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Abstract

Humans can look at a scene or a photograph and easily recognize objects. Outside my
window I can see cars, people walking a dog on a brick pathway, trees, buildings, etc.
This perception is so effortless that it belies the difficulty of the task. Visual perception
begins with light that is reflected from the scene into the eye. The light impinges upon
the retina and is transduced by a two-dimensional array of photoreceptors into noisy
electrical signals. The brain must then accomplish the difficult task of transforming
from this low-level representation to a higher-level understanding of the scene in terms
of regions, surfaces, textures, and objects.

For computer vision the problem is the same, but the hardware is different. A
camera approximates the function of the eye and retina; that is, the camera produces
a two-dimensional array of numbers (pixel values) representing the intensity of light
reflected from the scene. The fundamental question addressed in this thesis is the
following: what mathematical processing should be applied to the pivel values in order
for a computer to recognize objects? The methods we propose are not intended as
a model of human brain function, although they may provide some insight. We are
simply trying to solve the same visual recognition problems as the brain without
concern for whether (or how) our algorithms could be realized in neuronal “hardware.”

We have developed a new framework for recognizing visual object classes in which
the class members consist of characteristic parts in a deformable spatial configuration.
Human faces are an object class of this type, since faces consist of eyes, nose, and
mounth arranged in a configuration that varies depending on expression and pose and
also from one person to another. A second object class is cursive handwriting. which
consists of loops, cusps, crossings, etc. arranged in a deformable pattern. In our
approach, the allowed object deformations are represented through shape statistics,
which are learned from examples. Instances of an object in an image are detected by

finding the appropriate features in the correct spatial configuration. Our algorithm is
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robust with respect to partial occlusion, detector false alarms, and missed features.
Potential applications include intelligent tools for finding objects in image data-
bases, human-machine interfaces, user authentication, intelligent data gathering and
compression, signature verification, and keyword spotting. Experimental results will
be presented for two problems: (1) locating quasi-frontal views of human faces in
cluttered scenes and with occlusions and (2) spotting keywords in on-line cursive

handwriting data.
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Chapter 1 Introduction

1.1 The Problem of Visual Object Recognition

Humans can look at a scene and easily identify the objects that are present. Qutside
my window I can see and recognize cars, people walking a dog on a brick pathway,
trees, buildings, etc. How is this possible?

In ancient times (circa 6th century BC) it was incorrectly believed that vision
worked via “feeler rays,” which were sent out from the eye to probe an object. This
idea, attributed to Pythagoras. persisted until at least 1000 AD [Enc] and by some
accounts even until the 1600’s [UCI]. We now know that in the correct interpretation
of vision, the eye is a passive sensor; the sensation of sight occurs when light is
reflected from an object into the eye. This idea was reportedly put forward by the
Greek philosopher Epicurus (circa 300 BC) [Enc], but it was not widely accepted
until the feeler-ray theory was finally discredited by Christopher Scheiner. who in
1625 demonstrated that an optical image is formed on the inside rear wall of the
eyeball [UCI].

At the rear of the eyeball is a two-dimensional array of photoreceptors — the
retina. Light striking the retina is transduced into (noisy) electrical signals. Here the
truly difficult part of vision begins: the low-level representation of the world provided
by the retina must be processed by the brain into a higher level understanding in
terms of regions, surfaces, textures, and objects.

For computer vision the problem is the same, but the hardware is different. A
camera approximates the function of eye and retina, producing a two-dimensional
array of numbers (pixel values), which represent the intensity of light reflected from
the scene. For scenes that vary in time, the camera provides a time-sampled sequence
of two-dimensional snapshots. The fundamental question of object recognition is

the following: what mathematical processing should be applied to the pivel values [or
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sequence of values) in order for the computer to recognize an object?

We know from our practical experience that visual cues such as motion, stereo
(vision with two eyes), and color can be quite helpful for object recognition. But,
we also know that, in most cases, the same objects can be recognized from black
and white, still-frame photographs. This fact indicates that reliable computer object
recognition should be possible even from static, monocular, monochrome images.

There are a number of difficulties, however. The object must first be segmented
from the background. Since the object pose, camera position, and lighting conditions
all affect the appearance of the object (pixel values), algorithms must be invariant or
at least insensitive to these effects. Algorithms should also work when an object is
partially occluded by other objects.

Object recognition is both about recognizing specific objects (“That is my dog
Spot.”) and about recognizing classes of objects (“That is a dog.”). We will focus on
the latter problem, even though there is not a precise definition for what constitutes a
class. In some cases, for example with human faces, the objects in a class are visually
similar; we will refer to this as a visual object class. In other cases, for example with
chairs, two objects in a class may not look at all alike — the only similarities are
in function; we will refer to this as a functional object class. Since recognition of
functional object classes requires higher-level cognitive reasoning (beyond the scope
of the thesis), we will restrict our attention to computer recognition of visual object
classes.

[f humans are so adept at recognizing objects, why do we need to duplicate this
behavior with computers? One reason is simply scientific curiosity. Man has had
tremendous success understanding the world around him through sciences such as
physics, chemistry, and astronomy. However, little is known about the brain and the
visual system. By trying to develop computer vision systems, we may hope to gain
insight into the computational principles that govern human vision.

Another reason is to make computers more interactive and antonomous. Judging
from the wide range of biological organisms that depend on vision (crustaceans, fish.

cephalopods, birds, mammals, insects, etc.), it is evident that evolution has found
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sight to be an essential modality for interacting with the world. Robots and computer
systems will also need this capability to function in unconstrained environments, es-
pecially those that are unsafe or inconvenient for humans. Here we are talking about
environments such as hazardous industrial areas, military automatic target recogni-
tion (ATR) platforms, underwater, on spacecraft, inside pipes, and even inside the
human body. Already people are working on vision systems for autonomous vehicle
navigation and obstacle avoidance on national highways [DC89, DM92].

New forms of human-computer interfaces will be needed as people seek more nat-
ural ways to interact with their computers. There is currently a trend toward mini-
aturization; however, the goal of developing a credit-card sized computer is limited
by the size of the display and keyboard. As cameras become progressively smaller,
it may be possible to eliminate the keyboard and use gesture or handwriting-based
input. Both of these ideas, however, depend upon the availability of fast and reli-
able visual recognition algorithms. Together with speech understanding, vision would
make it possible for humans to interact with computers as they do with other humans.

Finally, we note that humans are, well ... “only human.” Although they are very
good at recognizing objects, humans need to take breaks, eat, and sleep. They also
become quite bored with repetitive tasks and become susceptible to mistakes. Many
sensors today generate enormous volumes of data and/or data rates. Military pilots
are so overloaded with information that they cannot effectively look for targets and still
fly their aircraft. As another example, the recently completed NASA/JPL Magellan
mission to Venus returned more data than all previous planetary missions combined, a
staggering 30,000 1 A" x 1 A pixel images from the first pass alone. Planetary scientists
are simply overwhelmed with data. The manual methods of data analysis that they
have used in the past on hard-copy photographs are no longer feasible. Computers
are helping, but there is still no way for the scientists to find the geological features of
interest (e.g., volcanoes, impact craters, etc.) without manually looking through all
the data, a process which they estimate would take ten man-years for the first-pass
Magellan data. Similar problems abound in industry where there are numerous quality

control and inspection tasks that rely on the human visual system to detect errors and



anomalies.

(loser to home, the Internet and World Wide Web provide access to a massive
wealth of information including pictures, video clips, and other forms of multimedia.
Unfortunately, it is very difficult to locate any multimedia items that you might want
such as pictures of horses or a particular scene from a movie. Text-based search
engines simply do not provide an adequate interface for finding pictures; new methods
and new ways of specifyving queries are needed. The QBIC (Query By Image Content)
system [FSNT95] being developed at the IBM Almaden Research Center is a step in
this direction, although currently the system makes use only of lower-level image
properties such as color, motion, and texture rather than recognizing higher-level
objects. The Photobook system [PPS96] developed at MIT also provides a set of
tools to interact with image databases. Additional approaches are presented in the
recent recent PAMI special issue [PP96] on digital libraries.

Visual recognition of objects by computer is a technology that promises to revo-
lutionize industry. However, there are a number of difficult technical challenges that
must be overcome. Foremost among these is the problem of invariance. Consider
imaging a simple rigid object such as a coffee mug; the low-level pixel representation
captured by the camera will be highly dependent upon the lighting conditions, the
pose of the mug, the relative position and orientation of the camera, etc. How can we
conclude that a test image such as the one shown at the top of Figure 1.1 is indeed a
picture of a coffee mug? If we were just concerned about recognizing this particular
mug, we might try to subtract the test image from a reference image of the same mug
and compute the RMS (root mean square) error. In this case, the test image was
taken under brighter lighting conditions and with the mug in a slightly different pose.
The RMS error between the two images is 24.17 units per pixel. On the other hand,
the RMS error between the test image and the image of a computer mouse is only
23.16 units per pixel. Thus, in terms of RMS error the test image is closer to the
computer mouse image.

For recognizing object classes, the problem is even harder because of the variability

between the underlying physical objects. For example, Figure 1.2 shows a variety of



Unknown Test Image

Mug Reference Mouse Reference

Figure 1.1: The pixel-space representation of an object is highly dependent upon
the lighting conditions, object pose, and the relative position and orientation of the
camera. The test image is closer to the mouse image in RMS error than to the mug

reference image.
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Figure 1.2: Examples from the object class “coffee mug.”

coffee mngs. To reliably recognize an object class such as this, an algorithm must be
(largely) invariant to the differences between individual instances. The same consid-
erations apply to recognizing flexible or deformable objects such as a pair of scissors

or a human face.

1.2 Overview of our Approach

Many early pattern recognition algorithms were based on techniques developed for
radar and communication systems. Radar systems transmit a known RE (radio fre-
quency) signal. If the signal strikes an object, some portion of the signal may be
reflected back to the radar receiver! (depending on the geometry and roughness of
the object’s surface). The receiver does not know when to expect the returned signal

or even whether the signal will return (e.g., there may be no objects present). Thus,

Unterestingly enough, radar is like the “feeler ray” model put forward by the early Greeks.
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the receiver must constantly “listen” and try to determine if the transmitted signal
has returned. It was shown by North in 1943 [Nor43] that the optimal detector for
this problem takes the form of a matched filter. The receiver should perform a cross-
correlation between the noisy received signal and a copy of the transmitted signal. If
the correlation exceeds a predetermined threshold, the receiver declares that a target
has been found.

The correlation method, which is also known as template matching, is attractive
because it provides a mathematically optimal solution for the problem. No detector
can perform better for finding a known signal in additive white noise. Unfortunately,
in most pattern recognition and computer vision applications, the assumption that
“the signal is known exactly” does not hold, so considerable effort has been devoted
to extending the template matching method to handle target signal variability. (The
white noise assumption may also be inappropriate, but we do not focus on that problem
here.)

One generalization of template matching consists of approaches based on principal
components or “eigenfeatures” [SK87, TP91, BP93, MN95, BFP*94]. In standard
template matching, a single template is used to represent an entire object class, but
with the principal components approach, a set of basis templates is used and the object
class is represented by linear combinations of the basis templates. This approach
provides a better model for how members of the class vary, thereby allowing computer
algorithms to ignore the noncritical differences such as those due to lighting, pose,
and individual variability within the class. The principal components approach will
be discussed in more detail in Chapters 3 and 4; in particular, we will show that the
method works well for finding localized patterns such as the small volcanoes in the
Magellan SAR imagery of Venus.

The volcano problem, however, is special in some ways. Since the Magellan imaging
was done with synthetic aperture radar (SAR), the illumination source and the receiver
are co-located; hence, there is no need to worry about illumination invariance. In
addition, the underlying physical objects are (to first order) rotationally symmetric,

so there is no need to worry about rotational invariance. Approximately 80% of the

o
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volcanoes have resolvable summit pits which appear near the center as either a bright
spot or a backwards “C”. The pits allow the volcanoes to be reliably centered, reducing
the amount of translation invariance required. The volcanoes do vary considerably
in scale. But, near the center there is usually a visible summit pit and a transition
from bright shading on the side sloped toward the radar and dark shading on the side
sloped away from the radar. Good performance can be obtained by simply focusing
on this central area and ignoring the outer edges of the volcano. Thus, the volcano
problem is especially suitable for principal components analysis since (1) there is
a limited amount of variability within the class and (2) the defining information is
well-localized.

A good way to interpret the principal components approach is to think of an image
as a point in a high-dimensional space. Thus, an N x N image would correspond to
an (N? x 1)-dimensional vector. The set of all possible images for an object class
forms a manifold in this high-dimensional space. Locally the manifold can be well-
approximated by a tangent hyperplane; principal components, however, attempts to
globally approximate the manifold with one hyperplane. If the amount of variability
within the object class is not too large, this may be a reasonable approach. as we have
found in the volcano study.

For more difficult problems, such as recognizing objects that consist of charac-
teristic parts arranged in a deformable spatial configuration, more powerful methods
are needed. For these types of problems, we have developed an approach in which
the allowed object deformations are represented through shape statistics learned from
examples. The word “shape” is used here in the sense of Kendall [Ken84, Ken89].
Bookstein [Boo84, Boog86], and others [DM91]. That is, “shape” refers to properties
of a set of labeled points that are invariant with respect to some group action. In our
case, the labeled points are the locations of object parts on the image plane, and the
group action is translation, rotation (in the image plane), and scaling. Instances of
an object in an image are detected by finding the appropriate object parts or features
in the correct spatial configuration. The nature of the features may depend on the

application. For example, with human faces the useful features might be areas with
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distinctive brightness patterns (eyes), texture (hair), color (lips), motion, or sym-
metry. For handwriting, the features could be quite different: locations of pen lifts
and drops, cusps, humps, crossings, etc. Features may come at different scales of
resolution: a low-resolution version of the whole face is as much a feature as a high
resolution version of an eye corner [Bur].

Local feature detectors are used to identify candidate locations for object parts.
As noted, the detectors may be general or specific to a particular application. For
object parts that are defined by distinctive brightness patterns. the principal com-
ponents paradigm may be particularly good; on the other hand, for finding cusps in
handwriting, other types of detectors might be more appropriate. Our focus is not
on the feature detectors themselves, but instead on what one should do once a set of
detectors has been specified.

The basic problem with local feature detectors is that they are not perfectly reliable.
Two types of errors can occur: (1) the detector may fail to respond at a true feature
location (missed feature) and/or (2) the detector may respond at erroneous locations
(false alarms). Hence, the locations identified by a particular detector are treated
only as candidates for the actual object part. These candidates are then grouped
into hypotheses, which are scored based on the spatial arrangement of the features.
Differences due to translation, rotation, and scaling are eliminated by transforming
the hypotheses into an appropriate shape space.

The number of hypotheses that can be formed if M candidate locations are gener-
ated for each of N object parts is M. Thus, brute force inspection of all hypotheses
is not typically practical. This problem is avoided by using conditional search. Given
the (hypothesized) positions of two object parts, the position and uncertainty of any
other part location can be predicted. For example, given the position of two eyes, we
can predict where the nose should be found. Only nose candidates falling inside the
appropriate search region are used to form hypotheses.

Finally, hypotheses are transformed into shape space and scored based on the joint
distribution of the shape variables. It is important to use joint probabilities since we

know that object parts do not usually vary independently. For example, if one mouth
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corner is found higher than normal, it is more probable that the other mouth corner
is also higher. This particular variation is much more likely than one mouth corner
high and the other corner low. Using a joint distribution permits the proper type
of deformability, while penalizing abnormal variations. This is the key to obtaining

invariance with respect to different instances from the same object class.

1.3 Related Work

There is a large body of literature on the problem of object recognition. Of neces-
sity, we have restricted the discussion of other work to only the most closely related
approaches. Huttenlocher and Ullman [HUS87| introduced the method of object recog-
nition by alignment, which essentially involves establishing correspondences between
features in an image and projected model points. Our shape method can be viewed
as a generalized form of alignment in which the matching is done with an allowance
for deformations of the model object. Although it is not presented in the language of
shape statistics, the Bayesian hashing approach of Rigoutsos and Hummel [RH95] can
be viewed as a way to compute an approximate shape probability for a configuration
of features. Since feature positions in shape space are assumed to be independent,
however, their method does not always work well in practice. (Also, there are practical
implementation problems associated with hashing.) A different view of our method is
that it is a probabilistic version of invariants [MZ92]. The shape of a configuration is
an invariant with respect to Euclidean transformations of the image plane. Similarly,
afline-shape is an invariant with respect to affine transformations of the image plane.
For a given model (object class), the invariants will take on different values, which we
model using probability distributions. More detailed references are given by subject

area in the following subsections.

1.3.1 Principal Components Analysis

The technique of principal components analysis (PCA) was originally developed in the

1930’s by the statistician Hotelling [Hot33]. Sirovich and Kirby [SK87] used principal
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components analysis to provide a low-dimensional characterization of human faces.
Turk and Pentland [TP91] appear to be the first to have used PCA for visual re-
cognition problems, although there is an earlier neural-network approach by Fleming
and Cottrell [FC90] that is similar to PCA. O"Toole and colleagues [OADD93] stud-
ied the use of higher order principal components for determining whether a person
is familiar or unfamiliar to the system. The tangent distance approach developed
by Simard [SYD93] for handwritten digit recognition is similar to PCA in that ob-
ject classes are modeled with local hyperplane approximations. Burl et al [BFPT94]
applied principal components analysis to the problem of detecting natural objects (vol-
canoes) in remote sensing imagery. Murase and Nayar [MN95] have worked on using
principal components to do object recognition under varying illumination conditions
and pose. Moghaddam and Pentland [MP95, MP96] and Burl [Bur95] independently
derived PCA approaches that combine in-space distance with out-of-space distance
to classify unknown examples. There are now numerous applications of PCA for re-
cognition of localized objects. Bichsel and Pentland [BP94] have noted that the PCA

approach may work well locally but not for large rotations or scale changes.

1.3.2 Volcanoes

Wiles and Forshaw [WF93] proposed a system to automatically locate volcanoes in the
Magellan [PFJT91] imagery of Venus using normalized cross-correlation. To evaluate
the effectiveness of their method they generated simulated radar images and compared
algorithm performance on this artificial dataset with that of human experts. Our ap-
proach improves performance significantly by using a multi-stage approach in which
cross-correlation or matched filtering serves merely as a focus of attention mechanism.
More sophisticated processing (PCA) is then applied to the regions of interest iden-
tified by the FOA. Gains of 15 percentage points in detection rate are achieved by
using the multistage approach. We have also developed better methods for handling
the lack of ground truth, both in training and evaluation [SBFP94, SBF+94, BFPS94,
SBFP95, SBF*95]. Recent results by Asker [AM97] have shown slight improvements
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in performance by preclustering the training data into subclasses and using a sequen-

tial application of multiple classifiers.

1.3.3 Shape

The statistical theory of shape was developed by Kendall [Ken84, Ken89, LK93], Book-
stein [Boo84, Boo86], and others [DM91, MD89, LK93]. The key result we use in our
work is due to Dryden and Mardia [DM91] who derived the exact shape space dens-
ity induced by a general multi-dimensional Gaussian density in figure space. The
use of shape statistics in computer vision applications has also been explored by
Wilson [Wil95] and Bookstein [Boo95].Using a slightly different (more flexible) defin-
ition of shape, Grenander [Gre93] has looked at models for recognizing human hands
and more recently [CMVG96] has developed a method for registering anatomical at-
lases of the human brain. Cootes, Lanitis, and Taylor [CT96] have proposed using
eigenapproximations to model shape densities. He and Kundu [HK91] have used hid-
den Markov models (HMMs) to model the perturbations in the shape of boundary

contours.

1.3.4 Faces

The problem of face recognition has received considerable attention in the literat-
ure [Kan77, Yui9l, TP91, BP93, OADDI3, LQPI3, VAT94, KST94, CWS95]; however,
in most of these studies, the faces were either embedded in a benign background or
were assumed to have been pre-segmented. For any of these recognition algorithms
to work in real-world applications, a system is needed that can reliably locate faces in
cluttered scenes and with occlusions.

Recent studies have begun to address the problem of face localization. Bich-
sel [Bic91] provided one of the first attempts to combine face localization with recog-
nition. Burel and Carel [BC94] proposed a method using multi-resolution analysis
and learning from examples (multi-layer perceptron) to search for faces in an image.

Yang and Huang [YH94] have described a hierarchical knowledge-based method for
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locating faces. Graf [G195] has combined facial feature detectors with a simple model
of the arrangement of the features to perform face localization. Rowley, Baluja, and
Kanade [RBK95] have developed a neural network approach that appears to work
well provided the faces are unoccluded. Also, several of the flexible/deformable ap-
proaches discussed in the next subsection have been developed in the context of face
localization and/or recognition. Our algorithm improves upon these other systems in
two primary respects: (1) we are able to explicitly handle occlusions, and (2) we are

able to exploit the statistical structure of face images in a principled way.

1.3.5 Flexible/Deformable Models

Lades, von der Malsburg, and colleagues [L.¥93, WvdM93] have developed a recogni-
tion method that uses Gabor filters to characterize the local areas of an image. These
areas (nodes) are then linked together via a deformable mesh. Given an incoming im-
age, the standard mesh is overlaid and adjusted to obtain the best match between the
node descriptors and the image, subject to a penalty on the amount of deformation.
The advantage of our approach is that instead of using an ad hoc energy function to
penalize deformations, we encode the allowed deformations with a probability density
that is learned from actual data.

The deformable template work by Yuille [Yui91] is similar in that local parts are
linked together in an ad hoc fashion based on analogies with physical systems (in this
case springs). The difference between our work and the triangulated graph matching
approach used by Amit [AGW95, AK93b] to align X-ray images of hands falls along
similar lines.

Lanitis, Cootes, et al [LTCA95, CT95, C*94] have developed a system that uses a
shape description based on eigenmodes. Although this approach can be viewed as an
approximation of the probability density over feature positions, it is not clear that their
snake-based features will work in cluttered scenes or with occlusion. Recently, Cootes
has reported used an approach that closely follows our work to do initial localization

before using snakes.
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The work by Pope and Lowe [PL95, PL94] is similar in flavor to ours. They also
use probability distributions to describe an object’s appearance with a model that
is separated into local appearance and spatial arrangement. Our approach is much
stronger and more rigorous in the handling of probabilistic spatial arrangements. We
are able to model the joint variation in feature (part) positions, whereas they assume
independence. The fact that they are estimating a viewpoint transformation from
the data implies that the transformed positions of the features computed by this
transformation cannot possibly be independent. Further, for modeling variations of
object classes such as faces, it is quite obvious that the part positions are jointly
distributed. If one corner of the mouth is considerably lower than expected, then with
high probability the other corner of the mouth will also be lower than expected.

Despite this weakness in their approach, Pope and Lowe have made an attempt do
two things that do not currently appear in our framework. First, for each object part
they associate a vector of attributes such as the scale and orientation at which the
part was detected. These local attributes are then factored into their overall scoring
function. Second, they attempt to learn the spatial models from training data in which
the ground truth positions of object parts are not labeled. A closely related problem
involving learning shape models from video sequences is explored in [BH94].

Shams [Sha95] represents objects such as tanks and jeeps using an elastic graph in
which the nodes correspond to object features. The method, which is loosely based

on the human visual system, uses neuronal dynamics and annealing to find matches.

1.3.6 Handwriting

The Hidden Markov Model (HMM) in various forms has been widely used for re-
cognizing degraded machine printed text [AK93a, KC94, BK94], signature verifica-
tion [LB96, YWP95], recognition of cursive characters and handwritten digits, keyword
spotting [KA94], and general cursive handwriting recognition [BBT94, CKS95, CK94].

Our shape-based approach to recognizing keyword fragments offers several advant-

ages and disadvantages with respect to HMMs. First, the shape method is applicable
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to both on-line and off-line handwriting, yet can be adapted to exploit temporal in-
formation if it is available. HMMs seem to be best suited for on-line recognition prob-
lems in which the temporal information is available, although they have been used for
some off-line applications. The shape approach does not require segmentation of the
writing into letters or words. This is also true in some, but not all [CKS595, CK94] of
the HMM approaches. In the shape approach, the position of a particular feature can
depend on the positions of a number of other local features, while in HMMs only first
or second order dependencies are typically assumed.

A disadvantage of the shape method is that to learn the appropriate spatial statist-
ics, we need a number of training examples with ground truth. HMMs, however, can
be trained from a relatively small number of examples that have not been specially
labeled. Also, HMMs provide a model for the entire writing trajectory, while the shape

method provides only a model for the keypoint positions.

1.4 QOutline

We begin in Chapter 2 by reviewing some basic results from decision theory. Applying
these results to the problem of detecting a known signal in white noise leads to the
idea of matched filtering or template matching. The problem with this approach,
however, is that for recognizing visual object classes, there is inherent variability
between different instances from the same class beyond simple measurement noise. To
produce better recognition algorithms, we must work harder at modeling the variability
in an object class.

In Chapter 3 we examine methods based on modeling an object class as a linear
combination of basis functions. We show that a particularly good choice for the basis
functions is the set generated by principal components analysis since these encode the
directions of maximum variance in the object class.

Chapter 4 is an applications chapter in which we use matched filtering and principal
components analysis for an important practical problem: locating small volcanoes on

Venus in a large database of synthetic aperture radar (SAR) imagery. This chapter
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may be skipped by the reader interested primarily in theory.

Chapter 5 provides the transition from the first half of the thesis to the second.
Much of the material in the first half is now well known (see the discussion in the next
section), but it is included in the presentation because it provides essential background
for the second half. In this chapter, we introduce an object class in which instances
from the class consist of characteristic parts in a deformable spatial configuration. For
example, human faces consist of eyes, nose, and mouth arranged in a configuration
that varies within one individual due to expression and pose, as well as from individual
to individual. Using a toy example, we show that the methods of matched filtering
and principal components break down on this type of recognition problem. A key
contribution of the thesis is a new model that combines local detectors for the parts of
an object with a (principled) probabilistic model for the spatial configuration of the
parts. Since the recognition process should be largely invariant to translation, rotation,
and scaling of objects from the class, spatial configurations are represented using shape
variables (as pioneered by Kendall [Ken84, Ken89] and Bookstein [Boo84, Boo86]) and
probability distributions over shape.

The representation of spatial configurations using shape variables is explored more
fully in Chapter 6. Dryden and Mardia have derived a probability density for the shape
variables induced by a multivariate Gaussian figure space density. The Dryden-Mardia
density (and possibly mixtures of this density) will prove convenient for modeling the
joint distribution over shape for a number of important deformable object classes such
as human faces and handwriting.

In Chapter 7 we derive a maximum a posteriori procedure for finding the most
object-like configuration of points from a pool of candidates generated by local detect-
ors. Since local detectors are typically unreliable, we provide a framework in which
objects can be correctly detected and localized despite false alarms and missing fea-
tures. Prior knowledge about the reliability of the local detectors can be incorporated
in the scoring function. We also discuss a search algorithm that exploits the shape
information to generate only the most reasonable object hypotheses.

Chapter 8 is an applications chapter in which the shape-based methods of the
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previous two chapters are used to locate human faces in cluttered scenes. Correct
localization performance is demonstrated on several face sequences embedded in a
cluttered background and with occlusions of parts of the face. To demonstrate the
robustness of the method across problem domains, additional results are presented
for a keyword spotting problem in on-line handwriting data.

In Chapter 6 through Chapter 8, we conducted our analysis from the assumption
that the object parts are initially detected using local detectors and then the detector
candidates are grouped together and evaluated to find the most object-like configura-
tion. This approach, based on shape alone, works well provided the object parts can
be detected reliably and the object shape is distinctive enough to separate it from the
random configurations of points formed from detector false alarms. In Chapter 9, we
reconsider the toy problem of Chapter 5 from first principles and show that by com-
bining shape and the degree of match of the parts we can achieve better performance
than by shape alone.

Chapter 10 summarizes the main points developed in the thesis. We also discuss

limitations of the methods and directions for future work.

1.5 Contribution

The primary contribution of this thesis is a new theoretical framework for recognizing
certain classes of objects based on features and their mutunal positions (Chapters 6-9).
The treatment of mutual positions using probability distributions over shape improves
upon a number of previous ad hoc methods such as energy, springs, angles, and dis-
tances. The system has been designed (and demonstrated) to work in realistic scenes
with cluttered backgrounds and with partial occlusion of objects. Prior knowledge
about the performance of the local feature detectors can be incorporated into the
framework in a rigorous way. The system has been demonstrated on two very dif-
ferent problem domains: face localization and cursive handwriting. Because of its
robustness and versatility, we believe this framework may offer a unified approach to

a wide range of visual recognition problems.
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A secondary contribution is the volcano detection study of Chapter 4. Although
the volcano system is made up entirely of known components (matched filter, principal
components analysis, and Gaussian classifier), there are certain aspects of the problem
that are novel. This system provided the first effective demonstration of the principal
components approach on geological objects in remote sensing data. The volcano
study also highlighted the benefits and limitations of a learning-based approach to
recognition. On homogeneous data sets, the system was able to achieve performance
near, but slightly below, that of human experts, while on a more diverse set of images,
the performance degraded considerably from that of humans. Finally, the absence of
ground truth for Venus raised some important issues regarding training and evaluation
in the face of uncertainty. These issues are not emphasized in the thesis, but they are
discussed at length in [SBF195, SBFP95, BEPS94] and the cited references.

Following is a chapter-by-chapter breakdown of which results and ideas in the

thesis are new and which were previously known:

Chapter 2: All of the material in this chapter was previously known, except possibly
for the combination of matched filtering and CFAR detection, which was derived

in Section 2.6 as a way to handle unknown DC and contrast.

Chapter 3: All of the material in this chapter was previously known except for Sec-
tions 3.4 and 3.4.1. The interpretation of the optimal classifier for two classes
described by separate SVD bases was derived independently by Burl [Bur95]
and Moghaddam and Pentland [MP95, MP96]. The basic result is that an un-
known point should be classified based on a “distance” that consists of two
terms: one term measures how well a given SVD basis represents a point (i.e.,
how far is the point from the hyperplane spanned by the SVD basis vectors)
and the other term measures how well the projections of the point onto the SVD
hyperplane agree with projections of other examples from the class. This result
synthesizes the reconstruction error metric used by Turk and Pentland [TP91]

with approaches that were based on classification in projection-space.

Chapter 4: As noted earlier, all of the components comprising the JARtool vol-
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cano detection system were previously known. However, the application of PCA
techniques to recognizing objects in remote sensing imagery is new. The exper-
imental sensitivity studies characterizing detection performance as a function of

the number of PCA components are also new.

Chapter 5: This chapter primarily consists of definitions and experiments using clas-
sical methods on a particular deformable object class 7),. No new theory is

derived.

Chapter 6: The idea that the “shape” of a configuration is the information that re-
mains after the effects of translation, rotation, and scaling have been factored
out is due to Kendall and Bookstein. The results presented in Sections 6.1
through 6.3 were previously known. In particular, the shape density theorem
was originally derived by Dryden and Mardia [DM91]. The properties presen-
ted in Section 6.4, however, appear to be new. Although some of these are
straightforward (inherited almost directly from the assumed Gaussian figure
space density), they appear to have never been explicitly stated in the shape
statistics literature. The properties are very important, however, in the context
of recognition since features may be missing due to occlusion or detector failure.
The properties provide a mechanism to compute the shape density with respect

to different baseline pairs and over subsets of shape variables.

The Shape Mixture Theorem (Section 6.4.3) and derivation are new. This the-
orem is quite important, since in practice it eliminates the need to assume the
figure space points follow a multivariate Gaussian density. In our experimental
work, we have not yet found it necessary to use shape mixtures, but we expect
to eventually encounter problems of this type. The discussion of non-Gaussian

figure space models in Section 6.4.4 is also new.

Chapter 7: In this chapter, we form object hypotheses from candidate parts identi-
fied by the local detectors. The maximum a posteriori (MAP) rule for selecting

the best hypothesis depends on the entire set of observed candidates. We show



20
that (with appropriate assumptions) the MAP criteria can be reduced to a simple
hypothesis scoring function that depends only on the points in the hypothesis.
The idea of using a scoring function based on the configuration of points in the
hypothesis is not new; in fact, it is quite intuitive. What is new is the derivation
showing that the scoring function is actually equivalent to using a MAP rule on

the entire set of observations (again under the stated assumptions).
Chapter 8: This chapter contains new experimental results, but no new theory.

Chapter 9: The material in this chapter is entirely new. We have derived the op-
timal (Bayes) detector for the deformable object class T}, defined in Chapter 5.
We have also derived an approximately optimal detector for the case when the
perturbations of the object parts are not independent. This almost-optimal de-
tector combines two terms: (1) the degree of match between the ideal part and

the image and (2) a measure of the overall configuration of the parts.

1.6 Summary

The problem of visual recognition occurs in many domains ranging from medical and
biological imaging to surveillance, astronomy, product inspection, human-machine
interfaces, database search tools, etc. Our long-term goal is to develop an object
recognition system that will work robustly across a variety of problem domains. We
envision that such a system will be trained from examples and hints provided by the
user since this will permit portability across domains without the need for explicit
reprogramming; for a new problem, the user simply provides a new set of examples
and hints.

One of the fundamental challenges in building a system of this type is that the
recognition algorithms must be sensitive to differences between object classes, yet
insensitive to differences within the same object class. To accomplish this task, it is
essential to develop good models for the variations in appearance of instances from

within the same class. One type of model that works well for localized patterns is
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based on principal components analysis and linear combinations of basis functions.
We demonstrate this approach for the problem of detecting small volcanoes in the
Magellan imagery of Venus. For more difficult problems. however, such as recog-
nizing objects that consist of a set of characteristic parts in a deformable spatial
configuration, more powerful methods are needed. For these object classes, we have
developed a recognition algorithm that uses local “part” detectors and a probabilistic
model for the shape of the allowed object deformations. The algorithm is successfully
demonstrated for locating faces in cluttered scenes and with occlusion, as well as for
spotting keywords in on-line handwriting data. The combination of local features and

probabilistic shape models constitutes the major thrust of the thesis.
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Chapter 2 Matched Filtering

2.1 Introduction

In this chapter, we begin by reviewing some elementary results from decision theory.
To make the discussion more concrete consider the following hypothetical example.
Suppose we are building a machine such as the one shown in Figure 2.1 to separate
apples and oranges. The machine works as follows: the user pours a mixture of apples
and oranges into the hopper, then one item of fruit at a time travels down the conveyor
belt. Along the belt various sensors measure features such as the weight and diameter
of each fruit. At the end of the belt, the machine must direct each fruit into either the
apple bin or the orange bin. How should the machine make its decision? What if the
user will be very angry if some stray apples sneak into the orange bin, but will not
care much if a few oranges get into the apple bin? What if the user initially puts a
larger percentage of oranges in the hopper than apples? How will these things affect
the machine’s decision?

Statistical decision theory provides the answers to these questions. If we simply
want to minimize the average number of errors (apples put in the orange bin and vice
versa), the optimal solution is to use the maximum a posteriori (MAP) rule. Given
the feature measurements x, a fruit should be placed into the bin w (w1 = apple,
wo = orange) for which p(w|x) is maximum. We provide a proof of this result along
with generalizations for unequal prior probabilities, multiple classes, and unequal error
costs.

These results are then applied to the problem of detecting a known signal in
additive white Gaussian noise (w; = signal present, w; = noise only). For this problem,
the MAP rule reduces to a matched filter or template matching procedure. A copy of
the target signal, “the matched filter,” is correlated against the input. If the result

exceeds a threshold, a detection is declared. The problem of discriminating between



Figure 2.1: Fruit Separation Machine. Based on measurements of each piece of fruit,
e.g, diameter, weight, and height, the machine must decide whether a fruit is an apple
or an orange. The light gray paddle is shifted to direct each fruit into the proper
basket at the end of the conveyor belt.
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two known signals in noise is similar. The MAP rule takes the form of a matched
filter; however, in this case the filter is matched to the difference between the two
signals.

For communication systems the assumptions behind the matched filter (signal
known exactly and additive white Gaussian noise) are quite reasonable. For recog-
nizing visual object classes, however, these assumptions break down. Variations in
the world, such as illumination conditions and the object pose, cause variability in the
appearance. The goal in this thesis is to provide better models for the appearance of
instances from an object class. We begin in this chapter by discussing generalizations
of the matched filter to cases where the DC level and contrast are unknown and to

cases where the target signal is randomly chosen from a discrete set of possibilities.

2.2 The (Bayes) Optimal Decision Rule

This section provides a brief review of some elementary results from decision theory.
For more details the interested reader is referred to [DH73, Fuk90]. First, suppose
that the universe consists of two exhaustive and mutually exclusive states or classes
w; and ws. When w; is true, we observe a vector of variables x generated according
to the probability density p(x|w;). On the other hand, when w, is true, we observe x
generated according to the probability density p(x|ws). The basic problem of decision
theory is the following: given an observation x, determine whether the true state of
the world is wy or wy. Thus, we seek a decision rule R that maps x values to the set

{wi,wa}. Some examples of decision rules are given below:

R1(X) = w1 Vx (21}
‘ wy if wix>T

Ra(x) = (2.2)
wy if wix < T

w;  with probability = ¢(x)

wy with probability = 1 — ¢(x)
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The first rule decides that w; is true without considering the value of x (probably
not a good rule!). The second rule decides wy if the projection of x along a vector
w is greater than or equal to a threshold 7', and decides w, otherwise. This rule is
equivalent to using a hyperplane to separate the space of X’s into two areas or decision
regions. If x falls in the first area, the rule chooses w;; otherwise, the rule chooses w.
The third rule is a bit unusual in that it is not deterministic. Based on the value of
X, it guesses w; with probability ¢(x) and w, with probability 1 — ¢(x).

How can we determine whether a rule is good or not? One method is to use the
expected cost. If a decision rule chooses w; when the true state is really w;, a cost ¢;;
is incurred. Hence, the average cost of using rule R when presented with observation

x is given by:
costrlx = Y cij-p(R(x) = w;) - plw;]x) (2.4)
]

Note that we have allowed for both deterministic rules (such as R; and R,) and

probabilistic rules (such as R3). For deterministic rules, the probability p (R(x) = w;)
for a specified x value will equal 1 for exactly one value of 2 and 0 otherwise.

For multiple classes wy,...,wx (again mutually exclusive and exhaustive), Equa-

tion 2.4 can be written more conveniently in matrix notation as follows:

costr|x = q'(x)Cy(x) (2.5)
where
y(x) = [plwn]x),....plwr|x)]" (2.7)

and C is the matrix with (¢, 7) entry ¢;.
As indicated by the notation on the left-hand side of Equations 2.4 and 2.5, this is

a conditional cost for a particular x value. To find the true expected cost, we need to



multiply by p(x) and integrate.

costr = (costr|x) p(x) dx

J
= [ (a"(x) Cy(x) plx) dx 2.8

DN
o
A
—

However, since p(x) is always non-negative, we can minimize the average cost by
minimizing costg |x pointwise, i.e., for each x value. Thus, to minimize Equation 2.8
we need to find q(x) such that the quantity on the right-hand side of Equation 2.5 is
minimized, subject to the constraints q(x) > 0 and 17q(x) = 1. The solution is to set
q equal to a vector of all zeros except for the position corresponding to the minimum
entry of Cy, which should be set to one. If Cy does not have a unique minimum
element then several different q’s will work (in fact, convex combinations of any (s
that work will also work).

For the two-class case, the minimum cost decision rule reduces to the following

form:
. (wilx)
- wp if g(wiix) > T
R.(x) = (2.9)
wqe otherwise
where

T2 2 (2.10)
C11 — €21
By applying Bayes rule
. DIXAW; ) - Pl ) .
plwilx) = ]—————-———-—-( [«) ;p< ) (2.11)
p(x)

we can rewrite the optimal decision rule in terms of the class-conditional densities:

w1 lf pgi}z(l)) > T

Rux) = (2.12

woe otherwise

[N}
—
)
~—



where

Fop. B _arzen pley) (2.13)

plwr) c1r — ¢ plwr)

The ratio of class-conditional densities appearing in Equation 2.12 is generally referred
to as the likelihood ratio and denoted by A(x). The optimal decision rule can be
viewed as a comparison of A(x) to the appropriate threshold T or. equivalently, as a
comparison of ¢ (A(x)) to g(T), where g(+) is any monotonic function such as log(-).

Note that the minimum probability of error decision rule is a special case of the
minimum expected cost rule with C = Cg = 1- 17 — 1. For both the two-class and
multi-class problem, Cgy = 1 —y. The minimum element of Cgy will be the one

for which the posterior probability y is maximum. Thus, to obtain the minimum

probability of error, one should choose the class with maximum posterior probability.

2.3 Known Signal vs White Noise

In this section, we apply the results of the previous section to the problem of detecting
a known signal in additive, white Gaussian noise (AWGN). In particular, we will show
that the optimal decision rule reduces to the classical matched filter.

Let wy correspond to the state “signal present” and w; to “signal absent.” When
wy is true, we will observe the signal s plus noise. On the other hand, when w; is
true, we will observe only noise. Therefore, the observed n-dimensional vector x has

class-conditional densities given by:

p(x|w)) = N(x;s,0°0I) (2.14)

wy) = N(x;0.0°T) (2.15)

p(x

where o2 is the noise variance (per pixel), I is the n x n identity matrix, and A" is the
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multivariate Gaussian density:

. A 1 1 e o
N (X ”I’*E> - (27_[_)&/2 ] |E]1/2 TexXp | — E(X - ”)12 1(;X - p“) (‘216)

We can write the posterior probabilities as follows (for i = 1,2):

P(ﬂ%)?(%) ; ; (2.17)
p(x|wr)plwr) + p(x|ws)p(ws)

plwilx)
but a simpler approach is to pass directly to the log of the likelihood ratio:
log A(x) = log N(x;s,0°I) — log N'(x; 0, 0°1) (2.18)

Simplifying this expression yields:

| 1 |
log A(x) = —55-[(x=s)(x—s)—x"x
yaes -
sTx  s7s ,
- tx s (2.19)

which should be compared to the threshold log T. Equivalently, we can compare §'x,

where § is a unit vector in the direction of s, to the modified threshold
(2.20)

Therefore, the optimal detector for a known signal in AWGN is the matched filter,

which is given by:

wi if éTX > Ta
RyMp-alx) = (2.21)
we otherwise

Note that with symmetric costs ¢;; = ¢;; and equal prior probabilities p(w;) = p(w

)7

()

lls

the term log T’ in Equation 2.20 will equal zero, and the threshold 7, reduces to L

|

N

I

The matched filter has a nice pictorial interpretation as shown in Figure 2.2. Here



Figure 2.2: Matched Filter - Known Signal vs. Noise

we consider an observation vector consisting of just two components xy and x,. The
circles indicate the one standard deviation contours of the noise and signal-plus-noise
probability distributions, respectively. The optimal decision rule for equal prior prob-
abilities is to project x onto § (this projection is indicated by P) and compare to the
threshold 7. Note that all points x lying to the right of the almost-vertical, dashed line
through 7" will have projections on § that exceed the threshold; hence, any observations

falling in this area will be classified as “signal present.”

2.4 Known Signal vs Known Signal

The analysis in the previous section pertained to the problem of discriminating a
known signal plus noise from white noise. Another important problem is that of
discriminating between one known signal (plus noise) and another known signal (plus
noise). In this case our two possible states will be: w; corresponding to signal 1

present and wy corresponding to signal 2 present. The class-conditional densities are
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then given by:

”

p(xjw) = N(x:s,0°T) (2.

[SV]
3]
p——

o
S

p(xlwy) = N(x;82,0°1) (2.
Working through the likelihood ratio, we find that the optimal decision rule is

w1 if (Sl - SQ)TX > 'Tb

Rymp-p(x) = (2.24)
ws otherwise
where T} is given by
T T
. S1S; — 858 :
Ty=ologT + 1222 (2.25)

2

This rule is illustrated in Figure 2.3. Note that if signal 2 is the zero vector, the
solution simplifies to the result of the previous subsection (simply substitute s; = 0

into Equations 2.24 and 2.25).

2.5 Theoretical Performance

Since the matched filter is derived from the MAP rule, we know that no detector can
perform better, assuming, of course, that the assumptions are valid. In this section
we explicitly calculate the theoretical performance of the matched filter.

We will focus on the probability distribution of the statistic A = w’x. For the
matched filter, w has a specific form, but for now let w be any linear filter. Since the
conditional density of x is jointly Gaussian and £ is a linear combination of the com-

ponents of x, we know that the conditional density of & is also Gaussian; specifically,

o
|
[N
-

p(hlwr) = N(h;py,o7) (2.
p(hlws) N (k; 1y, 03)

I

—
S
[SN)
ot

~—
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Figure 2.3: Matched Filter - Known Signal vs. Known Signal. Given the observation
x, we want to decide whether it corresponds to signal 1 or signal 2. As in Figure 2.2,
the circles denote the one sigma probability contours. The optimal decision rule is
to project x onto sy — s; and compare to the threshold ). For equal priors () is the
bisector of the line AB, where A is the projection of s; and B is the projection of
s;. The almost-horizontal, dashed line through ) divides the plane into two decision
regions; x's falling in the lower region are assigned to class w; and in the upper region
to wq.
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Hi = WTsl Ho = WISQ

9 2 ; 2 o
ol =o*wlw ol =oc'wlw (2.

[RW)

o

0¢]
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Let wy be the target signal and w, be a nuisance signal. Consider the decision
rule which chooses wy if h is greater than or equal to a threshold 7" and w, otherwise.
There are two types of errors that can occur: (1) misses (true class = wy, but the rule

says wy) and (2) false alarms (true class = wy, but the rule says wy).

ph\wl)

p(h\ w2)

CLUTTER TARGET

ul T uz

p(h \ w2) p(h\w1)

TARGET

CLUTTER

ut T uz2

Figure 2.4: (a) The probability of false alarm is the gray shaded area under p(h|w;)
to the right of the threshold 7'. (b) The probability of detection is the black shaded
area under p(h|wy) to the right of T'.

The performance of a decision rule can be characterized by its probability of
detection pq and its probability of false alarm pg,. Of course, these probabilities
depend on the threshold T" as shown in Figure 2.4.

If the threshold is set very low (aggressively), then we will be sure to detect the
target signal, but we will also get an increased number of false alarms. If the threshold

is set very high (conservatively), we will get fewer false alarms, but we will also miss
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the target signal more often. A curve known as a receiver operating characteristic
(ROC curve) [Van68] can be used to show the tradeoff between p; and pp, as a

function of 7.

ppa(T) = Pr(h > T | true class = w,)

= /OQ p(h|w2) dh (2.29)
T
pq(T) = Pr(h > T| true class = w;)
- /T p(hlwr) dh (2.30)

Since the class-conditional densities (Equations 2.26 and 2.27) are Gaussian, we can

express the probability of detection and false alarm by

PlT) = 1= 9T )

T — s
= 1—‘1’< H‘) (2.31)
02
pg(1) = 1—=(T;p1,01)
= 1—‘1')(7—’“) (2.32)
a1

where ® is the cumulative distribution function of the Gaussian

e

/ " Nz, 0) dz (2.33)

— 0

=
=
[

O(x;0,1) (2.34)

We could also express the results in terms of the error function erf using the relation-

ship



34

If the threshold T is expressed as follows:

the probabilities of detection and false alarm simplify to:

pra(K) = 1—0(K) (2.37)
pg(K) = 1-0 <“2 T hos - '“1>
g1
= 1-o(n - B (2.38)
1

*The quantity (p; — u2)/oy is typically called the signal-to-noise ratio (SNR). To max-
imize the probability of detection for a given false alarm rate, we must maximize the
SNR since ®(-) is a monotonically increasing function of its argument. Substituting

from Equation 2.28. we have the following result which is true for any linear filter w:

SNR = W(sios:)
oc-vVwlw
_ Wisi—sy) (2.39)

a

where W is a unit vector in the direction of w. Equation 2.39 is maximized when W is
in the direction (s; — s3), i.e, when w is the matched filter. Substituting for w yields

the SNR achieved by the matched filter

i 1
SNRypp = —y/(s1 = 2)(s1 = 52)
VE

= = (2.40)
g

where E is the energy in the difference signal. Thus, the performance for the matched

filter is given by

pg(K) = 1_@(1(— ;2-)
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pra(K) = 1—®(K)

[ 8]
b
——r

If desired, we can express the probability of detection directly in terms of the false

alarm probability, i.e.,

Pd(Pra) = 1—<1>(<1>“1(1—pfa)~ ;) (2.43)

0 01 02 03 04 05 06 07 08 09 1
Pfa

Figure 2.5: Theoretical performance of the matched filter as a function of signal-to-
noise ratio.



36
2.6 Unknown DC and Contrast

In the matched filter derivation, we assumed a target class consisting of one signal that
is known exactly. This model is useful in some radar and communications applications:
however, for recognizing visual object classes, more complex target models are needed.
The first generalization we consider is the problem of detecting a known signal s in
white noise when there is an unknown DC level © and contrast o (for both the signal

and the noise). Under this model, the observed vector x can be described as follows:

p-1+o0-(s+n) under hypothesis wy

u-1+o-n under hypothesis wy

where 1 is a vector of ones and 1 is a vector of zero mean, unit variance white Gaussian
noise. We refer to this type of model as a signal with parametric variability since given
the parameter values 8 = [u T, the signal is known exactly. The class-conditional

densities of x given 8 are as follows:

p(x|0.,w) = N(X;011+02870§I>
p(x[8.w02) = N (x;0,1,620)

To eliminate the conditioning on 8, we multiply by p(8|w;) and integrate.

p(xlwr) = /p(x{@,wl) p(8]w1) d6 (2.46)

pixes) = [ px16.2) - p(Ols) d (247)

We will now assume that samples from the background area immediately surround-
ing the area under test can be used to estimate 8. A fully Bayesian approach [DH73]
would treat @ as a random vector and combine the observed background examples
with a hypothesized prior distribution to produce a refined posterior distribution that
could be used in place of p(8|w;). Instead. we will use a maximum likelihood frame-

work to produce an estimate 8. With enough background samples, we can get a very
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accurate estimate of the 8 so p(0|w;) ~ §(8 — é) The class-conditional densities then

become:
; ) . A a2
p(x|w;) = N (X;Oll—l—ﬁgs,ég I)
pixler) = N (x:01.071)

We can either use the results in Equations 2.24 and 2.25 or compute the log of the
likelihood ratio directly to find the optimal detector:
wy if B S 7y

R(x) = (2.4

ws otherwise

[\
*b‘
oo
p—g

where

Ty = logT + (2.49)
Thus, the optimal detector can be interpreted as follows. Given an area of the image
where we want to test for the presence of the signal, we first estimate the DC level and
contrast from the area surrounding the test area and use these estimates to “normalize”
the test area. A matched filter for the signal is then applied to the normalized test
area. If the result exceeds the threshold, we say the signal is present.

There is a second interpretation that is also useful. As shown in Figure 2.6, the
matched filter is applied to the entire image. This process is then followed by an
adaptive thresholding procedure in which the mean and standard deviation of the
response image around the test area are used to establish the appropriate threshold
for the matched filter. Asymptotically (in the case of many samples), this procedure is
(statistically) the same as doing the normalization on each patch. For a finite number
of background samples, the two interpretations will yield slightly different results.
Note that the second interpretation is equivalent to using a standard matched filter
followed by the classical two-parameter CFAR algorithm [Gol69] commonly used in

radar systems to detect point targets.
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level and contrast are unknown but constant or slowly

varying over an image, the optimal detector is a matched filter followed by an ideal
two-parameter CFAR. The CFAR essentially normalizes the matched filter response
images using statistics it has estimated from nearby areas of the image. To illustrate,
image 1 has a DC level = 200 and contrast = 6. while image 2 has DC level = 100

and contrast = 24. Although the matched filter response images are very different in

terms of numerical values, the CFAR images are the same.
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One concern with the CFAR thresholding algorithm is that if the estimate of o is
anomalously low, the algorithm will detect signals that do not match well because the
response value is scaled up by 1/o. To avoid this problem. a minimum value of o can
be combined with the estimate as follows:

5 = /62 2. 2.5
Grmod = 02+ 070 (2.50)

In the human visual system, this loosely corresponds to the fact that the internal
signals of the brain are noisy. Weak signals will not be detected because of this

additional internal noise.

2.7 Generalization to Subclasses

Thus far, we have considered target classes consisting of a single exemplar signal. An
important extension is the case where the signal to be detected is selected probabil-
istically from one of k subclasses. For this problem, we can show that the likelihood
ratio is simply the weighted sum of likelihood ratios from the subclasses.

Suppose that the target signal is selected from subclass & with probability p,. We
want to determine whether there is any target signal present. The likelihood ratio for

this problem is given by

ek p(xkw) o

= () (2.52)

= S AW (x) (2.53)
k

where A% is the likelihood ratio for discriminating between subclass & and the back-
ground (ws).

For the case in which each of the subclasses is a single exemplar known exactly,
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the subclass likelihood ratios can be expressed as matched filter operations.

(2.54)

T
k : 1 . S. Sk
log 4'\&/[)1?(X) =2 (Six - k.) )

L

The optimal detector uses a bank of matched filters; each computes its own likelihood
ratio, and these are weighted by the p;’s and combined to produce the overall likelihood

ratio. This is illustrated in Figure 2.7.

e S L (STX — 7)) ——f exp(s) e A(x) T

S. I T N W expy - L A L,
2 L (8IX — Ty) exp(+) AB(X)
D ® ® e e e A(X) > T
[ J [ J [ ] [ J
[ J ® ® [ ]
|

Sk — L (SEX — T )y— exp(-) e AU ()

Figure 2.7: Matched Filter Bank. The optimal decision rule when the signal class
has subclasses corresponding to the exemplars sy,...,sx 1s to use a bank of matched
filters. The separate likelihood functions are combined using the probabilities py, ...
pr, where py is the mixture probability for subclass k.

There is an even simpler decision rule that is approximately optimal. The filter

. « T _ :
k= k which yields the largest value of <s,{x — S"fk> may dominate the summation

since A®) is the exponential of this quantity. Hence,
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and the simple decision rule will be:

o wy 1f SI—CTX>Tx N
R(x)= (2.56)

w, otherwise

where
k = arg max (spx — T%)
and
. ~ 87 8;
T, =o" (1og T — logp,;) SR (2.57)

In other words, s; is the best matched-filter from the filter bank. This simplified
decision rule is commonly called “winner-take-all.” Obviously, if the assumption that
there is one dominant k& value does not hold (e.g., if two & values co-dominate), then
winner-take-all performance will be degraded with respect to the optimal rule.
Figure 2.8 illustrates the relationship between the optimal decision rule of Equa-
tion 2.53, the winner-take-all rule of Equation 2.56, and the simple matched filter of
Equation 2.21. The dashed lines show the simple matched filter decision boundaries
for discriminating between s; and noise for k = 1,2,3. These lines assume that
each signal has the same prior probability as the noise. The solid (slightly jagged)
line just outside of the dashed lines shows the optimal decision boundary. Approx-
imating the optimal boundary with three straight lines would give the winner-take-all
decision boundary. Note that the optimal boundary differs from the separate matched
filter boundaries for two reasons. First, the subclass & has prior probability p(w;) - pz
(rather than p(wq))., which pushes the decision boundaries outward slightly. Second,
the corners are rounded because points near the corners are about the same distance
from two of the subclass exemplars and therefore no single term dominates in Equa-

tion 2.53.
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Figure 2.8: Subclass Decision Rules. The dashed lines show the three pairwise matched
filter decision boundaries under the assumption that each subclass has the same prior
probability as the noise. Using the correct priors moves the decision boundary out to
the (slightly jagged) solid lines. Also, notice that the corners of the optimal boundary
are rounded because these points are approximately equidistant from two exemplars.
The winner-take-all strategy ignores this interaction and just approximates the optimal

boundary with three straight lines.



2.8 Summary

In this chapter, we reviewed some of the basic principles of decision theory that provide
the foundation for the remainder of the thesis. In particular, the maximum a posteriori
rule was shown to be optimal (in terms of minimum probability of error) for choosing
between K" mutually exclusive and exhaustive classes given observations x that de-
pend on the true class. For the problem of detecting a known signal in white noise,
the optimal decision rule reduces to the classical matched filter. Similarly, for discrim-
inating between two known signals in white noise, the optimal rule is a linear filter
matched to the difference signal.

The performance of any detector can be characterized using receiver operating
characteristics (ROC curves), which show the probability of detection versus the prob-
ability of false alarm. The theoretical performance of the matched filter can be ex-
pressed as a function of the signal-to-noise ratio.

Finally, two more complex target models were analyzed. For detecting a known
signal in white noise when the DC level and contrast are unknown, we showed that a
combination of matched filtering and the classical two-parameter CFAR algorithm is
nearly optimal. The CFAR algorithm estimates the background statistics (DC level
and contrast) from samples near the area under test. With an infinite number of
samples, the variance of the estimates goes to zero and the algorithm is optimal:
however, with only a finite number of samples, there is some degradation in perform-
ance.

For detecting a target class in which the target signal is probabilistically selected
from £ known signals, we showed that the optimal detector can be implemented as a
bank of matched filters along with some nonlinearities.

In subsequent chapters, we will pursue more complex models of the target class.
In particular, we next consider a model in which the target signal consists of a linear
combination of basis functions. In later chapters, we generalize to models consisting
of characteristic parts in a deformable spatial configuration. The goal throughout

is to generate a model with parameters that can easily be estimated, yet which is
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complex enough to model the variations that appear in visual object classes. By more
accurately modeling the target class we can hope to better decide whether an object

in an image is an example from the class or not.



Chapter 3 Linear Combinations of Basis

Functions

3.1 Introduction

In this chapter we consider a model for visual object classes in which instances from a
class are represented by linear combinations of basis functions. A particular instance
from an object class can be viewed as a point in a high-dimensional pixel space; an
object class corresponds to the cloud of points generated by all the instances from the
class. With the model used in the matched filter derivation, an object class is just
a single point in pixel space (i.e., the target signal) perturbed by white noise. The
cloud of points is then a hypersphere centered around the target signal. An obvious
disadvantage with this model is the target signal typically has inherent variability that
is not well-modeled as white noise. Figure 3.1a shows six images of a still subject taken
under different lighting conditions. Figure 3.1b shows the error between the average
image and each of the six instances. Clearly, the error signals exhibit structured
variation (i.e., non-white noise). If signals from the target class vary strongly in only
a few directions in pixel space, a sphere model will be too “loose” because it will be
the same size in the directions where the target does not vary as in the directions
where the target varies most.

The linear combination model represents an object class using a hyperplane per-
turbed by noise. There are several arguments that can be used to justify such a model.
One argument put forward by Simard [SYD93] is based on tangent planes. The object
class is assumed to consist of a single exemplar that is perturbed by small rotations,
translations, changes of scale, and other deformations. Since these transformations
are continuous, the appearance of the perturbed object can be well-approximated by

a multidimensional Taylor expansion in a small enough neighborhood. Equivalently,



Figure 3.1: (a) Six images of a still subject taken under varying lighting conditions.
(b) The errors between the average image and each of the six instances. Clearly, the
error images show structured variations. Not all variability is well-modeled by white

noise.
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we can say that the variations in the target signal lie approximately in the tangent
hyperplane.

A second argument is based on the method of principal components analysis
(PCA), which was introduced in the statistics literature by Hotelling in the 1930’s [Hot33].
PCA provides a way to find the directions of maximum variation in a multidimensional
dataset. When applied to examples from a visual object class, one typically finds that
most of the variation in the dataset can be explained with a small number of principal
components. In essence, the examples lie approximately on a low-dimensional hy-
perplane. PCA is closely related to the discrete Karhunen-Loéve expansion [Fuk90],
which provides a minimum ezpected error expansion for a random vector through

linear combinations of covariance matrix eigenvectors.

3.2 Preliminaries

In this section we consider target models consisting of a linear combination of a small
number of orthonormal basis functions. As in the previous chapter, we will string the
pixel values of an object into a long N-dimensional column vector x. Note that there
is a loss of spatial neighborhood information with this representation. Algorithms that
treat the data in this form will not explicitly know that certain pixels were adjacent
in the original image data. Nevertheless, with this caveat an object class w; can be

modeled as:
X!O,w,]; =m,; + U;8 + n; (31)

where m; is the “nominal exemplar” from the class, U; is an (N x m) orthonormal
matrix in which each column is one basis vector, 8 is an (m x 1) vector of weighting
coefficients used to combine the basis functions, and n; is white noise. In this section
we will assume that for any value of 8, the combination m; + U;8 will still be a
member of the object class. Hence, the object class is the entire hyperplane passing

through the point m; and spanned by the columns of U;. In the next section, we
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will consider a refinement in which the weighting coefficients 8 are modeled with a
probability distribution.

If the goal is to discriminate between a target object class and a nuisance object
class in which both classes are represented by hyperplane models with the same noise
variance, it is clear that the optimal decision rule (minimum error) is to compute the
perpendicular distance to each hyperplane and assign the test example to the nearest
hyperplane. If there is only a model for the target class and no model for the “other”
class, then a reasonable decision rule would be to compute the distance from the
hyperplane and check whether the distance is less than a threshold. In the context of
detecting human faces, this is the “distance from face-space” method originally used
by Turk and Pentland [TP91].

The distance from the hyperplane is also called the reconstruction error. As illus-
trated in Figure 3.2, any point = in pixel space can be expressed as a linear combin-
ation of basis functions plus a component orthogonal to the hyperplane. The nearest
point p in the hyperplane is the best reconstruction of x using the basis functions, so

the distance d(x, p) is called the reconstruction error.

3.3 Murase and Nayar

The model of the previous section assumed @ could be any (m x 1) vector of numbers
and the resulting linear combination of basis functions would still be a member of the
target class. This model is too loose for most practical applications since it assumes
the instances from the object class can be anywhere on the hyperplane. A better
model results if we place restrictions on the values of 8.

Murase and Nayar [MN95] use an object class model of this type. In their ap-
proach, training examples are collected as various parameters of the imaging process,
such as illumination direction and object pose, are varied continuously. The projec-
tion of these training examples on the basis functions generates a trajectory through
#-space. Murase and Nayar represent this trajectory with surface splines. To classify

an unknown example, they project the example onto the basis functions and compute
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Figure 3.2: Reconstruction Frror

the distance from the spline. The trajectory in 8-space corresponds to a trajectory
in the original pixel space which is confined to the hyperplane spanned by the basis

functions.

3.4 Probabilistic Weighting Coefficients

A more general approach to restricting the values of 8 is to specify a class-conditional
probability distribution p(8|w;) where w; is the class. An illustration of this type of
model is shown in Figure 3.3. Here we have used a model for p(8|w;) consisting of a
mixture of four Gaussians. The ellipses show the equiprobability contours for each of
the mixture modes.

There are now two problems we want to consider: (1) distinguishing between two
classes when each class is represented by a linear combination of basis functions with

probabilistic weighting coefficients and (2) distinguishing one such class from white

noise. We can effectively treat both cases at the same time by focusing on the quantity
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Figure 3.3: Linear combination of basis functions with a probability distribution on
the weighting coefficients.

p(x|w;). Assuming @ is known, we have the probability density
p(x0,w;) =N (X; m; + U8, afI) (3.2)

Essentially, this equation states that if 8 is known then x is known except for the
uncertainty due of the Gaussian observation noise. The class-conditional density of
x|w; (no longer conditioned on @ can be obtained by multiplying Equation 3.2 by

p(@]w;) and integrating over €. Thus,
p(x|ws) = /\ (xim, + U0, 021) - p(8r) dO (3.3)

Following through some straightforward algebra and using the fact that Uiy, =1,

we obtain

wi)dO (3.4)

p(X‘ng) = ./\’"’ (Al, 0; 0’3L\"—m¢><N—mJ : /./\"’ <0, é“ OézImlxm() . p(e
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where we have introduced the definitions

0, 2 U7 (x — my) (3.5)
A; & Ul {(X —m,;) — Uié{] (3.6)

The dimensions of 8; and A, are (m; x 1) and (N—m; x 1), respectively, where m;
is the number of SVD basis vectors (i.e., the dimension of the space spanned by Uy;).
The symbol U, designates an (N x N—m;) matrix with orthonormal columns that are
also orthogonal to the columns of U;. That is, U;; is any orthonormal basis for the
subspace orthogonal to the range of U;. Observe that 8, is the projection of x onto the
hyperplane, while A; is the error between x and 8;. We will call A; the reconstruction
error vector since m; + U,0; represents the best possible reconstruction of x using the

U, basis functions. In the derivation above we used the fact that

ATA; = (x—m) (x—m;) - 0,0, (3.7)

which is a consequence of the Pythagorean Theorem.

Now we will simplify Equation 3.4 by writing the integral as follows:
/\ (6::0.07T) - p(6]w;) d6 (3.8)

since N (8; ., X) = N (p;60,%). The integral can now be interpreted as the probab-

ility density of a random vector z = 8 + n, evaluated at z = éi, where
n~N (0.0, ) (3.9)
Therefore, Equation 3.4 reduces to
pxle) = N (A50;02 v v, ) - q(8ifwr) (3.10)

where ¢ is the probability density of @ blurred by Gaussian noise n. The log likelihood
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ratio for discriminating between two signals is given by:

: | | ATA, ATA
log A(x) = (N —my)log V2roy — (N — my)log V2o, + 5 - — )] = L+
2073 207
log —q<~l|w1) (3.11)
q(02]w2)

Observe that the solution separates into one term that depends on the reconstruc-
tion error and another term that depends upon how well the projections agree with
the class-conditional distributions in the hyperplane. This result was obtained inde-
pendently by Burl [Bur93] and Moghaddam and Pentland [MP95, MP96]. Even if we
cannot compute the exact log likelihood ratio (e.g., if the densities are not well-modeled
by one of the common parametric forms), we can still make use of Equation 3.11 by
combining the reconstruction error term with a classifier in the projection space that
produces posterior probability estimates (e.g., mixture densities or kernel-density es-
timators). Incidentally, the log likelihood ratio for discriminating between zero-mean
white noise and a target signal described by a linear combination of basis functions is

given by:

log A(x) = NlogV2roy — (N —my)log vV2roy +

xTx  ATA,
203 20

log q(01 |wr) (3.12)

3.4.1 Specialization to a Gaussian Model

To better illustrate the result in Equation 3.11, let us consider a specific form for the

densities of ;. specifically
p(Oilws) = N(0:v;, ) (3.13)
Hence, the density of 0, = 8, + n; is given by:

g(0;lwi) = N(Os;vi, 0, cm +20) (3.14)
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(Since 8, is equal to 8; plus n, there is an extra variance o? attached to the diagonal
in the covariance matrix.)

With this model, the log likelihood ratio simplifies to

T T
log A(x) = (N =my)logoy — (N —my)logo, + Az —2 A_l %1 A
‘ 205 207
1, - . - , g
+; {dz(eg; Vo, 0'51 + 22) — d“(gl; vy, O'IZI —+ El)J (313)
where
(0; 10, 9) £ (6 — )"0 — pu) — log | @] (3.16)

To summarize, X is projected onto the two hyperplanes defined by the two bases
U, and U,. The two projection coordinate vectors are denoted by 6, and 8,. To
determine whether x should be associated with class w; or w;, two questions are
important: (1) Is x well-represented by the basis? (2) Is the projection of x onto
the basis consistent with the projections of other class members? The log likelihood
ratio in Equation 3.15 can be interpreted as a nearest distance classifier in which the
distance to class 7 consists of one term involving the reconstruction error and another
term involving the Mahalanobis distance in projection space. This result is shown

pictorially in Figure 3.4.

3.5 Learning the Basis Functions

We have discussed how to recognize object classes using object models that consist
of linear combinations of basis functions. An important practical problem is deciding
which basis functions to use, i.e., given a set of training examples, how can we learn
a good set of basis functions. One idea is to choose a set of basis functions that do
the “best” job of representing the examples, where a common definition of “best” is
given by the minimum average reconstruction error (mean square error). A different

idea is to choose basis functions that maximize the discrimination between the object



Figure 3.4: Suppose we have two classes A and B. Each class is modeled as a linear
combination of basis vectors Uy and Ug, respectively. To classify an unknown point
x, two factors are important: (1) the distance of x from each hyperplane and (2)
the Mahalanobis distance between the projection of x onto each hyperplane and the
corresponding mean. A similar interpretation is possible even when the distributions

in projection space are non-(Gaussian.
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class and another class using a heuristic measure of the class separation such as the
Fisher criterion [DHT3].

There is an extensive discussion in [Fuk90] on the issue of representation versus
discrimination. For recognizing object classes, we argue that the representational
approach is best. Humans can generate an approximate drawing or mental image
of objects they have seen before. This fact suggests that, at least somewhere in the
brain, there is sufficient information to reconstruct the appearance of an object. From
economy considerations, it is likely that this same information is used for recognition.
Further, an approach based purely on discriminative features would require specialized
feature sets to distinguish between every pair of object classes, rather than one set
of features (model) per class. Also, for many applications the primary concern is to
find examples from a specific class. The “other” class is broad and ill-defined, i.e.,
it consists of everything that is not the object. Discriminative methods. in particular
those based on linear discriminant analysis (LDA) and related scatter criteria, cannot
deal with this type of catch-all class.

In [Fuk90], Fukunaga argues against a representational approach using the follow-
ing problem as an illustration. People are to be classified as male or female based
on a two-dimensional height and weight feature vector. Since height and weight are
highly correlated for both males and females, the distributions are approximately as
shown in Figure 3.5. Also shown are two one-dimensional distributions obtained by
projecting the data. Clearly, the distributions along ¢, (the principal axis) are highly
overlapped, which is taken to mean that representational features are not good for
this problem. In fact, if the classes were represented as m; + a¢@, + n, the methods
of the previous section could be applied to yield optimal discrimination performance.

The discriminational approach does have strengths and should be used under cer-
tain circumstances. For example, when the problem is to discriminate between similar
objects (such as determining whether a person is Asian versus Caucasian), it makes
sense to focus on the differences. Similarly, for identifying a particular object within
one class (e.g., recognizing your friend Joe), it makes sense to focus on the details

that make Joe different from everyone else rather than the fact that Joe has a head
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>

Figure 3.5: Consider the problem of classifying people as male or female based on
height and weight feature vectors. Although the projections on ¢, (the principal axis)
are highly overlapped. a representational approach as discussed in Section 3.4.1 will
vield optimal discrimination. (Adapted from [Fuk90].)
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and two eyes, etc.

Since our primary focus is on recognizing classes of objects, we will focus solely
on basis functions that provide the best representation. We will use the mean square
error (MSE) as a measure of the quality of representation; however, we note that there
are deficiencies with this metric. For example, consider the problem of recognizing
different textures. It is not particularly important to represent the exact microposition
of each texture element. Yet, with a MSE metric these details must be encoded,
especially if the texture elements have high contrast. In most recognition problems
there is a trade-off between the fidelity of representation and whether the extra bits
or parameters provide useful information for discrimination. Ideally, we would like a
compact description of the appearance of an object class without encoding nonessential
details.

Consider a set of M examples designated by column vectors Xy, X2, ..., XM.
The dimension of each vector is NV, where N is the number of pixels in each pattern.
We would like to find a set of m < min(M, N) orthonormal basis vectors, 1y, ls,

., 1y that “approximately span” our set of examples. We can make the notion of
“approximately spanning” mathematically precise by restating the problem as follows:

find a set of m orthonormal basis vectors such that

bzl
Xj — Q’fz'jli
=1

is minimized. Notice that we are simply approximating each example as a linear

M 2

P=y

J=1

(3.17)

combination of the basis vectors and seeking to minimize the mean squared error.
The coefficients «;; are the optimal weights that should be applied to the Ij’s in order
to approximate x;.

Equation 3.17 can be written more compactly using matrix notation. Define

= [X1 X2 ... Xm] N x M
L = [11 12 Ce lm} N xm (318)

(a)i; = ay m x M
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With this notation, the mean square error is given by
B = tr[(X~-La)" (X - La) (3.19)

We now seek to minimize F over L and « subject to the orthonormality constraint
LT™L = I,,... The solution to this problem is generally well known [Pin85]: the
optimal basis functions are the m eigenvectors of XX having the largest eigenvalues.
The optimal weighting coefficients are simply the (linear) projections of the examples
onto the basis vectors. Note that any orthogonal transformation of the optimal basis
provides an equally good basis. For completeness, we have included a derivation of
these results in the appendix of this chapter.

The results can also be interpreted in terms of the singular value decomposition
(SVD) of X. The SVD of an N x M matrix X with N > M produces three matrices
U, S, and V sized N x M, M x M, and M x M respectively. These matrices have

the properties that:

X = UsVT (3.20)
UTU = ILuy.u (3.21)
VIV = Tywwm (3.22)

S = diag(si.59....,51) (3.23)

The s;’s are known as the singular values of X and are arranged in descending order
(]6‘ Si Z S92 Z e 2 O)

Consider now the matrix XXT:
XxT = (usv?).(vsuT) = us’U” (3.24)
Multiplying both sides on the right by U yields:

XXTUy = US? (3.25)
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Thus, the columns of U are the eigenvectors of XXT. The singular values squared are
the corresponding eigenvalues. Since the singular values are arranged in descending
order, the m eigenvectors associated with the largest eigenvalues are just uy, uz, ...,
Un,. These eigenvectors are exactly the set of m orthonormal basis vectors defined by
the I;’s (Equation 3.47 with Y; = I). Also note that the matrix a in Equation 3.36

can be associated with the first m rows of SVT,

3.5.1 Accuracy of Representation

We have shown that the optimal basis of size m for representing a set of examples
is obtained by taking the first m columns of U in the singular value decomposition.
In this section, we quantify how accurately these basis functions represent the ex-
amples. (Again these results are generally well known [Pin85], but are included for
completeness.) Using the SVD notation, the squared error for a single example can

be expressed as:

m 2
6]2- = X5 — Z U; $;vj; (3.26)
=1
But according to Equation 3.20, xj can be exactly represented as
M
Xj; = Zui SV (321)
i=1

Substituting into Equation 3.26, we obtain

2
M
2
€; = Z US55
rz=mb1
M M
T p
= Z uj Sivﬁ : Z ukskvktj
i=m+1 k=m+1
M
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(since u;Tuy = &;1.). The total squared error computed over all the examples is

M M M
p 2
E o= Ye=3 2 sv;
=1 j=li=m+1
M M M
2 2 2 2 90
t=m-41 =1 tzmm b1

where for the last step, we used the fact that the columns of V are normalized (Fqua-
tion 3.22).

Equation 3.29 states that the accuracy of the representation depends on the sum
of squares of the lower-order singular values. The number of basis functions m should
be chosen based on the decay of the singular values. If the singular values decay very
rapidly. then only a few basis vectors are needed to accurately represent the examples.
On the other hand, if the singular values decay slowly, many basis vectors would be
needed to represent the data with the same error.

The reader is cautioned that Fquations 3.27-3.29 apply only when X] is one of the
examples used to compute the SVD. The problem is that the SVD produces M < N
basis vectors (the u;’s). Using all M of these vectors, we can exactly span all the
examples without any error (Equation 3.27). However, we cannot expect M basis
vectors to span every pattern in an N dimensional space! In order to exactly represent
an arbitrary pattern t in N-dimensional space, the set of basis vectors produced by
the SVD must be augmented with N — M additional orthonormal vectors, say w; for
i=M+1,...,N. In this augmented basis, any pattern t can be exactly represented

as

M N
t = > ufthu+ D (wit)w; (3.30)
i=1 i=M-+1
M N
= Z@iur% Z Biw; (3.31)
i==1 1=M+1

where the definitions of «a; and /3; are obvious. The error between t and its recon-



61

struction using the first m principal components will be

~ E ]V[ E ‘\r B
=t = > of+ > 3 (3.32)
t=m+1 =M +1

If t happens to be one of the training examples used to compute the SVD, it is easy
to show that the 3;’s will all be zero. The reconstruction error given in Equation 3.32

then reduces to the expression given previously (Equation 3.28).

3.6 Relationship to Principal Components Analysis

Although we have derived the basis functions from the standpoint of finding the best
linear basis of rank m to represent a set of examples, there is another interpretation.
If we rewrite the matrix product XXT of Equation 3.24 in terms of the columns of X,
we find

M

XXT =3 xxf (3.33)
J=1

Now suppose the x;’s are random vectors with zero expected value. Then, the right
hand side of Equation 3.33 divided by M corresponds to the sample covariance matrix
Y of the data, i.e,

S| ,
Y= xxT (3.34)

The eigenvectors of XXT are therefore the eigenvectors of the sample covariance
matrix, and the singular values normalized by —1]\—/1 are the standard deviations of the
data along the eigenvector directions. We can think of the sample covariance matrix
as a hyper-ellipsoid, with the u;’s being the major axes. The direction u; corresponds
to the direction of maximum variance; the direction u, corresponds to the direction
of maximum variance orthogonal to uy, and so on. Since the u;’s provide a compact

representation of the primary directions of variance in a set of examples, they are also

referred to as the principal components.



3.7 Summary

In this chapter we examined target models consisting of a linear combination of basis
functions. We showed that the “best” set of basis functions in terms of approximating
the examples with minimum RMS error can be obtained from the singular value
decomposition. In particular, if the examples are written as columns of a matrix
X. the “best” m basis functions are the first m columns of U in the singular value
decomposition of X. The optimal classifier for discriminating between two object
classes that consist of linear combinations of basis functions was derived. A test
pattern should be classified based on the “distance” from each class, where the distance
consists of two terms. The first term measures how well the test example is represented
by the basis functions. The second term measures how well the weighting coefficients

agree with other examples from the class.
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3.8 Appendix: Derivation of the Optimal Basis

The mean square error that results from representing a set of examples X by linear
combinations of basis vectors L with weighting coefficients a was given in Equa-

tion 3.19 as
E = tr[(X-La)" (X - La)] (3.35)

To derive the optimal basis functions, we seek L and « to minimize F subject to the
orthonormality constraint LTL = I,,,,,.
Given a tentative solution for L, we can solve for a by differentiating £ with

respect to a (a matrix) and equating the result to 0. This process yields:
a = LTX (3.36)

Equation 3.36 states that the optimal coefficients e are just the projections of the
examples along the basis vectors.
Substituting Equation 3.36 into Equation 3.19 reduces the problem to a minimiz-

ation over L of the quantity
E = & {XT (11" (1-LLY) X}
= tr[XT (I-LLT) X]
= tr[X"X - X" (LLT) X] (3.37)

Minimizing £ is equivalent to maximizing

Q = tr[XTLLTX] (3.38)
= tr [L"XX"L] (3.39)
where we have used the identity tr [AB] = tr [BA] to obtain the second line from the

first.
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Since XXT is symmetric, there exists an orthonormal matrix P such that
XXTP = PA (3.40)

with A a diagonal matrix. For convenience, we will rearrange the columns of P so
that A\; > Ay... > Ay > 0. Thus, the first column of P is the eigenvector of XXT
having the largest corresponding eigenvalue.

We can rewrite XX7 in terms of P and A as
XXT = pAPT (3.41)
Substituting into the expression for ) in Equation 3.39, yields

Q = tr[LTPAPTL]
= tr [YTAY}

= tr[AYYT] (3.42)

where Y is defined to be PTL. We originally wanted to maximize ¢) over L subject
to the constraint LTL = I, but this is equivalent to maximizing () over Y subject to
the constraint YTY =1 (since P is invertible and YTY = LTL).

Equation 3.42 can be expressed as follows:

Q = Y. N> v
i k
_ Z Aivi (3.43)

where ~; is the sum of the squares of elements of the it row of Y.

Because of the constraint YTY =1,

k3

D yh = m=> v (3.44)
ik

Also, 0 < Y,y < 1. We can prove this inequality by augmenting Y with N —m
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normalized columns that are orthogonal to the first m columns to get a square matrix
Y. Then YTY = I implies that YYT =1, because Y is a square matrix. Therefore,
Y=Lyl S LY

We now have a fixed budget of energy m to place into the v;’s (or equivalently, into
the rows of Y). Our goal is to maximize (), so we want to avoid spending energy on
the lower rows if possible because this energy is amplified by a smaller A;. If it were
possible, we would put all the energy in the first row because it would be amplified
by the biggest A. Unfortunately, the inequality shown above prevents any row from
having more than 1 unit of energy. Thus, the best we can do is to put one full unit of
energy in each of the first m rows and none in the remaining rows i.e.,

v = f;z::A/m_-:l

(V]
M
nt
—

v = 0,Vi>m (3.4

The distribution of energy that achieves the maximum ) can be obtained using any

Y of the form

Y=| .. (3.46)

where Y is a square (m x m) matrix such that YTY; = I. (This constraint on Y,
is necessary in order to satisfy YTY = I).

The optimal solution for L is, therefore, given by:

L = PY (3.47)
Y,
= P| .. (3.48)

Hence, any orthogonal transformation of the first m columns of P is an optimal solution
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for L. With Yy = I, the columns of L are simply the m eigenvectors of XXT
corresponding to the largest eigenvalues.
To summarize the derivation, the set of m orthonormal basis vectors that best span
a set of examples X are the m eigenvectors of XXT having the largest eigenvalues
(or any orthogonal transformation of these eigenvectors). As discussed in Section 3.5,

an equivalent solution is provided by the singular value decomposition (SVD) of X.
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Chapter 4 Recognition of Small Volcanoes

on Venus

4.1 Introduction

This is an applications chapter! in which we discuss JARtool? (JPL Adaptive Recog-
nition Tool), a prototype system for automatically locating and cataloging geological
features in remote sensing databases. For a number of reasons, the problem of finding
small volcanoes in the Magellan SAR imagery of Venus was selected as the initial test-
bed for JARtool algorithm development. The Magellan dataset has provided scientists
with the most comprehensive global picture ever of any planetary surface, including
even Farth since our planet’s surface is largely obscured by water. Magellan was
successful in imaging over 98% of the Venusian surface and, in fact, returned more
data than all previous planetary missions combined. Planetary geologists are under-
standably excited about the potential scientific impact of this dataset, but are lacking
automated tools to aid in the analysis of the data.

One of the dominant geological processes on Venus is volcanism. Preliminary
global surveys of the Magellan data have shown that there are approximately 1400
volcanic features larger than 20km in diameter [HT91]. Based on previous observa-
tions from Soviet Venera 15/16, U.S. Pioneer Venus, and ground-based radar, plan-
etary geologists estimate the number of small volcanoes (diameter < 20km) to be
~ 10° [AS90]. Generating a comprehensive, global catalog that includes the location
and size of each volcano is essential in order for the geologists to validate scientific

theories about the relationship between volcanoes and local tectonic structure and to

'For the reader primarily interested in theory, this chapter may be skipped without loss of
continuity.

>The JARtool project was a collaboration between the Machine Learning Systems Group at JPL
and the Vision Group at Caltech. Principal investigators were M.C. Burl, U.M. Fayyad, P. Perona,
and P. Smyth
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understand heat flow patterns within the planet. Much of our current understanding
of planetary geology is derived from experience on Earth, so analysis of Venus through

the Magellan data will provide an invaluable second data point.

4.2 Magellan Imagery

The fundamental objective of the Magellan mission was to provide global mapping
of the surface of Venus. Due to the dense cloud cover surrounding Venus, it was
necessary to use synthetic aperture radar (SAR) to perform the mapping. A complete
description of the Magellan SAR imaging system is given in [PFJT91]. so here we will
summarize only the most important characteristics. The spacecraft was inserted in a
polar elliptical orbit in August of 1990. Figure 4.1 [MGN] shows an artist’s depiction
of Magellan. With each orbit the radar imaged a 17-28 km swath on the ground. Over
the course of one Venusian day (243 Earth days), most of the planet’s surface (84%)
was successfully imaged and relayed back to Earth. Subsequent passes boosted the
total surface coverage to 98%.

The nominal incidence angle in the Magellan data ranges from 15° — 45° as a
function of latitude on the planet. The imagery is available at several resolutions with
the highest resolution data product being the F-MIDR’s (Full Resolution Mosaicked
Image Data Records) which have a resolution of 120m in azimuth and 120m-360m in
range. The F-MIDR images are 1024 x1024 pixels with pixel spacing equal to 75m
(slightly oversampled).

A 30 kim x 30 km subimage from one of the F-MIDRs is shown in Figure 4.2.
This area located near (lat 30°N, lon 332°) contains a number of small volcanoes.
Most of these volcanoes have the classic radar signature one would expect based on
the topography and illumination direction (illumination is from the lower left); that is.
the upward sloping surface of the volcano in near-range (close to the radar) scatters
more energy back to the sensor than the surrounding flat plains and therefore appears
bright. The downward sloping surface of the volcano in far-range scatters energy away

from the sensor and therefore appears dark. Together, these effects cause the volcano
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Figure 4.1: Artist’s depiction of Magellan spacecraft at Venus.

to appear as a left-to-right bright-dark pair within a circular planimetric outline. Near
the center of the \folcianoesv there is usually a summit pit that appears as a dark-bright
pair because the radar energy backscatters strongly from the far-range rim. Small
pits, however, may appear as only a bright spot or not at all depending upon the pit
size relative to the radar resolution.

The topography-induced features described above are the primary visual cues that
geologists report using to locate volcanoes. However, there are a number of other more
subtle cues. The apparent brightness of an area in a radar image depends not only
on the macroscopic topography but also on the surface roughness relative to the radar
wavelength. If the flanks of a volcano have different roughness properties than the
surrounding plains, the volcano may appear as a bright or dark circular area instead
of as a bright-dark pair. Volcanoes may also appear as radial flow patterns, texture
differences, or disruptions of graben. (Graben are ridges or grooves in the planet
surface, which appear as bright lines in the radar imagery — see Figure 4.2.)

An added difficulty with the Magellan dataset is that there is no absolute ground



Figure 4.2: Magellan SAR subimage: A 30km x 30km region containing a number of
small volcanoes. llumination is from the lower left; incidence angle ~ 40°.
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truth. No one has ever been to the surface of Venus, apart from a Russian robotic
lander that melted within minutes, so any ground truth must be derived from the
imagery. The Magellan imagery is the best available, but trained scientists still can-
not say with 100% certainty whether a particular feature in the imagery is indeed a
volcano. There is considerable subjectivity due to the radar resolution, noise level,
etc. Thus, only uncertain ground truth is available for generating training examples
and evaluating performance.

Part of JARteol is a graphical user interface (GUI) that enables scientists to
provide training examples by fitting circles around image features that may correspond
to volcanoes. The scientists also provide a label indicating their subjective confidence
p that the selected object is indeed a volcano. The confidence labels are quantized

into four categories, which were determined based on discussions with the scientists:

Category 1: p € [0.95,1.0]. Almost certainly a volcano, with all primary visual cues

present.

Category 2: p € [0.75,0.95]. Probably a volcano, but a non-essential visual cue is

missing.

Category 3: p € [0.5,0.7]. Possibly a volcano, but at least two of the primary cues

are missing.

Category 4: p =~ 0.5. Only a pit is visible; could be a volcano, but more evidence is

needed.

Figure 4.3 shows examples of volcanoes in each confidence category.

“Consensus ground truth” is generated by several scientists working together and
discussing the merits of each candidate volcano. The consensus data is then used
as if it were the actual ground truth. Figure 4.4 shows consensus data for a typical
image. Of course, an individual scientist who labels a set of images will not produce
exactly the same results as the consensus. This fact is illustrated in Figure 4.5 which
shows the confusion matrices for two individual scientists (A and B) relative to the

consensus. The (7, 7) entry is interpreted as the number of volcanoes labeled ¢ by an
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Sample Volcanoes

Category :

Category 2:

Category 3:

Category 4:

Figure 4.3: Examples of volcanoes from each confidence category.
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Figure 4.4: Magellan image (75 km x 75 km) with consensus ground truth showing
suspected small volcanoes including size, location, and subjective confidence. The
dashed box shows the area depicted in Figure 4.2.
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Consensus
1 2 3 4 0
1128 11 6 1 0O
Al2/5 9 8 9 9
301 2 20 8 31
411 2 5 26 13
00 6 11 4 0
Consensus
1 2 3 4 0
1719 6 6 3 1
Bl2]/9 5 9 4 6
314 13 18 6 37
410 3 3 25 18
013 3 14 10 0

Figure 4.5: The performance of two individual scientists (A and B) compared to
‘consensus’ ground-truth.

individual that were labeled 7 in the consensus. The last row of the confusion matrix
shows the number of misses (volcanoes not labeled by the individual), while the last
column shows the number of false alarms. The (0,0) entry has no meaning so we have
defined it to be 0. Our goal in developing an automatic volcano-detection algorithm
is to achieve performance relative to the consensus that is comparable to that of an
individual scientist (also judged relative to the consensus). The philosophy here is
that if an individual scientist is qualified to perform the analysis, then it is sufficient

if our algorithms perform comparably.

4.3 Algorithm Description

The JARtool algorithm consists of three stages: focus of attention (FOA). feature
learning/measurement, and classification. In the first stage of processing. the FOA
algorithm is used to quickly scan through an image and output a list of candidate
volcano locations. Regions not identified by the FOA are eliminated from subsequent

processing so it is important that the algorithm not miss too many of the true volcanoes
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Figure 4.6: (a) Matched filter s; constructed by averaging internally normalized vol-

cano examples. (b) Matched filter s, constructed by averaging CIFAR normalized
examples. Both methods produce almost the same filter (aside from different DC
value and scale factor). Notice that the matched filter contains many of the char-
acteristics that planetary geologists report using to manually locate volcanoes. In
particular, the filter has a bright central spot corresponding to the volcanic summit
pit and left-to-right bright-dark shading induced by the volcano topography.

at this stage. The FOA should also be relatively cheap computationally since it must
be applied to every pixel in an image. Given these constraints, we have chosen a simple
matched filter as the basis for the FOA. The matched filter is synthesized from the
example volcanoes in the training image set. Given the assumption that the volcano
class consists of a single prototype volcano corrupted by noise, a good estimate for
the ideal matched filter is obtained by computing the mean of the training examples.

Due to differences in DC and contrast between the images, however, it is necessary
to first normalize the training examples. There are two basic ways this can be done:
(1) internal normalization and (2) CFAR normalization. Let v; denote a k x k pixel
region around the i-th training volcano. Both methods replace v; by the normalized

example

i—pic 1 1y
V= ATl (4.1)

i

The matched filter is then calculated by averaging the v;’s. The difference between
the two methods is in the calculation of y; and ;. With the internal normalization
method, ; is the mean of the pixels in v; and o; is the standard deviation. With CFAR
normalization, y; and o; are calculated from pixels in the background near v;. For the
volcano problem, the two methods produce similar filters as shown in Figure 4.6.

When the matched filter is applied to an image, the local image patch must also
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Figure 4.7: (a) Response of matched filter sy on the subimage from Figure 4.2. using
the internal image normalization method. (b) Corresponding result for s; and the
CFAR image normalization method. In both images, bright points indicate a strong
match -— these will be selected as candidate volcano locations.

be normalized, again using either internal or CFAR normalization. A third altern-
ative is to apply the matched filter without image normalization followed by CFAR
thresholding on the response image. Asymptotically (i.e., with a large number of
samples to the estimate background statistics), this method should produce the same
result as performing CFAR normalization on each image patch. Figure 4.7a shows the
response of the matched filter s; to the subimage from Figure 4.2 using the internal
image normalization method. Figure 4.7b shows the corresponding result for sy and
CFAR normalization. In general the contrast of the response image produced with
CFAR normalization appears better. However, sometimes we do not get a large re-
sponse where we would expect one. The summit pit of the large volcano in the upper
left is readily detected with the internal image normalization method, but not with
CFAR normalization. The reason is that the CFAR stencil used to estimate the back-
ground statistics overlaps with the bright volcano flanks and produces anomalously
high estimates of the background DC level.

We can try to improve upon the matched filter by using the SVD-based methods

discussed in Chapter 3 to better model the variability of the volcano class. The goal
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here is to reject any false alarms generated by the FOA while retaining as many of
the true volcanoes as possible. The volcano class is modeled as a linear combination
of the basis functions produced by principal components analysis with a particular
probability distribution on the weighting coefficients. For an unknown test chip. the
weighting coefficient for each SVD basis chip is simply the projections of the test chip
onto the basis chips. These weighting coefficients serve as feature values which can
be used to classify a chip as belonging to the volcano class (w;) or not (w;). The
orthogonal out-of-subspace component (reconstruction error) could also be used in
the classification decision as discussed in Chapter 3, but we have not done that in the
experiments reported here.

Figure 4.8a shows a set of example volcanoes from one of the cross-validation train-
ing sets. Figure 4.8b shows the corresponding set of SVD basis function ordered from
left-to-right and then top-to-bottom by singular value. Any of the example volcanoes
in the training set can be expressed exactly as a linear combination of the SVD basis
chips. Further, any of the example volcanoes can be expressed approvimalely using
only the first K basis chips. The error of the approximation depends on the decay of
the singular values (see Equation 3.29). Notice from Figure 4.8c that the first six to
ten singular values dominate. Also, the first six to ten basis functions in Figure 4.8b
are the ones that show visual structure. The basis functions corresponding to smal-
ler singular values look very random indicating that they merely encode noise in the
training set.

For our experiments we have represented the volcano class using a single SVD
basis, but we have not attempted to model the background object class. Since the
background class consists of everything that is not a volcano, we believe this class
is too complex to be modeled as a linear combination of a small number of basis
functions. Thus, we try to classify unknown examples based on how well the features
(projection coefficients) agree with those of the volcano class; the reconstruction error
was not used in the decision. We have experimented with a number of classifiers
to do the mapping from projection space to class identity (w; or wy). Among these

are quadratic classifiers, nearest neighbor, neural network, decision trees, and kernel
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Figure 4.8: (a) Volcano training set. (b) Basis functions (principal components)
ordered from left to right by decreasing singular value. Note that the first six to ten
basis functions show visual structure, while the others appear to be random noise. (¢)
Singular values corresponding to the basis functions.
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density estimators. All yield similar results so we have used the quadratic classifier
as our default algorithm. The quadratic classifier is the optimal classifier if the class-

conditional densities in projection space are Gaussian.

4.4 Experimental Performance Results

Preliminary experiments were conducted using a cross-validation paradigm on four
images OLD4 containing 163 small volcanoes and covering a 150km x 150km area of
the planet. All results are scored relative to the scientists’ consensus labeling with
confidence categories 1-4 treated as true volcanoes. The figure of merit measured
is the percentage of true volcanoes detected versus the number of false alarms per
square kilometer. Additional tests were conducted using a set of 38 homogeneous
images HOM38 from the same area of the planet, and a set of 36 heterogeneous images
HET36 selected at random over the surface of the planet. Normally with the cross-
validation paradigm, n — 1 images are used for training and the remaining image is
used for testing; this process is repeated n times so that each image serves as the
test image. For the larger image sets, however, images were placed into subgroups
such that each subgroup had approximately the same number of volcanoes. Training
was performed using k — 1 subgroups with testing done on the subgroup left out of
training; the process was repeated so that each subgroup served as the test set.

The overall performance of the JARtool system can be summarized using a curve
similar to the receiver operating characteristics (ROC curves) that we used in Sec-
tion 2.5. The percentage of true volcanoes detected provides a reasonable estimate for
the probability of detection. However, it is not clear how one should estimate the prob-
ability of false alarm since there are not a fixed number of “false alarm opportunities.”
In this situation, a related curve called an FROC (free-response ROC) is typically
used [CW90]. The FROC simply shows the trade-off between detection probability
and the number of false alarms per image or per unit area as the aggressiveness of
the algorithm is varied. For convenience, we will use the term ROC for both types of

curves since the z-axis label can be used to identify whether a given curve is actually



an FROC.

4.4.1 Performance on 0LD4

The performance of the matched filter on the initial set of four test images OLD4 is
shown in Figure 4.9. The performance curve, which is implicitly parameterized by
the threshold applied to the matched filter output, shows the trade-off between missed
volcanoes and false alarms. For aggressive settings of the threshold (low values), the
algorithm readily declares things to be volcanoes. Hence, most of the true volcanoes
are detected, but a bad side-effect is that many non-volcanoes are mistakenly accepted
as volcanoes. Increasing the threshold will decrease the number of false alarms, but
more of the true volcanoes will be missed.

Performance curves are shown for both the matched filter using internal normal-
ization and the matched filter using CFAR normalization. On this set of images, the
internal normalization method works better yielding approximately half as many false
alarms at the same detection level. The performance for two other methods is also
shown. The probability weighted filter uses the scientist subjective labels to weight the
examples during training. The idea is to bias the matched filter towards objects that
are certainly volcanoes while weakening the influence of uncertain volcanoes. The per-
formance, however, is almost identical to the standard (uniformly-weighted) matched
filter. The size-binned matched filter experiments will be discussed in Section 4.5.

To assess algorithm performance relative to humans, we evaluated three planetary
scientists who are all familiar with the Magellan data and with the appearance of
volcanoes in the data. The scientists’ performance points relative to the consensus
are shown on Figure 4.9 as asterisks. Note that the matched filter performance is
significantly worse than the cluster of scientist points. This result is not surprising
since we knew in advance that the target class model assumed by the matched filter
was too simplistic.

The performance of the end-to-end algorithm, which consists of the matched filter

FOA, projection onto SVD basis functions, and classification with a quadratic classi-
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Figure 4.9: Matched filter performance compared to scientists.
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Figure 4.10: Baseline performance on 0LD4 for the combined matched filter and SVD
approach. Gauss-svd6 shows the performance with 6 principal components, while
Gauss-svd?2 shows the performance with only two components.

fier, is shown in Figure 4.10 for the 0OLD4 images. Here we have used a six dimensional
feature space (six SVD basis functions). As with the FOA, the classifier has a para-
meter that can be varied to select aggressiveness. At maximum aggressiveness, every
candidate from the FOA is declared to be a volcano; hence, the classifier performance
curve is constrained to start from the FOA operating point. The combination of FOA

and classification is clearly better than the matched filter alone (which was proposed

in [WF93]).



4.4.2 Performance on HOM38

The 0LD4 images were initially selected for algorithm development and testing because
they contained a high density of small volcanoes. These images, which are located on
the planet near (30°V,332° F), are actually part of a larger 7 x 8 block of images. Of
these, 14 images are blank due to a gap in the Magellan data acquisition process. The
remaining 38 images (56 — 14 — 4 = 38) were selected to provide an expanded set of
images for training and testing. Since all of the images are from the same area of the
planet, the volcanoes are more homogeneous in appearance than one could typically
expect from volcanoes selected at random over the surface of the planet. Thus. we
will refer to this dataset as HOM38. There are approximately 480 volcanoes in HOM38.
The volcanoes were labeled independently by two scientists (A and B) and the author
(MCB). As with the OLD4, there is no absolute ground truth for these images so we
can only assess performance relative to one of the scientists.

To limit the number of cross-validation runs, we partitioned the HOM38 images
into 6 subgroups of 6 images, each containing approximately 80 volcanoes. The two
remaining images were not part of any subgroup and were always included in the
training set. As discussed above, cross-validation was done on a subgroup basis.
That is, we trained on five subgroups (plus the extra two images) and tested on the
other subgroup. The process was rotated so that each subgroup served as a test set.

The performance of the end-to-end algorithm on the six cross-validation partitions
is shown in Figure 4.11. The labeling of Scientist A is treated as ground truth. The
solid circle shows the performance of Scientist B relative to A, while the plus sign
shows the performance of MCB relative to A.

The performance of the end-to-end algorithm versus the matched filter alone is
shown (only for one cross-validation partition) in Figure 4.12. The use of linear
combinations of basis functions to better model the variability in the volcano class has
indeed improved performance over the matched filter alone. Notice that the end-to-
end performance curve originates from the operating point on the FOA curve. At this

point, the classifier is simply saying everything generated by the FOA is a volcano. As
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Figure 4.11: Overall performance on HOM38 for each of the 6 cross-validation partitions.
In each case, training was done on 32 images and testing on 6. The solid circle shows
the performance of Scientist B; the plus shows the performance MCB. Both humans
and algorithms are judged relative to the labeling of Scientist A.
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Figure 4.12: Performance of the matched filter alone (dashed line) compared to the
combination of matched filter, SVD, and Gaussian classifier (solid line). The solid
circle and plus sign show the performance of Scientist B and MCB respectively. These
results are for a single cross-validation partition (partition a).

the classifier threshold is varied to make the classifier more selective, the false alarm

and detection rate follow the solid curve.

4.4.3 Performance on HET36

The results on 0LD4 and HOM38 are somewhat rosier than we can expect in general
since these images are from the same area of the planet. To test performance in a
less controlled setting, we randomly selected 36 images from scattered locations on
the planet. These images are quite heterogeneous with significantly more variability
both in appearance of the volcanoes and the background. Thus, this data set is
designated HET36. There are approximately 670 volcanoes in these images. The
images were placed into 4 subgroups of 9 images; cross-validation training and testing

was done on a subgroup basis. The performance of the end-to-end system is shown
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in Figure 4.13. Here performance is relative to a consensus labeling done jointly by
Scientists A and B. Unfortunately, we do not have individual labeling for the entire
set of 36 images. On those images where we do have multiple labelings, the relative
performance of the scientists seem consistent with their performance on HOM38. As
vou will notice, however, by comparing Figure 4.13 and Figure 4.11. the algorithm
performance is significantly worse on the heterogeneous images. This is not surprising
since the algorithm is modeling the volcano class as linear combinations of a single set
of basis functions. Clearly, this type of model is only appropriate for a small range
of variability in appearance. It is possible that first clustering the volcanoes and then

performing separate SVD’s on each cluster might improve the algorithm performance.

4.5 Auxiliary Experiments

4.5.1 Size-Binned Matched Filter

Both the matched filter and SVD basis functions are derived from 30 pixel by 30 pixel
regions selected from the center of the training examples. Since many of the volcanoes
are larger than this, it is natural to wonder whether better performance could be
obtained by trying to account for the size information. To investigate this possibility,
we have conducted experiments with a variation of the matched filter, which we call
the size-binned matched filter. The training volcanoes are grouped into four clusters
based on the scientist-fitted diameters. A separate matched filter is constructed for
each size range. The candidate locations identified by each of the matched filters are
then merged and consolidated into a single master list of candidates.

For the size-binned algorithm it is difficult to obtain an ROC performance curve
since each of the filters has its own threshold. In principle we could evaluate per-
formance at many combinations of threshold settings and use the outer envelope of
performance as the ROC curve. In practice, this is difficult. so we have just evalu-
ated the performance for several different threshold combinations. The corresponding

detection and false alarm points are shown in Figure 4.9 with x’s.
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In each case, training was done on 27 images and testing on 9.

Notice that the
performance is significantly worse than on HOM38 (Figure 4.11).
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Observe that the size-binned matched filter improves only slightly upon the per-
formance of the single-scale matched filter. The size-binned algorithm, however, re-
quires considerably more computation time, is more difficult to synthesize, and has
more parameters to adjust than the single-scale version. It appears that the marginal
improvement is not worth the increased complexity. Thus, we continue to use the

single-scale version.

4.5.2 Sensitivity to Matched Filter Operating Point

A major concern with any algorithm is how sensitive the performance is to the exact
settings of the parameters. If a parameter must be accurate to 10 digits in order for
the system to work and the parameter is to be estimated from a limited number of
noisy training examples, the system will not be of much use in practice. One of the
key parameters in the JARtool system is the threshold applied to the matched filter
output since this establishes how many true volcanoes and false alarms are passed
on to the SVD and classification stages for further processing. Figure 4.14 shows the
end-to-end performance of the JARtool algorithm as a function of the matched filter
threshold. (These curves were generated from tests on partition (a) of HOM38 , but
are typical of the results on other partitions.) To simplify the display, we show the
detection rate at three fixed false alarm rates versus the threshold parameter. Observe

that the performance is relatively stable as the threshold varies from 0.35 to 0.45.

4.5.3 Sensitivity to Number of SVD Features

An empirical study was performed to evaluate the sensitivity of the algorithm to the
number m of SVD features used. Figure 4.15 shows the measured detection rate versus
m at a few selected false alarm rates. Since the detection curves are relatively flat with
respect to m, we conclude that the performance is insensitive to the exact number of

features, provided at least four are used.
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90
4.6 Summary

JARtool is a prototype system for automatically locating and cataloging geological
features in remote sensing databases. The problem of finding small volcanoes in
the Magellan imagery of Venus was selected as an initial testbed for algorithm de-
velopment because of the potential scientific impact. The sheer size of this dataset
amplifies the importance of developing automated tools for finding objects of interest
in the data; the traditional approach of manually analyzing each collected image i1s no
longer feasible®.

The prototype JARtool system consists of three stages: focus of attention (FOA),
feature learning/measurement, and classification. The FOA is based on image nor-
malization techniques and matched filtering. The purpose of the FOA is to reduce
computational costs by providing a quick method to prescreen the data and eliminate
uninteresting areas (e.g., barren plains) from further consideration. Candidate areas
identified by the matched filter are passed on to later stages of the algorithm, where
the goal is to eliminate false alarms while keeping as many of the true volcanoes as
possible. To accomplish this goal, it is important to model the variability in appear-
ance of the volcano class. Given a set of training examples, principal components
analysis can be used to determine the directions of maximum variance in the data.
Volcanoes are approximately modeled as linear combinations of six basis functions
(principal components) with a particular probability distribution over the weighting
coefficients (features). Based on the projections of a candidate chip onto the basis
functions, a chip can be classified as volcano or not-volcano. We experimented with a
number of classifiers including quadratic, nearest neighbors, neural networks, decision
trees, and kernel density estimators; all yielded similar performance so we have used
the quadratic classifier as the default.

JARtool was evaluated on two homogeneous sets of images from the same area
of the planet (OLD4 and HOM38). The performance on these images was good but

somewhat below the level of human experts. The principal components approach

3The scientists estimate that it would take 10 man-years to catalog all the small volcanoes in the
first pass Magellan data
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provided a significant improvement over matched filtering, but this should not be
surprising since PCA provides a better model for how members of the volcano class
vary.

So is PCA the solution for all pattern recognition problems? No. The volcano
problem is special in some ways. Since the Magellan imaging was done with synthetic
aperture radar (SAR), the source of illumination and the receiver are co-located; hence,
there is no need to worry about illumination invariance. In addition, the underlying
physical objects are (to first order) rotationally symmetric, so there is no need to
worry about rotational invariance. Approximately 80% of the volcanoes have resolvable
summit pits which appear near the center as a bright spot or backwards “C”. The
pits allow the volcanoes to be reliably centered, reducing the amount of translation
invariance required. Although the volcanoes do vary considerably in scale, near the
center there is usually a visible summit pit and a transition from bright shading on
the side sloped toward the radar to dark shading on the side sloped away from the
radar. Good performance can be obtained by simply focusing on this central area and
ignoring the outer edges of the volcano. Thus, the (homogeneous) volcano problem is
especially suitable for principal components analysis since (1) thereis a limited amount
of variability within the class and (2) the defining information is well-localized.

For the image set HET36, however, the performance of PCA is significantly de-
graded. We believe the increased variability of the volcano class (and the background)
accounts for the difference. With heterogeneous images, the volcano class can no longer
be adequately represented as a linear combination of a small number of basis func-
tions. Also, for problems in which the defining information is spatially distributed,
we anticipate that principal components analysis will not perform adequately. This

hypothesis is explored in the next chapter and the remainder of the thesis.



Chapter 5 Deformable Spatial

Configurations

5.1 Introduction

In this chapter, we consider object classes in which instances can be modeled as a set
of characteristic parts in a deformable spatial configuration. As an example, consider
human faces, which consist of two eyes, a nose, and mouth. These parts appear in an
arrangement that depends on the individual, his expression, and the viewpoint of the
observer.

As shown in Figure 5.1, deformable object classes arise in a number of different
ways. An object class may be generated by a single underlying physical object that
is deformable. Images from one person with different facial expressions fall in this
category. A deformable object class may also be generated by a single physical object
that is rigid, but imaged over a range of viewpoints. As shown by the two penguin
images in Figure 5.1b, the relative positions of the object parts on the image plane vary
causing the penguin to appear to be deformable. Object classes consisting of a number
of different physical instances of the same type of object such as different human faces
or automobiles can be modeled as deformable configurations of characteristic parts.
A final example is handwriting, which consists of different realizations of a single
conceptual object. Each time a person writes a word, the same basic strokes and
parts are present but the relative positions vary depending on the writer’s haste,
writing geometry, etc.

Just as we cannot precisely define what constitutes an object class, we cannot
define what constitutes an object “part.” Generally speaking, a part is any piece
of the object that can be reliably located using local information. The part may be

defined through a variety of visual cues such as a distinctive brightness or orientation
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pattern, texture, color, motion, or symmetry. Although we have not experimented
with audio cues, these could in principle also be “parts.” The main requirement is
that a part can be detected and localized with some reasonable degree of reliability.
Parts may also be defined at multiple scales. A coarse resolution head is as much a
“part” as a fine resolution view of an eye corner. An object can also contain a number
of parts that are locally the same. For example, in handwriting a word may contain
the same letter or strokes in several positions. This is acceptable provided the parts
are not so repetitious that they become a texture rather than a pattern.

In the next section we introduce a simple object Ty consisting of four parts in a
specific spatial arrangement. This object can be used to define a deformable object
class T, by allowing each part to be spatially perturbed from its nominal position. We
will then show that the local methods discussed earlier (matched filtering and principal
components) break down on this problem. In subsequent chapters, we will present a
new method for recognizing this type of object class based on a combination of local

part detectors and spatial configuration.

5.2 Simplified Model

Consider a 2-D object consisting of N image-based parts P;, each with a nominal

0

spatial position (z¥,4?). The nominal object Tg is given by

N
To(z,y) =Y Pz —al, y — ) (5.1)
=1

where the «;’s are scalar weighting coefficients that control the signal-to-noise ratio
of the respective parts. Although each of the parts could be different from the others

and could also have inherent variability, we will consider a simpler case in which each



Figure 5.2: The nominal object Ty consists of four parts arranged at the vertices of a
square.

of the P;’s takes the following form:
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We will also restrict our attention to a specific arrangement of parts as shown in
Figure 5.2. The part centers are located at the following positions: (31,31), (31, 71).
(71,31), and (71,71). The scale factors a; are the same for each of the parts.

As it stands, the object is not very interesting; however, we will form an object

class by allowing the parts to be perturbed from their nominal positions. In particular,
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the part positions X will be modeled with the following probability density:
px(X) = Non(X; p,pT) (5.3)
where p is the vector of nominal positions

po= 129 2y 02N w oY R (5.4)
Each of the object parts can be independently displaced in 2 and y from the nominal by
a Gaussian perturbation having standard deviation p. We will designate the resulting
object class as T),.

To generate an object from this class, we first generate a random vector X accord-
ing to the density on the right hand side of Equation 5.3. Since this vector determines
the part positions, we then place the pattern P; from Equation 5.2 at each of these
positions. Several instances from the class T3 are shown in Figure 5.3. The plus signs

indicate the positions of the parts in the nominal (unperturbed) object.

5.3 Breakdown of Local Methods

We now examine how well the methods discussed earlier for recognizing localized pat-
terns (matched filtering and principal components) work for the problem of detecting
instances from the object class T,. The position of the nominal object Tj in the im-
age will always be the same, so there is no concern for translation, rotation, or scale

invariance.

5.3.1 Matched Filtering

From Chapter 2, we know that the optimal detector for the nominal object T in white
noise is the matched filter. However, for detecting the object class T,, the matched
filter will not be optimal. Intuitively, we expect that as the deformability of objects in

the class increases (by increasing p), the performance of the matched filter will quickly
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Figure 5.3: Four instances from the deformable object class T5. The class was gener-
ated by perturbing the part positions of the nominal object Tj shown in Figure 5.2.
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Figure 5.4: Matched filter m, computed by averaging training examples from 7.

degrade.

There are two basic ways we might construct a matched filter for this problem.
The first method simply uses the nominal unperturbed object Ty as the filter. The
second method uses an average filter constructed from a large number of training
instances from the object class. This method is based on the assumption that the
training instances are a single signal with white noise added. Thus, averaging should
produce a filter that is closer to the true signal. For this object class, however, the
training instances are not well-modeled as a single signal plus white noise. Hence,
averaging produces a matched filter that is a blurred version of the nominal object
(caused by averaging displaced versions with the nominal). Figure 5.4 shows this
filter, as computed from 200 training examples from 75.

We empirically evaluated the performance of the two matched filters m; and m,
using the following paradigm. One set of 200 noise examples was used to test the
resilience of the filters to false alarms. A second set of 200 signal-plus-noise examples

was generated to evaluate the detection performance. The signal-plus-noise examples
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were produced by generating a set of “clean” examples from T),. These examples were
then (amplitude) scaled by the appropriate a and combined with noise examples to

provide signal-plus-noise examples at the desired SNR.

a =10 <SNRdeSired_SNRo> /20.0

VS
It
74

e

where the SNR values are in decibel (dB) units and SNRy is given by

SNRy = 10-log,, (“U—E(l)

The background noise variance per pixel is denoted by o The quantity FEy is the
energy in a single object part. (Note that we have implicitly assumed that parts do not
overlap.) Figure 5.5 shows the nominal object embedded in noise for several different
SNR values.

Figure 5.6 shows the ROC performance of the average matched filter my as a
function of the spatial perturbation, for p = 0,1,...,5. We also evaluated the nominal
matched filter my, but the performance was significantly worse than for the average
filter. In both cases the SNR was set to 18dB and the matched filter was applied
only at the center of the image (i.e., without convolution). The degree of degradation
with p depends on the decorrelation length of the component parts. Thus, an object
composed of different parts may have greater or lesser degradation than shown in the
figure.

It is interesting to note that we can write an expression for the theoretical ROC
performance of the (non-sliding) nominal filter as a function of p. If part ¢ is displaced
by A; = (dx;,dy;), then the output from the matched filter will have expected value

given by:
]\T
E(A) =3 Ri(dz:,6y;) (5.6)

1==1

where R;(x.y) is the autocorrelation function for part ¢ and A is the vector of dis-
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Figure 5.5: Nominal object embedded in white noise at several SNR setting
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Figure 5.6: Empirical performance of the average matched filter as a function of the
spatial perturbation at SNR = 18dB. The performance on the unperturbed object was
perfect for the sample size tested (2000 samples from each class).



placements

QL
-1
p—

A = [Say, 0y, ... 6N, Syn]L (5.

The false alarm performance of the matched filter will remain unchanged. However,
the detection performance will be degraded due to the loss in effective signal energy.

The expected ROC performance will be:

pre = 1—®(K) (5.8)

by = 1—/Aq> (A’- E((TZA)> p(A)dA (5.9)

where p(A) is the probability distribution over the vector displacement. If the auto-
correlation functions R; fall off slowly relative to the fall off of p(A), then we see that

the performance will not be degraded significantly.

5.3.2 Principal Components

For T,, the matched filter performance degrades quickly with p. This result is not
surprising since the matched filter attempts to represent the entire object class with
a single exemplar. The principal components approach improves upon the matched
filter by modeling the variability in the object class with a linear set of basis functions.

The principal components approach has a number of parameters that must be
estimated from training data. We have used the same approach that was used in
Chapter 4. for locating volcanoes. That is, basis functions were estimated from only
the positive training examples. Both positive and negative training examples were
then projected onto the basis functions. The class-conditional densities in projection
space were modeled with unimodal Gaussian densities.

The basis functions were estimated from 200 “clean” object examples from class
T5. Based on the singular value decay shown in Figure 5.7a and the appearance of
the basis functions in Figure 5.7b, we estimated that L = 20 basis functions would

provide a reasonable approximation to the set of training examples. In Figure 5.7b,
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Figure 5.7: (a) Singular value decay. (b) The first 20 basis functions ordered from
left to right by singular value. The top left chip is the direction of maximum variation
in the training set.

the basis functions are ordered from left to right and top to bottom by singular value.
Thus, the top left chip is the direction of maximum variance in the training set.

The basis functions in Figure 5.7b span a 20-dimensional subspace in the space of
all 101 x 101 pixel patterns. This subspace is the best 20-dimensional approximation
(in the RMS sense) to the set of training examples. We will refer to this as “SVD
space”. Positive and negative training examples were projected into SVD space and
modeled with Gaussian densities. Unknown test examples were then classified by
projecting into SVD space and estimating the posterior probabilities.

Empirical performance of the PCA approach is shown in Figure 5.8 for object
class T3. For comparison, the performance of the matched filter and the optimal
detector for this problem (which will be discussed further in Chapter 9) is also shown.
The PCA performance is considerably better than the matched filter, but is degraded
significantly with respect to the optimal detector. As more degrees of freedom are
added to the object class, e.g., translation, rotation, scaling, and variability in the
part appearances, the ability of a small set of linear basis functions to encode the

variability will break down completely.
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Figure 5.8: The performance of the principal components approach on the deformable
object class with p = 3. For comparison, performance of the optimal detector and
the matched filter are also shown. Although principal components provides significant
improvement over the matched filter, the performance is significantly degraded from
the optimal.
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5.4 Summary

Object classes that consist of characteristic parts arranged in a deformable spatial
configuration arise in a variety of ways. There may be a single underlying physical
object that is deformable as in the case of an individual person making facial ex-
pressions. A single underlying physical object that is rigid but viewed from different
directions will also appear on the image plane to be deformable. Collections of similar
objects of the same type (different human faces or automobiles) can also be treated
as deformed instances of a single object.

In the first half of the thesis, two methods were discussed for recognizing local-
ized patterns: matched filtering and principal components analysis. These methods,
however, break down for this new class of objects. Since the object parts do not al-
ways appear in the same relative positions, the matched filter will not line-up properly
with a particular instance of the object. Experimentally, we showed that this leads to
degraded performance. The singular value decomposition is somewhat better suited
for this type of problem, but is still limited by the ability of linear combinations of
basis functions to encode all the inherent variability in an object class. Specifically,
variability in the appearance of the individual parts and their global arrangement, as
well as variability due to translation, rotation, and scaling, must be encoded using
linear combinations of basis functions.

An idea that we will pursue in the next three chapters is to use local methods such
as matched filtering or principal components to detect individual parts of an object. As
we have seen in Chapter 4, these techniques are not perfect even for localized patterns:
some true parts may be missed (this could also happen because of occlusion) and a
number of false alarms will occur. Thus, the local detector outputs serve only as
candidate locations for the object parts. We will explore methods that group these
candidate part locations into object hypotheses. The hypotheses are then evaluated
based on the spatial arrangement of the parts. Invariance to translation, rotation, and
scale is obtained by representing configurations with “shape” variables. Variability in

the spatial configuration of the parts can then be modeled using probability densities
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over shape.



107

Chapter 6 Shape Statistics

6.1 Introduction

In our approach to recognizing deformable object classes, the allowed deformations
are represented through shape statistics, which are learned from examples. The word
“shape” is used here in the sense of Kendall [Ken84, Ken89] and Bookstein [Boo84,
Boo86]. That is, “shape” refers to properties of a set of labeled points that are
invariant with respect to some group of transformations. In our case, the labeled
points are the locations of object parts on the image plane, and the transformations
are translation, rotation in the image plane, and scaling. Instances of an object
in an image are detected by finding the appropriate object parts or features in the
“correct” spatial configuration, where “correct” is intended in a probabilistic sense.
We have also begun to investigate a more general set of transformations known as
affine transformations [BWLP96, Leu95].

In this chapter, we briefly cover some of the key results from the statistical theory
of shape. The main result we use is due to Dryden and Mardia [DM91] who derived
the shape space density induced by a general Gaussian figure space density. New
results that we have derived are presented in Section 6.4 including a theorem on
shape space mixture densities. In the next chapter, we discuss how shape densities
can be used to evaluate the correctness of a spatial configuration of points (and of
partial configurations). Combined with a hypothesis generation procedure, this yields
a recognition strategy for visual object classes. Applications to face localization and

cursive handwriting are presented in Chapter 8.
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6.2 Definition of Shape

A spatial arrangement of N labeled points in a plane can be described by a 2N-
dimensional vector containing the @ and y coordinates of each point. This representa-
tion, however, is not convenient to use for recognition since the important information
is obscured by differences due to translation, rotation, and scaling (TRS). What we
really want is a representation in which the shape of a configuration is separated from
the effects of TRS.

Let the (raw) figure space representation be given by the vector of 2V image plane

coordinates:
— . T L
X = [21,- TN Y15, YN] (6.1)

TRS can be eliminated by mapping two points to fixed reference positions; the posi-
tions of the other points will then represent the shape. This process is illustrated in
Figure 6.1. First translation is eliminated by mapping point 1 to the origin. Then rota-
tion and scaling are eliminated by mapping point 2 to (1,0). The (2N —4)-dimensional

vector
U = [us,....ux,vs,...,0n5]7 (6.2)

represents the shape of the configuration. Essentially, one dimension is dropped for
factoring out scale, one for rotation, and two for translation.

The transformation of the first figure point (xy,y;) to the origin can be accom-
plished by premultiplying X by the 2N x 2N matrix LT defined by:

I-1lef 0

LT = (6.3)

0 I-1e’

where 1 is an N x 1 vector of all ones and e; is the N x 1 vector [1,0,... ,O}T. Tand O

are the N x N identity and zero matrices, respectively. Following this transformation,
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we have

X =L'X =[0,25.....2%.0,45,....yy)  =L'X (6.4)

where v¥ = x; — x1 and yf = y; — y;. Omitting the fixed (zero) values from X~ yields

a reduced (2N—=2)-dimensional vector Y,
% = 17T . e
Y = [I;7'"7"1??\"77y27""yj\7] (6’0)

The transformation from X* to Y can be written as a linear transformation: Y =
H”X*, where H is an (N—2 x N) matrix. Thus, the transformation from X to Y is

also a linear transformation:

Y = H'L'X
= LIX (6.6)

where L% S HILT.

Elimination of the effects of scaling and rotation can be achieved by now map-
ping the points such that (23,y3) — (1,0). This process yields the shape vector U
(Equation 6.2), where (for ¢ =3,..., N)

wi o= (225 +yws) ) (23 + w?)

vi = (72— iys) / (a3 + 3’ (6.7)

Note that it is also possible to eliminate TRS by mapping the centroid of the
configuration to the origin and then using moments of inertia to eliminate rotation
and scaling. The problem with this method, however, is that it will not work if some
of the points are missing. Since the local detectors that identify parts of the object
may miss some true parts, e.g., due to occlusion, we prefer to do the normalization
based on two reference points instead of the centroid and second moments. With

our method, if one or both of the reference points happen to be missed, a different
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reference basis can be used without difficulty.

6.3 Dryden-Mardia Shape Density

Now suppose that the original configuration X can be modeled as a random vector
from some 2 N-dimensional probability distribution. What density is induced upon the
shape vector U? Dryden and Mardia have solved this problem in closed-form [DM91]

for the case when X follows a general 2 N-dimensional Gaussian distribution:

Since Y is a linear combination of the values in X, it also follows a multivariate

Gaussian distribution, in particular,
Y ~ Ny, X) (6.9)

where u = LLv and ¥ = LEQLR. The shape vector U is related to Y by a nonlinear
transformation so we cannot expect U to follow a Gaussian distribution. The actual
joint probability density function (pdf) of U is given by the following theorem due to

Dryden and Mardia:

Theorem 1 (Dryden-Mardia Shape Density [DM91]) Under the multivariate
Glaussian model for the figure-space coordinates (Fquation 6.8), the joint probability

density function of the shape vector U is:

_CI'GXP(‘Q/Q). E oVt BN =2
pu (U) = ~—-~——-—-——-———~(27T)N_2 5] (N —2)1(203) (6.10)
where
N2 2 1 1
¢ = ¥ Dl (6.11)

=0 2

g = p'Su- "o (6.12)
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T o= [uiviE N uiv] (6.13)
€ = Tu'v]'s ' (6.14)
u = [Lus....,ux.0,0s,...,05]" (6.15)
v = [0,—vs....—on. Lus, ..., uy]" (6.16)
o= (ole) ) (207)  fork=1.2 (6.17)

and o} > o3 are the eigenvalues of W with corresponding eigenvectors ¢y, @,. The
function L’?(;a)(:r,) is the generalized Laguerre polynomial of degree v:

L) = 3 (14 a)i(=2)"/ {(1+ a)ikl(i — &)1} (6.18)

k=0

where (1 4 a)g 21 and (I+a)=(a+k)- (1 +aj-.

Although the Dryden-Mardia density appears complicated, the derivation is rel-
atively straightforward. The basic idea is to introduce a (2N-2) x 1 vector W that
contains the (2N—4) shape variables U and x3 and y;. The transformation from Y
to W is one-to-one so the density of W can easily be related to the density of Y.
It is then possible to integrate out the dependence on (z},y;) from the density of W
leaving the density of U.

The following argument regarding the shape density may initially appear plausible,
but in fact it is false. Translation, rotation, and scaling of a configuration of points

can be expressed as:
U=MX+b (6.19)

where the entries of M and b depend on the transformation parameters 7., 7,, #, and
o (true). Since X is jointly Gaussian and U is a linear transformation of X, U should
also be jointly Gaussian (wrong!). This would be true if the transformation paramet-
ers were fixed numbers, but here they are actually realizations of random variables.

Thus, U is only conditionally Gaussian given the transformation parameters. To get
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the unconditional density, one would have to multiply the conditional density by the
density of the transformation parameters and integrate.

As an illustration of the Dryden-Mardia result, we have generated a number of
Gaussian random triangles in figure space with the mean triangle and covariance as
shown in Figure 6.2a. (Fach vertex varies independently of the others; the dashed
ellipses show the equiprobability contours for the marginal density of each vertex.)
Figure 6.2b shows several random triangles generated according to this distribution.
The transformation to shape space maps vertex 1 of each triangle to the origin and
vertex 2 to the point (1,0). The coordinates (us,vs) of the third vertex after this
transformation will represent the shape of the triangle. Figure 6.2c shows the shape
variables for 5,000 random triangles. Figure 6.2d shows a surface plot of the theor-
etically predicted shape space density (from Theorem 1). Figure 6.2e shows the the-
oretical equiprobability contours in shape space. Observe that the density is clearly
non-Gaussian. Finally, Figure 6.2f shows the equiprobability contours of the empir-
ical shape space density estimated from 50,000 random triangles. This result agrees

closely with the theoretical density.

6.4 Properties

Since the Dryden-Mardia density is derived from a Gaussian, it has several properties
that make it especially convenient to work with. One of these is that it is easy to
determine the density of shape variables computed with respect to a different baseline

pair. Also, it is easy to compute joint densities over subsets of shape variables.

6.4.1 Different Baseline Pair

It is straightforward to compute the Dryden-Mardia density with respect to a different
baseline pair. In Theorem 1 we have written down the density of shape variables
computed with respect to point 1 and point 2. That is, point 1 and point 2 were

mapped to (0,0) and (1,0), respectively, and the coordinates of the remaining points
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Figure 6.2: (a) Mean triangle in figure space. Dashed lines show the marginal cov-
ariance structure. (b) Random triangles in figure space. (c) 5,000 random triangles
mapped to shape space. (For clarity, the edges have been omitted.) Notice that the
empirical shape-space density is non-Gaussian. (d) The theoretical Dryden-Mardia
shape-space density for this problem. (e) Equiprobability contours of the theoret-
ical density. (f) Equiprobability contours of the empirical density as estimated from
50,000 samples.
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constituted the shape variables appearing in U. What happens if a different baseline
pair, say point 3 and point 4, is used?
The basic idea is to permute the labels of the figure space features. This can
be accomplished by multiplying the original figure space vector X by a 2N x 2N
permutation matrix P. For six points, the new figure space vector X will look as

follows:
Xnew = [1737354a»”517532,’1?573767y373}4>3/1?y2-/y5796f (6-20‘)

The mean vector v and covariance matrix 2 of the original figure space variables must

also be permuted appropriately, i.e.,

vp = Pv (6.21)
Qp = PQPT (6.22)

The density of the new shape vector Upew is given by Theorem 1 with the parameters

(v, Q) replaced by (vp,Qp) .

6.4.2 Density over Subsets of Shape Variables

Another useful property of the Dryden-Mardia density is that the joint density over
subsets of shape variables can easily be computed. Suppose that we have six figure
space points. After transformation to shape space, there will be four points whose
coordinates constitute the shape variables: us, uy, us, ug, vs, v4, V5, V6. 1he density over
these variables is given by Theorem 1, but what if we only want the joint density over
the coordinates of three of the points? What is the density p(us, ug, us, vz, v4,v5)7 As
we will see later, it is important to be able to compute such partial densities because
the feature detectors used to locate parts of an object are not perfectly reliable. The
detectors may miss some of the true object parts; however, there is still a need to test
whether the partial configuration of detected parts is consistent with a given object

class.
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The approach used to compute partial densities is similar to the approach used to
compute the density with respect to a different baseline pair. We define a new figure

space vector:
. . , oo T . o
Xnew = [¥1,22, 75,24, T5, Y1, Y2, Y3: Ya» Y5) (6.23)

which is related to the original figure space vector by a linear transformation:

Xnew = RX (624)

where R is a 10 x 12 matrix of zeros and ones (notice the omission of x4 and yg from

Xnew ). The density of Xpew will be jointly Gaussian with parameters given by:

v = Rv (623)

Qr = ROQRT (6.26)

Transforming Xpew to shape space generates the shape variables us, u4, us, v3, v4, vs5.
The density over these variables is now given by Theorem 1 with the parameters

(vr, Qr).

6.4.3 Mixture Models

The shape density derived by Dryden and Mardia is predicated on using a single
multivariate Gaussian for the figure space distribution. This Gaussian model is useful
when the figure space configurations consist of perturbations around some “average
figure.” For more complicated figure space distributions, however, the single Gaussian
model may be inadequate. In principle this limitation may be overcome by using
Gaussian mixture models. We have derived the following result which shows that the
induced shape space density is a mixture of the shape densities resulting from the
individual Gaussian modes. For the experiments reported later, we have not found

it necessary to use mixture densities; however, we believe mixture densities may be
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useful for other datasets.

Theorem 2 (Mixture of Shape Densities) Under a multivariate Gaussian mix-

ture model for the figure-space coordinates,

J
px (X) = > aNon(X; vy, Q) (6.27)
j=1
the joint probability density function of the shape vector U is a mixture of shape

densities corresponding to the modes of the Gaussian mixture density. That is,

J
pu(U) = > ajpu(U; v, Q) (6.28)
i=1
Proof of this result is straightforward. Conditioned on the mode j of the Gaussian
mixture, the shape space density is a Dryden-Mardia density with parameters v;
and ;. The unconditional shape density is then given by multiplying by the mode

probabilities «; and summing over j.

6.4.4 Non-Gaussian Figure Space Densities

Although the Dryden-Mardia density is derived from a Giaussian figure-space density,
many other figure-space densities lead to the same shape-space density. To illustrate
this point, consider the transformation from figure-space to shape-space as a change
of variables from X to U, 7, 7, #, and o, where 7 is translation, § orientation, and

o scale. The joint density over the new variables can be written as follows:
p(U, 7., 7,,0,0) = p(7s,7,0,0|U)p(U) (6.29)

To generate a random sample from this density, we first generate a random shape
vector U according to the Dryden-Mardia density. We then generate transforma-
tion parameters 7., 7,, #, and ¢ according to the density p(7.,7,,0,0|U). Applying
the transformation parameters to U, generates a figure-space example. The set of

all figure-space examples generated in this way will be Gaussian distributed only if
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p(7e. 7y, 0,0(U) has a special form, which we designate by py. If U is instead acted
on by transformation parameters selected from a different density ¢(7,,7,,0.0U),
there is no guarantee that the resulting figure-space density will be Gaussian. Con-
sider for example a bimodal density ¢ that transforms shape examples to two different
scales in figure-space. The resulting figure-space density will not be Gaussian. Con-
versely, we can (sometimes) start from a non-Gaussian figure space and transform to
a shape-space that is well-modeled by a Dryden-Mardia density. Thus, a number of
figure-space densities lead to the same shape space density.
As a side-note, we remark that the transformation parameter density pa (7., 7,8, o|U)

induced by a Gaussian figure-space density may indeed depend on U. To illustrate

this point, consider the following example:

v = 0.0 1.0 0.5 0.0 0.0 V3/2 (6.30)

[ 0.0 0.0 0.0 0.0 0.0 0.0
0.0 3.3 33 0.0 3.8 3.8
0.0 3.3 33 0.0 3.8 3.8 -
0= 103 (6.31)
0.0 0.0 0.0 0.0 0.0 0.0

0.0 3.8 38 0.0 7.8 7.8
| 0.0 3.8 38 0.0 7.8 7.8

This model corresponds to a random triangle, in which the mean triangle is equilat-
eral. Since all entries in the first and fourth rows and first and fourth columns of €
are zero, vertex 1 does not vary in position; it is always at its mean position -~ the ori-
gin. The second and third vertices, however, vary strongly in the direction [1/2,/3/2]
and weakly in the orthogonal direction. Further, vertex 2 and vertex 3 are exactly
correlated so that if vertex 2 is displaced by a certain amount, vertex 3 is displaced
by the same amount. The marginal covariance structure is shown in Figure 6.3a. The
dashed lines going between the two ellipses are intended to remind the reader that ver-
tex 2 and vertex 3 are exactly correlated, since it is not possible to show the complete

covariance structure on a diagram such as this. We next generated random triangles
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Figure 6.3: (a) Random triangle example in which vertex 2 and vertex 3 are exactly
correlated (as indicated by the dashed lines linking the two ellipses). (b) The shape
variable us and the parameter 6 are strongly correlated.

according to this density. The figure-space variables (coordinates of the vertices) were
then transformed into shape variables us and vs plus transformation parameters 7.,
7y, 0, and o. Figure 6.3b shows a scatter plot of § versus us, which clearly indicates

that these variables are strongly correlated. The density py(7:, 7y, 0. o|U), therefore,

does depend on U.

6.5 Parameter Estimation

The Dryden-Mardia shape density can be parameterized by v and Q, or, equivalently,
by 1 and Y. To use the shape density in practice, these parameters must be estim-
ated from training examples. Ideally, the estimation would be based on shape space
examples Uy, U, ..., Ug, but we have not found a reliable procedure for doing the
estimation in this way. Counting degrees of freedom, there are 2( /N — 1) parameters in
pand (2N —1)(2N — 2)/2 parameters in . Two of the parameters in p serve only to
fix the scale and orientation in figure space; thus, they do not correspond to degrees
of freedom in shape space. If all the parameters in ¥ represent independent degrees of
freedom, then the shape density has N, = (2N —4) 4+ (2N? = 3N +1) = 2N* - N -3
degrees of freedom [DM91].
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Dryden and Mardia [DM91] suggest using a numerical maximum likelihood proced-
ure to estimate the independent parameters from shape examples, where the likelihood

is given by

K

log A = 3" log pu (Ui, ¥) (6.32)

k=1

Since ¥ is a covariance matrix, only the elements in the upper triangle (including the
diagonal) are free. However, a straightforward parameterization using ¥;; with j >
makes it difficult to enforce the positive definiteness constraint during optimization.
To get around this problem, we used a decomposition of ¥ known as the LDLT
factorization [GL89]. For ¥ having full rank, the matrix L is lower triangular (same
size as ¥) with ones on the diagonal and D is non-negative and diagonal. In this
parameterization, L has (2N —2)(2N —3)/2 parameters and D has 2N —2 parameters.
The positive definiteness constraints can now be easily enforced by insisting that the
elements in D remain positive.

Using a numerical gradient descent procedure, we attempted to maximize the log
likelihood over the free parameters in g and the parameters in L and D subject to the
constraint that the d;’s remain positive. The typical behavior we observed with this
approach was that the covariance matrix estimates became increasingly ill-conditioned.
Since the inverse of ¥ is needed to calculate py(U), the procedure eventually failed.
We conjecture that the estimation fails because not all the parameters in ¥ are truly
free — the estimation problem may be ill-posed. In their original paper [DM91],
Dryden and Mardia mention having difficulty with the estimation for general covari-
ance structures. In their work they have typically used diagonal or other specialized
covariance structures for which the estimation works fine.

In a private communication [Dry95], Dr. Dryden confirmed that they have exper-
ienced similar problems with general covariance estimation. An excerpt from this

communication follows:

The subject of estimating shape covariance matrices is still very much in
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progress. One cannot estimate all the shape parameters. An equivalence
class of covariance matrices leads to the same shape distribution. Also
singular covariance matrices can lead to non-singular shape distributions.
Therefore there are great problems in estimating the parameters of the cov-
ariance matrix. We found that careful specification of covariance matrices
can result in reasonable estimators (e.g. certain diagonal matrices) - see
the inference section of [DM91]. However, such models can be criticized

as being unrealistic.

As for the possible bug — we also found that for many data sets and cov-
ariance matrices the numerical routine estimates tended towards singular

matrices. So you may not have a bug.

[Tan Dryden]

Given the apparently intrinsic nature of the problem, it does not appear that more
sophisticated approaches to maximum likelihood estimation such as the EM algorithm [DLR77]
will provide a breakthrough.

An alternative to performing the estimation based on shape examples is to use
figure-space examples directly to estimate the parameters of a Gaussian or Gaussian
mixture density. (For a single Gaussian, estimation of the parameters is straightfor-
ward, while for mixture models, the EM algorithm must be used [DLR77, RH84].)
The problem with the single Gaussian approach is that the figure-space examples may
not be well-modeled by a Gaussian even if the Dryden-Mardia density is appropri-
ate in shape space. For definiteness consider the problem of detecting human faces.
If the training faces are collected with various rotations and scalings, there is ba-
sically no hope that the locations of feature points in the image plane will follow a
jointly Gaussian distribution. However, by collecting the training images in a special
way, the Gaussian assumption becomes more reasonable. Specifically, the camera is
held a fixed distance from the subject and the subject’s head is upright. Translation

is eliminated by mapping one facial feature (say the left eye) to the origin. Under
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Figure 6.4: These cartoon faces were generated from a multivariate Gaussian distribu-
tion determined from training data. The faces show a reasonable amount of variability
without deformity indicating that the Gaussian model may be reasonable.

these conditions, the variability in the positions of the other facial feature positions is
primarily due to inherent variability between different individuals, and this variability
may be reasonably approximated with a multivariate Gaussian.

As a sanity check, we can estimate the shape-density parameters & and 2 from
training examples and then generate random Gaussian vectors according to the es-
timated distribution: X ~ A (19, fl) The vectors X can be plotted in figure-space
where we can check whether the variability looks reasonable. For human faces, we
hand-clicked the locations of fifteen facial features on a training set of 180 faces.
After eliminating translation by mapping the left eye to the origin, we estimated the
mean ¥ (a 30 x 1 vector) and the covariance matrix € (30 x 30) from the data. Fig-
ure 6.4 shows twelve cartoon faces that were based on the feature positions generated
by N3 (f/, Q) We have looked at several hundred of these cartoons and found that
they exhibit considerable variability without any gross deformities. We believe this
indicates that the Gaussian model is not unreasonable. Table 6.1 shows the estimated
parameters for the mean and covariance of a reduced set of five facial features: the
left eye (LE), right eye (RE), nose/lip junction (NL), left nostril (LN), and right
nostril (RN), where left and right are defined with respect to the image. Note that
these parameters were estimated from hand-clicked feature positions; they do not in-

clude the additional variability that would occur in practice due to the feature detector

localization errors.
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LE, =0.0
RE, =288
NL. =148
LN, =97
| RN, =201
PEZ O LE, =00
RE, = —0.1
NL, =196
LN, =17.9
| RN, =178 |

LE, RE, NL. LN, RN, LE, RE, NL, LN, RN,
LE. 00 00 00 00 00 00 00 00 00 0.0
RE, 00 28 15 15 15 00 —01 -07 —06 —09
NL, 00 15 37 35 33 00 -30 -25 —18 -29
LN, 00 15 35 37 31 00 =31 -27 —1.9 -3.1
Qr=| RN, 00 15 33 31 33 00 -29 -21 -16 -26
LE, 00 00 00 00 00 00 00 00 00 00
RE, 00 —01 =30 —31 —-29 00 62 34 23 44
NL, 00 =07 -25 —27 -21 00 34 53 41 54
LN, 00 -06 —18 —1.9 —16 0.0 23 41 37 44
RN, 00 -09 —-29 -31 —26 00 44 54 44 62

Table 6.1: The estimated mean and covariance matrix for the positions of five facial
features. The rows and columns of zeros in ) occur because the parameters were
estimated from translation-normalized data.
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6.6 Summary

In our approach to modeling deformable object classes, the allowed object deforma-
tions are represented through shape statistics. We use the term “shape” in the sense
of Kendall and Bookstein to mean the properties of a configuration of labeled points
that are invariant to transformations such as translation, rotation in the image plane.
and scaling. Given a spatial configuration of N labeled points in a plane, the shape
may be defined by mapping two points to fixed reference positions. The 2N — 4 co-
ordinates of the remaining points constitute the shape of the configuration. We have
also worked out the theory for affine invariant shape although this work is presented
elsewhere [BWLP96, Leu95].

By using probability densities over shape variables, we hope to encode which ob-
ject deformations are more likely. A particularly useful density over shape was derived
by Dryden and Mardia, who showed that for a Gaussian density in figure space, the
induced density in shape space has a special form (the Dryden-Mardia density). With
the Dryden-Mardia density we can easily determine the density of shape variables
computed with respect to any baseline pair of features. In addition, we can specify
partial densities over subsets of shape variables. Finally, if the figure-space density is
not well-modeled by a single Gaussian, we can use a mixture of Gaussians, which in-
duces a mixture of Dryden-Mardia densities in shape space. One may wonder whether
a Gaussian mixture can be used directly to model the shape space density. This is
certainly possible, but then we lose the nice properties of being able to switch between
different choices of basis pairs. Also, if we are forcing a Gaussian mixture model where
it is not appropriate, then we may need many modes in the model to get a reasonable
approximation.

One difficulty with the Dryden-Mardia density, however, is that there is currently
no systematic way to estimate the shape density parameters from shape examples.
We have tried maximum likelihood approaches but these do not work (the covariance
estimates become singular). An alternative is to estimate the parameters from figure

space examples, but this method is not as satisfying since the training examples must
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be collected in a controlled way. It does provide a workable solution, however.



Chapter 7 Hypothesis Selection

7.1 Introduction

In this chapter we will focus on using shape statistics to provide robust recognition
performance. As mentioned in the previous chapters, instances of an object class in
an image are detected by finding the appropriate object parts in the “correct” spatial
configuration. The part detectors may come in several varieties depending on the
particular application. For locating facial features, the principal components analysis
approach or other image based methods may work best. Regions of color, texture, or
motion can also serve as features. The only requirement is that the features provide
localization information. Indeed, even non-visual features, such as a coarse location
estimated from audio cues, can be incorporated in our framework. Features may also
come at a variety of resolutions. A coarse resolution “head” is as much a feature. as
a fine resolution eye corner.

A fundamental fact about feature detectors is that they are not perfectly reliable.
There are two basic types of errors: missed features and false alarms. Thus, locations
identified by a particular detector are treated only as candidates for the actual object
part. In this chapter, we discuss how candidate part locations are grouped into object

hypotheses and then scored.

7.2 Problem Formulation

We will suppose that there are N types of object parts with a detector for each type.
The nature of the parts may depend on the particular application, but in general the
detectors will not be perfectly reliable. Two types of errors can occur: (1) the detector
may fail to respond at a true feature location (missed feature) and/or (2) the detector

may respond at erroneous locations (false alarms). Hence, the locations identified by
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a particular detector should be treated only as candidates for the actual object part.
For a robust system, we must be able to rank hypotheses with missing features as
well as complete hypotheses. Also, in some recognition problems such as handwriting
the same features occur repetitively; only the context of surrounding features can
disambiguate whether a cusp is a part of one letter or another. The part candidates
can be organized into a data structure W having N rows (one for each part type) and

an uneven number of columns:

Wi Wi2 . Wl;\/ll]
Wo1 Woo e e WAL
W = e (7.1)
| WNL - WNMN]

The number of candidates identified for part n is designated by M,,. Note that w,,,
contains the (z,y) coordinates of the m-th candidate for part n.
From W, we can formulate hypotheses about which subset of the candidate loca-

tions actually constitute an object. A hypothesis is just an N-component vector

where h,, € {0,1,..., M,} specifies that element w,;, is hypothesized to be the true
location of part n. The option h, = 0 allows for the possibility that true part n
may not be among the candidates (due to detector failure or occlusion). The problem
can now be stated as: Given the candidates W, determine the best object hypothesis
H. Note that we have cast the problem in a hypothesis selection framework; there
is another paradigm based on averaging over hypotheses [MR94], which we have not

considered.
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7.3 Hypothesis Selection

The optimal method for selecting the best hypothesis from a set of mutually exclusive

and exhaustive alternatives is well known; as shown in Chapter 2 it is the maximum

a posteriori or MAP rule:
Select H. if Pr(H.[W) > Pr(H,|W) Vk.

The best hypothesis can also be determined from pairwise ratios of the posterior

probabilities. Define

po o PrULIW) _ P(W[H;) Pr(l)) (7.3)
# = Pe(H W) P(WIH) Pr()

where the second form follows from Bayes’ rule. In terms of R, the MAP rule is given
by:

Select H, if Ry, >1 Vk.

Notice that we could define a “goodness function”
G(H) £ P(W|H) - Pr(H) (7.4)

and use (¢ to rate hypotheses. The problem, however, is that G depends on «all the
points in W, including those that are not hypothesized to be part of the object. To

avoid this problem, we will now make two assumptions about the candidate points:

Assumption 1: False alarm locations are distributed independently of the true part

locations.
Assumption 2: False alarm locations are distributed independently of each other.

Clearly, neither of these assumptions is strictly true. For example, the presence of
an object such as a face in an image alters the false alarm distribution in the area
where the object is. Likewise, structure in the clutter background leads to false alarm

clumping, which violates Assumption 2. Nevertheless, these assumptions are valuable
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because they permit simplification of the goodness function G(H) to a form that
depends only on the points listed in H, i.e., the points hypothesized to be part of the
object.
Let W(H) represent the points listed in H, and let W(H) represent the points

in W not listed in H. (These points are hypothesized to be false alarms.) Using the

first assumption, we can write

P(W[H) = Py(W(H)) Qn(W(H)) (7.

=1
Wt
S—

where Py denotes the joint probability density for the locations of all object features
present in the hypothesis H. For example, if H = [2,5,0,7,1], then Py would be
the joint density for the locations of object features 1, 2, 4, and 5. Similarly, Qg is
the (joint) probability density for all the other candidate locations (hypothesized to

be false alarms). By Assumption 2, ) factors into a product of terms, which can be

expressed using the shorthand notation
QuW(H)) = [[q(W(i)) (7.6)

where the product goes over all points H that are not listed as part of the object
hypothesis. Substituting Equations 7.5 and 7.6 into Equation 7.3 and canceling terms

leads to the following:

_ Go(4;) .
Rjk = Go(Hk) (1./)
where
) 2 e PEOVUD)
Go(H) = Pr(H) (W) (7.8)

Observe that Go(H ) depends only on the points of W that are listed in H. Contrast
this result with the original goodness function defined in Equation 7.4, where the

goodness depended on all points in W. To find the best hypothesis now, we must
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simply find H. that maximizes (.

7.4 Evaluation of the Goodness Function

The two terms in Equation 7.8 will be referred to as the prior probability and the
likelihood ratio. These two terms must be evaluated in order to compute o for a

given hypothesis.

7.4.1 Prior Probability

The prior probability of a hypothesis depends on the prior probability p(w;) that the
image contains an object and on the performance of the feature detectors. Suppose
initially that we have only a single feature. Let the number of candidate locations
identified for this feature equal M. Hence, a hypothesis H is simply an element
€ {0,1,..., M}, with Hy meaning none of the candidates is the true feature and H;o
meaning that candidate j is the true feature. A convenient way to view the problem
is that the true feature is put into the pool of candidates with probability ¥ = vp(w;)
and then a random number K of false alarms are added. Here, v is the probability
of detection i.e., the probability the true object feature will be detected given that the
object is present in the image, while garima is the joint probability that an object
is present and detected. Given a set containing M candidates, the prior probabilities
are:
(1—=79)- Px(M)

TP (M = 1)+ (1= 73) - P(M)

Y- Pg(M —1)/M
Y- Pr(M—1)4+ (1 —73) - Px(M)

Pr( Ho|M)=

Pf(Hj#O‘j\/[):

where Py (k) is the probability that the number of false alarms added equals k.
For the case of multiple features, this analysis can be easily generalized. We sup-
pose that the number of false alarms K,, added to candidate pool n is independent from

pool to pool; however, the detection probabilities are governed by a joint distribution
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['(b). where b is a string of N bits. For example, I'(11000) specifies the probabil-
ity that features 1 and 2 of the object are detected, but features 3-5 are not (again
conditioned on the object being present). The function I' can be estimated from de-
tector performance on training data. Ignoring the detector false alarm statistics (i.e.,

assuming Pr (M — 1) &~ Pr(M)), we obtain the approximate result:

~1
fa—y
p—

Pr(HoM) ~ [L—(1—T(0))p(w1)] / T[M(b) (7.1
Pr(HzolM) ~ plwr)-T(b)/ [ M(b) (7.

~I
—
N
~—

where b is determined from H by b, = 1 if h, # 0 and b, = 0 if h, = 0. M is
a vector containing the number of candidates for each type of feature. The product
M(b) means the product of M, over all n such that b, # 0. For b = 0, we define the
product to equal 1.

In practice we have found that there is a problem with using the prior probabil-
ity given by Equation 7.12. We have set up the probabilities so that the “universe”
consisted of all the hypotheses associated with one image. That is, the sum over all
hypotheses for an image adds up to one. Thus, scores for hypotheses from one image
should not really be compared with scores from another image. A configuration of
points in one image may receive a very different score from the exact same configura-
tion of points in another image especially if one image has many more background false
alarms than the other. A second consequence is that the algorithm favors hypotheses
in which object parts having many candidates tend to be declared missing.

An alternative is to replace Pr(H|M) with the function F(-) defined below. This
change corresponds to weighting the score given to a hypothesis by the probability
(estimated over many positive examples) of observing the same pattern of present and

missing features.

e

[1 = (1=T1(0)) p(ewr)]
p(wy) - T'(b) (7.13)

I
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Using F'(+) has the advantage that (1) missing features are penalized in accordance
with the detector statistics and (2) the same configurations of points will receive the
same scores in different images, i.e., scores can be compared across images. Empir-
ically, this change eliminated most of the instances where a hypothesis with missing
features is scored better than a true hypothesis that has no missing features. For
handwriting, where the features are repetitive and each page of writing has the same

feature (e.g., a cusp) many times, the replacement of Pr( H|M) by F'( H) was essential.

7.4.2 Likelihood Ratio

The other part of the goodness function consists of the likelihood ratio:

_ Pu(W(H))

" Mo (W) o

L(W(H))

The numerator consists of the conditional probability density given object over the
points listed in the hypothesis H. Similarly, the denominator consists of the condi-
tional probability density given background over the points listed in the hypothesis H.
Instead of expressing the densities in terms of W(H ), which is a vector containing the
x and y-coordinates of the points listed in H. it will be convenient to make a change

of variables:
W(H)—= 71, 7y, 0,0, U (7.15)

where 7., 7,, #. and o are the translation, rotation, and scale of the configuration and
U is the shape, i.e., the information remaining after translation, rotation, and scale
(TRS) are factored out. The key observation we need is that the transformation from
W (H) to the new variables is one-to-one so the densities are the same except for a
Jacobian factor that depends only on the transformation. This factor cancels out in

the ratio; therefore,

o P(U)_P(Tx,Ty,Q,ﬂU) - 16
LW = 500) Qrm,,0.0]0) 10
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Here, P(-) represents the probability density of the argument conditioned on be-
ing from the object distribution and @(-) the probability density conditioned on the
background distribution. Although the false alarm locations were assumed to be in-
dependent, the normalization transformation introduces correlations among the shape
variables; hence, Q(U) is a full joint density.

The first term on the right-hand side of Equation 7.16 is the likelihood of observing
shape variables U given the object distribution versus given the background distribu-
tion. This term measures how consistent the spatial configuration of parts is with the
object class.

The second term encompasses any information contained in the TRS parameters.
When the figure space density is Gaussian, we showed in Chapter 6 that the density
of the TRS parameters could be dependent on the shape; thus, the TRS densities are
expressed conditioned on U. In practice, however, this dependency can be ignored
since the TRS parameters are largely governed by external factors such as the position
of the camera relative to the object, the pose of the object, etc. The TRS likelihood

term has the following interpretations:

e Prior Knowledge: If we know side information about the TRS parameters, then
the TRS likelihood term can be used to incorporate this information. For ex-
ample, suppose that in the face localization problem, we know the head is upright
to within 20°. The observed 8 then contains useful information about whether
the hypothesized object could be a face or not. The TRS term exploits this type

of knowledge in a principled way.

e Invariance: Suppose instead that the algorithm is intended to be completely
invariant to TRS. That is, we want to recognize upside-down faces as well as
right-side up. In this case, the TRS likelihood term should be discarded. As
a caution, unless the class-conditional densities of the TRS parameters (condi-
tioned on object and conditioned on background) are identical, there will be

some loss of useful information (and performance) by doing this.
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7.5 The Background Distribution

Recall that the likelihood ratio (Equation 7.14) contains the term P(U)/Q(U), where
P is the shape density given object and () is the shape density given background.
P(-) can be estimated from training data as described in Section 6.5, but what about
Q(-)? We believe a reasonable approximation is that the false alarms are Gaussian
distributed over the image plane with a greater concentration near the center of the
image. That is, the figure space distribution conditioned on background is assumed to
be A'(0, 0?T). Because we eventually transform to shape variables, the parameter o is
irrelevant and may be set to one. The false alarm locations in figure space are assumed
to be independent, but this is not true in shape space because the TRS normalization
introduces correlations. Thus, the density Q(S) is given by Theorem 1 with v = 0
and 2 = 1.

One might wonder whether the background distribution can be ignored or replaced
by a constant in the likelihood ratio. This would be equivalent to making a decision
based solely on P(U), the density over shape given the object distribution. There are
two problems with this idea. First, the value of P(U) depends on the pair of features
that is used as the baseline. Second, if features are missing, P(U) will be a probability
density in a lower dimensional space and there is no reason to expect these values
to be comparable to those from the full density. The likelihood ratio corrects both
problems by normalizing P(U) with respect to the background density. The likelihood
ratio is invariant to the choice of baseline features since the information in a shape
vector Uy, computed with respect to the baseline pair (py,p2) is exactly the same
as the information in a shape vector Us 4 computed with respect to the baseline pair
(ps, p4). (There is a one-to-one, invertible mapping between the two shape spaces.)
Even though the white Gaussian density may not provide a particularly model for the

background, it must be included to produce the proper normalization.
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7.6 Conditional Search

We have now specified a complete procedure for computing the “goodness” score of a
hypothesis. In principle, we could check every possible hypothesis in order to determ-
ine the best one; this brute-force approach, however, is computationally expensive.
We would like a more efficient way to search through the hypotheses.

Given the positions of two features, the possible positions of all other features are
highly constrained. This idea is used as follows. First, we consider partial hypotheses
of the form H = [hy, ho,...]T with hy # 0,y # 0. Assuming the points wy,, and way,
correspond to the true object features, we can use the shape density to estimate where
the other features should be and how much uncertainty exists about their location.
This allows us to define search regions in the image plane. Hypotheses are only formed
which couple the two reference points iy and hy with candidate points falling inside the
appropriate search regions. We then loop over all values of iy and h, and repeat the
procedure. Since our algorithm must be robust to missing features, we also consider
hypotheses of the form [hy,0, A3, ... )T, [0, Ay, ks, ... ]E, and [0,0, hs, Ay, .. .]. We have
developed a compact recursive procedure to generate all the viable hypotheses in this
way.

The resulting procedure is not a search algorithm in the conventional sense, but in-
stead simply a method for enumerating all “plausible” hypotheses. The word “search”
refers to the process of looking within the image plane uncertainty regions for suitable
candidate points to link together into hypotheses. All plausible hypotheses are then
evaluated and compared. We acknowledge that more efficient techniques may exist for
finding the best B hypotheses or for finding all hypotheses above a certain minimum
score.

The search regions can be determined either from the theoretical shape density or
empirically. Figure 7.1 shows the uncertainty for facial features as computed from a
training database containing 180 face images (18 people x 10 instances each). Iig-
ure 7.1a shows the definitions of the features on one face from the training database.

In Figure 7.1b. the left-eye and right-eve of each training face was mapped to a fixed
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Figure 7.1: {a) Definitions of fifteen facial features on a typical face. (b) Superposition
of the features from 180 training faces after being mapped into shape space with the
eyes as reference. The clouds show the positional uncertainty for the other features.
(¢) Uncertainty using the left-eye and nose-lip as reference. (d) Uncertainty using the
left-nostril and nose-lip as reference.

reference position. The clouds of points show the superposition of the other facial
features. Figure 7.1c shows the uncertainty using the left-eye and nose/lip junction
as the baseline pair, while Figure 7.1d shows the uncertainty if the left-nostril and
nose-lip are used as reference.

The computational savings of the conditional search procedure versus brute-force
are shown in Figure 7.2. These results were obtained during face localization ex-
periments using a face model based on five features: the left-eye, right-eye. nose-lip,
left-nostril, and right-nostril. The conditional search procedure holds the number of

hypotheses to be evaluated at a manageable level and yields comparable accuracy.

7.7 Summary

We have introduced an object recognition approach based on finding the appropriate

object parts in the “correct” spatial configuration. Local feature detectors are used
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Figure 7.2: The number of hypotheses formed with the conditional search method
versus brute-force.

to find object parts; however, these detectors are unreliable and typically result in
missed features and false alarms. Thus, the detector outputs are treated as candidate
locations for the corresponding parts. To reliably locate an object, the candidate
locations are grouped into object hypotheses and scored based on the configuration
of the parts (represented using shape variables). Partial configurations, which occur
when true parts are occluded or missed by the detectors, can be handled with this
method. A priori knowledge about the position, orientation, or scale of an object can
also be incorporated.

Since brute-force evaluation of all possible object hypotheses is not typically feas-
ible, a conditional search procedure that utilizes what is known about the object shape
is used to form plausible hypotheses. Given the locations of two object pai‘ts, the loc-
ation and uncertainty of all the other parts can be predicted. For example, given
the position of two eyes, we can predict where the nose should be found. Only nose
candidates falling inside the appropriate search region are used to form hypotheses.
The conditional search procedure provides a significant reduction in computation over
the brute-force approach without sacrificing accuracy. More efficient procedures for

finding the best B hypotheses or for finding all hypotheses above a certain minimum
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score may exist, but we have not pursued this avenue of research.
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Chapter 8 Shape Experiments

This is an applications chapter in which we present experimental results for the shape-
based recognition algorithm described in the last two chapters. To demonstrate the
robustness of the shape-based approach, we have included results on two very different
problem domains: (1) locating human faces in cluttered scenes and with occlusion and

(2) finding keywords in on-line handwriting data collected from a graphics tablet.

8.1 Face Localization

8.1.1 Introduction

Algorithms to reliably detect and track human faces in cluttered backgrounds are es-
sential for the development of advanced human-machine interfaces. Once the face (or
faces) can be successfully localized, a number of applications become possible, includ-
ing user-authentication for credit card and ATM transactions, video teleconferencing,
gaze tracking, lip reading, and passive monitoring (for example, watching people’s

reactions at a movie). Previous work on face localization is described in Section 1.3.4.

8.1.2 Datasets

We have used three different datasets in our work on face localization; a brief summary
of each is given in Table 8.1. The first dataset, known as the Burl-Leung database,
contains ten images for each of eighteen different subjects in a “studio” setting. Each
subject was imaged against a plain white background with controlled lighting condi-
tions and pose. The camera was positioned approximately 2 meters from the subjects.
For each subject we obtained ten different instances by asking the subject to slightly

vary head pose, gaze direction, and facial expression.
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| Dataset } # Images 1 Description |
BL Database 180 10 instances x 18 subjects in a “studio” setting
LAB Sequence 150 1 subject moving freely in a cluttered environment
MM Sequence 400 1 subject with periodic partial occlusion of the face

Table 8.1: Datasets used for face experiments.

The second dataset, known as the LAB sequence, was collected under more real-
istic conditions. The subject was seated in a chair approximately two meters from
the camera and allowed to move freely, make facial expressions, etc. The background
was cluttered and additional people moved around behind the subject so the back-
ground was not constant. Individual frames (150 total) were grabbed at a rate of
approximately 1 frame per second (1 Hz) and analyzed off-line. Although this dataset
is a time-sequence, all frames were analyzed independently; the temporal correlation
between successive frames was not used in any of the experiments.

The third dataset, known as the MM sequence, was generated primarily to demon-
strate the robustness of the algorithm to occlusion. The subject was again seated two
meters from the camera, but part of the subject’s face was periodically blocked with
his hand or another object (a white bicycle helmet). This sequence contains 400
frames and was sampled at approximately HhHz. Again, all frames in the sequence

were analyzed independently.

8.1.3 Experiments

We have used two different feature sets F; and F, in our experiments. The specific
features used in each set are listed in Table 8.2. These features were hand-selected
based on intuition and the fact that they have distinctive local brightness patterns.
We have also experimented with two different sets of feature detectors. The first
set of detectors D; is based on multi-orientation, multi-scale filtering with elongated
even and odd kernels that are sensitive to lines and edges. The response of the filters

at a particular (z,y) location can be viewed as a characterization of the brightness in

the local neighborhood. To detect a feature such as an eye, we compare the vector
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\ Name ] Symbol } Fi ‘ F ‘
Left Eye LE X | X
Right Eye RE X | X
Nose/Lip Junction NL X | X
Left Nostril LN X
Right Nostril RN X
Left Mouth Corner LM X
Right Mouth Corner RM X

Table 8.2: Features used in various face localization experiments.

of filter responses at each (x,y) location to a template response vector obtained from
the eye in a training image. Local maxima of the match score that exceed an absolute
threshold serve as eye candidates. A complete description of this method is given
in [LBP95].

The second set of detectors Dy is based on local orientation structure. The image
is transformed to an orientation map, which shows the dominant orientation structure
at each location in the image. The detectors then look for areas where the local
orientation structure matches that of a prototype object part. This method generally
shows less sensitivity to illumination changes than the filtering method, which is based
directly on the image gray-level values. A more complete description of the method
is given in [BWLP96]

For the initial experiments, we tested on the LAB sequence using features F;
and detectors D;. The parameters of the shape distribution were estimated from
hand-clicked feature locations from the Burl-Leung database. A small scaled identity
matrix was added to the estimated covariance to allow for the fact that the detectors
introduce additional localization error into the position of the features. In testing, the
local detectors were applied to each image. Hypotheses were formed from the detector
outputs via the conditional search method outlined earlier. The hypotheses were
scored and ranked from best to worst with the highest-ranked hypothesis declared to
be a face. If the highest-ranked hypothesis does not represent a correct localization
of the face, it is recorded as an error.

On the LAB sequence we obtained a correct localization performance of 87%.
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That is, in 87% of the images the highest scored hypothesis corresponded to a correct
localization of the face. The LAB sequence contains one particularly challenging
section of 15-20 images where the head is rotated significantly in depth. Since both
the detectors and shape statistics were trained from quasi-frontal faces, we did not
expect the algorithm to work on this section. Scored only over the quasi-frontal face
images, the performance is 94%. Figure 8.1 shows the best hypothesis produced by
the algorithm on some typical images. Note that the algorithm is still able to locate
the face when features are missing.

We also tested the algorithm on the training database, which is easier in the sense
that the background is benign, but more challenging in terms of the variety of indi-
viduals represented. Figure 8.2 shows that the algorithm still works. However, over
the whole database, the performance is not as good (63% correct localization). Pos-
sible explanations are that we are not using enough features or that the basic feature
detectors are not robust enough to work well across such a variety of individuals.

In a follow-on set of experiments, we used features F; and detectors D; to detect
faces in the MM sequence and the LAB sequence. For these experiments. we decided
to estimate the shape statistics directly from the detector outputs to insure that the
correct detector localization error statistics would be included in the overall shape
density. One problem, however, is that the D, detectors are person-specific, so we
could not train on the Burl-Leung database. Hence, training of the shape parameters
was done on the LAB sequence.

The detector outputs were associated with the true (hand-clicked) features using
a distance threshold. The shape statistics were then estimated from the detected
locations. To increase the number of training samples, we mirrored the LAB sequence
images, which effectively doubles the number of examples. The algorithm was tested
both on the LAB sequence (training data) and the MM sequence. In both cases, the
first image in the sequence was used to define the prototype orientation map for each
of the features. In the remaining images, features were detected by looking for regions
where the local orientation structure matched the prototype. The performance on each

sequence is above 90%. Figure 8.3 shows the best hypothesis on selected images from
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Figure 8.1: Performance on selected images from the LAB sequence. The best hypo-
thesis is shown in each case: (a) correct, (b) correct, despite detector failure for the
left eve, (¢) incorrect, an error is caused by four false alarms that happen to occur in
a face-like arrangement.
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Figure 8.2: Performance on a variety of individuals from the training database.

the two sequences. Notice that the algorithm works well despite the strong occlusions

present in the MM sequence.

8.1.4 Strawman

As a standard for comparison, we evaluated a simple strawman face localization al-
gorithm based on normalized correlation. The first face in the LAB sequence was
selected as a template to be applied to the remainder of the sequence. The template
and images were down-sized by a factor of four to reduce computation. The highest
correlation value from each image was selected as the face location. Performance on
the LAB sequence yielded only 57% correct localization.

We repeated the strawman procedure on the MM sequence using the first face from
the sequence as the template. Performance on this sequence was 64%. Surprisingly,
the normalized correlation algorithm was not as sensitive to occlusions of the face by
the hand as expected (perhaps because of the similarity in skin tone). Occlusions with
the white bicycle helmet, however, caused serious problems. Lighting variations due

to self-shadowing also caused the correlation algorithm to fail.
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Figure 8.3: Performance on selected images from the LAB and MM sequences. Only
the best hypothesis is shown in each case. The second figure in the right column is
an error caused by four false alarms that happen to occur in a face-like arrangement.
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8.2 Handwriting

8.2.1 Introduction

For many applications, handwriting appears to offer a more natural human-computer
interface than the traditional keyboard. Entering data by keyboard is especially frus-
trating for novice users who possess limited typing skills. Advanced users also en-
counter difficulty when entering mathematical equations, tables, sketches, and other
visually formatted material. Even entering “standard” text is a major hurdle for users
working in character-based languages such as Japanese.

As with human faces, handwriting can be modeled as a deformable configuration of
parts. The parts we have used include pen lifts/drops, humps, cusps, and crossings. In
this section we will discuss using shape models to find keywords in cursive handwriting
data. A brief summary of other approaches to handwriting is given in Section 1.3.6.
The leading alternative is the Hidden Markov Model (HMM) []. Our shape method
has several advantages and disadvantages with respect to HMMs. One advantage is
that the shape-based method is applicable to both on-line and off-line handwriting, yet
can be adapted to exploit temporal information if it is available. Another advantage
of the shape approach is that the position of a particular feature can depend on the
positions of a number of other local features, while in HMMs only first or second order
dependence is typically assumed.

A disadvantage of the shape method is that to learn the appropriate spatial statist-
ics, we need a number of training examples with ground truth. HMMs, however, can
be trained from a relatively small number of examples that have not been specially
labeled. Also, HMMs provide a model for the entire writing trajectory. while our
method provides only a model for the keypoint positions.

We have developed some simple feature detectors to locate keypoints in signature
data collected from a graphics tablet. In our experiments we have used the WACOM
tablet, which provides z, y and p (pressure) samples versus time. The detected keypo-

ints are grouped into hypotheses and evaluated based on their spatial configuration.
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8.2.2 Feature Detection

The feature detectors for this problem are, of course, domain specific and quite dif-
ferent from the detectors used in the face localization experiments. The detectors we

have developed for handwriting are described below.

Lifts and Drops

Pen lifts and drops are relatively easy to detect using the pressure coordinate provided
by the tablet. Let p, be the discrete-time sequence of pressure samples. By applying a
simple threshold to this sequence, we can reliably binarize the samples into a sequence
b, of zeros and ones where zero represents pen up (not in contact with the tablet) and
one represents pen down. A pen drop is detected at time n if b,_y = 0 and b, = 1.

Similarly, a pen lift is detected if b, =1 and b,,1 = 0.

Humps and Cusps

Figure 8.4 shows a portion of a digitized curve. At each point. the angle 0, of the
segment from (2,.,y,) to (¥,21,Yn+1) is measured with respect to horizontal. Since
the quantity of interest for locating humps and cusps is the change in 8, we form the

sequence

80, = 0,—0, (8.1)

Noise is suppressed by smoothing 60 with a narrow Gaussian kernel. Keypoints are
then detected as local extrema over a three pixel window on the smoothed sequence.
The state of the pen (up or down) is also checked. To qualify as a hump or cusp feature,
the pen must be down and local maxima must exceed an absolute threshold of 30°,
while local minima must be less than —30°. Features are labeled as “right-turn” or
“left-turn” based on the sign of §6 (smoothed) at the keypoint. For very sharp (hair-

pin) turns, the change in angle may be close to £180°. Such points should probably
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(x0, y0)

Figure 8.4: Portion of a digitized curve. At each sample point, the change in direction

is calculated.

be given a distinct label, but we have not done so in our experiments. Figure 8.5

illustrates the process of detecting humps and cusps on a cursive letter (.

Crossings

The final feature we have used consists of places where writing crosses over itself as in
a cursive ell. Since the digitized handwriting can be broken up into a number of line
segments, we simply need to check whether the current line segment intersects with
any previously written segments, which is a standard problem in computer graph-
ics [FvD84]. To avoid spurious detections due to pauses and other anomalies, only
segments that are within a specific time window in the past are checked.

A line segment with endpoints (z¢, yo) and (21, y1) can be expressed as follows:

s; = (1—a)zowo)’ +alzyp]?. where a €[0,1] (8.2)

To check whether this segment intersects with a second segment

S5 = (1= B)uove]” + Blur )7, where 5 € [0,1] (3.3)
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Figure 8.5: (a) Cursive letter G with important time instants marked. (b) Detection
of humps and cusps from the smoothed ¢4, sequence.

we first apply some quick “sanity checks.” In particular, we check whether

max(zg,xy) > min(ug, uy)

max(yo,y;) > min(vg,v1)

min(zg, 1) < max(ug, uy)

min(yo,y1) < max(vg,v;) (3.4)

All of these conditions must hold true or the segments cannot possibly intersect be-
cause the rectangles bounding each segment will not even intersect.
Assuming the segments pass the sanity checks, we look for solutions o and 3 for

the equations:

(1 —a)eg+ax; = (1= 3)ue+ Puy (

oo
it
-

(1 —a)yo+ayr = (1= pF)vo+ Gy (8.6)
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This pair of equations can be rewritten in matrix form as follows:

ry — Tog Ug — Uy (87 Uy — Lo )
= (8.7)

Y —Yo Vo— U1 B Yo — Yo
Provided the determinant of the matrix is nonzero, a solution for o and 3 exists in
closed form. However, the segments intersect if and only if the solution is such that
a € [0,1] and 3 € [0,1]. Note: If the determinant equals zero, it means the two
segments are parallel and they can either be distinct (no solutions) or overlapping
(infinite number of solutions).

Crossings are different from the other feature types in that they do not occur at
precisely one of the time samples. To associate a time and position with a crossing
feature, we must interpolate between values. If segment s, is the later segment, which
crosses with the earlier segment s,, the position and time [2..,y.,t.]" assigned to the

crossing feature is given by:

(o Zo Ty
v | ==a)|w | +a|m (8.8)
1. to 1]

where «, is the solution from Equation 8.7. Note that the time is taken from the later

segment.

Sample Performance

Figure 8.6 shows the performance of the feature detectors on a piece of handwriting
collected with the WACOM tablet. The individual segments of the handwriting are
shaded according to the pen pressure: light gray lines indicate little or no pen pressure,
while dark lines indicate normal to heavy pen pressure. The detections are labeled
according to feature type: (1) pen lift, (2) left turn, (3) right turn, (4) pen drop, and

(5) crossing.
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Figure 8.6: Feature detector performance on a sample of handwriting data.

8.2.3 Shape Models

As shown in Figure 8.6, the five basic features occur in many places in a sample of
handwriting. To find a particular word or word fragment, we must rely on the spatial
configuration of the features. However, since the precise positions of the features
vary for different realizations of the same word, joint probability densities are used to
encode the allowed deformations.

Figure 8.7a shows a cursive letter (. The eleven numbered locations were manu-
ally identified as potential object parts, i.e., places likely to be found by the feature
detectors. Figure 8.7b shows the superposition in shape space of 100 realizations of
the letter (G. The clouds represent the uncertainty in the positions of parts 3-11. For
reference the solid line marks the entire shape-space trajectory for one of the samples.
From this figure we can only see the marginal shape-space density for each part, not
the joint density.

The joint density over the shape variables can be well-modeled using a Dryden-
Mardia density [DM91, BLP95, BLP96], which we denote by py(U; p.3). The
parameters g and ¥ are estimated from the detected positions of the features. Parts
that are not detected reliably are omitted from the model as are parts that do not
have a ground truth location in every training example (e.g, part 7 and part 9 of the ¢

only exist in 20% of the training examples). Eliminating bad parts leaves a (7 model



Figure 8.7: (a) A cursive letter G with definitions of hand-selected object parts. (b)
Uncertainty regions in shape space (features 1 and 2 used as reference).

consisting of just six parts: 1, 2, 3, 5, 8 and 10.

There are two shape models associated with any object. One is the model of the
ground truth positions of the parts, while the second is the model of the detected
positions of the parts. Since recognition is performed based on the detected positions
of parts rather than their ground truth locations, we want to estimate a model of
the second type. This is accomplished by applying the feature detectors to each
of the 100 training examples. During the training phase. the detected positions are
associated with the nearest ground truth part. Thus, we form a table in which each row
corresponds to one sample and the columns are the 2 and y coordinates of the detected
positions for each part. Some parts, however, are not detected in every training
example. We could treat these as missing data and use the EM algorithm [OW72,
BL75, DLR77, RH84] to impute their values, but instead we will simply replace the
missing values by the corresponding ground truth coordinates. The final estimates of
p and 3 are obtained by shifting a given part to the origin in each training example
and computing the sample mean and covariance matrix for the other part positions in
Sfigure space.

To find an object such as the letter G, hypotheses are generated from the set of
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feature locations. Fach hypothesis is scored using the same criteria as for faces:
Vi £

pu(Uip, )

Go(H) = F(H) - 22 s

(8.9)
where U is the shape of the configuration under hypothesis H and F(H) is a factor

to penalize a hypothesis that is missing features.

8.2.4 Time

Up to this point we have defined a model that describes only the spatial layout of
handwriting. We have not said anything about the temporal structure (except in the
context of feature detection). To some extent. this is a selling point since the shape
method can be used both for on-line and off-line data. However, if the time information
is available, we can expect to do better by exploiting it.

In principle, handwriting could be modeled using a joint probability density over
both shape and time, but we have taken a simpler approach using time only to guide
the selection of the reference features and to prune hypotheses that do not have the
correct time ordering.

For selecting the baseline pair (i.e., the two reference parts used to map a hypo-
thesis into shape space), the time separation between the two parts is examined to see
if it is comparable to the time separation in the training data. Similar checks are also
performed on the orientation and length of the baseline, since this allows the user to
set limits on the amount of invariance allowed. If the test data is known to be in the
usual orientation, there is no need to consider upside down hypotheses.

The other place in the processing where we have used the time information is
during the conditional search procedure for generating hypotheses. Here we add the
requirement that the features must occur in the correct time order. Although this
seems like a simple enough constraint, it is extremely effective in pruning hypotheses
because the feature detector labels are so coarse. That is, a detector label 2 stands for
a right turn, but this type of feature is a candidate for many object parts. Enforcing

the proper time order reduces the number of different combinations.
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The time information could also be used metrically during the conditional search,
although we have not currently implemented this constraint in our algorithms. Given
a baseline pair, the location in shape space of the other parts is constrained (as shown
in Figure 8.7b). Similarly, the location in time of the other parts is also constrained.
As the distance from the baseline pair increases, the spatial search regions tend to
become larger and may overlap with writing from the previous or next line. By
also considering the time, the number of candidates falling inside the search region is
limited to those in the correct time frame. Figure 8.8 shows the time uncertainty for
parts of the letter &7 in relative units, i.e., relative to the time between part 1 and 2.

o

In other words, the time associated with part p in relative units is given by

(8.10)

The figure shows a Gaussian approximation to the probability distribution of Z,, for
p = 3,....11. The average time from the start of the G to part 5 is approximately
twice as long as the average time from the start to part 2. If parts 1 and 2 were used
as the baseline, then part 5 should be found in the time range [1.5¢,, 2.8%;] and in the
ellipse in shape space shown in Figure 8.7b. Only part 5 candidates falling in both
the time range and shape uncertainty region would be coupled with this baseline pair

in the hypothesis formation process.

8.2.5 Modifications to the Hypothesis Generation Procedure

Handwriting is, by nature, highly repetitive; hence, a single page of writing leads to
a large number of detected features. The conditional search procedure described in
Section 7.6 can be used to generate hypotheses from the detected features, but even
then the number of hypotheses is enormous. To reduce the computational load and
memory requirements, we have made several modifications to the hypothesis genera-

tion procedure.
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Figure 8.8: Uncertainty in the time location of the parts. The time between parts 1
and 2 is used as the unit of measurement in each sample.

Windowing

Rather than generate hypotheses over an entire page of handwriting, we used window-
ing to work on smaller portions of a page at one time. Windowing can be implemented
either spatially or temporally, but we have used temporal windows in our experiments.
The window size was chosen to be three times the maximum time separation between
parts of the object (as determined from training data). Successive windows were

overlapped by two-thirds to insure that no objects could “fall through the cracks.”

Allowed Baseline Pairs

The standard hypothesis generation procedure allows any pair of parts to serve as
the baseline that is used to transform to shape space. Since the area of the search
regions grows approximately quadratically with the distance from the baseline, using
small baselines leads to large uncertainty regions, thereby increasing the number of
false alarms falling inside each region. To overcome this problem, we have simply
introduced a table which defines whether a given pair of part types is allowed to serve
as a baseline. For the detection probabilities with which we are working, only about
four baseline pairs are needed to insure a high probability that at least one baseline

pair on the object will be considered. The table of allowed baseline pairs is currently
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defined manually.

A consequence of considering only selected pairs of baselines is that the recursive
hypothesis generation algorithm described in Section 7.6 will no longer work. Instead,
we simply loop over pairs of points. If two points are of the right types to serve as a
baseline pair, we use the search regions to identify plausible candidates for the other
parts. All combinations of plausible part candidates are grouped into hypotheses and

evaluated. This process is repeated 