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ABSTRACT

Three different categories of flow problems of a fluid contain-
ing small particles are being considered here. They are: (i) a fluid
containing small, non-reacting particles (Parts I and I); (ii) a fluid
containing reacting particles (Parts III and IV); and (iii) a fluid con-
‘taining particles of two distinct sizes with collisions between two
groups of particles (Part V).
Part 1

A numerical solution is obtained for a fluid containing small
particles flowing over an infinite disc rotating at a constant angular
velocity. It is a boundary layer type flow,and the boundary layer
thickness for the mixture is estimated. For large Reynolds number,
the solution suggests the boundary layer approximation of a fluid-
particle mixture by assuming W = Wp . The error introduced is con-
sistent with the Prandtl's boundary layer approximation. Outside the
boundary layer, the flow field has to satisfy the "inviscid equla.tion” in
which the viscous stress terms are absent while the drag force be-
tween the particle cloud and the fluid is still important. Increase of
particle concentration reduces the boundary layer thickness and the
amount of mixture being transported outwardly is reduced. A new
parameter, [3=1/ﬂ1'v, is introduced which is alsc proportional to y.
The secondary flow of the particle cloud depends very much on B. For
small values of B, the particle cloud velocity attains its maximum
value on the surface of the disc,and for infinitely large values of j3,
both the radial and axial particle velocity components vanish on the

surface of the disc.
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Part II.

The '"inviscid'" equation for a gas-particle mixture is linear-
ized to describe the flow over a wavy wall. Corresponding to the
Prandtl-Glauert equation for pure gas, a fourth order partial differ-
ential equation in terms of the velocity potential ¢ is obtained for the
mixfure. The solution is obtained for the flow over a periodic wavy
wall. For equilibrium flows where lv and )LT approach zero and
frozen flows in which lv and A become infinitely large, the flow
problem is blasically similar to that obtained by Ackeret for a pure
gas. For finite values of AV and )‘T’ all quantities except v are not
in phase with the wavy wall. Thus, the drag coefficient CD is present
even in the subsonic case, and similarly, all ciua.ntities decay exponen-
tially for supersonic flows. The phase shift and the attenuation factor

increase for increasing particle concentration.

Part IIL
Using the boundary layer approximation, the initial develop-

ment of the combustion zone between the laminar mixing of two paral-
lel streams of oxidizing agentrand small, solid, combustible particles
suspended in an inert gas is investigated. For the special case when
the two streams are moving at the same speed, a Green's function ex-
ists for the differential equations describing first order gas tempera-
ture and oxidizer concentration. Solutions in terms of error functions
and exponential integrals are obtained. Reactions occur within a rela-
tively thin region of the order of )‘D' Thus, it seems advantageous in

the general study of two-dimensional laminar flame problems to intro-
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duce a chemical boundary layer of thickness )LD within which reac-
tions take place. Outside this chemical boundary layer, the flow field

corresponds to the ordinary fluid dynamics without chemical reaction.

Part IV.

The shock wave structure in a condensing medium of small
liquid droplets suspended in a homogeneous gas-vapor mixture con-
sists of the conventional compressive wave followed by a relaxation
region in which the particle cloud and gas mixture attain momentum
and thermal equilibrium. Immediately following the compressive
wave, the partial pressure corresponding to the vapor concentration
in the gas mixture is higher than the vapor pressure of the liquid
droplets and condensation sets in. Farther downstream of the shock,
evaporation appears when the particle temperature is raised by the hot
surrounding gas mixture. The thickness of the condensation region
depends very much on the latent heat. For relatively high latent heat,
the condensation zone is small compared with AD. |

For solid particles suspended initially in an inert gas, the re-
laxation zone immediately following the compression wave consists of
a region where the particle temperature is first being raised to its
melting point. When the particles are totally melied as the particle
temperature is further increased, evaporation of the particles also
plays a role.

The equilibrium condition downstream of the shock can be cal-
culated and is indépendent of the model of the particle - gas mixture

interaction.
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Part V.

For a gas containing particles of two distinct sizes and satis-
fying certain conditions, momentum transfer due to collisions be-
tween the two groups of particles can be taken into consideration using
the classical elastic spherical ball model. Both in the relatively
simple problem of normal shock wave and the perturbation solutions
for the nozzle flow, the transfer of momentum due to collisions which
decreases the velocity difference between the two groups of particles
is clearly demonstrated. The difference in temperature as compared

with the collisionless case is quite negligible.
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I. INTRODUCTION
Much has been accomplished in the study of the dynamics of
fluids containing small solid particles. Because of the complexity of

: i g 1,2
the problem, most solutions involve some perturbation scheme( i &)

or approximation methods(3’ 4). For a laminar flow of a fluid con-~
taining small solid particles over a disc rotating at constant velocity,
a s‘imilarity solution can be found and the solution can be obtained by
numerical integration.

(5)

Von Kirmén'~' first investigated the flow of an incompressible,
viscous fluid over an infinite disc rotating at a constant velocity. He
conceived of a true similarity solution and was able to reduce the gov-
erning equations to a set of ordinary differential equations. Using the
integral method, he was able to obtain an approximate solution. More
accurate values were obtained by Cochran(é) who used nume rical inte-
gration methods to find the solution close to the disc and matched to an
asymptotic series solution valid far away from the disc. - Cochran's
solution, which is quoted in some tex‘cbooks('7 ), has a sign error in the
pressure distribution.

The flow field obtained by von KArmé&n and Cochran is of a
boundary layer type. In fact, von Kirmé&n used this solution to check
the accuracy of Prandtl's boundary layer équations, and confirmed the
mai.n assumptions of the boundary layer theory. Perhaps this rotating
disc is also the first study involving secondary flows. Due to the
boundary condition of the fluid on the disc, the layer of fluid close to

the disc is constantly being transported in spiral paths along the sur-

face from the axis of rotation to the outer edges. This is compensated
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by the fluid flowing along the axial direction towards the disc, and is
again in turn being transported towards the outer edge. The disc thus
acts very much like a centrifugal pump, and the solution illustrates
very well the characteristics of a secondary flow in three-dimensional
boundary layers.

A similarity solution still exists in the case when the fluid
contains a cloud of small particles. The problem is certainly useful
in designing centrifugal pumps and other areas of chemical engineer-
ing. The solution illustrates particle-fluid boundary layer flows as

well as the secondary flows involving a cloud of small particles.
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II. BASIC EQUATIONS

The governing equations describing the flow of a fluid contain-
ing small particles have been discussed by many authors. Here, we
will mainly follow those given by Marble(l). The following problem is
being investigated. A half infinite space Z 2 O is filled with an in-
compressible fluid containing small particles. The boundary plane
Z=20 is rot-ating with a constant angular velocity £2 . From sym-
metry arguments, we can easily see that all the quantities are inde-
pendent of the angle & .

Denote (W, V, W) as the radial, angular, and axial velocities
of the fluid and (Uf, v}‘ (.J;:) those of the particle cloud, and the
mass density of the fluid and the particle cloud by f and f/’ . The

continuity equations for the two phases are

-2 (2 uw) + j':—z-(n.w’)-ﬁo (1. 1)

m(" Up) *az(" we) = O (1. 2)

The corresponding momentum equations are

Ju vi Ju 1 9P FR7A J
Uih X rwWiE s cFse v (TEeSE )L ()
v L yv IV XV Jd v otv '
“oa VA tWoE ® V(FE*&C'E + 57/~ Fy (1. 4)

Wi e FE (38 A s
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ufd "",‘L&J'(AJ/’ r - ”}—E’ (1.6)

IV A IV N
u/ﬁ4%f+u}ﬁ:-,}/l'e | (1. 7)

J W) o L |
wit o wdF . -FA .9

where /o is the local gas pressure and /L,‘- y Fo 3 /:! are the
forces in the radial, angular, and axial directions exerted on a unit
volume of fluid by the particles. Using Stokes drag law as a first

order approximation to describe the particle-fluid interaction,

Py =ﬂf6rr/av*(aj,_u}=’zf’//3fc};-u) - (1.9)
where ﬂf is the particle number density of the particle radius ¢
and mass /7 and 77[; m = }% . Zv is defined as

L, = mﬂﬂ/ua- (1.10)
Physically, Ty 1is a characteristic time during which the relative
\‘relocity between the fluid and the particles is reduced to - of its

initial value when Stokes drag is the only force acting on the particle

cloud.

Similarly, #6 and Fz are

fo = ‘é;//%—v} : (1. 11)

Fr =% fp(wp-w) (1. 12)

The boundary conditions are:



u(v,o0)=0 U (r,0)= o

v(r, o) =na viv, o)z 0

W(!’, oJ)= © W(V; 00)5 ComsTANT

(1.13)
pere) o

Uf(, 90)-'—' o

ljp (v, 0) =0

wp (7, w)z= W(r, )

B (v, m)e P I
wiv °°) has a finite limiting value because the mass flux
Plre)w (v, o) balances the radial outflow near the disc as dis-

cussed in the previous section. ;l’ is the density ratioat Z=a0 |,

X = ;wa//’.
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III. SOLUTION FOR THE EQUILIBRIUM FLOW

From the definition of 7v , (eq. 1.10), the limiting case

when o — 0 corresponds to either very small particles or the

viscosity of the fluid AU is very large.

the velocity difference between the particle cloud and the fluid is ex-

Under such circumstances,

pected to be very small. This is the case when we examine equations

1.6, 1.7, and 1.8. Define

ZI,\‘:' uf)‘u

M;__.._ P/o"]/ (1. 14)
o v = i

X

The momentum equations for the particle cloud can be expressed as

2

NETRE S T YO8 .15
Vo uv J

ur+7—+w;—f:_.z},f.,o(‘é) (1. 16)
4 W

Uy rW 35z =—-z”‘-.f/- +0 (wt) S (1.17)

The continuity equation is

J J

‘;‘;[ru?)-f-gz(rwl;): 0 (e, W) (1.18)

Since both the velocities and their spatial derivatives are finite, the

limiting case when 7,= 0 requires Us—>0 , }Y —» 0 , and

Thus, equations 1.15 - 1. 17 are reduced to

J 5 J Yo =

W — o .



V v -4
uj’lr-_‘ -,\-_L_l?.y., + W3r .-:-—i_lé- = - —lfﬁ" (1. 20)

JW 3 wo-w
u-"—‘dr -I'y|/:"§/ ;’% = - —F——"Z_y (1. 21)

From the continuity equation we observe that A

/o = ron;f(alnll:fz?/ .

The momentum equations for the whole system, in the limiting

case when Ty — O , can be expressed as

ug¥ +;‘4;-z“'+h§7‘f= V*(g% +9%.g+°_§;1{ (1. z3j
where

P = /a_f_;(m) = pCr+ X)
p* = ,u/(/or//:{wj = /t/(HZ’)f’ : (1. 25)

The solution for 7, — 0O is therefore identical with the flow with-
out particles with an effective density /’"s /"(/ + ¥) -+« In the

literature, this limiting case is usually referred to as the '"equilibri-

um flow. "

The other limiting case when {y— @ » the presence of-the
particle cloud does not change the fluid quantities. The particles are
moving with constant velocities Z(/: =0 , % =0 , V% = h//, (v, o)

and ﬁ:fx/ . This case is usually referred to as the 'frozen

flow. '
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1IV. METHOD OF SOLUTION

To investigate the problem for finite values of 7 , it is con-
venient to introduce a dimensionless distance variable 7 : 7 is
defined as ‘

)
7= (2)% (1. 26)

Furthermore, we assume that the velocity components as well as the
particle density jfg and the local fluid pressure P2 can be ex-

pressed in the following form:

Ulr, 2 = 2rFq)
vir,Z) = 0 v Gy
wiv, z) = (aw? H)
pl, 2= plre)= pra Plr) (1. 27)
{;fr’, Dtz = f2(n2) = Q)
S 2) u/(,;z) = Q7rklq)
ﬁ-(r,lef,(:;z) =0rG (7
/"'(V,Z)nf(';.é') =-‘(.ﬂv)’flf,[7)
Using 1. 26 and 1. 27, egs. 1.1 to 1.8 can be reduced to a set of ordi-

nary differential equations

-;‘,’7/;?41‘2/' = 0 (1. 28)

(1. 29)

T 26 -HEE 4 pl4-06)= 0 (1. 30)
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%‘-ZHF +2§/.7E fﬁ(,,ﬁ +QH)=0

and
/8 = (-ﬂ- Tv)d,

The boundary conditions according to equations 1. 13 read

Flo)= 0 Floo)=0
Glo)= / G lo=)=0
Hlo)= O

P o) =20

Q@ (00) = X

5.?[0-}:0

§a[~)=o

7—}:/‘”): 2 Hlee)

(1.

(1.

(1.

(1.

{1,

(1

31)

32)

33)

34)

35)

.36)
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Since the problem involves a set of non-linear differential
equations, numerical integration is the only means to find an exact so-
lution. The problem is further complicated in that it is a two point
boundary value problem. From eq. l.36 we observe that three of the
ten boundary conditions are prescribed at # = C while the remaining
seven are at /f=® . Thus, we propose to integrate the equations
numerically from large values of /7 Dby first finding an asymptotic
solution which is valid for large '7 . The asymptotic solution in~
volves three parameters, namely A § B , and c . By varying
A , B, and € , we can satisfy the boundary conditions F£(e/=0 ,
G(o)=/ , and He)= o .

To find the asymptotic solution for large values of 7 y WE€

assume

Fln)=Fl7) + eFl) + &)

6'[7] = GroJ[,?} 4 EG‘(’J[-?}* &t 4'(1)(7}
/—/(71: Hf°/(7) +EH(U[7} + e 4?2 ('Z)
Fffy)z ;/;"’(7) * e,/g"’r»;) + e‘;‘" () )
6},(7}: ?’,f"(?J + é?,wfw + e‘fo"’fyj
Hy (1) 2 17/,,”(7) se iy E4707)

Offz) = 67{0’(7) + € 0”(7) + ¢t 0‘“(7_)

Plp) = PP+ e P )+ et PPL7)

From the boundary condition 1. 36, we obtain
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F*(q)= 0
% () = o
H™ ) = Hlw) = = ¢

E¥ (= o | (1. 38)

(o)

éf (g)= o
’_?m (7} —_— Z/C
e )= X
P’ (7) = o
C is related to the fluid velocity along the axial direction for
7.; 00 , and is a function of X .
Substitute eqs. 1l.37 into eqgs. 1. 28 to 1. 34; using 1. 38, we ob-

tain the first order equations.

%’:f—gl* 2F"” <o

(1.39)
L e B e UG X £ =0 e
4/'7:", C%/g?_"’,ﬁ(?"; Ze")= 0 (1. 41)
‘5% 2 2CF" 2295 s Blrp-c o =0 (1. 42)

- (_:’,f- + BE"- FF7=0 ‘ (1. 43)



]

Caf 1 ALGT-HgT) =e

N

7]

J,_/ (1)‘_
_7—%2-4-2/; =0

The boundary conditions are simply

H"6e) = o

-y )

Fo(e)z0

F(ll(“)zo

(N

(v J=0

d

fffo’(a')= 0

éu;[’}:o

f

%(u{“) =0

0(1) (ﬂ’)-'-'o
I (o) = o

%6;—;-'}(“) =0

Solutions to eqs. 1.39 to 1. 46 can very easily be found.

m"‘ﬂ(‘/{,("—2('06{—]/'/”’*'5(0"7"0

(1. 44)

(1. 45)

(1.46)

(1.47)

They are
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Flg) = Ae T

&g = 8e>7

-%;-7::’(7/- sAeT

dﬁ%;{—ﬂ = 5 Be’7

H" ) = - AT

F”('Z) = - (1+EIAT

(1. 48)
6"t = -1+ 56"
"'f’m{?): -_—s.é‘[/+-é-f‘)/?e;"
6= o
an[z)‘ " 2'?5!-2/?(—2AJ-—A}6’(/+2£J]€:7
with
_ _—[[c _,_c_r) /(c . ‘%( /,;] (1. 49)

Using the zeroth order and first order solutions, we can easily find
2
second order guantities Ff:r/ , etc. It is apparent that the second

as
order functions are of order € 7 , and third order functions are of
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S
G’J 7

order Thus, for large values of 7 , we have

Flg) = AeT + pe?1)
Glg)= 8T+ o(e®)

' jf?)= sAT + o(e??)
ﬁ/f%’-—- sBe*T+ o le?57)
Hlp)= - ¢ — 2457+ 0(e?7)
5,(7J= - (1+5/)Ae5T + 0(e?’?) (1. 50)

G (1) = ~(r+5£)8eT + 0(e*)

;—,/,(7}:-' - X ,-.-3.?—(/1‘ .SA')/?E57+ o/e””'J

Qp)= X + 0(e*?)

Ply)= 7128988 _ 24c-245 - Ap (1o ST + 0=V

Numerical integration is carried out from the point 7= % . 7 is
28 : : :
chosen such that et is negligible. The expressions in 1. 50

contain three parameters A4 , & , and C . The boundary condi-



.
tions at #= 0 are satisfied by varying #, &, and C .An iteration
procedure is used by considering Fl7s0) , §&lp=0) , and #/(770)
as functions of #4 , | 8 , and C ,

F/7=o) =2 F(CA 8,c)

GlGp=0)= (A B8, c) (1. 51)
Hlpz0)= H (4 8 c) '
With initial trial values of 4 , &8, , and (o , the boundary
values at #, are obtained using l.50. Equations 1.28 - 1.34 are in-
tegrated numerically from 77 7o . The values for F(p) , &§l7) ,
and H(7/ at =9 are /-[/7./ B.,G) ., G Ao Ba, (o), +H (R, 8o, ).
Corrections to 4 , B , and (o are to be found such that
Flpg), &(p) , and H ) satisfy the boundary conditions at # =o . |
Let ﬁ . A’, , and g., be the corrections to 4 , &, , a.nd (.'_ "

Thus
Flhneh, Bush, Co£) % F(a,8, 60035k ¢ 54 +354 =0
GGk, ek Coh) = 6(a,, 8, Co)r SI4, 4 :‘?’—‘—" .2y - y, (s 820
H ok ButlirColl) 2 td (3, 8, C.)o 35K « 288 <824 =

28
Thus

JF OF
—;,?ff, oj’f& -+ :r.;Af, = = F(A, Ba, C.) (1. 53)

Y- = /= G(As 8o, o) (1. 54)
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oH 2+ oH
—;é‘f: Bl + 564 = - HC Ao, B.. o) {250
The derivatives can be found numerically and A, £ , and ’F.-:

can be obtained by solving eqns. 1.53 - 1. 55. The procedure can be
repeated until the boundary conditions at #4=0 are satisfied. This
method converges rather fast and is usually within one per cent error
after two or three iterations.

Numerical integration is performed by using California Insti-
tute of Technology's IBM 7094 using DEQ subroutine. Two sets of
solutions were obtained by using various values of X and /6 , where

X and /6 were defined previously as

X = fled /) p (e
A = «n)”’

The first set is for /6 = 0.5 and values of X equal to 0.0, 0.5, 1.0,
1.5, 2.0, and 2.5 were used. The second set is for X = 0.5 and
values of /6 =0.0, 0.2, 0.5, 1.0, 2.0, and co were used. The nu-
merical solutions were plotted on Figures I-1 to I-12. If we define J
as

”‘[F?o) + (Gl)=p* 4 ;L/[:}jﬁ (1. 56)

the solution is accurate to 4 £ 0.01.
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V. DISCUSSION

From the curves describing the velocities and densities, both
for the particle cloud and the fluid, this problem of a rotating disc is
very much a boundary layer type flow. Furthermore, the boundary
layer thickness for the fluid and the particle cloud is approximately of
the same order. This thickness, d , corresponding to the layer of
mixture carried around by the disc, can be estimated by equating the
centrifugal force and the shearing stresses acting on the mixture(s).
The centrifugal force acting on an element (1/0, +f}o/r rde d at a
distance r from the axis is (//"j, » F )y nt dr rdod’+ The same
element is also acted upon by a shearing stress lw . If f is the
angle between lw and the circumferential velocity, the net force on
the element due to the shearing stress is Z_w J'/N_t;{d' ra/e 7 L is
proportional to the velocity gradient,

Zh»Cosjf - r'J;/4;

Equating the two forces

% 2
/}3+/€)V(%%9 dr rde d ~ ALY f&ﬂj{rkﬁ9d4:jg
or
/
J° =V %nd 2
If it is assumed that the direction of slip close to the wall is approxi-

mately a constant, the thickness is
-+ % Y
I~ ()" = g% (1. 57}

a
where #e is the Reynolds number defined as —%L + Thus, in

the case of large Reynolds number, the effect of the wall on the mix-

ture is confined within a thin layer of thickness d . The axial com-

ponents of the fluid velocity and the particle cloud velocity as com-
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pared with the radial or angular components are of the order /?9}4
within this boundary layer d . Thus, Prandtl's boundary layer
theory can very easily be extended to the case of a fluid containing
small particles by suppressing the axial velocities of both phases.
Corresponding to neglecting g—ge in the bounflary layer theory, an

additional relationship

w(r z)- we (7, Z)= o (1. 58)

is introduced. The error in assuming eq. l.58 is of the order /?e’é .
which is consistent with the boundary layer theory. Outside this
boundary layer d , the flow field has to satisfy the "inviscid' equa-
tions in which the viscous stress terms are absent. These '"inviscid"
equations correspond to the Euler's equations in Prandtl's boundary
layer theory.

The boundary layer thickness ) decreases with increasing
particle concentration. This implies that the amount of particle~-fluid
mixture being transported outwardly is reduced, which in turn re-
duces the velocity component in the axial direction flowing towards the
disc as shown in Figure I. 1 and Figure I. 3.

The secondary flows for the particle cloud and the fluid are
quite different for small values of /6 . There are two forces acting
on the particles --the particle-fluid drag force and the centrifugal
force. Close to the disc, the centrifugal force dominates and parti-
cles are constantly being thrown outward. The radial.velocity of the
particle cloud acquires a maximum on the disc (Figures I. 4 and 1. 10),

while the fluid radial velocity is zero because of the boundary condi-

tion at the wall. For larger values of /5 , the particle~ fluid force
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plays a more important role. For & = 2.0, the radial velocity of

the particle cloud acquires a maximum away from the disc, as shown
in Figure I. 10.

When the radius A of the disc i.s large compared with the
boundary layer thickness, as is almost always the case in practice,
the boundary conditions along the edge of the disc can be neglected.
The solution for the infinite disc can be used in this case, and the

turning moment /M for the disc can be evaluated.

Y3
M = "_/.?fffz Z-aea/r

The shearing stress (eoz is /u.j)'% . Using eq. l. 27, the shear-

ing stress can be expressed as

e = A% .0 = D# Fo

Introducing a dimensionless coefficient of turning moment

M
Con = z LR

this gives

_ ndE/
Cu = retarE

A (1. 59)
@6

The coefficient of turning moment is plotted on Figure I. 12. If the
disc is immersed in a fluid containing small particles, the net mo-
ment is twice as large.

The problem is solved under the assumption that the amount of

particles reflected from the disc is negligible. From Figures IL.3and -
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I. 9, we see that hf: on the disc is indeed small except for small

-4
values o£/3 . Furthermore, since H?; ~ fe , this assumption

is certainly justified for large values of Reynolds number. In fact, in
the boundary layer approximation to the particle-fluid dynamics, to be
consistent with the boundary layer assumptions, the particles reflect-
_ ed from the wall are neglected. To study the problem with particles
colliding with the disc, additional differential equations describing

the reflected particles are necessary with proper particle-disc colli-

sion model. Numerical integration in this case will be very much

involved.
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Fig.1.11, Particle Density (x = 0. 5).
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PART II.

TWO PHASE FLOW OVER A WAVY WALL
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I. INTRODUCTION
The perturbation technique applied to problems of aerodynam-
ics was formally introduced by Prandtl(l) and independently by

Glaue rt(z)

, resulting in the well known Prandtl-Glauert equation.
Ackeret(3) was the first one to apply the theory to both subsonic and
supersonic cases.

The same problém extended to the case containing small par-
ticles was first investigated by Marble(4). Marble introduced velocity
potentials, which seems to be the natural variable in the spirit of
small perturbation theory in aerodynamics, and obtained the corre-
sponding Prandtl-Glauert equatién for two-phase flow. Chu and Par-
1ange(5) applied the same basic principle to the propagation of sound
in a two-phase medium. Attenuation and dispersion of sound based on
Chu and Parlange's theory was obtained by Temkin and Dobbins(6).
The case investigated by Chu and Parlange is, in the true sense, an
acoustic problem, rather than a problem in aerodynamics. Lick(7)
investigated a rather similar problem of propagation of small disturb-
ances in a radiating gas. An asymptotic solution using Laplace trans-
form was obtained.

A small disturbance solution of a steady,two-dimensional, two-

phase flow over a wavy wall using the equations derived by Marble is
obtained here. Resler and McCune(a) treated the magneto-aerodynam-
(9)

ic case, and Vincenti solved the non-equilibrium flow over a wavy

wall, but the governing equations for all these cases are quite dif ~

ferent.
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II. BASIC EQUATIONS
We begin by stating the equations of a steady, two-dimensional,
'inviscid'flow of a fluid containing small particles. The problem is not
inviscid in the true sense. Although the viscous stress terms and the
heat flux are neglected, the viscous interaction and heat conduction
between the particle cloud and the fluid are still retained in the formu-

(9)

lation. Following the notations given by Marble'’’, the equations of
state and the equations of conservation of mass, momentum, and en-

ergy for the particle cloud and a perfect gas, both with constant spe-

cific heats, are

P=FRT | (2. 1)
e ,.%?:,a (2.2)
g;t;xb_f,:+_%%§_‘o (2. 3)
u—;%-fvjfj‘:—/%;é; -~ A (2. 4)
a%*vgj:_#ﬁje*@ (2. 5)
s 5% 2 pp3p -k el
f”fg%*f‘fﬁw :_/_} (2.7)

X °
; (2. 8)
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2% I - _ | (2.9)
/ﬁ,C%dx*/;Ci//a")j Q

where f, T , WU, VYV are respectively the gas density, tempera-
ture, and velocity components, while J}’, ; 7; . uf., and 1//9 are
those pertaining to the particle cloud. / is the local gas pressure.
Fx - and /} are the forces exerted on a unit volume of gas by the
particle cloud and & is the heat exchange rate per unit volume be-

tween the gas and the particles. If the drag force between the parti-

cles and the gas follows the Stokes law, A« can be written as

A = ;9,47,—/.40- /Lj,-u).-;f;/@{%-u)u, (2. 10)
where 71/: is the particle number density, and

7i__ml(..

- (2.11)

U, is some characteristic velocity. Av is the characteristic
length in which the relative velocity between the fluid and the particle

cloud is reduced to e of its initial value. Similarly,
/
F;‘ =, pU (V- %) o (2.12)

Similar consideration holds for the heat transfer between the particle

cloud and the fluid when the temperature of the two phases is not at

equilibrium:

Q= Hpo#10E(-7) = 5 26 U (%-7) (2.13)
When

77:“{FM='§1@”]V (2. 14)

2 "b;ur

Ar has very much the same physical meaning as  4v . Ay is the
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distance in which the temperature difference between the two phases

is reduced to €~ of its initial value. The terms /L;,-u)f‘; and (%— V)f'}
are the energy dissipation terms due to the momentum transfer be-
tween the particle cloud and the fluid. Here, we assume that this
dissipation term is totally absorbed by gas.

Since we are concerned with the flow of small disturbances due
to a wavy wall, egs. 2.1 to 2.9 can be linearized in the usual manner.
We assume as usual that the flow can be described by a small per-
turbation on a uniform flow with velocity' Uo parallel to the X -axis,
and with the undisturbed temperature % , density /4 , and pres-
sure ﬁ . The particle cloud and the gas are assumed to be at equi-~
librium in the undisturbed flow. Thus, the unperturbed particle ve-
locity, temperature, and density have values %s , 7o , and 2’/,’,
where X  is a constant. Denote perturbed quantities by primes; the
velocity components are given by U=z Uo+ W, Zﬁ-‘-’ ?/o+21; , V=v7,
'{O = "//9‘ . Similarly, the temperatures, densities, and the local
pressure of the gas can bé writtenas 7= 7Z* 7', ’9’; =7+ 7/',',
/0:/‘; 2t b ; = /'l/ﬂ + 7;' and P= ﬂ -r/z:’ . Neglecting
higher order terms, the linearized form of equations 2.1 - 2,9 takes

the following form:

- . ke
PR

7 (2. 15)
dJd ’ ’ 7 .
U 5% + 5% + £S5 =0 (2. 16)

A7 |
z{.—,;"—i,’fa’ + 2’/2[—:3’—%—’ * 7 J= 0 (2.17)



du L gp (fd ~ultle
/&(ndx - = /?JX -+ X Zy (2. 18)

JV’__'_._"_JP' V”— ’l/l .
UeTx = /i-;?**/?.’[—”—;gf4 (2. 19)

u—j’éj’ = "7:—u.(u/o—u7 (2. 20)
%' / , |
”«'%{,"' = il (J/{,—-V:) (2. 21)

Lo = o dE L gt i
a/a-z—-z{,d—x-f,{’/f(/},zl,z;[}'-'r) ' (2. 22)
CUo T = - Gy Ue (- ) (2. 23)

Velocity potentials for the perturbed velocities of the particle
cloud and the gas can be introduced. Rewriting the momentum equa-

tions in vectorial form

_g.-?—’.-:— _L ’ il - —
=T BVt XUz (s//o o (2. 24)
s IS i — _
gl = '5:”0[%'-' v) (2. 25)

Taking the curl of the sum of equations 2.24 and 2. 25, we obtain
M—i[VXV’-f-X 7z ] = 2. 25
°dx v x /o = 0 ( . )

Since it is initially a uniform flow in which the vorticity is zero, it

follows from equation 2. 26 that curl ¥’ and curl ;‘/:' remain zero.

The velocities of the gas and the particle cloud can thus be represented
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as the gradient of their respective potentials:

V= v (2.27)
7= ‘ (2. 28)
779

The linearized equations (2. 16 - 2. 23) in terms of the velocity poten-

tials are

d
Uo 7,5- ¥ Jx‘

u dB + AR S +-;,§9§’?]=0 (2.

B s L dé, !
%i‘f’-‘"ﬂg%* ;),[37"'53?] (2.
u}% - FE +z’2ﬂv-{%,%ﬁ/ (2.

3L U 2
UG =~ L (55 - 5F) e

J
qux a %\:‘(—f (2.

FoudE - ud ARGRG-T @
7.I

Cﬂ.;—,—f = una [7}"7-) (2.

i‘ﬁ_] - {2

29)

30)

31)

32)

33)

34)

35)

36)
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Note that the momentum equations 2. 31 and 2. 32 as well as 2. 33 and
2. 34 are not longer independent of each other. Using equations 2.29,
2 ;’;0, 2.31, 2.33, 2.35, 2.36, and the equation of state 2. 15, a par-

tial differential equation in the gas velocity potential 519 can be ob-~-

tained.
er [f IxE ‘35?] f‘[AV*JT) [lﬁ’dx‘ ‘74
..;,.//5:‘;: J{;ﬁf (2. 37)
with
P 2. 38
27. = ?/C“X ;!V ( )
4 2 U 2
B = Mol - (2
(2.39)
,5, . / - " 2@l /f,_;x),l,, [,.+rc3] /
, = M, = ()RR T TG (2. 40)

2 M'- ns Z/oz
KB =l -] =5z 7 = (2. 41)

v+ XC (1+%)f

Equation 2. 37 corresponds to the familiar Prandtl-Glauert equation in

gas dynamics. The relationship is more apparent if we set Av and
»

7 both equal to zero. The resulting equation describing the equi-

librium flow is almost identical to the Prandtl-Glauert equation. The
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Mach number corresponding to the equilibrium flow is

G = (7 _772,)% (2. 42)
where r= ?(:%% and £ = [H'X)f;’ . Qe is usually referred
to as the equilibrium Mach number. In the other limiting case where
both Av and 2: approach infinity, the resulting equation is es-
sentially the classical Prandtl-Glauert equation and describes the so-
called frozen flow. The corresponding Mach number, which is usual=~
ly referred to as the frozen Mach number in particle-fluid dynamics,
is identical with the Mach number in the flow of a pure gas. In the
case when either 4v or 2; is equal to zero, which corresponds to
the momentum equilibrium flow or the temperature equilibrium flow,
the corresponding Mach numbers are respectively (v zf-;"-) % and
(73)%

The differential equation 2. 37 is still hyperbolic for M;f >/

and elliptic for M]I </ . However, there is a certain range of 24
in which Me >/ and M]‘ </ . In this range, the characteristics
of the equation will change discontinuously from hyperbolic to elliptic
when Av and /7: approach zero. This singular behavior appears
in many other problems in fluid mechanics in which there are two dif-
ferent characteristic lengths. In the problem we are going to study,
they are the relaxation lengths 7, or 2: and the wave length of

the wavy wall.



-44-
III. SOLUTION FOR A WAVY WALL
The particular problem considered is the steady, two-
Gimensional flow in the half plane above an infinite sinusoidal wall of
contour e.dr}fz.-ifx where € is the amplitude and A is the wave
length. An exact solution is particularly easy to obtain because of the
periodic boundary condition in A ., The boundary condition on the

wall is

"‘zf‘r‘f) (2. 43)

= = 2m U, Cos ZAX = 275 U fp (e

where HAe denotes the real part of the expression in the bracket.
The other boundary conditions are &’ and v’ , etc. being bounded
at y: o . The solution for ¢ can be written in the following form

@ = - /‘Pe[% E—%ﬂéie ‘:%ZJ

(2. 44)

# can be found by substituting expression 2. 44 into the differential

equation 2. 37:

2r 5, 4 2
A= (4,0 k)= - DAEy t lveadB - (2. 45)
A lr + 0w+ Ne) - 7
with
Av ;
Ay = TZ?‘T (2. 46)
Ay = D= 2x (2. 47)
4, and -é’;_ can be solved by equating the real and imaginary parts

of eq. 2.35. 90 can therefore be expressed as

o "%u'lé‘ 4:%'; - Ra
P =-R __.-——;ff& " 3”6 (= éa"’)] (2. 48)
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% can easily be obtained by integrating eq. 2. 33

/ 21 27
A

The velocities as defined by eqs. 2. 27 and 2. 28 are

& 'L{, = gr
U= = 2T5 lgs € 5 I 0s Hx-dy) + 4]

7f1nJ/ ='g€:

_2n
V= -2151U ¢ Tf’tyco.s%a(x' £ y)

€
- 2 b/ b Us - _gl {t
/b( = ;’ _
™ wteayeenig® © cos /32 (x-4g) + 4]

]Ldn c‘; = Kp’t = /Ivgz

%; + ﬂvgz
- 2n+i, _2Zy

f//° Y I yca‘g[%'ﬂ‘("'éf)*f”]

fdrlcg;:-/lv

(2.

(2.

(2.

(2.

(2.

(2

49)

50)

51)

.52)

53)

54)

55)

(2. 56)

Similarly, all the other quantities can be found. They are all of the

form

2 '
A e —5‘5’5{(05[—%'5(2'— f..af/) + 5]

(2.

57)
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I1V. DISCUSSION OF THE SOLUTION

. All the perturbation quantities decay along the straight line
with slope % = —z:" . The rate of decay is exponentially pro-
portional to 'é, . Along the straight line = ka.y , ¥ isin
phase with the wall, and all the other quantities have a phase change
with respect to the wall given by C{; .

Before solving ‘é; and gg , we first examine the rela-
tions between the two relaxation lengths 4y and 4y . The ratio

of these two lengths is

2.58
=;fg_f3 ( )

*u"\{.‘b

- is the fluid Prandtl number. For most gases and metal parti-
cles, this ratio is very close to unity. Consequently, the momentum
relaxation length is approximately equal to the temperature relaxation
length. Furthermore, for some alkali metals, C/o is approximately

equalto C . With Av= Ay and C;p-'-'C , £, and #,

from eqn. 2.45, are

] 4

4 _ o |-r,2 y K M} B2+ vt 2%

= — + + PR A (2. 59)
4/ "2‘["(/@ A Ty R

In the limiting case of frozen flow where Ay= o , €q. 2.59 re-

duces to



i T
e (e i )
f.] ¥ * 'z {17 }

In the equilibrium flow where Ay — 0 , we have

j f_[ (@*fKM‘) l/sf*mij Z F (Me- :)+m-u_] (2. 61)

Equations 2. 60 and 2. 61 can be expressed as in the following table.

Supersonic flow (Me>1, My >1) Av=0 v = oo
4, = o -
% = (M -1)" (M -1)"
Subsonic flow  (My< !, Mf <1i)
2, - (- Mezjié (1- M;f)’/z
% s o o

This is exactly the form as would be obtained based on the Prandtl-
Glauert equation for a pure fluid. In the case where Ay = 0 .

equilibrium Mach number Me is used instead. The third case is

when Me >/ and H'f<'l ,

(Me >1 , My<1) Avzo As @
{, . o ' /«5,_‘)4
Z. = (Mé-1)% -
The variation of g; and fgz , for various values of Av , are

A
shown in Figures 2.1 and 2., 2. M]L = 2.0 corresponds to the

supersonic case where both My‘ 2l and Me>! . For /‘1;: =0 5
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and o8 y Me >/ . This corresponds to the third case we
have discussed. ﬁ, and /gz , as a function of the Mach num-
ber Mf , are shown in Figures 2.3 and 2. 4. Here, both .3, and
4. are non-zero throughout the whole range of the Mach number.
Exponential decay and the phase shift both exist for the perturbation
guantities for subsonic and supersonic flows. For limiting values of
Av , both »gf and kgz approach the result obtained by Ackeret(3)
with respect to their various Mach numbers. In the range of Av of
order unity, both #, and {z vary significantly for different values
of X as shown in Figures 2.5 and 2. 8. Both the attenuation factor
and the phase shift increase for increasing particle concentration, as

would be expected. Values of 2, and % , for Av# Ar

, and
C}:* € are shown in Figures 2.6 to 2. 10.
The pressure cogfficient C/; = %— ' can be easily cal-

culated. For two-dimensional flows, consistent with the perturbation

theory, the coefficient of pressure is simply

(/a= _227?4_.' (2. 62)

Using eq. 2. 50,
7.
G = 415 grane iCoS[%’(x-f,jﬂx,] [R5

On the wall,

&
G/ = 7%3’—*?—,)—% COS(ZZx + 4 ) - (2.64)

/’ WALL
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where
dy = tan" Z (2. 65)

Except for the limiting cases of frozen flow and equilibrium flow, d,

has a non-zero value for any Mach number. Thus, C;p is never in

phase with the wavy wall and a drag force is always present even in

* the subsonic flow, in contrast with zero drag in Acketer's calculation.

The drag coefficient per unit wave length along the wall is

A
L 27
Q = /c— 2 (/},Co.S‘—,—;xa/x

(2. 66)

In the limiting case of equilibrium and frozen flows, eq. 2. 66 reduces.
to the result obtained by Ackeret. In the subsonic flow, '4&3_ =€ and

Cy= O . In the supersonic flow, for Av = @
e? -4
4{32-;{5.‘ (/"jf—/) % (2. 67)

and Ay =0,
2

_ z__é_ Z__ "é
(= #7° 5z (Me 2 (2. 68)
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In the case where Me 71 and M_{</ . Cd is zero for Ay= co
since the flow is basically subsonic and [:{ 471' ;—]—; [/"/ .) for

Ape G s Using eq. 2.59,

M [ﬂl 7/(/“/1 Ag ﬁ,r
'y ez LA ""7\'% ¥ ] (2. 69)

ch ( ) %
+ rKM, 4
/—[ /3?4_/ LA A,H]

The variation of [a" wi_th réspect to /‘”Jffz is shown in Figure

2. 13. The characteristic singularity of Acketer's solution close to
the sonic region is being removed, although the present équation is
still not valid for transonic flows. In the case of equilil;rium or froz-
en flows, C;/ is zero for subsonic flows and is given by eqgs. 2. 67
and 2. 68 for supersonic flows, which are similar to the expressions
obtained by Ackeret. The same expression, eq. 2.69, is plotted
against /, in Figure 2.14. In supersonic flow, (4 increases
monotonically from 47/‘2[—;-)2(/‘}/{ - /)_% to 4725('—;}2_(#/62 —/)—!6'
as shown by the curve /"/;:_2=’ 2.0 ,
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PART III

COMBUSTION OF SOLID PARTICLES IN A

LAMINAR MIXING ZONE
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I. GENERAL EQUATIONS
Marble and Adamson(l) used the boundary layer approximation
to treat the problem of ignition and development of a flame front in the
laminar mixing region between parallel streams of combustible gas
and hot products of combustion. This is probably the first analytical
investigation of a two-dimensional, laminar combustion process, and
introduces the investigation of a new class c;f combustion processes
through the concept of boundary layer theory. A rather similar prob-
lem is being investigated here by considering the burning of solid fuel
particles.

In many problems of thermal jet systems, small solid fuel
particles suspended in some inert gas are ignited by mixing with an-
other gas containing some oxidizing agent. This process occurs when
solid unburnt fuel particles are being injected into the atmosphere.
The particles react with the oxygen in the atmosphere.

Denoting the gas denrsity and the mea.ﬁ velocity components of

the gas mixture by fi , W , and V' , the time-independent two-

dimensional continuity equation reads as:

JPU’ PV’
o 2y’ = w’ (3. 1)

w' is the rate of mass production for the gas mixture. If &, and
CAJ;' are the rates of mass production for the oxidizer and the inert

gas, then

’

w = w; + 00,:,

(3. 2)
The continuity equation for the particle cloud is
cJ
c)(Pu.) j ) = w, (3.3)
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where the subscript denotes the quantities pertaining to the par-
ticle cloud. Since mass is conserved,
w, + w =0 . (3. 4)
f
Using Fick's law, the continuity equation for the oxidizer can

be written as

, d ,,____._.
f'u’j'x!'('la" a{y ax' (Podx')+a(7(foaJ) Kew's w] (3. 5)

where A is the oxidizer concentration and /© is the binary diffu-
sion coefficient between the oxidizer and the inert gas.

The momentum equation can be written as

'o’u - ¢ 9P’ iy . Ty’ -
Fal ‘j;‘ A58 +32 S L wr(mi-u) (3-8
e OVt 9P ITpe Ty '
u—"','-l V'.-—-’ - ..--—-"*__.;5 + w' m, _V’) (3-7)
Puae sy 2y Tyt TPy
P’ is the local pressure for the gas mixture and Z-;r;y' is de-

fined by the usual rate of stress-strain relationship,but the viscosity
A is modified to include the apparent stresses caused by diffusion.

’

; ’ ’

My, is the velocity associated with «w and /:; and Fj are the
forces exerted on a unit volume of gas mixture by the particles. If it
is assumed that the Stokes drag law gives a reasonable approximation

to the particle-gas interaction,

F'= npbmue (- w) = 7, 4w, (E 3-8

U, and AL, are some reference velocity and the viscosity at some

reference state. is the initial radius of the particles. Simi-
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larly,
G'_z’ (I/—V)ul( (3.9)

The momentum equations for the particle cloud are

’ ' ;o}-'.l' , 3.
A uf{‘[ 4 " X ;1"0\) (’n,r L(f) ( 10)

1 v / ot (3. 11)
AT A A AT R

’ ’
71;0(' and 7’97' are the velocities associated with 6&% . Since mo-

mentum is conserved for the whole system, we have

’ ’ 3- 1

w My 2 u),ﬁ Mpx =0 (3.12)

w’ n{j' -+ wf’ "{J'l =0 (3. 13)

In the energy equations we neglect the kinetic energies and the
viscous dissipation terms and assume that they are small compared

with thermal energies and the heat of reaction. For calorically per-

fect gas, the enthalpy of the mixture is
P aw (9,,,7 + K+ (- KNG T + ) (3. 14)

where (;a, and C;v.- are the specific heats of the oxidizer and inert
gas, f. and l.a are their respective reference enthalpies. Simi-
larly, the enthalpy of the particle cloud can be written as
= O » £ 3.15
{}’ Er T % o L5
where C and {}, are the specific heat and the reference enthalpy
of the particle cloud. In the present problem, we will assume that
(.. = o = = - 6
'p g; C = C]" (3.16)

This assumption greatly simplifies the mathematical analysis while it
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still retains the essences of the problem. The energy equation for the
gas mixture can thus be written as
‘e o 3L o ST
/"“(}'ax'*/’y?' T axffax' J(‘é )
r 9P ,—dﬁ' ' ' ’ ”
+ U i—, + v >+ = o = CaT
ax 5 Q = wp [6% - GT]

+ w, :-.ﬂ,. & ok £
: A d (5. 17)

@' is the rate of heat transfer per unit volume between the particle
cloud and the gas mixture. To the same approximation as the Stokes

drag law, this rate of heat transfer can be expressed as
= n, £ 2l T)= PG U e .
Q = b = b (3~ 7)= £ r[(; 7)1 (uy;;{]. (3. 18)
where '

=3 E 2 (3. 19)

The energy equation for the particle cloud reads as

IT” Iz’

B B G - @ -
The equation of state for the gas mixture is
P’ = P R T (3. 21)
where
= (—7’% + (-3¢ )R (3. 22)
R is the universal gas constant and M. and 7"(:‘. are the molec-

ular weights of oxidizer and the inert gas. When 77(. and "7(5 are

approximately equal, eqn. 3. 21 can be written as
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p’ = f":QT ‘ (3. 23)
where A& = f—?/}r(,
Due to the chemical reaction between the particles and the oxi-

dizer, the particle size is decreasing. The equation governing the

particle radius is

. &gy L
/..,r(«.) + ‘f.ag'(cr.) = qu."-‘f (3. 24)

The reaction mechanism is basically governed by the rate of
oxidizer diffusion towards the particles and the kinetic rate of chemi-
cal reaction. We will assume that the chemical rate of reaction is

much faster than the rate of diffusion. Following the first order reac-

tion

WL ‘f’Cf = VG (3. 25)
where Yo , 1',’: , and M are stochiometric coefficients for the
oxidizer, the particlés and the inert gas and o , C} , and C¢

are their respective chemical symbols, the rate of particle cloud being

consumed is

- Bl

g T; 12
/79. (TF) '/_é{%
(3. 26)

and

Ao, = 2 Se A (3. 27)

Because of the very high molecular collision frequency, the gas mix-

ture within a thin layer around the particle is actually in equilibrium
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with the particle. Thus, the velocity associated with the rate of mass

being produced has the local average particle velocity:

’,

m,, = /;x, = uf. (3. 28)

7

“'V‘j- = f:J' = % . (3.29)
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II. PROBLEM OF A LAMINAR MIXING ZONE

The problem being investigated here consists of two half in-
finite streams. The upper stream is a gas mixture of oxidizer and an
inert gas. The lower stream consists of a cloud of solid fuel parti-
cles suspended in an inert gas. The two streams initially have con-
stant temperatures % and 72 moving with constant velocities U,
and U parallel tothe x° axis. Let ¥ =0 be the point where
two streams start to mix. For x’'>o , oxidizer from the upper
stream diffuses into the lower stream and combustion takes place
where there are solid particles.

Introducing non-dimensional quantities with respect to the val-
ues at y;*w , we have e Wl , V=V, uf-'- uf',/d.
=M T=T/0 o per/p o TERA 0 £ B

P = P%". u? . X= XV?\ s y*:y'/;\ , where 2 is some
characteristic length of the problem as one of the relaxation lengths,
Ap, - Defining f;’ = E;';;_[? 4:. * /‘ic, - 2 ﬁqi.] where
/)G = —ﬁf and Vi = -5",—:{(‘: and assuming both Schmidt number
and Prandtl number as constants, the governing eqﬁations read as

follows:

e w0 > 3pv) = e X (B (3. 30)

5 (U =55 () = = ho X G o 55
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PUS* *fV".;jf =M B (U w G - ox*

‘Ag];}((?};‘f}‘;(u“f) Z:-} ,Jx’)* J (/u,au)]

prib Aoy

\‘”

R

&b

WA b x )ﬁ(r(ﬁﬁj’z")]wﬂofxw-ﬁ(v )

- e . 2
/Fu/’o%% é—{;—"ﬂvf’ Cf_)(}ﬁ’)(tf L)

pude + PYSE = Coom (3 +v3p)

+ Ml @S HNT-T) + mrel 3o (45%) +§;(ﬁ.ﬁj§)

4

Bho K QI [T -T + A]

Biss 1 BEf s p AT

(3.

(3.
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.33)

34)

35)

.36)

. 37)
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/au:l% +/’V"‘;§'§F = f&é’;&%%gﬁ) "Jj‘*(ﬁ %!“J]

(3.38)

- 1+ k) Mo 5 & IS
u/,;%(é’;'f > ‘f*;j(%)’= - ,32_,;,,0,,_/% (3.39)
o= Tﬁff_,‘f"f (3. 40)

The momentum equations, as well as the energy equations and
the continuity equation governing the oxidizer concentration K s can
be simpiified by using boundary layer approximation. As was shown
in the problem for the flow over an infinite rotating disc, the mo-
mentum boundary layer thickness for the particle cloud and the fluid
is of the same order as expected. Also, both 4d and ‘?* are of
the order of (/?e)‘l/z . Thus, to be consistent, we have to sup-
press the momentum equation along the y—axis for the particle cloud
as well as for the gas. In addition, in neglecting JPA; in the
Prandtl's boundary layer theory, an additional condition that

v* = l/é"‘ (3. 41)
is introduced. The error introduced in assuming eqn. 3. 41 is con-
sistent with the boundary layer a.pproxirna.tioﬁ. The equations govern-

ing the gas phase are thus:

J Z .
J?(fu)-l-;‘j;(fl/): ?Aofj;*r(:.‘;’*)ﬁ - (3.42)
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pPUTHE + fraf = Fre‘sj'(,u, %“i) * M R gy OGB4

(3.43)
-+ 7:/10? X [g‘)%(%-u}
J7 _,_’_-—__d_ ﬂ
puds + Progt = Rfe %C‘ff?a/)v‘/lrf(-a@%(;-r)
+7’>Aaﬁ;({:;'i)%(7/;-r+ﬁ) (3. 44)
2K JK _ L. d
PUsy */’V"aj* T Ske oy (4 35 )
(3.45)
Similarly, the governing equations for the upper stream are
S (ru) + Jbﬁ-‘(ﬁv*) o (3. 46)
ou oY _ du
Py © f’Va;* = /?eaJ“’/%af S
; (3. 48)

u V* = 2 (M JT
f7 r’ /D ;ﬁ‘ Fe 5 iy*(;4 %7*

,ou ¥ -rf’V* ,; = mdf(ﬁfjé‘) (3. 49)



=TT

The problem has to satisfy the free stream conditions at }'2 +eo and
y",-w » and the gas mixture density p , velocity « , temper-

ature 7 , and oxidizer « and their appropriate derivatives are

continuous across the interface.
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III. SOLUTION FOR THE INITIAL DEVELOPMENT OF
THE COMBUSTION ZONE

For Maxwellian molecules, the viscosity a4 for the gas -
mixture can be assumed to be simply proportional to the gas - mixture

temperature. Thus,

_ﬁﬂs?-s - (3. 50)

We further assume that the molecular weights of the gas species are
approximately equal. Since the pressure is a constant according to
the boundary layer approximation, the gas - mixture density is in-

versely proportional to the temperature according to the equation of

state
— 3.51)
F=7 :
Howarth's(4) transformation is particularly convenient to treat com-

pressible boundary layer flow when eqns. 3.50 and 3. 51 are true.

Introducing a new set of coordinate axes such that

x = x*
y#- (3.52)
g= /Py
and two new variables V and % with
o Y.

V”'—'-/DV*-»" Zl‘;,}g; (3.53)

_ e 2
l,/p-/j'i:l//»-*%-&g;. (3. 54)

With egns. 3.52, 3.53, and 3. 54, we observe that
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wi + vig = w45 ]+ 7 [v- uiklpsy

(3.55)
d d
= 'L{ZG- -+ V:;;J"
A
g (3. 56)

J ’(ﬂ:df) = fag (ag) = féji’ (3, 57)

After some simple calculation, we also obtain the following relations:

;%;(fu)-f-;ja(fﬁ=f'3%+/’§j | (3. 38)
Floe () + 55 (5. 4)]= st (fp) 5 (B ) (3. 59)

Defining £ = é‘ , the governing equations after the Howarth

transformation read:

=4 Aoﬁrf(“")r 3.6

x"‘dg

J =)
Y 455 P = - b RK GI'T (3. 61)
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U, U = o T, AR () T (3)

ude vy 7
" a/@/tof:/cr(uf— u) (Z)* (3. 62)
ou QUe _ _ A, (U- WIT (Z)?
U + V v o
/’ﬁ I & r (3. 63)

9T aT _ L. 4T
Uy * Vg = Refr "f + A7 [ (-7 (&)

+7,Aoﬁk7'(£‘i)2(}?—7+f7) (3. 64)
USE + '//vs‘?“ == M (F-T)7 () e i)
“'3% * Vo’?j(” -"ﬁ'ﬁ% ‘(/+/*$/()Aoﬁ KT (ZE)* (3. 66)
WG+ GG E) =~ BB fr KT 2 i

The governing equations for the upper stream are

V —
ks %j =° (3. 68)
2 |
U _!JdU (3. 69)

U + vV "] f?e;;—

ar. s T’.’;_LF-,J_]:
’U-ax i a; 2 "JJ (3. 70)
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JK N S
uUSy + VT%%"R@S: f‘;}}—; (3.71)

The simplification given by using the Howarth transformation
coupled with the condition M= A is now apparent. For the flow
field where there is no particle cloud, Howarth's transformation re-
duces the governing equations describing the compressible flow into a
set of equations describing incompressible flow. Here, the momentum
equation is decoupled from the energy equation and the effect of tem-
perature variation is introduced only through transforming the solu-
tion back to the '""compressible form' by using eqns. 3. 52, 3.53, and
3.54. The transformation only changes the vertical scale and the
horizontal, or flow scale, remains unchanged, i.e., X= x* . TFor
the flow stream consisting of a particle cloud, the momentum equation
and the temperature equation are still coupled, but the equations are
of a simpler form. Furthermore, instead of considering //0, and /
separately, we only need to consider one function A = /;’,;70

From egns. 3.60 and 3. 61, we can introduce two stream

functions ¢ and ;e, . 50 for the gas velocities and ;/0’ for the

particle cloud velocities.

U

..g

54 | (3.72)
y=-3L + ) (3.73)

(3.74)

b= (e ) (3. 75)

~
"
N

s

and
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J
),/:_Zf,/:,/«/; T2 dy

Introduce two new indepeﬁdent variables } and 7

and let

= —‘r}: _.ii” -
[f?e] [o’} 2 }‘:%é

where 1'/ can be expressed as

Expressing eqns. 3.62 - 3.67 in ;’ and '7 and using egns. 3.80 -

W o= %—)g/vﬂpﬂKT( JZ

3. 82, we obtain:

{5

(3.

(3.

(3.

(3.

(3.

76)

77)

78)

.79)

80)

.81)

82)

83)
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H o H - st o ey i [y

- }"Avﬁ T[g‘)z(/+f,45 K) 7-5‘5%" s :"f) (3.

%

/‘;2"7 2%} f["?l: %) ﬁ'%"'?[""—ﬂ/

_;/1,/; 0'7 #)/yﬁ,f/(?’[ J0,7¢‘/1v7[a=ej[ﬁ.¢—a—!:’zf} (3

. : 4 2
| ﬂaf*}'{r,"f(?zzl% ;F.S?[r)v* /’aa7_["0’” 0/7

- HET (- r)/,J FARRKTE (5-T+4) G

2ﬁ )% )'/ _%af /éf}é%/*?’/’r(%z@-rjf

- e E 3 f/,f;zr( 20’7 (3.

+ St B KR KT (F)

84)

85)

86)

87)

. 88)



;84,
t £ Ly =
3/?7;0‘7["4) f[f, o7 a;‘é’.) ﬁ-—f{fo‘rz rJ_/
(3. 89)
= }’/10;,47@? rk'T/’(f__'}’a/?] +~§—/}-/}p/(7-)//p
The relation ¥’ %"- takes the foilowing form:

) [ b P Wi
'7[7}:*2}?9 /] [ay *+ 2 539“57;']

ﬂ)/’ﬂoKT(ﬁfz/y = (‘f‘J ( /;.3;1,;,) (3. 90)

The region where r =0 , the equations are

; 2 2
P £ _clﬁo’ a}_%] (3. 91)

S5 Fa - [

S £9T IT T
Lok L Fok | a
Seanr Tz oq =% ;;i,zf;-;’f -}?ﬁ—,—*{ (3. 93)

To demonstrate the presence of the particles and the chemical
reaction between the particles and the oxidizing agent in the gas-
mixture, it is sufficient to solve the special case where  U.= U .

From egns. 3.84 and 3. 85, we obtain that

7[_._. ,1 (3.94)
and
'_;'%7:1? = _[ : (3. 95)

and streamlines are lines ? = constant. With eqns. 3. 94 and 3. 95,
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the governing equations are simplified to the following form: .

_'_..i__. T ! A
B o 51—1 = ;:3‘"}‘ +(;A»)%%_Z’ﬁﬁf7(#f°/7 - R TG
ARk T G (T - T+ )
Sk [ LAl "‘T/Z’z(r[“a/
PP TS TR afufd AL PR T
* 5l T (- 7) (&) . (3. 97)
;. £ ‘ ¢ g \2
—f%,fh;?—;"% = ;;‘i!f‘ + ;-/ipif—io/fﬁl(r(-#) .
+ 5/ 1+ ;//,K)f,«/cr(zf-ﬂz (3. 98)
{ T2 z : T p
NG - Ll R @ - Fyay
1
- RO prTREN R
; L
;—ff;;; +3’L = }‘fjj% + MO+ };‘)_[ADK T(:.;ifa/,z (3. 100)

and for fr=0:

(3.96)
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B oo *'j?‘j"‘ = 2L (3.101)
§

._-/—.'._)z_._...K + _ﬂ- K = 2K , (3- 102)

S ot T 297 Iy

In the initial portion of the mixing zone, the heat of combustion
added to the gas mixture is still small. Also, the particle cloud tem-
perature differs ve ry little frdm the temperature of the gé.s mixture.
The flow field is more like the mixing of two gas stream.'s céntaining
‘'no pa.'rticlesA and without chemical reaction. Thus, the presence of the
particle cloud and its chemical reaction with the oxidizing agent in the
gas mixture can be treated as a perturbation.

In the present treatment, it might be more convenient to use

s, as the characteristic length A . Thus we have

/)p.= 1
Ny = P"/Sc = le
Ny = '% Sc

and for small values of f , or for Xx << 200 , the perturbation

(3. 103)

scheme is to express every term in its Taylor series of j

(e s
SRVl XA (R
T (5,90 = 7'"’{7) 5T
7,?(5, 7). = }7(°'(7}+ ;7/;"’[7),».. .
/{(}-, 7) /{M[,Z)-r }‘,{"’(?).,»....
f'}zf}; 7) = BYtr SRV (gree
%{{'Z) = ;/a)(7)+ fiw(f“”'

(3.104)

I\
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Using 3. 104, the zeroth and the first order equations can be easily

obtained.

—_/_ 27-19} t10)
I (://7:, + '21—?}72; = o (3.105)

L o ST (3. 106)
22 7; % = o

7'?' = 0O (3.107)

/ ror for
Z5" ﬁ/fﬁ;‘ = ° 3 106]

-7?‘ o (3.109)

(e (o)
—//C i 7 (3.110)

A to) :
For the region where fjoz O , the equations for temperature and con-

centration A are identical with eqns. 3. 105 and 3. 107. The first

order equations are

2 1) . @’ to) (4

~

a0

(3.111)

= ze ﬁm 7—{-){};/-;__ 7-/0});/01_ 7,,/3(-}((-)7‘-’?(»1(.7/;(?_ 7..fcv+ ,7)
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% Iy +§1'5— 75/”('"7’7”’ Ig

+ (/_,. -"’)ﬁ"" r-)rtolj (3.112)
(o) c/Tm - 1 7_;.1 it ﬂhj 7 P ”»
3%7-17%& = 7ff + ﬁ'-)ﬁlr]f‘; = - d7 __4’/-)/( j”a’?
+ L }a{wT{ [ 1Y) () (3- 113)
o) f o lo o
7T

7Ll’t‘a) g/r%w . g3 a/ ) ¢, ) _ ey 7 - -

T ] EEE AT
+3_2_,-K(°/7-1'DI}/ (3. 114)

_3,/;'?.0)= £ (3. 115)

_.-,fﬁ."j?fa.'.w L £ o I ’[” ! ) r

2 ey b —2 (] - /a2 = — K.}T{w ro/a/ (3. 116)
A S 3 7 o7

For the region where /; = ¢ , the first order equations are simply

L AT i
6?’7%* *115’71 -7 =0 (3. 117)

. d2K 4 d
-g‘;g,?ﬁz*—zz%l?f—-/f“=0 (3.118)

. The boundary conditions for the zeroth order functions are
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B ey K lm) = o
T(oJ[+°°)= / T‘ol[—dﬂ,):-‘ Tzﬁ;
) _
% =) = =/ (3.119)

/?-(“C"‘"’) o ;(
;/0}(_‘}0}:‘ /

while all the perturbation quantities have to vanish at /= +

The zeroth order quantities can be easily integrated. Defining

a,f = ",7].:2-‘-"’/":6‘;‘0/3

we have

o V4
7(}=§!"(/"'-?7,-€')[&‘7{/_€-_4/+ {].,._7-7;‘- —m'(?(no (3.120)

z 4
}(M)": —2&[2—7{ (fﬁff/ w /J -aoé?..cca S

T
7/:,/-1_: —:7-.:“ 7<o (3.122)
jIO)= 3 A 7<0 (3.123)
=X | 7 <o (3. 124)

(3. 125)

2 1<
To find the first order functions, we assume that ~ = Je or Ae=1
and C/'o =C . This assumption is mainly a mathematical con-

venience, for if the above assumption is removed, the solution will

involve more complex integrations. Define a new variable

. 4 |
J=2a - sk (3. 126)
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(3.129)
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The remaining first order equations are

y AL

257 b = THO-FNFC-Fleofpr Ve Flegpry]  3.131)

T4 . <l %
2$_3 Z%}l’&a‘?}[ﬁ{/+l)z+%(wf[+//] (3.132)
From eqn. 3.115 and eqn. 3. 116,

a//,w - e
_ZZ 7/;" -L = 72'-{-[/+j(}[2 [/--—-j(uf/-fy +7- (0—7{/* //_] (3.133)

The homogeneous equation of 1. 128 or 1. 129 has two linearly

(3)

independent solutions
2

H, (y) = zjc“f+z/-rr[-2¢+fz,(wfj_.,) (3. 134)

Hy (r) = zj-e‘fz-fzrﬁ‘ :{'+]‘J(uf+ 1) (3. 135)

A Green's function G(J’, J/ can be easily found using #H, and r/z =

Iz é.[frf) = G: (f/f) for ]7f

- @l for I<T

the jump condition is
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o /
4_{‘/_“_’_;é‘/f = Zf}fé/f = 7 (3. 136)
with
G,(r,j) = 62(].}7) (3.137)

The Green's function is

@“ryl= ij,j)%?f"ﬁﬁdff)%{f—)efz L pB7 (3.138)
L =2

Using the Green's function, 7"“) can be written as

((F]

7)) = /é(/:j)i%(j)o’f
= Lt mmds + [aty 7
fo G R(AF +f QU PIRGIAF  for o
E /oé{ 7) R (5)d 5
Similarly, ] f ] j J 7[‘” I)D
k%= [
P = LeGp Ry + / GoPRGIG fo reo
Carrying out the integration, the solutions for 7_0)[]) and KW(}') are

7-(:/(/") - _.___.E(/ 7_) /-‘/][]')1"&:_;"’-,:-/’(’??/’ /= l;'){l“;)/_é(f}

+5Zfi-Z)- B RAAG) 2= 2 Jfu- Fppie 1O
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IV. CONCLUDING REMARKS

For the special case when the two streams are moving at the
same velocity, perturbation solutions for the zeroth order and the
first order can be obtained relatively easily. Since 4/ is usually
much greater than unity, heat of reaction is the dominant factor in
increasing the gas temperature. From the graphs on the perturbed
temperature 7 in Figure 3. 2, we observe that most of the re-
action occurs within a rather narrow zone of the order of a few dif-
fusion thicknesses )p, , and maximum 7%/ occurs at about
; = - 'ii R Ao, - Thus, it might seem advantageous in the general
studies of the two-dimensional laminar flame problems to introduce
a chemical reaction boundary layer where combustion takes place,
while outside this layer, the flow field corresponds to the ordinary

fluid dynamics without chemical reaction.
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PART IV.

SHOCK WAVES IN A CONDENSING MEDIUM



-106-
1. INTRODUCTION

The problem of a shock wave propagating through a gas medium
containing small particles was first investigated by Carrier(l). The
actual shock wave structure, as pointed out by Ma.rble(z), involves a
relaxation zone in addition to the compression wave of the usual gas-
dynamic shock. In the case of a condensing medium, the shock wave
structure is quite different. Two different cases are being investi-
gated here. The first case is when the particles are liquid droplets.
The change in pressure and temperature across the shock wave
causes the condensation of vapor on the liquid droplets, as well as
evaporation of droplets further downstream of the shock. The second
case is when the flow field contains small solid particles. The parti-
cle temperature within the relaxation zone is first being raised to the
melting point followed by the melting of the particles,and eventually
evaporation takes place. Since the governing équations involve a set
of non-linear differential equations, numerical solution depending on -

a set of parameters is obtained.
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2. NORMAL SHOCK WAVE WITH LIQUID DROPLETS

Consider a medium consisting of (i) a cloud of small liquid
droplets suspended in a homogeneous gas mixture composed of (ii) a
chemically inert gas with respect to the liquid droplets, and (iii) the
vapor phase of the liquid droplets. The problem is to investigate the
flow field when a shock wave passes through such a medium.

Since we have assumed that the two gas species are thoroughly
mixed, diffusion or peculiar velocity in the macroscopic sense is ab-
sent. Upstream of the shock wave the particle cloud and the gas mix-
ture are at equilibrium. DBoth phases have the same velocity and tem-
perature and the vapor concentration of the gas mixture corresponds
to the vapor pressure of the particle cloud. The shock structure first
consists of a compression wave, corresponding to the conventional
shock in gas dynamics. We assume that the presence of the particles
does not change the one-dimensional configuration of this compression
wave. The thickness of this wave is of the ordelr of a few mean free
paths, which is much smaller than the particle size. In passing
through this compression wave, we can anticipate that the velocity and
temperature of the particle cloud still basically retain the upstream
values. Thus, the change of the properties of the gas mixture across
the compression wave corresponds to the usual normal shock relations.
Following the compression wave there is a relaxation zone in which
the particle cloud and gas mixture eventually attain velocity and tem-
perature equilibrium. Condensation of vapor on the liquid particles
appears first because of high gas pressure immediately following the

compression wave. This is eventually dominated by evaporation when
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the particle cloud temperature is being raised. In this problem we
assume nucleation as negligible.
Denoting the gas density and the mean velocity of the gas mix-
ture by /7' and U , and similarly quantities with sub§cript P
pertaining to those of the particle cloud, the continuity equations for

the two phases are

j%, (p’w)

’ ’ = ’ (4:. 2)

[\l
3

¢ (4. 1)

W' and u.)f; are the rate of mass production for the gas mixture and
the particle. Since mass is conserved, we have

W o+ oo/; = o (4. 3)
Denoting the vapor concentration in the gas mixture by & , the con-

tinuity equation for the vapor is

f’u"é'/;k, = (1- K’

(4. 4)
Diffusion velocity is absent in eqn. 4. 4 since the gas mixture is

thoroughly mixed.

The momentum equations can be written as

£ a’u' ’ 4
PR gy = F +wlm'-w) + u'ﬁg» (4. 5)
7 ¥ b(’_ _ ! ’ f_ -
l/%&(fg_?p__ Ff; + UJ/:;C”??: w’) (4. 6)

P’ is the local pressure for the gas mixture. ' and m/; are the
5 s ; ’ ’ 2 "

velocity associated with @’ and CAJ/: . F is the force exerted

on a unit volume of gas mixture by the particle cloud. If it is assumed

that the force between the gas mixture and the particle cloud follows
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the Stokes drag law, F' takes the following simple form

» / ’
= b (U, - W)= 3, Bu -u)GESa 4.7
F f /—‘- /p ) Ay, /o /: ) % o ( )
' 4. 8)
= Ml (
A = LT 7o
where Mo , U5 are the nma ss and radius of the particles upstream
of the shock, and @, is the upstream Mach number. Ay is the

characteristic length within which the particle fluid velocity differ-
ence is reduced to €~ of its initial value for particles with mass
m, traveling at sonic velocity Qo .

Assuming the mixture 'ccﬁnsists of calorically perfect gases,
for the case when the specific heat of the vapor and the inert gas are
approximately equal, the energy equation for the gas mixture i.s

f'u‘ffﬁ'}: = u'ﬁf‘: = F'(L(/é-u'} + Q +w'[(/'p{7;’- 7 (4. 9}

e 3"(”:" -ul) -+ u.'(u.'—m’)]
F_'(L?;‘“') ‘is the energy dissipation term due to the particle-fluid
drag force. Here, it is assumed that this term is totally absorbed by
the gas. (Q° 1is the heat transfer per unit volume between the gas

mixture and the particle cloud. To the same approximation as the

Stokes drag law, @’ can be written as

Q= ﬂffé-)4na-’[7,t'- )= LA T (S (4. 10)
3.,.0 has the same physical meaning as Av, and they are related
as

Nr. = 1'5 B Ay (4. 11)
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T is the temperature at which condensation or evaporation takes
place.

The energy equation for the particle cloud is

I 4t . € ‘
uf, aF = Q +u3/.L(7/;) (4. 12)

Ce¢ is the specific heat of particles in the liquid phase. LP(IT.) is
the latent heat and is defined as the difference of enthalpies of the
vapor phase and the liquid phase.

The equation of state for the gas mixture is

4,13
P=prRuT ( )
and
i
By & (_5% * Z=lg (4. 14)

. F 7 are the molecular weight of the vapor and the inert gas
and /& is the universal gas constant. When My and (i are ap-
proximately equal, Rr is reduced to a constant and is equal to

R
The equation describing the particle radius or liquid droplet

radius is

u/’ T( )3 n//,,' (4. 15)
The rate of condensation depends on three rate processes,
namely, the rate of heat exchange and the rate of vapor diffusion to-
wards the particles and the kinetic rate of condensation. We will as-
sume that the latter is much faster as compared with the first two
rates and that infinite kinetic condensation rate is a good approxima-

tion. Due to the very large molecular collision frequency, the gas
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mixture is actually in thermal and momentum equilibrium with the
particles. Thus, m':uﬁ,'- u/L and 7= 7;, and the equilibrium vapor
pressure on the liquid droplet surface /\.’ee (the superscript de-

notes the equilibrium vapor pressure of liquid) is described by the

Clausius-Clapeyron relation
iy o 2 (B ¢ R - T’e . z
Ke (7 = = e (rdg O /;/sz (}—-Jc/f,rrlj (4. 16)

[
where A~ , 7o , and Ke (7.) are the upstream pressure,
temperature, and the equilibrium vapor concentration at temperature

% . Using this model, the rate of mass production can be easily

derived as

' -
wp' = Npdnrp o Ix6)- 44"(,7;7] =3k av@‘/k(ry—d?@;ﬂ (4. 17)

and

a3 |
D is the binary diffusion coefficient between the vapor and the inert
gas.

Nondimensionalize the quantities with respect to the upstream
uantities, U= U’/a Up = Up /4 T= T/75 = 7o'
q /a o, P P /A, = 3 7e i
e ’ _ ’ o . > and defi
7P B=fh, P=rPURa, x=x/ Pnodeine
Ao = 7\/79,/ Ave Avn/n, Ar=2/A, where A is some character-
istic length of the problem; the governing equations take the following

form.

Fpw = - Mol (k- KIF* o (419)
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;Flf _ B o 8 (4. 20)
Y By = +A97,(M—Ke)(—;.)

,ou%ﬂ + 5’—{" = Avhy (uf - U - Mol Lrc(r)- da;;]ztfﬂ)z@‘ (4. 21)

5 4. 22
Boilp B o poRldp-e) (B Ry
pudl _, dP_ . Ve , .l y 7 2
mi Pedr Wy = W E (YW G+ 554 ) (- D)
(4 2 =L b 2 -
~/fp,ﬁ,[:<-— Ke (R [75 G-+ 3 e~ 1)+ wl-dp)] 4= 23)
reiG plpdx Tp = roj Ml (- T. )" + /ln,/;&'(e(;,,n](a'-"f
[;Efﬁl_e(?] (4. 24)
fu,-%,( = - (/- z)/fp//’;[z(r)— /éedrf/][.gy" (4. 25)
z{,j'-/,;(a-":)z =5 Mo [ k() - ,(ea(_,;/] (4. 26)
Y ¢ / P,
K G = Ke(T) 55 oxp [ |7 L0 )] (4. 27)
P =FpT (4. 28)

Denote /l/ as the density ratio of the particle cloud and gas mixture
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upstream of the shock wave and Me as the upstream Mach number.

Then the general continuity and momentum integrals can be written as

pu + Mo Ct+ X) (4. 29)

U, =
s
z 4. 30
fu‘*’}?«ffl=P=Ho(/+l’)*'-’: ( )
° %
If we define }5 " fvo , and ﬁf’ as the reference enthalpies of the

gas, the vapor, and the liquid particles, respectively, the energy in-

tegral is
!.
Pl b R A o B ot

¢ T y 2 .
= el e tull o R e s e ) Y

From eqns. 4.22, 4.26, and 4. 19, 4. 25, the following relationships

are obtained

. ¢ (4. 32)
Glp = A M, =y

f Kool
Py (4. 33)

Fu = M

Far downstream of the shock where the particle cloud and the gas
mixture have attained momentum and thermal equilibrium, eqns.

4. 29 - 4. 33 are reduced to the following form with subscript oo de-
noting quantities far downstream:

(/+ X)) oo hoo = MoCr+ ¥) (4. 34)

(V+ Heo) o lthoy +FTa = MIU+2X)+5E (4. 35)
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ol 50 G e + Lo b o7 (s O 166" 1]

(4. 36)
L 7 o L d ’I
= Me[FZF e 45 o [l 0 O RN+ 2 8]
/Kv/go Uow = X Mo (%)3 ks S
£ o = M. 1= _KEGR) (4. 38)

/!~ Keo

The vapor concentration far downstream A« should correspond to

the equilibrium vapor pressure of the particle cloud. Thus,

Tow

. S "'
Ke = Ko (T.)BT72 exp - LR U[?)d('yf-l‘)

For the case when /-e('/ro) can be approximated by

° Co
Le(}-,) = Ky = f
Koo takes the following form
Ko = /(.e(-r}—i" exp - ’e" 7s '
[ e o /o’-E f R 7o [ —I] (4. 39)

Equations 4. 34 - 4. 39 enable us to find the flow quantities far down-

stream of the shock.

The region immediately following the conventional gas dynamic
shock can be obtained by numerically integrating eqns. 4. 20, 4. 22, and

4. 24 along with eqns. 4. 27 - 4.33. As a matter of convenience, it is

o

assumed that &= C}: and /_C(;';J= fvo = P -
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3. NORMAL SHOCK WAVE WITH SOLID PARTICLES
For solid particles with relatively high vapor pressure and
easy sublimation, the governing equations are very similar to those
for liquid droplets as derived in S.ection 2. The vapor concentration
corresponding to the equilibrium vapor pressure of the solid I(e"c};)
rather than the liquid is used. Kes (7/3) is also defined by the

Clausius-Clapeyron relation
.
P
/(55(7}) = &5l —gg 07‘-‘ = /;[L“(P#a’f?f,{] (4. 40)

where L's(';;) is the enthalpy difference between the vapor and

solid phases.
L7 = Al) - /-?f("/;) (4. 41)

For solia particles with low vapor pressure, sublimation is
indeed negligible. The governing equations as derived in Section 2
are modified by letting a)/, =o0.

The problem being investigated here is the propagation of a
shock wave through a homogeneous mixture of a pure gas and small
solid particles. Immediately following the compression wave, the
particle temperature is raised until the melting temperature 7m is
reached. After the particles are completely melted, and when the
particle temperature is further increased, evaporation of the particles
becomes important.

The governing equations for the solid particles immediately

following the compression wave are

ad;!fu).-—.-o (4. 42)



-116-

2%“7’”]’)"0 (4. 43)

pudé + 92 = N Blup-u) (4. 44)
74 P lU,-

//%u/,?f- - A"/ tp = U) (4. 45)

e f“;'?/}r - u%’? = Avﬁ (U/— w‘—r?‘.“,/lr/@(?/;-r) (4. 46)

b GF = - (4. 47)

il
AN
)

P = FT ; (4. 48)
When 7/;9 reaches the melting point 7m at X= Xm , eqn. 4.47 is
replaced by

_%;7; = 0 (4. 49)
The particles will be completely melted at ¥ = X, where X, can

be found by evaluating the following integral:

o
/ﬁ Az BT -T)dy = /5}‘(7;.) - @,s(‘fm) (4. 50)

where superscripts £ and 5 denote the enthalpies of the liquid
and solid phases of the particles. Evaporation eventually takes place
when the particle temperature is further increased. This is especial-

ly true for strong shock waves. Thus, for X 7 X, , the governing
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equations derived in Section 2 will be used.
To find the equilibrium conditions far downstream of the gas
dynamic shock wave, similar equations (4.34 - 4. 39) can be ob-

tained by considering solid particles instead of liquid droplets.
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4. DISCUSSION OF SOLUTION
For pure liquid droplets, the relaxation region consists of a

"condensation zone' and an '"evaporation zone. '

Immediately follow-
ing the compression wave, the pressure of the gas mixture increases
according to the normal shock relations, while the particle cloud
temperature still has the upstream values. The partial pressure cor-
responding to the vapor concentration in the gas mixture is higher
than the vapor pressure of the liquid droplets. Condensation sets in,
and this is indicated by positive values of COF in Figure 4.1 ac-
companied by increase of the particle size, as shown in Figure 4. 2.
The thickness of this '"condensation zone'' depends very much on the
latent heat of vaporization of the liquid droplets under consideration.
As shown in Figure 4. 1, the condensation zone for & - f;‘)//Qﬁ =30
actually has a thickness corresponding to the velocity or temperature
relaxation length, while for Cfro" /f}f.')/"l? 75=/0.0, the thickness of
the condensation zone is of an order smaller than the equilibrium
length. The particle cloud within this condensation zone is gaining
energy through two sources: (i) energy of heat conduction from the
gas mixture, ) and (ii) the latent heat of condensation associated with
the condensing vapor molecules. This is shown in Figure 4. 3 as the
area between the two curves. Evaporation eventually sets in when the
vapor pressure of the particle droplets is higher than the partial
pressure of the vapor molecules in the gas mixture. Within this

"evaporation zone, "

while the particle cloud is gaining energy of heat
of conduction from the gas mixture, it is at the same time losing en-

ergy to the gas in the form of latent heat associated with the evapo-
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rating liquid molecules. The difference of these two terms, corre-
sponding to the net energy gained by the particle cloud, approaches
zero in the evaporation zone, as shown in Figure 4. 3. Thus, the
particle cloud tends to have a uniform temperature within the evapo-
ration zone, as shown in Figure 4. 4. This is especially true for
large values of latent heat. The velocity field, as shown in Figure
4. 5, is basically similar to the case when the particles are chemi-
cally inert(z).

From the above discussion, we observe that the shock struc-
ture in a condensing medium can be considered as composed of three
different regioné. First, there is the compression wave. The thick-
ness of the compression wave 0, is only a few mean free paths.
Immediately following the compression wave is a ''condensation zone. "

The thickness of this condensation zone 0z is quite a few orders

of magnitude larger than the mean free path. For relatively large

values of latent heat, l, << AY, . The thickness of the evaporation
zone #3 is of the same order as Ave . Thus, we have

., << €, << ¢, (4. 51)
Within ¢, , the particle cloud still retains its upstream tempera-
ture 7, . It increases from 7, to the equilibrium temperature
in ¢. , and in 13 , the particle cloud approximately has a uni-

form temperature equal to the equilibrium temperature.

Solutions for various values of Av , Ar , and /p are also
obtained. They are shown in Figures 4.7 - 4, 9.

In the case of solid particles, because the vapor pressure is

indeed negligible for the kind of solid particles we are considering,
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phase change is almost non-existent immediately following the com-
pression wave. The curves for particle temperature in Figure 4. 10
indicate clearly the regions where the particles exist as solid, co-
existence of solid and liquid, and the region where the particles are
totally melted. Evaporation of these liquid droplets depends very
much on the upstream Mach number, as shown in Fig. 4. 11, since the
gas temperature downstream of the shock wave increases with in-
creasing Mach number.

| As was pointed out before, equilibrium conditions far down-
stream of the compression wave can be obtained from eqns. 4. 34 -
4. 39 for liquid droplets, and quite similar equations give those for
solid particles. As in the case of non-reacting particles, these con-
ditions are independent of the model describing particle-gas interac-

tion, but they do depend on the size of the particles.
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PART V.

SOME FLOW PROBLEMS IN A GAS-PARTICLE

MIXTURE WITH PARTICLE COLLISION
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1. INTRODUCTION

The effects due to particle collision are very often suppressed
in the investigation of the motion of clouds of small solid particles
through gases. This approximation is valid when the particle number
density is small or when the particles are very nearly of the same-
size. In the case when both of these two conditions are not satisfied,
the effects due .to particle-particle collision have to be taken into con-
sideration. Marble(l) first investigated the mechanism of particle col-
lisions by considering the case when a gas contains particles of two
distinct sizes which behave as smooth elastic spheres. Collisions take
place between the two groups of particles as they move with their own
appropriate slip velocities with respect to the gas. The theory de-
veloped by Marble is applied to two different problems here. The
propagation of a shock wave through a gas-particle mixture and the

flow of a gas-particle mixture through a nozzle are investigated.
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2. NORMAL SHOCK PROBLEM

The propagation of a shock wave through a homogeneous mix-
ture of a gas and small solid particles was first investigated by Car-
rier(z). Since the particle size is much bigger than the molecular
mean free path, the particle cloud, after traversing through the con-
\;rentiona.l gas dynamic shock, still retains its upstream velocity and
temperature. If it is assumed that the presence of particles does not
disturb the one-dimensional configuration of the problem, the change
in gas velocity and temperature follows the usual shock relations.
Thus, immediately following the gas dynamic shock, the particle cloud
and the gas phase have quite different velocities and temperatures. By
extending Carrier's analysis, both Marble(3) and Kriebe1(4) obtained
the shock structure of the mixture as consisting of the conventional
gas dynamic shock followed by a relaxation region in which the particle
cloud and the gas attain momentum and thermal equilibrium.

For the case when the particles are of two distinct sizes of

radius 9 and wv; , the continuity equations read as follows:

P,PU= ” (5. 1)
2y Up, = X, m (5. 2)
Ba Upy = Xom (5. 3)

where @ and « denote the gas density and velocity,and those with
subscript /2, pertain to those particles with radius ¥; and simi-
larly /03 for the particles of radius @; . m  is the rate of gas
mass flow and /’f’z, e are the mass ratio of particles with radius

< and ¢; with respect to the gas mass at some reference state.
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The continuity equation for the mixture is

: 5. 4
/ou-*ﬁ"u/"*/ozufz:(’*xf*%)m ( )

The equation of motion for the gas is

rudt o - Ao

y o and /4, are the forces exerted on a unit volume of gas by
particles with radius U, and V, , respectively, and ﬁ is the
local gas pressure. Using Stokes drag law, a first order approxima-
tion to describe the gas-particle interaction, #, and F; take the

following forms:

a
£ = nbTu, (c?,-u)=ﬁ,(‘/:-u)—;,7, (5.6)
q
F). -'—"?;é?f/lv;(u‘_k}: ﬁi{%"l’d;\—l—i (5-7)
where
2.4 (5. 8)
Av, = bt = a T, |
4
Ay, = Trrja_ﬁ = a Ty (5.9)
", and 77z are the particle number density with respect to
particles of radius U:  and 7. and &~ is the local velocity of

sound. If we assume that JA 7-"4 , both Av and QVJ are con-
stants. Ay, and A% or Ty and 7y, are the cha.ré.cteristic
length or time in which the particle-gas velocity difference is reduced
to €7’ of its initial value. The equations of motion for the two

particle clouds are
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dth _ 5. 10
/}'.“/.‘nz'"ﬁ + F \ )

X

i |
b tps G = =2 + F | Bl ok

J’Z;' is the force resulting from particle-particle collisions.
To evaluate F# , let us first consider the time between two
successive collisions. Using the classical model and denoting 7., as

the time between collisions for particles of radius v , Ze, is

-/ |
e = £ rhrrfvwvz)"/%.- a?,/) Sk

Similarly, Z¢, is

Loy = (4,r(a:+0;)‘/u/,- uf,/)" (5. 13)
If both
___’__E._ 7 4o, » Tu) L B TAHT 6
é —_ 1P T
/D ;3 and & s o3
are smaller than unity, we obtain the following condition
L0 4. (5. 14)
TCI
_—_z:’i'.. << / (5. 15)
Tes

Equations 5. 14 and 5. 15 imply that random velocities introduced by
particle collisions are damped out before the next collision takes
place. The particle velocities do not decay toward their average ve-
locities Hr, and l’{/’z but rather towards their collisionless veloci-

o - #*
ties b{f,, and l}‘ , where Z},, and L?, are governed by

* »*
U, = - (5. 16)
ufrjé/l (L{ %I)a/;h,'



,?jﬁ/,fj“ = (a--;,};f)a%h:1 (5. 17)
If we also assume that
5.18
Z Iy - B e ki B
Do 1dps - o 1Sy 221 (5. 19)
] f: fl 2

so that modification of flow fields as two particles approach each other
produces negligible effect, the force introduced by particle collision

using the billiard ball model is

= > 7 nl, <
; 7”1”&(9- p‘}_____j./t/f, f&/(/ Lf‘:)

= Bt g _ Ut (5. 20)
; f,l/" dp | (Upg ’-"/n)
where
/= (M.-rrﬂa)/ﬁ,;r(v;ffaf (5. 21)
and f is some reference density for the gas. The general mo-

mentum integral for the mixture using eqns. 5.5, 5.10, and 5.11 can

be written as

PE Bty + [t # P = (142, + XORUE + P (5. 22)

Uo is the upstream velocity; £ and A  are the gas density and
pressure upstream of the shock.

For a calorically perfect gas, the first law of thermodynamics

can be written as

/ou ‘%Z--ur @ *+ Q, f.@/; e 235
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Q and &, are the rate of heat transfer between a unit volume of
gas and the particles with radius U, and V; , respectively. To the
same approximation as Stokes drag law, & and &, can be writ-

ten as

R s S S
O = 1 e da G (- T)= iy G (F-Tar,  (5.259)
and
Ar, = (},'4 a/argé = —2_5-/?» Av; (5. 26)
M= G rhafzngl =5 2y (5. 27)

7/;' and 7/?2_ are the mean temperature for the particles with radius

U; and 9 . ;d_'—/, is the viscous dissipation corresponding to the

work done by the particles and is equal to

é}, = (”,-“)fc:-f (U,-u)/; +(Lf.-%')?; U5 259

The energy equations for the particle cloud are

£, G- - & .
fh o G = - @, 550}

¢, and ('?_ are the constant specific heats for the solid particles.

The energy integral for the mixture can be written as
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(GT+Fu® )+ X (G5, 42 &) + /?’/c;, +a‘%‘J

.-—-(%fz’,(jq«flﬁ(l)% + (/,«A/I',L)@E_A,o (5. 31)

7o is the upstream temperature.

The equation of state for the gas is

P27 = prick ey, ff;r '-'/’(/u,’fxf//?'f (5. 32)

Denoting conditions far. downstream of the shock where the gas
and particle cloud have attained momentum and thermal equilibrium by

subscript @ , the integrals 5.4, 5. 22, and 5. 31 can be written in

a more familiar form. -

/EL{M = E ”o ‘- ' (5- 33)
/'5- * 2 = /'3 (5. 34)
'E/',"T * < ch f'/'o'-w;fz/,z | (5. 35)

where  Boa U+ L+ 2803, R = (1+ Lr2J)R, c—; =G+ LYook

By defining 7 = (?,/1{5,/‘/6_)/( Eon K tia e i) we obtain
the usual shock relations. '
Ueo (F= )M+ 2
Uo "_ (7 +i) M2 . (5. 36)
Yoo _ b 2(r-1) rf\/a-f-f(ﬂ/ 2_,) ' (5.37)
% (7 r2)* e
ar = 7R 7 (5. 38)

Thus, the equilibrium conditions far downstream of the shock wave

can be calculated using the shock relations for a pure gas provided

that the parameters r and A are replacedby 7 and &
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The structure of the relaxation region can be easily found by
numerical integration. Using continuity equations 5.1, 5.2, 5.3; mo-
mentum integral 5. 22; energy integral 5. 31; the equation of state 5.32;
six of the differential equations 5. 10, 5. 11 for ”(f" g ufz_ ; B.15

- = *
and 5. 16 for Uf, and “‘/v,, ; 5. 29 and 5. 30 for }f, and 7/3'2 ; the

geometric structure of the equilibrium zone is found for various val-

ues of ¢ and 2}’, ‘
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3. FLOW OF A GAS-PARTICLE MIXTURE
IN A NOZZLE

Small solid particles are usually present in the exhaust of
rocket motors with metallized propellants. The presence of these
particles in an optimum gas nozzle results in performance degrada- -
tions. Based on certain approximations, the losses have been cal-
culé.ted(s’ 5) numerically for certain nozzle contours, and Rannie”)
has developed a perturbation scheme for the one-dimensional hetero-
geneous flow in rocket nozzles. By extending Rannie's analysis,
Marble(s) has found an optimum nozzle contour for gas-particle mix-
tures. Based on Marble's optimum contour, the first order perturba-
tion quantities for a gas-particle mixture, with particle-particle col-
lision taken into consideration, are acquired here.

Denoting A  as the cross-sectional area of the nozzle, the
continuity equation for the gas is

pPur=m : (5.39)
and 2 1is the gas velocity along the nozzle axis. Because the dif-
ference between the particle quantities and the‘gas quantities or the

slip quantities is small, it is convenient to introduce the following

variables:

(5. 40)

A
n
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Expressed in terms of the slip quantities 5. 34, the continuity equa-
tions for the particle cloud read as

(5.41)
B+ Us, = S is,

5. 42
ﬁ‘u_ + Us, = B Us: ( )
The continuity equation 5. 4 for the mixture in terms of the slip quan-
tities 1is
/P &+ /tf)fu/? = (i, tH)m 4 Jffﬁ[t/.;ﬁ/;,;( - B ths)

+ KpACHss 4 Botl - £, ) b

The energy integral 5. 31 can be expressed in terms of ;; and the

temp erature slip variables, and yields the following relationship:

(/,(T" 7;!.)*'1/—(-(.: = /*;:z Cl.r[ + U Usr - I/{I,]

+ 'H,zjfx,[(; ot ULk, — d;:] (5. 44)

U, ZI;, 7:; vanish inside the rocket chamber whose temperature is ..

(7)

Following Rannie's analysis of employing gas pressure F @as the
independent variable, which has the advantage of avoiding the transon-

ic singularity, the energy equations for the particle clouds, eqns.

5. 29 and 5. 30, assume the following form:

wtfs - Lt iy —-ﬁ%%ﬁ;z:-,(ﬁjé'w%%’ 5. 45)

~

Z{%f—’c ?f Zr, 7:'/; C z(ﬁ}’/ﬁi‘ u"/ (5. 46)

\*\

The dimensionless length ] :—f— where 4 is the nozzle length.
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)T, and ,’;‘_,; are defined as

/77; = (;n’),a/;L;-;y;-,g (5. 47)
Ar = Z,Tmaézm 4 (5. 48)
and & is the equilibrium sound speed, equal to (7@ 7')/4' - Using

the energy integral 5. 44 and the momentum equations, a relation cor-

responding to the isentropic integral for a pure gas can be obtained.

(“)/p/ = f*y’/,‘,m;/r 716 25 H/rff/“ Aéy‘i%’/#
LGl et -adhly ] oo
rAr '/:9’ z /; a/ 7} /. /’

2 is the rocket chamber pressure and 7 , as defined before, is

equal to 7 = (6;1* XC+ /7:—[':)/((,,,'-,1{(',.‘,1{ G )- The momentum

equations for the particle cloud with f as the independent variable

are:

u 2—' 0%1[% (/"' .f/)[/" )[‘/'{;742/4

(e, - = s ) ( 2 ;, l/:;j" _/r,a' e e j ,Lu_%/;,ifl (5.50)

=/

ué% _5;;-: a,,él(g/afj’,bf-;’:zf/—sfc/—- ) (- éil(;“"j/‘gJ

( Ui - ts s )( sy - M’Js 'jf;: “é’,z/;.-(ﬁ/; d"/;aé' (5.51)

4v, and 74 are the velocity equilibrium lengths based on the
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equilibrium sound speed (7 & 7)% . The equations for the collision-

less particle velocities are

-/ #* J N -

“#"“W%’f/=u%,%ﬂwfa;m-m {5- 523
#

uﬁ% - a;‘%‘ ”’t(z?/f/ ¥ u-%/,;—’fﬁ.n z/;:j'% (u - u;;) (5. 53)

The equation of state for the perfect gas is written as

= //-f/t’,'-f-«‘t’z)/-’?T (5. 54)
Denoting A as a typical equilibrium length, it has been discus sed(l’ 3
that the slip quantities are of order —i‘— . For problems in which

.—f- << / , a perturbation solution can be found by expressing the flow

variables in the following form:

PP = /o(/(’;) *‘f‘/"ﬁ) +/{_l)2/’f5;) =

iy + 2 s + Dol + -

g

-~

N
I

(o) _ZL ) 22 ()
7’(;:): T(f) LT+ () 799),L....
(o) () {
= filp %/?/(]U ”z’lf/f;:?f) o B

©, ’ z[
/;Z(],)= /?:ff) +-—}/J°:(}) +{—£jé’,}2/’)*

% (p) = File G2 + B dslp -



-146-
Uss () = —Ew’l’fw " (—E:fzéi’rfu----

{1)

# 2 "l)

Usp) = P llalp) o+ Bl
[}] P

Un(p) = 2 Uilp) + (B

(7]

2o + &L

I

% ()

1) ¢
Rlp) = 2050 + &P L@

The zeroth order solution can be easily found. From equation 5. 49,
we have
(o) _Z':J
T, g B
= = (% ) (5. 55)

and using the equation of state, we obtain

EIOJ - -—_—:‘
) =[J:)r {5, 563 .

From the energy integral 5. 44
o= > p-! }é
u” = /2 G T [ - [74:}%”]/ (5. 57)

As discussed in reference 1, the case when the momentum transfer
due to particle collisions is of the same order as viscous drag is

2 .
when /'!._/}) A ZL . Under such circumstances, eqns. 5. 52 and

5.53 give

)

* Y ter L 4|
Us, S a P 27]‘? (5. 58)

i
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()

Je st dh
Z@; =_;_]Ja()_/atg}2 (5. 59)

G2 "y
From eqns. 5.50 and 5.51, using 5.58 and 5.59, ¥ss and 7

can be solved algebraically.

4 e - !-J—_- P _

o wEeisde )y BRE-TIE R -4 ]

U, =-a Tf/’?f - P v _ An Az 2% 5. 56)
It 7 v P f//ﬂ - (27 ' 44

&) » 5/ _-,-.-LJ
s =-a"SB557 | 1= i — e } (5, 61
2 TP oy B A Dyl oy Au
7] 1t Pf#a//z 2)(2 B ety
) ) @)
The corresponding first order 7% and /; can be obtained
from eqns. 5.45 and 5, 48
- ? L .7) '’ Iy
7 = — =L/ 4n)_( . tey L (5.62)
3
(=
T - = -,Q‘—»/Zﬁ.j ooy g{"”——LE-’,}/jf (5. 63)
From the continuity equations 5. 41 and 5. 42, we obtain
7 7
L= (5. 64)
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()
(22

Us
S = """Hfi (5. 65)

The remaining first order perturbation quantities for the gas can also

be found easily. Equating terms of the first order, 5.49 gives

F
__7_-_.:’_) ) —-/1/,-—_ '/__.i_ /7_01 -
7 T At P‘c‘,r’”[‘f‘é’?f‘ + o 57/,%/";”

24 _i_”_.. JZ{ 10 ~f2e"
b e A
= 6(#£) (5. 66)

From the equation of state 5. 54,

/

and from the energy integral 5. 44, after some simplification, we have

=- L = - gl

—_ (5. 67)

u" _ _Z:fl ____/2_/L__ [ & Zl‘ﬂ (7 ,{ff’u_zé;}
“lﬂl == T’o‘) 'f' /-f'/zc‘f,l/z Z;/-: 7.(., + f—f} alu

2 G L‘” " 7 Zé—nl
+/+2/:f/"2’1 [#9:;_ ?Zi; + (P-) 1™ %

= - &¢(£)+ Fl£)

or

w _ _FlE) - G(E)
u* [P L)

(5. 68)
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The perturbation quantities are calculated based on the optimum noz-

(8)

zle for gas-particle mixtures consisting only of particles of radius

" giving the pressure distribution

?;%/; [ f(’_UM(U/// //4. Qﬁﬁi)f{:—uﬁy (5. 69)

where /2 is the nozzle exit pressure.

Using the first order perturbation quantities, the specific im-

pulse losses can be calculated. If the reference value is taken to be

o __Z_/Qim
1 7

(5.70)

f./ Z/(l} ”’ 5 71
4L - /u - (1L X ) (5. 71)
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4, CONCLUSION

The effect upon particle velocities when particle collisions
are taken into consideration is very clearly demonstrated by the rela-
tively simple, normal shock wave problem. The transfer of momen-
tum due to collisions of course tends to cause the two particle veloci-
ties to be more nearly equal as compared with particle velocities
when particle‘ collisions are being suppressed. The change is rather
significant, as shown in Figure 5. 1 for %r, =/0.0 . The same
change, of course, also appears in the flow of a particle-gas mixture
through a nozzle. Here, the first order slip velocities are calculated,
and the effect of particle collisions certainly tends to decrease the dif-
ference ofAthe two slip velocities. As shown in Figure 5. 4, the maxi-
mum difference between the two slip velocities for —g%—z.: 5.0 is re-
duced to about half of that when particle collisions are not taken into
consideration. In the normal shock problem, where the velocities
are decreasing downstream of the shock, the effect of particle colli~
sions tends to increase the gas velocity, while in the flow through a
nozzle where the velocities are increasing along the nozzle, the effect
of particle collisions tends to decrease the gas velocity. The first
order perturbation gas velocity has been calculated for the nozzle
flow. With 7{:: 3.0 -, the maximum of the perturbation gas ve-
locity is reduced to one third of that when particle collisions are ne-
glected.

The difference in temperature as compared with the collision-
less case is quite negligible. This is true both in the normal shock

wave problem and the flow through a nozzle. In Figure 5.3 we ob-
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serve that the dissipation work associated with the force dueto parti=
cle collisions is indeed negligible as compared with the rate of heat
transfer between the particles and the gas. The fractional loss of
specific impulse is shown in Figure 5. 8. The loss is in fact smaller
when particle collisions are taken into consideration using the opti-
mum nozzle for collisionless particles. The difference is only a few

per cent.



4.

-152-
REFERENCES FOR PART V,
Marble, F.E., "Mechanism of Particle Collision in the One-
Dimensional Dynamics of Gas-Particle Mixtures, ' Phys. of
Fluids 7 (1964), pp. 1270-1282,

Carrier, G. E., "Shock Waves in a Dusty Gas, " J. Fluid Mech.

4 (1958), pp. 376-382.

Marble, F.E., "Dynamics of a Gas Containing Small Solid
Particles, " Proc. 5th AGARD Combustion and Propulsion Col-

loguium, Braunschweig, April 1962. Pergamon Press, New
York (1963), pp. 175-213.

Kriebel, A.R., '"Analysis of Normal Shock Waves in Particle

Laden Gas, " Journal of Basic Engineering, paper no. 63-WA-
13 (1964), pp. 1-10.

Gilbert, M., Davis, L., and Altman, D., '"Velocity Lag of
Particles in Linearly Accelerated Combustion Gas, ' Jet Pro-
pulsion 25 (1955), pp. 25-30.

Kliegel, J.R., "One-Dimensional Flow of a Gas-Particle
System, ' IAS Paper 60-3 (January 1960).

Rannie, W.D., "A Perturbation Analysis of One-Dimensional
Heterogeneous Flow in Rocket Nozzles, ' Progress in Astro-
nautics and Rocketry: Detonation and Two-Phase ¥low, Aca-
demic Press, New York (1962), pp. 117-144.

Marble, F.E., ''Nozzle Contours for Minimum Particle-Lag
Loss, " AIAA Journal 1 (1963), pp. 2793-2801.




1 | |

0 1.0 2.0 3.0 4,0
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Pressure Along a Nozzle.
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Fig. 5.6. Particle Temperature Lag as a Function of
Pressure Along a Nozzle.
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APPENDIX A

Equations for Reacting Particles

1. Introduction

The terminology "‘aerothermochemistry",as first introduced by

(1)

T. von Karman' "/, deals mainly with problems of gasdynamics in
which chemical reactions take place. But in many flow phenomena
involving chemical reactions, the presence of a particle cloud plays a
dominant role, as in condensation and the combustion of small solid
particles and liquid droplets. These problems can probably be con-
sidered as aerothermochemistry problems of two phase.flow.

It is only relatively recently that a two phase approach has
been used to treat some of the combustion problems of liquid drop-
lets(z), and Marble(3) applied the two phase concept to some of the
condensation problems and rather interesting and new results were
obtained.

The basic equations governing these flow problems are analo-
gous to two phase flow problems without chemical reactions. They
are the equations of continuity, momentum, and energy for the two
phases of substances present and the eqﬁation of state. The presence
of different gas species requires continuity equations describing indi-
vidual species, and the rate of mass proéuction and heat of chemical
reactions modify both the equations of motion and the energy equa-
tions. In addition, a knowledge of the reaction mechanism is re-
quired, and for the problems being considered here, a diffusion re-

laxation time connected with the rate of mass production is intro-
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duced.
T=m/fanep D) (A-1)
The relationships between 7, and T, T, are
T, = 25T i)
To = Le Tr (A"3)

where Le is the Lewis number.

2. Basic Equations

Consider a cloud of small solid particles suspended in a gas
mixture consisting of N  gas species. The particles can exist in
either a liquid or solid phase. The total number of particles is as-
sumed to be constant. Thus, in combustion problems, particle break-
up is neglected, and spontaneous nucleation is considered to be not a
dominant feature inthe process of condensation. ftentimes, as in
saturated flows over converging-diverging nozzles, nucleation is usu-
ally the most inﬁportant factor, but in some problems of relatively
high vapor concentfation in the presence of liquid droplets, the flow
may be governed more by the change of size of particles and nuclea-
tion can be assumed to be negligible as a first approximation.

Continuity Equation. Consider a volume element fixed in

space. The continuity equations for the gas species are
o
j%:i ¥ ﬁ/ﬁg{,‘-)_« iy (A-4)

/‘?,h Up:, Wa are the individual density, velocity components, and

the rate of mass production of the gas species & . The total density
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P is given by

N
P..—: )-_::/%( {(A=5)

and the mass concentration Ay is defined by

K = P (6]

The mean velocity of the gas mixture W, 1is defined as
A
P U =o(§ A Uax:
or

N,
U ==d:Z, Ko Ui (A-7)

The diffusion velocity or peculiar velocity of the gas component « is

its velocity relative to the mean, and is given by

U, = Uei = U (A-8)

Using definitions A-5 and A-7, the continuity equation for the gas

mixture, by summing eqn. A-4 over N species, can be written as

o Jd
?9_1{2 *ax(pui) = w (A-9)

{0 is the total rate of mass production for the gas mixture and is
given by
D = 2 Wy (A-10)

The continuity equation for the particle cloud is

72;,” +&—%(@l{/,;)= w/, (A-11)

As before, subscript P is used to denote quantities pertaining to
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the particle cloud. Since mass is concerned, we have

ﬁ

Momentum Equation. The rate of mass production &y intro-

duces an additional term in the momentum transfer. If 7%, is the
average momentum component per unit mass associated with Wy ,
the transfer of momentum due to the chemical reaction is Jy e
By considering a volume element fixed in space, the momentum equa-

tions for species o are:

P thee) + G (et ey ) = fo +5%Gy + Wk a; v fyo (B-13)

/C'K[- is the particle-gas momentum interaction on species & .
G;:-/- is the ''partial stress' following the terminology given by

(4)

Truesdell and Toupin'"'. The momentum of the gas species  need
not be balanced by itself as there is transfer of momentum between
gas components. Truesdell(4) calls this additional term A’; "supply

of momentum. Since momentum is conserved for the whole system,

we have
éh'/f
3 = O =
e i (A-14)

Summing eqn. A-13 over all gas species, the momentum

equation for the gas mixture is

__3_, . <2 . = -]
3t FU + 3 (puidy) = F gy U+ womy (A-15)
where
A - P
y= =a/;2: Foe | (A-16)
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~N
-1
wm,; = q,Z wnc Ty (A 7)
=
and
~
Vi =a‘2’:( - i (,{,/)
Ein
e =y of y by ﬂ’l /Dll{dl, da:/
/g, &{,’,- 1/{.5 are the apparent stresses due to diffusion,and many

authors refer to these as ''diffusion stresses.' In this context, the -

total stresses acting on the gas mixture are the sum of paxrtial

s & S L 4 /
stresses ng Ta /) and the diffusion stresses - “Z/,D{ U, M‘f/"
Von Kérmé.n(s) defined VT./ as
Ju, 2 U
Vi = - Pdy +/4[ g di;]
(A-19)

= —PJ:y + Lif
where /u.* is defined in such a way that it includes the apparent
stresses caused by diffusion.
It has been pointed out by Culick(7) that it is more convenient
sometimes to consider just the total stresses V‘/ instead of intro-

ducing partial stresses o and diffusion stresses - ...7/3( é/x:' daf}'

By considering a volume element moving with the mean velocity 4/

the momentum equations for the gas mixture, by summing over indi-

vidual species, take the following form:

2

= /M for binary and multicomponent mixtures is given in reference
6, eqns. (8-2-21) and (8-2-25).
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° : -
fdz‘/ﬁ%auj -+ é—dﬁ[/z‘;{x“;j/} :/7- 43—%‘0_,"/ + WU
or.
,Q’.,fﬁt' v Gk g S _
bt =F oy T w A, (A-20)

Note that V:—/ in eqn. A-20 is the sum of partial stresses while con-

sidering a volume element moving with /4, , and diffusion stresses
’ s

in the form - Zﬁ( Usns //{v/' do not appear at all.

The momentum equation for the particle cloud is
—J(Pﬂ,7+j—[z”u-d-1=/"-+w-n4- (A-21)
TR AT & e M e G i
Since momentum is conserved, we note that
£+ B o+ Ot W My =
F Ll e =

Adding egns. A-21 and A-15, the momentum equation for the whole

system is

..d :! d Q”;"
¢ H ,‘ — . n p . 5 s =
a’T(/ "'Ll/Dr %f’)—fdﬁ (f&/% -f'/.oU}):L;J)—- a——/\;‘ (A-22)
Using continuity equations A-9 and A-11, the momentum equa-

tions can be written in the following form:

PEt + f‘&ﬁ%" =Fr * —3;? v gl s gy A2

sy i
BIE BB« £, e op oy ) (B2

Energy Equation. In the momentum equation , we have the

term Qv My which denotes the rate of momentum transfer due

to mass production. The corresponding term in the energy equation
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is clearly equal to Wy [/ﬁ( (Te, 20+ <> Wi ai] . T and /%

are the temperature and pressure at which reaction takes place. A

is the enthalpy per unit mass for the species & , and is defined as

7 o
/lpa =/Cj'.wa/7' + /ﬁr (A-25)

o
/ﬁy is the enthalpy of formation. The enthalpy of the gas mixture

can be defined as
T o
K= KK, = z—t’d’[(/-,xa/'f . Sl Ka (A-26)

In addition, we have to consider the heat of reaction. Consid-

er a one-step reaction

ay N
LSRG NG = 2« 3 (A-27)
‘zz 7 ’{t' and );.' and /‘f." are the stochiometric coefficients for

the o species of the gas mixture and for the particle cloud. Cx
and C/, are their respective chemical symbols. The heat of re-
action according to eqn. A-27 is

=204 - B )M LA (7l2) + 5 s e ] - (%"— ;;,')//ga[/,;@;,, ) et ,,?,‘.,,%J

where 7« and 77{/9 are their respective atomic weights. The

heat of reaction per unit volume is

j/; "Z“)a[*ﬁr(&:&)h’z‘m:daj— ﬂ'—}a[mﬁ[?;,/?e)-f- -énf/,m/,] B8]

For liquid droplets, heat of reaction is slightly different. If
L denotes the latent heat of vaporization, the heat of reaction per

unit volume is
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_ , A-29)
- ';f:. %[fﬁ(&,ﬁew.?m.- e ] = A},[—h/’i/a? /,’;).‘[/r,f;)f;‘,.;/;} ,

'

b [7;} 3) is defined as the difference of enthalpies of the vapor and
liquid phases. Note also that gf in éqn. A-28 refers to the en-
thalpy of the solid particles, and hp/o in eqn. A-29 is the enthalpy
of the liquid. We assume the heat of reaction is totally absorbed by
the gas mixture. Denoting ,jf—/d as the heat of reaction absorbed

by species o , we have

N ‘
2H, = H A-30
2 Fle w30
Since particle cloud and gas species are moving at different

velocities, there is an additional dissipation term 9_—5},” . _9'5},“ is

clearly equal to

ff’“ = /Faf-i (I/{fi"' Uv.‘){ S
We assume this dissipation term is also totally absorbed by the gas
species.
The particle cloud and the gas mixture also have different
temperatures. Denoting &) as the transfer of thermal energy be-
tween the two phases, and (/x as the fraction absorbed by species

& , we have

2Qy = Q (A-32)

ga‘ is the heat flux vector. If we define gq;' as the
partial heat flux vector, the energy equation for the species « , by

considering a volume element fixed in space, is:
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d
ST Il thithi)] + 5 [ Motk (s s tlai)]

BY PP

o a
d§(%c(/;y) + /Ex-ib&l' + Ga ~ Gk *% +-§'/de

£ -
* Cda’[/ﬂ(@@) + 2 ?ra.-rvfm-] + ]{( Uei + £y (A-33)
Ene is introduced since there is also transfer of energy between
" the gas species. Analogous with 7[a,‘- , Truesdell calls (¢, the

"sppply of energy. Since energy is conserved for the system, we

have
g[]l“‘ U * 5a

Summing eqn. A-32 over o« , the energy equation for the gas mix-

ture takes the following form:
4 . ) ,
SFlPR+Z 5k 01, )+ 7P Uif+5% [P (Rl ')
= -] 2. ’ ’ Foo s v wipid
23 p U it = (g 5 Ui ) Sk 1 (Ran F 20 26
d:( =t Gj "‘;?E + AU + E(a},;_ W) b f - a/?,[z/ﬂ{/;i/?)
_ ] (A-34)
Mf; MFI]
The energy equation for a mixture, as given by A-34, differs from

that of a pure gas in the sense that the total internal energy is the

sum of partial internal energies &y plus the kinetic energies of
N
diffusion =z sl e # ’ and the total flux of ener
Q’-'I/Q[gx -2 l(d:' b{dt) &Y
consists, in addition to non-mechanical energy flux 5} , of the

rates of working of partial stresses against diffusion —Zb(-:.' 7;."}'
and the energy flux due to diffusion 2——/’/@ Ua: (ffo( c Izl' s Uait
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Energy Flux Vector = Z/ -2-(,4;,- G'j '*Z/"/é//éx} [,’fd -1-3,1'5/‘,:- Z/&r,,')* (A-35)
With the definition of total internal energy as given above,
eqn. A-34 can also be obtained by considering a volume glement mov-
ing with mean velocity 2: and using the energy flux vector given by
eqn. A-35.
Analogous to what von Karman did in defining viscous stresses

for a mixture (i.e., eqn. A-19), we define
’ JT 2
5J’ = Z[/Q'(. Z‘ﬁ’l:/. = = “)X (A 30)
7

4  is the coefficient of thermal conductivity and is defined to include
the work done due to diffusion velocity against partial stresses.
The energy equation for the particle cloud is
ﬁ[?(é’ FE Uity ]t [E (e, + 3 1 W)
b Ay i i L O 7 rr
=/}E;.z,§m._Q-fwf[;,jj(%ﬁ?)_,.é/_%; ’”f] (A-37)

The energy equation for the whole system, by adding eqns. A-34 and

A-32, is
2 Z}’{ '25‘4&&’~ Lél-)-l- PZ(‘Z("’ &L+t :é
t n % i e He 2 /7 ,_-,'r“z/o‘{f’- ’:/

[/oa R+ 3T Kathictlic) # P4 Glidd)» Lty (623 )]

2Py ST ) et ; ; : ke S8
=5t (i) GG - (- 2U; L) - Fp Rl f thtt)]

* In accordance with kinetic theory, eqn. A-35 is to be identified with
eqn. (7. 2-26) of reference 6.
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Using momentum equations A-15 and A-21, the energy equations for ‘

the gas mixture and the particle cloud can be expressed as

pAlRAE U] + PR FE )= S %G

- L3 ey S Wij) -2 phadhy (fo+3 dhed Wi+ Q
(A-39)

L T -a«}[:/&(?;,/:)-f(r P)+5‘/»{,-»;.,'-4/.'%/-”7.%-4»«/.'4/.-]

-

"f"" foix. f & o B F w/;[{ffzaji)-e[;;)f'ii'f}xh},,'—é:r)f,_-%j (A-40)

Equations A-39 can be expressed in terms of temperature. According

to eqn. A=-25, we have

[ adr = b £

(A-41)
I °
/C c/T = A’} o 7-;
Expressed in terms of /;xo/T or Xff - XZ_O
P 0 er £ v dhc )] + s (5 (ko e R w5l )]
:Z:'/%/L',f&f’-fb{,dx +d,([{j Kabé(z;/) Z/DML&{{
*+F dr i) * Ffﬂﬁﬁ-d-y + @ - wf[/z/p(ﬁ,ﬁe)— Ajo
(A-42)

_Z:é(ﬁ"fqo)+3L[hr/(p;r/});ﬂd:‘/:j+d;dl'_"7'.6!"-(Zw‘ﬁ‘*“%édO)]

Due to chemical reactions, the particle radius is no longer a constant.

Since the particle number density is assumed to be constant
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=3 o . A-43
sz (@) z’jvwx; (03)3= 7 e wf, ( )

The equation of state for a mixture of ideal gases is
P=FRT (A-44)
where & is given as Zﬁ(x with &K being the universal gas
constant.

In the case of condensation and evaporation, the heat of reac-
tion as given by eqn. A-28 or A-29 is identically equal to zero. Thus,
the above equations are valid for condensation processes by letting
ﬂ-= (o] . In the case of sublimation, heat of fusion as well as heat

of vaporization should be properly included.

3. Reaction Model for a Binary Mixture

We will only consider problems of a binary mixture in which
the particle cloud reacts with one of the gas species. The flow medi-
um consists of: (i) a particle cloud which is composed of either liquid
droplets or small solid particles; (ii) a gas which reacts with the par-
ticle cloud; (iii) an inert gas which can be the reaction product of the
particle cloud and the reacting gas in the case of combustion. The re-
acting gas can be some oxidizing agent when burning of the particle
cloud is being investigated. In problems of condensation and evapora-
tion, this gas is the vapor phase of the particle cloud. Subscript «#=/
will be used for the reacting gas and & =2 for the inert gas. Since
particle clouds can exist either in liquid or solid form, it is some-
times convenient to introduce additional superscripts £ and s to

distinguish some of the thermodynamic quantities pertaining to the
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. ¢
liquid particles or solid particles. Thus, é, denotes the enthalpy
of the particle cloud of liquid droplets and hp/g is the enthalpy of
the solid particles.

The detailed mechanism of mass transfer, as pointed out by
Marble(3), depends on: (i) the rate of heat exchange, (ii). the rate with
which the vapor diffuses towards the particles, and (iii) the kinetic
rate of condensation. We shall assume that the kinetic rate is infi-
nitely fast as compared with the other two and thus is not rate con-
trolling. In principle, this approximation is that the rate of conden-
sation is still slow in comparison with the mass rate of cpllision of
gas molecules upon the #article surface. -This implies that very close
to the particle surface, the gas mixture and the particle surface must
be locally in thermodynamic equilibrium. The region is éo small that
the temperature and concentration variations over this region are

negligible. Thus,

=7 (A-45)
Map = Upj (A-46)
= 7 (A-47)

and some of the thermodynamic relations can be used to describe
some of the quantities on the surface. At the particle surface, the
partial pressure of the vapor must be that corresponding to the sur-
face temperature of the particles. The transfer rate is also suffi-
ciently low that there is no significant difference between the tempera-
ture of the surface and its bulk. Thus, the partial vapor pressure at

the particle surface is the saturation pressure corresponding to the
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particle temperature. Using this as the boundary condition for the
vapor concentration on the particle surface and the vapor concentration
in the flow field as the boundary condition far away from the particle,
the equation governing the vapor concentration can be solved. Since
the Reynolds number based on the particle radius is much smaller
than unity, the convective terms are neglected as in Stokes flow.
The continuity equation for the vapor concentrations under these

simplifications is

j',',,/'[f!‘/’ 2, %’ff,/-'- o (A-48)
Here, Fick's law is used to describe the diffusion velocity and &.; is
the binary diffusion coefficient for the two gases in the .mixture. /(I* r
accbrding to eqn. A-48, is equal to

K= [Ke (3) - KAD]-F + Kil7) (A-49)
The net mass flux of vapor diffusing towards a particle is

AP R Uy =~ Arripn, LK

= —dref O LK(D-Kelp) (A-50)
and
Wp = n 4o pDalKilT)- Ke (5]
= B LLH )~ Kelpi] S
with
I = m (4n7p D) (A-52)

When the vapor is considered to be.a perfect gas, and the volume of

the substance in liquid state or solid state is negligible compared with
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the volume in the vapor state, the equilibrium partial pressure is

given by the following Clausius-Clapeyron relation

7.
7
A i M &
Rolp) = Rim) exp =L (050~ 3077 (4-53)
where ~(7.) is the vapor pressure at some reference temperature

7o . The equilibrium vapor concentration is simply

-
Falns 2 /’”,q”:(;;g- Lol7) e t)]  (5-54)
Kelp)= — 57 = Ke(r)5 "X/’-[_g = 4/(7;.)/
To distinguish the liquid droplets and solid particles, egn. A-54is

/

. T B
/(1967}) l(e(f)"‘"ﬁ)y) _Z’L{/‘:?A’;_[E)O/f?—;) (A-55)

£’
Wilp) = wor)E ‘/iéﬂ:##a/ (A-56)

Consider the burning of solid particles. Here, reaction takes
place on the surface of the particles. With infinite kinetic reaction

*
rate, "d is

X =k =) (A. 57)

and the net mass flux of the reacting gas diffusing towards a particle

is 4;7/02; £

éO, =‘ﬂ47f¢f0/2/(/

- K (A-58)
T_’D

The one-step reaction of eqn. A-27 is simply
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) = 3l (A-59)
})Ca, - }/Jg C;p )) Cz . i

The rate of the particle cloud being consumed is

D T o W p /'(,
4 v, 7, jf'E,,

= - ;/{,—70_2_;— (A-60)
with
2 Bl
/ﬁ, = -;,FT’/L’, (A-61)

For the burning of liquid droplets, evaporation of the fuel
plays a dominant role. The vapor fuel constantly diffuses outwards
through the inert gas and the oxidizing agent diffuses toward the par-
ticle. Since reaction rate is infinitely fast, combustion takes place on
a spherical surface at a distance /?_'yj away from the center of the
droplet. Using similar simplifications tothose previously outlined, the
continuity equation,both for the fuel in vapor form and the oxidizing
agent, has the simple form of eq. A-45. Denoting 19:*‘ as the con-
centration of the fuel in vapor form, the boundary conditions are

f§f[<r) = /(fe’(a;) (A-62)
/49*()’*) s o (A-63)
fqoe (7/77) is the fuel vapor concentration corresponding to the equi-

librium vapor pressure as in the case of condensation. The boundary

conditions for the oxic.zer within this later are ‘
K¥(a*) =0 (A-64)

. L) & #lT) (A-65)
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and
- /
/é: = kpe (7 _Af_ n< ¥ (A-66)
A
.
&F = 1 (- 4) A7 a* (A-67)

A%  can be found by equating the mass flux of the vapor fuel and the

oxidizer according to the one-step reaction of eqn. A-59.

W(/; drarp D > ‘ajf*)r a.*/ / S, 4703 Dy ‘/"’J/w/

DPZ is the binary diffusion coefficient of vapor fuel and the inert
gas.
J‘J §
AF (/ .
- = A-68
o % ﬁ] D,z ,s(. ( )
& ; Kir,  —Po KpelR)
wf =1 = 7//9 o [’+ /3 Dz i (A'69)

To summarize, ‘/-D/p can be expressed in the following table.

Condensation Combustion
3 KI
(solid particles) —%[,(, - Ko (7/';)] ot Y].': Tp
13 id ticl F: - e e L Ppe i
o perictes) Ble-Rlp] - pBLie g B

The momentum and heat transfer between the particle cloud

and the gas mixture are still to have the form
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Fis-bi = £ ldpi-uv (8-70)
a =

_,&CLU/;,-T) (A-T1)

r

These expressions for burning particles can conceivably be in error.
Williams(z) pointed out that there might be a thermal jet-like effect
due to combust.ion which can change the drag law; and combustion and
condensation appearing on the surface or close to the surface of the
particles may introduce a non-uniform temperature within the particlg.
In the derivation of wjp » we have introduced a relaxation

time of diffusion ¥ . Although 7» does not quite have the same
physical interpretation as <¢v and $ , they are all very simply
related through Lewis number and Schmidt number as shown in eqn.

A-2 and eqn. A-3. It is convenient to express both 7, and [

in terms of

T =25 G (A-72)
Tr = %Ae z-\f (A-73)

Using Stokes drag law, 7, 1is

Ty 25— = ity j_f_-&g_'jz: v, (’Z 2 e (A-T4)

", and U, are the mass and the radius of the particles before
reaction and /.(, is the viscosity at some reference state. If both

Schmidt number Je and Prandtl number /’, are assumed to be
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o s 22

Zr = Ty (2 (A-75)

Z = L. GES (A-76)
Using eqns. A-53 - A-55, we have

Fio= f%{c/f»: —L/:)[;,‘—”;)(vzf’)‘ (A-77)

- L7 & A A-78

G =4 (7 - ) AP (-78)

Condensation . Combustion
: . 2 P AT
(solid particles) -'Lf;’g’/”o )[l ) P, N
(A-79)

(liquid partlcles)—z:?-,@»g-é,,)[/ ‘{_)_Q_(J,;) —/f,é-,d gﬁ[ —'-%. 4’5'_)/

4. Summary of Basic Equations

The continuity equations for the gas mixture and the particle

cloud are

J J .
S+l = - w0, (2-50)
# -I‘o\-)( (2 u/p) = wf e

Using Fick's law to describe the diffusion velocities for a binary mix-

ture, the continuity equation for the oxidizing agent can be written as

G‘KI . O. %
/’ﬁ—f‘*l"hlﬁ’? = 3% (PRS%: )+ (K0 + )1-0},, (A-82)
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and )/G == for the case of condensation.

The momentum equations for the gas mixture and the particle

cloud, with ﬁ’f' = Uf/ , are
PIf + PY3E = - 3 43Ty + L i dIGAGS
=2 “"’/D[L(ft." dl] (A-83)

S

4,
I ”/’f«x - ’zéz&/""'““’)@%f'i%z e
Since the particle cloud exists either in liquid or solid phase,

we assume that

Ap

The energy equations as given by egns. A-42 and A-40 are

(7}) = eff,('f,) (A-85)

fdi[j(éc& /&7*2 L‘:/ l)_]“‘f 077[{(&(,@ ﬁ)-fz ,‘, [A(,]
= Lok o 5F o uih GGy - iy S p (et ]
aﬁ,,[?t}- D = Zhla U -2 + 2 (ol tlpi = i i) il = ol ]

(A-86)
+FildpimdD + Q - [Fonks +

uJ/,A}"]
/oa?[t} §>J Irfomtx[z;o Ajf] = - Qq (A-87)

For calorically perfect gas with the specific heat of gas species

equal, G /a:-fz , we have [d' a\’z‘):?’,]’. and ;§:-z/o_a= Cf,
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Equations A-86 and A-87 are reduced to

/DJ-fZZ' 7—""2-2 l/(l l/dl/"‘ ﬁ oh"[gaT"Z‘Z 1/‘,\’. L{‘f./ = ;rfﬁ

PGS T e Flepindi) + & +E [ gy - ZuiTy)

=5 il (5 i )] = LT -G T 4 pintpr- il

(A-88)
+¢-¢--M,-4J~[z%&°+u},§o°

7z
/;ij 5 ?ﬂfr'Cﬁ!?}e: - & | (A-89)

For liquid droplets, latent heat of vaporization should be included,

and eqns. A-88 and A-89 are
DI 7 4 7 .&l-f
forlGp T+ T ] + pyalG. T+ 55 b ] = 5
4 ou: ; , o /
+ %7 TS+ Fi i -di) 4 @ +;§~.[-/Z/—2w.- Giy)

’ff/ém/’- (G a gt - u/J,[cf,» L{/f,') 9;7‘+ (i

i . (A-90)
+ Uil - Up: Uil = [Ewaks + wp 57

e + Buyc 2l o -+ w, g
i & %) 7 =) (A-91)

In the problem of condensation of liquid droplets, egn. A-90 is
modified by letting J/: o . The energy equation for the gas mix-~

ture is
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FRle T+ Thdls ] + P le T+ 24 ai] = FE

" I&z},f " [70%,)‘4' & H(éf"-di) + & +5§-’[:(57j LU Txi)

N A
= 2 p ket (2t i) - w/;[(/',(7/; -T)_/—aj,[t/.'t/,'

- ditpi # Flppithi— didi)]

and eqn. A-91 is still valid for the particle cloud.

(A-92)

When there is change of phase between solid particles and

well as the heat of vaporization.

The remaining governing equations are

/9=/-‘/-?_7'

3 ¢ /
g\;é[%/ &3 bﬁ"o—l_z[%ﬁ = At (’Q/D

the vapor state, < (F) in egqn. A-91 includes the heat of fusion as

(A-93)

(A-94)
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