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ABSTRACT

I, The attenuation of sound due to particles suspended in a gas
was first calculated by Sewell and later by Epstein in their classical
works on the propagation of sound in a two-phase medium. In their
work, and in more recent works which include calculations of sound
dispersion, the calculations_were made for systems in which there
was no mass transfer between the two phases. In the present work,
mass transfer between phases is included in the calculations.

The attenuation and dispersion of sound in a two-phase con-
densing medium are calculated as functions of frequency. The medi-
um in which the .sound propagates consists of a gaseous phase, a
mixture of inert gas and condensible vapor, which contains conden-
sible liquid droplets. The droplets, which interact with the gaseous
phase through the interchange of momentum, energy, and mass
(through evaporation and condensation), are treated from the continu-
um viewpoint. Limiting cases, for flow either frozen or in equilibri-
um with respect to the various exchange processes, help demonstrate
the effects of mass transfer between phases. Included in the calcula-
tion is the effect of thermal relaxation within droplets. Pressure re-
laxation between the two phases is examined, but is not included as a
contributing factor because it is of interest only at much higher fre-
quencies than the other relaxation processes. The results for a
system typical of sodium droplets in sodium vapor are compared to
calculations in which there is no mass exchange between phases. It

is found that the maximum attenuation is about 25 per cent greater
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and occurs at about one-half the frequency for the case which in~-
cludes mass transfer, and that the dispersion at low frequencies is

about 35 per cent greater. Results for different values of latent heat

are compared.

I1. In the flow of a gas-particle mixture through a nozzle, a
normal shock may exist in the diverging section of the nozzle. In
Marble's calculation for a shock in a constant area duct, the shock
was described as a usual gas-dynamic shock followed by a relaxation
zone in whicﬁ the gas and particles return to equilibrium. The thick-
ness of this zone, which is the total shock thickness in the gas-
particle mixture, is of the order of the relaxation distance for a par-
ticle in the gas. In a nozzle, the area may change significantly over
this Vrela.xation zone so that the solution for a constant area duct is no
longer adequate to describe the flow. In the present work, an asymp-
totic solution, which accounts for the area change, is obtained for the
flow of a gas-particle mixture downstream of the shock in a nozzle,
under the assumption of small dip between the particles and gas. This
amounts to the assumption that the shock thickness is small compared
with the length of the nozzle. The shock solution, valid in the region
near the shock, is matched to the well known small-slip solution,
which is valid in the flow downstream of the shock, to obtain a com-
posite solution valid for the entire flow region. The solution is ap-
plied to a conical nozzle. A discussion of methods of finding the loca-.

tion of a shock in a nozzle is included.
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I. THE ATTENUATION AND DISPERSION OF SOUND

IN A CONDENSING MEDIUM



1. INTRODUCTION

The attenuation of sound in two-phase media has received con-
siderable attention since Sewell's1 work in 1910. Sewell calculated
the attenuation due to the viscous interaction between an oscillating
non-conducting gas and rigid, fixed, spherical, and cylindrical ob-
jects. In an appending note he extended his calculation to spherical
particles oscillating with some fixed amplitude, small compared to
the wavelength of the sound waves. This result is not valid for small
particle radii, since as the particle radius tends to zero the particles
tend to oscillate with the fluid, and the viscous attenuation tends to
zero. In 1.941 Epstein2 calculated the attenuation due to viscous in-
teraction with spheres freely suspended in the fluid. Calculations
were made for spheres consisting of a rigid solid, elastic solid, and
a viscous liquid. Oscillation of the spheres was restricted to ampli-
tudes small comi)ared to the particle radius. This work was extended
by Epstein and Carha.rt3 in 1953 to include thermal dissipation due to
irreversible heat transfer between the two phases. Their theory was
compared to data taken by Knudsen, Wilson, and Anderscm4 for at-
tenuation of sound by water fog in air and was found to give consistent-
ly lower values than the experimental data. More recent experiments
by Zink and Delsasso5 using solid particles show good a.greerhent with
Epstein and Carhart's theory. In 1964 Chow6 was able to show that
the theory of Epstein and Carhart is valid even for motions of the
spherical particles .o'f large afnplitude compared to their radius.
Chow included surface tension in his analysis and showed that it is

significant for gaseous bubbles in a liquid but is of negligible signifi-



=Fw
cance for liquid droplets in a gas.

The dispersion of sound in a two~phase medium has received
little attention until recently, when the first measurements of sound
dispersion by solid particles in a gas were made by Zink and Del-
sasso5. They presented a theory, based upon the alteration of the
effective density and specific heat of the gas due to the presence of
the particles, which agreed with their measurements. A more corn-‘
plete theory by Chu and Chow7 shows good agreement with the dis-
persion measurements of Zink and Delsasso.

The theory developed by Epstein, Epstein and Carhart, and
Chow uses the acoustic potential to calculate the scattering of a plane
wave by a single spherical particle or droplet. The attenuation is
calculated from the increase in entropy due to irreversible transfer
of heat and momentum between the particles and the gas. The result-
ing attenuation du;a to a Vsingle particle is then multiplied by the num-
ber of particles to obtain the total attenuation. Temkin8 and Temkin
and Dobbins9 have calculated attenuation and dispersion by a different
method in which the state of the gas and the state of the particles are
described by the conservation equations of fluid mechanics. A direct
calculation leads to expressions for attenuation and dispersion as
functions of the sound frequency. Temkin and Dobbinslo also report
expe}rimenta.l data for oleic acid droplets in nitrogen which agrees
very well with their theory, and also agrees with the data taken over
a smaller frequen.cy range by Zink and Delsasso. Temkin and Dob-
bins show that their theory gives attenuations very close to those of

Epstein and Carhart, and dispersions close to those calculated by
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Chu and Chow. The method of calculation used by Temkin and Dob=~
bins shows clearly the mechanism of attenuation and dispersion due to
gas-particle interactions. This approach will be used here to cal-
culate the attenuation and dispersion of sound in a gas-vaﬁor mixture

containing condensing liquid droplets.



2. GOVERNING EQUA'fIONS

A set of general equations governing the dynamics of a con-
densing medium has been derived by Marblell. The system consists
of two phases, liquid droplets dispersed in a giseous pha.se which is
a mixture of vapor and an inert gas. A system in which the gaseous
phase consists of pure vapor is just a special case. The droplet
cloud is treated as a continuum which exchanges mass, momentum,
and energy with the gas phase. The droplet number is assumed con-
served and the droplets are assumed to be all of the same size so
that nucleatioﬂ, the initial growth of droplets, and coagulation do not
enter the problem. Further, the dropléts are assumed sufficiently
disperse so that droplet-droplet interaction may be neglectéd. The
liquid phase is assumed to have much greater density than thel éaseous
phase,and mass per unit volume of the two phases is as sum;ad to be of
the same order, so that the volume fraction occupied by the droplets
is negligible. The treatment is analogous to that for a gas containing
2,

small solid pa.rticles1 2 except that, in addition to momentum and

heat transfer between phases, the exchange of mass due to evapora-

’

tion and condensation is included.

For the acoustic problem, Marble's general equations are
specialized to describe unsteady one-dimensional flow. The gas
phase is treated as an ideal gas mixture which is inviscid and non-
conducting except in the calculation of the gas-droplet interactions.
Further assumptions and properties of the system will be discussed
as they arise.

The conservation of mass for the gaseous phase is written
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tom (pw) = u (1.1)

where R is the rate of mass addition to the gas phase due to evapo-
ration from the droplets. The corresponding equation for the liquid

phase is

ot "5—'(911)="IJV (1.2)

where the subscript p refers to the liquid phase. Non-subscripted
quantities refer to the .ga.s phase. Though on a microscopic scale,
evaporation and condensation occur locally at the droplets, the q-uan-
tity M, is assumed to be a smooth function of x . It is obtained in
the same way as the other bulk particulé,te quantities, by averaging
over a unit volume whose dimensions are small compared to the di-
mensions of the problem but large compared to 'the inter-particulate
distances. For details see Appendix A. Thus, in the continuum
description of the flow, local variations on the scale of the particle
dimensions do not enter. The small scale properties enter only in
the calculation of the interaction between phases.

The conservation of momentum for the gas and liquid phases
is written

Bt (pu)+ (pu ] = —%E}z+p,vup+ F (1. 3)

and

) ) B ‘

'eTt(Pp“p)+5‘,z (ppup) = -Hu, - F (1. 4)
where 'F is the force per unit volume exerted upon the gas phase by
the droplets. The term uvup arises from the a;ddit;lon of momentum

to the gas phase by evaporation from the droplets. Since the addi-

tion and removal of mass from the gas phase occurs at the droplet
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surface, it is assumed that the mass is added or removed at the
droplet velocity. Thus, this term appears with uI; rather than u or
some intermediate velocity.
Conservation of energy for the gas pha.s;e is written
2 (pE) + o (puE) = - o= (Pu) + Fu, +Q+u(e(T )+ %upz-i- F(PT’—Y)
- (1: 8)

where

and where e is the internal energy of the gas at the local bulk tem-
perature of the gas T . The internal energy of the gas at the local
droplet temperature is e(Tp) . Heat transfer per unit volume from
the droplets to the gas is denoted by Q and Fup is the work done on

. the gas by the droplets. The last term in equation l. 5 represents the
energy added to the gas phase by evaporation from the droplets. This
energy is added at the droplet surface and is assumed to be added at
the droplet tefnperature and velocity. Similarly, the energy equation

for the droplets is

9 3 _ 5 2
3t (PoEL) + g (pLu EL) = -Fup—Q-uV(e(Tp)+a.uP +h, ) (1. 6)
where
E = e + —‘1,_-112
P P P

and where ep is the internal energy of the droplets; h& is the latent
heat associated with the phase change. It is assumed that a molecule
condensing upon a droplet releases its latent heat to the droplet rather
than to the surrounding gas. Similarly, an eva.I.:'orating moiecule ob=-

tains from the droplet the energy or latent heat necessary to go from
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the liquid to the gaseous phase. Hence, in the phase transition, heat
is taken from or added to the droplet and appears only in the energy
equation for the liquid phase.
At the liquid surface, the liquid and vapor are assumed to be
in equilibrium such that Clausius-Clapeyron holds. It can be ex-

pressed as

e
PoiTp) (_hc__i@_
P P \HT BT
Vo o P

where on and To are the vapor pressure and temperature at some
reference state. The equilibrium vapor pressure at the droplet tem-
perature Pf(Tp) can be expressed in terms of the equilibrium vapor

mass fraction at the droplet temperature K:(Tp) and the local total

gas pressure P . The Clausius-Clapeyron equation can then be
written
K AT ) P_ _
o =—p—eXP['ﬁ— _’1‘—_1)]' Mt
Kv(To) "o

In writing equation 1.7 in this form, the pr-essure at the droplet sur-
face is assumed equal to the local bulk pressure. That is, the total
pressufe is assumed not to vary on the microscopic scale of the in-
dividual droplets. The conditions under which this assumption is val-
id are discussed in Section 6. The vapor mass fraction at the drop-
let let surface _K:(TP) is related to the bulk vapor mass fraction Kv
by the diffusion pvr_oc‘:ess which determines the mass transfer between
phases.

An additional equation is obtained from the conservation of
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mass of the vapor alone. Written in terms of the vapor mass frac-

tion of the gas, this is

oK 9K
gp tumy < o U-R, L= 8}

The gas phase is assumed to obey the ideal gas law
P = pRT . (1.9)
The interaction between the two phases F, Q, and p,v are

assumed to obey linear laws and are written

(u_-u)
F = p (1. 10)
P T,
(T _-T)
Q=pc—PR - (1. 11)
P To
Kf(T )-K
b = pp 1. 12)

The droplets are assumed spherical, with the drag given by

Stokes law so that

m

Top = (=T} (1.13)
where m is the mass of a droplet, 0 the droplet radius, and u is the
viscosity of the gaseous phase. s is the velocity equilibration time;
it is the time required for the relative velocity of a single droplet
moving in the gas phase to be reduced to e-1 of its initial value.

The thermal equilibration time is

m C .
TT T Znok (1. 14)

where k is the thermal conductivity of the gas phase and 5 its spe~-
cific heat at constant pressure. The diffusion equilibration time is

written
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- m
Tn ® Tl (1. 15)

where D is the binary diffusion coefficient of the gas-vapor mixture.
In addition to the assumption of spherical droplets of all the same
siie, two other assumptions are made in writing the force between
the two phases as given in equations 1. 10 and 1. 13. First, the drop-
let Reynolds number is assumed small so that Stokes drag law is ap-
plicable and second, the evaporation and condensation are assumed to
have no effect on the drag law. Similar assumptions are made in
writing the eqﬁations governing heat and mass transfer between
phases.

Equations 1.1 - 1. 9 are written in terms of the nine dependent

variables:

u u KS(T )

P v''p
P P K

P ¥ (1. 16)

£y ™
P

P

Equations 1. 10-1. 15 give the interaction quantities F, Q, and My, in
terms of the dependent variables. In the general problem, the parti-
cle radius appears explicitly in the expressions for the equilibration
times '1'V » Topos and Tp > and must be included as one of the depend-
ent variables. An additional differential equation for the particle

radius can be obtained from the conservation of mass of the liquid

phase and the conservation of particle number. This equation is not

needed in the acoustic problem, but is written here for completeness.

e
9z 8L _ 2 Kv- Kv(Tp)
T’:)'E+

upa_x'—3 ™

(1. 17)

(o]
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where
T = (o /Uo)z
and Uo is the particle radius at the reference state.

With equations 1. 10 - 1. 15 giving the interaction terms, equa-
tions 1.1 - 1.9 and 1. 17 form a general description of the unsteady
one-dimensional flow of a condensing medium. This same set of
equa.tiéns is applicable to a gas-particle flow where the solid parti-
cles are sublimating. The only difference would be that the latent
heat would be the latent heat of sublimation. So the following consid-
eration of the acoustic problem could equally apply to a sublimating
particle-gas flow.

A complete derivation of the general governing equations is
given in Appendix A, which includes a more thorough discussion of

the assumptions made and their implications.
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3. ACOUSTIC PROBLEM

The acoustic equations are obtained from the preceding set of
equations in the familiar way, by linearization about an equilibrium
reference state. We assume that the gas and droplets are initially
uniformly at rest and in equilibrium, and that the parameters deviate
from the initial values by only a small amount. The perturbation ve-
locitie~s are assumed small compared to the speed of sound in the

undisturbed gas. Write the dependent variables as perturbations

about the reference state:

u = u! u = u Ke(T ) =K +Ke'(T )

' P v P vo v P

= ¥ — 1 = !

p Po +p pp pp0+pp KV Kvo + KV (1. 18)
T =T _+ T T =T + T

o P o P
P =P +P!

(o]

In the following, the primes will be dropped with the understanding
that variables written with no prime refer to the perturbation quanti-
ties.

The linearized interaction quantities, from equations 1. 10 -

1. 12, are written

(1. 20)

Kf(T =K
- LA -

where the equilibration times T Tro and Tp are constants evalu-

ated at the equilibrium state. Since only the zeroth order part of the
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equilibration times enters, the perturbed droplet radius does not ex~
| plicitly enter the problem. For this reason, equation 1. 17 is re-
dundant. However, once the problem is solved, we could go back
and calculate the perturbed particle radius from equation 1.17.

The linearized Clausius-Clapeyron equation 1.7 is

-l h 7

v P P £ P

74 t5- T RT (T ) (1. 22)
vOo (o] [e]

and the linearized form of equation 1.8 for the vapor mass fraction is
. {1.23)

The linearized equations for the gas phase, with the interac-

tion terms F and Q substituted from equations 1. 19 and 1. 20 are

8p . du _ |
ot " Po Bx My . (1. 24)
np
ou oP o]
pO Bt -—a; +—;I_—;'— (up—u) (1. 25)
np_C .
g DL o 2E g BB O a3 (1. 26)
op Ox ot T P
and
L T ~
5 =2 +T (1. 27)
o o o
where
p .
H = ._2.9. (1. 28)
Po

and a, is the undisturbed speed of sound in the pure gaseous phase.
In writing the energy equation 1. 26, the enthalpy of the gas mixture is
written as cpT and Cp assumed constant. If cp is a function of the

vapor mass fraction, this is still correct to the first order since only
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the zeroth order part of cp enters into the problem.

The linearized equations for the liquid phase are

s S
5t T "Po TBx T~ "My Sl
ou 1
R = -_r_v(gp-u) (1..30)
8T w. T h \
S___R=,_L(T _T)__Y,_B(X:_l__{; (1. 31)
CP ot Tp P Po ™ vy 'RT

The droplet internal energy is written as | cTIJ » based upon the as-
sumption that a droplet has uniform temperature. This assumption is
valid if the liquid thermal conductivity is much greater than that of the
gas. This is often true,as in the case of alkali metal droplets in their
vapor. However, for some systems such as water droplets in air,
the liquid conductivity is of the same order as that of the gas, and the
thermal relaxation within droplets may be significant. This effect
will be calculated in the next section.

The droplet density only appears in equation 1. 29, so it is -
redundant in the solution. If the equation of state of the gas is used
to eliminate the pe rturba.ti(;)n pressure P , the equations to be solved

may be written

KT o By T :

- totr - wr (7)) 7 O (1-32)
vo (o] o (o] (o]

8Kv My

- " (I'Kvo)]a_; =0 : (1. 33)

“’v K. €
o trp B T ES(T) = 0 3
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9 ou My
e (B et w L = B - {1.35)
ot Py ox Py
2
du,% 8 /p T e
o 3 AL . TR, - = 0 1. 36
t Y 9x (po To) T (uP u) ( )
10 (Ty ylO ey A (2. TYy.o (137
y ot To y ot po) T To To *
du
N PV N T -
T e | (1.38)
-
and
_g_f’_('_rﬂ)Jr_l(EE__T_)Jr Hy (Y"l "y (1. 39)
c_ 98t \T T T T up vy P RT_ ° .
P o T o. o o o

Assume that the dependent variables depend upon x and t
through the factor exp i(Kx-wt) for a given angular frequency w where

K is the complex wave number written

K = K +iK, . (1. 40)

Then from equations 1. 33, 1,38, and 1. 39, the quantities Kv’

u , and T /T can be written
P P o

(L=K ) @, - ,
K, = --—iw—-‘m— e (1. 41)
pO
u, = tl_lu_w_ . (1. 42)
v

T Mo T h
P _ 1 bl s T ry-1 4
T, - T-iwrps [T—o '—p:; = y‘)(—RTO)] (1. 43)

where s = c/c_ .
P
Using equa.tions 1. 41 - 1.43 and 1. 32, the variables up,
T /T , K ,-and Ke(T ) can be eliminated from equations 1.34 -
p o v v 'p

1. 37. A little manipulation and replacement of the x-derivatives with
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iKx gives the following equations for u, p/p0 ; ’I‘/TO , and p.v/po

=

iw £ +iKu-—< = 0 ' (1. 44)
Po Pq
L2
, 2 K- (L 4+ 2Y =
-1 [1 +W:| 'Ll+1K—-Y—' T + 5 ) = 0 (1. 45)
V. o o
Hys hﬂL/RTo Hy
"1“’[1*1 ST ]T—“K(Y Ha= [l =g [l = 8
o T o
(1. 46)
2
BTl 1 p, (ymt B IRTS) Ty
l-iw'rTs T-0 Po v Al—iw'rTs "
(1 K,
[ - (hK )]}—— = . (1. 47)
vo

For this set of equations to possess a non-trivial solution, the deter-

minant of the coefficients must be zero. The determinant is

0 ' -iw iK -1
2 2
a a
B B o -iw [1+-."——] 0
Y Y 1-iwT :
'
w1 ot 0 -i(y—-l.)K (y-1) I_EEEE
l-iw'rTs : l-iw'rTs
(1. 48)

2
e (hL/RTO)
Y * l-iw'rTs

h,/RT
[1 = _LﬁJ 1 0

Il-inTs

lLUTD

“T l:l- “(l"Kvo )]

The upper-left 3X3 matrix is that obtained by Tem]:cin8 for a
gas-particle system with no mass transfer between phases. If Tp is

set equal to zero and Kvo to unity, the determinant 1. 48 gives the
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special case in which the gas phase consists of vapor only. Expanding
the determinant and setting the result equal to zero gives the follow-
ing equation for the complex wave number K in terms of the fre-

quency W .
2

RT T
Sy (2 e Yases sl x|+
. T 1+u)(1 -Koo)
& {w'ru.rs ¥ va? )( By O) ( - w"'ﬁ)ﬁ =

14 —HB +i(
[ 1+w2Tf 1+m‘Z 2]

Y RTo Tv TT
{‘H v-1 <h4, ) TR o (HWHT_I; o) |

5 "~ 2RT v RT .
{m (- = +Y‘1(1+K)(h,b )>+

T 4

le)(h )("(HW)“ U wT 3 )]} | | (1. 49)

Ky and K2 can be determined by setting the real and imaginary parts

K‘TT

of equation 1. 49 equal to zero separately.
Define the attenuation and dispersion coefficients, respective-

ly, as follows

ZKZao
o = —== | (1. 50)
and
2
. K,a
p=(—2) -1 . (1. 51)

o is a dimensionless measure of attenuation and B a measure of

dispersion of sound of frequency w/2m .
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The dispersion and attenuation coefficients from equations
1. 49 - 1. 51 are plotted in Figures 1 and 2 for a typical system. The
values for a one~ and two-component evaporating system are com-
pared to an equivalent system in which there is no phase change. In
Figures 3 and 4 the attenuation and dispersion are compared for dif-
ferent values of hL/RTo for a single component system. In ther

single component system the gas phase is just pure vapor.
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4. THERMAL RELAXATION WI»TH[N DROPLETS

In writing the linearized energy equation 1. 31 for the liquid
phase, the temperature of the droplets was assumed to be uniform
over the droplet cross~-section. This is not a strictly valid assump-
tion unless the thermal conductivity of the liquid is infinite. Finite
liquid conductivity means that there is an additional relaxation pro-
cess which affects the propagation of sound in the medium. The re-
laxation processes already considered are the result of finite times
required for the tré.nsfer of mass, momentum, and heat between the
two phases.. The additional relaxation process considered here is due
to the finite time required to reach thermal equilibrium within a
droplet.

The energy contained in a droplet whose surface temperature

varies with time like e_IUJt is derived in Appendix B. The result is
3
e. = mcT —= (1 - ¢cotd) (1.52)
P s 2
¢
where
¢ =+ twr, (1{53)
and
Py CO ;
g = (1. 54)

The thermal conductivity of.the liquid is k{, and the surface tempera-
ture of the particle is Ts . As the liquid conductivity approaches in-
finity, T, goes to zero and the droplet internal energy goes to chS s
which is the result used in the previous section. The specific energy

ep of the droplets is determined from the relation
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Ppp = ™%p
where n is the droplet number density. Since nm is just pP , the
specific energy of the droplets can be written
ep-= cTSF(¢) | (1. 55)
where
F($) = ¢—?:Z[1-¢cot¢] ) (1. 56)

The relaxation time for thermal equilibration of the droplets
is Ty given by equation 1. 54. The previous relaxation times T ®
T s and TD are usually of the same order,as seen from the follow-
ing relations,

. 3
TplT, = 5 Pr (1. 57)

and
T T = A (1. 58)
D v 2 *

where Pr and Sc are the Prandtl number and Schmidt number of the
gas mixture. The Prandtl and Schmidt numbers are of order unity

for most gases so T, Tpo and Tp are usually about equal. How-

ever, TL is given by

L 9 ¢

k
B e i PR (1. 59)
Ty & P l‘.'«E,

Since the specific heats of the liquid and gas are of the same order
and the Praﬂdtl number of order unity, the thermal relaxation time of
the droplets is signiﬁcaht only if the thermal conductivities of the
liquid and the gas-vapor mixture are of the same order of magnitude.
The relaxation times are shown in Table II for several systems of

interest. For wet sodium and potassium vapors, Ty is about 10-3
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times Tv , but for water fog in air and wet water vapor at atmos-
pheric pressure, Ty is of the same order as Te® In the latter two
systems the thermal equilibration in droplets is of significance in the
same frequency range as mass, momentum, and thermal equilibra-
tion between the two phases. This effect is incorporated into the pre-
ceding calculation as follows.

Equations 1. 32 through 1. 38 remain unchanged except that the
droplet surface temperature Ts replaces the droplét temperature
TP . And instead of equation 1. 39, the linearized particle energy

equation is written

T T h
9 1 2 1
T g; (1) 7o (R - 1)+ () = = 0-0-60)

A calculation similar to that leading to the determinant 1. 48 gives the

following determinant which must be set equal to zero for a solution to

exist.
0 ‘ iw iK -1
2" 2
a'O a'0
- ) g g
K = K = iw[ 1+ - 1UJ'T' ] _ 0
s F . hL/RT
. Y . cilvel _ . et -
1‘”[1+1-iw¢TsF] . ily-1)K . (y-1)[1 1-inTsF]
T (b, /RT )% e
=1 " F o
h /RT Y 1-iw'rTsF
i T 0
1- F
AL _ T w(l1-K )
LR R,
nKvo lwt

T_he determinant 1. 48 can obviously be obtained from 1. 61 by setting
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the complex phase factor F equal to unity. Recall that F approaches
unity as the liquid thermal conductivity approaches infinity. The

equation obtained by setting this determinant equal to zero is

Ka.Z.

( ) 1+1 +< 11$f5 )X
[(1 o SF)Y : (E;TO)ZK ( in(l-K__ )J} )
[Hl.qmv]@ sz (.

MY y usFE
)(h - SF)(H T fwr s F

+ (g 1$¥FSF K, TT (- 1)(h >(1 iwr sF)( in—(-l-—;-‘-ﬁ)} (1. 62)

The dispersion and attenuation coefficients obtained from equation
1. 62 are plotted in Figures 5 and 6 and compared with the previous

calculation for no thermal relaxation within the droplets.
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5. LIMITING CASES FOR FROZEN AND EQUILIBRIUM INTERAC-
TIONS

The dispersion and attenuation coefficients, calculated from

equation 1. 62, involve four equilibration times, T and

v Tpr T
Ty in a complicated way. The role o.f each equilibration process is
more clearly demonstrated by considering several limiting cases in
which certain equilibration times go to either zero or infinity.

If a certain equilibration time T is zero, the flow is in equi-
librium with respéct to the ith equilibration process. For example,
if TT is zero, the droi)lets are in thermal equilibfiurn with. the local
gas mixture. That is, we see that, by equation 1. 11, for Q to re-
main finite as T goes to zero we must set Tp = T. This is equiv-
alent to saying that the heat transfer berween phases occurs at an in-
finite rate. On the other hand, if an equilibration time becomes in-
finite, the flow is frozen with réspect to the corresponding equilibra-
tion process. For example, if T is infinite, there is no heat
transfer due to conduction between the droplets aﬁd the gas. This
does not mean, however, that the droplét temperature remains con-
stant, since heat is transferred between phases by the evaporation
and cc;ndensa.tion processes.

Since each of the four equilibration times may take on any of
. the three values, zero, infinity, orAfinite and non-zero, there are
eighty-one possible combinations. The attenuation and dispersion for
some of these limiting cases are of particular interest. They can all

be calculated as limiting cases of equation 1. 62.

(a) Completely frozen flow is obtained from equation 1. 62 by
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setting Te = Tp=Tp= @ The result is
Ka.o 2 -
( - ) = 1. (1. 63)

This result gives just the frozen speed of sound with no attenuation,
independent of the value of Ty SinCe there is no heat or mass trans-
fer to the droplets, these temperature remains constant and Ty does
not enter.: In this case, there is no coupling between the two phases,
so sound propagates as it would in the gas phase alone.

(b) Heat and mass transfer frozen is obtained by setting

T .=T~=0. IfT remains finite we have
T D v
O2 H
() = 1w el

2

does not enter because there is no heat or mass transfer between

Again, the thermal relaxation within droplets characterized by 7

phases. If, in addition, Tv = 0, the droplets and gas are in kinetic

equilibrium and equation 1. 64 gives for the speed of sound
a, 2 1
('a—') = m (1. 65)
o

which is just the speed of sound in a gas of density P = p(1+n) . There
'is no attenuation with . 0. This shows how the momentum ex-

change between phases, characterized by T 4 increases the effective

mass of the gas.

(c) Momentum and mass transfer frozen is a limiting case in

which T, Tp= @ The resulting complex wave number is given by

KaOZ 1+ yFs -iuJ'TTFs ‘
( ) = {1= . | - (1. 66)
HykFs - 1w'r.I.Fs
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If the liquid thermal conductivity is very large compared to that of the
gas such that Ty 0, then F - 1. Further, if the droplet and gas
are in thermal equilibrium, that is, T = 0, then the speed of sound

is given by

a2 ;

T _ 14 nys

(=) = Trg kBT
o

where the attenuation is zero. This is just the speed of sound in a

gas whose specific heat ratio is Y = y(14us)/(14uys) . Thus, the

thermal interaction between phases changes the effective specific

heat 'of the gas.

(d) Momentum and heat transfer frozen is obtained by setting

Ty = Tp = 0. The complex wave number is given by

y-1. 2 - T
Ka )2 ) Kvo - n +;wFsKv0 Fs[leV #(1 Kvo)

. (1. 68)

Y1l mariwr -a(l-
oy Fs[1w'rD n(l Kvo)

If Ty = 0 such that F = 1, and if the gaseous phase is pure vapor so

that Kvo =1 and Try ™ 0, the speed of sound is given by
Y Y_(Ay
(ao) = HY'l(nz) (1. 69)

This is the speed of sound in a wet vapor with only mass transfer and

no heat or momentum transfer between phases.

(e) Droplet temperature frozen is the case for Ty = - This
may be because either ¢ = oo or k{' = 0. This implies that the par-

ticle temperature remains constant. The complex wave number is

given by the relation
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Ka 2 =
(T2 v mip) e} -
w(l-K ) -
+1—-i!ltﬂTv){_ny(1_iw:T)+(l m )( AL . (1. 70)
If we let the mixture be a pure vap01; then Kvo =1 and ™D = 0, the

speed of sound becomes zero and the attenuation infinite. Thus,

sound will not propagate. Since the particle temperature is constant
for this case, the vapor pressure at the surface of the droplets is also
constant. This places upon the system the constr‘aint that the pres-
sure be constant so that sound cannot propagate.

(f) Comﬁlete ‘equilibrium is obtained if all the equilibration

times are zero. If the gaseous phase is pure vapor, the equilibrium
sound speed is

2 -1

&, _
equil _ 1 X (l+us)
Q2 v(1+x) [1 T]+ v- nz (1. 71)
o

and the dispersion is zero.

The other limiting cases may be readily obtained from equa-
tion 1. 62. They will not be discussed here, however, since they do
not add much to the clarification of the roles played by the equilibra-
tion processes. If the flow is in equilibrium and/or frozen ﬁith re-
spect to all the equilibration processes, the attenuation is zero and
the effect of the droplets is to alter the sound speed from that value it

would have in the .absence of the droplets.
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6. EFFECT OF PRESSURE RELAXATION

In writing the general equations, the pressure was assumed
locally uniform. That is, the pressure at a droplet‘ surface was as-
sumed equal to the local pressure in the gaseous bulk. This is a
reasonable assumption ‘if the relaxation time for a pressure differ-
ence across a droplet surface is sufficiently small compared to the
other relaxation times. Such a pressure difference arises, for ex-
ample, if the droplets in an e1e>menta1 volume are heated or cooled by
conduction. This causes a change in the vapor pr-es;sure at the drop-
let's surface. The pressure disturbance propagates into the gaseous
bulk which alters the state of the gas. This interaction is in general
a continuous process taking place ove r~ a finite relaxation time. In
the following, we will consider the relaxation of a pressure differen-
tial across a liquid surface for the one-dimensional case. We will
assume the initial condition that the equilibrium vapor pressure of
the liquid at the liquid surface is unequal to the pressure of the vapor
just adjacent to the liquid surface. The governing equations will be
written down and the pressure relaxatioﬁ time computed from a line-
arized solution. The effect of finite liquid conductiw}ity is considered
in the subsequent section.

Consider a semi-infinite duct of constant cross-sectional area.
The closed end of the duct contains liquid of mass m_ per unit area,
and the remainder of the duct is filled with vapor as shown in Figure
7a. The vapor is. assumed an ideal gas and the liquid incompressible.
The origin of the x-coordinate is at the initial location of the liquid

surface. The surface of the liquid and the vapor immediately adjacent
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to it are assumed to be in equilibrium for time greater than zero.
Assume that there is initially a pressure discontinuity at the liquid

surface and write the initial conditions as follows.

P(x, 0) = PZ x>0
= P1 x <0
T(x,0) = T, : x>0 (1. 72)
= Tl x<0
u({x, o) = 0 all x
Define
ui(t) = velocity of the liquid interface
m(t) = mass of liquid per unit area
where m(o) = m_ .

Equating the rate of increase of the mass of the liquid to the

vapor mass flow rate at the liquid surface, we obtain

d
PLY; = —-a? = —p(xi,t)u(x.l,t) (1.73)

where %, is the coordinate of the interface. The energy balance at

the interface is wlritten
d b 2
= (ch'L) = p(xi)u(xi)[ m - l][CpT(xi)+hL+%u (xi)] (1. 74)

where the liquid is assumed to have infinite thermal conductivity.
Conduction of heat between the two phases is neglected in writing the
energy balance 1. 74. This assumes that the pressure relaxation
takes place before a significant amount of heat is conducted to the
surface. It is equivale.nt to the assumption that the pressure relaxa-
tion time is small compared to the thermal relaxation time T *

The conditions for this to be true are obtained in the following.
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Assume that the vapor pressure at the liquid surface is given

by the Clausius-Clapeyron equation
P

h T
{4 4 ( 1
= = @ l] = — (1.75)
Pl RT]. T‘L)

where P«L is the equilibrium vapor pressure of the liquid at the liquid
temperature T{, . The equations governing the vapor phase are those

of conventional one-dimensional gas dynamics

9p , 8 "

8t+ " (pu) 0 (1. 76)

du du _  oP .
PBEt PlEx T T ax i

9 1,2 2 1.2y - 19P
B—t(CpT+ 2‘u )+u8x (cpT+ su ) = > Bt (1.78)

and

P = pRT . (1.79)

Assume that the liquid density is much greater than the vapor density
so that u, can be neglected with respect to u and x, can be set equal

to zero. Egquations 1.73 and 1. 74 can then be written

‘:1_’;1 = - plo, thulo, t) (1. 80)

and
- dT

dm o do™
CTL it + mc — pu[cpT+hL+ su | =0 ° (1. 81)
In addition to the equations 1.75 - 1. 81 in terms of the dependent
variables u, p, P, T, m, P»L , and TL » equilibrium at the liquid

surface requires that

Plo, t) = PL(°’t) ¢ t>0 . (1. 82)

If P2 > l:"1 » and expansion wave propagates into the vapor as

shown in Figure 7b. Vapor flows toward the liquid surface and con-
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denses. This raises the temperature of the liquid which in turn in-
creases the vapor pressure PL- so that compression waves propagate
into the vapor, following the expansion. This continues until the va-
por pressure reaches P2 . The final liquid temperature is not neces-
sarily equal to TZ since the initial vapor state may not lie on the
saturation curve. The question of accommodation will not be consid-
ered he re14’ 15. Rather, it is assumed that all the vapor impinging
upon the liquid surface condenses. In a finite system, the pressure
equilibration would be lcomplica.ted by reflected waves and the final
vapor pressure would be less than P2 . However, the time required
for pressure equilibration in the finite system would be less than that
in the present case.

If PZ < Pl a similar equilibration process occurs, except that
the leading wave is a compression which is followed by a series of
expansion waves as the liquid is cooled by evaporation. The vapor
flow in this casé is non-isentropic and, in general, more difficult to
calculate. However, we will limit this discussion to the linearized
flow in which the cases for P; <P, and P; > P, are both covered by
the calculation.

A calculation very similar to this has been carried out by
Porter1.6 He trea.ted‘ the reflection of sound from evaporating and

adsorbing surfaces.

(2) Linearized solution. Assume that the initial pressure

discontinuity at the liquid surface is small. Then a perturbation so-
lution to equations 1.75 - 1. 81 can be obtained. Assume a perturba-

tion about the initial state l. 72 which is valid for
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|(P2-P1)ﬁP1] < 1.

Write the liquid vapor pressure and temperature as

P P, + P! ,
R (1. 83)
1 1
and
T T; + T}
L 22 (1.84)
1 1
where P}, and TL are perturbation quantities. For the pressure,
temperature, and density of the vapor write
2
_PE = —% (1.85)
2 2
T ATt
— = —e— (1. 86)
2 2
and
p,tp'
£ - 2 (1.87)
P2 P2

From the linearized vapor equatims 1. 76 - 1. 79 we obtain the

familiar expression for the perturbation velocity
u 4 —_— —
= T (1.88) |

where u is the vapor velocity and a, is the speed of sound in the un-
disturbed vapor. We will be concerned with the vapor quantities only
at the liquid surface,. so in the following let all primed vapor quanti-
ties refer to values at x = 0.

With the aid of equation 1. 80, the first order part of equation

(1. 81) can be written

c T, -cT h
} (1. 89)
1

1
dt Tl m T 1 Rl
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The term CPTZ-C:Tl represents the excess non-latent heat carried
into the liquid surface by the condensing vapor. Since c and c_ are
of the same order, this term will be neglected in comparison with
h‘L/RT1 unless T, is much greater than T; . In the linearized solu-
tion we assume T, and T2 nearly equal. With the aid of equation
1. 88, write equation 1. 89 as

a h, - P!

1
4 (Ei’.) = - P22 EE 1 P (1. 90)
dt T1 myY ¢ ¢ T1 P2 : =

From the linearized Clausius-Clapeyron equation

Pl h Tl
?‘_L_ = _R'% 'T—‘L (1.91)
1 1 1
and from equation 1. 82,
P +P! P 4P
s (1. 92
1 2
equation 1. 90 can be written
P p,a c h, 2P
d Ly _ 272 y-1rp 4 4
Et‘('ﬁ‘l‘)"m 7 (= ) zr) ' il 389
o Y 1 1
This can be integrated directly to give
P,-P -t/T
2 1 P
P—p- = e (1.94)
2 1
where
m 2 h 2
_. 6 o Y ( L
r = = (1. 95)
P Cp pz‘a0 y-l/ RTI)

is the pressure relaxation time. For a vapor-droplet system, the
pressure relaxation time is

_c Pt o h'b -
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The pressure relaxation time compared to the velocity relaxation

time gives

r h, .2 '
= 2 c u L
2= 2 E 2 fre () (L. $7)
p ‘o o

'

where Re is the Reynolds number of the droplets based upon the va-
por velocity u. Since by assumption Re ~ 1 and c/cp ~1, Tp/TV is
proportional to the perturbation quantity u/ao. divided by (hL/RTO)z .
The ratio (hL/RTO)‘is of order 10 for most systems of interest (see
Table I). For the systems tabulated in Table II, Tp/Tv is of order

- to 10"4 . Soif Tp << T, Weare justified in neglecting the

10
pressure relaxation in relation to the other relaxation processes.

(b) The effect of finite liquid conductivity upon pressure re-

laxation. In the previous calculation, the liquid thermal conductivity
was assumed infinite. During the pressure relaxation of a droplet of
finite conductivity, the liquid surface is hotter or colder than the in-
terior as condensation or evaporation takes place. If the pressure
equilibration takes place rapidly compared to the time for heat to be
conducted from the droplet éurface to the interior, the heat is ef-
fectively confined to a thin layer near the surface. This would effec-
tively decrease the mass entering into the equilibration process,
thereby decreasing the pressure equilibration time Tp . This is ex-
amined analytically in the following.

Consider the same one-dimensional system as before, shown
in Figure 7a, subject to the initial conditions 1. 72. A.ssurne that the
wall at x = -4 is insulated. Then the lic;_luid temperature satisfies the

heat equation



8T} 8%t
‘pLC 3% = k{' 5 (1.98)
0x
~subject to the end conditions
8T"L -
—9—;(-{».1:) = 0 , t>0 (1.99)
and |
BTL
kL ?;— (0, t) = -pzuik{’ ’ t>0 (1. 100)

where the primes stand for perturbation quantities as before. The
right hand side of equation 1. 100 is the linearized heat flux into the
fluid surface due to condensation. From equation 1. 88, the condition

. 1. 100 can be written

8T! h ‘
4 _ 4 P! _
kL—ax = -pzaz—Y —PZ ) x=0, t>0 .
Using equation 1. 91 this becomes

i p,a, C h, 2T
o ( 1 22 p 4 L

———(0,ﬂ> = - ( Y w2 (0,8) . (1.101)
9% \T, By, ¥-I \e T/ T,

Equation 1. 98, subject to the conditions 1. 99 and 1. 101, and the ini-
tial condition
T:L(X, 0) = 0 -4 =x<0 (1.102)

17
can be solved formally in terms of Fourier series . However, this

solution does not give the characteristic time explicitly. The follow-
ing approximate s<‘)1ution by an integral method gives an explicit ap-
proximation for the characteristic pressure relaxation time.

Assume that at any time greater than zero the total heat car-

ried to the liquid surface by condensation is contained in a layer of
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constant thickness & . From the differential equation 1. 98 we write

5 ¢ e
1 s
PyC BT Tde = ’L e (0, t) (1.103)
-6
where TL is assumed zero at x = -6 . Then, from equation 1. 101,
0
h 2
8 ° %
p'LC ﬁ T"de = -pzaz ?-PT (ﬁ?) TL(O, t) (1. 104)
P
-5

Assume the following expansion for TL(x, t) :

1
3TL

Ti(x,t) = T'(O t)+ =—=(0,t) x+ ... " (1. 105)

Substitute equation 1. 105 into 1. 104 and use 1. 101 to obtain

9T TL(O.t) .
T (0,t) = e (1.-106)
P
where
Pr ¢ & 5 P2%p
TR = By O 4 = IO o | 1.107
F o= g g (1. 107)

Tff is the pressure relaxation time for finite liquid conductivity.
Compare 'rp* with the pressure equilibration time for infinite

thermal conductivity of the liquid 'rp

LG

0} 5

Tp o[1+2A] (1.108)

where

k h 2

= 4L vy-1 4

A = (1. 109)

P2y cp (cpTl)

The thermal layer thickness & is of the same order or smaller than
the particle radius 0 , and can always be taken of the order of A,
such that 'r{f‘ is less than Tp . From equations 1. 101 and 1. 105, we

see that to the first order A is the depth at which Ti(O, t)~ 0. That
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is, A is a measure of the thickness of the layer at the surface in
which the heat due to condensation is contained. Therefore, by defi-

nition, &6~ A.
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7. DISCUSSION OF RESULTS

Temkin and Dobbins 7 have shown that their theory,which
does not include mass transfer, gives values of attenuation very close
to the theory of Epstein and Carhart 7 , and values of dispersion very
close to the calculations by Chu and Chow7. Measurements, reported
by Temkin and Dobbinslo, of the attenuation and dispersion of sound
in a system consisting of oleic acid in a nitrogen carrier gas were in
close agreement with their theory. A comparison between their re-
sults for a system with no mass-transfer between phases and the
present calculations, which include mass transfer, is shown in Fig-
ures 1 and 2. At low frequencies, (w’rv < 0. 5),the dispersion coeffi-
cient for the case which includes mass transfer is up to 40 per ce1’1t
higher than that in which there is no mass transfer. The effect of
mass transfer is to increase the attenuation by about 20 to 30 per cent
in the middle frequencies, (w'Tv = 0.1 to 1. 0), and to shift the maxi-
mum attenuation from a value of W, = 1 to about o, 0.5. Conse-
quently, in some systems, mass transfer has significant effects upon
the attenuation and dispersion coefficients.

The effects of different values of the latent heat of vaporiza--
tion, h»f, » upon the attenuation and dispersion is shown in Figures 3
and 4. Generally, higher values of hL/RTo give larger values for
the dispersion coefficient at lower frequencies, and higher attenuation
"in the middle frequencies, as can be seen from the curves. In Fig-
ures 5 and 6, the effect of finite droplet thermal conductivity upon the
dispersion and attenuation is shown for a particularlsys',tem. For

this system, there is some change in dispersion in the middle fre-
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quencies due to particle conductivity effects, and less change in at-
tenuation. For this syétem, finite particle conductivity does not have
a very significant effect.

The attenuation and dispersion have been plotted as functions
of wr - The variation of wr_ may be thought of in two ways. It
may be considered with respect to a variation in the a.ngula.f frequen-
cy w for a given system, that is Te fixed, or it may be considered
as a variation of T for a fixed frequency. Since e is a function of
the droplet radius, the latter interpretation may be used, for ex-
ample, to determine which particle radius, other conditions being the
same, gives the maximum attenuation of sound of a given frequency.

In the first order theory, considered here;,; the problem of
droplet collisions, or coagulation, ‘was avoided by assuming all drop-
lets to be of the same size. In a second order theory, however, co-
agulation must be considered, even for droplets of the same size.
The reason for this is that droplets at different locations along the
path of the sound wave have different velocities at any given time.
The order of magl'litude of this velocity difference, Aup s is given by
the relation

ou

Bu ~ —a-ﬁl & (1. 110)

where & is a measure of the spacing between droplets. Alternately,
this relation may be expressed as

Au 5

u
= ~ E' x ) (1.111)

where A is the wavelength of the sound. The gas velocity u is small

compared to the speed of sound, a , in the acoustic approximation,
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and the quantity 6/)A is assumed to be, at most, of the same order.
Hence, the velocity difference Aup » which leads to the possibility of
coagulation, should be included in a second order theory. Second
order coagulation effects may be an appreciable factor in experi-
mental work where measurements are made over time periodé which

include many cycles, that is, over time periods large compared to

1/w .
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APPENDIX A. DERIVATION OF THE BASIC EQUATIONS

Consider a system consisting of liquid droplets dispersed in a
mixture of condensible vapor and inert gas. Equations governing the
flow of this system are derived in a treatment which largely parallels
the work of Ma.rble1 1. Viscous stresses and heat conduction in the
gaseous phase are included for generality. The gaseous species are
assumed thoroughly mixed and assumed to move together in thermo-
dynamic equilibrium so that differential diffusion rates may be ne-
glected on a scale large compared to the droplet dimensions and so
that one may consider the transport properties of the mixture. The
liquid droplets are assumed finely divided so that any volume element
we may choose contains many droplets; then the droplets may be
treated from the continuum viewpoint which clearly does not hold on
a scale comparable to the droplet dimensions. A necessary condi-
tion for this type of treatment is that the scale of the problem be
large compared to the droplet dimensions.

On a scale comparable to the droplet dimensions, there aré
local variations in velocity, temperature, and vapor concentration.
It is a major assumption that these microscopic fields depend only
upon the local bulk state of the matter and not upon the relatively
large scale properties of the gross motion. Further, the droplets
are assumed sufficiently separated that the local fields of one droplet
do not interact with the fields of altnother droplet. As a consequence
of these assumptions, it is admissible to employ knowledge of the be-
havior of isolated droplets in uniform gas fields t.o calculate the inter-

action between phases. The liquid density is assumed much greater
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than the gas density and the mass fraction of the liquid phase is as-
sumed to be at most of order unity so that the volume fraction occu-
pied by the liquid maybe neglected. The ensuing calculations are carried
out assuming that the drople-t and gas are two continua, coexisting in
space, and interacting with each oti1er through the transfer of heat,
mass, and momentum. Further details and consequences of the as-
sumptions will be treated as they arise in the development of the
governing equations.

Separate laws of mass, momentum, and energy conse rvation'
are written for the liquid phase and the gaseous mixture. Actually,
separate conservation laws may be written for the two gaseous spe-
cies, but since the gases are thoroughly mixed, this is redundant. In
the derivation of the conservation equations, we consider a collection
of matter bounded by a surface that always consists of the same ele-
ments of matter under consideration. We will frequently calculate
the time rate of change of some property integrated over a volume
which moves with the substance under consideration. Any tensor
quantity AkL in the volume V may be differentiated by time through
writing

kit

DA .
j 5t dV.+ IAkLuinidS _ (A. 1)
v S

where the first term represents the local time derivative and the
second term is the amount convected through the surface S of the
volume. If AkL is a sufficiently smooth function of X the integral

transformation gives
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8A

St L 9
j {__._Bt + B (AkLui)} av . (A. 2)
2

This is the familiar form for the time rate of change of the quantity
Ak{, in a volume moving with the fluid.

The conservation of mass for the gaseous phase requires that
the time rate of change of mass in the volume V be equal to the rate
at which vapor is added to the volume by evaporation from the liquid
droplets. This may be expressed as

f{—%%+-—ai—(pu.)}dv = Ip av (A.3)

X. i v

v ' v
where M, is the mass of vapor per unit volume of gaseous mixture
evaporating from the droplets and where p and u, refer to the gase-
ous mixture. A net condensation would mean that M, is negative.
In keeping with the earlier assumptions, M, is considered to be a .
continuous smooth function of X, in spite of the fact that, from a-
microscopic point of view, the phase change is restricted to a negli-
gible fraction of the volume. Since equation A 3 holds ovér an arbi-
trary volume, by the familiar argufnent, it must hold point by point.

Hence we obtain the differential equatioh

9p ., 8 - |
at | B, (pu;) = (A

which is the continuity equation for the gaseous phase. This reduces
to the usual continuity equation for gas dynamics if the vapor mass
production rate M, vanishes.

A similar argument is ﬁsed to obtain the continuity equation

for the droplet phase. Denote by pP the density of the droplet phase,
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defined as the mass of liquid per unit volume of mixture, and by upi

the velocity vector of the mass motion of the droplet phase. Then,

the continuity equation for the droplet cloud is
9p

P4+ 9 T
at+axi("“') b

P pi v (A.5)

Since e is the mass evaporation rate from the droplets, "M, is the
mass condensation rate because matter is neither created nor de-
stroyed, but just transferred from one phase to the other by evapora-
tion and condensation. The conservation of total mass may be illus--
trated by adding equations A.4 and A. 5 to obtain

Bt (p+p ) + 5 a (pu. +ppup1) = 0 , (A. 6)

)

This represents the continuity equation for the composite system in
which there is no mass production term.

The principle of momentum conservation and its change due to
external forces is also applied to the separate phases of the multi-
component flow. The momentum vector per un_it volume of the gas
mixture is pu; > and the time rate of change in the total momentum

of the moving region is

j{at (pu)+ (puu)} dv . (A.7)

The gaseous phase is acted upon by two distinct sets of
forces: (1) those imposed by the motion or presence of the droplets;
-and (2) those stresses set up within the gas mixture itself. We ex-
plicitly neglect external body forces due to gravitational, electro-l

magnetic, or other fields. The forces per unit volume acting upon
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the gas due to the droplets will be denoted by Fi . Their nature and
origin will be examined later. The internal stresses set up within the
gas mixture are assumed to be of the same form as those which would
exist in the absence of the liquid phase, since the volume fraction oc-
cupied by the liquid phase is assumed negligible. Under these condi-

tions, the stresses in the gaseous medium may be written

o, = =8 P+ ) u(—+—l . (A. 8)

The pressure P is the local scalar pressure corresponding to the
local temperature and density through the equation of state. Thus,
the thermodynamic pressure is defined so long as the gas is in a
state where the other thermodynamic quantities are defined. The
viscosity coefficient yu is assumed to be that for the gaseous mixtul;e,
and due to the small volume fraction occupied by the droplets, the
familiar Einstein correction is neglected. For convenience, define

the viscous part of the stress tensor as

du du, 8 :
= P A WO S
Tij n(r tax) " SHER o7 (A. 9)
J 1 k

so that the complete stress tensor is written

0 = ~P o+, . : (A. 10)

Thus, the forces acting upon the volume of matter under considera-

tion are

j‘F.dV+ J‘U..n.ds 5 (A.11)
i 137
A% S

Under the conditions of normal fluid mechanics, the time rate of

change of momentum, equation A.6, would be equated to the external
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forces, equation A.1ll, Here, however, there is an additional source
of momentum due to the creation of gaseous medium by evaporation
of the droplets. In accounting for this process, we assume that,
since the phase transition takes place at the surface of a droplet, the
mass is added to or subtracted from the gaseous phase at the droplet
velocity. Therefore, the momentum added to our region due to va-
porization is

I M, u; 4V (A. 12)
v

Thus, the complete relationship for the change of momentum of the
gaseous phase is
P{ (pu )+ (pu w )1 = |F.dV+ PCI n.dS+ (g . u .dV. (A. 13)
ot i & i J T v opi
\'A S A
Use equation A. 10 for Oij » and convert the surface integral into a
volume integral. Then we make use of the familiar argument to ob-

tain the equation of motion of the gas phase

i
oP ij
(Pu ) + J (pu u ) = Fl-a—xi‘l‘ aXJ +[J,vupi . (A.14)

A similar argument may be applied to the change in momen-
tum of the corresponding collection of liquid droplets. However,
since the droplets do not form a continuum in the usual sense, there
is no surface stress associated with the surface bounding the collec-
tion of droplets. The only forces which tend to alter the momentum
‘of the droplet collection are those exerted upon the individual drop-
lets by the gas flow over them; call this force Fi per unit volume.

The momentum of the droplet cloud is also modified by the phase
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transition taking place at the droplet surfaces. Corresponding to the
assumption made for the similar term occurring in the momentum
consideration of the gas phase, we assume that the condensing mass
carries with it the velocity of the droplet as it condenses and that the
acceleration or retardation of vapor to the droplet velocity makes it-
self felt through the drag of the droplet. Utilizing these assumptions,
an argument similar to that for the gas phase leads to the dropletl

momentum equation,

] 9 =

The forces Fi and Fpi on the gas and part.icle collection,
respectively, are not independent since they result from the interac-
tion between the two phases at the droplet surface. Thus, clearly,

F.4+EF. =0 , (A. 16)
i pi

which just states that action and reaction are equal. It is interesting
to note that the sum of the two momentum equations, eqﬁations A. 14

and A. 15, are particularly simple. We find that

o 0 _
ot (pui+ppupi) iy '83_{]_ (puiuj * ppupiupj) =
or..
oP ij :
&) v + G5 - (A. 17)

where the interaction terms do not appear. This total equation rep-
resents the momentum conservation relation for the composite gas-
droplet mixture.

To complete the statement of the conservation laws, we now

apply the conservation of energy to the two phases. We use this
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principle to state that the rate at which energy (internal and kinetic)
of the system is increasing is equal to the sum of (1) the rate-at which
work is done on the system by external forces (2) the rate at which
heat is transferred to the system by outside sources, and (3) the gain
in energy from vapor mass increase due to phase change. Denote by
e the internal energy per unit mass of the gaseous mixture. The
change of energy with respect to time of the gas vapor mixture in a

volume V at time t is

f {2 pterduu)] + aa_xj [p(e+%ﬁiui)uj]} av . (A.18)
4

Work is done on the gas phase by surface stresses represented by .
the stress tensor Gij , and by the force Fi exerted by the droplets
and treated here as a distributed volume forcé. The. work done on the

volume V by external forces is then

_fcijnjuids+ jFu dV = I{a——(c u)+Fu }dV . (A.19)
S A\

The heat flux vector q; defines the rate at which heat is
transported out of a unit area normal to the orientation of the vector.

Then the heat flowing out of the surface bounding the sample of matter

in question is

(q.n.ds = -ai-dv (A. 20)
J i o, . :
S %

Finally, there is the energy gained or lost from our sample of
matter due to phase transition. This change also takes place very
close to the liquid surface. Hence, for consistency with the previous

assumptions, the kinetic energy associated with the vapor which is
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condensed or evaporated must correspond to the velocity of the drop-
let. Similarly, the internal energy of the vapor which is gained or
lost from the local vapor-gas mixture must correspond to the vapor
internal energy at the droplet temperature, since that is the gas tem-
perature immediately adjacent to the droplet. The latent heat of
phase change requires further consideration. If evaporation is taking
place, a molecule escaping the liquid must have left the liquid with
sufficient energy to achieve the vapor state, that is, té escape its
local liquid bonds. Therefore, the latent heat is extracted from the
liquid. Conversely, if the vapor molecule strikes the liquid and re-
mains a part of the liquid structure, then this latent heat again shows
up in i:he liquid droplet. Therefore, the latent heat associated with
phase transitions is absorbed from or given to the liquid state. Then
if e(Tp) denotes the i;'xternal energy of the gas-vapor mixture at the
local droplet temperature, the energy added to our sample per unit
time due to vapor production is given by

I“ {e(T ydu_ 0, +— }dv : (A. 21)

S v P pi pi F(T_pf .
In addition, there is the heat added to the gas-vapor mixture due to
heat conduction from the droplets. If Q represents the rate of heat
addition to the gas-vapor mixture by condensation from the droplets,

the energy added to our sample by this process is given by

jQ dv . (A. 22)
v

Utilizing equations A. 18-22, we now write the appropriate energy

equation for the gas-vapor phase.
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9 9 i
1 8 1 o B e
7t Lpletauu, )] +8xj {pujletiuu)} = 52 (0, u )+ Fou b,
+ . [e(T )+ = +1u_.u .} 4+Q . (A. 23)
v P p]ij pi pi

This equation may be transformed into a form that corre sponds more
clearly to the usual energy equation for a single component. Using

the continuity equation A. 4, the momentum equation can be written

p m—"f Py gx—j = Fy “v(“pi'“i) t %, T b

Arranged in this way, it appears that the droplet cloud exerts an ad-
ditional trhust on the gas mixture due to change of phase. This is the
counterpart of the familiar thrust associated with source flow in an
ideal fluid. If this equation is multiplied by u, and rearranged; an

equation for the rate of change of kinetic energy is obtained.

2 Guu)+p
P 3t ‘244 PY; Bx.

9 )
(au u. ) Fiui+uv(upi-ui)ui+ui -B—’i (Oij) . (A.25)

With the aid of the continuity equation A. 4, and by using equation
A. 25 to subtract out the kinetic energy terms, the energy equation of

the gas mixture may be written as
Bu 0

de de _ 93
p'a—t+ puJa_xJ = 0138 +F(u -ul)-a—xi'i'o‘f‘
1 -
tu laua, - dwpupe v a4 {e(Tp”F(T_T e} . (A.26)
ou,
If the term Uij —5-;{-5 is expanded using equation A. 8, one can write
J ":’ui Bui
cij -g‘] = &% -P -a—;l (A. 27)

where
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ou
¥ = 3“(ax)+z (Bx a;:)h (A. 28)
is the familiar viscous dissipation function. Using this in equation

A. 26, one obtains as the energy equation for the gaseous phase

e e Ou., 3q.
p Bt+ puJ o J +P§—-———§'+(u .-, )(F - u)+Q--B—x—

P 1 1
+ uv{e(Tp)+ m e+ i auiui} .
’ (A. 29)
This equation is now in the conventional form for the first law of
thermodynamics.

The energy equation for the droplet cloud may be derived in

the same manner. Itis

o g 9 1 _
Bt LPpleptaup;up;)] +axj {ppleptaug i)} =

=Ly, {e +h{'+zup1u o¥ (A. 30)

P1 Pl
The quantity ep represents the thermodynamic internal energy of the
liquid, and hL represents the latent heat of phase transition which is

defined by the relation

h, + hy = h(T) . (A.31)

where hp denotes the enthalpy of the liq_'uid per unit mass and h(Tp)
. is the enthalpy of the gaseous phase per unit mass at the local droplet
temperature.

The sum of the energy equations, equations A. 23 and A. 30,

with the aid of equations A. 15 and A. 31 gives
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9 1 L 9 1, 1 N
5 {p(e+auiui)+pp(ep+2upiupi)} + ij {plet 2uiui)+pp(ep+§upiu,pi)} =

8q,

9
a—x—j- (clJul) - -ac—]—. (A.32)

which is the energy equation for the composite system. This equation
has the form of the energy equation for a single~-phase system and
shows that there is no net production or destruction of energy.

To complete the formulation, it is necessary to develop the
appropriate expressions for the forces and heat and mass transfer
that occur between the liquid and gas phases. In the course of ex-
amining this, it will prove necessary to extend the number of trans-
port equations that have been developed. We will, from the begin-
ning, make the assumptions that the droplets are spherical and all of
the same size or radius. I_n addition, the interaction between a single
droplet and the gas mixture is summed over the number of droplets
to give the total interaction. Further assumptions will arise in the
following discussion.

Assume that the force exerted upon a single droplet is given
by Stokes law. Then the force fi exerted upon the gas by a single
dropiet is

fi = 6-rrcu(up.l-ui) (A. 33)

where 0 is the droplet radius, and . is the viscosity coefficient of
the gas-vapor mixture. If n is the number of droplets per unit vol-
ume locally, the total force Fi is simply nfi . Further, if m de-

notes the mass of a single droplet, and since all the droplets are

assumed to be of the same radius, the local density of the condensed
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matter is Pp = nm , and consequently

F,o= 80U 0 0 olu) . (A. 34)

i m pp upi- i
The quantity m/6mou has the dimension of a time and, in the case of
a single free particle of constant radius, it is the time required for
the velocity of a droplet relative to the gas to decay to e-1 of its

initial value. Hence, define the velocity relaxation time to be

" = Bwow 12350
Note that for a given system, T varies as the square of the droplet
radius. As a consequence of these assumptions, the volumetric

distribution of body force may be written as

F. = p -BL i (A 36)

so that the only additional quantity which the volumetric forces Bring
into the problem is the characteristic time 'rV .

Two aésumptions, implicit in the above analysis, must be
kept in mind. First, the Reynolds number of the droplet motion
through the gas is assumed low enough that the Stokes approximation
is vglid. If this condition is not fulfilled, the characteristic time s
becomes a function of Reynolds number; this variation may be carried
along numerically in any problem, but will only be mentionedhere. The
second assumption has to do with the effect of mass transfer upon the
drag law. Strictly speaking, within the Stokes approximation, there
is no effect and, to higher degrées of approximation, the effect is of
the order p.v(upi-ui) . Therefore, to neglect this phenomenon, as we

shall do, leads to an inconsistency in the order of terms retained.
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Those that have been retained have been done so in order to achieve a
certain internal consistency among the equations themselves regard-
less of the form for the internal forces. In the acoustic problem
these terms are of higher order and do not enter in any of the equa-
tions, but in other problems where the term p,v(upi—ui) might be of
the same order as other force and inertial terms, an error of this
order must be expected if the Stokes law is used.

The processes of heat and rnasé transfer between the two
phases are treated in much the same manner as the interphase forces.

The heat transfer rate from a single particle, g, is _taken to be

q = 4w’ g(Tp-T) (A. 37)

where k is the coefficient of thermal conductivity for the gas-vapor
mixture. As before, utilizing the number n of droplets locally per
unit volume, the total rate of heat transfer from droplets to the gas-

vapor mixture is Q = nq , which may be written

T T :
Q = pc_—L£— (A. 38)
v

where the thermal relaxation time T is given by

mec

ORI .
TT T Znok . - (439}

and where Cp is the specific heat at constant pressure of the gas-
vapor mixture. As in the case of the forces exerted between phases,
the effect of mass transfer ﬁpon the heat transfer between phases
has been neglected in writing e(_iuation A.38. In the acoustic equa-
tions, however, these terms cio not enter, and will not be discussed

further.
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The mass transfer between phases M, » as in the cases of the
other transfer quantities, is assumed continuously distributed
throughout the volume. In detail, there are three processes which
enter into the rate at which vapor condenses on or vaporizes from a
droplet. These are the rate of heat exchange, the rate of vapor
transfer, and the kinetic rate of condensation. We shall assume that
the condensation rate is infinitely fast in comparison with the other
two and consequently is not rate contri)lling. The approximation is,
in principle, that the vapor transfer rate to the liquid surface is slow
in comparison with the mass rate of collision of vapor molecules
“upon the droplet surface. This fact, that the collision rate is very
rapid, implies that very close to the droplet surface, the vapor and
droplet surface must be in thermodynamic equilibrium. This region
is s0 small that the temperature and composition variation over it
are negligible. Thus, at the droplet surface, the partial pressure of -
vapor must be that corresponding to the surface temperatur'e of the
droplet. For the rest of this derivation, we”shall consider the drop-
let bulk to be the same temperature as its surface so the partial
pressure of vapor at the droplet surface is the saturation pressure
corresponding tol the droplet tempe rature.
From the above observations, it appears that droplet conderi-
sation depends only upon the diffusion of vapor to the droplet surface 7
and the conduction away of the resultant heat of cor.xdensa.tion. Denote
by Py the local density of condensable vapor and by up the diffusion
velocity of vapor relative to inert gas. Then the mass rate of vapor

production from a single droplet is just
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2
4no PyUD
where p_ and uD' are evaluated at the droplet surface. If there are
n droplets per unit volume, the total vapor mass production rate is
just
_ 2
M, = n 4o PLUp - (A_. 40)
It is convenient to introduce the mass fraction of vapor Kv based
upon the total mass of gaseous species. That is, define
K, = pv/p = : (A. 41)

Theﬁ, according to the theory of binary diffusion, the diffusion ve-

locitf u., may be written

D
9K

- 1 v '
'llD = -DK—V—B—r— (A.42)
where D is the binary diffusion coefficient and BKv/ar is the radial
vapor concentration evaluated at the droplet surface. We may then
write .
8Kv
-ph 5 . (A.43)

PvUD
This gives for the mass vaporization rate

> K
_ v
g = npD 4no TR . (A. 44)

(o)

Under the assumption that the relative motion of the droplets, or the
mass flux from the surface, does not appreciably affect the diffusion
problem, the surface concentration gradient may be written rigorously
as

9K K_(c0) - 'Kv(c)

= (A. 45)
or - o}

where Kv(oo) is the vapor mass fraction far from the droplet, that is,
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in the gas vapor bulk. Thus, Kv(oo) = Kv » where Kv is understood
to be the vapor mass fraction in the medium considered as a continu-
um. The vapor mass fraction at the droplet is the equilibrium vapor
concentration at the ambient mixture pressure and at the droplet
temperature. Thus,

& :
Kv(o) = Kv (TP) (A. 46)

where the superscript denotes equilibrium and the argument indi-
cates that it is evaluated at the particle temperature. Utilizing these
results, the vapor mass production rate can be written as

_ _ e
B, = npD41rC{KV KV(TP)} . (A. 47)

It is advantageous to treat the vapor production rate in a way analo-
gous to the heat and momentum transfer rates. Define the charac-

teristic concentration equilibration time as
- m
T = ZnopD . (A. 48)

-Then the vapor production rate per unit volume is

K - Kve(TP) |
Moo= - Py S ; (A. 49)

The temperature of the droplets, and consequently the heat transfer
between the droplets and the gaseous phase, enters the vapor produc-
tion rate problem in setting the value of the equilibrium vapor con-
centration at the droplet surface.

When the vapor is considered as an ideal gas, as it will be
here, the equilibrium partial pressure of the vapor is given by the

well-known Chausius-Clapeyron relation,
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P (T} h, T_
—5=L— = expl- g7— (7=~ 1)] (A.50)
Vo o P

where on and To are the vapor pressure and temperature at some
known reference state. However, since the system is in thermody-
namic equilibrium, and consequently both vapor and inert gas have

the same temperature, then the local equilibrium vapor concentration

is ‘
. 'Pve('I‘ ) . P_ B, LT
K (Tp) = —p—— = KJ(T) g expl- gy (T_p' )]

(A.51)
where Kve(To) is the equilibrium vapor mass fraction at the refer-
ence temperature and Po is the total pressure at the reference state.
Two new wvariables hav—e—been introduced in the calculation of p.v , the
local mass fraction of vapor Kv ;» and the vapor mass fraction at the
liquid surface Kve(Tp) . The latter is related to the other dependent
variables through equation A. 51l. An additional differential equation
.to account for the local vapor mass £rf3.ction can be obtained from the
continuity equation for the vapor constituent alone. It is easily shown

that

=t g (o) = p . (A.52)

By the definition of the mass fraction, and utilizing the continuity

equation of the gas phase, equation A. 4, it follows that

BKV BKV 1
ot +ui axi = F(l_Kv)p‘v & s BAY

This is the required equation for the local mass fraction of vapor.

In dealing with the relations governing the interaction between
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phases, we have introduced the three characteristic times Tv i TT 5
and ™ * Each of these depends explicitly on the square of the drop-
let radius. Thﬁs, the droplet radius must be accounted for point by
point. This is fairly straightforward in the present case because we
have assumed that no droplet nucleation, coagulation, or fractionation
takes place in the flow field. Then the continuity equation for the
liquid phase, since pp = nm , may be written

8 , ) _
o (nm) + —a-x—l (nmupi) = S (A. 54)

and since the number of particles is conserved,

9n 9 _ :
B + —axi (nupi) = 0 . | (A. 55)

Thus, if m is the particle mass corresponding to the reference

radius, equation A. 54 may be written

3 3
9 , 0 5} o _
nmo{‘a—t(o—o) +“pi'a';i'(a;’} = =, 5 (8aRg

By utilizing equation A. 49 to give an explicit expression for the vapor

mass production rate we may write

e .
9L ., 8T _2 KoK (Tp) A. 57
5t " Ypidx, 3 Tog (A. 57}
where
E = (0/00)2 | (A. 58)

and TDo is the diffusion equliibration time at the reference state.
This equation completes the relations required for the treat-

ment of heterogeneous gas dynamics with phase change. The trans-

port properties of the gaseous phase, of course, depend upon the

thermodynamic state of the gas-vapor mixture. If this dependence is
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known, then the above equations can be used to solve problems in-
volving heterogeneous flow with mass transfer.

Ma.rble11 has introduced characteristic lengths in place of the

characteristic times Tv 5 TT , and D and has shown_ how to ac-

count for the variation in the transport properties of the gas mixture

with temperature in a simple way. Define the characteristic lengths

A = arT

v v

Ap = aTq , (A.59)
Ap = 2 Tp '

If the viscosity of the gas mixture is taken to vary-as # T , then the

velocity characteristic length may be written, since a/u = aO/uo ’.

m a
y = M2 o o o]

v bmop 6"00“'0 (F—) = Xvoz . (A. 60)

(o]

Similarly, if it is assumed that k , the thermal conductivity of the

gas mixture, and pD are assumed to vary as v T , then the other two

characteristic lengths may be written as

Ap = Ap E (A.61)
and

KD = 7‘1302 d ' (A.62)
Though in the acoustic probletﬁ the characteristic times are used, it

is convenient in some cases to use the characteristic lengths to

describe the interaction parameters.
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APPENDIX B. INTERNAL ENERGY OF DROPLETS .
Consider a spherical droplet of radius 0 whose surface tem-
perature is a function of time Ts(t) . Assume that the density,. spe-
cific heat, and thermal conductivity are constant. The temperature

within the droplet then satisfies the heat conduction equation

k
0T _ L ) 20T
-—aT:- = 2 -é? I -g; N OS]_‘<O' ’ t>0 (B. 1)
pyCT
subject to the conditions
T(o,t) = Ts(t) 5 t=20 . (B. 2)
Define the dimensionless quantities
2
pyo c
Ty =B s (B. 3)
4 kL
and
R = & . (B. 4)
Then equation B. 1 can be written
oT _ 1 9 28T
TL%T"?%Tt(RFE : B 5)

Assume that the temperature depends upon time only through the
factor exp(~iwt) . Then equation (B. 5) is reduced to the ordinary

differential equation

2
2d4d°T dT | . 2
-—-——2+ ZR'ai-'*'lLUT'LR T = 0 . (B-é)

dR

R

The solution, subject to the condition B. 2, is

T(R) = Tsé{%fi (B. 7)
where ‘
$ =N iwr, . (B. 8)
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The energy in the droplet is given by
' R

ep = P brcT(r)fl'rrrzdr . (B.9)
0

When integrated using equation B. 7, this gives

e, = chs¢—3’z [1-dcotd] . (b. 10)

Equation B. 10 gives the internal energy of a droplet of mass m

" whose surfa,.ce temperature TS varies with time like exp(-iwt) . The
parameter ¢ is a complex phase factor. The assumption that Ts is
a function of time only is valid if the acoustic wavelength is large
compared to the droplet radius. This is certainly true for problems

of interest here.
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TABLE I
Some Properties of Potassium and Sodium Droplets

in Their Respective Vapors, and of Water Fog in Air

Potassium in Sodium in Water
Units Potassium Vapor Sodium Vapor in Air
T 1500°R  2500°R 1500°R  2500°R 60°F
'PV psia 1. 50 1. 65 0. 23 80 0. 26
pylp 1. 20x10% 1.38x10% 1.44x10° s5.38x10 8. 16x10%
C BTU/1b°R 0. 182 0. 210 0. 300 0.326 . 1.00
c, BTU/1b°R 0. 127 0. 126 0.214 0.213 0. 240
v 1. 64 1. 57 1. 62 1. 53 1. 40
k, [k 3.0x10°  Lax103  z.8x10® L7x103  2.3x10
Pr 0.75 0.73 - 0.73 0.73 0.71
h, /RT 11.8 6.7 14. 7 8.5 17. 8
Sc - - - - 0. 585
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TABLE II

Equilibration Times for Potassium and Sodium Droplets

in Their Respective Vapors and for Water Fog in Air

Potassium in Sodium in Water in
Discwet Potassium Vapor Sodium Vapor Air
Diameter 1500°R  2500°R  1500°R  2500°R 60°F
Tylsec) L. ox10~2 0.63x1073 1.0x10"3 0.73x10”3 1.2x1073
TolTy 1.1 1.1 1ol 1.1 1.0
10 p .
T/ Ty 0.88
Tty L 110”2 2.3x10”2  1.2x10"2 1.9x10"3 0,54
"'P/Tv 9. 51072 5.4x10"%  5.6x107% 8.7x10"%  1.3x1073
Ty lsec) 1.0x10™2 0.63x10"° 1.0x10° 0.73%x10~° 1.2x10°
| TolTy L1 1.1 1.1 11 1.0
1y
/Ty - - - - 0. 88
-3 -3 -3 -3
/Ty 1.1x1077 2,3x10 1. 2x102 1.9x10 0. 54
/Ty 9 5x10°% 5.4x10"2  5.6x10"! 8.7x1073  1.3x10"%
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FIGURE I. DISPERSION FOR ONE - AND TWO-COMPONENT SYSTEMS WITH
PHASE CHANGE COMPARED TO SYSTEM WITHOUT PHASE CHANGE
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FIGURE 2. ATT-ENUA'”ON FOR ONE- AND TWO-COMPONENT SYSTEMS WITH
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