Algorithms

2.1 Contact Space Caging Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 Contact Space Tunnel Curve Construction . . . . . . . . . . . . . . . . . . . . . . . . 31



xv

Notation

Used Throughout

B Object to be caged

fi Finger i

p Position of a finger in space

σ Finger opening parameter

q Configuration of B
F Free space

dp�q Inter-finger distance function

Two Finger Caging

U Contact space

C Configuration space

CB Configuration space obstacle generated by B
S Double contact manifold

πp�q Projection function

U¤c A c-sublevel set of U
∆ The contact space diagonal

Ri,j Contact space rectangle

Pi,j Contact space polychoron (4-D polytope)

G The caging graph

GT The augmented caging graph

v A node of the caging graph

T Tunnel curves

O The open list

X The closed list

E Boundary planes

M The medial region

L The lateral region



xvi

Three Finger Caging

S Shape space

Ri Region i

ρ Configuration and hand shape

T i,j,k Triad associated with Ri, Rj , and Rk
U Union of triads

H Shape space caging region

I Initial caging grasp region

Et Single transition escape region

Ct Single transition caging region



1

Chapter 1

Introduction

1.1 Motivation

Robots are increasingly being used to complete complicated tasks in unstructured environments such

as home environments, disaster areas, and war zones. Until recently, most robots worked in highly

structured environments, such as assembly lines, and interacted with the world using end-effectors

which are designed for a specific task—for example a robot on an auto assembly line might have a

welder or spray painting device permanently attached to it. Now robots are being asked to interact

with a large variety of objects, and require general purpose grippers to do so.

Robotic grasping and manipulation in unknown environments is made difficult by several factors.

The objects to be grasped may not be previously known to the robot, and models of these objects

generated using onboard visual sensing often have significant error. Industrial robots are typically

very precise, but to ensure this precision they are also typically expensive, heavy, and dangerous

for humans to work near. To make robots cheaper, lighter, and safer, precision in the accuracy of

end-effector position is often sacrificed. This introduces uncertainty in the position of the gripper

relative to the object. Robotic grasping theory must account for such uncertainty in order to provide

robust and reliable grasping in unstructured environments.

One method for dealing with such uncertainty is robotic caging. Unlike an immobilizing grasp,

in which the robotic hand grasps an object so as to prevent all motion of the object relative to the

hand, a caging grasp only prevents the object from escaping through the fingers, while allowing some

motion of the object relative to the hand. Caging grasps can be sufficient for completion of many

tasks. For example, if a robot grasps a door handle so as to immobilize the handle relative to the

hand, then the robot must follow the exact trajectory of that handle as it opens the door. If instead

the robot cages the handle, then the robot can simply follow the approximate path of the handle,

while the nature of a cage guarantees that the door will indeed be opened. Caging may also be used

as a waypoint on a path to an immobilizing grasp. Instead of moving straight to an immobilizing

grasp, a process in which uncertainty in the objects shape or position may cause the grasp to fail,



2

the robot instead moves first to a caging configuration, which guarantees that the object cannot

escape from the hand. The robot then closes its fingers into an immobilizing grasp.

This thesis presents several algorithms for calculating caging regions of various objects. Both

2D polygons and 3D polytopes are considered, using two or three fingers. While developing these

algorithms, several new insights into the geometry of caging on contact space are developed.

1.2 Review of Existing Literature

This section starts with a limited review of the theory of immobilizing grasps, followed by a more

thorough review of the literature of caging. Each chapter also includes discussion of the works most

related to that chapter.

1.2.1 Grasping

Grasping theory dates back at least to Reuleaux [31], who analyzed part fixturing. Some of the

earliest work in robotic grasping comes from Asada [5], whose PhD thesis studied prehensile grasps,

and Mason and Salisbury [21], who worked to build a three fingered hand.

An important aspect of grasping is how to model the contact between a finger and the object

being grasped. Salisbury [39] considered different friction models, including point contact without

friction, point contact with friction, and a soft contact model in which frictional force in the finger

can support torque around the contact normal. Cutkosky [12] considered rolling contact and different

finger shapes, such as pointed or round fingers.

The concept of an equilibrium grasp was first defined by Salisbury [39]. An equilibrium grasp is

one in which all finger contacts obey their respective contact constraints and the object is in static

equilibrium (the finger forces exactly balance a particular external wrench applied to the object).

Two stricter conditions on having a secure grasp are form closure and force closure.

Form closure is the condition that any finite or infinitesimal movement of the object will cause

it to penetrate a finger, meaning that the object is immobilized in the hand in a purely geometric

sense, which is a stronger condition than force closure [20]. An algorithm to find all frictionless point

finger placements that produce a form closure grasp of a polygon, and all placements which achieve

second-order immobility was given by van der Stappen et al [44].

Force closure is the condition that all external wrenches can be balanced by finger forces which

obey contact constraints. Nguyen [23] and Ponce et al [30] gave algorithms for constructing force

closure grasps based on the shape of the object. Rimon and Burdick [34] considered the relationship

between form and force closure, and defined first and second order form closure, as well as second

order force closure. Additionally, Bicchi [6] investigated form and force closure as well as discussed

partial form and force closure.
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For detailed reviews of grasping based on form and force closure concepts, see Bicchi and Kumar

[7] and Okamura et al [24].

1.2.2 Caging

Robotic caging refers to hand configurations in which the object is unable to move arbitrarily far

from the hand without penetrating one of the fingers. Most cages do not immobilize the object

relative to the hand. Caging was first defined by Kuperberg [19] who posed the following geometry

problem:

Let P be a polygon in the plane, and let C be a set of k points which lie in the complement of

the interior of P. The points capture P if P cannot be moved arbitrarily far from its original

position without at least one point of C penetrating the interior of P. Design an algorithm for

finding a set of capturing points for P.

If the polygon is the object to be caged and the points are the finger bodies, then this describes

a robotic hand caging a polygonal object. Extension of the problem statement to three dimensions

objects, non-polygonal objects, and non-point fingers are straightforward. (Extending solutions of

the problem to such cases is not straightforward.)

Caging was introduced to the field of robotics by Rimon and Blake in 1996 [32, 33]. They

considered a smooth object caged by two point or disc fingers. They used stratified Morse theory

(SMT) [18] to show that changes in the topology of free configuration space only occur at particular

equilibrium configurations, and referred to these configurations as puncture grasps.

Perhaps the majority of work in caging has related to two finger cages. Vahedi and van der

Stappen [43] showed that all two finger cages using two point or disc fingers are either squeezing or

stretching cages. A squeezing cage is a set of configurations in which the object will not escape as

long as the Euclidean distance between the fingers remains below a certain threshold; in a stretching

cage the inter-finger distance must remain above a certain threshold. Rodriguez and Mason [36]

formalized the work of Vahedi and extended it to all compact, connected, contractible objects.

Several algorithms exist for finding all caging grasps of a polygon using two point or disc fingers.

Both Pipattanasomporn and Sudsang [28] and Vahedi and van der Stappen [43] presented algo-

rithms based on a convex decomposition of free space around the object. These algorithms allow

for computation of all caging regions in Opn2 log nq and querying of a particular configuration in

Oplog nq time. While these algorithms are exact, complete, and computationally efficient, they are

algorithmically complex.

A simple algorithm was developed by Pipattanasomporn and Sudsang [25] in which all finger

positions are projected onto the surface of the polygon. From these possible motions along the

surface a crawling graph is generated, which can be searched to find caging configurations. The
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work reported in Chapter 2 [1] complements this earlier work with several significant contributions.

First, it fully analyzes the underlying low-dimensional contact space and characterizes the topological

properties which define caging formations in the hand’s configuration space. Second, it analyzes the

inter-finger distance function in configuration space. These properties allow the construction of a

caging graph which has significantly simpler structure than Pipattanasomporn’s crawling graph, and

has a simple mapping to geometric features on the object boundary.

I extend the contact space analysis to 3D [3], and provide a purely geometric analysis of the

critical points where caging topology changes, which is valid in both two and three dimensions.

Most of the rest of the literature of caging deals with robotic hands utilizing more than two

fingers. Many of these relate the configuration of the hand to a single scalar parameter. Davidson

and Blake [14] considered a three-fingered hand whose relative finger positions are determined by

a scalar parameter, and found critical value of this parameter for which the topology of the caging

sets change.

Several works consider allowing the fingers more than one degree of freedom, but mapping their

position to a single parameter. The object then remains caged as long as certain conditions on

this parameter are maintained. Both Wang and Kumar [47] and Fink et al [17] created conservative

sufficient conditions for caging when given a scalar function on the relative positions of fingers. They

considered this problem in the context of cooperating mobile robots, with the robot bodies standing

in for fingers.

Two works consider more general mappings of finger positions to a scalar parameter. Pipat-

tanasomporn and Sudsang [29] used a convex function such as a norm on the pair-wise inter-finger

distances and referred to this as dispersion control. The object will remain caged as long as the

finger positions are maintained such that the scalar mapping remains below a certain threshold.

Rodriguez [38] extended and formalized these ideas, referring to is as f-caging.

A few works consider caging regions generated by restricting the relative position of the fingers

to higher dimensional regions. Erickson et al [16] considered three point or disc fingers caging a

convex polygon. Given two initial finger placements on the boundary of the polygon, they presented

an algorithm which finds the 2D regions in which the third finger may be placed. Vahedi and van

der Stappen [43] extended this algorithm to non-convex polygons and initial finger placements of

the fingers which do not lie on the boundary of the polygon.

The relative position of three fingers can be fully described by three parameters. Only a few

authors have considered restrictions on the hand shape in the three dimensional parameter space.

Sudsang [40] [41] [42] considered caging a polygon with three disc-shaped mobile robots. He found

three circular regions near the boundaries of the object such that placement of a robot into each

of these regions guaranteed that the object remained caged, and dubbed these regions MICaDs -

maximally independent capture discs. While this does provide a three-dimensional restriction on the
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relative positions of the robots/fingers, the algorithm is considerably conservative: First, it considers

only contact between an individual robot and one particular edge of the object. Second, disc shaped

regions are generally only a subset of the actual 3D caging regions. Finally, even given the first two

restrictions, the algorithm returns a conservative disc for some cases.

The methodology presented in Chapter 4 [4] considers three point fingers caging a convex polygon

in two dimensions. It allows for three parameters (which is the general case for three point fingers)

and finds the full 3D caging regions within which the hand shape may vary while preventing the

object from escaping.

There are also several methods which numerically calculate cages for more complicated hands.

Diankov et al [15] consider an object and hand described by 3D polytopes and assume that a given

caging grasp is provided. They present an algorithm which uses rapidly exploring random trees

to explore the 6-DOF region around the initial grasp which represents allowable transformation

between the hand and object. The algorithm does not test for the existence of a cage, but requires

an initial hand configuration which is known to be caging. Wan et al [46] [45] use 2D slices of higher

dimensional spaces to calculate cages for three fingered hands. With these methods, it is difficult

to guarantee that the sampling methods will accurately represent the underlying geometry of the

problem.

More recent work includes Zarubin et al [48], who used heuristics based on geodesic balls to

find grasps which mostly enclose the object in either circle or sphere, and Cappelleri et all [9] who

used motion primitives to find sufficient conditions for caging during open loop micro-manipulation

assembly tasks.

1.3 Caging Basics

This thesis considers a robotic hand consisting of two or three point or disc fingers caging a polygonal

or polyhedral object, denoted B. The i fingers will be denoted fi, and their positions in space denoted

pi.

For a given fixed set of finger positions relative to an object, the object is said to be caged if it

is impossible to move the object arbitrarily far from the hand without one or more of the fingers

penetrating the object.

Whether a given configuration is caging depends only on the relative position of the fingers with

respect to the object. Thus, it is equivalent to consider fixing the position of the fingers relative to

some fictitious hand base, and then considering motion of the fingers relative to to the body. As is

customary in caging literature, we will adopt this approach throughout this work.

Caging considers two different types of motion: motion of the object relative to the fingers and

motion of the fingers relative to each other. Typically the motion of the fingers relative to each
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other can be controlled to some precision, while a robot has little control of the motion of the object

relative to the fingers. This motivates the definition of a hand shape, which is the position of the

fingers relative to each other.

Most caging literature, including this work, assume that the object geometry is perfectly known.

For online grasping based on sensor information, this may not be a good assumption. Discussion of

extensions of caging algorithms to uncertainty in object geometry is found in the conclusion.

1.4 Current Uses and Limitations of Caging

Caging has two main uses in object grasping and manipulation. The first is manipulation of con-

strained object, in which a caging grasp can allow the robot additional degrees of freedom while

allowing being sufficient for task completion. For example, consider a robot opening a door. If the

robot grasps the door handle firmly, then the motion of opening the door will dictate a full 6-DOF

trajectory of the robots gripper. This requires the robot to have at least six degrees of freedom, and

requires either compliance in the robot arm, or very precise control. By caging the door handle, the

robot gains significant leeway in its gripper trajectory, while still guaranteeing that the door will be

opened, see Fig. 1.1.

Figure 1.1: A robot attempts to open a door. With an immobilizing grasp, the robots gripper must
accurately follow the trajectory of the door handle, which may prove difficult. Caging the door
handle gives the robot significantly more freedom in gripper trajectory while still guaranteeing that
the door may be opened.

A second use for caging is as a step towards an immobilizing or force closure grasp. Due to

uncertainty in the position of the gripper relative to the object being grasped, there is a risk that

the gripper might bump the object before a secure grasp is achieved, preventing the grasp from
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being completed. If the robot can achieve a caging grasp before contacting the object, and find

finger motions that move to a secure grasp (i.e., closing the gripper) while maintaining a cage, then

the grasp will be achieved even if there is unexpected contact between the gripper and object. An

example of this situation can be seen in Fig. 1.2.

Figure 1.2: A robot arm attempts to grasp a pipe during the DARPA Autonomous Robotic Manip-
ulation program. If the robot bumps the pipe it may fall over and roll away. Achieving a caging
grasp prior to closing the gripper can guarantee that the object does not escape during the grasping
motion.

While caging is a promising approach for object manipulation and robust grasping, state-of-the-

art algorithms, including those presented here, have significant limitations.

Algorithms involving two point or disc fingers require that the object have at least one concavity,

as convex objects cannot be caged by two point or disc fingers. Robust three-finger caging, discussed

in Chapter 4, begins to address this problem. However, most robotic grippers would require more

than three points to approximate reasonably.

The majority of caging algorithms involve two-dimensional objects and/or two point (or disk)

fingers. While two-dimensional algorithms can be applied to three dimensional problems (as is done

in Chapter 2), the usefulness of this approach is limited to object that can reasonably approximated

as two dimensional. Automatic fixturing of quasi-two-dimensional objects (such as those created by

laser cutter or water jet machines) might be a useful application of two-dimensional algorithms.

1.5 Thesis Organization and Contributions

The remainder of this thesis is organized as follows. Chapter 2 develops a simple algorithm for finding

caging formations of a 2D polygon using two point fingers. Section 2.3 describes a reformulation of

caging in terms of contact space, the set of hand configurations in which both fingers touch the object.
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This formulation provides an intuitive and easy-to-implement algorithm for finding the caging sets

of a given polygon. This method considers topology of the configuration space of the hand in terms

of level sets of an inter-finger distance function. A simple method for identifying those critical points

and searching a graph consisting of those points is presented. This chapter also develops several new

insights about the geometry, topology, and analysis of caging on contact configuration space. A real

world example demonstrates and validates the algorithm. The analysis of this section is carried out

in terms of stratified Morse theory, details of which are provided in Appendix A.

Chapter 3 extends the methods and analysis of Chapter 2 to caging of 3D polytopes with two

point fingers. A similar inter-finger distance function and graph are presented, along with the

necessary analysis to extend the ideas to three dimensions. Additionally, it develops a straightforward

geometric method for classifying the important points of the hand’s configuration space which does

not rely on stratified Morse theory.

Chapter 4 develops an algorithm for caging convex polygons in two dimensions using three point

fingers. It allows complete freedom for the fingers to move, resulting in a three parameter description

of the hand shape. It provides the exact bounds on how far the fingers may move relative to each

other while still guaranteeing a cage. The methods and analysis of this algorithm are substantially

independent of the previously described two finger algorithms.

Chapter 5 summarized the contributions of the thesis and considers future research opportunities.
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Chapter 2

Two Fingers in Two Dimensions

2.1 Introduction

This chapter describes an algorithm for finding all two-finger cage formations of planar polygonal

objects using a contact space formulation. Recognizing the advantages of contact space, Pipat-

tanasomporn and Sudsang [25] were the first to propose a contact-space scheme which computes

two-finger cage formations surrounding a polygonal object. This work complements this early work

with several significant contributions. First, it provides a full analysis which explains how the low-

dimension contact space captures the essential topological properties that define cage formations in

the hand’s full configuration space. Second, it provides a detailed analysis of the properties of the

inter-finger distance function in contact space. In particular, it considers sublevel sets of the inter-

finger distance function in both free configuration space and contact space, and determines when

these two level sets are topologically equivalent. These properties are used to construct the caging

graph, which has a significantly simpler structure and direct interpretation in terms of geometric

features along the object’s boundary. Third, this chapter describes a fully implementable caging

algorithm which is validated on a real-world example.

The caging algorithm described here accepts as input a geometric description of a polygonal

object, together with a desired immobilizing grasp of the object (see [10, 13, 35] for a discussion

and examples of immobilizing grasps). Starting with the immobilizing grasp, the caging algorithm

systematically explores a discrete set of vertices and edge segments along the object’s boundary,

while efficiently reporting a series of caging sets1 surrounding the desired immobilizing grasp—the

initial caging set, every intermediate caging set, and the largest caging set beyond which the object

can escape to infinity. This novel aspect of the algorithm has practical benefits. It provides grasping

systems with a choice of initial finger openings and finger placements that retract to the target grasp,

or to one of nearby secure grasps as most suitable for the given application.

This chapter is organized as follows. Section 2.2 introduces basic terminology and defines the

1The notion of caging set is defined later in this section.
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two-finger caging problem. Section 2.3 formulates the caging problem as a contact space search.

Section 2.4 associates the critical points of the caging sets with critical points of the inter-finger

distance function in contact space. Section 2.5 introduces a rectangular decomposition of contact

space and summarizes useful properties of this decomposition. Section 2.6 introduces the caging

graph in contact space, and considers its topological relationship with the hand’s full configuration

space. Section 2.7 describes an algorithm that searches the caging graph and reports the initial,

intermediate, and maximal cages associated with a desired immobilizing grasp. Section 2.9 describes

how these sets can be graphically depicted as two capture regions surrounding the physical object.

Section 2.10 applies the caging algorithm to a real-world example, while Section 2.11 considers

several extensions of the basic caging algorithm. This chapter concludes with a short summary and

discussion of various extensions to this algorithm. The work in this thesis is primarily based on

Allen et al [1–4].

2.2 Preliminaries and Problem Definition

The notion of configuration space, usually abbreviated as c-space, is critical to caging analysis.

Throughout this work we consider a moving rigid body B, surrounded by stationary rigid bodies

(fingers), denoted O1, ...,Ok, which serve as obstacles that prevent B from moving to certain poses

(combinations of position and orientation). Configuration space allows us to determine whether and

when B collides with an obstacle, allowing the detailed interaction between (possibly complex) rigid

bodies to be precomputed. Determining if B is in collision with one or more of the obstacles reduces

to determining if the configuration of B, which is a point, lies within a configuration space obstacle.

First, the configuration of B is specified by a vector v P Rn and a rotation R P SOpnq, where n is

2 or 3, depending on the whether the problem is two or three dimensional. The pair pv,Rq thus make

up configuration space of B, denoted C. Any position of B is thus a point in C, and any continuous

motion of B is a curve in C. Second, two rigid bodies cannot occupy the same physical space. Thus,

the obstacles O1, ...,Ok introduce forbidden regions in the configuration space of B, referred to as

c-space obstacles. Specifically, a c-space obstacle corresponding to obstacle Oi, denoted COi, is the

set of configurations of B where B and Oi intersect.

Once the c-space obstacles are pre-computed, then checking whether B is in collision with an

obstacles becomes the test of whether that point in configuration space lies inside of a c-space

obstacle. The area of c-space not occupied by c-space obstacles is referred to as free c-space (or just

free space), denoted F .

For caging applications, it is common to consider the fingers movable, and the object B fixed. In

this case B generates a c-space obstacle for each finger, denoted CB.

This chapter considers the caging of a polygonal object, B, by two point fingers. Let the two
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fingers initially hold the object at an immobilizing grasp along its outer boundary. As the fingers

move apart, the object remains caged for a finite range of finger openings. Eventually the inter-

finger distance reaches a critical value beyond which the object can escape the cage formed by the

two fingers. This critical finger opening may only allow an intermediate escape into a larger cage

associated with other object features, or an ultimate escape to infinity. Rimon and Blake [33] have

shown that each of these critical events corresponds to a frictionless equilibrium grasp of the object

B. These critical events provide full information on the cage formations surrounding the object B.

This chapter describes an algorithm that computes the caging sets using contact space. Let

x1, . . . , xn denote the object’s vertices, arranged in counterclockwise order along its outer boundary.

The ith finger contact along the object’s outer boundary is parametrized in counterclockwise order

by si P r0, Ls for i�1, 2. The parametrization starts with si � 0 at x1 and ends with si � L again

at x1. The value of L is usually the length of the object’s perimeter. The finger positions along

the object’s boundary in a reference frame fixed to B are denoted ppsiq for i � 1, 2. The two-finger

contact space is defined as follows.

Definition 2.2.1 Let a polygonal object, B, be contacted by two point fingers at pps1q and pps2q.

Contact space is the set U � r0, Ls � r0, Ls in the ps1, s2q plane parameterizing all two-finger

contacts along the object’s boundary.

Note that the ps1, s2q plane is periodic modulo L, and hence contact space U represents a topological

2-torus. The notion of contact space can be extended to disc fingers, with some complication incurred

by the rotation of such fingers about vertices of B. This topic is discussed in Section 2.11. Another

consideration concerns finger placements within a hole of B. While the object cannot escape to

infinity in this case, one may still specify an immobilizing grasp and ask for the local caging sets

surrounding this grasp. Section 2.11 will discuss an extension of the caging algorithm to objects

with holes.

Two fingers that move freely in R2 have a total of four degrees of freedom. One can interpret the

two fingers as the following two-fingered hand. Designate the line segment connecting the fingers as

the hand’s virtual base, which can freely move and rotate in R2; then define the inter-finger distance

as the fingers’ opening parameter, σ. The resulting hand configuration space is defined as follows.

Definition 2.2.2 The configuration space of a two-fingered hand, denoted C, is the four-dimensional

space pq, σq P R3�R, where q P R3 is the hand’s base configuration, and σ P R is the fingers’ opening

parameter.

The fingers’ opening parameter, σ, can be thought of as a shape parameter of the two-fingered

hand [36]. From the hand’s point of view, the object B forms an obstacle. The c-space obstacle

corresponding to B, denoted CB, is the set of hand configurations at which one or both fingers
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intersect the stationary object B.2 The hand’s free c-space, F , is the complement of CB’s interior:

F � C � intpCBq,

where int denotes set interior. The boundary of F (which is the same as the boundary of CB) consists

of all hand configurations at which one or both fingers touch the object’s boundary. The notion of

a caging set is formulated in F as follows.

Definition 2.2.3 The caging set of B is the set of all two-finger placements in F such that B
cannot be moved arbitrarily far from the fingers.

In general, two-finger cages can be of two possible types: squeezing cages where the fingers close

inward in order to grasp the object, and stretching cages where the fingers open outward in order

to grasp the object [38, 43]. While this work focuses on squeezing cages, contact space can also be

used to compute stretching cages as discussed in Section 2.11.

Definition 2.2.4 A squeezing caging set of B is any subset of caging points in F from which the

object B is immobilized when the fingers are monotonically squeezed to reduce the fingers’ opening

parameter σ.

In this work the term caging set will automatically imply a squeezing caging set. The caging

algorithm will identify the following caging sets.

Problem Definition: Given an initial two-finger immobilizing grasp of B, compute the following

three types of caging sets:

1. The initial caging set—the largest caging set from which the fingers are guaranteed to return

to the initial immobilizing grasp while keeping the object caged during the finger squeezing

process.

2. The intermediate caging set—any caging set which contains the initial caging set, such that

all fingers end at a finite number of possible immobilizing grasps while keeping the object

caged during the finger squeezing process.

3. The maximal caging set—the largest caging set which contains the initial caging set, such that

the fingers can be squeezed into a finite number of possible immobilizing grasps while keeping

the object caged during the finger squeezing process.

Example: Consider the polygonal object B depicted in Figure 2.1, which is initially immobilized

by two point fingers. The initial, intermediate, and maximal caging sets associated with this grasp

2The c-space obstacle CB corresponds to B’s initial location in R2. Any disturbance of B by the closing fingers will
not break the cage or affect the eventual arrival of the 2-finger hand to the desired immobilizing grasp.
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B

Immobilizing Grasp

Initial Caging Set

Intermidiate Caging Set

Maximal Caging Set

Figure 2.1: The immobilizing grasp along with the initial, intermediate, and maximal caging sets
of a polygonal object. Note that each of these sets is also subject to a constraint on the maximum
inter-finger distance, which cannot be represented in two dimensions.

are depicted in Figure 2.1. Each shaded region represents allowable finger placements that maintain

the respective caging set, provided that the inter-finger distance is kept below the critical value

associated with this caging set. Note that smaller caging sets are subsets of larger caging sets. �

The caging sets will be computed in contact space using the following inter-finger distance function.

Definition 2.2.5 The inter-finger distance function is the real valued function d : U Ñ R given

by

dps1, s2q � |pps1q � pps2q|, (2.1)

where pps1q and pps2q are the finger positions along the object’s boundary

The function dps1, s2q measures the inter-finger distance across all two-finger contacts along the

boundary of B. To properly relate the function d with the fingers’ opening parameter, σ, consider

the following configuration space submanifold.

Definition 2.2.6 The double-contact submanifold in C, denoted S, consists of all hand config-

urations at which both fingers touch the object’s boundary.

Note that S forms a two-dimensional manifold in R4, which is globally parameterized by contact

space U . Also note that S lies on the boundary of the free c-space F . Let π : F Ñ R denote

the projection function πpq, σq � σ. Then dps1, s2q is the restriction of π to S, such that S is

parametrized by ps1, s2q P U .
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2.3 Contact Space Formulation of Caging

Instead of searching the hand’s full configuration space for the caging sets, this chapter proposes

to search contact space, U , thereby reducing the dimensionality of the problem from R4 to R2. To

show that a search in U can find the caging sets, we formulate the caging problem as the existence

of test paths which lie entirely in sublevel sets dps1, s2q ¤ c in U . Sublevel sets of both F and U are

defined below.

Definition 2.3.1 The c-sublevel set of dps1, s2q in contact space is the set U¤c � tps1, s2q P R2 :

dps1, s2q ¤ cu. The c-sublevel set of π in the free c-space, F , is the set F¤c � tpq, σq P F : πpq, σq ¤

cu � tpq, σq P F : σ ¤ cu.

The idea of an escape plays a central role in caging theory. The standard definition of an escape

is the ability to move the two-fingered hand with a fixed finger opening arbitrarily far from the

object, implying that the object can escape from the given grasp when the fingers are held fixed.

The corresponding notion of an escape in contact space is defined as follows.

Definition 2.3.2 An escape point in U is any point on the diagonal ∆ � tps1, s2q P U : s1 � s2u,

where the two fingers touch the same point on the object’s boundary, pps1q � pps2q.

The notion of escape points in U is equivalent to the standard definition of an escape as follows.

When an escape point is reached in U , the two fingers become coincident and can move arbitrarily

far from the object.3 Conversely, suppose the hand can move arbitrarily far from B according to

the standard definition of an escape. The two fingers can be pinched together when located away

from B, then moved back as a single finger to the object’s boundary (which is an escape point in

U). The standard notion of escape is thus equivalent to the notion of escape points in U . Similarly

to Definition 2.3.2, the escape points in F are defined as points pq, σq P S which correspond to the

diagonal ∆ in U . At these hand configurations both fingers touch the same boundary point of the

object B.

Consider the meaning of a cage formation that can be closed into an immobilizing grasp in terms

of the level sets of π in the hand’s free configuration space.

Definition 2.3.3 A c-sublevel path in the free c-space, F , is a path along which the maximum

value of the fingers’ opening parameter does not exceed c.

Let the object B be initially immobilized at a hand configuration pq0, σ0q. For a certain interval of

finger openings, rσ0, σ1q, the object remains caged by the two fingers. For each σ in this interval,

the connected component of the sublevel set F¤σ containing the point pq0, σ0q does not contain any

3Recall that the fingers contact the object’s outer boundary.
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escape points. The cage is broken at a critical hand configuration, pq1, σ1q, which corresponds to

a frictionless equilibrium grasp of B [32, 33]. A definition of equilibrium grasps follows.

Definition 2.3.4 A rigid object B is held at a frictionless two-finger equilibrium grasp when the

net force and torque applied on B is zero:

�
� f1

pps1q � f1

�

�

�
� f2

pps2q � f2

�

� ~0, (2.2)

where the finger forces f1 and f2 are applied along the contact normals at pps1q and pps2q; p� f �

pTJf for J �

�
� 0 �1

1 0

�
�.

A critical equilibrium grasp where the cage is broken, pq1, σ1q, will be termed a puncture point or

puncture grasp. Starting at the immobilizing grasp, pq0, σ0q, the value of σ at the first puncture point

can be viewed as the minimum value, σ1, such that there exists a σ1-sublevel path which starts at

pq0, σ0q and either ends at an escape point or reaches a neighboring immobilizing grasp. The value

of σ at the last puncture point, denoted σesc, can be viewed as the minimum value of σ such that

there exists a σesc-sublevel path between pq0, σ0q and an escape point.

To correctly identify the caging sets in contact space, a search for escape paths in U must yield

the same answer as a search for escape paths in F . Similarly to Definition 2.3.3, a c-sublevel path in

U is a path along which the maximum value of the inter-finger distance does not exceed c. Consider

the following notion of sublevel equivalence between U and F .

Definition 2.3.5 Contact space, U , is sublevel equivalent with the free c-space, F , if for any

two points pq, σq, pq1, σ1q P S there exists a c-sublevel path between pq, σq and pq1, σ1q in F if and

only if there exists a c-sublevel path between their equivalent points in U .

To correctly identify the caging sets in contact space, one must ensure that U is sublevel equivalent

with F . Many objects, including the one depicted in Figure 2.1, possess this property. However,

complex objects having handle-like features do not possess this property. Section 2.6 will deal with

such objects, restoring sublevel equivalence of U and F .

2.4 Contact Space Representation of the Caging Sets

This section establishes that immobilizing and puncture grasps are critical points of dps1, s2q in

contact space U . Then it characterizes the remaining critical points of dps1, s2q and illustrates these

points with examples.
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2.4.1 Two-finger Equilibrium Grasps in Contact Space

We start with a characterization of the critical points of dps1, s2q in contact space U .

Lemma 2.4.1 The critical points of the inter-finger distance function dps1, s2q in U are:

1. Edge-edge critical points, where the fingers touch opposing points on two parallel edges of B.

2. Vertex-edge critical points, where one finger touches a vertex while the other finger touches an

opposing edge of B.

3. Vertex-vertex critical points, where the fingers touch opposing vertices of B.

Proof By the chain rule, the gradient of dps1, s2q � ||pps1q � pps2q|| is given by

∇dps1, s2q�
1

||pps1q�pps2q||

�
� ppps1q � pps2qq � p

1ps1q

�ppps1q � pps2qq � p
1ps2q

�



At the critical points ∇dps1, s2q � ~0. In order to evaluate the gradient, there are three cases to

consider. In case (i) both fingers contact edge interior points. In this case p1ps1q and p1ps2q are

the edge tangents at the contacts, and the condition ∇dps1, s2q � ~0 implies that the two contacts

must be located on parallel edges of B, such that the line passing through the contacts is collinear

with the edge normals. In case (ii) one finger touches a vertex of B, and we need the notion of

the generalized contact normal [11]. At an edge interior point it is the edge’s unit normal at this

point, while at a vertex it is the convex combination of the unit normals to the edges meeting at the

vertex.4 Suppose one finger, pps1q, touches a vertex while the other finger, pps2q, touches an edge

interior point of B. The tangent p1ps1q at the vertex can be any vector orthogonal to the vectors of

the generalized contact normal at the vertex. Using t11 and t12 to denote the tangents to the edges

meeting at the vertex, the critical points satisfy the non-smooth condition:

1

}pps1q�pps2q}

�
� ppps1q � pps2qq � pλ1t11 � λ2t12q

�ppps1q � pps2qq � p
1ps2q

�

� ~0,

for some λ1, λ2 ¥ 0. It follows from the gradient expression that a vertex-edge critical point occurs

when the generalized contact normal at pps1q contains a vector collinear with the edge normal at

pps2q. This occurs at the perpendicular projection of the vertex onto the opposing edge. Case (iii)

can be similarly treated using the generalized contact normal at the two vertices contacted by the

fingers. l

The next lemma asserts that the frictionless two-finger equilibrium grasps of B are critical points of

dps1, s2q.

4When a point finger touches a convex vertex of B, one should model the finger as a small disc touching the vertex.
Any vector from the generalized contact normal at the vertex can be realized as a physical finger force direction.
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Lemma 2.4.2 The frictionless two-finger equilibrium grasps of the object B are critical points of

dps1, s2q in U .

Proof Assume the vectors of the generalized contact normal point into B’s interior. Under this

interpretation, any vector from the generalized contact normal can be realized as a physical finger

force direction. The two-finger equilibrium grasps of B are finger placements having opposing gen-

eralized contact normals according to (2.2). This condition matches the critical point condition,

∇dps1, s2q�~0, in all three cases listed in Lemma 2.4.1. l

The critical points of dps1, s2q in U can be local minima, saddles, or local maxima. The following

proposition asserts that the immobilizing grasps of B are local minima of dps1, s2q.

Proposition 2.4.3 The two-finger immobilizing grasps of B are local minima of dps1, s2q in U .

Proof The c-space obstacle induced by B is the union CB � CB1YCB2, where CBi is the set of hand

configurations at which the ith finger overlaps the object B for i � 1, 2. Let pq0, σ0q P F represent

an immobilizing grasp of B, corresponding to a point ps01, s
0
2q in U . Since B is immobilized by the

fingers, the point pq0, σ0q is completely surrounded by the finger c-obstacles in the fixed-σ slice of C
passing through σ0. As the fingers’ opening parameter, σ, increases in the interval rσ0, σ0 � εs, the

isolated point expands to a 3D cavity in each fixed-σ slice of C. This cavity corresponds to the cage.

The boundary of each cavity consists of the finger c-obstacle surfaces, as well as the intersection

curve of these surfaces. For sufficiently small ε, the intersection curve is a topological closed loop,

and it represents one contour of dps1, s2q in U . As these contours surround the point ps01, s
0
2q and

their value increases in the interval σ P rσ0, σ0�εs, the function dps1, s2q must have a local minimum

at ps01, s
0
2q in U . l

The next proposition asserts that the puncture grasps of B are saddle points of dps1, s2q in U .

Proposition 2.4.4 The two-finger puncture grasps of B are saddle points of dps1, s2q in U .

A proof of the proposition appears in the appendix. Intuitively, let pq1, σ1q be a puncture point

in F , and let ps11, s
1
2q be the corresponding point in U , with d1 � dps11, s

1
2q. As σ increases in the

interval rσ1 � ε, σ1 � εs, two locally distinct connected components of the sublevel set F¤σ meet at

the puncture point and become a single component for σ¥σ1. This topological change also occurs

in the double-contact submanifold S, which contains the puncture point. Since S is parametrized

by U , two locally distinct connected components of the sublevel set U¤d1 meet at the point ps11, s
1
2q

and become a single component for d ¥ d1, which is exactly the behavior one expects at a saddle

point of dps1, s2q in U .
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2.4.2 The Inter-finger Distance Function in Contact Space

The immobilizing and puncture point grasps are only a subset of the critical points of dps1, s2q in U .

The full set of critical points can be divided into feasible and non-feasible equilibrium grasps. At the

feasible equilibrium grasps, the generalized contact normals at the finger contacts oppose each other,

thus ensuring the existence of opposing finger forces at the contacts. At the non-feasible equilibrium

grasps, the generalized contact normals contain only parallel force directions which cannot support

an equilibrium grasp. The feasible equilibrium grasps can be further divided into squeezing and

stretching grasps defined in Section 2.2. The following example illustrates some of these grasps.

Example: Consider the two-finger equilibrium grasps depicted in Figures 2.2, 2.3 and 2.4. All

of these grasps correspond to critical points of dps1, s2q in U . Feasible grasps are shown in blue;

non-feasible grasps are shown in red. Note that feasible only indicates that the contact normals

are in opposing directions and that grasp forces could be exerted on the object. Not all feasible

grasps are relevant to caging. The grasps shown in Fig. 2.2(a),(e), Fig. 2.3(a),(e), and Figure 2.4(a)

are feasible squeezing equilibrium grasps, while the grasps shown in Fig. 2.2(d),(h), Fig. 2.3(d),(h),

and Fig. 2.4(d) are feasible stretching equilibrium grasps. The remaining contact arrangements

are also critical points of dps1, s2q, but these are non-feasible equilibrium grasps. The grasps that

are most relevant to caging are as follows: Squeezing immobilizing grasps are only those shown in

Fig. 2.2(a),(e). Squeezing puncture grasps are only those shown in Fig. 2.3(a),(e). The only form

of stretching immobilizing grasp is shown in Fig. 2.4(d). Stretching puncture grasps are shown in

Fig. 2.3(d),(h). �

Among the critical points of dps1, s2q in U , the local minima occur either at a pair of opposing

concave vertices, or with one finger at a concave vertex and the other on an opposing edge of B
(Figure 2.2). The saddles of dps1, s2q occur either at a pair of opposing vertices such that one vertex

is convex while the other vertex is concave, or with one finger at a convex vertex and the other on

an opposing edge of B (Figure 2.3). The local maxima of dps1, s2q are important for stretching cages

as discussed in Section 2.11. Focusing on the local minima and saddles of dps1, s2q, consider the

following example.

Example: Consider the polygonal object B depicted in Figure 2.5. The numbers at the vertices

indicate arc-length measured counterclockwise from the left-most vertex x1. Two immobilizing

grasps, two puncture grasps, and one escape point are shown. The corresponding contours of dps1, s2q

in contact space U are shown in Figure 2.6. The immobilizing grasps (marked with �) lie at local

minima, while the puncture grasps (4) lie at saddle points of dps1, s2q. The escape point (�) lies

along the diagonal, ∆, where dps1, s2q � 0. �

When the object B has parallel edges, opposing finger placements along these edges correspond to

degenerate critical points of dps1, s2q. Such critical points form line segments rather than isolated
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.2: Critical points of dps1, s2q which are local minima in U .

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.3: Critical points of dps1, s2q which are saddles in U .

(a) (b) (c) (d)

Figure 2.4: Critical points of dps1, s2q which are local maxima in U .
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Figure 2.5: A subset of the immobilizing grasps, puncture grasps, and escape points of a polygonal
object. Values of the boundary parameter s are shown at selected vertices.

Figure 2.6: Contours of dps1, s2q in contact space U for the object shown in Figure 2.5. Note that
U represents a topological 2-torus.
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points as discussed below.

2.5 Rectangular Decomposition of Contact Space

Contact space possesses a natural decomposition into rectangles which have a special relationship to

the critical points of dps1, s2q. Let the edges of B be labeled as e1, . . . , en in counterclockwise order.

Definition 2.5.1 The contact-space rectangles, denoted Rij for i� 1, . . . , n and j � 1, . . . , n,

correspond to all possible placements of finger pps1q along the edge ei and finger pps2q along the edge

ej of B.

The partition of contact space into rectangles is illustrated in Figure 2.7. Each rectangleRij includes

its bounding lines. These lines correspond to a placement of one finger at a vertex of B, while the

other finger moves freely along one edge of B. The corners of Rij correspond to finger placements

at two vertices of B. The following properties of the contact-space rectangles will prove useful in

later sections.

Lemma 2.5.2 The function dps1, s2q is a smooth convex function in each contact-space rectangle

Rij.

Proof Each contact-space rectangle, Rij , is associated with a placement of the fingers on two

particular edges of B. Let t1 and t2 denote the unit tangents to these edges, and let p0 be the

intersection point of the lines underlying these two edges in R2. Along these edges, the boundary

parametrization takes the form pps1q � p0�s1t1 and pps2q � p0�s2t2, such that ps1, s2q vary in Rij .
Using the notation s � ps1, s2q and substituting for pps1q and pps2q in dps1, s2q � }pps1q � pps2q}

gives

dps1, s2q �
�
sTKs

� 1
2 , (2.3)

where

K �

�
� 1 �t1 � t2

�t1 � t2 1

�
�.

The eigenvalues of K are 1�t1 �t2. Since }t1 � t2} ¤ 1, the two eigenvalues are non-negative. Hence K

is positive semi-definite, and dps1, s2q � }K1{2s}. The function dps1, s2q is thus a composition of the

Euclidean norm (a convex function) with the linear function K1{2s. Such a composition preserves

convexity, hence dps1, s2q is convex in each Rij . l

The next two corollaries follow directly from Lemma 2.5.2 and the definition of convexity.

Corollary 2.5.3 Every bounding line of a contact-space rectangle, Rij, contains at most one critical

point of dps1, s2q in its interior. If such a point exists, it is a local minimum of the restriction of

dps1, s2q to this line.
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When dps1, s2q has a critical point in the interior of a bounding line of Rij , the fingers contact

a vertex and the perpendicular projection of the vertex on an opposing edge of B. Note that such

critical points can be local minima or saddles of dps1, s2q.

Corollary 2.5.4 Let ps1, s2q and ps11, s
1
2q be two points on the boundary of a single contact-space

rectangle, Rij. The straight line path between these two points lies in a single connected component

of the c-sublevel set U¤c where c � maxtdps1, s2q, dps
1
1, s

1
2qu.

The critical points of dps1, s2q in U will form the caging graph nodes. To ensure that all critical

points are isolated points (and hence well defined nodes), a segment of degenerate critical points

associated with parallel edges of B will be converted into two isolated points as follows. Each

segment of degenerate critical points lies in a particular rectangle, Rij , with its endpoints located

on bounding lines of Rij . Hence, without loss of generality, we retain only the endpoints of such

a line segment. The following proposition will form a basis for the caging graph construction.

Proposition 2.5.5 Let U be the contact space of a polygonal object B. The critical points of

dps1, s2q in U , excluding the diagonal ∆ and using the endpoints of degenerate critical points associ-

ated with parallel edges, are isolated points on the bounding lines of the contact space rectangles.

Proof The critical points of dps1, s2q can be edge-edge, vertex-edge, or vertex-vertex critical points

according to Lemma 2.4.1. The edge-edge critical points occur on parallel edges of B. Such points

have been converted to isolated vertex-edge critical points. Thus, excluding the diagonal ∆, all

critical points of dps1, s2q involve at least one vertex of B, and hence must lie on bounding lines

of the contact space rectangles. A vertex-edge critical point is necessarily an isolated point in U ,

since any local shifting of the finger contact along the edge opposing the vertex will give an edge

normal which no longer passes through the vertex. A vertex-vertex critical point is, by construction,

an isolated point in U . l

Adapting the algorithm to handle polygonal objects having parallel edges is relatively straight-

forward. Consider the set formed by the points on one edge whose perpendicular projection onto

the other edge lies on the interior of that other edge. If this set is non-empty, and not a single point,

then it forms a non-isolated critical point which is a straight line (of unity slope) in contact space.

Its endpoints lie on the boundary of that contact space rectangle, and are each endpoint would be

a node in the caging graph described in the following section. The algorithm presented will handle

parallel edges by treating this pair of nodes as a single node of that graph.

2.6 The Contact Space Caging Graph

This section describes the caging graph, which captures the topology of the sublevel sets of dps1, s2q

in U . The graph will be the basis for the caging algorithm described in Section 2.7.
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2.6.1 The Caging Graph

Definition 2.6.1 The caging graph, G, is an undirected graph with the following nodes and edges:

Nodes: The nodes of G correspond to finger placements either on pairs of vertices of B, called

vertex-vertex nodes, or at a vertex of B and its perpendicular projection onto an edge of B,

called vertex-edge nodes.

Edges: All nodes lying in the same contact-space rectangle, Rij, are connected to each other by edges

in G.

The nodes of G are located at the corners of each contact-space rectangle, Rij , and possibly at

a single interior point on each bounding line of Rij . The edges of G connect each node on the

boundary of Rij to all other nodes on the boundary of Rij . Note that all such nodes are critical

points of the distance function in contact space because the distance function is non-smooth at all

vertices, and thus along all edges of contact space rectangles. Thus, vertex-vertex nodes, which lie

at corners of contact space rectangles are non-smooth in two dimensions, while vertex-edge nodes lie

on the edge of a contact-space rectangle, and are at a minimum along that edge. However, minima,

saddles, and maxima of the distance function will only occur at the grasps shown in Figs. 2.2-2.4.

Remark: The contact-space scheme of Pipattanasomporn and Sudsang [25] proposed a crawling

graph analogous to the caging graph. The crawling graph’s nodes represent all edge pairs of B, while

its edges represent transitions between neighboring edges along the object’s boundary. The crawling

graph cannot be easily embedded in contact space U , but it offers an alternative graph that can be

used to search for the caging sets surrounding an immobilizing grasp of B. �

Example: Consider the polygonal object shown in Figure 2.5. The contours of dps1, s2q in U for

this object are shown in Figure 2.7, with the axes labeled by arc-length along the object’s perimeter.

The nodes of G are marked by circles, and they are all located on bounding lines of the contact

space rectangles. The full caging graph G is shown in Figure 2.8. Note that this graph, like contact

space, has the topology of a 2-torus. For instance, the graph nodes at the four corner of U represent

the same two-finger placement at the object vertex x1. �

The following lemma asserts that all critical points of dps1, s2q are located at nodes of G.

Lemma 2.6.2 All the critical points of dps1, s2q in U , except for those on the diagonal ∆, are located

at nodes of the caging graph G.

Proof The isolated critical points of dps1, s2q in U lie on bounding lines of the contact space rectan-

gles according to Proposition 2.5.5. Critical points at the rectangles’ corners (vertex-vertex grasps)

are all nodes of G. Critical points in the interior of the rectangles’ bounding lines (vertex-edge

grasps) can only occur at a single point according to Corollary 2.5.3. Every such critical point

corresponds to a vertex of B having a perpendicular projection onto an opposing edge of B, and



24

0 5 10 15 20 25 30 35

0

5

10

15

20

25

30

35

s1

s
2

Figure 2.7: Contours of dps1, s2q for the object in Figure 2.5. Contact space rectangles are delineated
with dashed lines. The nodes of G are marked with circles.
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Figure 2.8: The caging graph G for the object in Figure 2.5. Circles represent the nodes of G, shown
in Figure 2.7. Lines represent the edges of G. Note that the graph has the topology of a 2-torus:
nodes on the left edge correspond to nodes on the right edge, and similarly for nodes on the top and
bottom edges.
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hence is also a node of G. The non-isolated critical points of dps1, s2q are associated with finger

placements on two parallel edges of B. These critical points span line segments with endpoints on

bounding lines of the contact space rectangles. At each endpoint, one finger touches a vertex of

B while the other finger touches an interior point of an opposing edge of B. These endpoints are

therefore vertex-edge nodes of G. l

It is important to note that the caging graph, G, contains many escape nodes. These nodes lie at

the two corner points of each contact-space rectangle Rii for i�1 . . . n on the diagonal ∆. To ensure

that the caging graph can be used to search for the caging sets, we introduce the notion of discrete

sublevel sets in G, then show that G preserves the sublevel connectivity of U .

Definition 2.6.3 A discrete c-sublevel set of the caging graph G is the set of nodes, vps1, s2q,

given by G¤c�tvps1, s2q P G : dps1, s2q ¤ cu.

The following theorem asserts that G preserves the sublevel connectivity of contact space U .

Theorem 2.6.4 The caging graph G is sublevel equivalent to contact space U . That is, there

exists a path in U between two nodes of G, vi and vj, lying entirely in U¤c if and only if there exists

a path along the edges of G between vi and vj lying entirely in G¤c.

Proof First consider a contact space path, α, which connects two nodes, vi and vj , while lying

entirely in U¤c. Divide this path into segments, such that each segment lies in a single contact

space rectangle. Next, replace each path segment with a straight line path between the segment’s

endpoints. By convexity of dps1, s2q on the individual contact space rectangles, the maximum value

of dps1, s2q on each linear segment is upper bounded by the maximum value of dps1, s2q on each

original path segment. We now have a piecewise linear path connecting vi and vj . On each linear

segment of this path, the value of dps1, s2q is upper bounded by c according to Corollary 2.5.4. The

two endpoints of each linear segment lie on the boundary of some rectangle Rij . Finally, shift each

endpoint, if it does not lie exactly at a node of G, to the minimum point of dps1, s2q along the same

bounding line of Rij , which is always a node of G according to Corollary 2.5.3. This local shifting

can only decrease the value of dps1, s2q for that endpoint. The equivalent path in G thus lies entirely

in the discrete sublevel set G¤c.

Next consider a caging graph path, β, which connects two nodes vi and vj while lying entirely in

G¤c. For each pair of adjacent nodes along the path, replace the caging graph edge connecting these

nodes by a straight line segment embedded in U . Each of these line segments lies in one rectangle

Rij . The maximum value of dps1, s2q along each of these path segments cannot be greater than the

value of dps1, s2q at either endpoint according to Corollary 2.5.4. The entire piecewise linear path

thus lies in U¤c. l
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The following corollary follows directly from Theorem 2.6.4.

Corollary 2.6.5 The caging graph G has two properties:

1. Each connected component of U¤c discretizes into a connected subgraph of G containing all

critical points of dps1, s2q lying in the connected component of U¤c and no others.

2. Every pair of sublevel sets of dps1, s2q in U that meet at a saddle point, v, discretizes into two

subgraphs of G that meet at the corresponding node, v, of G.

2.6.2 The Augmented Caging Graph

Theorem 2.6.4 ensures the sublevel equivalence of contact space, U , and the caging graph, G. How-

ever, it is critical that U be sublevel equivalent with the free c-space, F , as well. For many objects

this holds true, but for certain objects having handle-like features, sublevel equivalence of U and F
can fail.

Example: This possibility is illustrated in Figure 2.9. Starting at the immobilizing grasp (marked

with �, green), the maximal puncture grasp (marked with �, red) occurs at σ � d�. It is clear

that there exists a d�-sublevel path in F from the immobilizing grasp to both the non-feasible local

minimum (�, blue) and the local puncture (O, yellow). However, no such path exists in U . Hence U
is not sublevel equivalent with F for this object. �

In order to restore sublevel equivalence of U with F , this section introduces tunnel curves whose

attachment to U will ensure its sublevel equivalence with F . The tunnel curves will become additional

edges of the caging graph G, thus ensuring that a search of the augmented caging graph will always

find the correct caging sets for any given object.

To clarify where tunnel curves are needed, consider the double-contact submanifold S embedded

in the free c-space F . Let us examine the effect of small changes in the fingers’ opening parameter,

σ, on the connectivity of the σ-sublevel sets in F , and compare it to the connectivity of the σ-

sublevel sets in the submanifold S. Starting at an immobilizing hand configuration, pq0, σ0q P S,

the connected component of this point in S¤σ0
as well as in F¤σ0

is the isolated point pq0, σ0q. As

σ increases by a small amount to σ0 � ε, the sublevel set S¤σ0�ε expands locally around pq0, σ0q,

forming a connected set in S. Since this set is connected, a σ-sublevel path connecting any two

points in this set can be constructed entirely within S. Sublevel equivalence of F and S (and hence

U) fails when, for some δ ¡ 0, the sublevel set S¤σ0�δ ceases to be path-connected in S, although

it still lies in a single connected component of the ambient sublevel set F¤σ0�δ. This event always

occurs at a local minimum of the function πpq, σq�σ in S, such that the local minimum is not an

immobilizing grasp of B. At such a local minimum, a new connected component of the sublevel set

S¤σ0�δ appears, and the sublevel equivalence of S (and hence U) with F breaks down.
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The tunnel curves lie in the free c-space, F , with their endpoints located on the submanifold

S. Each tunnel curve starts at a non-immobilizing local minimum of π in S, follows a σ-decreasing

path in F until reaching S at a lower σ value, and then continues within S until reaching a point

corresponding to a node of G. The tunnel curves are constructed as follows.

Tunnel curves construction: Let pq10, σ
1
0q be a local minimum of the function πpq, σq � σ in S,

which is not an immobilizing grasp of B. For instance, Figure 2.9 depicts such a non-feasible local

minimum, where one finger is located at a vertex while the other finger is located at an interior point

of an opposing edge of B. Starting at pq10, σ
1
0q, at least one finger will be able to locally move away

from B in a straight line toward the other finger (see proof of Theorem 2.6.7). Retract this finger

while holding the other finger fixed on the object’s boundary, until the finger hits a new edge of B (if

the retracting finger hits the stationary finger, this gives an escape point discussed below). At this

stage both fingers contact the object. Slide both fingers simultaneously along their respective object

edges while minimizing σ (i.e. squeeze both fingers), until reaching the unique minimum of the

inter-finger distance along the current object edges. This defines the tunnel-curve’s other endpoint.

Figure 2.10 shows the tunnel curve, which starts with a single finger retracting and continues with

a squeezing of both fingers to a local minimum. If the fingers meet during the closing process, their

contact space point is located on the diagonal, ∆, where σ � 0. In this case the current contact-

space rectangle contains two escape nodes at its corners. Set the tunnel curve’s other endpoint at

the closest escape node along the diagonal ∆.

Based on the construction procedure, the tunnel curves are defined as follows.

Definition 2.6.6 Let S be the double-contact submanifold parametrized by contact space U . A

tunnel curve starts at a non-immobilizing local minimum of πpq, σq � σ in S, moves with decreasing

σ in the free c-space, F , then continues within S to the endpoint located at a node of G as described

above.

Remark: The contact space scheme [25] also augments the crawling graph with special transition

edges analogous to the tunnel curves. These special transition edges are added when the two fingers

reach along the object’s boundary a corner point of B, where one finger can break away from the

boundary towards the opposing finger. While the number of such transition edges is significantly

larger than the number of tunnel curves, these edges offer a means to augment the crawling graph

with curves that ensure sub-level equivalence with the ambient free c-space F . �

Let T be set of all tunnel curves in F . The following theorem asserts that the union S Y T (and

hence the union U Y T ) is sublevel equivalent to the free c-space F .

Theorem 2.6.7 Let pq0, σ0q be an immobilizing grasp of B, and let pqesc, σescq be the maximal

puncture point associated with pq0, σ0q. The union of the double-contact submanifold S with the
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Figure 2.9: A polygonal object B with a handle-like feature. Selected grasps are shown.

Figure 2.10: Contact space contours of dps1, s2q and selected grasps for the object of Figure 2.9.
Portions of U¤d� are shown shaded; the two disjoint regions (which are connected in the free c-space)
are problematic. The dotted line represents a tunnel curve which does not lie in contact space U .



29

Figure 2.11: A portion of the augmented caging graph for the object of Figure 2.9, corresponding
to the contact space region shown in Figure 2.10. The tunnel curve edge is depicted as a thick red
line.

tunnel curves, SYT , is sublevel equivalent to the connected component of F¤σ containing pq0, σ0q

for σPrσ0, σescs.

A proof of Theorem 2.6.7 appears in the appendix. Each tunnel curve starts at a local minimum

of dps1, s2q in U which is a non-feasible equilibrium grasp of B. This start point is a node of G.

The tunnel curve then moves in the free c-space F while monotonically decreasing the inter-finger

distance, until establishing a new two-finger grasp at a lower finger opening. The tunnel curve

continues with a squeezing motion along the object’s current edges, until reaching the unique local

minimum of dps1, s2q along the two object edges (Figure 2.10). The resulting endpoint is also a node

of G. Each tunnel curve can therefore be thought of as a handle attached to contact space U at two

points which are nodes of the caging graph G. This interpretation leads to the following definition

of the augmented caging graph.

Definition 2.6.8 Let G be the caging graph of a polygonal object B. The augmented caging

graph, denoted GT , is the graph G augmented with edges corresponding to the tunnel curves in F .

Figure 2.11 shows a portion of the augmented caging graph, GT , for the object of Figure 2.9,

corresponding to the contact space region shown in Figure 2.10. The tunnel curve edge depicted in

Figure 2.11 connects a non-feasible local minimum of dps1, s2q with another node of G, located at

an immobilizing grasp of B. The original caging graph, G, is sublevel equivalent to contact space

U (and hence to the double-contact submanifold S) according to Theorem 2.6.4. The union S Y T
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is sublevel equivalent to the free c-space F according to Theorem 2.6.7. Since GT � G Y T , the

augmented caging graph GT is sublevel equivalent to the free c-space F .

2.7 The Contact Space Algorithm

Starting at an immobilizing grasp of B, the caging algorithm searches the augmented caging graph,

GT , using two lists of nodes: a list of open nodes, O, and a list of closed nodes, X . The open list

is kept sorted in ascending order of the associated value of dps1, s2q. The closed list is kept in the

order by which each node was added to this list. To start, the node of GT associated with the initial

immobilizing grasp is marked as open and inserted into O, while X is initially empty. At each step,

the node in O with the smallest value of dps1, s2q is marked as current, removed from O, and added

to the end of the closed list X . If the dps1, s2q value of the current node is zero, the algorithm halts,

as an escape point has been found. Otherwise, each node adjacent to the current node in G, if not

in X and not already in O, is added to O.

The algorithm halts after a finite number of steps, since there is always a maximal puncture

point grasp (corresponding to a node of GT ), beyond which an escape point (corresponding to an

escape node of GT ) can be reached. The algorithm’s output is extracted from the closed list X as

discussed below. In particular, the node in X having the maximal value of dps1, s2q is the maximal

puncture point grasp associated with the initial immobilizing grasp. A pseudo-code of the caging

algorithm follows.

Algorithm 2.1 Contact Space Caging Algorithm

Data structures: open list O, closed list X .
Initialize: O = initial immobilizing grasp, X � H.
while dpCurrentNodeq ¡ 0 do

Set CurrentNode = lowest dps1, s2q value node in O.
Mark CurrentNode as explored.
Expand CurrentNode (add all non-explored adjacent nodes in GT to O).
Remove CurrentNode from O.
Add CurrentNode to end of X .

end while
return list of closed nodes X .

The caging algorithm runs on the augmented caging graph, GT , which requires that tunnel curve

edges be added to the caging graph G. These edges are added to G as follows. Consider a non-

feasible local minimum of dps1, s2q, at which finger 1 lies at p1 and finger 2 lies at p2. The node of

G corresponding to this grasp is the start point of the tunnel curve. Assume that finger 1 is able to

move towards p2 without penetrating B (at every non-feasible local minima one or both fingers may

be moved towards the other finger without penetrating B). Find the intersection of the line segment

joining p1 to p2 with all edges of B. If no such intersection exists, the tunnel curve’s end point is
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located at an escape node of G, where both fingers lie at p2. Otherwise, find the intersection which

is closest to p1. Generically, the grasp in which finger 1 lies at this intersection while finger 2 lies at

p2 is located in the interior of a contact space rectangle. The tunnel curve’s end point is located at

the node of G on the boundary of this contact space rectangle, having the minimum dps1, s2q value

in this rectangle. The procedure is summarized in Algorithm 2.2.

Algorithm 2.2 Contact Space Tunnel Curve Construction

Input: caging graph, G.
Initialize: GT = G.
for each non-feasible local minimum, vn�pp1, p2qPG, do

Set tunnel curve start node, vs � vn.
Define line segment l running from p1 to p2.
Find all intersections of l with edges of B.
if no such intersection point exists then

set tunnel curve’s end node, ve � pp2, p2q.
else
pint = intersection point closest to p1,
Rij = contact space rectangle containing ppint, p2q,
ve = minimum inter-finger distance node in Rij .
Set tunnel curve’s end node at ve.

end if
Add edge from vs to ve to GT .

end for
return GT , the augmented caging graph.

Interpretation of the closed list: Consider the nodes v P X of the closed list, indexed in the

order they were added to X . The first node added (the initial immobilizing grasp), is denoted v0,

and so on.

Definition 2.7.1 The ith node, vi, in the closed list X is a local minimum in X if dpviq  

mintdpvi�1q, dpvi�1qu.

Definition 2.7.2 The ith node, vi, in the closed list X is a local maximum in X if dpviq ¡

maxtdpvi�1q, dpvi�1qu.

Definition 2.7.3 The ith node, vi, in the closed list X is a puncture-related local maximum

if:

1. It is a local maximum in X .

2. There does not exist a lower indexed puncture-related local maximum in X , vj for j  i, such

that dpvjq ¡ dpviq

(i.e. it is the highest value node so far in X ).

The interpretation of the closed list X is simple. The first element of X , by construction, and all

local minima are immobilizing grasps of B. All puncture-related local maxima in X are puncture-

point grasps of B. While the node representing each of these punctures is a saddle of dps1, s2q in
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U , it appears as a local maximum in X . This occurs because once the search algorithm discovers

a saddle, it continues searching lower valued nodes in the unexplored portion of the previously

disjoint sublevel set of the augmented caging graph, GT . The lowest indexed puncture-related

local maximum in X represents the puncture-point grasp of the local caging set surrounding the

immobilizing grasp. The highest indexed puncture-related local maximum in X represents the

maximal puncture-point grasp of the maximal caging set, beyond which the object B can escape to

infinity. Finally, all other puncture-related local maxima represent puncture-point grasps associated

with all intermediate caging sets surrounding the immobilizing grasp.

Computational complexity: Let the object B have n vertices and edges. Each vertex of B
induces at most 2n nodes (n vertex-vertex pairs and n vertex-edge pairs) in the caging graph G.

Hence there are Opn2q nodes in G. The open list, O, contains at most Opn2q nodes, which may

be kept sorted in Opn2 log nq time. Additionally, the object B may have up to Opn2q non-feasible

equilibrium grasps that may induce tunnel curves. The construction of Opn2q tunnel curves may

be done in Opn2 log nq time using ray shooting algorithms. Based on these considerations, the

caging algorithm runs in Opn2 log nq time. Additionally, while the algorithm searches for the initial,

intermediate, and maximal caging sets surrounding an initial immobilizing grasp, it can be adapted

to find the maximal caging sets surrounding all immobilizing grasps of B, also in Opn2 log nq time,

which is comparable to [27,43].

2.8 Algorithm Walk Through

Returning to the example show in Fig. 2.5, we will step through the algorithm. The grasps explored

are shown in physical space in Fig. 2.12 and in contact space in Fig. 2.13. The algorithm starts at an

initial immobilizing grasp, marked with green circles. It next discovers a local puncture, marked with

orange triangles, and then finds a second immobilizing grasp, marked with blue circles. It explores

several grasps which are not immobilizing or puncture, show in contact space as black circles. (For

clarity, these grasps are not shown in physical space.) I then discovers the maximal puncture grasp,

marked with red triangles, and moves directly to the escape point, marked with a magenta square,

thus completing the search.
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Figure 2.12: Important grasps discovered during the exploration of the polygon shown in physical
space.

Figure 2.13: Important grasps discovered during the exploration of the polygon shown in contact.
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2.9 Graphical Depiction of Caging Set as Two Capture Re-

gions

This section briefly describes the graphical rendering of the caging sets as capture regions in R2.5

Let pq0, σ0q be the initial immobilizing grasp, and let pq1, σ1q be the puncture point of the caging

set associated with the immobilizing grasp. As a preliminary step, determine the object’s boundary

segments within the capture regions as follows. Place the two fingers at the immobilizing grasp,

then slide both fingers in contact with the object’s boundary while increasing the fingers’ opening

parameter from σ0 to σ1. Mark the object’s boundary curves touched by the fingers during this

process as γ1 and γ2 (Figure 2.14). Next, slide one finger along γ1 while marking the curve located

at a perpendicular distance of σ1 on the object’s opposite side. Denote by γ11 the portion of this

curve bounded by the endpoints of γ2 (Figure 2.14). Repeat this process with the curve γ2, this time

generating a curve γ12 with endpoints at those of γ1. One capture region is bounded by γ1 and γ12,

while the other capture region is bounded by γ2 and γ11. The technique is illustrated in the following

example.

Figure 2.14: The capture regions surrounding an immobilizing grasp of B.

Example: Consider the polygonal object of the previous example, depicted again in Figure 2.14.

Starting at the immobilizing grasp, the boundary segments touched by the fingers while increasing

the fingers’ opening parameter from σ0 to σ1, γ1 and γ2, are depicted in Figure 2.14. The tracing

of γ1 at a perpendicular distance σ1 yields the curve γ11 whose endpoints coincide with those of

5The graphical rendering of the capture regions requires a technical condition which holds for all reasonable objects.
See [33] for this condition.
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γ2. A similar tracing of γ2 gives the curve γ12 whose endpoints coincide with those of γ1. Note

that both curve tracings involve rotation of the perpendicular segment at the object’s vertices, with

the rotation range determined by the edge normals at the vertex. The lower finger capture region

is bounded by γ1 and γ12. The upper finger capture region is bounded by γ2 and γ11, as well as

by a portion of the object’s boundary which penetrates this region. Every two-finger placement

in the shaded capture regions with finger opening σ¤ σ1 will retract to the immobilizing grasp at

the object’s center. The two capture regions together with the condition σ¤σ1 thus provide a 2D

representation of the four-dimensional caging set. �

2.10 Caging Set Computational Example

Here we present a practical implementation of the caging algorithm on a flashlight, provided as

part of DARPA’s Autonomous Robotic Manipulation (ARM) program [22]. The flashlight geometric

data was provided off-line using a laser scanner, but could be attained in real time from stereo

vision or LIDAR. First, the point cloud data was projected onto a plane, and its outer envelope was

approximated as a 2D polygon, B. The original point cloud data and its polygonal approximation

are shown in Figure 2.15.

(a) htbp

s = 0.0

B

16.2

27.7

47.2

64.7

74.9

80.3

107.9

(b) htbp

Figure 2.15: Input data to the caging algorithm: (a) 3D triangular mesh data, and (b) a 2D polygonal
projection of the point cloud data, with arc-length value of selected vertices.

Next the polygon B, along with an initial immobilizing grasp specified near the flashlight’s trigger,
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Figure 2.16: Critical grasps and escape point for the flashlight in physical space.

were provided as input to the caging algorithm (Figure 2.16). Starting from the immobilizing grasp,

the algorithm explored the caging graph with increasing finger opening parameter. A contour plot

of dps1, s2q is shown in Figure 2.17, along with the critical grasps and nodes in the open list O (gray

circles) and the closed list X (dark circles), developed during algorithm execution. Note that less

than 6% of the total caging graph nodes were actually explored during the search.

A graph of dps1, s2q at the nodes of X developed by the algorithm is shown in Figure 2.18.

The local minima in the graph indicate immobilizing grasps, while the local maxima which are

highest so far in X indicate puncture grasps. Based on this graph, the caging algorithm returned

the initial caging set, several intermediate caging sets, and the maximal caging set surrounding

the immobilizing grasp. The neighboring immobilizing grasps and the series of puncture grasps

computed by the algorithm are shown in physical space in Figure 2.16.

2.11 Extensions of the Caging Algorithm

This section discusses three extensions of the basic caging algorithm. The first extension concerns

caging objects with holes. Although an object cannot escape to infinity when a finger is placed in

its hole, the local caging sets can still be useful for robust finger grasping. Let us therefore consider
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Figure 2.17: A portion of contact space U for the flashlight, showing nodes of the open list O and the
closed list X . Critical grasps in the closed list X are shown with the same symbols as in Figure 2.16.
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Figure 2.18: A graph of dps1, s2q at the nodes of the closed list X , showing the exploration of the
object’s boundary along with critical grasps and the escape point. The graph’s local maxima indicate
puncture grasps (see text).
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two cases. In the first case both fingers are placed inside a hole of B (Figure 2.19(a)). In this

case contact space parametrizes the two-finger placements along the hole’s boundary. Starting at

an immobilizing grasp within the object’s hole, an increasing finger opening will eventually reach

a puncture grasp beyond which the two fingers can pinch together inside the hole (Figure 2.19(a)).

This defines escape points for the caging algorithm, which can now identify the initial, intermediate,

and maximal caging sets within the object’s hole.
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(a)

B B

(b)

Figure 2.19: Two-finger immobilization and its puncture grasp. (a) Both fingers are placed within
a hole of B. (b) One finger is placed in a hole, the other finger is placed outside B.

A more interesting case occurs when one finger is placed inside a hole of B, while the other finger

is placed outside the object (Figure 2.19(b)). Contact space parametrizes the two-finger placements

along the object’s outer and inner boundaries. Starting at an immobilizing grasp, an increasing

finger opening will eventually reach a critical puncture grasp beyond which the two-fingered hand can

complete a full 360� rotation while maintaining a fixed finger opening (Figure 2.19(b)). Equivalently,

the object will be able to complete a full 360� rotation in R2 while the fingers are kept stationary.

The basic caging algorithm will have to be slightly modified in order to identify full rotation nodes

in the caging graph. Such nodes occur at the first puncture grasp whose sublevel set in U covers

the entire outer and inner boundaries of B. At this puncture grasp the sublevel set of dps1, s2q in U
becomes periodic in both s1 and s2. By monitoring arrival to such nodes during the caging graph

exploration, the algorithm will be able to report the caging sets surrounding the immobilizing grasp,

until a full 360� rotation of the object B becomes feasible.

A second extension of the algorithm concerns stretching cages, where the fingers open outward

in order to grasp the object [38, 43]. The object B is immobilized by a stretching grasp when the

two fingers are located at opposing concave vertices of B (Figure 2.4(d)). Such grasps are local

maxima of dps1, s2q. As the two fingers move closer together, they will eventually reach a puncture

grasp which allows the two-fingered hand to escape to infinity, or re-open and reach a neighboring

immobilizing grasp. In order to extend the algorithm to stretching cages, one has to ensure that U
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preserves the superlevel set connectivity of the free c-space F ,6 then construct a caging graph, G,

that preserves the superlevel set connectivity of U .

To ensure superlevel equivalence, contact space and the caging graph must be augmented with

tunnel curves, this time associated with local maxima of dps1, s2q representing non-feasible equi-

librium grasps. The caging graph G will have to be modified as follows. The nodes of Gremain

the same, while two edge types will have to be removed from G. If a bounding line of a contact

space rectangle, Rij , contains an interior critical point of dps1, s2q, the caging graph edge connecting

the vertex-vertex nodes at the line’s endpoints is removed from G. Similarly, edges that connect

diagonally opposite corners ofRij are removed from G (all other edges of G remain intact). A prelim-

inary analysis indicates that the modified caging graph satisfies the superlevel equivalence required

for computing stretching cages. However, these ideas must be carefully evaluated and verified on

real-world examples.

A third extension concerns caging with two disc fingers. As a preliminary step, the object B
must be converted into a c-space object, CB, by expanding its boundary outward by the fingers’

radius. However, CB contains straight line edges as well as circular arcs incurred by the object’s con-

vex vertices. When contact space is used to parametrize such circular arcs, the critical points of

the inter-finger distance function, dps1, s2q, no longer lie along the bounding lines of the contact

space rectangle associated with such arcs. Rather than construct generalized caging graphs which

account for such object boundaries, every circular arc on the boundary of CB can be approximated

by a regular k-segment polygonal arc. The caging algorithm can then be executed on the polygo-

nal approximation of CB. The resulting caging sets will closely approximate the exact caging sets

(with the quality of approximation increasing with k), and will usually identify the exact object

vertex-edge pairs associated with puncture grasps of B.

2.12 Summary and Extensions

This chapter described a technique for computing the two-finger caging sets surrounding an immo-

bilizing grasp of a polygon, B, using contact space. Rather than compute a cellular decomposition of

the hand’s four-dimensional configuration space, it suffices to consider the two-dimensional contact

space, U , parameterizing the finger positions along the object’s boundary. Within contact space, the

critical points of the inter-finger distance function, dps1, s2q, can be used to compute the caging sets.

The immobilizing grasps are local minima of dps1, s2q, while the puncture grasps which determine

the caging sets are saddles of dps1, s2q. This chapter established several properties of the inter-finger

distance function. It is convex on each contact space rectangle, and its critical points (except escape

points on the diagonal) are located on the rectangles’ bounding lines. Critical points on parallel

6Contact space U is superlevel equivalent to F if all points p1, p2 P S that can be connected by a path in F satisfying
σ ¥ c can also be connected by a path in U (equivalently, a path in S) satisfying dps1, s2q ¥ c.
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edges of B form segments of degenerate local minima, the endpoints of such segments also lie on the

rectangles’ bounding lines.

These properties lead to the construction of a caging graph, G, in contact space U . The nodes

of G contain all the critical points of dps1, s2q, while the edges of G are constructed so as to pre-

serve the sublevel set connectivity of the function dps1, s2q in U . However, proper computation

of the caging sets requires augmentation of U with tunnel curves, which form additional edges of

the caging graph G. Every tunnel curve starts at a local minimum of dps1, s2q of a special type (a

non-feasible equilibrium grasp of B), and ends at at a node of G having a lower value of dps1, s2q.

This chapter established sublevel equivalence of the augmented caging graph with the hand’s free

c-space, F , and thus laid the groundwork for a simple caging algorithm. Starting from the node

of G representing a desired immobilizing grasp, the caging algorithm searches G for saddles where

dps1, s2q attains successively increasing values. The puncture grasps corresponding to these saddles

determine the initial, intermediate, and maximal caging sets in contact space. The entire computa-

tion takes Opn2 log nq time, where n is the number of vertices and edges of B. The caging algorithm

has been fully implemented under DARPA’s Autonomous Robotic Manipulation program, and its

output has been demonstrated on a real-world example.

The basic caging algorithm can be extended in several ways. First, objects with holes can be

treated under the framework described in this chapter. Second, contact space seems to be equally

useful for computing stretching cages. This chapter suggested a modified caging graph that preserves

the superlevel connectivity of U , such that its augmentation with tunnel curves satisfies superlevel

equivalence with F . However, these ideas have to be carefully evaluated and validated on real-world

examples. A third extension concerns caging with two disc fingers. In this case B is first transformed

into a c-space object, then a polygonal approximation of the c-space object can be processed by the

caging algorithm described here. However, contact space can possibly be used to define a generalized

caging graph which will allow computation of the caging sets associated with two disc fingers.
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Chapter 3

Two Fingers in Three Dimensions

3.1 Introduction

This chapter extends the work from Chapter 2 to consider caging of 3D polyhedra, still using two

point fingers. Many of the concepts and definitions are similar or identical to Chapter 2, but is

written to be independent of that chapter. Analysis in the 2D case was done using Stratified Morse

Theory. In contrast, this chapter utilizes simple geometric descriptions to perform similar functions.

Several works by Pipattanasomporn et al [27, 29] have examined caging of 3D polyhedra. The

contact-space formulation presented in this chapter allows most of the computation to be done in

the 4D contact space, rather than the object’s 6D configuration space. This approach leads to an

algorithm which is simple to implement and has sound computation efficiency.

The algorithm presented in this chapter takes as starting input a 3D polyhedron and an initial

immobilizing grasp. Starting with that grasp, it searches a graph composed of critical points of the

inter-finger distance function. It reports the local, intermediate, and maximal caging sets related to

this immobilizing grasp.

Note that two point fingers cannot immobilize a polyhedron, as it will always be able to rotate

about a line passing through both fingers. However, the two-fingered hand is immobilizing relative

to the object. In this chapter, immobilizing refers to this situation.

This chapter is organized as follows. Section 3.2 defines the problem and introduces the inter-

finger distance function, dpsq. Section 3.3 reformulates the 6D caging problem into 4D contact space.

Section 3.4 introduces a discrete caging graph, G, whose nodes will be searched using the algorithm

presented in Section 3.5. An example in Section 3.6 demonstrates the algorithm. Section 3.7 presents

a geometric method to characterize all nodes of G, which results in a catalog of all squeezing,

immobilizing, and puncture grasps, shown in Section 3.8. In certain cases, important information is

lost when moving from configuration space to contact space. Section 3.9 shows when information is

lost and how to restore it, such that the search algorithm is correct.
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3.2 Preliminaries and Problem Statement

A 3D polyhedral object, B, is to be caged by two point fingers, denoted f1 and f2. The polyhedron

may not have cavities in its interior, but may have holes passing through it. Two-finger cages come

in two types: squeezing cages, where the fingers move together to cage the object, and stretching

cages, where the fingers move apart to cage the object [37,43]. This work considers only squeezing

cages. To simplify the explanation, we exclude polyhedra containing parallel opposing faces, parallel

opposing edges, and edges and faces which are parallel and not coplanar, though the algorithm can

handle these cases. Non-convex faces of B must be divided into a disjoint collection of convex faces.

Definition 3.2.1 The configuration space (c-space) of a two-fingered hand, denoted C, is the

6D space consisting of configurations q � pp1, p2q P R6, where pi � pxi, yi, ziq P R3 represents the

position of the ith finger, for i � 1, 2.

From the hand’s point of view, the object B forms an obstacle. The c-space obstacle corresponding

to B, denoted CB, is the set of hand configurations at which one or both fingers intersect the

stationary object B. The hand’s free c-space, F , is the complement of CB’s interior. The boundary

of F consists of all hand configurations at which one or both fingers touch the object’s boundary.

Our approach is formulated in contact space.

Definition 3.2.2 Contact-space, denoted U , consists of all hand configurations at which both

fingers touch the object boundary. Contact space is a 4-dimensional submanifold of C, lying on the

boundary of F .

Since the position of one finger on the surface of B may be parameterized using a subset of

R2, U may be parameterized as a subset of R4. Denote a point in contact space with s �

ps1, s2, s3, s4q P R4. For any point s P U , the corresponding finger positions in C may be given

by qpsq � pp1ps1, s2q, p2ps3, s4qq. Note that implementation of this parameterization is not required

for our caging algorithm.

Contact space can be naturally decomposed into a set of polychora (4-polytopes), which provide

a useful structure to calculate caging sets.

Definition 3.2.3 A contact-space polychoron, Pij corresponds to all possible placements of f1

at p1ps1, s2q on face i and f2 at p2ps3, s4q on face j of B.

Each polychoron, Pij , is a convex set. The set of polychora completely covers contact space and

their interiors are disjoint. The following definition will be critical to the consideration of caging.
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Definition 3.2.4 The inter-finger distance function is a scalar valued function giving the dis-

tance between the fingers. In C, d : C Ñ R and in U , d : U Ñ R.

dpqq � dpp1, p2q � ||p1 � p2|| (3.1)

dpsq � ||p1ps1, s2q � p2ps1, s2q|| (3.2)

The notion of a caging set is formulated in F as follows.

Definition 3.2.5 The caging set of B consists of all pairs of finger placements in F such that B
cannot be moved arbitrarily far from the fingers.

Definition 3.2.6 A squeezing caging set of B is any pair of finger placements, q0 P F , such that

B cannot be moved arbitrarily far from the fingers while the inter-finger distance is constrained such

that dpqq ¥ dpq0q.

When two fingers initially holding B at an immobilizing grasp are moved apart, the object remains

caged for a finite range of the finger opening distance. Eventually the inter-finger distance reaches a

critical value beyond which the object can escape the cage formed by the two fingers. This critical

finger opening may only allow an intermediate escape into a larger cage formed by other object

features, or an ultimate escape to infinity. We propose to find those critical events by searching

contact space, U .

Problem Definition: Given an initial two-finger immobilizing grasp of B, compute the following

types of caging set:

1. The initial caging set—the largest caging set from which the fingers are guaranteed to return

to the initial immobilizing grasp while keeping the object caged during the squeezing process.

2. The intermediate caging set—any caging set which contains the initial caging set, such that all

fingers end at a finite number of possible immobilizing grasps while keeping the object caged

during a squeeze.

3. The maximal caging set—the largest squeezing caging set which contains the initial caging set.

3.3 Contact-Space Reformulation of Caging

Rather than searching configuration space, C P R6, this chapter reduces the dimensionality of the

problem by searching contact space, U � R4. To show that a search in U can find the caging sets,

we formulate the caging problem as the existence of a test path between two points lying entirely in

a sublevel set of the function dpsq in U .
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The idea of an escape plays a central role in caging theory. The standard definition of an escape

is the ability to move the two-fingered hand with a fixed finger opening arbitrarily far from the

object. The corresponding notion of an escape in contact space is defined as follows.

Definition 3.3.1 A contact-space escape point in U is any point where the fingers are coincident

on the boundary of a contact-space polychoron. We denote this as ∆ � ts P U | p1ps1, s2q �

p2ps3, s4qu.

The notion of a contact-space escape point in U is equivalent to the standard definition of an

escape as follows. Upon reaching a contact-space escape point, the two fingers are coincident and

can move arbitrarily far from B. Conversely, suppose the hand can move arbitrarily far from B
according to the standard definition of escape. The two fingers can be moved to be coincident, then

moved back to the object’s boundary, which is an escape point in U . Every contact-space escape

point in U has an equivalent point in F .

A c-sublevel set of dpsq in contact space is the set U¤c � ts P R4 : dpsq ¤ cu. Similarly, a

c-sublevel set of dpqq in the free c-space is the set F¤c � tq P R6 : dpqq ¤ cu.

Definition 3.3.2 A c-sublevel path in F or U is a path along which the maximum value of the

inter-finger distance does not exceed c.

Thus, an object is caged for inter-finger distance σ� if and only if there does not exist a σ�-

sublevel path in F from its current configuration to an escape point.

Let the object B be initially immobilized at a hand configuration q0. For a certain interval of

finger openings, rσ0, σ1q, where σ0 � dpq0q, the object remains caged by the two fingers. The cage

is broken at a hand configuration, q1, where σ1 � dpq1q ¡ σ0. This grasp is referred to as a join

point, puncture point, or puncture grasp. Starting at the immobilizing grasp q0, the value of σ at the

first puncture point can be viewed as the minimum value, σ1, such that a σ1-sublevel path exists

between q0 and either an escape point or another immobilizing grasp. The value of σ at the last

puncture point can be viewed as the minimum value, σmax, such that a σmax-sublevel path exists

between q0 and an escape point.

3.4 The Caging Graph

Rather than searching the continuous spaces F or U , we show below that only a discrete set of points

must be searched. This set of points form nodes in the caging graph, denoted G, which captures the

topology of the sublevel sets of dpsq in U . The graph will be the basis for the algorithm described

in Section 3.5.
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3.4.1 Location of Important Grasps

Rimon and Blake [33] showed that immobilizing and puncture grasps occur only at frictionless equi-

librium grasps. For a polyhedron, excluding non-generic parallel geometry, frictionless equilibrium

grasps only occur at a finite, discrete set of points, corresponding to finger pairs touching vertices,

edges, or faces. The combinations of contact pairs which may result in frictionless equilibrium grasps

are:

1. a vertex-vertex pair

2. a vertex-edge pair, with one finger touching an edge at the point where the perpendicular

projection of the vertex onto that edge lies

3. a vertex-face pair, with one finger touching a face at the point where the perpendicular pro-

jection of the vertex onto that face lies

4. an edge-edge pair, in which the fingers lie at points corresponding to the unique minimum

distance between those two lines, such that a line connecting the two points is perpendicular

to both edges

For cases 2-4, the point may not exist for a specific pair, if the location of either finger does

not lie on the interior of its associated edge or face. These points will form the nodes of a caging

graph, defined below. They are exactly the critical points of the inter-finger distance function, dpsq,

in U . Note that because contacts both lying on faces of the polyhedron do not form frictionless

equilibrium grasps (as parallel faces are excluded), all these points lie on the boundaries of contact-

space polychora.

Definition 3.4.1 The caging graph, G, is an undirected graph with the following nodes and edges:

Nodes: The nodes of G correspond to all critical points of the inter-finger distance function in U .

In particular, they are all vertex-vertex pairs, and the unique local minimum associated with each

vertex-edge, vertex-face, and edge-edge pair, if that minimum exists.

Edges: All nodes lying on the boundary of the same contact-space polychoron, Pij, are connected to

each other by edges in G.

Because we propose to search the caging grasps, G, rather than free c-space, F , we must justify

that the two searches will produce the same result. To that end we introduce the notion of sublevel

set equivalence.

Definition 3.4.2 Contact space, U , is sublevel equivalent with the free c-space, F , if the follow-

ing holds: for any two points q, q1 P U there exists a c-sublevel path between q and q1 in U if and only

if there exists a c-sublevel path between their equivalent points in F .
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Similarly, G and U are sublevel equivalent if, for any two nodes, q, q1 P G there exists a c-sublevel

path between q and q1 in G if and only if there exists a c-sublevel path between their equivalent

points in U .

The caging graph, G, and contact space, U are always sublevel equivalent. The proof is delayed

until Sec. 3.9. For many objects, U and F are sublevel equivalent. However, for some objects,

they are not. For such objects we must perform a rigorous characterization of the critical points

of dpsq P U , and augment G with a (usually small) number of additional edges. We will proceed

assuming that F and U are sublevel equivalent, and analyze the case when they are not in Sec. 3.9.

3.5 The Caging Algorithm

The caging algorithm is structured as follows. Starting at an immobilizing grasp of B, the algorithm

searches the caging graph, G, using two lists of nodes: a list of open nodes, O, and a list of closed

nodes, X . The open list, O is kept sorted in ascending order of the associated value of dpsq. To

start, the node of G associated with the initial immobilizing grasp is marked as open and inserted

into O, while X is initially empty. At each step, the node in O with the smallest value of dpsq is

marked as current, removed from O, and added to the end of the closed list X . If the dpsq value of

the current node is zero, the algorithm halts, as an escape point has been found. Otherwise, each

node adjacent to the current node, if it is not already in X or O, is added to O.

The algorithm’s output is extracted from the list X as discussed below. In particular, the node

in X having the maximal value of dpsq is the maximal puncture grasp associated with the initial

immobilizing grasp.

3.5.1 Analysis of the Closed List

Consider the closed list, X , and index each node, v P X in the order it was added. Thus, the

first node added (the initial immobilizing grasp), is denoted v0, and so on. Inter-finger distance

associated with each node in X , denoted dpviq, can be seen in Fig. 3.3.

Definition 3.5.1 The ith node, vi, in the closed list X is a local minimum in X if dpviq  

mintdpvi�1q, dpvi�1qu.

Definition 3.5.2 The ith node, vi, in the closed list X is a local maximum in X if dpviq ¡

maxtdpvi�1q, dpvi�1qu.

Definition 3.5.3 The ith node, vi, in the closed list X is a puncture-related local maximum

if: 1) it is a local maximum of X , and 2) there does not exist a lower-indexed puncture-related local

maximum in X , vj for j  i, such that dpvjq ¡ dpviq.
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The interpretation of the closed list is simple. The first element of X , by construction, and all

local minima are immobilizing grasps of B. All puncture-related local maxima are puncture grasps of

B. While the node representing this puncture is a saddle of the function dpsq in contact space, U , it

appears as a local maximum in X . This occurs because once the search algorithm discovers a saddle,

it continues searching lower-valued nodes in the unexplored portion of the previously disconnected

sublevel set of the caging graph, G. The lowest indexed puncture-related local maximum in X
represents the puncture point associated with the local caging set. The highest indexed puncture-

related local maximum in X represents the maximal puncture point associated with the maximal

caging set. Finally, all other puncture-related local maxima represent puncture points associated

with all intermediate caging sets.

3.6 An Example

An example demonstrates the algorithm, searching a polyhedron (modified from [8]) with 326 ver-

tices, 648 faces, and 972 edges. Starting at an immobilizing grasp, the algorithm explores contact

space, generating an open list and closed list. Finger positions on B visited during exploration are

shown in Figs. 3.1 and 3.2. Inter-finger distances associated with nodes of the closed list, X , in-

cluding the immobilizing and puncture grasps, and the escape point are shown in Fig. 3.3, plotted

against the exploration step of the algorithm. The exploration took 80 steps. Note that only 729 of

the 136632 nodes (0.53%) needed to be checked.

3.7 Characterization of Nodes of G

In order to establish the sublevel equivalence of free c-space, F , and contact space, U , we must first

characterize all points at which the topology of either space may change, which will only occur at

nodes of G. Consider a node of G, q0 � pp01, p
0
2q, and its corresponding physical geometry. The

following definitions, illustrated by Fig. 3.4, will help characterize such a node.

Definition 3.7.1 The grasp line for a grasp at q0 � pp01, p
0
2q is the line segment from p01 to p02 .

Definition 3.7.2 The boundary planes, denoted E1, E2, associated with grasp q0 � pp01, p
0
2q are

two planes perpendicular to the grasp line, passing through p01 and p02, respectively.

Definition 3.7.3 The medial region, denoted M, associated with grasp q0 � pp01, p
0
2q is the region

lying between E1 and E2, not including those planes.

Definition 3.7.4 The lateral region, denoted L, associated with grasp q0 � pp01, p
0
2q is the com-

plement of M.
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Figure 3.1: Exploration of a polyhedron showing finger positions for explored nodes. Note that
nodes of G lie in R6 and cannot be fully visualized in R2, so pairs of finger positions are shown.

Figure 3.2: A second view of the polyhedron.
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Figure 3.3: Inter-finger distance of nodes in the closed list, X , vs. exploration step of the algorithm.

p01

p1 p′1

v1 v′1

p02

p2 p′2

v2 v′2 M

L
E1

E2
L

Figure 3.4: Geometry used to characterize point
q0 � pp01, p

0
2q. Note that no surfaces of B are

shown.

p01

p1 p′1

v1 v′1

p02

p2 p′2

v2 v′2
M

L

v2(s)

p2(s)

γ

Figure 3.5: Construction of a path showing
that if M2 is connected, then D� is con-
nected.
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Definition 3.7.5 Let Mi denote the intersection of the M, free physical space, and a ball of radius

δ around point p0i .

Definition 3.7.6 Let Li denote the intersection of L, free physical space, and a ball of radius δ

around point p0i .

The following test characterizes any double contact as an immobilizing grasp, puncture grasp,

or neither.

Theorem 3.7.7 At a double-contact point, q0 � pp01, p
0
2q, if M1 and M2 are both empty, then q0 is

an immobilizing grasp. If M1 is empty and M2 is a path-disconnected set (or M2 empty and M1

disconnected), then q0 is a puncture point. Otherwise, q0 is neither.

Theorem 3.7.7 states that double-contact points may be characterized only by the topology of

the regions M1 and M2, specifically if each region is the empty set, a path-disconnected set, or a

non-empty and path-connected set. Hereafter, disconnected will refer to a path-disconnected set,

and connected will refer to a non-empty and path-connected set. The following four cases cover all

possible combinations:

1. If M1 and M2 are both non-empty (either connected or disconnected), then the topology of

sublevel sets of F do not change at q0.

2. If M1 and M2 are both empty, then q0 is an immobilizing grasp.

3. If M1 is empty and M2 is disconnected (or vice versa), then q0 is a puncture grasp.

4. If M1 is empty and M2 is connected (or vice versa), then the topology of sublevel sets of F
does not change at q0.

The following characterizations of immobilizing and puncture grasps will be used to analyze the

above four cases. Consider a point q0 � pp01, p
0
2q, with dpq0q � d0. Let D0 be the slice of F restricted

to dpqq � d0, and let D� be the slice of F restricted to dpqq � d0 � ε.

An immobilizing grasp at q0 is characterized locally around q0 by two criteria:

1. D� is empty

2. D0 is an isolated point

Similarly, a puncture grasp is characterized by two criteria:

1. D� is disconnected

2. D0 is connected
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To analyze D� and D0, consider the following parameterization of a region in physical space, in

a neighborhood of q0 � pp01, p
0
2q. Let vi be the vector originating from p0i passing through point pi,

and ri be the distance from p0i to pi. Thus, q � pp01 � r1v1, p
0
2 � r2v2q. The inter-finger distance

associated with this point is given by

dpqq2 � d20 � d0pr1v
z
1 � r2v

z
2q �Opr2q, (3.3)

where d0 � dpq0q and vzi is the z-component of vi. Note that ri must be non-negative.

The following geometric insight will also aid in analyzing the above cases. Consider a point p01

on the boundary of B (which may lie on an edge or at a vertex) and a neighborhood of p01 small

enough that no other edges or vertices lie in this neighborhood. In this neighborhood, the boundary

of B is formed by one or more planes meeting at p01. Any intersections of those planes also meet at

p01. Consider a point, p1 near p01, and a vector v1 originating from p01 and passing through p1, as in

Fig. 3.4. If p1 lies on the boundary of B, then all points p01 � αv1 for α P p0, δq lie on the boundary

B in some δ-neighborhood around p01. Similarly, if p1 lies outside of B, then all points p01 � αv1 also

lie outside of B.

For case 1, if bothM1 andM2 are non-empty, then D� is non-empty and connected. This will

be shown by constructing a path between any two points, q � pp1, p2q P D
� and q1 � pp11, p

1
2q P D

�.

Let each point lie along a correspondingly named vector as in Fig. 3.4.

Points in D� satisfy the following equation:

dpqq2 � d20 � d0pr1v
z
1 � r2v

z
2q �Opr2q � d20 � ε� ε2. (3.4)

This equation has a solution (near q0 and for small ε) if either vz1 is negative (i.e., vz1 PM1) or vz2

is positive (i.e., vz2 PM2).

Start by assuming that both p1 and p11 lie in M1 and p2 and p12 lie in M2. To construct a path,

denoted Γ, we start at pp1, p2q and move finger one, f1, along v1 to p01. Eq. (3.4) can be solved for

r2, which is approximately linear in r1, so f2 may be moved along v2 to maintain an inter-finger

distance of d0� ε during this motion. Move f2 along v2 to p02, while moving f1 along v11 to maintain

the inter-finger distance. Finally, move f2 along v12 to p12, while moving f1 along v11. Finger one will

arrive at p11.

Next, consider a point q � pp1, p2q with p1 P M1 and p2 P L2. Move f2 along v2 to p02 while

moving f1 along v1. Denote this path β; its endpoint lies on path Γ. Any two points in D� may be

connected with combinations of paths β and Γ. Thus, if bothM1 andM2 are non-empty, then D�

is connected and the sublevel sets of F do not change topologically at q0.

For the remaining cases, eitherM1 orM2 is non-empty. Without loss of generality, assume that

M1 is empty. Note that if M1 is empty, then L1 must be non-empty.
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For case 2, if bothM1 andM2 are empty, then D� is empty, as (3.4) has no solutions. The fact

that q0 is an isolated point can be seen as follows: the only configurations containing q � pp1, p2q

that give dpqq � d0 involve p1 lying on E1, and p2 lying on E2, exactly at the perpendicular projection

of p1 onto E2. Since non-generic parallel geometry has been excluded, this can only happen when

q � q0. Thus, q0 is an isolated point.

For case 3, if M2 is disconnected, then D� is disconnected and q0 is a puncture grasp. This

may be shown by contradiction. Assume D� is connected; then there exists a path in D� from

q � pp1, p2q to q1 � pp11, p
1
2q. Since M2 is disconnected, the path of f2 must pass through L2. But

p1 P L1 and p2 P L2 always results in dpqq ¥ d0, and cannot lie in D�.

For case 4, ifM2 is connected, then D� is connected and q0 is not a puncture point or immobi-

lizing grasp. To show this we will construct a path in D� between arbitrary points q � pp1, p2q P D
�

and q1 � pp11, p
1
2q P D

�. Choose r1 and r11 such that p1 � p01 � r1v1 and p11 � p01 � r11v
1
1. The path of

finger one follows p1psq, as defined below:

p1psq �

$&
%

p01 � r1psqv1 : s P r0, 12 s

p01 � r1psqv
1
1 : s P p 12 , 1s

, (3.5)

where r1psq is chosen such that it varies from r1 to zero over s P r0, 12 s and from zero to r11 over

s P r 12 , 1s. Since M2 is connected, then there exists a path γ from p2 to p12, lying in M2, as shown

in Fig. 3.5. Parameterize this path such that γp0q � p2 and γp1q � p12. Consider a vector, v2psq,

originating from p02 that, for any s, passes through γpsq. Since γpsq lies outside of B, then, by the

geometric arguments above, all points p02� r2psqv2psq lie outside of B for r2psq P p0, δq. Solving (3.4)

gives

r2psq �
1

vz2psq
pr1psqv

z
1 � 2ε�

1

d0
pε2 �Opr2qq, (3.6)

where vz1 is the z-component of either v1 or v11. Since both r1psq and v2psq are continuous, and

vz1 , v
z
2 ¡ 0, there exists a continuous positive solution for r2psq, for s P r0, 1s. Let p2psq � p02 �

r2psqv2psq. The path qpsq � pp1psq, p2psqq connects q to q1 and lies entirely in D�. Thus, if M2 is

connected then q0 is not a puncture point or immobilizing grasp.

3.8 A Catalog of Immobilizing and Puncture Grasps

The above characterization gives a relatively simple way to categorize a double-contact point as an

immobilizing grasp, puncture grasp, or neither. This section translates the above conditions into

simple geometric tests that apply to most grasps. Section 3.9 will analyze problem cases.

Definition 3.8.1 A double-contact configuration, q0 � pp01, p
0
2q, is regular if the following condition

is met. Consider a point q � pp1, p2q near q0, such that a line segment joining p1 and p2 lies parallel
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to the grasp line. All such line segments must lie entirely within the object, B, locally near p1 and

p2.

Intuitively, regular grasps are those containing material between the finger contacts. The fol-

lowing geometric test may be used to evaluate a regular double contact q0 � pp01, p
0
2q. Consider the

surface of B near p01. Consider the inter-finger distance of points near p01 while keeping f2 fixed at p02,

giving dpp1q � ||p1 � p02||. Using this distance function, p1 may be characterized as a local minima,

a saddle, a local maxima, or none of these.

The contact pair q0 � pp01, p
0
2q is an immobilizing grasp whenM1 andM2 are both empty. This

occurs when both contact points, evaluated with the other contact point fixed, are local minima.

Thus, possible regular immobilizing grasps are shown in Fig. 3.6.

The contact pair q0 � pp01, p
0
2q is a puncture grasp when M1 is empty and M2 is disconnected

(or vice versa). This occurs when one contact point is a local minima and the other is a saddle, each

characterized with the other point fixed. Possible regular puncture grasps are show in Fig. 3.7. Note

that the saddle nature of contacts are drawn such that they divide a sublevel set into two disconnected

regions: generically, the surface of a polyhedron may form saddles which divide sublevel sets into

more than two connected regions, as in a monkey saddle.

(a) (b) (c) (d)

Figure 3.6: A catalog of possible immobilizing grasps. Each contact represents a local minimum in
the inter-finger distance when the opposing finger is fixed.

(a) (b) (c) (d) (e)

Figure 3.7: A catalog of possible puncture grasps. Each contact represents a saddle in the inter-finger
distance when the opposing finger is fixed.
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3.9 Sublevel Equivalence

The above algorithm assumed sublevel equivalence of free c-space, F , and contact space, U , as well

as that of U and the caging graph, G. This section first shows the sublevel equivalence of U and G,

using the convexity of the inter-finger distance function. It then considers the case when sublevel

equivalence of U and F fails, and shows that simple changes can restore sublevel equivalence of U
and F .

3.9.1 Sublevel Equivalence of U and G

The caging graph depends on the following decomposition of U having some useful properties.

Lemma 3.9.1 The function dpsq � ||pps1, s2q � pps3, s4q|| is a smooth convex function in each

contact-space polychoron.

Proof Each contact-space polychoron, Pij , represents the placement of the fingers on two particular

faces of B. Consider the infinite planes underlying these faces. All non-parallel planes meet along

a common line. Parameterize the position of a point on each plane as in Fig. 3.8, yielding p1 �

ps1, s2, 0q and p2 � ps3 cos θ, s4, s3 sin θq. The inter-finger distance function can be written in these

coordinates as dpsq �
�
sTKs

� 1
2 , where

K �

�
�������

1 0 � cos θ 0

0 1 0 �1

� cos θ 0 1 0

0 �1 0 1

�
�������
.

The eigenvalues of K are t0, 2, 1 � cos θu, which are all non-negative. Thus K is positive semi-

definite and dpsq � ||K1{2s||. The function dpsq is thus a composition of the Euclidean norm (a

convex function) with the linear function K1{2s. Such a composition preserves convexity, and dpsq

is therefore convex in each polychoron, Pij . l

The next corollary follows from Lemma 3.9.1 and the definition of convexity.

Corollary 3.9.2 Let s and s1 be two points on the boundary of a single contact-space polychoron,

Pij. The straight line path between these two points lies in a single connected component of the

c-sublevel set U¤c where c � maxtdpsq, dps1qu.

Definition 3.9.3 A c-sublevel set of the caging graph G is the set of nodes, v, given by G¤c �

tvpsq P G : dpsqq ¤ cu.
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s2,s4

s1

s3z y

x

θ
Figure 3.8: A parameterization of two infinite planes, which demonstrates the convexity of dpsq.

The following theorem asserts that G preserves the sublevel connectivity of contact space, U .

Theorem 3.9.4 The caging graph G is sublevel equivalent to contact space, U . That is, there

exists a path in U between two nodes vi, vj P G, lying entirely in U¤c, if and only if there exists a

path along the edges of G between vi and vj lying entirely in G¤c.

Proof For the forward direction, start with a path between two nodes, vi, vj P U , lying entirely in

U¤c. Divide this path into segments such that each segment lies in one contact-space polychoron.

Next, replace each path segment with a straight line path between the segment’s endpoints. By the

convexity of dpsq on the individual contact-space polychoron, the maximum value of dpsq on each

straight line segment is upper bounded by the value of dpsq at its endpoints. The path connecting

vi and vj is now piecewise linear. On each linear segment of this path, the value of dpsq is still

upper bounded by c according to Corollary 3.9.2. The two endpoints of each linear segment lie on

the boundary of some polychoron Pij . Shift each endpoint to the minimum point of dpsq along the

same boundary edge of Pij , which is always a node of G. This local shifting can only decrease the

value of dpsq for that endpoint. The equivalent path in G thus lies entirely in the discrete sublevel

set G¤c.

For the backwards direction, start with a discrete path between the nodes vi and vj lying entirely

in G¤c. For each pair of adjacent nodes along the path, connect the two nodes by a straight line

segment in U . Each straight line segment lies in one polychoron, Pij . The maximum value of dpsq

along each segment is upper bounded by the value of dpsq at either endpoint, per Corollary 3.9.2.

The entire piecewise linear path thus lies in U¤c. l

The following corollary is a direct result of Theorem 3.9.4.

Corollary 3.9.5 The caging graph G has the two properties:

1. The critical points of dpsq in each connected component of U¤c correspond to a connected

subgraph of G containing only the critical points lying in that component.
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2. Every pair of sublevel sets of dpsq in U that meet at a puncture point, v P U , correspond to two

subgraphs of G that meet at the corresponding node, v P G.

3.9.2 The Sublevel Equivalence of U and F

To ensure sublevel set equivalence of U and F , we must consider the topological changes which

occur in each. Above we analyzed the topological changes at point q0 � pp01, p
0
2q in free c-space, F ,

based on the topology of two regions of F , M1 and M2. Consider similar regions in U , namely the

intersection of the boundary of the polyhedron and the medial region, M, around each of the finger

placements. Denote these regions M1
1 and M1

2. Note that M1
i is just the restriction of Mi to the

boundary of B.

The previous determination of the topology of Mi around contact points only assumes that if

p1 � p01 � r1v1 lies outside (or on the boundary) of B, then p01 � αv1 also lies outside (or on the

boundary) of B, for α P p0, δq. This assumption is true when restricting the fingers to the boundary

of B, so the resulting tests may be used to characterize U as well. Thus, if M1
1 and M1

2 are both

empty, then at grasp q0, an isolated point of U appears, which did not exist in U¤d0�ε, where

d0 � dpq0q. This point would be an immobilizing grasp if finger motions were restricted to U . IfM1
1

is empty and M1
2 is disconnected, then at q0, two (or more) regions of U which were disconnected

in U¤d0�ε join to form a connected component in U¤d0 . This point would be a puncture grasp if

finger motions were restricted to U . If neither condition holds, then the topology of sublevel sets of

U do not change at q0.

We must now consider when the topology of sublevel sets of U and F change, and when those

changes differ. Each region, Mi and M1
i may be either empty, connected, or disconnected. It can

be shown that if Mi is empty, then M1
i is also empty, and that if Mi is disconnected, then M1

i is

also disconnected. Thus, there are only two cases in which the topology of Mi and M1
i may differ:

1)Mi may be connected whileM1
i is disconnected, or 2)Mi may be connected whileM1

i is empty.

Adding the three cases where the topology of Mi and M1
i are the same (both empty, both

connected, or both disconnected), there are five possibilities for the topology of the Mi-M1
i pairs,

resulting in 25 combinations when considering both contacts. Out of those 25 combinations, there

are nine cases in which the topological changes of F and U differ, but these nine cases only take

two forms, which we refer to as false immobilizing grasps and false puncture grasps. Both of these

cases, and their effect on the sublevel equivalence of U and F will be considered in the following

subsections.

Note that for a regular grasp at q0 � pp01, p
0
2q, each connected component M1

i is associated with

exactly one connected component ofMi, specifically the portion of free space located between that

component of Mi and the boundary plane, E i. Thus, for a regular grasp, the topology change in U
is the same as for F at every point.
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3.9.3 Sublevel Equivalence at False Immobilizing Grasps

In a false immobilizing grasp,M1
1 andM1

2 are both empty, while eitherM1 orM2 is connected (or

both). Thus, at q0, an isolated point appears in U , while no topological change occurs in F . In U ,

this appears to be an immobilizing grasp. The examples in Fig. 3.6 are false immobilizing grasps if

the material lies above and below the contact points, rather than between them.

Consider the changes of topology in both U and F around a false immobilizing grasp at q0. In U ,

the sublevel set U¤d0�ε is empty in a neighborhood of q0. The sublevel set U¤d0 is the single point

q0, and U¤d0�ε is a small region around q0. This cavity is isolated from other points in U . There is

no change in the topology of sublevel sets of F near q0, and U and F are not sublevel equivalent.

An isolated point appears in U , but this point must lie in a connected component of F containing

other double-contact points. The tunnel curve construction found below is essentially a constructive

proof of this fact, and restores sublevel equivalence.

3.9.4 Sublevel Equivalence at False Puncture Grasps

In a false puncture grasp, M1
1 is empty and M1

2 is disconnected (or vice versa), while either M1

or M2 is connected. Thus, at q0, two disconnected regions in U join, while no topological change

occurs in F . In U , this appears to be a puncture grasp. The examples in Fig. 3.7 are false puncture

grasps if the material lies above and below the contact points, rather than between them.

At a false puncture grasp, the changes in topology of F¤c and U¤c are qualitatively different,

but sublevel equivalence still holds. At these types of grasp, two disconnected regions in U join at q0,

while the same regions are locally connected in F¤d0�ε. However, if U and F are sublevel equivalent

for dpsq � d0 � ε, then the two regions must already be connected in U¤d0�ε. As long as sublevel

equivalence is not violated for inter-finger distances smaller than d0 � ε, the changes in topology at

q0 will not violate sublevel equivalence.

3.9.5 Tunnel Curve Construction

To maintain sublevel equivalence between U and F at a false immobilizing grasp, we will add a

tunnel curve, which is a path lying in F with endpoints in U , to both U and G. This additional

connectivity will guarantee that F , U , and G remain sublevel equivalent.

At a false immobilizing grasp, at least one finger can move away from object B in a straight line

towards the other finger. Retract this finger while holding the other finger fixed on B’s boundary,

until the finger hits a new surface of B. Both fingers now contact the object along its boundary.

Slide both fingers simultaneously along the body while minimizing σ (i.e., squeeze the fingers), until

reaching the unique minimum of the inter-finger distance on these surfaces. This defines the tunnel-

curve’s endpoint. If, during the closing process, the fingers meet, the tunnel curve’s endpoint is any
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escape point on the current contact-space polychoron. The start and end point of the tunnel curve

are nodes of the caging graph, G. For each tunnel curve, add an edge to G connecting the nodes

representing its endpoints.

The addition of these curves will restore the sublevel equivalence of F , U , and G, which may be

seen as follows. The only points at which the topology of sublevel sets in F and U become different

is at a false immobilizing grasp, when an isolated point appears in U¤d0 , which is not isolated in

F¤d0 . Once a tunnel has been added to this point in U (and G), it is not isolated in U¤d0 (or G)

when it appears.

3.10 Summary

This chapter presented a new method to calculate the caging sets for a polyhedron by searching

contact space rather than free space. The algorithm is based on two innovations. First, all critical

points of the inter-finger distance function were identified and characterized, resulting in a catalog of

all immobilizing and puncture grasps. The critical points are nodes in a caging graph. Second, the

relationships between 6D configuration space, 4D contact space, and the caging graph were analyzed,

allowing a search of the caging graph. It was shown that contact space can be completely decomposed

into 4D polychora, on which the inter-finger distance is convex, allowing the relationship between

contact space and the caging graph to be fully characterized. Additionally, the points at which the

topology of sublevel sets of contact space and free configuration space differed were identified. The

addition of edges to the caging graph reconciles these differences. An algorithm which searches the

caging graph for puncture points of successively increasing inter-finger distance was presented, and

an example demonstrated the implementation of the algorithm.
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Chapter 4

Three Finger Caging

This chapter considers caging a convex planar polygonal object using three point fingers. In partic-

ular, it quantifies exactly the allowable motions of the fingers relative to each other, such that at

no point during those motions the object can escape. This is in contrast to most other three finger

caging algorithms, which make no guarantees of caging if the fingers are allowed to vary their relative

positions while the object is allowed to move. This algorithm is developed mostly independently

from the concepts used in the preceding two finger algorithms.

Pipattanasomporn et al [29] gave an algorithm which maps the relative positions of n fingers to

a scalar parameter, which they refer to as dispersion. A polytope is caged by maintaining the value

of this function below (or above) some critical value. They give an algorithm to compute such cages

(which are a subset of all caging formations) for some specific scalar functions. Rodriguez et al [38]

formalized these ideas and extended them to a more general class of objects, but do not provide

an explicit algorithm. They also considered the relationship between such cages and immobilizing

grasps.

For two disc fingers, Vahedi and van der Stappen [43] showed that such robustness comes “for

free” – if an object is caged for a particular inter-finger distance of σ � σ�, then it is caged for either

σ P p0, σ�s or σ P rσ�,8q, which they refer to as squeezing or stretching cages, respectively. They

also showed that this robustness property is not guaranteed for more than two fingers.

The work of Pipattanasomporn et al [29] and Rodriguez et al [38] described above provide a

subset of all n-fingered cages. They provide an analogy to squeezing (or stretching) caging for more

than two fingers: if a scalar mapping on the finger formation is maintained below (or above) some

critical value, then the object will remain caged.

The three finger algorithms of Erickson, et al [16] and Vahedi and van der Stappen [43] divide

free space into cells. Placement of the third finger into a subset of these cells provides a cage.

While neither author explicitly considers robustness, it appears that these cages will be robust to

movement of the third finger within a single cell (relative to the other two fingers), but not necessarily

to movement of the third finger into other cells of the caging region, nor to changes in the distance
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between the first two fingers.

Perhaps the work most similar to this chapter is Sudsang et al [40–42], which considered caging

a polygon with three disc fingers, and found the largest discs of equal radius in which free movement

of the fingers guarantee that the object remains caged. The triple of discs is a useful subset of the

entire caging region. However, these works considered only the subset of cages in which each finger

touches only a single edge of the polygon, resulting in very small caging regions for objects with

short sides. Additionally, the regions given are conservative for some cases, resulting in discs which

are not of maximal size.

This work considers all three parameters which describe the relative position of three point

fingers in the plane. It provides an exact characterization of the robust caging regions (defined later)

produced by three-fingered placements, but at the cost of significant computational complexity.

4.1 Preliminaries and Robust Caging

A convex planar polygonal object, B, is to be caged by three point fingers. The n edges of B are

labeled ei, and the n vertices are denoted by vi, which also describes their position in the plane. Its

convexity guarantees that B has no holes in its interior. We refer to the three fingers as f1, f2, and

f3, and also use fi P R2 to refer to the position of the ith finger in the plane. We define a grasp as the

placement of the triple of finger placements, f1, f2, and f3, in the plane. Note that this definition

of a grasp does not require any of the fingers to touch B. Following Vahedi [43] we refer to any two

grasps related by a rigid transformation as having the same hand shape. Consequently, the position

of the fingers relative to B may be decomposed into the hand shape, denoted σ, and the position

of that shape relative to B. The hand shape is parameterized by the pairwise inter-finger distances,

σ � pσ1, σ2, σ3q, where σ1 � ||f2 � f3|| and so on. See Fig. 4.1.

Definition 4.1.1 The shape space (c-space) of the three-fingered hand, denoted S � R3
¥0, is the

pairwise inter-finger distances, σ1, σ2, and σ3. We require the fingers are numbered in counter-

clockwise order to guarantee uniqueness of configuration given the three inter-finger distances.

The position of a fixed hand shape relative to B are given by q � px, y, θq P R2 � S where x and

y are the position of f1, while θ represents the angle between the x-axis and a line drawn between

f1 and f2.1

Definition 4.1.2 The configuration space (c-space) of the three-fingered hand is the six dimen-

sional space ρ � pq,σq P R2 � S� S, where q P R2 � S is the hand’s base configuration, and σ P S
is the hand shape. See Fig. 4.1.

1Since a convex object cannot be caged with two of the three fingers coincident, the singularity that occurs when
f1 and f2 are coincident may be ignored.
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For a given configuration, ρ � pq,σq, the object is caged if it cannot be moved arbitrarily far

from the fingers without penetrating any of the fingers. Equivalently, the object is caged if the

fingers cannot be moved arbitrarily far from it while holding the shape parameters constant.

This can be formalized as follows, using notation from Vahedi [43]. Let F � R2zintpBq be the

set of all admissible placements for one finger in the plane, and let F � F � F � F be the free

configuration space (c-space) of the three-fingered hand. Let σpρq � δ � pσ1, σ2, σ3q be the shape

parameter of a given grasp, ρ. Then Fδ � tρ P F : σpρq � δu is the restriction of free space to a

particular hand shape, δ. A grasp, ρ, is a cage if it belongs to a bounded component of Fδ, where

δ � σpρq.

4.1.1 Motivational Example

This chapter focuses on cages which are robust to variations in the hand shape, σ, which motivates

the following example. Consider a specific grasp ρa � pqa, σaq, shown in red in Fig. 4.2; this is

a cage of B. Now consider starting at grasp ρa and allowing σ to vary. If σ varies in some small

neighborhood of σa in shape space (while q is allowed to vary freely), the object will remain caged.

Figure 4.1: Parameterization of the hand shape for a three point-fingered hand. The pairwise
inter-finger distances are given by σ1, σ2, and σ3.

However, consider grasp ρb � pqb, σbq, shown in green. Clearly the fingers may be moved right-

ward until they are arbitrarily far from B, and grasp ρb is not a cage of B. Now consider starting

at ρa, but allow the three hand-shape parameters to vary from σa to σb. When σ reaches σb (or

before), the hand will be able to escape. Thus, allowing the hand shape to vary from σa to σb does

not provide a cage of B.
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Figure 4.2: A polygon, B, and two grasps: ρa cages B; ρb does not. Also shown is a decomposition
of free space around a convex polygon, B, dividing it into regions, Ri.

Intuitively, grasp ρb is able to escape rightward because f1 is able to move “past” vertex v2.

This motivates the following decomposition of free space around B. From each vertex, vi, draw a

bounding line, denoted bi from that vertex to infinity. The bounding line bisects the angle between

the two edges of B which meet at vertex vi. These n bounding lines divide free space into n regions,

denoted Ri, which are unbounded convex quadrilaterals; see Fig. 4.2.

Any grasp lies in a triple of these regions, motivating the following definition. A triad is a triple

of free space regions, denoted T i,j,k � Ri �Rj �Rk. For all grasps in T i,j,k, f1 lies in Ri, f2 lies

in Rj , and f3 lies in Rk,. Thus, grasp ρa lies in T 2,3,5 in Fig. 4.2.

As a step towards finding cages of B and characterizing their robustness, we consider a simplified

problem: what restriction of the hand shape will prevent the hand from leaving a single triad? That

is, what hand shapes form a cage for a given triad? (Note that this is usually a sufficient condition

for caging B.)

Here we present an example of a robust cage (defined later) of polygon B, shown in Fig. 4.3. The

red, green, and blue regions of Fig. 3 represent possible placements of f1, f2, and f3, respectively.

Fig. 4.4 shows a region of shape space, denoted H, associated with triad T 2,3,5 of B. Given the

starting positions from Fig. 4.3, the cage will be maintained while allowing the hand shape to vary

anywhere within H. More formally, consider a grasp, ρ � pq, σq that lies in T 2,3,5 and satisfies

σ P H. H is carefully chosen such starting at ρ, B will remain caged, even while allowing σ to vary

freely in H.
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Figure 4.3: A physical caging region for a polygon, shown in yellow. The red, green, and blue regions
shown in Fig. 4.3 are possible placements of f1, f2, and f3, respectively, which satisfy both ρ P T 2,3,5

and σ P H (see Fig. 4.4). Starting from one of these positions, the restriction σ P H guarantees that
the hand will not leave T 2,3,5.

σ1

σ2

σ3

Figure 4.4: A shape space caging region, H for the polygon shown in Fig. 4.3. Restriction of the
hand shape to this region of S will prevent the hand from leaving the initial triad, T 2,3,5 .
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H is bounded by two-dimensional manifolds, each resulting from an equilibrium grasp of B. These

manifolds will be discussed in detail in Section 4.4. The colored manifolds shown in Fig. 4.4 result

from grasps in which one finger lies at a vertex of B. Examples of such grasps, and the manifolds

they generate are shown in Figs. 4.7 and 4.8. The black manifold results from immobilizing grasps

in which all three fingers lie on edges of B.

4.1.2 Robust Caging Definition

Definition 4.1.3 Given a grasp, ρ0 � pq0, σ0q P F which is a cage of B, the set of hand shapes

H � S forms a robust cage of B (associated with q) if σ0 P H, and B remains caged while allowing

q to vary freely and σ to vary within H.

More formally, pρ0 P F ,H � Sq form a robust cage of B, if and only if ρ0 lies in a bounded

component of FH, where FH � tρ P F : σpρq P Hu. Note that the restriction σ P H is never a

sufficient condition to cage an object - placements far from the object will never cage it, regardless

of the shape of the hand. Thus, if we place our hand in configuration p0, we can allow the hand

shape to vary within H and the object is guaranteed to remain caged.

Other starting configurations near ρ likely form robust cages of B, motivating the following

definition.

Definition 4.1.4 The pair pI � F ,H � Sq form a robust caging set of B if, for all tρ P I :

σpρq P Hu, ρ and H form a robust cage of B.

Thus, if I � F and H � S form a robust caging set, then starting from any grasp ρ P I, B will

remain caged while allowing σ to vary within H. More formally, the pair pI P F ,H � Sq form a

robust caging set of B if and only if all ρ P I lie in a bounded component of FH.

We are thus interested in two regions. First, I is a portion of free c-space in which we want to

initially place our fingers. Second, H is a region of hand shape space, S. If we start at a grasp in I
whose shape lies inH, then we can allow the fingers to vary withinH while guaranteeing a cage. This

robustness is one of the main contributions of this chapter. We are also interested in the boundaries

of these regions (particularly H) as this is where our guarantee of a cage fails. The following sections

will analyze these regions. Section 4.2 will discuss how to find robust caging regions which prevent

the hand from leaving a single triad of B. Section 4.3 will extend this analysis to unions of triads.

Section 4.4 will describe the manifolds which bound robust caging regions of S, and Section 4.5 will

describe simple geometric test to determine if a given point in S is a cage associated with a set of

triads.
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4.2 Single Triad Caging

This section will analyze a single triad of B, and consider what restriction on the hand shape will

prevent the hand from leaving that triad. For the hand to leave a particular triad, one finger must

cross a bounding line and thus move from one region to an adjacent region. The movement of the

hand from one triad to another is referred to as a transition, and each transition is associated with

a particular finger crossing a particular bounding line. These transitions may occur due to variation

in either q or σ. (Cases in which two fingers cross two bounding lines simultaneously will be shown

to be unimportant.) Thus, in the example in Fig. 4.2, grasp ρb moving “past” v2 can be viewed as

f1 crossing b2, which is a transition from T2,3,5 to T3,3,5. Each triad has six adjacent triads and thus

six transitions which can potentially leave that triad.

Consider a single triad, T p,q,r, and a single transition into an adjacent triad T s,t,u. Let this

transition represent a particular finger, fi, crossing bj , one of the bounding lines associated with

T p,q,r. For each point, σ� in shape space, S, we would like to know if fixing the hand shape to

σ � σ� and allowing q to vary will prevent fi from crossing bj , and thus prevent the hand from

moving from T p,q,r to T s,t,u. This motivates the following definition.

Definition 4.2.1 A single transition caging region, denoted Ct, associated with adjacent triads

T p,q,r and T s,t,u, is the set of all points σ� P S such that a hand with fixed shape σ� cannot move

directly from T p,q,r into T s,t,u.

Definition 4.2.2 A single transition escape region, denoted Et, associated with adjacent triads

T p,q,r and T s,t,u, is the set of all points σ� P S such that a hand with fixed shape σ� may move

directly from T p,q,r into T s,t,u.

Consider the triad T p,q,r and the transition to T s,t,u in which fi crosses bj , and a given grasp,

ρ � pq, σq P T p,q,r. If we restrict σ to lie in Ct (associated with that transition), then the hand will

not be able to move from T p,q,r into T s,t,u while we allow q to vary freely. Conversely, if we allow

σ to take values in Et, then the hand will be able to move into T s,t,u and thus escape from T p,q,r.
The boundary between Et and Ct is termed a puncture manifold. These can be seen as the colored

surfaces in Fig. 4.4. For hand shapes in the interior of Ct the hand is unable to leave a triad via

a particular transition. However, if variations in hand shape which lie on that puncture manifolds

are allowed, then the hand will be able to leave the triad by that transition. In Section 4.4 we will

consider a transition, t, in which fi crosses bounding line bj . We will show that, for t, the associated

puncture manifold is a two-dimensional surface, which divides S is divided into two regions, Et and

Ct. Each puncture manifolds is the union of four smooth manifolds, each of which results from an

equilibrium grasp in which fi lies at vertex vj (where bj contacts B). These grasps are shown in

Fig. 4.8; the resulting manifolds in Fig. 4.7. Section 4.4 will provide a catalog of all hand shapes
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for which the topology of c-space changes.

We now return to consider all six transitions which allow the hand to leave triad T p,q,r. If a

particular restriction on σ allows the hand to reach any of the six adjacent triads, then it is able to

escape from T p,q,r. Thus, the escape region, denoted E , associated with T p,q,r is the union of the

six single transition escape regions of T p,q,r. Similarly, the caging region, denoted C, associated with

T p,q,r is the intersection of the six single transition caging regions of T p,q,r. For triad T 2,3,5 of the

polygon shown in Fig. 4.3, the caging region in shape space is shown in Fig. 4.4. Valid placements

of the fingers in T 2,3,5 are shown as the red, green, and blue regions in Fig. 4.3.

Thus, for configurations in T p,q,r, allowing σ to vary within C (while q varies freely) will guarantee

that the hand does not leave T p,q,r. More formally, for C associated with T p,q,r, the set FC contains

a bounded component lying entirely within T p,q,r. Returning to our previous discussion of robust

cages, T p,q,r forms an initial caging region, and the pair pT p,q,r, Cq forms a robust caging set of B.

For some values of σ P S, there may be no points in T p,q,r, having that value of σ. This motivates

the following definition.

Definition 4.2.3 A point σ� P S is feasible relative to a particular triad T p,q,r if there exists a

grasp ρ P T p,q,r satisfying σpρq � σ�.

Similarly, a point is infeasible if no such grasp exists in T p,q,r. Practically, this means that if

a point in C is infeasible, then grasps having that hand shape cannot be used to cage a particular

triad, as no placement in that triad have that hand shape. Section 4.4 will discuss the manifolds

which divide the caging region into feasible and infeasible regions, which are generated by the set of

immobilizing grasps associated with a particular triad.

4.3 Multi-Triad Caging

We now consider regions of F other than single triads. In particular, we consider the union of more

than one triad.

Definition 4.3.1 A union, denoted U � F formed by the union of n triads of B, given by U �
�
iPI T i, where I is an index set of n triads of B.

Next we shall determine what restriction on shape space will prevent an initial configuration lying

in U from leaving U .

Remark 4.3.2 It is important to note that the caging region associated with a set of more than one

triad is neither superset or subset of the caging regions of the individual triads.

Consider a particular triad, T p,q,r P U . Assume T p,q,r is adjacent to another triad T s,t,u R

U . Since the transition from T p,q,r to T s,t,u would cause the hand to leave U , the escape region
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associated with this transition must be an escape region for U , just as it was when considering T p,q,r
as an individual triad. Next, assume that T p,q,r is adjacent to a third triad, T x,y,z P U . Since

movement from T p,q,r to T x,y,z does not cause the hand to leave U (as both T p,q,r and T x,y,z lie in

U), the escape region associated with this transition is not an escape region for U . This motivates

classifying transitions as follows.

Definition 4.3.3 Given a union, U , an internal transition is any transition between two triads,

both of which lie in U .

Definition 4.3.4 Given a union, U , an external transition is any transition between two triads,

one of which lies in U , the other of which does not.

Consider the same polygon, shown again in Fig. 4.5, but consider what restrictions on the hand

shape will prevent the hand from leaving U � T 2,3,5 Y T 2,3,6. In this case, the transition from

T 2,3,5 to T 2,3,6 is an internal transition. Thus, hand shapes in the escape region associated with

this transition do not allow the hand to escape from U .

We refer to the single transition escape regions as internal escape regions if they are associated

with an internal transition, and external escape regions if they are associated with an external

transition. The escape region associated with U is thus the union of the external escape regions

associated with all of the external transitions of U . Internal escape regions are ignored.

Consider U � T 2,3,5YT 2,3,6 for the polygon in Fig. 4.5. Placing f1, f2, and f3 in the red, green,

and blue regions will result in a cage which does not leave U , as long as the hand shape is restricted

to lie in H � S, shown in Fig. 4.6.

Unfortunately, the caging region for a union of triads is neither the union nor intersection of the

caging region for the triads composing the union. Consider the union of two triads U � tT pqr, T stuu.
The caging region associated with just T pqr is composed of hand shape region Hpqr along with the

restriction that the initial placement lies in Ipqr. Similarly, the caging region for just T stu is Hstu
with initial initial placement lies in Istu. However, considering Hpqr Y Hstu. Requiring that the

initial placement lie in Ipqr Y Istu will not guarantee a cage, as a hand shape lying in Hpqr with an

initial placement in Istu will not guarantee a cage. Additionally, restricting the initial placement to

Ipqr X Istu does not produce a useful cage as this intersection is the empty set.

4.4 Divisions of Shape Space

This section provides a catalog of grasps which are relevant to three finger cages of convex polygons.

It presents the three types of equilibrium grasp which bound robust caging regions, and considers

all other types of grasps, showing that they do not form boundaries of the robust caging region.
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Figure 4.5: A physical caging region for polygon B, considering the union of two triads U � T 2,3,5Y
T 2,3,6. If the fingers are initially placed in the red, green, and blue regions, restricting the shape
parameter to lie the region H P S (shown in Fig. 4.6) will prevent the fingers from leaving U .

σ1

σ2

σ3

Figure 4.6: A shape space caging regions, H, for a set of triads, U , of the polygon shown in Fig. 4.5.
Restriction of the shape parameters to this region, H will prevent fingers starting in U from leaving
U .
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Each of the three fingers may lie at a vertex of B, on and edge of B, or in free space, resulting

in 27 possible combinations. Simple geometric arguments show that two of these cases result in

puncture manifolds, which divide S into caging and escape regions, and that one of these cases give

rise to immobilizing manifolds, which divide S into feasible and infeasible regions. We discuss other

grasps and show that they do not give rise boundaries of the caging region.

4.4.1 Puncture Manifolds

Here we describe the two dimensional puncture manifolds which divide shape space, S, into escape

regions and caging regions. These are the manifolds in shape space which bound the caging region,

as seen in Fig. 4.6.

For each transition between two adjacent triads of B, a 2D manifold divides S into an escape

region and a caging region. Consider the transition between T p,q,r and T s,t,u, in which finger

fi crosses bounding line bj . The surface associated with this transition is the union of four two-

dimensional manifolds. Each one is results from an equilibrium grasp in which fi lies at the vertex

from which bj emanates. Those four manifolds are shown in Fig. 4.7. Four of the equilibrium grasps

which generate these manifolds are shown with dashed lines in Fig. 4.8. The corresponding points

in S are shown as circles which lie on the puncture manifold.

These four manifolds come in two types. One is formed by the set of equilibrium grasps in

which one finger lies at vertex vj (from which bj emanates), while the other lies on an edge, at

the perpendicular projection of vj onto that edge. The third finger lies in free space, producing

two degrees of freedom. One equilibrium grasps associated with each of these manifolds is shown

in blue and yellow in Fig. 4.8. The puncture manifolds associated with these grasps are shown in

corresponding colors in Fig. 4.7. These manifolds correspond to variations in hand shape in which

one σi is constant (i � 1, 2, or 3).

The other two manifolds are formed by equilibrium grasps in which one finger lies at vertex vj

while the other two fingers lie on edges of B. Two of these grasps are shown in red and green in

Fig. 4.8, and the corresponding manifolds in S are shown as corresponding colors in Fig. 4.7. The

particular grasps are shown as colored circles in S. Other grasps which generate these manifolds

occur when f1 and f2 both lie in the red regions (or both in the green regions) of their respective

edges.

We will now show that the manifolds described above do lie on the boundary of the caging and

escape regions associated with a single transition between adjacent triads, and that other types of

contact do not lie on that boundary. Consider a particular transition, t, such that fi crosses bj . For

t, shape space is divided into an escape region (hand shapes for which fi is able to cross bj) and a

caging region (hand shapes for which fi is able to cross bj). Any hand shape, σ� that lies on the

boundary between these regions has the following property: for σ � σ�, fi can cross bj (for some
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Figure 4.7: Puncture manifolds which divide S into caging and escape regions. These manifolds are
generated by grasps shown in Fig. 4.8.
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Figure 4.8: Grasps in physical shape which result in puncture manifolds. Corresponding points in
S are shown as colored circles in Fig. 4.7.
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variations of q), but for some of the values of σ near σ�, fi is unable to cross bj for any values of q.

Consider the grasp shown in Fig. 4.9, in which f3 lies at vj , and f2 lies on edge ek at the

perpendicular projection of vj onto ek. For this hand shape, σ� � pσ�1 , σ
�
2 , σ

�
3 q, f3 can reach bj .

However, for perturbations of this shape, specifically ones in which σ1   σ�1 , f3 will be unable

to reach bj while allowing q to vary. Thus, this configuration lies on the boundary of this single

transition escape region. Thus configurations in which one finger lies at a vertex of B while another

finger lies at the perpendicular projection of that vertex onto an edge form boundaries between

single transition escape and caging regions in S.

Consider the grasp shown in Fig. 4.10, in which f3 lies at vj , while f1 and f2 lie on edges of

B. Possible movements of the fingers (while keeping σ constant) are shown as orange arrows. For

σ � σ�, f3 is able to cross bj . However, for perturbations which reduce any (or all) of the inter-finger

distances, f3 will be unable to cross bj . Thus this configuration lies on the boundary between single

transition escape and caging regions in S.

4.4.2 Immobilizing Manifolds

Another set of manifolds divide shape space for a single triad into feasible and infeasible regions.

Recall that feasible regions of S for a single triad T i,j,k contain points σ� for which there exits

ρ P T i,j,k satisfying σpρq � σ�. Consider the frictionless immobilizing grasp shown in Fig. 4.11.

A necessary and sufficient condition for a three-fingered grasp to be (second order) immobilizing

is that the three contact normals meet at a common point. The set of such grasps for a triple of

edges forms a two-dimensional surface in contact space. The value of σ� for the grasp in Fig. 4.11

is feasible as the fingers all lie on the boundary of free space. However, reducing any (or all) of the

inter-finger distances will produce a point which is in the infeasible region of S, as a hand with that

shape will be impossible to place in T i,j,k.

4.4.3 Other Grasps

Now consider a hand shape which does not lie on the boundary between single transition escape

and caging regions in S. Consider the grasp where f3 lies at a vertex of B, but f1 and f2 lie in free

space, shown as a purple grasp in Fig. 4.12. For this hand shape, f3 can reach vj . Also, for any

small perturbation in hand shape, f1 and f2 may move in free space while leaving f3 able to reach

bj . Thus, this configuration lies in the interior of the single transition escape region, and not on the

boundary of this region. Similar arguments may be used to show that grasps in which one finger

lies on an edge of B while the others lie in free space, or where all three fingers lie in free space also

do not lie on the boundary of a caging region. Thus, no grasp in which zero or one finger contact

the object form a boundary of a caging region.
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Figure 4.9: A grasp in which one finger lies at a vertex of B while another lies at the perpendicular
projection of that vertex onto an edge of B, which allows the hand to transition from one triad to
another.

Figure 4.10: A grasp in which one finger lies at a vertex of B while two other fingers lie on edges of
B, which allows the hand to transition from one triad to another.
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Figure 4.11: An immobilizing grasp, whose hand shape lies on an immobilizing manifold.

Figure 4.12: Two grasps whose hand shape of these grasps does not lie on a boundary of the caging
region.
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Finally, consider the grasp shown in Fig. 4.12, with hand shape σ� � pσ�1 , σ
�
2 , σ

�
3 q, where f3

lies at vj (where bj contacts B), and f2 lies at another vertex of B. This hand shape also lies

in the interior of the single transition escape region, Et, associated with f3 crossing bj . To see

this, consider rotating the hand (keeping the shape fixed at σ�), as shown in purple. This is a

configuration discussed above, and lies in the interior of Et. Similar arguments (not presented here)

may be made about other types of grasp in which two fingers touch the object, such as grasps where

both fingers touch edges of B, or grasps where one finger lies at a vertex of B, while the other lies

on an edge but not at the perpendicular projection of the vertex onto that edge. None of these

configurations form boundaries of the caging region.

There are four cases in which all three fingers touch B. The cases in which all three fingers

lie on edges of B or where two fingers lie on edges while one lies at a vertex have been considered

above. The final two possible combination (two fingers at vertices with the third on an edge, or all

three fingers at vertices) may be shown to be limiting cases of the three-finger puncture manifolds

described above, and are thus lower dimensional portions of those manifolds.

Thus, after considering all possible type of three-finger contact, only three result in boundaries

of the caging region: two equilibrium grasps which result in puncture manifolds and one equilibrium

grasp which results in an immobilizing manifold.

4.5 A Test of Caging Status

This section describes tests which determine whether a given point, σ, lies in the local escape region

or local caging region, and if it lies in the feasible or non-feasible region. This test may be used in

grasp planning to find particular grasps which are cages of B as well as identify the regions in which

the hand shape may vary without losing that cage. We start by describing a parameterization of all

grasps for which σ � pσ1, σ2, σ3q in which two of the fingers touch edges of B.

Let finger f1 contact edge ei and f2 contact ej , as shown in Fig. 4.13. Let the origin be the

intersections of the lines underlying ei and ej , and let the x-axis lie along ej and the angle between

those lines be φ. Let the distance from the origin to f1 be r1, and the distance from the origin to f2

be r2. Finally, let θ represent the angle between the x-axis and a line running from f1 to f2. The

position of f1 is:

f1 �

�
� r1 cosφ

r1 sinφ

�
� �

�
� r2 � σ3 cos θ

σ3 sin θ

�
� (4.1)

Solving for r1 and r2 allows f3 can be written in terms of θ. This parameterization is the basis for

the following tests.
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4.5.1 Test for Feasibility

Because the test for feasibility is simpler, we will describe it first. For a given value of σ, we can

write f3pθq, as described above. Using the 2D cross product, we can get the signed distance from f3

to ek. This distance takes the form a cos θ � b sin θ � c. If this distance is non-negative, then there

exist finger placements f1 and f2 such that f3 lies in free space, and thus a feasible placement exists

for hand shape σ. This is true when a2 � b2 � c2 ¥ 0. Since a, b, and c are all functions of the

geometry of ei, ej , ek, and σ, this can be easily evaluated for any value of σ. It also gives a measure

of how far from the feasible/non-feasible boundary a given configuration is.

4.5.2 Test for Escape

The test of escape is similar to the test for feasibility. Since the caging region is bounded by puncture

manifolds resulting from both two and three finger equilibrium grasps, we must check both. We start

with a check related to three finger equilibrium grasps, as follows. As above, we can write the position

of f3 as a function of θ and known geometry. We are interested in whether f3 can reach a particular

boundary line, bm. If the finger is able to reach bm (under variations in q), then this hand shape

will be in the single transition escape region, while if it is unable to reach bm, then the hand shape

lies in the single transition caging region for this particular transition. To determine this, consider

the signed distance from f3 to bm, which may be written d cos θ� e sin θ� f ; see Fig. 4.13. Solving

for the zeros of this equation gives us the two values θa and θb, for which f3 touches bm. We then

simply check the signed distance from f3pθaq and f3pθbq to bmK, where bmK is a line emanating from

vm, perpendicular to bm.

The checks related to two-fingered equilibrium grasps are simple. For the particular bounding

line shown in Fig. 4.8, the checks are simply σ1 ¥ σ�1 and σ2 ¥ σ�2 where σ�1 and σ�2 are the minimum

distance from vm to ei and ej , respectively.

4.6 Example

Here we present the cages for a union of triads, U , of the polygon shown in Fig. 4.14. In particular,

we are interested in the union of the eight triads in which f1 lies in R1 or R2, f3 lies in R4 or R5,

and f3 lies in R7 or R8. The shape space caging region, H, is shown in Fig. 4.15. Possible finger

placements in U which satisfy σ P H are shown as the red, green, and blue regions in Fig. 4.14.

Restricting the hand shape to lie in H will prevent the fingers from leaving the initial caging region.
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Figure 4.13: A parameterization of grasps with two finger contacts. This provides tests of whether
a point is caging or escape, and feasible or non-feasible.
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Figure 4.14: Physical caging region for an initial caging region composed of eight triads. The caging
region associated with these triads is quite complicated, and is shown in Fig. 4.15.
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Figure 4.15: Shape space caging region, H for the polygon shown in Fig. 4.14. Colored portions are
puncture manifolds; black portions are immobilizing manifolds. The region is quite complex.
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4.7 Computational Complexity

Each triad is associated with three three-finger puncture manifold and three two-finger puncture

manifolds. These deal only with the geometry local to the triad, and thus can be computed in

constant time. For a set of k triads, there will be at most 6k external edges. Thus, any point

associated with a given union of k triads U can be checked in Opkq time.

Unfortunately, the number of possible unions of triads is combinatorial in n3, where n is the

number of edges of B. Thus, computing all cages for B results in impractically large computational

cost, even for modest n. In practice the single union of triads shown in Fig. 4.14 can be calculated

in seconds, but the number of possible unions makes computing them all completely infeasible.

Several things may be done to improve this. First, any triad for which the edge normals do not

span R2 can be trivially escaped. Thus, any union of triads containing such a triad may be ignored.

Additionally, if a union of triads does not form a connected set, the disconnected components may

be considered separately.

Second, not all unions must be considered to find sufficient conditions for caging. The example

in Fig. 4.14 shows a robust caging region which would be useful for grasp planning even if other

unions of triads have not been checked.

Comparisons of computational complexity to existing algorithms is difficult. Vahedi and van der

Stappen [43] gives an algorithm to find whether a three finger grasp cages a polygon in logpnq time,

which is significantly better than this algorithm, but does not consider robustness.

This algorithm may find robust caging regions associated with a single union of triads, U , by

sampling shape space, as a cost of Opkq per sample, where k is proportional to the number of triads

in U . Neither the work of Erickson, et al [16] or Vahedi and van der Stappen [43] nor are intended to

answer this question. Both Pipattanasomporn et al [27] and Rodriguez et al [38] could give a useful

subset of the robust caging region, but comparing computational complexity is not straightforward.

4.8 Conclusion

This chapter considers caging a convex polygon with three point fingers. It discusses a notion of

robustness of a cage to variations in the hand parameter. It gives a simple decomposition free space

around the polygon into triads, which forms the basis for analysis. It considers robust cages which

prevent the hand from leaving either a single triad, or a union of triads, and shows that the region

of hand space within which the hand shape may vary depends on which triads are considered. It

gives a simple geometric test for whether a given hand shape cages a given union of triads. An

implemented example shows that the algorithm can produce useful caging regions.

The algorithm comes at considerable cost in computational complexity. Based on the shapes
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of the caging regions for relatively simple cases, we believe that this complexity is inherent to the

problem. Clearly there is much work yet to be done in the area of robust caging.

Several ways this algorithm could be improved is by finding a larger set of unions of triads which

do not need to be searched, and finding unions of triads that are likely yield large robust caging

regions. It is possible than analyzing a given union of triads may give insight into which triads

might be fruitfully added to that union. Additionally, methods for finding simple geometric regions

within the robust caging region (e.g. the largest inscribed sphere) would be useful. Extension to

non-convex polygons is desirable but appears difficult. Extension to 3D objects requires extension

to non-convex objects, as convex 3D objects cannot be caged with three point fingers.
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Chapter 5

Conclusion

5.1 Summary of Thesis Contributions

The main contributions of this thesis are caging algorithms for two and three fingers, as well as

deep analysis of caging on contact space, new insights about the topological relationship between

configuration space and contact space for caging, and a catalog of important grasps that underlie

these algorithms. The first two algorithms calculate two finger cages of polygonal and polyhedral

objects in two and three dimensions. The third algorithm calculates robust three finger cages

of convex polygons in two dimensions. All algorithms are supported with novel analysis of the

topology of configuration space, as well as straightforward geometric interpretations of the results,

and implemented examples.

The two-finger, two-dimensional algorithm calculates the initial, intermediate, and maximal cages

associated with an initial immobilizing grasp of an object. This algorithm is based on constructing

a graph whose nodes are include all puncture grasps, which are the points at which the topology

of configuration space changes. Topology of configuration space is analyzed using stratified Morse

theory to show that there are only a few special points where the topology of a simple graph differs

from the topology of configuration space, and a simple procedure for modifying the graph to ensure

equivalent sublevel set topology is given. A catalog of all possible two finger grasps is presented,

producing an easy test as to which grasps may be immobilizing or puncture grasps. The resulting

algorithm is both conceptually simple and easy to implement. An implementation based on real-

world data supports and validates the practical use of the algorithm.

The two-finger, three-dimensional algorithm is an extension of the two-dimensional algorithm to

three dimensions. In addition to handling the complexities of three dimensions, this chapter uses

straightforward geometric arguments to produce a catalog of all possible type of two finger grasps

in three dimensions. This catalog is significantly more complicated than for two dimensions, but a

simple topological test is given which allows any grasp to be easily checked. Additionally, analysis

is made using geometry, making the algorithm understandable without the use of stratified Morse
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theory. The algorithm is simple to implement, and an implemented example is presented.

The three-finger algorithm is the first algorithm which produces exact caging regions for a three-

fingered hand which are robust to variation in the position of the fingers relative to each other while

the object is free to move. Caging regions are given as a region of c-space into which the hand

must be place, and regions of the hand shape are defined which prevent the object from escaping.

These regions are three dimensional, and are bounded by two dimensional manifolds referred to as

puncture manifolds, which are analogous to puncture points in two dimensions. Straightforward

geometric descriptions of these puncture manifolds are given, along with simple tests to determine

whether a given hand shape lies within a particular caging region.

5.2 Opportunities for Future Work

There are several direct extensions to the work presented here. Computational complexity of the

three finger algorithm make it impractical to find all caging sets for polygons with even moderate

number of edges and sides. This is because different unions of triads produce different caging regions,

and the number of unions of triads is combinatorial in the number of edges of the polygon. However,

many unions of triads do not form useful cages. For example, unions containing a triad whose edge

normals do not span R2 can be trivially escaped, and unions which are not connected can be treated

as independent unions. Work to reduce the number of triads could improve the computational

complexity of this approach substantially.

The three fingers work could be extended to non-convex polygons. The connectivity of different

triads is substantially more complicated for non-convex polygons. This complexity could be treated

using a graph structure similar to the two-finger algorithms presented here, or using a convex decom-

position of free space. Analyzing the puncture grasps, which are manifolds for three fingers (instead

of points, for two fingers) would be the predominant challenge.

Other than a work by Pipattanasomporn [26], very little of the caging literature has considered

uncertainty in object shape knowledge. Much of the usefulness of caging will relate to grasping

objects whose shape is determined online from vision sensors. The object models generated in this

way will have uncertainty in the position of vertices. In addition, information about portions of the

object will be missing, either due to occlusion by other object, or, for three dimensional objects,

occlusion of the back side of the object by itself.

The two finger algorithms presented here could be extended to deal with uncertainty in vertex

position as follows. Uncertainty in vertex position creates uncertainty in the inter-finger distance

associated with different nodes of the caging graph. A scalar metric on this uncertain distance could

be developed. For a bounded uncertainty, then worst-case distance could be used. For unbounded

uncertainty (e.g., a Gaussian distribution) then some tradeoff between mean and variance could
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be used. This metric would replace the inter-finger distance function in the two finger algorithms,

and possibly the three finger algorithm. For the two finger case, one complication is that some

vertex-edge nodes might only exist statistically.

The two finger algorithms could also be extended to consider updated information as the vision

system refines its estimate of the object. For the two finger algorithms this would probably involve

graph search replanning.

More generally, future work in caging should be aimed at making caging useful for grasping using

real robotic hands. To do so, progress is needed in two main areas. First, most caging needs to be

extended to cases involving more than two fingers in three dimensions. Currently algorithms that

consider more than two fingers are restricted to two dimensions, and algorithms in three dimensions

are restricted to only two fingers. An algorithm that analyzed four or more fingers caging non-convex

polyhedrons in three dimensions, even if it provided approximate answers, or subsets of the entire

caging region would have applications on real robotic system. Second, errors in finger placement or

object models are a major limiter in grasping, whether involving caging or not. Caging algorithms

which provide robustness to these forms of uncertainty would improve grasping performance on real

world systems. The robustness provided by methods in Chapter 4 is a first step in this direction.

Extensions to four or more fingers in three dimensions might follow from several different ap-

proaches. Algorithms which project a set of finger positions to a single parameter [29, 38] could

applied in three dimensions. These algorithms would be particularly useful if projections functions

can be found which map nicely to single parameter gripper. Contact space algorithms, such as those

presented here, could be extended to three dimensions. For more than two fingers, important grasps

exist in which some of the fingers do not touch the object - these cases would have to be incorporated

to contact space, possibly with a concept similar to the contact space tunnel curves presented here.

In two dimensions, all puncture grasps occur (generically) with only two or three fingers touching

the object. Thus, extensions to more fingers (still in two dimensions) could involve considering them

as sets of three fingers, then synthesizing the resulting analysis. There are likely similar bound on

the number of fingers that generically result in puncture grasps in three dimensions. Extensions to

the three finger algorithm presented here to non-convex and three dimensional objects, and to more

than three fingers, appear possible, but computational complexity will be a significant challenge.

Because caging essentially involves proving lack of existence of paths, progress in caging might come

from planning algorithms, particularly algorithms that could be efficiently updated as configuration

space changes due to changes in the relative position of fingers.

This work has made a small step towards defining a robust cage for three point fingers, as have

Pipattanasomporn and Sudsang [26] for two point fingers. Extensions of robustness to the position

of the fingers relative to each other, position of the fingers relative to the object, and geometry of

the object would improve the applicability of caging to real-world system.
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Appendix A

Stratified Morse Theory Proofs

This appendix contains proofs of Proposition 2.4.4 and Theorem 2.6.7.

Proposition 2.4.4. The two-finger puncture grasps of B are saddle points of dps1, s2q in U .

Proof Let pq1, σ1q be a puncture point in C, and let ps11, s
1
2q be the corresponding point in U . When

the fingers’ opening parameter, σ, varies in the interval rσ1�ε, σ1s, each fixed-σ slice of C contains

a 3D cavity surrounded by the finger c-obstacles. In a local neighborhood of pq1, σ1q, the fixed-σ

slices of the two c-obstacles overlap and their surfaces intersect along two curves—one from the inside

of the cavity and one from the outside of the cavity. Call this set of curves αpσq. The curves of αpσq

appear as pairs of locally distinct contour segments of dps1, s2q in U . These contours approach the

point ps11, s
1
2q as σ increases in the interval rσ1�ε, σ1s. Next consider the interval rσ1, σ1�εs. When σ

varies in this interval, the fixed-σ slices of C contain an expanding puncture in a local neighborhood

of pq1, σ1q. The c-obstacle surfaces in each fixed-σ slice intersect along two distinct curves in this

local neighborhood. Call this set of curves βpσq. The curves of βpσq also appear as pairs of locally

distinct contour segments of dps1, s2q in U . These contours move away from ps11, s
1
2q as σ increases

in the interval rσ1, σ1�εs. The point ps11, s
1
2q is thus surrounded by two families of contour segment

pairs. The family αpσq approaches the point ps11, s
1
2q with σPrσ1�ε, σ1s, while the family βpσq moves

away from ps11, s
1
2q with σPrσ1, σ1�εs. The point ps11, s

1
2q is thus a saddle point of dps1, s2q in U . l

Theorem 2.6.7 requires some background in stratified Morse theory [18]. Stratified Morse theory,

or SMT, captures the changes in the topology of the fixed-σ slices of the free c-space F in terms

of the critical points of the function π : F Ñ R, given by πpq, σq � σ. When σ varies in the open

interval between adjacent critical values of π, the sublevel sets F¤c � tpq, σq PF : πpq, σq ¤ cu are

topologically equivalent (homeomorphic) to each other. In particular, the path connectivity of the

sublevel sets is preserved between critical values of π. Any path connectivity change in the fixed-σ

slices of F must occur locally at a critical point of π in F .

Let p be a critical point of π in F .1 The type of a critical point is characterized by the behavior

1At a critical point of π the gradient, ∇π � p0, 0, 0, 1q, is orthogonal to the submanifold of F containing this point.
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of π on two complementary subsets of F . The first set is the submanifold of F containing the point

p, denoted M. The other set, the normal slice at p, is constructed as follows. Let Dppq be a small

disc centered at p, which intersects the submanifold M only at p and is transversal to M. The

normal slice, denoted Eppq, is the set Eppq�DppqXF . The behavior of π onM is characterized by

the Morse index, denoted κ, which is the number of negative eigenvalues of D2πppq evaluated onM.

The behavior of π on Eppq is determined by the lower half link set, denoted l�. It is defined as the

intersection of Eppq with the level set Fc�ε�tpq, σq PF : πpq, σq � c � εu. Thus l��Eppq X Fc�ε,
where c�πppq and ε¡0 is a small parameter.

According to SMT, a critical point p is a local minimum of π in F if and only if κ � 0 and

l� � H. The condition κ � 0 ensures that π has a local minimum along the submanifold M. The

condition l� �H ensures that π has a local minimum along the transversal directions in a local

neighborhood of F centered at p. The following lemma specifies under what condition l� is empty

at p. Each finger c-obstacle, CBi, is a four-dimensional set in C. Let ηippq denote the outward unit

normal to CBi at a point p P bdypCBiq. In the lemma, f̃ is a smooth function defined on C (which

can be thought of as R4), and f is the restriction of f̃ to the free c-space F .

Lemma A.0.1 ( [33]) Let f :FÑR be a Morse function on the free c-space F . Let p be a critical

point of f on a submanifold S of F , such that S is the intersection of the finger c-obstacle boundaries.

Then a necessary and sufficient condition for the lower half link of f at p, l�, to be empty is:

∇f̃ppq � λ1η1ppq � λ2η2ppq, (A.1)

for some strictly positive scalars λ1 and λ2.

The lemma will be used in the proof of the following theorem.

Theorem 2.6.7. Let pq0, σ0q be an immobilizing grasp of B, and let pqesc, σescq be the maximal

puncture point associated with pq0, σ0q. The union of the double-contact submanifold S with the

tunnel curves, SYT , is sublevel equivalent to the connected component of F¤σ containing pq0, σ0q

for σPrσ0, σescs.

Proof Let p�pq, σq denote points in C. The connected component of F¤σ containing the point p0�

pq0, σ0q may contain other immobilizing grasps. Suppose it contains only one additional immobilizing

grasp located at p10�pq
1
0, σ

1
0q (the proof extends to multiple immobilizing grasps). Note that p0 and

p10 lie on the double-contact submanifold S. Since these are immobilizing grasps, they are local

minima of the function πpq, σq�σ in the free c-space F . The points p0 and p10 initially lie in their

individual caging sets. As σ increases beyond σ0, the two caging sets eventually join at a puncture

point, denoted p1�pq1, σ1q, which also lies in S.

Let z, z1 PS be two arbitrary points in the connected component of F¤σ containing p0. Let us
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show that z and z1 can be connected by a σ-sublevel path which lies in S Y T . If z and z1 have

σ-decreasing paths in S Y T leading to the same immobilizing grasp, the union of these two paths

connects z and z1 in the sublevel set F¤σ. Suppose z has a σ-decreasing path in S Y T leading

to p0, while z1 has a σ-decreasing path in S Y T leading to p10. In this case p0 and p10 lie in the

same connected component of F¤σ, hence σ ¥ σ1. The puncture point p1 can be connected by

σ-decreasing paths in S Y T to both p0 and p10. Hence p0 and p10 can be connected via p1 by a

σ1-sublevel path which lies in S Y T . Since σ ¥ σ1, the points z, z1, and p1 all lie in F¤σ. It follows

that z and z1 can be first connected to p0 and p10, which can be connected via p1 by a σ-sublevel

path in S Y T . This establishes the sublevel equivalence of S Y T with F¤σ.

Starting at a point p PS in F¤σ, let ps1, s2q be the corresponding point in contact space U . If

ps1, s2q is not a local minimum of dps1, s2q in U , follow a d-decreasing path in U until reaching a local

minimum. This path corresponds to a path in S which starts at p and ends at a local minimum

of the function π in S, denoted p�. There are now two cases to consider. In the first case p� is a

local minimum of π in a local neighborhood of F centered at p�. In this case p� is necessarily an

immobilizing grasp of B and the proof is complete. In the second case p� is a local minimum of π

along the submanifold S, but not a local minimum of π in a local neighborhood of F centered at

p�. According to SMT, the lower half link of π at p�, l�, must be non-empty in this case.

We now show that the condition l��H implies the existence of a tunnel curve, which starts at

p� and moves away from S in the free c-space F , along a σ-decreasing path that eventually meets

S at a lower σ point. The disc Dpp�q mentioned in the definition of l� lies in the plane based at p�

and spanned by the finger c-obstacle normals η1pp
�q and η2pp

�q. To a first-order approximation,

the normal slice at p�, Epp�q � Dpp�q X F , is the set of tangent vectors:

Epp�q �
 
u P Tp�C : η1pp

�q � u ¥ 0 and η2pp
�q � u ¥ 0

(
,

where Tp�C � R4 is the tangent space of C at p�. Note that Epp�q forms a 4D cone pointing into

the free c-space F at p�. Let σ� be the σ-value of p�. Since l� is non-empty, all level sets of π just

below σ� have a non-empty intersection with Epp�q. Since πpq, σq�σ, this means that Epp�q has

a non-empty intersection with the half-space H �tpq, σq P C : σ¤ σ�u. The non-empty intersection

Epp�q X H consists of tangent vectors pointing into F along σ decreasing directions. Any local

motion along these directions moves away from the submanifold S into F along a σ decreasing path.

Moreover, one of these tangent directions must be tangent to the boundary of either CB1 or CB2 at

p� (otherwise Epp�q XH must be empty). The σ decreasing path starting along this direction and

staying on the respective finger c-obstacle boundary has the property that its corresponding finger

contact remains fixed on the object’s boundary. This σ decreasing path moves away from S, and is

a tunnel curve described in Section 2.6.
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Finally, we show that the tunnel curve which started at p� eventually meets the submanifold

S at a lower σ value. Along this tunnel curve, one finger retracts toward the other finger which

remains fixed on the object’s boundary. If the retracting finger never hits a new edge of B, it must

eventually hit the stationary finger. At this instant the pinched fingers can escape to infinity. But

the initial point, p�, lies in the connected component of p0 within the sublevel set F¤σ for σ ¤ σesc.

An escape to infinity can therefore occur only for finger openings σ ¥ σesc. Since the σ-decreasing

tunnel curve started at p� with σ�   σesc, an escape to infinity is not possible. The tunnel curve

must therefore meet the submanifold S at a lower σ value. l
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