INVESTIGATION OF BEFRRCT OF mlUERGY DISSIPATION

Thegis
by

Rasil Staros

In Partiai Fulfillment of the Requirements for the
Degree of

Aeronautical kngineer

California Institute of Technoloegy
Pasadena, California

19580



!

e

}..J.,
'

ACKNOWLEDGNMENTS

The author wishes to express his apopreciation to
rrofessor H., J. Stewart for his constant help and guid-
ance during the course of the work. Sincere thanks are
also due Dr, Allen &n, Puckett for his suggestions and
assistance in the initial Tormulation ol the problem,
and. Miss Louise Iarussi and krs, Mary Arthur for their

agsistance in the preparation of the manuscript,.



i
Y_Je
Fete
fle

1

ABSTRACT

The flow field behind a detvached shock wave, created
by a blunt body in a supersonic air stream, is analyzed
with respect to energy dissipation through the asction of
viscosilby in the Iluid sitress {ield near the axis or sym-
metry, 1his energy dissivation is related to the rise in
entropy, and congequently to lhe adaitionel drop in resep-
volr pressure beyonu that given by the Rayielgh pitot tube

the caleculationg of an

O

formula, The method is applied t©
apparent defect in reservoir pressure, for more precise
calculations ol Iree stream Mach numbers using total nead

tube measurements,
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SYHBOLS

}J&

radius of pitot tube at noss

speed ol sound

[_J&

specific heat at constant pressure
function of
wedge stagger

constant defined by Equation (24)

N

constant defined by Equation (£5)
parameter, reduced entropy level at X = 4
parameter defined by fZquation (19)

liach number »

pressure

rate of inflow of heat ver unit voiume due to
thermal conductivity

gas constant

Reynolids numoer, defined by Hquation (22)
change in entropy

boundary layer thickness at stagnation point
temperature

veleoclty in x direction

velocity at infinity, potential =solution
velocity in y direction

velocity in z direction

coordinates, orthogonal axes

angle of shcock wave to free stream Tlow direction
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stance of detachment of ghock from

pitot tube

location of
goiution

stagnation point for potential

parameter in boundary layver problem
wedge hall angle

coefficient of thermal conductivity
coefficient of viscosity

kinematic viscosity = /Z}

density

ndtl number =
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reservolir conditions
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IT. InTHODUCTION

d. ueneral

The most direct method Tor determining the state of =
Tiuid at some arbitrary point regulres knowledge of three
lundamental flow parameters, which may ve, for instance,
pressure, temperature, and velocity. Therefore, three 1ltems
of data must be avallasbie, However, it is possible to de-

a

termine one or two of these parameters at some point in the

fluid other than the one for which 2 complete description

£ £y

of the state of the luid is desired, This possi

i

i1ity is
dependent on the availability of this supplementary informs-
tion, ahd on the existence of a relationship, in a convenient
form, between the state parameters Tor these two points,

In 2 subsonic wind tunnel, the local reservoir pressure
and temperature, except in the boundary layer, are assumed
to be equal To the pressure and temperature that actually
exist in the reservoir. This assumpbtion implies a condition
o1 isentropy for the entire flow, The static pressure may
be determined by & local measurement at the wall without
disturbing the fiow, and assumed constant across the sectlion
of the tunmnel., Thus, appiying the condition of isentropy,

the local lMach number, or velocity, may be determined from

the tfollowing relations:

Lol )T 2
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1T the local stagnation pressure is not known, owing

a

to entropy changes along the channel elther by cooling or

o

oy dissipation in a boundary layer, an additlonal measure-

made. A totai head, or pitot tube, serves
for this purpose. However, here it is assumea that tne

flow decelerates isentropically to

)
@
U
ct
)
Y
s
©
ct
}..J
O
=
Q
ot
=
ot

ov

of the tube, In this case, the local conditions may again
be determined from the relations above,
£ the flow velocity is greater than a Kach number of

1.0, these same relations

Q_"

2re apolicable, However, if the
local stagnation pressure 1ls not known, the determination

as convenient asg in the subsonic
case, 'The decelerstion to the nose of the total head tube
is not isentropic, for a detached shock wave wust form 1n

the tube, Immediately in front ol the stagnation

voint of this body the shock wave i1s normal to the axis of

the body; conseguently, the fluid can pbe treated as il it
actuslly traversed a normal shock, Appliying the known re-
lations for the change in the total head across & normal

shock, ana further assumi that the Tlow behinua tne shock

can again be treated as an lsentropic phenomenon, the local
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reservoir pressures in the 1luio bpelore and alter the de-

)

tached shock are reiated Dy the Tollowing expression:

= L
(o) . 2r z _ - =/ * , V&'
:fj = (5T 5 / rf/ ? / (<)

From the relation oatweenvﬁ amu/éomvcn above, the =xRayleizh

pitot formula is directly deducible,

2. )’f///z‘“%—://_/y—, ()
s ek

It the local static and pitot total head pressures are

known, the Nach number can bDe determined from Zguaticn (3).

B. lach Number Determinati in a Supersonic wWind Tunnsl
There exlst four direct and reiatively accurate methods

by which it 18 possible to make a fairly accurate determi-

Crh

[6]

nation of the Mach number in the test section of & gupersonic
wind turnnel.,

ne more

thar a measurement of the reservolr pressure and & meagsure-
ment of the static pressure with an orifice located at o
convenient point in the wall of the test section, The lach
number can be determined from Equation (la). For high pre-
cision, or Tor complete axial surveys of the variation of
Mach number along the center Lline of the test section, this

simpie procedure is not very useful,
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The second method 1s actually a refinement of the tirst.
The reservoir pressure ig measured as before; however, the
static pressure is now measured at orifices located on both

sides of a sharp wedge or smalli total included angle., Adjust-

ment of the wedge in piltch to zero the difference bebtween the

Single Wedge llethoc for Determination
of Free Stream Mach Number
two static pressures /& and /& guarantees a Flow direction
parallel to the axis of wedge, and assures a change in {low
ailrection for either side to eqgual the halil angie o the

wedge, assuming lsentroplce low everywhere, excepl across
the ovlique shock, the true Hach number ahead oi the shock
wave can be determined from the following obligue shock

relations:

s, 27 7 n? _ —
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and the isentropic chemnel pressure relation expressed in

mguation (1la).
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For specilic values of p,, & , and ps,, 1L is possible to
determine 4 , M , snd g . This mecthod has the additional
king possible a complete survey of pressure
and Mach number continuously along any line parailel to
the center line of the tunnel, throughout the entire test
section, The method 1s still applicapvle ii the wedge is

not adjustable in pitch; here, however, the interpretation
of data is a little more lengthy,

The third method is more elaborate, In addltion to
the wedge of the previous method, an adaditional fixed

wedge (II) is mounted in the tunnel

just above and down-

stream of the first wedge (1), end arranged such that the
MM& Weoece T
Wevse I
Figure 2
Double Wedge liethod for Determination
of Free Stream lach Number

stagger (h) and angle of pitch of wedge (I) are both indepen-
dentally adjustable, An initial determination of' f; is made
when the entire disturbance cs by wedge (I) lies complete-

1y downstream from the

surface approximately parallel to

axiall

orifice,

fic

Weage (I), with

the flow, 1g then

e /%,ljes on the ch

the upper

moved

aracter-
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igtic of the oriiice /g. ihis position ig determined by
observing the point where the orifice j}j5,, counected to a
nigh vacuum, has the maximum eiiect on the value oi g,
lne value of 4, , aifter weoge (I) is pitched until pfsg
agrees with the initial determination oi f4,, 1s then the
free stream static gressure, The measurement is acoually
made behind a douvle family of llach waves and expsansion
waves created vy thne vounuary lLayer aiong the upper suriace
ol the wedge, The cumulative efiect 0l these waves ig
sensivliy zero, as Lndicated vy the reburn od /g co 1ts
originel value. aAgain, the lach number may be gulickiy

Jetermined by Bguation (la).

Tne tfourth method ls simply & determination of the

tobtal head behind a detached shock wave, DBy alirectly

?“é

apeiving the Rayleigh ollbot btuve Dormula, the lach numbe
it (e £ i ]

can pe determined,

2l

Ce =mxverimental Bvidence

In the calibration of the 1l2-inch supersonic wind
tunnel at che Jet Propulsion Laboratory, the singlie static
wedge method was used ior lMach number surveys. However,
both the double wedge method and the total head tube
method were employed as checks on the vrimary method,

Very good agreement between the Two static wedg

wes observed abt M = 2,174, snd a




= 2,176}, not creditanle to lack of

b
fts
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meny precision, was obgerved for the Lotal head tubs method,

ERY) T S I R I - P B S - - o oy . a2 e i 5 4
lne observed data indicated an aoparent derect in 4, as

G
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at higher Mach numbers, there is evidence that Lhe

P - FE { - ey 5
dlssgreement 128 more pronounced,
1

gate The effect ol eneryy alssipation behind the detached

=
&)
=
<
o
}.—la
1453
(o))

shock wave as the csause iscrepancy, and to de=-

termine the order of magnitude of this effect in surersonic

total head measuremenits,
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arnd Assumptlions

@

A PTechnlgu

For pitot tubes, or other vilunt of revoluition

in a superszonic flow, the distances of detachment ol the
shock waves are usualliy very swmail, This 1s especially

true lor very high kach numbers,

from Reference (1), illustrates the variation ol this
disbtarice with dechi number, as measureld L sxperimental
Drograms, wWiohin the cecachment span, the Tlow must aojusit
from the conuivions wihich prevaill immediately downstrean
from the detached shock Lo Che conaitlions which prevall

a

on the suriace ol the vouy. This action incicates that

ior sulliciently hizh supersonic velocities the fiow ilelu

in this region is characterized o0y iarge veloclly stresses,
I the viscosity of the fiuia is not zero, ecnergy alssi-

within the detvachment span l1s separateu into two zones,

J-do
C‘i”‘

V3

y

depending on the role o geosity in determining the

character of the flcow, The upstream zone is considere
Lo possess the potential Type ilow pattsern of a fluld

without viscosity. In this zone the Ilow velocily aloug

the axis of symmetry is constructed Lo match the veloclty
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3

ol the Tluid immediately downstream Irom a nc 1 shock

wave, =t the aetvachment alstance J-from tne nose ol the
ody,., In this zone, the subsequent introductlion oi vis-
cogity lLls considered to proauce a negligivle eirifect on

the velocity pattern given by the potentiali soiutlon, such
that, o a firsv approximation, the dissipation ol energy
througlout this zone can de convenlentiy ootained, This

is elffectively the first step of an iteration procedure

to obtain the exact nature of the flow in a region where
the viscosity is surficiently low to account for only a

. - - - (. .

small perturbation on the fiow field as delermined Lor a
perfect {iuid,

The downstream zone 1is the boundary layer on the nose
of the body. The boundary layver thickness is defined to
be that daistance from the nose of the body where the eifect
of viscoslty in shaping the form of the flow becomes negli-
ginly small, For this apolication, it is considered to be

3

that distance beyond which the velocity gradient along the

o

ax of symmetry, as given by the boundary layer soiution,
spprocaches a constant within 0.1%, At this distance, the
parameter included in the boundary layer probliem can be
ad justed to provide the matching of velocities of the po-
tentilal solution to that of the boundary layer solution,

Since the potential solution or the upstream nart is con-

structed under the assumption of zero viscosity, while the
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boundary ilayer solution considers a Ifinite viscosity for
ail of the fluid, it is impossiole to provide a matching
of both the velocity and the velocity gradient at & common
point, However, a matchling of the velocity gradients to=-
gzether with the velocities can occur at two different
points, one pertaining to the potential solution and the
other to the boundary layer solution, This can be in-
terpreted as a virtual increase in the radius of the body,
amounting to the distance between these points, in the con-

struction of the potential solution,

Figure 3

Axial Velocity Profile in Region of
Nose of Pitot Tube for both Potentisl and
Boundary Layer Solutions

The change in entropy for an adlabatic process is

given by

7 Gi = 42+

Q
ik 7 24 (6)

A
2
where

o7 90‘)?*“%"0)9%5%00%’1
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and where 2[, the dissipation function, is given by
7 do . dr , ] St )t 2 )
jé = -§?/4 ZE 2?’#—:%? + 2)“z4%%} +(%%7 %é%;{/7
4 0/ J 2
R /R E R

See Reference (2), article 3b8, Q represents the rate
of inflow of heat per unit volume due bto thermal con-
ductivity.

In the vicinity of the axis of symmetry, all veloc-
itles and velocliby gradients, except « and %% , are
taken to be zero., 4lso, all temperature gradients,
except gé?, are assumed zero, This is inferred from the
symuetrical character of the flow in this region,

Bguation (6) then reduces, for steady state flow, to
X

ng,éf=/3{/%/z+ PL%(/\JC_/[/ (6a)

where A is the coefficient of thermal conductivity,

Assuming A constant and also assuming that

nunber )

il
E;
]
~
o
H
=
]
B.
pae

Lqueation (6a) can be written in eithsr of the two Tollowing

Torm

6]

»
.

“T g5 - EEY 44T
(7)
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The second form of Hguation (7) follows for no heat transter
chhirough the body.

From this, it appears that the effect of conductivity
may be of the same order of magnitude as the effect of
viscous dissipation., 3Since no simple integral of the bound=-
ary layer equations (corresponding to Appendix A) is known
which considers the effect of heat transfer, it is not
possible to carry out the complete solution; consequently
the eifects of heat transfer will be neglected in these
calculations,

Neglecting variation in T and » and neglecting the

heat transfer terms, Equation (7) becomes

N WY g

Using the velocity and veloclty gradients as determined by
the method described above, the entropy change through the
detachment span can be evaluated, Yrom thig change the

drop in reservoir pressure can be determined, using

As = /8/007 /{— @)

For A5 << £ , this equation reduces to
é/ A5
© = a/
/ F 2 (7

The change in entropy through the detachment span will
obviously be a function of the free stream Mach number li,.
Consequently, in line with the assumption that the change

- /
in entropy is small, the approximation that/ﬁ; :/L and the
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application of the Rayleigh pitot formula (Eqg. 3) allow

the determination of an uncorrected My for use in evalu-

ating 4J, and subsequently lead to the evaluation of a

corrected M, through Kguation (92a).
=l

B., Matching Potential and Boundary Layer Solutions
/ Z
a4
¢ I T~
2 /s [
—_——._/* ‘ = , / —— —_
«, X Az |
| &
/
SHOCK WAVE W=
b
5 N— Bounpary LAver

Figure 4
Sketch of Flow Geometry in Region of

Noge of Pitot Tube
In scecordance with the definition g

for the boundary layer thickness, Irom

Appendix &

7 = <, 00

¢

i

£ (r0)
(%)



Hence, at x= T

U, = =290 CAVKV:é

/Hz,_ -
&= —Ar

From the potential solution for the region outside
the boundary layer, the velocity and the velocity gradient

along the axis of symmetry are

F
0(;_ = —d-‘f L{‘ £

r +a)”
duz _ F__a’
Ax = 7L g

where - [/ is the velocity at infinity for the potential

flow, ALt x = €

5
—_ —_ a
U, = U o~ L (Z%—;j——?
d4 _ 70 a’
K (cra)?

Bqueting velocities and velocity gradients at these points,

—£. 70 //5")5 = -4 fd/?;aa/%’
7
20 = TU

from which /? and € can be determined, Assuming f% </,

/= 2;’_5_(//1‘2&6—1‘0/5/2/ (/)



E = o771t = /éﬂf'/ﬁfy ‘ (r2)

At X=d-¢ » the velocity along the axis of symmetry
in the potential solution is matched to the velocity of
the luld immediately downstream irom the detached shock
wave, Thus < can be expressed in terms of the detachment
distance o » the radius of the tube, and the free stream

velocity.

-ty = - # &[Z/V ~ J’é%ii ~ 67@557217

z—-f-—J-z—— Zé(z;z__J—+ /2.6 B ﬁ_% 0(21:0
M/a/ a ﬁ/

Since for most practical cases

g Z
LLZZ > =

the second factor of (L can be neglected, leaving

W = «, 2 //3/
I
From the pasic equation for the velocity change across

a normal shock wave

L
U, = Co _2_ / A+ %;l A{t/ ¢
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Thus

¥
= _@ 2 //+ :&J//i/z 7
F00+1) Yo M, z ‘
For My > 3, 4%. approaches 0,14 with negligible variation
in this value for higher Mach numbers, See Figure 5,
With this restriction, Hquation (13) can be written
v
U = _Zco {//.+ LJ,%i}Z (15)
A Z

C. Sodution for Entropy Rise,

Using Potential Form for

Velocity Distribution

The entropy change through the detachment

span, except
for the boundary layer, can be determined from Equation (8)

| %

where, from potential form of velocity pattern,

AS = A
77;7

L, = o _at _ L
(x+a)?
?u; _ U _za
X (r+a)?

The integral can then be simply evaluated,

A5 = /2 I/"Q/M -

-t L /e /F Z 7
" T T A

€
# —é’i— 7‘“”_’/~23/3 £ - ’/’://{
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Figure 6 is a plot of the value of this expression

o,

as a function of 47d . For

€ = 195 /,ﬁzz’/ 2 (r2/
ST

the change in entropy across this portion of the de=-

tachment span can be expressed in the form

A = K& ;fd’//,/ /aj/z./s/ ad ) - /,ooj—f—L] (r¢)
7;"& £ o

where

(R Vs Uy
75 &

represents the value of the integral at x = J .,

De Solution for Entropy Rise Through Boundary Layer

The entropy change through the boundary layer can ve
evaluated in two ways. The simplest method, and pernaps
in practice the most accurate method, is to integrate
stepwise, using the tabulated data Irom the boundary layer
soiution, The other method is to choose enough terms of
the series soliution for the velocity in the boundary layser
to provide an accurate representation of this velocity,

and then integrate as before, using mguation (8). If two

terms are selected, then
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U, = »/.3/71/7g/2,/5x2 - 0.335552/)"

dae -z?éfﬁ//%é/g}? x £ ﬁg/ﬂ‘xz

A X
as given in Appendix A, Substitution into Hguation (8)

with proper limits
[~4

As = Au' / _Z% /5%%/1¢7k

whe re

A

~
I
N ’L\,

The result is, after the integration is carried out,

|

AS = 15 LU
% a

To integrate stepwise, Hquation (8) written in terms
of the boundary layer solution nomenclature becomes
z k4
’ //
A5 = {/l)(';é (77) (/7
A o)

Evaluating from data in Appendix A, the result is

A\

‘a

N

The evaluation of the change in entropy using the two

term approximation ior the boundary layer veloclilty agrees

fairly well with this value,
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Entropy Rise Bguation

The total change in entropy through the entire de-

he sum of the entropy changes

o
a3
%
i~
fo
@
b
[
S’i‘
g

tachment spsan

2

given by E

AS = B U [ L fog 21d ald g.eff-L/ (18]
7. a é j VA

Y

simple usable relavion,

To reduce sguation (18) to a

Bguation (14) is rewritlen as

jsie

where
77 - J’//://J/a. /é/,//+ %—1//,2/2 ”7

4 — 2 s o » 2
= 7, within the approximation of

In eddition, since 75

constant 7~ throughout the entire detachment span, the

kinemavic viscosity within the detachment span can be
approximated by

(290)

vl s L

where ;7 1is the kinematic viscosity based upon reservolir

conaitions, This assumpbtion is valid for the entire de-
tachment span provided that

g (z/)

Lo =y
ﬁ)//
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which 1s In iine withh the assumption that the entropy

-

change through the detachment span is small, and z2iso

EX

provided tha

V44

vyl o= S

Letting

L = ace
VS

(z2)

represent a Reynolds number based upon the radius of the

pitot tube head, the reservoir speed of sound, and the

reservoir kinematic viscosity, Equation (18) then reduces
to
/
S = 4822 s ) S Re + Jog By Lo —437—4L] (23
4 Ae /)7 %//j j/&]/o
Defining

£ (29)

|
~
Hx
~10

"

g Sog B b AzT - L (25)
£ 57

voth of which are funcitlons of the Mach number, sguation

(23} can be written

AS = deez AV///&J Le + £, (z¢)
e



-2 -

From Bquation (9a), continuing the assumption of Equation (21)
b

= / + 28/ AK,Z[)27 Ae %—A?/7 (27)
/o e

o
he parametvers Ky and Kz are plotted against My in Figures 7

5]

L

and 8, The values of é&_ used in the evaluation of these

iy

parameters as a funcition of Mach number are selected from

the curve drawin in Figure 5.
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11T, RBSULTS

Lo provide some measure Ior evaluating the signiii-
cance of hguation (27) in predicting the drop in reservoir
pressure ratio acrdss the detachment span, several compu-
tations were made based upon assumed initial conditions,
The results are as rollows:s

Case

105

I

7. = gY0 ° Rankine

Sfo = 777 /é./.fy. in. abdsol.
/ﬂ,, = 0.0145 slvgs Sevbis A
a = 0.0117 Fect

M, = 170

whereupon
SO0 4 /0 ol
o.70 /7‘ z/.ft'c * CRankine

/22” = /. 000067
M, = /.70

s
i\

D
.

The values selected here for initial conditions agree with

those specified in apvendix 5, or Reference (H)., The step
integration technigue employed in Appendix 1B yielded the

valuses

a5 = 0. 08¢ 22 sec? “andine

/bég; = /. 000050
M, = /.70
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These two resulis are in fair agreement. However, 1t is to
be noted that 1T correcitions were made o the values of kg
and Ke, which are strictly nscessary owing to the lack ol
correspondence in the value of %21 used in their evaluatlion

to that of Appendix 3, the results by The theoretical ap-

proach of Equations (26) and (27) becone

A5 = o o0Fé /}/Z/J—CCL C Ravhkine

4

/éd//” = /. 00005 D

o

, = /. 70

The agreement is then very good.
Case IT

-

nitial conditions of Case I except that

s

Using the same

now My = 2,00,

it

e s 0 x ro”
AS = A A7) sec?t ©fankime

/V;n,, = J oo FY
Moo = 9 017

Case IIXI

Using the s

gy

e initial conditions o

B

Case II, except that
now the radius of the tube end is reduced by a factor of b,

/Fe = /.0 X /03
A5 = 57 6 1%/ sec? © fawmfine

ﬁyu = /0336

Mo = G 067
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IV, CONCLUSIONS

o -

The results of this i: retion incdicate that the

E

3

®©

[93]

ot

s
as

energy dissipation in the flow fileld behind a detached
shock wave, created by a bilunt body in & suversonic air
stream, 1s quite small and produces onliy a minor change
of the reservoir pressure at the sbtagnation point from
the reservolr pressure exisbting immediateliy downsbream
from the detached shock wave, This condition is esg-
peclally true for The majority of cases where the iach
number i1s only moderately high (around My = 5 or 6, or
less), and the Fitob tubes are of average dimensions

(e = 0,125 inch or greater)., Here the errors obtained
in the computation of the true Mach number Mi are well
beyond experimental observation in ordinary engineering
applications, This investigation consequently does not
explain the apparent defect in /éf experienced in the

2

calibration of the 1l2-inch supersonic wind tunnel at the
Jelt rropulsion Laboratory, &s mentioned in Section I-C.
For very high Mach numbers, and for small pitot
tubes, this investigation indicates that the dissipation
of energy within the detachment span may account for a
small but measurable errvor in the determination of the
true free stream lach number, For experiments demanding
a high degree of precision, the effect should be taken

into account.



(1)

(2)

(3)

(6)
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APPENDIX A

BOUNDARY LAYER SOLUTION
NEAR A

FORWARD STAGNATION POINT
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BOUNDARY LAYiER SO0LUTION WhLAR A

FORWARD STAGuATION POLIW

Figure la
Description ol Coordinates for
Boundary Layer Problem
The equacion of continuity, in curvilinear ortnogonsal

coordinates possessing one axls of symmetry can ve written

<

’/‘/{/ﬁi‘/ﬂ“) # d?(/w')]:o

where x, y are coordinates as indicsted above. OSince

AN
1
N
°
i
X
X_Jo

n the vicinity of the stagnation point, the

continuity becomes

doxa) + Jx) = o0
o /J

This equation implies a stream function ;ﬁ such that

U = A
X

J
7Y
o=t I

X

o/
4
.
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which idencvicailiy satisiiss the continmaily equuatiLon
ine equations of motcion in two dimensions are
A Pz [ ) s
w 2L x o 7L = - _{ 7b + “ L Sz
ax d] € X //r X 2
2z I4
P2 éff} ~ & gJJ_/' = A ;d# 4+ /fﬁ -+ 1/_4__21
I ~ 'y oxE /j‘
In the boundary ilayer, these equations reduce to

by the method of establishing the equations, by Prandtcl.

since /é is independent of ¥,

;f. jfé = Uo ﬁ%%i

is the velocity outside the boundary iajer,

where o

The momentum egquation can then be

S I z
74 “ /

the forward sbagnatlon the veloclty #o ,

3
o)
e
]
<

C-l

tiear
just outside the pbouncary layer, may be put egquali to /7X’ s
where x is the distance along meridlan curve from the

stagnation point,



%:.L-.ZZ%
Xa’j
L z +V'Zz_0.§

a solution is obtalined by pubtting

7= (&)
7 FV/ZL/Z 7[/7}

hus

&
0

sx Flp
o= -2z (/’fJé Fop

/{x /ﬁ;jﬁ/éj —zﬁr/f#ﬁ/x/{?/g/é:/} f/"x //lrl///

i}

f}v} = 7[, this equation reduces %o

T A

Calling

Since
AL = S = o a¢(7=o

and

oa = d0=/5x a/j_:ad



thne boundsry conditions ilor ~f are

Choosing a solution Lor ‘%~QL the form
-
f‘Z“”
- ”
4 7
then

7['/: Z "'“"'7”—’

o

o0

/ﬂ = Z nin-1) an 7,'—‘—
7[J//I

-5

M

nii{n-i}{n-2) a, 7 .

substituting in the diiferential equation, and collecting

-

coerficisnts of like powers of 7', the values of a, may

be evaluzted, The values Tor a, throuvih 4e as determined

d; = a.—b':-/v—erT
- 0. 766¢7

D
w
It

R
o
i

0. 005556 a,
a, = —0. 0003 9¢F

ap = 12



Thus

7[= az7l~ o./¢c6c7 7]7» 6.0035556 az)?‘ - aaoaf7(.ff77,(_,,.

To determine a,, from boundary condition

let
= 7[;-/'/;
£ LTe £
j{lsl ) %,-‘:0 a.-/)7=oo
Thus

¥

Substituting in original differential equation,
[/*75//2—~Z/7ff:/£”= /%/,M/
Z ¢
2 7["/ +~ 7{‘/ _ 27 7{‘// . Z7{7ZI‘I/: 7[/"//

4
4
neglecting ;;éﬁﬂi £~ in comparison with the other berms

This equation has the solution

7[/= /4/7“[7_2{;6”7/0/“(
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-
7 7 T
/,:,42_4/e6/f-z4,/wr e du

A

From Homann, Aq = 2,16482, Az = ~0,007¢11 and Ay = 0,05861

3

weined oy equaving

FoSay - 774

a, = o

a, = o

G, = +0.L54Fc19
G, = -0 76¢¢7
a, = o

G = o

a, = 0. 003 (L

4, = -0 00039¢(¢F

7[ = défﬂ7’ - 4/14677’/— 0.0036¢ 7‘—- 0. 000¥0 77,‘-'-

s -1

Z
- P P - £ “1 . - A i P 4 4
and is graphlcally represented, togebther with f and £ ,



woomnd 7 glvell anove,

these velocities may be wribtien

4

N
o

J 7172 lﬁ//}{/éxy - some L x;/‘
o = =/ 3172 /féé/f/? , 0. P333 ézjf

£
i

where onliy vwo Lerms of

the series expansion ior f arve

1

equations avove for o and 4 are then written as

A = = /) 7772 //g/f xS + 03333 éz;"

2 b4

/,3/72/4’%/"11"7 - d.f‘oooé: PR

3
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i STUDY OF DETACHSD SHOCK
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Ligrans per

COnLoOuUrs 4

nese data were

“ar DLoW o anout a8 Y/«

<

oL Tne

cquations used fov

VT L BUTE /z, the temperature Zﬂ, and tne veiuciltly #H,,

-

neilersnce (o), are

a8 Hiven i
= VAR A 4 atmios
2 : /02

7 7 //5/ ﬂ_ - 0/4/://»4

L
JI3 [J.ﬂ{} “/z)’// ‘ meters /see.
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T, e e
e s oaive

.

o e

4
2 [fd ) Sx
o, (¥
density, temperature, anc velocl

3

stepwise integraiion was psrlormed,

and the entropy rige along the axls ol symmeiry was de-

[ v

4 ] i . . o k4 i P B oy e 2 E ey oY
termined, For tunils computatlion, the valiue ol A was Ilxed

aiu B¢ x 10 siugs/Iv.s8C, procedure then

AT = o ofé f#2 S sec? © Pankine

/}/” = S Jdos5O
/a
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