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ABSTRACT 

Th.r e e different categories of flow problems of a fluid contain-

ing small particles are being considered here. They are: (i) a fluid 

containing small, non-reacting particles (Parts I and I); (ii) a fluid 

containing r e acting particles (Parts Ill and IV); and (iii) a fluid con-

·taining parti cles of two distinct sizes with collisions between two 

groups of particles (Part V). 

Part I 

A numerical solution is obtained for a fluid containing small 

particle s flowing over an infinite disc rotating at a constant angular 

velocity. It is a boundary layer type flow,and the boundary layer 

thickness for the mixture is estimated. For large Reynolds number, 

the solution suggests the boundary layer approximation of a fluid-

particle mixture by assuming W = W . The error introduce d is con
p 

sistent with the Prandtl 's boundary layer approximation. Outside the 

bo~ndary layer, the flow field has to satisfy the "inviscid equation" in 

which the viscous stress terms are absent while the drag force be -

tween t he parti cle cloud and the fluid is still important. Increase of 

particle concentration reduces the boundary layer thickness and the 

a mount of mixture being transported outwardly i s r educed. A new 

parameter, /)= l/fh , is introduced which is also proportional to µ . 
v 

The secondary flow of the particle cloud depends very much on f3. For 

small values of '3 , the particle cloud velocity attains its maximum 

value o n the surface of the disc,and for infinitely large values of f3 , 

both the radial and axial particle velocity components vanish on the 

surface of the disc. 
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Part II. 

The "inviscid11 equation for a gas-particle mixture is linear

ized to describe the flow over a wavy wall. Corresponding to the 

Prandtl-Glauert equation for pure gas, a fourth order partial differ

ential equation in terms of the velocity potential q:> is obtained for the 

mixture. The solution is obtained for the flow over a periodic wavy 

wall. For equilibrium flows where Av and AT approach zero and 

frozen flows in which Av and AT become infinitely large, the flow 

problem is basically similar to that obtained by Ackeret for a pure 

gas . For finite values of Av and AT, all quantities except v are not 

in phase with the wavy wall. Thus, the drag coefficient CD is present 

even in the subsonic case, and similarly, all quantities decay exponen

tially for supersonic flows. The phase shift and the attenuation factor 

increase for increasing particle concentration. 

Part III. 

U sing the boundary layer approximation, the initial develop

ment of the combustion zone between the laminar mixing of two paral

lel streams of oxidizing agent and small, solid, combustible particles 

suspended in an inert gas is investigated. For the special case when 

the two streams are moving at the same speed, a Green1 s function ex

ists for the differential equations describing first order gas tempera

ture and oxidizer concentration. Solutions in te rms of error functions 

and exponential integrals are obtained. Reactions occur within a rela

tively thin region of the order of AD. Thus, it seems advantageous in 

the general study of two-dimensional laminar flame problems to intro-
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d uce a chemical boundary layer of thickness AD within which reac

tions take place. Outside this chemical boundary layer, the flow field 

corresponds to the ordinary fluid dynamics without chemical reaction. 

Part IV. 

The shock wave structure in a condensing medium of small 

liquid droplets suspended in a homogeneous gas-vapor mixture con

sists of the conventional compressive wave followed by a relaxation 

region in which the particle cloud and gas mixture attain momentum 

and thermal equilibrium. Immediately following the compressive 

wave, the partial pressure corresponding to the vapor concentration 

in the gas mixture is higher than the vapor pressure of the liquid 

droplets and condensation sets in. Farther downstream of the shock, 

evaporation appears when the particle temperature is r a i sed by the hot 

surrounding gas mixture. The thickness of the condensation region 

depends very much on the latent heat. For relatively high latent heat, 

the condensation zone is small compared with AD. 

For soli d part icles suspended initially in a n ine r t gas, the re

laxation zone immediately following the compression wave consists of 

a region where the particle temperature is first being raised to its 

melting ·point. When the particles are totally m e lte d as the particle 

t empe rature is further increased, evaporation of the particles also 

plays a role. 

The e quilib_rium condition downstream of the shock c an be cal

culate d a nd is independent of the model of the particle - gas mixture 

interaction. 
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Part V. 

· For a gas containing particles of two distinct sizes and satis

fying certain conditions, momentum transfer due to collisions be

tween the two groups of particles can be taken into consideration using 

the classic al elastic spherical ball model. Both in the relatively 

simple problem of normal shock wave and the perturbation solutions 

for the nozzle flow, the transfer of momentum due to collisions which 

decreases the velocity difference between the two groups of particles 

is clearly demonstrated. The difference in temperature as compared 

with the collisionless case is quite negligible . 
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PART I. 

LAMINAR FLOW OVER A ROTATING DISC 
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I. INTRODUCTION 

Much has been accomplished in the study of the dynamics of 

fluids containing small solid particles. Because of the complexity of 

the problem, most solutions involve some perturbation scheme(!, 2 } 

· t' th d (3 ' 4 ) F 1 . fl f fl . d or approx1ma ion me o s • or a am1nar ow o a u1 con-

taining small solid particles over a disc rotating at constant velocity, 

a similarity solution can be found and the solution can be obtained by 

numerical integration. 

Von Karman (S} first investigated the flow of an incompressible, 

viscous fluid over an infinite disc rotating at a constant velocity. He 

conceived of a true similarity solution and was able to reduce the gov-

erning equations to a set of ordinary differential equations . Using the 

integral method, he was able to obtain an approximate solution. More 

accurate values were obtained by Cochran (
6 ) who used numerical inte-

gration methods to find the solution close to the disc and matched to an . 

asymptotic series solution valid far away from the disc. Cochran's 

solution, which is quoted in some textbooks(?>, has a sign error in the 

pressure distribution. 

The flow field obtained by von Karman and Cochran is of a 

boundary layer type. In fact, von Karman used this solution to check 

the accuracy of Prandtl' s boundary layer equations, and confirmed the 

main assumptions of the boundary layer theory. Perhaps this rotating 

disc is also the first study involving secondary flows. Due to the 

boundary condition of the fluid on the disc, the layer of fluid close to 

the disc is constantly being transported in spiral paths along the sur-

face from the axis of rotation to the outer edges. This is compensated 
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by the fluid flowing along the axial direction towards the disc, and is 

again in turn being transported towards the outer edge. The disc thus 

acts very much like a centrifugal pump, and the solution illustrates 

very well the characteristics of a secondary flow in three-dimensional 

boundary layers. 

A similarity solution still exists in the case when the fluid 

contains a cloud of small particles. The problem is certainly useful 

in designing centrifugal pumps and other areas of chemical engineer

ing. The solution illustrates particle-fluid boundary layer flows as 

well as the secondary flows involving a cloud of small particles. 
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II. BASIC EQUATIONS 

The governing equations describing the flow of a fluid contain-

ing small particles have been discussed by many authors. Here, we 

will mainly follow those given by Marble Cl). The following problem is 

being investigated. A half infinite space Z > 0 is filled with an in-

compressible fluid containing small particles. The boundary plane 

'Z,. 0 is rotating with a constant angular velocity .Cl • From sym-

metry arguments , we can easily see that all the quantities are inde-

pendent of the ;:i.ngle &- • 

Denote (LL, VJ w) as the radial, angular, a nd axial velocities 

of the fluid and those of the particle cloud, and the 

mass density of the fluid and the particle cloud by f and ~ • The 

continuity equations for the two phases are 

{ 1. l) 

{l. 2) 

The corresponding momentum equations are 

= - { 1. 3) 

{l. 4) 

{ 1. 5) 



-5-

( 1. 6) 

( 1. 7) 

(1. 8) 

where /> is the local gas pressure and Fr , Fe , h are the 

fore.es in the radial, angular, and axial directions exerted on a unit 

volume of fluid by the particles. Using Stokes drag law as a first 

order approximation to describe the particle-fluid interaction, 

( 1. 9) 

where ~ is the particle number density of the particle radius er 

and mass and 11f m::: If is defined as 

l",,- =" m /6 TT~ er (1. 10) 

Physically, Z-v is a characteristic time during which the relative 

velocity between the fluid and the particles is reduced to 
-1 e of its 

initial value when Stokes drag is the only force acting on the particle 

cloud. 

Similarly, Ft:1 and FL are 

(1. 11) 

(1. 12) 

The boundary conditions are : 



U ( 'Y,, o) == 0 

v ( r'J o) = .fl /1. 

w ( r-, 0):: 0 

Uf (~ KJ)::: o 

~ {r',, OD);: 0 

-6-

wt(~ oo)= w(,,~ oo) 

!f (~ w):: r~ 

u. (.-,tJO)• 0 

v(,,,, oo):: 0 

w{tj ao)~ Cotv.J'T'ANr 

r ( r; oo):: f-

has a finite limiting value because the mass flux 

{l. 13) 

p (t', 0o) w' (~ t10) balances the radial outflow near the disc as dis-

cussed in the previous section. ;r is the density ratio at .C = ao 
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Ill. SOLUTION FOR THE EQUILIBRIUM FLOW 

From the definition of -r.,, , (eq. 1. 10 ), the limiting case 

when corresponds to either very small particles or the 

viscosity of the fluid ,fl is very large. Under such circumstances, 

the velocity difference between the particle cloud and the fluid is ex-

pected to be very small. This is the case when we examine equations 

1. 6, 1. 7, and 1. 8. Define 

U.r = u, -ll. 

!&- ::::. 'f - y (1. 14) 

~ :::. wjo-w 
The momentum equations for the particle cloud can be expressed as 

(1. 15) 

--! _,. 0 (~) (1. 16) 

- wf + 0 (Ws) r ... (1. 17) 

The continuity equation is 

(1. 18) 

Since both the velocities and their spatial derivatives are finite, the 

limiting case when rv~o requires li& ~ o . ~ _. 0 , and 

wS -.ii 0 Thus, equations 1. 15 - 1. 17 are reduced to 

'U ..dJd_ _K...l ~ J1L ti~ - ?;!._ (1. 19) -1- W tJZ .::: - ::: -, 
rJtr ,,. l"'v Z-v 
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uiX- u v' Jv' ~ Jf-V .,. -r -1- w.r;; :: - -?;- :::. <)r" rv ( 1. 20) 

u Jw' .dr! :::: -~ 1-~ _,. w' .JZ :=::. J. r r;.. rv (1.21) 

From the continuity equation we observe that 1' = con.rid n I:;:/'~ . 
The momentum equations for the whole system, in the limiting 

case when 7:v-...> O , can be expressed as 

(1. 22) 

( 1. 23) 

( 1. 24) 

where f'll- ::: ;° + '/ ( oo) = ;° (I + .{') 

y~ == ,,,a /r / ~ tfooJ) == ~/(1-1- Z)j (l.25) 

The solution for rv ~ 0 is therefore identical w ith the flow with-

out particles with an effective density f;"' j'( / + ):") In the 

literature , this limiting case is usually referred to as the "equilibri-

um flow. 11 

The other limiting case when r;, _, ~ , the presence of the 

particle cloud does not change the fluid quantities. The particles are 

moving with constant velocities u! ::= 0 ~=o 

and This case is usually referred to as the "frozen 

flow. 11 
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IV. METHOD OF SOLUTION 

To investigate the problem for finite values of r;,. , it is con-

venient to introduce a dimensionless distance variable 1 . 1 is 

defined as 

( 1. 26} 

Furthermore, we assume that the velocity components as well as the 

particle density Jf and the local fluid pressure p can be ex

pressed in the following form: 

u ( ~ Z) :::: .a y F ( 1) 

V('1 Z) = n Y C{1J 

w(~ Z) = (n v)~ 1-/(7) 

? (t-, Z) - f ( >j oo) ==' j J' fl p (,7.) 

If r~ zJ~r~ zJ :::: /:- r~ zJ = ar1J 
fl(,-/ Z) U/ fr, Z.) = .Q 'I' ;:; { '/) 

~ ( ~ I) 'vf ( ~ X) := f:J 'I" ~ ( 1.) 

fr fr, Z) w;. (~ Z) ::z (.av~ J{of 1J 

( 1. 27) 

Using 1. 26 and 1. 27, eqs. 1. 1 to 1. 8 can be reduced to a set of ordi-

nary differential equations 

11 ~ 2F = O ( 1. 28} 

~:r -F2 
- 111{ + C2

.,. ,,8(/j - QF) = o 
(1. 29) 

( 1. 3 0} 
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-1f-. - 21f !=" + 21{- .,. j3 (-1' + Q H) = o 

d/,( + 2F; =o 

and 

The boundary conditions according to equations 1. 13 r e ad 

rfo)# 0 

Gfo):::. I 

fl (o) == 0 

p (oo) := 0 

Q(ooJ::x 

'f ( t>o) = 0 

? (tt0};:0 

11r r "°J:: ;(fl("') 

(l.31) 

(1. 35) 

(1. 36) . 
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Since the problem involves a set of non-linear differential 

equations, numerical integration is the only means to find an exact so-

lution. The problem is further complicated in that it is a two point 

boundary value problem. From eq. 1. 36 we observe that three of the 

ten boundary conditions are prescribed at 1 = 0 while the remaining 

seven are at 1 := ~ Thus, we propose to integrate the equations 

numerically from large values of 1 by first finding an asymptotic 

solution which is valid for large 1 The asymptotic solution in-

volves three parameters, namely II , 8 , and C By varying 

II , 8 , and C , we can satisfy the boundary conditions F{o):::. 0 

(i (o) == I , and //(o):: 0 

To find the asymptotic s elution for large values of '1 , we 

assume 

Ff1J == F(
0
f7J + EF'Y7J + E

1F'&>(7J 

G t7J :::.. G ' 0 'f7J + t ~{lf1J + £1. ~<'-'(7 J 

1-1 ( 7 J == Hr01 <7 J .,. € tl0 bl J ., e' fJ z { 7) 

F((7J:= F,"'(7) + t1j/)(1J + l~'''(7J 
(.) /"(I)/ l (i.J / 

?(1)= f 'f7J + c'/' <1) + € ~ c7J 

. /O) (ti( 2 • "Z)( ') Hr ( 7) ::: ~ (7) 4- € if 7) _, E JP '/. 
Qf7J = (}(o}(7J + f Q'''f7J., €' Q(Z)(7J 

?{7J ::::. p(D)frJ + € p'r)(7) + e' p(2.'(r;J . 

From the boundary condition 1. 36, we obtain 

{1. 37) 
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·' r7 J = o 

ti-(•) ( 7J ::.. 0 
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H 1•
1 b/ J r:: !./ f oaJ ::a - C 

/:..lo) ( 1J ;:; (J r 
G/•' C7J ~ o 

1-1;•) (1J == x c. 

a'·' (7J = ;t 
p'•" (7) == 0 

(1. 38) 

C i s related to the fluid velocity along the axial directi on for 

1c. 00 ' and is a function of /( • 

Substi tute eqs. 1. 37 into eqs. 1. 28 to 1. 34; using l. 38, we ob-

tain the first order equations . 

~1"' " 2 F ''' .: o 

'f:fi' + c %'' + ~ r !j''"- x r '"J = o 

(l.39) 

(1. 40) 

(1. 41) 

( l. 4 2) 

( l. 43) 
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I 1
'

1 l 
c~ *' -2 c £'" - j3 (I-I." - 2c r;"" -7 II"'-#- .Jc q'':J-= o '! I' I' . 

The boundary conditions are simply 

f/'''(oo)::. 0 

F''' r00 J.:: o 

ti'"' ( - ) = 0 

r'" (ti# J:: o 

(JI( J t11}.::.o 

~ (IJ ("' } :;r 0 

'/ 
Hj'' ( t») == 0 

q''' {"");: 0 

dF"'<,..J ::: o 
71 
-1,,~"r-; ~ o 

( 1. 44) 

(1.45) 

( 1. 46) 

(1. 47) 

Solutions to eqs. 1. 39 to 1. 46 can very easily be found. They are 
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( 1. 48) 

with 

( 1. 49 ) 

Using the zeroth order and first order solutions, we can easily find 

second order quantities F'3/-7J , etc. It is apparent that the second 

.2S? 
order func tions are of order e , and third order functions are of 



JS'[ 
order e 

-15-

Thus, for large values of 'l , we have 

( 1. 50) 

Numerical integration is carried out from the point f • "'lo rz. is 

,., 2s7 .. chosen such that .... is negligible. The expressions in I. 50 

contain three parameters fl , d , and C • The boundary condi-
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tions at '?r: 0 are satisfied by varying /1 , 8 , and C • An iteration 

procedure is used by considering rf7.#o) 

as functions of II , 8 , and C 

Ff7.:o),,. F(ll, 8, C') 

Gf7.:0J::: <9 (A,,, .13,, c} 

Hf1-=o)= II (A, 8_, c) 

With initial trial values of Ito 

(1. 51) 

Bo , and C 0 , the boundary 

values at f.. are obtained using 1. 50. Equations 1. 28 - 1. 34 are in-

tegrated numerically from '/"' 1o The values for F(7) , t;' (~) , 

Corrections to llo 80 , and Co are to be found such that 

F(1}, G(7J , and r/(7} satisfy the boundary conditions at ? =o • 

Let /, ti , and .4_, be the corrections to .4.. • B. , and {. • 

Thus 

(1. 52) 

1-1 (,4.~/, ~ s.1-/.,,.c # ~J ~ 1-1~-,4.,, <.J~ !j-1, ~if~ .,. #-~ = o 
Thus 

(1.53) 

( 1. 54) 
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r/( /lo~ a.~ c.) (l.55) 

The derivatives can be found numerically and It, , ..fa. , and R~ 

can be obtained by solving eqns. 1. 53 - 1. 55. The procedure can be 

repeated until the boundary conditions at '1= o are satisfied. This 

method converges rather fast and is usually within one per cent error 

after two or three iterations. 

Numerical integration is performed by using California Insti-

tute of Technology's IBM 7094 using DEQ subroutine. Two sets of 

solutions were ob'tained by using various values of X and J'S , where 

X and ft were defined previously as 

X :: ~ foo) /J' (co) 

fi : rn r.,r' 

The first set is for J3 = O. 5 and values of X equal to O. 0, O. 5, 1. 0, 

1. 5 , 2. 0 , and 2. 5 we re used. The second set is for A = O. 5 and 

values of fi = O. 0, O. 2, O. 5, 1. 0, 2. 0, and oo were used. The nu

merical solutions were plotted on Figures I-1 to I-12. If we define d 

as 

ii"' [ F("; "" · ( t:<0J-1)a. + 1-//oJ}~ 
the solution is accurate to '1 ~ 0. 01 • 

( 1. 56) 
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V. DISCUSSION 

From the curves describing the velocities and densities, both 

for the particle cloud and the fluid, this problem of a rotating disc is 

very much a boundary layer type flow. Furthermore, the boundary 

layer thickness for the fluid and the particle cloud is approximately of 

the same order. This thickness, J' , corresponding to the layer of 

mixture carried around by the disc, can be estimated by equating the 

centrifugal force and the shearing stresses acting on the mixture <3 >. 

(If "'"f) dr y d9 J . 

(I}+ f) Y .n.2 cir YdB J. The same 

at a The centrifugal force acting on an element 

dis.tance r from the axis is 

element is also acted upon by a shearing stress lw . If f is the 

angle between Tw and the circumferential velocity, the net force on 

the element due to the shearing stress is lw is 

proportional to the velocity gradient, 

Tw cosf ~ ~ r .n./J 
Equating the two forces 

or 

If it is assumed that the direction of slip close to the wall is approxi-

mately a constant, the thickness is 

-ft ~ y" 

cf r--- (-.x ) z ::: Re ii[ {l.57) · 

where Re is the Reynolds number defined as Thus, in 

the case of large Reynolds number, the effect of the wall on the mix

ture is confined within a thin layer of thickness d . The axial com-

ponents of the fluid velocity and the particle cloud velocity as com-
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pared with the radial or angular components are of the order Re~ 

within this boundary layer J Thus, Prandtl's boundary layer 

theory can very easily be extended to the case of a fluid containing 

srriall particles by suppressing the axial velocities of both phases. 

Corresponding to neglecting in the boundary layer theory, an 

additional relationship 

w( r:. z) - W, fr, ~) == o 

is introduced. The error in assuming eq. 1. 58 is of the order 

(1. 58)' 

l?e~ 

which is consistent with the boundary layer theory. Outside this 

boundary layer d , the flow field has to satisfy the 11inviscid11 equa-

tions in which the viscous stress terms are absent. These "inviscid" 

equations correspond to the Euler's equations in Prandtl 's boundary 

layer theory. 

The boundary layer thickness J decreases with increasing 

particle concentration. This implies that the amount of particle-fluid 

mixture being transported outwardly is reduced, which in turn re-

duces the velocity component in the axial direction flowing towards the 

disc as shown in Figure I. 1 and Figure I. 3. 

The secondary flows for the particle cloud and the fluid are 

quite different for small values of J> . There are two forces acting 

on the particles -- the particle-fluid drag force and the centrifugal 

force . Close to the disc, the centrifugal force dominates and parti-

cles are constantly being thrown outward. The radial .velocity of the 

particle cloud acquires a maximum on the disc (Figures I. 4 and I. 10), 

while the fluid radial v_elocity is zero because of the boundary condi-

tion at the wall. For larger values of ~ , the particle- fluid force 
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plays a more important role. For j) = 2. 0, the radial velocity of 

the particle cloud acquires a maximum away from the disc, as shown 

in Figure I. 1 O. 

When the radius Ro of the disc is large compared with the 

boundary layer thickness, as is almost always the case in practice, 

the boundary conditions along the edge of the disc can be neglected. 

The solution for the infinite disc can be used in this case, and the 

turning moment /1 for the disc can be evaluated. 

The shearing stress rez is Using eq. 1. 27, the shear-

ing stress can be expressed as 

Introducing a dimensionless coefficient of turning moment 

M 

this gives 

(1. 59) 

The coefficie nt o f turning moment is p lotte d on Figure I. 12. If the 

disc is immersed in a fluid containing small particles, the net mo-

ment is twice as large. 

The problem is solved under the assumption that the amount of 

particles reflected from the disc is negligible. Fro m F igure s I. 3 and 
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I. 9, we see that wf 
values of j3 

on the disc is indeed small except for small 

o-~ 
Furthermore, since wf "'-' ne , this assumption 

is certainly justified for large values of Reynolds number. In fact, in 

the boundary layer approximation to the particle-fluid dynamics, to be 

consistent with the boundary layer assumptions, the particles reflect-

ed from the wall are neglected. To study the problem with particles 

colliding with the disc, additional differential equations describing 

the reflected particles are necessary with proper particle-disc colli-

sion model. Numerical integration in this case will be very much 

involved. 



-22-

REFERENCES FOR PART I. 

1. Marble, F. E., "Dynamics of a Gas Containing Small Solid 
Particles, 11 Proc. 5th AGARD Combustion and Propulsion 
Colloquium, Braunschweig, April 1962; Pergamon Press, 
New York (1963), pp. 175-213. 

2. Marble, F. E., 11Nozzle Contours for Minimum Particle-Lag 
Loss, 11 AIAA Journal, Vol. 1 (Dec. 1963), pp. 2793-2801. 

3. Kliegel, J. R., 110ne-Dimensional Flow of a Gas Particle Sys
tem, 11 Space Technology Laboratories TR-59-0000-00746 
(1959). 

4. Soo, S. L., 11 Boundary Layer Motion of a Gas-Solid Suspen
sion, 11 Interaction Between Fluids and Particles, Instn. Chem. 
Engrs., London , pp. 50-63. 

5. Von Karman, Th., 11 0ber Laminar und Turbulente Reibung, 11 

Zeitschrift fur An ewandte Mathematik und Mechanik, Vol. I 
1921 , pp. 233-252. Translated in NACA Technical Memo

randum 1092. ) 

6. Cochran, W. G., 11 The Flow Due to a Rotating Disc, 11 Proc. 
Cambridge Phil. Soc., Vol. 30 (1934), pp. 365-375. 

7. Schlichting, H., Boundary Layer Theory, McGraw-Hill Book 
Co., New York (1960). 

8. Prandtl, L., 11 Fuhrer durch die Stromungslehre. 11 (Trans., 
Essentials of Fluid Dynamics, Hafner Publ. Co. 



l. 0 

• 8 

• 6 

.4 

• 2 

G ((X = O. O} 
G(x=l.O) 
G (X = 2. 5) 

1 

-23-

2 

-H (X = O. 0) 

-H (X = 2. 5) 

3 5 Tl 

Fig. U.;J.. Normalized Fluid Velocities in Tangential and 
Axial Directions ({3 = O. 5 ). 



• 2 

F 

. l 

0 

-24-

l 2 3 

x = o. 0 

x = 1. 0 

x = 2. 5 

Fig. 42. Normali zed Fluid Velocity in Radial Direction 
{13 = o. 5). 



1. 0 

o. 8 

o. 6 

o. 4 

o. 2 

0 1 

-25-

G /Q (X = 1. 0) 
p 

G /Q (X = 2. 5) 
p 

2 3 

-H /Q (Xx 1. 0) 
p 

- H IQ ( X = 2. 5) 
p 

4 5 

F i g.1.3. Normalized Particle Velocities in Tangential 
and Axial Directions (J3 • O. 5). 



• 3 

• 2 

F 
__£, 

Q 

• 1 

0 

-26-

1 2 3 4 5 

Fig.1.4. Normalized Particle Velocity in Radial Direction 
(f3 = o. 5). 



-27- x = o. 5 

1. 0 = 1. 0 

x = 1. 5 

• 8 

. 6 

• 2 

0 • 1 . 2 . 3 • 4 • 5 

Fig. 1:5. Particle Density (13 = O. 5). 



• 3 

p 

. 2 

• 1 

0 

x = 2. 5 

x = o. 5 

x = o. 0 

-28-

: 5 

Fig. 1~6. Normalized Pressure ('3 = O. 5). 

1. 0 



. 8 

.4 

• 2 

.. 2.9-

-H. (j3 == co) 

1 2 

G ([3 = O. 2) 

G (j3 = co) 

3 4 

Fig. l/l. Normalized Fluid Velocities in Tangential and 
Radial Directions {X = O. 5). 

5 



• 2 

• l 

F 

0 

-30 ... 

l 2 3 4 

Fig. hS. Normalized Fluid Veloti-cy in Radial Direction 
ex = o. s}. 

5 
,., 



• 8 

. 6 

. 4 

• 2 

0 1 2 

-31-

G /Q ((3 = 1. 0) 
p 

G /Q ({3 = O. 2) 
p 

3 

-H /Q ([3 = O. 2) 
p 

-H /Q ([3 = 1. O) 
p 

4 5 

Fig. 1.9. Normalized Particle Velocities in Tangential 
and Radial Directions (X = O. 5). 

,, 



• 3 

• 2 

F 
_.E._ 
Q , 

• 1 

0 l 2 

-32-

i3 = 2. 0 

i3 = 1. 0 

i3 = o. 5 

i3 = o. 2 

3 4 

Fig. l~ 10. Normalized Particle Velocity in Radial 
Direction (X = o. 5). 

5 



r 
. 5 

. 4 

• 3 

. 2 

• 1 

0 

= 0 = 00 

• 1 • 2 

-33-

(3 = 1. 0 

(3 = 2. 0 

• 3 

Fig. L 11. Particle Density {X = O. 5). 

. 4 • 5 



-34-

1. 1 

1. 0 

l 
· Re-rcM· 
. . 

. 9 

. 8 

.7 

i3 :: o. 0 

. 6 

Fig. Ll2. Normalized Shearing Stress on the Disc. 



-35-

PART II. 

TWO PHASE FLOW OVER A WAVY WALL 
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I. IN TROD UC TION 

The perturbation technique applied to problems of aerodynam

ics was formally introduced by Prandtl ( 
1

) and independently by 

Glauert( 2 ), resulting in the well known Prandtl-Glauert equation. 

Ackeret(3 ) was the first one to apply the theory to both subsonic and 

supersonic cases. 

The same problem extended to the case containing small par- . 

ticles was first investigated by Marble (4 )_ Marble introduced velocity 

potentials, which seems to be the natural variable in the spirit of 

small perturbation theory in aerodynamics, and obtained the corre-

sponding Prandtl-Glauert equation for two-phase flow. Chu and Par

lange (S) applied the same basic principle to the propagation of sound 

in a two-phase medium. Attenuation and dispersion of sound based on 

Chu and Parlange 1 s theory was obtained by Temkin and Dobbins(
6 ). 

The case investigated by Chu and Parlange is, in the true sense, an 

acoustic problem, rather than a problem in aerodynamics. Lick(?} 

investigated a rather similar problem of propagation of small disturb-

ances in a radiating gas. An asymptotic solution using Laplace trans-

form was obtained. 

A small disturbance solution of a steady, two-dimensional, two-· 

phase flow over a wavy wall using the equations derived by Marble is 

obtained here. Resler and McCune (S) treated the magneto~aerodynam

ic case, and Vincenti( 9 ) solved the non-equilibrium flow over a wavy 

wall, but the governing equations for all these cases are quite dif -

ferent. 
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ll. BASIC EQUATIONS 

We begin by stating the equations of a steady, two-dimensional, 

'inviscid 'flow of a fluid containing small particles. The problem is not 

inviscid in the true sense. Although the viscous stress terms and the 

heat flux are neglected, the viscous interaction and heat conduction 

between the particle cloud and the fluid are still retained in the formu

lation. Following the notations given by Marble (9 ), the equations of 

state and the equations of conservation of mass, momentum, and en-

ergy for the particle cloud and a perfect gas, both with constant spe-

cific heats, are 

( 2. 1) 

(2. 2) 

( 2. 3) 

(2. 4) 

( 2. 5) 

(2. 6) 

( 2 . 7) 

(2. 8) 
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(2. 9) 

where f, I , U , V are respectively the gas density, tempera-

ture, and velocity components, while I} 

those pertaining to the particle cloud. P 

r u, I and Vr are 

is the local gas pressure. 

F" and ') are the forces exerted on a unit volume of gas by the 

particle cloud and Q is the heat exchange rate per unit volume be-

tween the gas and the particles. If the drag force between the parti

cles and the gas follows the Stokes law, /; can be written as 

;:; = } /.rr /" rr ('t- u).:: :f; 'J f l-'j- u) Uo ( 2. 10) 

where n/ is the particle number density, and 

.-:i mu. 
/IV .:: (, 7i ,µ 0- (2. 11) 

11. is some characteristic velocity. ;;).,.. is the characteristic 

length in which the relative velocity between the fluid and the particle 

cloud is reduced to e-I of its initial value. Similarly, 

(2. 12) 

Similar consideration holds for the h e at transfer between the particle 

cloud and the fluid when the temperature of the two phas~s is not at 

equilibrium: 

Q= ~"fn~:1Jf7j>-I)== ;{;If Cr Uo (f-T) ( 2. 13) 

When 

""'"l J.. o mu. :so~ 
/I; = 2 r,. t'J!Uu- :::: 2 ly /Ill' 

(2. 14) 

Ar has very much the same physical meaning as 4,.. .. /IT is the 
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distance in which the temperature difference between the ·two phases 

is reduced to e-I of its initial value. The terms f£f-uJ,t:;. and (f- v)? 

are the energy dissipation terms due to the momentum transfer be-

tween the particle cloud and the fluid. Here, we assume that this 

dissipation term is totally absorbed by gas. 

Since we are concerned with the flow of small disturbances due 

to a wavy ·wall, e ·qs. 2. 1 to 2. 9 can be linearized in the usual manner. 

We assume as usual that the flow can be described by a small per

turbation on a uniform flow with velocity u() parallel to the ;i'-ax:is, 

and with the undisturbed temperature ?; , density /'o , and pres-

sure fi The particle cloud and the gas are assumed to be at equi-

librium in the undisturbed flow. Thus, the unperturbed particle ve-

locity, temperature, and density have values U. , T. , and Xf:, 

where X is a constant. Denote perturbed quantities by primes; the 

velocity components are given by 

Similarly, the temperatures, densities, and the local 

pressure of the gas can be written as /:::: T. -r T' , 7j-:. f...,. ?', 
and Neglecting 

higher order terms, the linearized form of equations 2. 1 .- 2. 9 takes 

the following form : 

r ' 
-r --r. ( 2. 15) 

( 2 . 16) 

( 2. 17) 
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(2. 18) 

d I I I I 

,,, ~ == - p _:d!.. 
""" .J ')( /. ol .t' -4- . ( 2. 19) 

I I 

- -;r;- u. cu!' - u ') (2. 20) 

(2. 21) 

(2. 22) 

( 2. 23) 

Velocity potentials for the perturbed velocities of the particle 

cloud and the gas can be introduced. Rewriting the momentum equa-

tions in vectorial form 

-, 
/)/ clV I I I ( -
V'-o- := - - Y' P + X ZI. - V.: ' dx t:. I "/Iv '/' - v'J ( 2. 24) 

. cJ\Z' I - _ 

Uo-;ft' :::: - JI: z/0 { L/' - v) (2. 25) 

Taking the curl of the sum of equations 2. 24 and 2 . 25, we obtain 

(2. 25) 

Since it is initially a uniform flow in which the vorticity is zero, it 

follows from equation 2. 26 that curl V' and curl f ' remain z e ro. 

The velocities of the gas and the particle cloud can thus be represented 
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as the gradient of their respective potentials: 

(2. 27) 

(2. 28) 

The linearized equations (2. 16 - 2. 23) in terms of the velocity poten-

tials are 

(2. 29) 

(2. 30) 

(2. 31) 

( 2. 3 2) 

{2. 3 3) 

.;2<p,, _ 
Uo-rx:fj (2. 34) 

-
- ,, J _EE! + Y p (. .:Jb. (/,, I - T) 

u • ch~ /I- Io f JJr '/' 
(2. 3 5) 

(2. 36) 
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Note that the momentum equations 2. 31 and 2. 32 as well as 2. 33 and 

2. 34 are not longer independent of each other. Using equations 2.29, 

2. 30, 2. 31, 2. 33, 2. 35, 2. 36, and the equation of state 2. 15, a par-

tial differential equation in the gas velocity potential f can be ob-

tained. 

(2. 3 7) 

with 

(2. 38) 

( 2. 39) 

~2 2 
µ, :::M, -I= 

(2. 40) 

1 (2.41) 

Equation 2. 37 corresponds to the familiar Prandtl-Glauert equation in 

gas dynamics . The relationship is more apparent if we set · /I., and 

* //T both equal to zero. The resulting equation describing the equi-

librium flow is almost identical to the Prandtl-Glauert equation • . The 
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Mach number corresponding to the equilibrium flow is 

where 

Oe &S (p 4)~ 
{'. 

and ![ = (1 +- xJ;; 

{2. 42) 

is usually referred 

to as the equilibrium Mach number. In the other limiting case where 

both ~v and 
"'\* . 
"'r approach infinity, the resulting equation is es-

sentially the classical Prandtl-Glauert equation and describes the so-

called frozen flow. The corresponding Mach number, which is usual-

ly referred to as the frozen Mach number in particle-fluid dynamics, 

is identical with the Mach number in the flow of a pure gas . In the 

") "')r* case when either /l'I' or 11 is equal to zero, which corresponds to 

the momentum equilibrium flow or the temperature equilibrium flow , 

the corresponding Mach numbers are respectively P. 'h (I" ) :z r. and 

(? !lj~ 
/'. . 

The differential equation 2. 37 is still hyperbolic for /vff ;;.- / 

and elliptic for Mf < I However, there is a certain range of zio 

in which Me> I and In this range, the characteristics 

of the equation will change discontinuously from hyperbolic to elliptic 

when /Iv and approach zero. This singular behavior appears 

in many other problems in fluid mechanics in which there are two dif-

ferent characteristic lengths. In the problem we are going to study, 

they are the relaxation lengths :ilv or and the wave length of 

the wavy wall. 
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lll. SOLUTION FOR A WAVY WALL 

The particular problem considered is the steady, two-

G.i mensional flow in the half plane above an infinite sinusoidal wall of 

contour where t is the amplitude and ~ is the wave 

length. An exact solution is particularly easy to obtain because of the 

periodic boundary condition in X The boundary condition on the 

wall is 

, _i..!e e 2.!IX e o ( ~) v == 0 d = 2,,. ~ u. cos ;:i :::: 2 71 -:;\"'" ll. n(/ e (2. 43) 

where Re denotes the real part of the expression in the bracket. 

The other boundary conditions are u: and v ' , etc. being bounded 

at The solution for ~ can be written in the following form 

(2. 44) 

.-k. can be found by substituting expression 2. 44 into the differential 

equation 2. 37: 

with 

/Jvl1r§/ .... i(/f.,,,+/Jr)/3," - ,fi~2 

11.- Ar + i ( 11v + /Jr) - I 
(2.45) 

(Z. 46) 

(2. 4 7) 

--'• and iz. can be solved by equating the real and imaginary parts 

of eq. 2. 35. ~ can therefore be expressed as 

( 2. 48) 
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CfJr can easily be obtained by integrating eq. 2. 33 

The velocities as defined by eqs. 2. 27 and 2. 28 are 

i1n J, 

- 211-f U.o 
(I-+ /I;)~ 

(2. 49) 

(2. 50) 

( 2. 51) 

( 2. 5 2) 

(2. 53) 

(2. 54) 

(2. 55) 

fdn cfs == - .11v (2. 56) 

Similarly, all the other quantities can be found. They are all of the 

form 

(2. 57) 
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IV. DISCUSSION OF THE SOLUTION 

All the perturbation quantities decay along the straight line 

with slope The rate of decay is exponentially pro-

portional to -R, Along the straight line -:;(.:: f&J Y is in 

phase with the wall, and all the other quantities have a phase change 

with respect to the wall given by ~· 

Before solving l, and /,. , we first examine the rela-

tions between the two relaxation lengths ;)y and The ratio 

of these two lengths is 

(2. 58) 

Pr- is the fluid Prandtl number. For most gases and metal parti-

cles, this ratio is very close to unity. Consequently, the momentum 

relaxation length is approximately equal to the temperature relaxation 

length. Furthermore, for some alkali metals, Cl' is approximately 

equal to c With ./ly :::: /17 and Y, ::: C .J, and 

from eqn. 2. 45, are 

In the limiting case of frozen flow where 11.,, ~ a:> , e q. 2. 59 re-

duces to 
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( 2. 6 0) 

In the equilibrium flow where llv ~ 0 , we have 

;· =ff[:; (fit'+ y K Ni)+ ff; Hl1f 1< g- ff[+ (H.'-i)+/11,'- 10 
z . 

(2. 61) 

Equations 2. 60 and 2. 61 can be expressed as in the following table. 

Supersonic flow (Me~ I" Ht.,.. 1) Av=- o ;lv"' CO 

.;, = 0 0 

-kz = ((VJ: - I ) v'z (H/ -1 )'
12 

Subsonic flow ( MQ< I .I Ht< 1) 

-t, ... (1- Me)'lz (1- Ml ;'h 
t 

~z - 0 0 

This is exactly the form as would be obtained based on the Prandtl-

Glaue rt equation for a pure fluid. In the case where ll..,. = 0 ' 

equilibrium Mach number He is used instead. The third case is 

when He~ I and Hf < I 

(Me >I 
1 

Ht< 1) /l ... = 0 

l, :: 0 

= (tvli-1)'1-i. 

The variation of Q, and , for various values of , are 

shown in Figures 2. 1 and 2. 2. t1/::. 2. 0 corresponds to the 

supersonic case where both Hf >I and Me 7 I . For t1/ = o. S 
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and o.8 Me >I This corresponds to the third case we 

have discussed. and , as a function of the Mach num-

ber Mf , are shown in Figures 2. 3 and 2. 4. Here, both ~, and 

i1 are non-zero throughout ~he whole range of the Mach number. 

Exponential decay and the phase shift both exist for the perturbation 

quantities for subsonic and supersonic flows. For limiting values of 

/lv , both I, and fz approach the result obtained by Ackeret(3 } 

with respect to their various Mach numbers. In the range of Av of 

order unity, both I, and 12 vary significantly for different values 

of X as shown in Figures 2. 5 and 2. 8. Both the attenuation factor 

and the phase shift increase for increasing particle concentration, as 

would be expected. Values of I, and iz. , for .llv :/. Ar , and 

are shown in Figures 2. 6 to 2. 10. 

The pres sure coefficient G ?-l?o 
"/'::. }f ~ u: can be easily cal-

culated. For two-dimensional flows, consistent with the perturbation 

theory, the coefficient of pressure is simply 

Using eq. 2. 50, 

On the wall, 

c/ I WR/./. 

2u' Gf'=--Uo 
(2. 62) 

(2. 63} 

(2. 64) 
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r, == f _, 4 
d, nn il'z 

(2.. 65) 

Except for the limiting cases of frozen flow and equilibrium flow, d, 

has a non-zero value for any Mach number. Thus, c? is never in 

phase with the wavy wall and a drag force is always present even in 

·the subsonic flow, in contrast with zero drag in Acketer's calculation. 

The drag coefficient per unit wave length along the wall is 

8-#-( f )i. 'j,z~~,,2 J~os ( 211-J. 41,) {os 4[!x c/(+J 
0 

_ 4 ..,,. 2 (--£-/ -J,2 .... J/' Cos J, 

_ 4 z. /. E ) ;z. ../ez 
- 71 tT .P _pz. 

~, + l?z. 

(2.. 66) 

In the limiting case of equilibrium and frozen flows , eq. 2. . 66 reduces 

to the result obtained by Ackeret. In the subsonic flow, Jz. ::: O and 

C.,; ·:::. o In the supersonic flow, for Av = co 

(2.. 6 7) 

(2.. 68) 
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In the case where Me ~ I and J.1-1 < I (; is zero for 11v: 00 

since the flow is basically subsonic and 4 f 1 
/ 2 -~ C;:::. 1T

2 ;j& lf-1; -!) for 

/Iv ::: 0. Using eq. 2. 59, 

(2. 69) 

The variation of ~ with respect to is shown in Figure 

2. 13. The characteristic singularity of Acketer's solution close to 

the sonic region is being removed, although the present equation is 

still not valid for transonic flows. In the case of equilibrium or froz-

en flows, CJ is zero for subsonic flows and is given by eqs. 2. 67 

and 2. 68 for supersonic flows, which are similar to the expressions· 

obtained by Ackeret. The same expression, eq. 2. 69, is plotted 

against llr in Figure 2. 14. I n supersonic flow, l<f increases 

monotonically from 47!2(-f/(tj'- !)-~ to 1-1T2{f-J2( H/-t}-Vz 

as shown by the curve H.t 2 = 2. 0 . 
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PART III. 

COMBUSTION OF SOLID PARTICLES IN A 

LAMINAR MIXING ZONE 
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I. GENERAL EQUATIONS 

Marble and Adamson (l) used the boundary layer approximation 

to treat the problem of ignition and development of a flame front in the 

laminar mixing region between parallel streams of combustible gas 

and hot products of combustion. This is probably the first analytical 

investigation of a two-dimensional, laminar combustion process, and 

introduces the investigation of a new class of combustion processes 

through the concept of boundary layer theory. A rather similar prob-

lem is being investigated here by considering the burning of solid fuel 

particles. 

In many problems of thermal jet systems , smal~ solid fuel 

particles suspended in some inert gas are ignited by mixing with an-

other gas containing some oxidizing agent. This process occurs when 

solid unburnt fuel particles are being injected into the atmosphere. 

The particles react with the oxygen in the atmosphere. 

Denoting the gas density and the mean velocity components of 

the gas mixture by f ' , U ' , and V I 

, the time -independent two-

dimensional continuity equation reads as: 

w' 

Je'u' + 
J 1(' 

d P' I/ I 

~ - '·'' J '(J' - ......., 

i s the rate of mass production for the gas mixture. If (A) I 
0 

(3. 1) 

and 

' -'.' d f ....... , are the rates of mass pro uction or the oxidizer and the inert 

gas, then 

w' = (3. 2) 

The continuity equation for the particle cloud i s 

(3. 3) 
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where the subscript i denotes the quantities pertaining to the par

ticle cloud. Since mass is conserved, 

Wf + W·1 == 0 (3. 4) 

Using Fick's law, the continuity equation for the oxidizer can 

be written as 

, lK r' ,.!l!{ d r , c)K) o1 (r' :!!{) , f tc.' JX' ~ V <>d' := .J;r~f DJ;. + Jfj' o"J' - t<w + w; (3. 5) 

where K is the oxidizer concentration and D is the binary diffu-

sion coefficient between the oxidizer and the inert gas. 

The momentum equation can be written as 

(3. 6) 

(3. 7) 

p' is the local pressure for the gas mixture and T~j' lS de-

fined by the usual rate of stress-strain relationship,but the viscosity 

µ is modified to include the apparent stresses caused by diffusion. 
, 

rll", is the velocity associated with and and 
,- I 

'"] are the 

forces exerted on a unit volume of gas mixture by the particles. If it 

is assumed that the Stokes drag law gives a reasonable approximation 

to the particle - gas interaction, 

(3. 8) 

U1 and µ , are some reference velocity and the viscosity at some 

reference state. ~ is the initial radius of the particles. Simi-
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larly, 

The momentum equations for the particle cloud are 

I \ I 

I I iJJ.p o'v.:' .!!#/! r' I ( I •'') If Uj el~' _,. 'fr J.;' ;: - rK + Wf ,,.,,,. - ""f 

1flf · and 

mentum is 

a' u' J Vi -1- P..' i!,'4' -'r r Jx' f f JJ I 

I 111f/' are the velocities associated with 

conserved for the whole system, we have 

• ,, -/I 

-I' r.,,v' "'f"', ::s 0 

w' ,.,(!r + w; ~, = o 

w' r 

(3. 9) 

(3. 10) 

(3. 11) 

Since mo-

(3. l z) 

(3. 13) 

In the energy equations we neglect the kinetic energies and the 

viscous dissipation terms and assume that they are small compared 

with thermal energies and the heat of reaction. For calorically per-

feet gas, the enthalpy of the mixture is 

where 

gas, 

(3 . 14) 

and y• are the specific heats of the oxidizer and inert 

and f • are their respective reference enthalpies. Simi-

larly, the enthalpy of the particle cloud can be written as 

(3. 15) 

where c and are the specific heat and the reference enthalpy 

of the particle cloud. In the present problem, we will assume that 

(3. 16) 

This assumption greatly simplifies the mathematical analysis while it 
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still retains the essences of the problem. The energy equation for the 

gas mixture can thus be written as 

, , p .JT' , .JT' 
f U f' k + f V' y 1' :: 

, _g_e' ' 
-tu ~x· + v ' 1j + C( - w; [ y 7(' - y -rj 

(3. 17) 

/'J I 
oc is the rate of heat transfer per unit volume between the particle 

cloud and the gas mixture. To the same approximation as the Stokes 

drag law, thi~ . rate of heat transfer can be expressed as 

where 

(3 . 19) 

The energy equation for the particle cloud reads as 

P.. ' ' c d~ O' ' /' cJ-;e.' 
! v.f l .>x' + '! f Y' oJJ' - (3. 20) 

The equat ion of state for the g as mixture i s 

(3. 21) 

where 

RM == (:ft; + (!-JO-:/;[.) R (3. 2 2) 

R is the universal gas constant and "M... and -n1.c. are the mol e c -

ular weights of oxidize r and the inert gas. When lrt_. and are 

approximately equal, eqn. 3 . 21 can be wri tten as 
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p':: f' RT (3. 23) 

where R = R/'Jrf.. 

Due to the chemical reaction between the particles and the oxi-

dizer, the particle size is decreasing. The equation governing the 

particle radius is 

(3. 24) 

The reaction mechanism is basically governed by the rate of 

oxidizer diffusion towards the particles and the kinetic rate of chemi-

cal reaction. We will assume that the chemical rate of reaction is 

much faster than the rate of diffusion. Following the first order reac-

ti on 

= )).. C· ' . (3. 25) 

where Yo >J , and Ye: are stochiometric coefficients for the 

oxidizer, the particles and the inert gas and ro C, , and C,: 

are their respective chemical symbols, the rate of particle cloud being 

consumed is 

w ' 
f 

and 

:::.-

= - I'.. ! 
(3. 26) 

(3.27) 

Because of the very high molecular collision fre quency, the gas mix-

ture withi n a thin layer around the particle is actually in equil ibrium 
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with the particle. Thus, the velocity associated with the rate of mass 

being produced has the local average particle velocity: 

rn~. ::: h'if"' = i( 
f (3. 28) 

i· = -Mf:r :: v.:' r (3.29) 
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II. PROBLEM OF A LAMINAR MIXING ZONE 

The problem being investigated here consists of two h a lf in-

finite streams. The upper stream is a gas mixture of oxidizer and an 

inert gas. The lower stream consists of a cloud of solid fuel parti-

cles suspended in an inert gas. The two streams initially have con-

stant temperatures I, and Ta. moving with constant velocities U., 

and U,. parallel to the x' axis. Let tr'= 0 be the point where 

two streams start to mix. For x' '? o , oxidizer from the upper 

stream diffuses into the lower stream and combustion takes place 

where there are solid particles. 

Introducing non-dimensional quantities with respect to the val-

ues at , we have u::.. u/u, v"" =- v:/u, , u.1 = U.//lJ., 

'f 11 = ~ /u, , T = I /-r. f = f /f', 7f = 7,' /r, • fj, = If'//, 
p = p/fo. U~ , X~ X/?i , 'ff'= y'/7' , where is some 

characteristic length of the problem as one of the relaxation lengths, 

?Io. Defining 

1 ~ ti;~ and 

- I [. 0• 
I-/ = c, T, ~ "t 

Y.· - _y;_tff_;_ 
,-~ 

where 

and assuming both Schmidt number 

and Prandtl number as constants, the governing equations read as 

follows : 

(3. 30) 

(3. 31) 
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(3. 3 2) 

(3. 33) 

(3. 34) 

(3.35) 
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(3. 38) 

(3. 39) 

p = 
I 

yM'- fT 
I 

{3. 40) 

The momentum equations, as well as the energy equations and 

the continuity equation governing the oxidizer concentration K , can 

be simplified by using boundary layer approximation. As was shown 

in the problem for the flow over an infinite rotating disc, the mo-

mentum boundary layer thickness for the particle cloud and the fluid 

is of the same order as expected. Also, both V1"" and 'j~ are of 

the order of Thus, to be consistent, we have to sup-

press the momentum equation along the ~-axis for the particle cloud 

as well as for the gas. In addition, in neglecting cJP/.>d in the 

Prandtl ' s boundary layer theory, an additional condition that 

(3. 41) 

is introduced. The error introduced in assuming eqn. 3. 41 is con-

sistent with the boundary layer approximation. The equations govern-

ing the gas phase are thus: 

(3. 42) 
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JlY_ J ti. I _J}_ f..14- c} U 
f U dX,,. + f V ~ t' ::. "#; (f <:µ, 7) + /lvf (zy-wG'fJ ff, 

(3. 43) 

(3. 44) 

(3. 45) 

Similarly, the governing equations for the upper stream are : 

(3. 46) 

(3. 47) 

(3. 48) 

(3. 49) 
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The problem has to satisfy the free stream conditions at 
;I' y= and 

, and the gas mixture density , velocity u , temper-;J'f.a. - 00 

ature T , and oxidizer and their appropriate derivatives are 

continuous across the interface. 
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Ill. SOLUTION FOR THE INITIAL DEVELOPMENT OF 

THE COMB US TI ON ZONE 

For Maxwellian molecules, the viscosity ff- for the gas -

mixture can be assumed to be simply proportional to the gas - mixture 

temperature. Thus, 

T' 
== -- == Ti T (3. 50) 

We further assume that the molecular weights of the gas species are 

approximately equal. Since the pressure is a constant according to 

the boundary layer approximation, the gas - mixture density is in-

ve rsely proportional to the temperature according to the equation of 

state 

I 

? == 7 (3. 51) 

Howarth 1s (4 ) transformation is particularly convenient to treat com-

pressible boundary layer flow when eqns. 3. 50 and 3 . 51 are true. 

Introducing a new set of coordinate axes such that 

x == x*" 
'Jft-

1/ ::._ I r c11# 

and two new variables V and f with 

V :::. f v'* + u .2.:i:. o){,. 

With eqns. 3 . 52, 3. 53, and 3. 54, we observe that 

(3. 52) 

(3. 53) 

(3. 54) 
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(3. 55) 

(3. 56) 

(3, 57) 

After some simple calculation, we also obtain the following relations : 

. (3. 58) 

(3. 59) 

Defining P,.. :: f , the governing equations after the Howarth 

transformation read: 

{3. 60) 

-- - (3.61) 
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(3. 62 ) 

(3. 63) 

(3. 64) 

(3 . 65 ) 

{3. 66) 

(3. 6 7) 

The governing equations for the upper stream are 

(3.68) 

.)«. r)t). I ,}2<.{ 
t<~ -1- v7 :::: --fj" e. c;J Cl 1 

(3. 69) 

'LL.£!- Jr -1-- fl. _,. v"Jj ::: l?tz P,. drf 2 dK (3. 70) 



-81-

u JK -+ . v..d..K ::: _!__ st"K 
o X J d Re Sc J d~ (3. 71) 

The simplification given by using the Howarth transformation 

coupled with the condition f ,P-:::. µ, is now apparent. For the flow 

field where there is no particle cloud, Howarth 1 s transformation re-

duces the governing equations describing the compressible flow into a 

set of equations describing incompressible flow. Here, the momentum 

equation i s decoupled from the energy equation and the effect of tern-

·perature variation is introduced only through transforming the solu-

tion back to the ••compressible form 11 by using eqns. 3. 52, 3 . 53, and 

3. 54. The transformation only changes the vertical scale and the 

horizontal, or flow scale, remains unchanged, i.e., X = X.,,. • For 

the flow stream consisting of a particle cloud, the momentum equation 

and the temperature equation are still coupled, but the equations a r e 

of a simpler form. Furthermore, instead of considering If and/ 

separately, we only need to consider one function /:,, :: !f./jP . 

From eqns. 3. 60 and 3. 61, we can introduce two stream 

functions y; and for the gas velocities and for the 

particle cloud velocities. 

(3. 7 2) 

v (3. 73) 

(3 . 74) 

(3. 75) 

and 
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'/ )(":: _f 'f 110 K fr T ff!/ ci;' (3.76) 

Introduce two new independent variables J and 'Z 

(3. 77) 

and let 

(3.78) 

(3. 79) 

the velocities for the gas -mixture are 

(3. 80) 

(3. 81) 

(3. 82) 

{3.83) 

where W can be expressed as 

Expressing eqns. 3. 62 - 3. 67 in · f and 1 and using eqns. 3 . 80 -

3. 82, we obtain: 
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'(3. 87) 

(3.88) 
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I /_ J /0:.)2 [__!_ ±4 _j_(p)l _!-Ji, _i /er ,i 7 
.3(.- '/' ,;71 v;; == J (,, d 1 ol r (O', - r:- .,If ti7 rfJ J 

- 'f lioflf (;-_J f1
1

K Tf:. (~if,/7 _,. + Jllo Krf 
(3. 89) 

The relation V~ ff#- takes the following form: 

. = (3. 90) 

The r~gion where fr :=o , the equations are 

_& ' .l. . .ti. ::: 
°'f + 2 d'l. ... (3. 91) 

(3. 92) 

(3. 93) 

To demonstrate the presence of the particles and the chemical 

reaction between the particles and the oxidizing agent in the gas -

mixture, it i.s sufficient to solve the special case where · U. = l/2 • 

From eqns. 3. 84 and 3. 85, we obtain that 

I= 1 (3. 94) 

and 

I .)f, 
r,,7ff[= 1 (3.95) 

and streamlines are lines d = constant. With eqns. 3. 94 and 3. 95, 
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the governing equations are simplified to the following form: . 

{3. 96) 

(3. 97) 

(3. 98) 

_I {' d ( q-)2 [ cJ (o-)2. I . 44 cJ /S?:.. l>.] 2 
2rr r J 1 1 er. == r ,;! lU; - r.- dr ;;z ~J + -s r11D I(, r; 

- f I.; /,/fJi; KT if({[/ J 1 (3. 99) 

(3. 100) 

and for f,. = o : 
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I .:/2 T -1.E ~T -- + . p,, J71. -2 J'( .J 1 (3. 101) 

_L .>11( + .!1 ~K. = ...JJf.. 
.Sc .Jf 2 Of d 7. 

(3. 102) 

In the initial portion of the mixing zone, the heat of combustion 

added to the gas mixture is still small. Also, the particle cloud tem-

pe rature differs very little from the temperature of the gas mixture. 

The flow field is more like the mixing of two gas streams containing 

· no pa'rticles and without chemical reaction. Thus, the presence of the 

particle cloud and its chemical reaction with the oxidizing agent in the 

gas mixture can be treated as a perturbation. 

In the present treatment, it might be more convenient to use 

~ .. as the characteristic length .?\ • Thus we have 

/lo .::: 1 

11, ::: p,. Jsc = Le (3. 103) 

/Iv ::: ~Sc 

and for small values of r > Or for X << ::iDo , the perturbation 

scheme is to express every term in its Taylor series of J 

£, (f, 7) = ffo}t'zJ + J f (/'t7J -f •••. . 

T ( (•) (1)( f, 7.J = T (1J T" ! T 1J ~ . .. . 

1 (!, 1) = -;;(o)6;J + f f(IJ f 7) T . . 

I{ ( }1 7 J ::: K to) ( 1; T" 

fr CJ~ 'l J :: r,,t·J r 1) f 
J. 

:. ( f l) = J ( o) ( ( ) + 

(3. 104) 
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Using 3. 104, the zeroth and the first order equations can be easily 

obtained. 

I Jl T'"' 
p,,. dt 

_!l J-rfo) 
+2C/;j=o 

1 

_L l(o) .i...!i_O) 
2//'" ! c17 = 0 

I /'(OJ cl{/_':.' 
Zt;'"' 1°r ~ = o 

d f' (•) t", ~ (o) 71" ::: 1,. 

/'(o) = () 
f ?,. • 1 

(3. 105) 

(3. 106) 

(3.107) 

(3. 108) 

(3. 109) 

(3. 110) 

F h · h 0
10

' h · f d or t e region w ere 1,, := O , t e equations or temperature an con-

centration K are identical with eqns. 3. 105 and 3. 107. The first 

order equations are 

-
I dzz .,-1 '' Y1 dTuJ _/_,...'Ji 'l 

IL-L- _,. -1- To' Q.J_ £:P'•'l('"'r'·.1 r·1' 
r'r d ('- 2 71 - = d 1 -1» 7 Ir rl d 1 

(3. 111) 
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(3.112) 

(3. 113) 

(3. 114) 

a(JJ - {I} 

di'[ - t; (3.115) 

'£') .f:.'Q) ' £''' ' ''J , . r1 
2 ~ro1~ - J"i"'' f - ?f ::: { / + J;.'"!!, K.t•J T'o'J roJ d? {3.116) 

For the region where /:- = O , the first order equations are simply 

-1- ri1L .. , _!l Jr'' u i 
Pr CTf" .,. 2 CTrf - T :::: 0 (3. 11 7) 

-1- t;t.'' .,. -1. d K"' - K (I) - 0 
Sc. 1i. Z 7f - (3.118) 

. The boundary conditions for the zeroth order functions are 



I( (q) (+ oo) .:: I<.. 

T
(•) 

(+ oo) ::: I 
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J<.(oJ {- oo) .:: 0 

T'0
' {-ti0J ::: 1/1; 

7/>'°"(- ao) = li/t, 

i/o/ (- t») ::: ;( 

j'o.1 (-0oJ = I 

(3. 119) 

while all the perturbation quantities have to vanish at 1.:: ±. co 

The zeroth order quantities can be easily integrated. Defining 

we have 

-llfl<? <- (3. 120) 

(3. 121) 

-r; (•) .: 
I 

(3. 122) 

J ( o) :: J 7<0 (3. 123) 

7 < 0 (3. 124 ) 

I.''"' .::: 
! 1 1<..0 (3. 125) 

To find the first order functions, we assume that A-= Sc. or i...e = 1 

This assumption is mainly a mathematical con-

venience, for if the above assumption is removed, the solution will 

involve more complex integrations. Define a new variable 

(3. 126) 
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(3. 127) 

(3. 128) 

(3. 129) 

for J < 0 

:: 0 
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~ ..?i .x -:2 -1r1- r. , T. _,z . 
/GqJ = z K ~ e 2ri1r'-11.,.tf.,. ;;ti-i,J e r7; + i) 

+x f-#fuj1+ ') +-j-[~Rf-f,r:X(1-{f-J}(eif~ul 

"'"Jfz7 X (1- 7,J (~/ r t)s ;;,,. f < o 
(3. 130) 

0 

The remaining first order equations are 

(3. 131) 

(3. 132) 

From eqn. 3. 115 and eqn. 3. 116, 
I (II -

T .E.fL p (•J K (. -'-)'[ I r.. z T. J 2 dJ -;,,. ::::z I+~ 2(1-,,)(~+!)+-l,{7.f~tJ (3. 133) 

The homogeneous equation of 1. 128 or 1. 129 has two linearly 

independent solutions (3 ) 

-fl. 
f/, f1J = .ZJ e -r 2 fii( ~ + j2:J (f!4'/;-- 1) (3. 134) 

Hz ( ! ) = 2 f e -r -+ 2 fif ( t. + 72.J { u-j -f- I) (3. 135) 

A Green's function c;.{J, j) can be easily found using ~ and 1-I, • 

If <TfJ,,JJ = ~I { l/ J) foy J? .i 

the jump condition is 
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(3. 136) 

with 

(3.137) 

The Green's function is 

10
_ (3. 138) 

T"' [7 J 
fo>" J < J ( 3. 1 3 9 ) 

Using the Green Is function, r''-' can be written as 

(IJ( !"" T f) :::- _., ~f;;jJR.(JJdf 

LT o · 

== -"" ti,fpjJR, (jJdj + ~ ~{; JJ~ CJJclJ 

S i milarly, 

0 

== /_ti, r1,, JJ R. {1)c11 

C a rrying out the integration, the solutions for T(/1{_f) and K'1 f;-J are 
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(3 . 141 ) 

The remaining first order quantities are: 

(3. 142) 

(3. 143) 

(3. 144) 

with 

l 

1-I~ t1J = 21c-J + 2m(i + 1z;(~J- 1) 

foy" ! < 0 

jo>" J ? o 
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Jn- J < 0 

!UY J 70 

jo>" J > O 

f"" J < 0 

r ... 1 ?O 

t-~(rJ:;:. -f1-r/1r 1Jff-f+ /J{uj1+1)-r ¥ e-JJ-1f£;t2rJ 

ICTY l < 0 

f Cl"Y J ? 0 
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IV. CONCLUDING REMARKS 

For the special case when the two streams are moving at the 

same velocity, perturbation solutions for the zeroth order and the 

first order can be obtained relatively easily. Since I-/ is usually 

much greater than unity, heat of reaction is the dominant factor in 

increasing the gas temperature. From the graphs on the perturbed 

temperature T
(I) 

in Figure 3. 2, we observe that most of the re-

action occurs within a rather narrow zone of the order of a few di£-

fusion thicknesses , and maximum T'0 occurs at about 

Thus, it might seem advantageous in the general 

studies of the two-dimensional laminar flame problems to introduce 

a chemical reaction boundary layer where combustion takes place, 

while outside this layer, the flow field corresponds to the ordinary 

fluid dynamics without chemical reaction. 
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PART IV. 

SHOCK WA YES IN A CONDENSING MEDIUM 
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1. INTRODUCTION 

The problem of a shock wave propagating through a gas medium 

containing small particles was first investigated by Carrier(l )_ The 

actual shock wave structure, as pointed out by Marble (Z>, involves a 

relaxation zone in addition to the compression wave of the usual gas

dynamic shock. In the case of a condensing medium, the shock wave 

structure is quite different. Two different cases are being investi-

gated here. The first case is when the particles are liquid droplets. 

The change in pressure and temperature across the shock wave 

causes the condensation of vapor on the liquid droplets, as well as 

evaporation of droplets further downstream of the shock. The second 

case is when the flow field contains small solid particles . The parti-

cle temperature within the relaxation zone is first being raised to the 

melting point followed by the melting of the particles,and eventually 

evaporation takes place. Since the governing equations involve a set 

of non-linear differential equations, numerical solution depending on 

a set of parameters is obtained. 
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2. NORMAL SHOCK WAVE WITH LIQUID DROPLETS 

Consider a medium consisting of (i) a cloud of small liquid 

droplets suspended in a homogeneous gas mixture composed of (ii) a 

chemically inert gas with respect to the liquid droplets, and (iii) the 

vapor phase of the liquid droplets. The problem is to investigate the 

flow field when a shock wave passes th.rough such a medium. 

Since we have assumed that the two gas species are thoroughly 

mixed, diffusion or peculiar velocity in the macroscopic sense is ab

sent. Upstream of the shock wave the particle cloud and the gas mix

ture are at equilibrium. Both phases have the same velocity and tem

perature and the vapor concentration of the gas mixture corresponds 

to the vapor pressure of the particle cloud . The shock structure first 

consists of a compression wave, corresponding to the conventional 

shock in gas dynamics. We assume that the presence of the particles 

does not change the one-dimensional configuration of this compression 

wave. The thickness of this wave is of the order of a few mean free 

paths, which is much smaller than the particle size. In passing 

through this compression wave, we can anticipate that the velocity and 

temperature of the particle c l oud still basically retain the upstream 

values. Thus, the change of the properties of the gas mixture across 

the compression wave corresponds to the usual normal shock relations . 

Following the compression wave the r e is a relaxation zone in which 

the particle cloud and gas mixture e ventually attai n velocity and tern

perature equilibrium. Condensation of vapor on the liquid particles 

appears first because of high gas pressure immediately following the 

compression wave. This is eventually dominated by evaporation when 



-108-

the particle cloud temperature is being raised. In this problem we 

assume nucleation as negligible. 

Denoting the gas dens ity and the mean velocity of the gas mix-

tu re by f' and u.' , and similarly quantities with subscript f 

pertaining to those of the particle cloud, the continuity equations for 

the two phases are 

Jx, r, I U') = w' (4. 1) 

-jf, ( ~, ujJ = w; ( 4. 2) 

W ' and wf are the rate of mass production for the gas mixture and 

the particle. Since mass is conserved, we have 

w I + WI = 0 ( 4. 3) 
f' 

Denoting the vapor concentration in the gas mixture by K , the con-

tinuity equation for the vapor is 

f''u. 1 j;,= (1-K)r.,o' 
(4. 4) 

Diffusion velocity is absent in eqn. 4. 4 since the gas m~xture is 

thoroughly mixed. 

The momentum equations can be written as 

I I du' I rl p 1 

f U ~ .:= ;::- + w'( m '- u'J + u .. : "i7? ( 4 . 5) 

( 4. 6) 

P
l 

is the local pressure for the gas mixture. 

velocity associated with CA:J
1 and F' 

m and rYZ/> are the 

is the force exerted 

on a unit volume of gas mixture by the particle cloud. If it is assumed 

that the force between the gas mixture and the particle cloud follows 



-109-

F' the Stokes drag law, takes the following simple form 

(4. 7) 

/tv. .= 
nl.a, (4.8) 

bTJ-' a; 
where mo . v; are the rra. s s and radius of_ the particles upstream 

of the shock, and a. is the upstream Mach number. is the 

characteristic length within which the particle fluid velocity differ-

ence is reduced to 
_, 

e of its initial value for particles with mass 

traveling at sonic velocity 

Assuming the mixture ·consists of calorically perfect gases, 

for the case when the specific heat of the vapor and the inert gas are 

approximate ly equal, the energy equation for the gas mixture is 

Jr' d_p_' 
[>'U'lr-;J;' - U' "&if = 

(4. 9) 

F/u.f-LA') is the energy dissipation term due to the particle -fluid 

drag force . Here , it is assumed that this term is totally absorbed by 

the gas. Q' is the heat transfer per unit volume between the gas 

mixture and the particle cloud. To the same approximation as the 

Stokes drag law, Q' can be written as 

has the same physical meaning as 

as 

( 4. 10) 

-.iv.: and the y are relate d ,,, 0 

( 4. 11) 
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Tff is the temperature at which condensation or evaporation takes 

place. 

The energy equation for the particle cloud is 

, , c c/J.. I 
~ Zif , ;rxr ::: . (4. 12) 

Ce is the specific heat of particles in the liquid phase. L~6f) is 

the latent heat and is defined as the difference of enthalpies of the 

vapor phase and the liquid phase. 

The equation of state for the gas mixture is 

p = i RMT 
( 4. 13) 

and 

( 4. 14) 

n1.v n{~ are the molecular weight of the vapor and the inert gas 

and R is the universal gas constant. When JrG, and h"(i. are ap-

proximately equal, R,..,, is reduced to a constant and is equal to 

The equation describing the particle radius or liquid droplet 

radius is 

I - w.::, 
~ nl. !' 

( 4 . 15) 

The rate of condensation depends on three rate processes, 

namely, the rate of heat exchange and the rate of vapor diffusion to-

wards the particles and the kinetic rate of condensation. We will as-

sume that the latter is much faster as compared with the first two 

rates and that infinite kinetic condensation rate is a good approxima-

tion. Due to the very large molecular collision frequency, the gas 
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mixture is actually in thermal and momentum equilibrium with the 

particles. Thus, m.' = ,.,,, • U..f and ~'" }' and the equilibrium vapor 

pressure on the liquid droplet surface K,/ (the superscript de-

notes the equilibrium vapor pressure of liquid) is described by the 

Clausius-Clapeyron relation 

( 4. 16) 

where P. T. 
i. 

, and Ke (T.) are the upstream pressure, 

temperature, and the equilibrium vapor concentration at temperature 

T. Using this model, the rate of mass production can be easily 

derived as 

( 4. 1 7) 

and 

( 4. 18) 

D is the binary diffusion coefficient between the vapor and the inert 

gas. 

Nondimensionalize the quantities with respect to the upstream 

quantities, u = u'/ao ,, 

i = i'/J.,, 
/lo z: /l/~o. 

/ 

If = 'i', 1° / 
/1 y "' /lv.?1 J 

i,(f = u; /Oo ~ 

f' == p '/ft, 
/J-r =- ~1/lr. where .I\ is some character-

o 

istic length of the problem; the governing equations take the following 

form. 

(4. 19) 
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(4.20) 

( 4. 21) 

(4. 22) 

(4.23) 

( 4 . 24) 

( 4. 25) 

u,!xcffe./ = -J-111>[ KJTJ - K/{7;-d 
' 

( 4. 26) 

(4. 27) 

( 4. 28) 

Denote A as the density ratio of the particle cloud and gas mixture 
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upstream of the shock wave and Me as the upstream :rvt:ach number. 

Then the general continuity and momentum integrals can be written as 

( 4. 29) 

I. • J'L u ~) -1- -;-r u, = p = f"'1o -f 
( 4. 3 0) 

f u.J. + 

If we define ~· , pvo n'/Ro ,,, , and Tl. as the reference enthalpies of the 

gas, the vapor, and the liquid particles, respectively, the energy in-

tegral is 

( 4. 31) 

From eqns. 4. 22, 4. 26, and 4. 19, 4. 25, the following relationships 

are obtained 

I- 1(/-(r.,J 

I- tG 

(4. 3 2) 

(4. 3 3) 

Far downstream of the shock where the particle cloud and the gas 

mixture have attained momentum and thermal equilibrium, eqns. 

4. 29 - 4. 33 are reduced to the following form with subscript oo de-

noting quantities far downstream: 

(I-+ Xoo) /! ll.0o ::r Mo (1 + :t') ( 4. 34) 

( 4. 3 5) 
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{4. 36) 

{ 4. 3 7) 

== H. I- ;</b;J {4. 38) 
1- it"-

The vapor concentration far downstream .('.., should correspond to 

the equilibrium vapor pressure of the particle cloud. Thl,ls, 

For the case when .L e{7;J can be approximated by 

t po ,peo 
L {"'? :: Av - "f 

K"" takes the following form 

ti. " K. .. · ::: J./"l{;;}P-1-r tJ- v-~·rr. i} 
I\.' 

0 t 00 '°" R To ' l-' Too - { 4. 39) 

Equations 4. 34 - 4. 39 enable us to find the flow quantities far down-

stream of the shock. 

The region immediately following the conventional gas dynamic 

shock can be obtained by numerically integrating eqns. 4. 20, 4. 22, and 

4. 24 along with eqns. 4. 27 - 4. 33. As a matter of convenience, it is 

assumed that Ce= Y, and 
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3. NORMAL SHOCK WAVE WITH SOLID PARTICLES 

For solid particles with relatively high vapor pressure and 

easy sublimation, the governing equations are very similar to those 

for liquid droplets as derived in Section 2. The vapor concentration 

corre spending to the equilibrium vapor pressure of the solid l<e~ l7f J 

rather than the liquid is used. is also defined by the 

Clausius -Clapeyron relation 

( 4. 40) 

is the enthalpy difference between the vapor and 

solid phases. 

(4. 41) 

For solid particles with low vapor pressure, sublimation is 

indeed negligible. The governing equations as derived in Section 2 

are modified by letting 

The problem being investigated here is the propagation of a 

shock wave through a homogeneous mixture of a pure gas and small 

solid particles. Immediately following the compression wave, the 

particle temperature is raised until the melting temperature Tm is 

reached. After the particles are completely melted, and when the 

particle temperature is further increased, evaporation of the particles 

becomes important. 

The governing equations for the solid particles immediately 

following the compression wave are 

d lf «) = 0 dx (4. 42} 
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(4. 43) 

(4. 44) 

(4. 45) 

( 4. 46) 

( 4. 4 7) 

( 4. 48) 

When 7j> 
replaced by 

reaches the melting point Tm at X:: ,.Yn, , eqn. 4. 47 is 

-# ~ () ( 4. 49) 

The particles will be completely melted at K'-= x, where X, can 

be found by evaluating the following integral: 

(4. 50) 

where superscripts I. and S denote the enthalpies of the liquid 

and solid phases of the particles. Evaporation eventually takes place 

when the particle temperature is further increased. This is especial-

ly true for strong shock waves. Thus, for X? X, , the governing 
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equations derived in Section 2 will be used. 

To find the equilibrium conditions far downstream of the gas 

dynamic shock wave, similar equations (4. 34 - 4. 39) can be ob

tained by considering solid particles instead of liquid droplets. 
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4. DISCUSSION OF SOL UT ION 

For pure liquid droplets, the relaxation region consists of a 

"condensation zone 11 and an "evaporation zone. " Immediately follow-

ing the compression wave, the pressure of the gas mixture increases 

according to the normal shock relations, while the particle clou d 

temperature still has the upstream values. The partial pressure cor-

responding to the vapor concentration in the gas mixture is higher 

than the vapor pressure of the liquid droplets. Condensation sets in, 

and this is indicated by positive values of 0f in Figure 4. 1 ac

companied by increase of the particle size, as shown in Figure 4. 2. 

The thickness of this "condensation zone" depends very much on the 

latent heat of vaporization of the liquid droplets under con side ration. 

As shown in Figure 4. 1, the condensation zone for (f/ -f;j/ylJT;, = S. o 

actually has a thickness corre sponding to the v elocity or temperature 

relaxation length, while for U?/- ,Y,Q.J/,- RT,,= lo .o , the thickness of 

the condensation zone is of an order smaller than the equilibrium 

length. The particle cloud within this condensation zone is gaining 

energy through two sources: (i) energy of heat conduction from the 

gas mixture , , and (ii) the latent heat of condensation associated with 

the condensing vapor molecules. This is shown in Figure 4. 3 as the 

area between the two curves. Evaporation eventually sets in when the 

vapor pres sure of the particle droplets is higher t han the partial 

pres sure of the vapor molecules in the gas mixture. Within this 

"evaporation zone, 11 while the particle cloud is gaining energy of heat 

of conduction from the gas mixture, it is at the same time losing en-

ergy to the gas in the form of latent heat associated with the evapo-
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rating liquid molecules. The difference of these two terms, corre-

sponding to the net energy gained by the particle cloud, approaches 

zero in the evaporation zone, as shown in Figure 4. 3. Thus, the 

particle cloud tends to have a uniform temperature within the evapo-

ration zone, as shown in Figure 4. 4. This is especially true for 

large values of latent heat. The velocity field, as shown in Figure 

4. 5, is basically similar to the case when the particles are chemi

cally inert(Z). 

From the above discussion, we observe that the shock struc-

ture in a condensing medium can be considered as composed of three 

' different regions. First, there is the compression wave. The thick-

ness of the compression wave 0, is only a few mean free paths. 

Immediately following the compression wave is a 11 condensation zone. 11 

The thickness of this condensation zone is quite a few orders 

of magnitude larger than the mean free path. For relatively large 

values of latent heat, tz < < A.1"0 • The thickness of the evaporation 

zone is of the same order as Thus, we have 

( 4. 51) 

Within ~, , the particle cloud still retains its upstream tempe ra-

tu re It increases from I, to the equilibrium temperature 

in ~t. and m .P, , the particle cloud approximate ly has a uni-

form temperature equal to the equilibrium temperature. 

Solutions for various values of .Av , Ar , and 110 are also 

obtained. They are shown in Figures 4. 7 - 4. 9. 

In the case of solid particles, because the vapor pressure is 

indeed negligible for the kind of solid particles we are considering, 
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phase change is almost non-existent immediately following the com

pression wave. The curves for particle temperature in Figure 4. 10 

indicate clearly the regions where the particles exist as solid, co

existence of solid and liquid, and the region where the particles are 

totally melted. Evaporation of these liquid droplets depends very 

much on the upstream Mach number, as shown in Fig. 4. 11, since the 

gas temperature downstream of the shock wave increases with in

creasing Mach number. 

As was pointed out before, equilibrium conditions far down

str-eam of the compression wave can be obtained from eqns. 4. 34 -

4. 39 for liquid droplets, and quite similar equations give those for 

solid particles. As in the case of non-reacting particles, the se con

ditions are independent of the model describing particle- gas inte rac

tion, but they do depend on the size of the particles. 
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PART V. 

SOME FLOW PROBLEMS IN A GAS-PARTICLE 

MIXTURE WITH PARTICLE COLLISION 
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1. INTRODUCTION 

The effects due to particle collision are very often suppressed 

in the investigation of the motion of clouds of small solid particles 

through gases. This approximation is valid when the particle number 

density is small or when the particles are very nearly of the same · 

size. In the case when both of these two conditions are not satisfied, 

the effects due to particle-particle collision have to be taken into con

sideration. Marble(l) first investigated the mechanism of particle col

lisions by conside.ring the case when a gas contains particles of two 

distinct sizes which behave as smooth elastic spheres. .Collisions take 

place between the two groups of particles as they move with their own 

appropriate slip velocities with respect to the gas~ The theory de

veloped by Marble is applied to two different problems here. The 

propagation of a shock wave through a gas-particle mixture and the 

flow of a gas-particle mixture through a nozzle are investigated. 
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2. NORMAL SHOCK PROBLEM 

The propagation of a shock wave through a homogene ous mix-

ture of a gas and small solid particles was first investigated by Car

rier(Z). Since the particle size is much bigger than the molecular 

mean free path, the particle cloud, after traversing through the con-

ventional gas dynamic shock, still retains its upstream velocity and 

temperature. If it is assumed that the presence of particles does not 

disturb the one-dimensional configuration of the problem, the change 

in gas velocity and temperature follows the usual shock relations. 

Thus, immediately following the gas dynamic shock, the particle cloud 

and the gas phase have quite different velocities and temperatures. By 

extending Carrier's analysis, both Marble(3 ) and Kriebel( 4 } obtained 

the shock structure of the mixture as consisting of the conventional 

gas dynamic shock followed by a relaxation region in which the particle 

cloud and the gas attain. momentum and thermal equilibrium. 

For the case when the particles are of two distinct sizes of 

radius "i and Vi , the continuity equations read as follows: 

(5. 1) 

(5. 2) 

(5. 3) 

where .f and z--< denote the gas density and velocity,and those with 

subscript /'• pertain to those particles with radius 'Vi and s imi-

larly f'z for the particles of radius CTz m is the rate of gas 

mass flow arid )(, / Xz. are the mass ratio of particles. with radius 

and ~ with respect to the gas mass at some reference state. 
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The continuity equation for the mixture is 

f' u + f' v,, + f!z uf z. ::: {1.,. :t, I- hJ ,,:., 
The equation of motion for the gas is 

(5. 4) 

( 5. 5) 

F, and Fz. are the forces exerted on a unit volume of gas by 

particles with radius and V.Z , respectively, and j> is the 

local gas pressure. Using Stokes drag law, a first order approxima-

tion to describe the gas-particle interaction, F, and F 2 take the 

following forms : 

where 

1')1, Q 

= bn;µ<T, a r~ 

(5. 6) 

(5. 7) 

( 5. 8) 

(5. 9 ) 

t1 I and r12 are the particle number density with respect to 

particles of radius V, and a- is the local velocity of 

sound. If we assume that , both ;l~ and A~ are con-

stants. AY, and /l Yi, or Tv, and r.z are the characteristic 

length or time in which the particle- gas velocity difference is reduced 

to e -I of its initial value. The equations of motion for the two 

particle clouds are 
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- F, 
( 5. 10) 

( 5. 11) 

fl is the force resulting from particle-particle collisions. 

To evaluate ~ , let us fir st consider the time between two 

successive collisions. Using the classical model and denoting Z:c, as 

the time between collisions for particles of radius 

Similarly, lc1- is 

If both 

_J_ 1. 
6j 

-r { ( a. I )-I 
'-ca. = '1, 7" er, ~!Ji) L-f ~ - "i>' I 

and 

are smaller than unity, we obtain the following condition 

-z;..., << I 
r.., 

is 

(5. 12) 

(5. 13) 

(5. 14 ) 

(5. 15) 

Equations 5. 14 and 5. 15 imply that random velocities introduced by 

particle collis ions are damped out before the next collision takes 

place. The particle velocities do not decay toward their average ve-

loc itie s U.!, 
-1-

and zy,.1 but rather towards their collisionless veloci-

tie s vlf, 
.,,. ..,.. 

and 2Ja , where lir' and are governed by 

vf~ i£-~;- = ru - uf J l1h "' (5. 16) 
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(5. 1 7) 

If we also assume that 

(5. 18) 

(5. 19) 

so that modification of flow fields as two particles approach each other 

produces negligible effect, the force introduced by particle collision 

using the billiard ball model is 

(5. 20) 

where 

(5. 21) 

and f. is some reference density for the gas. The general mo-

nientum integral for the mixture using eqns. 5. 5, 5. 10, and 5. 11 can 

be written as 

(5. 22) 

Uo is the upstream velocity; /'. and Po are the gas density and 

pressure upstream of the shock. 

For a calorically perfect gas, the first law of thermodynamics 

can be written as 

(5. 23) 
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Q and Qz are the rate of heat transfer between a unit volume of 

gas and the particles with radius 'iT, and Vi , respe ctively. To the 

same approximation as · Stoke s drag law, 0 and Q2 can be writ-

ten as 

(5. 24) 

(5. 25) 

and 

(5. 26) 

( 5. 2 7) 

and Jz. are the mean temperature for the particles with radius 

r::T, and OJ is the viscous dissipation corresponding to the 

work done by the particles and is equal to 

gt = r;.,- v.JF; + r"l.-";;:; -f-{j.- lf,J g; (5. 28) 

The energy equations for the particle cloud are 

(5. 29) 

(5. 30) 

C, and are the constant specific heats for the solid particles . 

The energy integral for the mixture can be written as 
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{ y,r+f'u 2J+X, re 7, +fU,~J + ;tfc~ 7i··~t'f:J 

- ( 7 -r ;(, (, + h {z_) To -f {!-t- x, + ~.);. ti/ 

~ is the upstream temperature. 

The equation of state for the gas is 

(5. 31) 

(5.32) 

Denoting conditions far downstream of the shock where the gas 

and particle cloud have attained momentum and thermal equilibrium by 

subscript Gt:> , the integrals 5. '4, 5. 22, and 5. 31 can be written in 

a more familiar form' -

(5. 33) 

I°- ti~ 7" P- :::' /. ti/ + ;=; (5. 34) 

- I 'l. - I ~ y T- .,.. ~ti.,., - y T. -r 2 l/o (5. 3 5) 

where ;:, :: c 1-f' :t, ~7zJ!o / ·y ~rr;.,.-;r,c; .,,~r#+X.J'.; 
By defining r = { '/ '/" /, t, ~ h (j) / ( lv + ,( (, ,,. ~ c,} · we obtain 

the usual shock relations. 

= ( ;:: - I ) ti/ i- 2 
{? + 1) 1-102 

( 5. 3 6) 

( 5. 3 7) 

(5. 38) 

Thus, the equilibrium conditions far downstream of the shock wave 

can be calculate'd using the shock relations for a pure gas provided 

that the parameters r' and f? are replaced by '? and I( 
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The structure of the relaxation region can be easily found by 

numerical integration. Using continuity equations 5. 1, 5. Z, 5. 3; mo-

mentum integral 5. 22; energy integral 5. 31; the equation of state 5.32; 

six of the differential equations 5. 10, 5. 11 for v.,, 
and 5. 16 for and ; 5. 29 and 5. 30 for f' 

l)!J. ; 5. 15 

and fz ; the 

geometric structure of the equilibrium zone is found for various val-

ues of g and Av, • 
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3 . FLOW OF A GAS-PARTICLE MIXTURE 

IN A NOZZLE 

Small solid particles a r e usually present in the exhaust of 

rocket motors with metallized propellants . The presence of these 

particles in an optimum gas nozzle results in performance degrada -

tions . Based on certa in approximations, the l osses have been cal 

culated(5, b) m.+merically for certain nozzle contours , and Rannie(?) 

has developed a perturbation scheme for the one-dimensional hetero-

geneous flow in rocket nozzles. By extending Rannie 's analysis , 

Marble(S ) has found an optimum nozzle contou r for gas-particle mix-

tures. Based on Marble ' s optimum contour, the first order perturba-

tion quantities for a gas·- particle mixture, with particle-particle col-

l i sion taken into consideration, are acquired here. 

Denoting II as the eras s - sectional area of the nozzle , the 

con tinuity equation for the gas is 

(5 . 3 9) 

and U. is the gas velocity along the nozzle axis. Because the dif-

ference between the particle quantities and the gas quantities or the 

slip quantities is small, it is convenient to introduce the following 

variables: 

i/s, u- u, , u/ ~ 

= = u - 11' 
. us, U- ~z 

.. ... 
=: u~J = ?) - 17~ 

(5. 40 ) 
7i, :. -r - l ' fi, :: I - l/1X, 
7S~ = T- 7ja ;;, = I - J~fh 
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Expressed in terms of the slip quantities 5. 34, the continuity equa-

tions for the particle cloud read as 

f>, U -+ Us, = /J, Us 1 

fl~ u -1- uSz. = fr• ll.sz 

(5. 41) 

(5. 42) 

The continuity equation 5. 4 for the mixture in terms of the slip quan-

tities is 

(/../" X, + l..J(t.d} == (1.,.4', f,t;).;, -f /,f'IJ( tls1 rfi, u _ p, ~ .. ) 

+ ,till {tis~ -f /Jz.ll - Is~ Us~) 
(5.43) 

The energy integral 5. 31 can be expressed in terms of C: and the 
"/' 

temperature slip variables, and yields the following relationship: 

(5. 44) 

U,, Ut>_, Ts vanish inside the rocket chamber whose temperature is ~. 

Following Rannie 1s(?) analysis of employing gas pressure ? as the 

independent variable, which has the advantage of avoiding the trans on-

ic singularity, the energy equations for the particle clouds, eqns. 

5. 29 and 5. 30, assume the following f .orm: 

(5. 45) 

(5. 46) 

The dimensionless length !
_.£.. 
-L where L is the nozzle length. 
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1 are defined as .l1fi 

:Jr; - <j n?, 0 4.,, rr, ' 

'A;;. -= ~ n1:1- a. /A. 7T rr;. i 

and a.. is the equilibrium sound speed, equal to f Plf"r)'k 

(5. 47) 

(5. 48) 

Using 

the energy integral 5. 44 and the momentum equations, a relation cor-

responding to the isentropic integral for a pure gas can be obtained. 

fl. is the rocket chamber pressure and 1 , as defined bef ore, is 

equal to 7 = ( C'_r + ;(, (, -t- ,i. (,.) /(G -r ;(, (, + ,1{_ C). The momentum 

equations for the particle cloud with /' as the independent variable 

are: 

( 5. 5 0) 

(5. 51) 

-Av', and //~ are the velocity equilibrium lengths based on the 
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equilibrium sound speed (f RT)~ The equations for the collision-

less particle velocities are 

(5. 52) 

(5. 53) 

The e qua ti on of state for the perfect gas is written as 

(5. 54) 

Denoting .A as a typical equilibrium length, it has been discus sed(l, 3 ) 

that the slip quantities are of order -f: For problems in which 

-f ..:::.< / , a perturbation solution can be found by expressing the flow 

variables in the following form: 

( ) 
f> (o) ;i (1) 

f f = I ~-' + 7:" (c;'.J 



-146-

UsarJ 
_;;, (IJ il 'd2J ::: -c llsz.r) r (-fj 'Sz.7) + 

,,, 
Us~ C,J = 

_a -II 

l- /ls,?) ~" 
+ rl:lus, trJ + · · · 

/l (IJ ;l z. t.2' - I (pJ + (--J (p} -1- •••• 
i. /st J I-/ SI / 

The zeroth order solution can be easily found. From equation 5. 49, 

we have 

( 5. 5 5) 

and using the equation of state, we obtain 

(5. 56) 

From the energy integral 5 . 44 

( 5. 5 7) 

As discussed in reference 1, the case when the momentum transfer 

due to particle collisions is of the same order as viscous drag is 

when ( 
i])l. _J_ r "\.- '- Under such circumstances, eqris. 5. 52 and 

5. 53 give 
(I) 

v;; (5. 58) 
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(5. 59) 

,, J ( 
?/ ,,,, 

From eqns. 5. 50 and 5. 51, using 5. 58 and 5. 59, V1.S1 and v..u 

can be solved algebraically. 

The corresponding first order 
-r-(1) 

ts; and 
(IJ 

-;$~ can be obtained 

from eqns. 5. 45 and 5. 48 

(5. 6 Z) 

( 5. 6 3) 

From the continuity equations 5. 41 and 5. 42, we obtain 

p''' -
ls1 - (5. 64) 
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• !ti) 
lAS2 

-~ ( 5. 6 5) 

The remaining first order perturbation quantities for the gas can also 

be found easily. Equating terms of the first order, 5. 49 gives 

(5. 66) 

From the equation of state 5. 54, 

(5.67) 

and from the energy integral 5. 44, after some simplification, we h a ve 

- - ti({)+ F6f) 

or 

u"' - (5. 68) u.. (0) 
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The perturbation quantities are calculated based on the optimum noz

zle (S) for gas-particle mixtures consisting only of particles of radius 

q; g iving the pressure distribution 

( 5. 6 9) 

where ~ is the nozzle exit pressure. 

Using the first order perturbation quantities, the specific im-

pulse losses can be calculated. If the reference value is taken to be 

1'•)""' 
~I (OJ 

~ 
j 

(5. 70) 

( 5. 71) 
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4. CONCLUSION 

The effect upon particle velocities when particle collisions 

are taken into consideration is very clearly demonstrated by the rela-

tively simple, normal shock wave problem. The transfer of momen-

tum due to collisions of course tends to cause the two particle veloci-

ties to be more nearly equal as compared with particle velocities 

when particle collisions are being suppress e d. The change is rather 

significant, as shown in Figure 5. 1 for ~~;:::. 10 . 0 The same 

change, of course, also appears in the flow of a particle-gas mixture 

through a nozzle. Here , the first order slip velocities are calculated, 

and the effect of particle collisions certainly tends to decrease the dif-

ference of the two slip velocities. As shown in Figure 5. 4, the maxi-

mum difference between the two slip velocities for is re-

duced to about half of that when particle collisions are not taken into 

consideration. In the normal shock problem, where the velocities 

are decreasing downstream of the shock, the effect of particle colli-

sions tends to increase the gas velocity, while in the flow through a 

nozzle where the velocities are increasing along the nozzle, the effect 

of particle collisions tends to decrease the gas velocity. The first 

order perturbation gas velocity has been calculated for the nozzle 

flow. With , the maxin1um of the perturbation gas ve-

locity is reduced to one third of that when particle collisions are ne-

glected. 

The difference in temperature as compared with the collision-

less case is quite negligible . This is true both in the normal shock 

wave problem and the flow through a nozzle. In Figure 5. 3 we ob-
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serve that the dissipation work associated with the force due to parti 

cle collisions is indeed negligible as compared with the rate of heat 

transfer between the particles and the gas. The fractional loss of 

specific impulse is shown in Figure 5. 8. The loss is in fact smaller 

when particle collisions are taken into consideration using the opti

mum nozzle for collisionless particles. The difference is only a few 

per cent. 



-152-

REFERENCES FOR PART V. 

1. Marble, F. E., ''Mechanism of Particle Collision in the One
Dimensional Dynamics of Gas-Particle Mixtures, " Phys . of 
Fluids'!_ (1964), pp. 1270-1282. 

2. Carrier, G. E., "Shock Waves in a Dusty Gas," J. Fluid Mech. 
4 (1958), pp. 376-382. 

3. Marble, F. E. , "Dynamics of a Gas Containing Small Solid 
Particles," Proc. 5th AGARD Combustion and Prop ulsion Col
loquium, Braunschweig, April 1962. Pergamon Press, New 
York {1963), pp. 175-213. 

4. Kriebel, A. R., "Analysis of Normal Shock Waves in P article 
Laden Gas," Journal of Basic Engineering, paper no. 63 - WA-
13 (1964), pp. 1-10. 

5. Gilbert, M., Davis, L., and Altman, D., "Velocity Lag of 
Particles in Line arly Accelerated Combustion Gas, 11 Jet Pro
pulsion~ (1955), pp. 25- 30. 

6. Kliegel, J. R., "One -Dimensional F low of a Gas -Particle 
System," lAS Paper 60 - 3 (January 1960). 

7. Rannie, W. D., "A Perturbation Analysis of One-Dimensional 
Heterogeneous Flow in Rocket Nozzles," Prog re s s in Astro
nautics and Rocketry: Detonation and Two-Phase Flow, Aca
demic Press, New York (1962), pp. 117-144. 

8. Marble, F. E., " Nozzle Contours for Minimum ~article-Lag 
Loss, 11 Al.AA Journal..!_ (1963), pp. 27 93 - 2801. 



1. 0 

o. 5 

0 1. 0 

-153-

al - = 1. 5 
0"2 

A. =A. 
vl T 1 

X1 = X2 = • 25 

Cp=C 1 =C 2 
M = 1. 6 

0 

y = 1. 4 

2. 0 

.t 
-=0-
A 
vl 

-l = 10.0 ---A-
vl 

3. 0 4. 0 

Fig. 5. 1. Velocity Va riation Downstream of the Gas
Dynamic Shock. 



-154-

1.5-

~ 
-1.. - = 10. o 
vl = 0 

1. 3 

1.2 

l.l 

cr 1 
-= 1 5 cr • 

2 
A. = A. 
vl Tl 

X 1 = Xz = • 25 

c ::: c ::: c 
p 1 2 

M = 1. 6 
0 

y = 1. 4 

x 
-A.-

1.0.._~~~~~~~--1.~~~~~~~~-1-~~~~~~~~..1...-~~~~v__;l~ 
1. 0 2. 0 3. 0 

Fig. 5. 2. Temperature Variation Downstream of the 
Gas -Dynamic Shock. 

\ 



-155-

:-----..... 
.............. ......_ 

"'- ..........._ -- ('{-1 )(u -u)F 2 "'-. ---.. Pz 
""'-.. --::::,,..... ---L------ -----....::::::~-~-=--=- - -

O. 0 ('{-1 ){u. -u )~ 
Pz P1 

-. 1 

a 1 - = 1. 5 
a 2 

\ = \ 
vl Tl 

X1 = Xz = O. 25 

c = c . = c p l. 2 
M = 1. 6 

0 

'I = 1. 4 
{, 

-\-= 0 
vl 
{, 

-\- = 10. O - - -
vl 

1 .• 0 2. 0 3. 0 

Fig. 5. 3. Rate of Energy Transfer to the Particle Cloud. 



2. 

1. 

0 

1. 0 2. 0 

-156-

A 2 
0 

3. 0 

A.=X" :::;A_ 
vl Tl 

Cp=C 1. ::c2 
al 
-= 2. 0 az 
X1 = X2 = o. 2 

p 
c 

t n p- = 5. 0 
e 

'{ = 1. 25 

(1) 
usl 

4 . 0 

a 
c 

p 
c 

t n-p 

5. 0 
Fig. 5. 4. Slip Velocity as a Function of Pres sure Along a Nozzle. 



- • 16 

• 10 

o. 0 

u 
(1) 

a 
c 

-. 10 

5. 0 

-157-

\ =~ = \ 
vl T 1 

CP=C 1 =C 2 
c; 1 /a 

2 
= 2. o 

X1 = X2 = o. 2 

'I :::: 1. 25 
p 

c 
-ln p = 5. 0 

e 

p -. l.._~~~~~.._~~~~-----~~~~--~~~~~--~~~~--- -ln~ . D 

0 1. 0 

Fig. 5. 5. 

2. 0 3. 0 4. 0 

First Order Gas V e locity as a Function of 
Pressure Along a Nozzle. 

5. 0 .... 



-158-

0 

-. 5 

A. 2 
- - 5. 0 
{,L 

A.="f ="f 
vl Tl 

cP = c 1 = c 2 
CJ 1 I CJ 2 = 2. o 
X1 = Xz = o. 2 

'( = 1. 25 
p 

c 
tn p = 5. 0 

e 

p 
c 

-l.5._~~~~---1~~~~~-1.~~~~~-'-~~~~~-L-~~~~---1 -ln-p-
1. 0 2. 0 3. 0 4 . 0 

Fig. 5. 6. Particle Temperature Lag as a Function of 
Pressure Along a Nozzle. 

5. 0 



.20 

.10 

.oo ~ 

-.10 

-.20 

-.30 

-.40 

-1 59-

).,:;"f ::: )., 
vl T l 

c ::: c ::: c 
p 1 2 

a 1 I a 2 = 2. o 
x1 = x2 == o. 2 

'I ::: 1. 25 
p 

J..,n pc = 5. 0 
e 

p 
- • 5 0 _____ __. _____ __... _____ _._ _____ _.__ ____ __. -ln ____£_ 

s. 0 p 0 1. 0 2. 0 3. 0 4 •. 0 

Fig. 5. 7 . Fir st Order Temperature Variation as a Funct ion 
of Pressure Along a Nozzle . 



_"t~ 
0 -

- H >-{ 

....:ll--< 

-160-

1. 0 

A.=A. ="I 
vl Tl 

~ . 5 

5. 0 

c = c 1 = c 
p 2 

er 1 /o 2 = z. o 
X1 = Xz = O. 2 

" = l. 25 

I 

0 . 1. 0 z. 0 3. 0 

p 
' C , 5 0 -..,np-= • 

e 

4. 0 . 

p 
c 

-lnp-

5. 0 

Fig. 5. 8. Comparison of Fractional Loss of Specific Impulse 
With and Without Part icle Collision Taken Into 
Consideration. 



-161-

APPENDIX A 

Equations for Reacting Particles 

1. Introduction 

The terminology 11aerothermochemistry",as first introduced by 

T. von Karman ( 
1 

)' deals mainly with problems of gas dynamics in 

which chemical reactions take place. But in many flow phenomena 

involving chemical reactions, the presence of a particle cloud plays a 

dominant role, as in condensation and the combustion of small solid 

particles and liquid droplets. These problems can probably be con-

side red as aerothermochemistry problems of two phase .flow. 

It is only relatively recently that a two phase approach has 

been used to treat some of the combustion problems of liquid drop

lets (2), and Marble (3 ) apphed the two phase concept to some of the 

condensation problems and rather interesting and new results were 

obtained. 

T he basic equations governing these flow problem's are analo

gous to two phase flow problems without chemical reactions. They 

are the equations of continuity, momentum, and energy for the two 

phases of substances present and the equation of state . The presence 

of different gas species requires continuity equations describing indi 

vidual species, and the rate of mass production and heat of chemical 

reactions modify both the equations of motion and the energy equa-

tions. In addition, a knowledge of t he reaction mechanism is re-

quired, and for the problems being considered here, a diffusion re-

laxation time connected with the rate of mass production is intro-



-162-

duced. 

T .. == rn /r 4 TT CT ,f' D) (A-1) 

The relationships between T" and T~ -C..,. are 

(A-2) 

(A-3) 

where Le is the Lewis number. 

2. Basic Equations 

Consider a cloud of small solid particles suspended in a gas 

mixture consisting of N gas species. The particles can exist in 

either a liquid or solid phase. The total number of particles is as-

sumed to be constant. Thus, in co1nbustion problems, particle break-

up is neglected, and spontaneous nucleation is considered to be not a 

dominant feature in the process of condensation. Oftentimes, as in 

saturated flows over converging-diverging nozzl es, nucleation is usu-

ally the most important factor, but in some problems of relatively 

high vapor concentration in the presence of liquid droplets, the flow 

may be governed more by the change of size of particles and nuclea-

tion can be assumed to be negligible as a first approximation. 

Continuity Equation. Consider a volume element fixed in 

space. The continuity equations for the gas species are 

(A-4) 

/«., Ua'i. ~ Wet. are the individual density, velocity components, and 

the rate of mass production of the gas species o( The total density 
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f is given by 

(A-5) 

and the mass concentration ;<:« is defined by 

1(0(. = (A-6) 

The mean velocity of the gas mixture U,· is defined as 

or 

r.J 
1}, - Z. Kx Zk.1 

O(.= I 
(A-7) 

The diffusion velocity or peculiar velocity of the gas component 0( is 

its velocity relative to the mean, and is given by 

(A-8) 

Using definitions A-5 and A-7, the continuity equation fo r the gas 

mixture, by summing eqn. A-4 over N species, can be written as 

(A-9) 

6.) i s the total rate of mass production for the gas mixture and is 

given by 

(A-10) 

The continuity equation for the particle cloud is 

(A-11) 

As before, subscript f is used to denote quantities pertaining to 
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the particle cloud. Since mass is concerned, we have 

w .+ (,A} =O 
(A- 12) 

Momentum Equation. The rate of mass production (,.)« intro-

duces an additional term in the momentum transfer. If r/la1 is the 

average momentum component per unit mass associated with Wt><. , 

the transfer of momentum due to the chemical reaction is c.J°' nll<1,· 

By considering a volume element fixed in space, the momentum equa-

tions for species c( are: 

(A-13) 

F;<; is the particle-gas momentum interaction on species of. 

v;ij is the 11partial stress 11 following the terminology given by 

Truesdell and Toupin (
4

)_ The momentum of the gas species C( need 

not be balanced by itself as there is transfer of momentum between 

gas components . Truesdell (
4

) calls this additional term fet' 11 supply 

of momentum. 11 Since momentum is conserved for the whole system, 

we have 

(A-14} 

Summing eqn. A-13 over all gas species, the momentum 

equation for the gas mixture is 

(A-15) 

where 

,..; . 
F,· = x. F. . 

()(.:1 ~( 
(A-16) 
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(A - 17) 

and 

,J 
v:'J·· = X cc; ... - P,,, ,1' . u' .) 

(){.:. / j /A V!/11. 1 llj 

(A - 18) 

are the apparent stresses due to diffusion,and many 

authors refer to these as "diffusion stresses . 11 In this context, the 

total stresses acting on the gas mixture are the sum of partial 
ti 

stresses «f, T(I( '/ and the diffusion stresses - f ft u"':. ~· . 

Von Karman ( 5 ) defined r,/ as 

=- Pd)-+ T./ 
(A- 19) 

where µ* is defined in such a way that it includes the apparent 

stresses caused by diffusion. 

It has been pointed out by Gulick(?) that it is more convenient 

sometimes to consider just t he total stresses 'IT,/ instead of intro-

ducing partial stresses v;,/ and diffusion stresses - 2 fa tf.t;· u:i 
By considering a volume element moving with the mean velocity ti/ 

the momentum equations for the gas mixture, by summing over indi -

vidual species , take the following form: 

:i:c: /A- for binary and multicomponent mixtures is given in refe rence 
6 , eqns . (8 - 2. - 2.1 ) and (8-2. - 2.5). 
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or . 

(A-20) 

Note that v:· 
') in eqn. A-20 is the sum of partial stresses while con-

sidering a volume element moving with [,,-{/ , and diffusion stresses 

in the form - 2 ft u:,· Uv.~· do not appear at all. 

The momentum equation for the particle cloud is 

(A-21) 

Since momentum is conserved, we note that 

F,· + lj: + w n1: -t- WI,..,,!',. :::: 0 

Adding eqns. A-21 and A-15, the momentum equation for the whole 

system is 

(A-22) 

Using continuity equations A-9 and A-11, the momentum equa-

tions can be written in the following form: 

(A- 23) 

Ff; (A-24) 

Energy Equation. In the momentum equation , we have the 

term which denotes the rate of momentum transfer due 

to mass production. The corresponding term in the energy equation 
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is clearly equal to (,.)« [ f" {TR_, ~J + ; ma; JT'&t.j and FR 

are the temperature and pressure at which reaction takes place. A'a 

is the enthalpy per unit mass for the species c< , and is defined as 

(A- 25) 

. 1'0 

is the enthalpy of formation. The enthalpy of the gas mixture 

can be defined as 

(A- 26) 

In addition, we have to consider the heat of reaction. Consid-

er a one-step reaction 

(A-27) 

V.,' >" 
~ .1 Yo< and y' i and v" 

! are the stochiometric coefficients for 

the o( species of the 'gas mixture and for the particle cloud. c()(. 

and are their respective chemical symbols. The heat of re-

action according to eqn. A- 27 is 

-L (~ "- ~')/Ylo1[ /; {"f,~J ..< j /11.t; ITlot)- { f'-1') hl{ofy (?f, t;) ~f dfr; ny.J 

where //(__« and ~ are their respective atomic weights . The 

heat of reaction per unit volume is 

(A- 28) 

For liquid droplets, heat of reaction is slightly different. If 

L denotes the latent heat of vaporization, the heat of reaction per 

unit volume is 
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is defined as the difference of enthalpies of the vapor and 

liquid phases. Note also that ~ in eqn. A-28 refers to the en-

thalpy of the solid particles, and 't? in eqn. A-29 is the enthalpy 

of the liquid. We assume the heat of reaction is tota:).ly absorbed by 

the gas mixture. Denoting j-/o< as the heat of reaction abs orbed 

by species a'. , we have 

/\/ 
2 ;;-/(( := J-1 

c(z I 
(A-30) 

Since particle cloud and gas species are moving at different 

velocities, there is an additional dissipation term ~/'o( 

clearly equal to 

!1 /'c< is 

(A-31) 

We assume this dissipation term is also totally absorbed by the gas 

species. 

The particle cloud and the gas m.ixture also have different 

temperatures. Denoting Q as the transfer of thermal energy be -

tween the two phases, and Ocx. as the fraction absorbed by species 

d , we have 

Q (A-32) 

is the heat flux vector. If we define as the 

partial heat flux vector, the energy equation for the species C( , by 

considering a volume ele m e nt fixe d in space, is: 
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-+ 

(A-33) 

CO( is introduced since there is a l so transfer of energy between 

the gas species. Analogous with fc1« , Truesdell calls C"'- the 

11 sppply of energy. 11 Since energy is conserved for the system, we 

have 

1 { ./. . ?I. -1- CO() "=" 0 
()(:1 j CX.t ~· 

Summing eqn. A-32 over oL. , the ene rgy equation for the gas mix-

ture takes the following form: 

ftlt r~ ""t 21<.t u;,. U:..J..,. f ru.· uJ-1-d~- [ru_;·cf,+f ~1~u.:-1.1:,) 

-1-;! '1; u.- uJ:: 4 f r1;-2 u;,. -r;~)- 211«< ~- r A'a .Joi u:- U:,)/ 

+.sl.1 . r . H r-~1 ~t .1 r!)r. c;}Xj IA• <.j + 0 t + n tA.i + ri 'Ji - (/I.;) -J. 6) - ~L-"/ ~.,,/;) 

.J. :i. 1'7f!: Mt~ J 
(A-34) 

The energy equation for a mixture, as given by A - 34, differs from 

t h at of a pure gas in the sense that the total internal energy is the 

sum of partial internal energies eo<. plus the kinetic energies of 

diffusion and the total flux of energy 

con sists, in add ition to non- mechanical ene r gy flux g; , of the 

rates of working of partial stresses a ga inst d iffusion -2 u:,· Tot) 

and the e nergy flux due to diffusion 2 / ~ !),;,- (If.°' --r l zte<1

i Ua~) . 
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Energy Flux Vector::: ;;-2t/d,·&,j -+£r~a;·(~+ft..fa,~·!JC:,)1f- (A-35) 

With the definition of total internal ene rgy as given above , 

eqn. A-34 can also be obtained by considering a volume element mov-

ing with mean velocity Ui and using the energy flux vector given by 

eqn. A-35. 

Analogous to what von Karman did in defining viscous stresses 

for a mixture (i. e. , eqn. A-19), we define 

'7" , .L JT ij - L:. Liq,· lot1/ = - /(' oJ) (A-36) 

.J. is the coefficient of thermal conductivity and is defined to include 

the work done due to diffusion velocity against partial stresses. 

The energy equation for the particle cloud is 

ft [t < 7 -rt 'J; ur'JJ-r d5 Lf ll;J·r 1 + f v/ 11,.j 

= J' ~· -q +wt !If {?R/ ~) + i 7t; 1Y'f .. ] 
(A-37) 

The energy equation for the whole system, by adding eqns. A-34 and 

A-37, is 

ft lr (fl+ -f .fit{, 11,,'.· I.{) -f f U. tl; -j_ + '} fo + f f'f · 'f J 

_,.a~. fr':/ ( t_ + f I 4t_ !lq~· ll;,) 7 f LI_;· (ft/.; L/,J + t ~/ ( l +j 'f:f .:J} 

= ;; + a1 {LI; [;j) + i!?jf fJ; - Iu":· ~/) - Ff~~· ( f~+f /J.,,~·tl~'J (A-38} 

In accordance with kinetic theory, eqn. A-35 is to be identified with 
eqn. (7. 2-26) of reference 6. 
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Using momentum equations A-15 a nd A-21, the energy equations for 

the gas mixture and the particle cloud can be expressed as 

(A-39) 

.,. h (~; -U,'J-t7l-f {?;,t;J - /6; P)-{' f (l-~;~:-d:L/.J-11'!.·~,·.,.J.·d.·] 

Equations A - 39 can be expressed in terms of temperature. According 

to eqn. A- 25, we have 

T 

f~Jr ::; ~ - lo/ 
(A-41) 

;;jT ;;: f - j'o 
• I i 

Expressed in terms of f~"'-Jr or J:., - ~
0 

f c)~-[L { ~ ff.t -l-.J-r f d..- il";,d -r r '!!~ /j ( ):fd ~-1:.'J -1-f tl/: tlc/i 

-r .dJl· d? .1. df' ..sLr f. 1 L '(~ 
- t..;_J ol;<_j + -;}{' + Vf.1 oJX; + d"j L- rp -x->, ~; 'Ctj)- Lf l<Pi lfx;· fl.I( 

+ -f t!oc',· u~ ,.j + F; f u,:- tJ.) -t Q - w!L !y- ( ~, ~)- y0 

(A- 42) 

- I~ { e-.f ... 0 J .,. ± ( 17; 171;>; - d: L/:) + J ; l/; - n'/; t,/; - (LG<J<l'R.t ·-""'/Rf J) 

Due to chemical reactions , the particle radius is no longe r a constant. 

Since the particle number d ensity is assumed to b e constant 
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(A- 43) 

The equation of state for a mixture of ideal gases is 

p :::iRT (A- 44) 

where R is given as :z-;ff; Ka.: with R being the universal gas 

constant. 

In the case of condensation and evaporation, the heat of reac-

tion as given by eqn. A - 28 or A - 29 is identically equal to ze r o. Thus , 

the above equations are valid for condensation processes by l etting 

JI= 0 In the · case of sublimation, heat of fus ion as well as heat 

of vaporization should be properly included. 

3. Reaction Model for a Binary Mixture 

We will only consider problems of a binary mixture in which 

the particle cloud reacts with one of the gas species. The flow medi -

um consists of: (i) a particle cloud which is composed of either liquid. 

droplets or small solid particles; (ii) a gas which reacts with the par-

ticle cloud; (iii ) an inert gas which can be the reaction product of the 

particle cloud and the reacting gas in the case of combustion. The re -

acting gas can be some oxidizing agent when burning of the particle 

cloud is being investigated. In problems of condensation and evapora-

tion, this gas is the vapor phase of the particle clou d . Subscript « = I 

will be used for the reacting gas and c< = 2 for the inert gas. Since 

particle clouds can exist either in liquid or solid form, it is some

times convenient to introduce additional superscripts .i and S to 

distinguish some of the thermodynamic quantities pertaining to the 
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liquid particles or solid particles . Thus , denotes the enthalpy 

of the particle cloud of liquid d roplets and is the enthalpy of 

the solid particles. 

The detailed mechanism of mass transfer, as pointed out by 

Marble (
3

) , depe nds on: (i) the rate of heat exchange , (ii ). the rate with 

which the vapor diffuses towards the particles , and (iii) the kinetic 

rate of condensation. We shall assume that the kinetic rate is infi-

nitely fast as compared with the other two and thus is not rate con-

trolling. In principl e, this approximation is that the rate of conden-

sation is still slow in comparison w i th the mass rate of collision of 

gas molecules upon the particle surface. This implies that very close 

to the particle surface , the gas mixture and the particle surface must 

be locally in thermodynamic equilibrium. The region is so small t hat 

the temperature and concentration variations over this region are 

ne gligible. Thus, 

7P, ;:: p (A- 45) 

nt.. · :=.. Zif} J (A- 46) 

~ = p (A- 47 ) 

and some of the thermodynamic relations can be u s ed to describe 

some of the q uanti ties on the surface. At the particle surface, the 

partial pressure of the vapor must be that corresponding to the sur-

face temperature of the particles. The transfer rate is also suffi -

ciently low that there is no significant difference between the tempera-

ture of the surface and its bulk. Thus , the partial vapor pressure at 

the particle sur face is the saturation pres sure corresponding to the 
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particle temperature. Using this as the boundary condition for the 

vapor concentration on the particle surface and the vapor concentra tion 

in the flow field as the boundary condition far away from the particle, 

the equation governing the vapor concentration can be solved. Since 

the Reynolds number based on the particle radius is much smaller 

than unity, the convective terms are neglected as in Stokes flow. 

The continuity equation for the vapor concentrations under these 

simplifications is 

(A-48) 

Here, Fick's law is used to describe the diffusion velocity and 0,2 is 

the binary diffusion coefficient for the two gases in the mixture. K,*" 

according to eqn. A-48, is eq':1al to 

The net mass flux of vapor diffus ing towards a particle is 

and 

with 

4-ll r'j K, ""ti" == - 4,,,,i.f'Rz ~~,, 

== - 4.,,G" t i),z Ll<',tr.J-;<,(!r7?f 

wr = n 4. 71 er i D,~ ["Kt(T)- K,f! (~.;} 

= i; f £ K-tr)- k1e {"!//] 

(A-49) 

(A-50) 

(A-51) 

(A-52) 

When the vapor is considered to be -a perfect gas, and the volume of 

the substance in liquid state or solid state is negligible compared with 
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the volume in the vapor state , the equilibrium partial pressure is 

give n by the following Clausius-Clap eyron r e lation 

(A-53) 

where is the vapor pres s ure at s ome reference temperature 

The equilibrium v ap or con centration is simply 

(A-54) 

To distinguish the liquid drop lets and solid particles, eqn. A-54 is 

(A-55) 

(A-5 6 ) 

Consider the burning of solid particle s. Here, reaction take s 

place on the surface of the p a rticles. With infinite kinetic reaction 

rate, lS 

(A. 57) 

and the net mass flux of the reacting g as diffusing towards a particle 

is 4 lT j .P,:L K, 

w, ;::. - n 47T err D,, ~ 

= -
fP K1, 
'r..o 

(A-58) 

The one-step reaction of eqn. A-27 is simpl y 



- 176-

v, c, + 7' Cf - Y.z Ci (A- 59) 

The rate of the particle cloud being consumed is 

wp .:= - yt~ fo& 
I P, fll1 ~ 

(A-60) 

with 

(.'. = 4!!11-'f ~ {'/(_ , (A-61) 

For the burning of liquid droplets, evaporation of the fuel 

plays a dominant role. The vapor fuel constantly diffuses outwards 

through the inert gas and the oxidizing agent diffuses toward the par-

ticle. Since reaction rate is infinitely fast, combustion takes place on 

a spherical surface at a distance IL.:;- away from the center of the 

droplet. Using similar simplifications to those pre viously outlined, the 

c ontinu ity equation, both for the fuel in vapor form and the oxidizing 

agent, has the simple form of eq. A-45. Denoting 'f'if-. as the con

centration of the fuel in vapor form, the boundary conditions are 

1~ { CT) == ire, ( 7j) 

1o~{~) == 0 

(A-62) 

(A-63) 

J!.te C.7jJ is the fuel vapor concentration corresponding to the equi -

librium vapor pressure as in the case of condens a tion. The boundary 

conditions for the oxiC:. ~z er within this later are 

(A- 64) 

(A-6 5) 
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and 

K,-J'- A! 9e (!):;-I .IL. <.' //., jf- (A-66) :::. 

1 er - I 

;(, :!'- = A! 
;(, {; - A- ) /L 7 A..~ (A- 67) 

Af· can be found by equating the mass flux of the vapor fuel and the 

oxidizer according to the one - step reaction of eqn. A - 59. 

Dp2 is the binary diffusion coefficient of vapor fuel and t he inert 

gas . 

/L;\'" 
rr - I -r (A-68) 

(A- 69) 

To summarize, v.)f can be exp ressed in the following table. 

Condensation 

(liquid particles ) -!);,[K, - ,(_,: (T,PJ 

Combusti on 

- ~ f} f!. , f Tr> 

The momentum and h e at transfe r between the particle cloud 

and the gas mixture are still to have the form 
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(A.;.70) 

(A- 71) 

These expressions for burning particles can conceivably be in error. 

Williams ( 2 ) pointed out that there might be a thermal jet- like effect 

due to combustion which can change the drag law; and combustion and 

condensation appearing on the surface or close to the surface of the 

particles may introduce a non- uniform temperature within the particle . 

In the derivation of Wf , we have introduced a relaxation 

time of diffusion r.l> Although T.o does not quite have the same 

physical interpretation as Tv and Z-.o , they are all very simply 

related through Lewis number and Schmidt number as shoWn in eqn. 

A-2 and eqn. A-3. It is convenient to express both T 0 

in terms of 

(A-72) 

(A-73) 

Using Stokes drag law, Yv is 

(A-74) 

rYlo and CT;, are the mass and the radius of the particles before 

reaction and )-/• is the viscosity at some reference state. If both 

Schmidt number Sc.. and Prandtl number ~ are assumed to be 
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c on stants, 

(A- 7 5) 

(A- 76) 

Using eqns . A- 53 - A-55, we h ave 

F· :: It {'ji -t,/;){-j/;X:V' (A- 7 7 ) 

Q .=ft {7j - T) (-jfJ{~jz (A - 78) 

Condensation Combustion 

(A- 7 9) 

(liquid particles ) t £jf;~/f;-$J -J/;:iftf:Jf.,f z· 1;,lfj 

4. Summary of Basic Equations 

The continuity equations for the gas mixture and the particle 

c l oud are 

(A-80 ) 

(A- 8 1) 

Using Fick 1 s law to describe the diffusion ve l ocities for a binary mix-

ture, t h e continuity equ ation for the oxidizing agent can be written as 

(A - 82) 
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and l ::= - I for the case o f ·condensation. 

The momentum equatiOJ?.S for the gas mixture and t~e particle 

cloud, with rllj = U/j , are 

(A-83) 

(A-84) 

Since the particle cloud exists either in liquid or solid phase, 

we assume that 

(A-85) 

The energy equations as given by eqns . A-42 and A-40 are 

(A - 86) 

(A-87) 

For calorically perfect gas with the specific heat of gas species 

equal, t?1 = <;z. , we have ltt- l
0 

= f T and y -f <)"' <: 1 
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Equations A-86 and A-87 are reduced to 

r:J. (/" ("". I / tj r;f (; '>. I , j t / J s1-E. 
fJ1LL,PT-tL.2l1~.,-t/t1./ + fU/eiijLt(l-1.-:.-Zv1;{,· t(il,- = df 

.:!.Z rlM; ~{- 1 r Lljch'j + l/"'J + F; {tJ';-t/;) + Q +~ - (Ji - I.14.,-&;J 

- 2 f ~ti~· (i ,;,,,:· k'1t~)} - 7fc f -YT -+ -f ( 1:7:- t/:t/,. 
(A-88) 

+ 1l J/; - M," '1J- rx Ub~0 
-f- 7 7°1 

(A-89) 

For liquid droplets, latent heat of vaporization should be included, 

and eqns. A-88 and A - 89 are 

rfi-fy T -t .[f d_~· LI-<~}+ f ~r;J{Y T -r J-.:f da/ ti..~] = ff 
{) .d£ g!L;_ . or} f 

+ ;/o1,<j + T!) ri-XJ + H ( 7; -lf,) -+ 0 + a.;!J - { 'J;' -Z-Lia.~· 'Gty) 

-Xr~a!;· (fa.~·d~)- 'jfc7-r '-t;J-<jT+f(tt:tf,-

~ z/; tt; - ~; u,] - [I t4 fd
0 

-+ 7 t,;] 
(A-90) 

~To ..(),/ r:J°l t c -JT -+ '! "'fJ c .:;ff = - Q + c,,.Jr '- c71 J (A-91) 

In the problem of condensation of liqui d droplets, eqn. A - 90 is 

modified by letting J/:: o . The energy equation for the gas mix-

ture is 
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(A-92) 

and eqn. A-91 is still valid for the p article cloud. 

When there is change of phase betw een solid particles and 

the vapor state, L Cf) in eqn. A-91 includes the heat of fusion as 

well as the heat of vaporization. 

The remaining gove rning equations are 

(A-93) 

and 

(A-94 ) 
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