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ABSTRACT 

I. The attenuation of sound due to particles suspended in a gas 

was first calculated by Sewell and later by Epstein in their classical 

works on the propagation of sound in a two-phase medium. In their 

work, and in more recent works which include calculations of sound 

dispersion, the calculations were made for systems in which there 

was no mass transfer between the two phases. In the present work, 

mass transfer between phases is included in the calculations. 

The attenuation and dispersion of sound in a two-phase con­

densing medium are calculated as functions of frequency. The medi­

um in which th,e sound propagates consists of a gaseous phase, a 

mixture of inert gas and condensible vapor, which contains conden­

sible liquid droplets. The droplets, · which interact with the gaseous 

phase through the interchange of momentum, energy, and mass 

(through evaporation and condensation), are treated from the continu­

um viewpoint. Limiting cases, for flow either frozen or in equilibri­

um with respect to the various exchange processes, help demonstrate 

the effects of mass transfer between phases. Included in the calcula­

tion is the effect of thermal r e laxation within droplets . Pressure re­

laxation between the two phases is examined, but is not included as a 

co.ntributing factor because it is of inte rest only at much higher fre­

quencies than the other relaxation processes. The results for a 

system typical of sodium droplets in sodium vapor are compared to 

calculations in which there is no mass exchange between phases. It 

is found that the maximum attenuation is about 25 per cent greater 
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and occurs at about one-half the frequency for the case which in­

cludes mass transfer, and that the dispersion at low frequencies is 

about 35 per cent greater. Results for different values of latent heat 

are compared. 

II. In the flow of a gas-particle mixture through a nozzle, a 

normal shock may exist in the diverging section of the nozzle. In 

Marble 1 s calculation for a shock in a constant area duct, the shock 

was described as a usual gas-dynamic shock followed by a relaxation 

zone in which the gas and particles return to equilibrium. The thick­

ness of this zone, which is the total shock thickness in the gas­

particle mixture , is of the order of the relaxation distance for a par­

ticle in the gas. In a nozzle, the area may change significantly over 

this relaxation zone so that the solution for a constant area duct is no 

longer adequate to describe the flow. In the present work, an asymp­

totic solution, which accounts for the area change, is obtained for the 

flow of a gas-particle mixture downstream of the shock in a nozzle, 

under the assumption of small S.ip between the particles and gas. This 

amounts to the assumption that the shock thickness is small compared 

with the length of the nozzle. The shock solution, valid in the region 

near the shock, is matched to the well known small-slip solution, 

which is valid in the flow downstream of the shock, to obtain a com­

posite solution valid for the entire flow region. The solution is ap­

plied to a conical nozzle. A discussion of methods of finding the loca­

tion of a shock in a nozzle is included. 
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I. THE ATTENUATION AND.DISPERSION OF SOUND 

IN A CONDENSING MEDIUM 
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1. INTRODUCTION 

The attenuation of sound in two-phase media has received con­

siderable attention since Sewell's
1 

work in 1910. Sewell calculated 

the attenuation due to the viscous interaction between an oscillating 

non-conducting gas and rigid, fixed, spherical, and cylindrical ob-

jects. In an appending note he extended his calculation to spherical 

particles oscillating with some fixed amplitude, small compared to 

the wavelength of the sound waves. This result is not valid for small 

particle radii, since as the particle radius tends to zero the particles 

tend to oscillate with the fluid, and the viscous attenuation tends to 

zero. In 1941 Epstein
2 

calculated the attenuation due to viscous 1n-

teraction with spheres freely suspended in the fluid. Calculations 

were made for spheres consisting of a rigid solid, elastic solid, and 

a viscous liquid. Oscillation of the spheres was restricted to ampli-

tudes small compared to the particle radius. This work was extended 

by Epstein and Carhart3 in 1953 to include thermal dissipation due to 

irreversible heat transfer between the two phases. Their theory wa,s 

compared to data taken by Knudsen, Wilson, and Anderson 4 for at-

tenuation of sound by water fog in air and was found to give consistent-

ly lower values than the experimental data. More recent experiments 

by Zink and Delsasso
5 

using solid particles show good agreement with 

Epstein and C~rhart's theory. In 1964 Chow
6 

was able to show that 

the theory of Epstein and Carhart is valid even for motions of the 

spherical particles of large amplitude compared to their radius. 

Chow included surface tension in his analysis and showed that it is 

significant for gaseous bubbles in a liquid but is of negligible signifi-
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cance for liquid droplets in a gas. 

The dispersion of sound in a two-phase medium has received 

little attention until recently, when the first measurements of sound 

dispersion by solid particles in a gas were ma.de by Zink and Del-

5 
sasso . They presented a theory, based upon the alteration of the 

effective density and specific heat of the gas due to the presence of 

the particles, which agreed with their measurements. A more com­

plete theory by Chu and Chow 
7 

shows good agreement with the dis-

persion measu+ements of Zink and Delsasso. 

The theory developed by Epstein, Epstein and Carhart, and 

Chow uses the acoustic potential to calculate the scattering of a plane 

wave by a single spherical particle or droplet. The attenuation is 

calculated from the increase in entropy due to irreversible transfer 

of heat and momentum between the particles and the gas. The result-

ing attenuation due to a single particle is then multiplied by the num­

ber of particles to obtain the total attenuation. Temkin 8 and Temkin 

and Dobbins 9 have calculated attenuation and dispersion by a different 

method in which the state of the gas and the state of the particles are 

described by the conservation equations of fluid mechanics. A direct 

calculation leads to expressions for attenuation and dispersion as 

functions of the sound frequency. Temkin and Dobbins lO also report 

experimental data for oleic acid droplets in nitrogen which agrees 

very well with their theory, and also agrees with the data taken over 

a smaller frequency range by Zink and Delsasso. Temkin and Dob-

bins show that their theory gives attenuations very close to those of 

Epstein and Carhart, and dispersions close to those calculated by 
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Chu and Chow. The method of calculation used by Temkin and Dob­

bins shows clearly the mechanism of attenuation and dispersion due to 

gas-particle interactions. This approach will be use.d here to cal­

culate the attenuation and dispersion of sound in a gas-vapor m ixture 

containing condensing liquid droplets. 
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2. GOVERNING EQUATIONS 

A set of general equations governing the dynami cs of a con­

densing medium has been de rived by Marble 
11

• The. system consists 

of two phases, liquid droplets dispersed in a gaseous phase which is 

a mixture of vapor and an inert gas. A system in w hich the gaseous 

phase consists of pure vapor is just a special case. The droplet 

cloud is treated as a continuum which exchanges mass, momentum~ 

and energy with the gas phase. The droplet number is assumed con-

served and the droplets are assumed to be all of the same size so 

that nucleation, the initial growth of droplets, and coagulation do not 

enter the problem. Further, the droplets are assumed sufficiently 

disperse so that droplet-droplet interaction may be neglected. The 

liquid phase is assumed to have much greater density than the gaseous 

phase,and mass per unit volume of the two phases is assumed to be of 

the same order, so that the volume fraction occupied by the , droplets 

is negligible. The treatment is analogous to that for a gas contai ning 

11 1. d . 1 1 2 ' 13 h . dd . . d sma so 1 partic es except t at, 1n a 1tion to momentum an 

heat transfer between phases, the exchange of mass due to evapora-

tion and condensation is included. 

For the acoustic problem, Marble's general equations are 

specialized to describe unsteady one-di m e nsiona l flow . The gas 

phase is treated as an ideal gas mixture which i s inviscid .and non-

conducting except in the calculation of the gas-droplet interactions. 

Further assumptions and properties of the system will be discussed 

as they ari·se. 

The conservation of mass for the gaseous phase is written 
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an a 
~ + - (pu) = µ at ax v (1. 1) 

where µ is the rate of mass addition to the gas phase due to evapo­v 

ration from the droplets. The corresponding equation for the liquid 

phase is 

ap a 
___'._E + - (p u ) = - µ ( 1. 2) at ax p p v 

where the subscript p refers to the liquid phase. Non-subscripted 

quantities refer to the gas phase. Though on a microscopic scale, 

evaporation and condensation occur locally at the droplets, the quan-

tity µ is assumed to be a smooth frmction of x • It is obtained in 
v 

the same way as the other bulk particulate quantities, by averaging 

over a unit volume whose dimensions are small compared to the di-

mensions of the problem but large compared to the inter-particulate 

distances. For details see Appendix A. Thus, in the continuum 

description o~ the flow, local variations on the scale of the particle 

dimensions do not enter. The small scale properties enter only in 

the calculation of the interaction between phases. 

The conservation of momentum for the gas and liquid phases 

is written 

a a 2 at (pu) + ax (pu ) 
aP 

= --+µu +F ax v p 
( 1. 3) 

and 

F (1. 4) 

where ·F is the force per rmit volume exerted upon the gas phase by 

the droplets. The term µ u arises from the addition of momentum 
v p 

to the gas phase by evaporation from the droplets. Since the addi­

tion and removal· of mass from the gas phase occurs at the droplet 
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surface, it is assumed that the mass is added or removed at the 

droplet velocity. Thus, this term appears with u rather than u or 
p 

some intermediate velocity. 

where 

Conservation of energy for the gas phase is written 

1 2 
E=e+-ru 

p(~ ) ) 
p 

( 1. 5) 

and where e is the internal energy of the gas at the local bulk tem-

perature of the gas T • The internal energy of the gas at the local 

droplet temperature is e(T ) • Heat transfer per unit volume from 
p 

the droplets to the gas is denoted by Q and Fu is the work done on 
p 

the gas by the droplets. The last term in equation 1. 5 represents the 

energy added to the gas phase by evaporation from the droplets . This 

energy is added at the droplet surface and is assumed to be added at 

the droplet temperature and velocity. Similarly, the energy equa;tion 

for the droplets is 

where 

E 
p 

- Fu - Q - µ (e ( T ) + iu 
2 + h, ) 

p v p p "" 

1 2 = e + -u p ~ p 

( 1. 6) 

and where ep is the internal energy of the droplets; h-<, is the latent 

heat associated with the phase change. It is assumed that a molecule 

condensing upon a droplet releases its latent heat to the droplet rather 

than to the surrounding gas. Similarly, an evaporating molecule ob-

tains from the droplet the energy or latent heat necessary to go from 
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the liquid to the gaseous phase. Hence, in the phase transition, heat 

is taken from or added to the droplet and appears only in the energy 

equation for the liquid phase. 

At the liquid surface, the liquid and vapor are assumed to be 

in equilibrium such that Clau.sius-Clapeyron holds. It can be ex-

pressed as 

( 
h..c, h..c, ) 

= exp RT - RT 
0 p 

where P and T are the vapor pressure and temperature at some 
VO 0 

reference state. The equilibrium vapor pressure at the droplet .tern-

e 
perature P (T ) can be expressed in terms of the equilibrium vapor 

v p 

mass fraction at the droplet temperature Ke(T ) and the local total 
v p 

gas pressure P. The Clausius-Clapeyron equation can then be 

written 

= ppo . exp [- ~ ( ~ 0 
_ 1 )] . 

. 0 p 
( 1. 7) 

In writing equation 1. 7 in this form, the pressure at the droplet sur-

face is assumed equal to the local bulk pressure. That is, the total 

pressure is assumed not to vary on the microscopic scale of the in-

dividual droplets. The conditions under which this assumption is val-

id are discussed in Section 6. The vapor mass fraction at the drop-

let let surface Ke (T ) is related to the bulk vapor mass fraction K 
· v p v 

by the diffusion p _rocess which determines the mass transfer between 

phases. 

An additional equation is obtained from the conservation of 
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mass of the vapor alone. Written in terms of the vapor mass frac-

tion of the gas, this is 

BK 8K 
v + u __..::!.. at ox 

1 = - (1-K )µ 
p v v 

The gas phase is assumed to obey the ideal" gas law 

( 1. 8) 

P = pR T • { 1. 9) 

The interaction between the two phases F, Q, and µ are 
v 

assumed to obey linear laws and are written 

(u -u) 
p 

F = p p 

Q = p c 
p 

,. 
v 

(T -T) 
p . 

'I" T 

{l. 10) 

(1. 11) 

(1. 12) 

The droplets are assumed spherical~ with· the drag given by 

Stokes law so that 

(1. 13) 

where m is the mass of a droplet, a the droplet radius, and µ is, the 

viscosity of the gaseous phase. '!" is the velocity equilibration time; 
v 

it is the time required for the relative velocity of a single droplet 

-1 
moving in ~he gas phase to be reduced to e of its initial value. 

The thermal equilibration time is 

me 
,. - __I> 

T - 41'Tak (1. 14) 

where k is the thermal conductivity of the gas phase and c its spe­
p 

cific heat at constant pressure. The diffusion eciuili bration time is 

written 
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m 
'!" = D 4TrO'pD 

(1. 15) 

where D is the binary diffusion coefficient of the gas-vapor mixture. 

In addition to the assumption of spherical droplets of all the same 

size, two other assumptions are made in writing the force between 

the two phases as given in equations 1. 10 and 1. 13 . First, the drop-

let Reynolds number is assumed small so that Stokes drag law is ap-

plicable and second, the evaporation and condensation are assumed to 

have no effect on the drag law. Similar assumptions are made in 

writing the equations governing heat and mass transfer between 

phases. 

Equations 1. 1 - 1. 9 are written in terms of the nine dependent 

variables: 

u u Ke(T ) 
p v p 

. P Pp K 
v (1. 16) 

T T 
p 

p 

Equations 1. 10-1. 15 give the interaction quantities F, Q, and µ. in 
v 

terms of the dependent variables. In the general problem, the parti-

cle radius appears explicitly in the expressions for the equilibration 

times '!" v, 'l"T, and TD, and must be included as one of the depend­

ent variables. An additional differential equation for the particle 

radius can be obtained from the conservation of mass of the liquid 

phase and the cons.ervation of particle number. This equation is not 

needed in the acoustic problem, . but is written here for completeness. 

ar: + u ar: 
at p ax (1.17) 
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where 

and a is the particle radius at the reference state. 
0 

With equations 1. 10 - 1. 15 giving the interaction terms, equa-

tions 1. 1 - 1. 9 and 1. 17 form a general description of the unsteady 

one-dimensional flow of a condensing medium. This same set of 

equations is applicable to a gas-particle flow where the solid parti-

cles are sublimating. The only difference would be that the latent 

heat would be the latent heat of sublimation. So the following consid-

eration of the acoustic problem could equally apply to a sublimating 

particle-gas flow. 

A complete derivation of the general governing equations is 

given in Appendix A, which includes a more thorough discussion of 

the assumptions made and their implications. 
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3. ACOUSTIC PROBLEM 

The acoustic equations are obtained from the preceding set of 

equations in the familiar way, by linearization about an equilibrium 

reference state. We assume that the gas and droplets are initially 

uniformly at rest and in equilibrium, and that the parameters deviate 

from the initial values by only a small amount. The perturbation ve-

locities are assumed small compared to the speed of sound in the 

undisturbed gas. Write the dependent variables as perturbations 

about the reference state: 

u = u' · u = u' Ke(T ) = K +Ke'(T · ) 
p p V p VO V p 

p = Po + p' pp = + I K = K + K' (1. 18) Ppo pp v VO v 

T = T + T' T = T + T' 
0 p 0 p 

p = p +pr 
0 

In the following, the primes will be dropped with the understanding 

that variables written with no prime refer to the perturbation quanti-

ties. 

The linearized interaction quantities, from equations 1. l 0 -

1. 12, are written 
u -u 

F = p .....£..___ 
po 'T'v 

Q = 
T -T 

p 

(1. 19) 

(1. 2.0) 

(1. 21) 

where the equilibration times 'T'v' 'T'T, and 'T'D are constants evalu­

ated at the equilibrium s 'tate. Since only the zeroth order part of the 
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equilibration times enters, the perturbed droplet radius does not ex-

plicitly enter the problem. For this reason, equation 1. 17 is re-

dundant. However, once the problem is solved, we could go back 

and calculate the perturbed particle radius from equation 1. 17. 

The linearized Clausius-Clapeyron equation 1. 7 is 

( 1. 22) 

and the linearized form of equation 1. 8 for the vapor mass fraction is 

oK 
v 
~ = 

µv 
(1-K ) -

vo Po 
( 1. 23) 

The linearized equations for the gas phase, with the inte rac-

tion terms F and Q substituted from equations 1. 19 and 1. 20 are 

~ OU 
at+ Po ax = µv ( 1. 24) 

au aP f<.p 

po Tt = - ax + --
0 

(u -u) ,. p 
v 

( 1. 25) 

aT ap + 
f<.p c 

pocp ox = 0 p (T -T) 
at 'T"T p 

(1. 26) 

and 

p __e_ +_I_ p = 
Po T 

0 0 

(1. 27) 

where · 

f(. = ~ 
Po 

( 1. 28} 

and a is the undisturbed speed of sound in the pure gaseous phase. 
0 

In writing the energy equation 1. 26, th:e enthalpy of the gas mi~tur.e is 

written as c T and c assumed constant. If c is a function of the 
p p p 

vapor mass fraction, this is still correct to the first order since only 
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the zeroth order part of c enters into the problem. 
p 

The linearized equations for the liquid phase are 

au at- = 

8T 
~ ___£_ = 
c at 

p 

1 
- - {u -u) 

'1" ' p v 

µ T h 
- _l (T -T) - ..:!.. _£ ( .Y.::.!_) _ t_ 

TT p p x. 'I RT 0 , o 

(1.29) 

(1..30) 

(1. 31) 

The droplet internal energy is written as cT , based upon the as­
p 

sumption that a droplet has uniform temperature. This assumption is 

valid if the liquid thermal conductivity is much greater than that of the 

gas. This is often true, as in the case of alkali metal droplets in their 

vapor. However, for some systems such as water droplets in air, 

the liquid conductivity is of the same order as that of the gas, and the 

thermal relaxation within droplets may be significant. This effect 

will be calculated in the next section. 

The droplet density only appears in equation 1. 29, so it is · 

redundant in the solution. If the equation of state of the gas is used 

to eliminate the perturbation pressure P, the equations to be solved 

may be written 

T +-­T 
0 

8K µ 
atv - (1-K ) ..:!.. = 0 

vo Po 

µv ><. ( e ) - + - K - K (T ) = 0 
Po 'l"D v v p 

(I. 32 ) 

(I. 33) 

(1. 34) 
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~ ( _e_) + au - µv = 0 
at p ax p 

0 0 

2 a 
au+__£.._ ~ (L + _!_) _.1L (u -u) = o 
at y ax p T 'T p 

0 0 v 

T 
_!_ ~ (_!_) _ .Y..:_!_ ~ (L) -~ ( _..E. - -1:..) = o 
y at T y at p 'TT T T 

0 . 0 0 0 

au 1 
~ +- (u -u) = 0 at · ,. p 

v 

T T µ h . 
_£_ ~ (_..E.) + _l (_..E. - _.'.!:.__) + __.::!__ (.Y..:_!_) _-l_ . 
c 8t T TT T T KP y RT p 0 0 . 0 0 0 

(1. 35} 

(1. 36} 

(1. 37} 

(1. 38) 

(1.39) 

Assume that the dependent variables depend upon x and t 

through the factor exp i(Kx-wt} for a given angular frequency w where 

K is the complex wave number written 

( 1. 40} 

Then from equations 1. 33, 1. 38, and 1. 39, the quantities K , 
v 

u , and -T / T can be written 
p p 0 

where s = c/c 
p 

(1-K } µ 
VO V K - - ----v 

u = 
p 

iw 

u 
1-iW'T" 

v 

Using equations 1. 41 - 1. 43 and 1. 32,' the variables u , 
. ' p 

(1.41) 

( 1. 42} 

( 1. 43) 

T /T ' , K , ·and Ke(T } can be eliminated from equations 1. 34 -
p 0 v v p 

1. 37. A little manipulation and replacement of the x-derivatives. with 
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iKx givesthefollowingequationsfor u, p/p
0

, T/T
0

, and µv/p
0

• 

iw ....£... + iKu 
Po 

= 0 

-iw [1 + 

2 

] 

a 
x. u + iK __9_ 

1-iWTV y ( ....!. + ....£...) = 0 
.T p 

0 0 

{1. 44) 

. (1. 45) 

-iw[l+ xys J....!.+iK(y-l)u- l1 
1-iwTTs T 0 L "" 

0 -1 ....::!.. = 0 
h, /RT ] µ 

1-iWT S {y ) p 
T o 

{ 1. 46) 

{l. 47) 

For this set of equations to possess a non-trivial solution, the deter-

minant of the coefficients must be zero. The determinant is 

0 

2 
a 

K __9_ 
y 

iw [1 + ~ys ] 
l-1WT Ts 

-iw 

2 
a 

K __9_ 
y 

0 

1 

iK -1 

- iw ~l + 1 .-x. ] 0 -1WT 
v 

-i(y-1 )K {y-1) 1 - . o . [ h-l/RT J 
l-1WT Ts 

2 
1 

T (h,/RT ) 
~....::!.."" 0 
y X 1-iWTTS 

0 
x:rD [ x(l-K )] +--- 1- . vo 

K lWTD VO 

(1. 48) 

The upper-left 3X 3 matrix is that ~btained by Temkin 8 for a 

gas-particle system with no mass transfer between phases. If TD is 

se. t equal to zero and K to unity, the determinant 1. 48 gives the 
VO 
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special case in which the gas phase consists of vapor only. Expanding 

the determinant and setting the result equal to zero gives the follow-

ing equation for the complex wave number K in terms of the fre-

quency w. 

Ka 2 

(of) { [1 

1 + ~ 2 + i ( ~ 2) x ~ W'l" J . 
l+w ,. l+w ,. · 

v v 

( 1. 49) 

K 1 and K 2 can be determined by setting the real and imaginary parts 

of equation 1. 49 equal to zero separately. 

Define the attenuation and dispersion coefficients, respective-

ly, as follows 

a. = 
2K2a

0 

w (1.50) · 

and 
2 

l3 = (K!a 0 ) - 1 (1.51) 

a. is a dimensionles s measure of a ttenuation and J3 a measure of 

dispersion of sound of frequency w/2Tf. 
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The dispersion and attenuation coefficients from equations 

1. 49 - 1. 51 are plotted in Figures 1 and 2 for a typical system. The 

values for a one- and two-component evaporating system are com­

pared to an equivalent · system in which there is no phase change. In 

Figures 3 and 4 the attenuation and dispersion are compared for dif­

ferent values of h-l/RT
0 

for a single component system. In the 

single component system the gas phase is just pure vapor. 
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4. THERMAL RELAXATION WITHIN DROPLETS 

In writing the linearized energy equation 1. 31 for the liquid 

phase, the temperature of the droplets was assumed to be uniform 

over the droplet cross-section. This is not a strictly valid as sump-

tion unless the thermal conductivity of the liquid is infinite. Finite 

liquid conductivity means that there is an additional relaxation pro-

cess which affects the propagation of sound in the medium. The re-

laxation processes already considered are the result of finite times 

required for the transfer of mass, momentum, and heat between the 

two phases. The additional relaxation process considered here is due 

to the finite time required to reach thermal equilibrium within a 

droplet. 

The energy contained in a droplet whose surface temperature 

varies with time like e -iwt is derived in Appendix B. The result is 

mcT 
3 

( 1 - <j>c ot <j>) E: = 
<l>z p s 

(1. 52) 

where 

cj> = -./ iwT .{. ( 1. 53) 

and 
2 

,. . 
.{. = 

P .i CO' 

kt 
( 1. 54) 

The thermal conduc'tivity of the liquid is k-t, and the surf ace tempera­

ture of the particle is T • As the liquid conductivity approaches in­
s 

finity, 1" .{. goes to zero and the droplet internal energy goes to mcT s , 

which is the result used in the previous section. The specific energy 

e of the droplets is determined from the relation p . 
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= ne p 

where n is the droplet number density. Since nm is just pp , the 

specific energy of the droplets can be written 

e · = cT F(cp) 
p s 

(1. 55) 

where 

3 
F(<I>) = Z [ 1-cpcotcp] • 

<I> 

( 1. 56) 

The relaxation time for thermal equilibration of the droplets 

is T -l , given by equation 1. 54. The previous relaxation times T , 
v 

TT , and TD are usually of the same order,as seen from the follow-

ing relations, 

rT/Tv 
3 

Pr = 2 (1.57) 

and 

rD/rv 
3 = -Sc 
2 

( 1. 58) 

where Pr and Sc are the Prandtl number and Schmidt number of the 

gas mixture. The Prandtl and Schmidt numbers are of order unity 

for mos·t gases so T v , TT , and TD are usually about equal. How­

ever, T -l is given by 

(1. 59) 

Since the specific heats of the liquid and gas are of the same order 

and the Prandtl number of order unity, the thermal relaxation time of 

the droplets is significant only if the thermal conductivities of the 

liquid and the gas-vapor mixture are of the same order of magnitude. 

The relaxation times are shown in Table II for several systems of 

interest. For wet sodium and potassium vapors, 
-3 

T -l is about I 0 
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times T but for water fog in air and wet water vapor at atmos-
v 

pheric pres sure, Tl is of the same order as T v In the latter two . 

systems the thermal equilibration in droplets is of significance in the 

same frequency range as .mass, momentum, and thermal equilibra-

tion between the two phases. This effect :ls incorporated into the pre-

ceding calculation as follows. 

Equations 1. 32 through 1. 38 remain unchanged except that the 

droplet surface temperature T replaces the droplet temperature 
s 

T And instead of equation 1. 39, the linearized particle energy 
p 

equation is written 

a T 1 T T µ 1 hl 
sF(<j>) - (~) + - (__£_ - -) + ~ (~)- = 0 .(1. 60) 

8t T TT T T x.p y RT 
0 0 0 0 0 

A calculation similar to that leading to the determinant 1. 48 gives the 

following determinant which must be set equal to zero for a solution to 

exist. 

0 

2 · 
a 

K __..£. 
w 

h, /RT 
[ 1- 'V 0 J 

1-iwT sF . T 

iw 

2 
a 
K~ 

w 

0 

1 

iK -1 

- iw[ 1 + 
1 

~ J 0 
-1wT 

v 

-i{y-l)K . 

(1. 61) 

+ 

0 
TD x.(1-K ) 

--[l- VO J 
x.K iWT 

VO D 

The determinant 1. 48 can obviously be obtained from 1. 61 by setting 
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the complex phase factor F equal to unity. Recall that F approaches 

unity as the liquid thermal conductivity approaches infinity. The 

equation obtained by setting this determinant equal to zero is 

RT 2 
i~(~1)( h o) (1-iWTTsF)li+ 1-· x.sF F) 

WT T 'i .C, '\ lW'f Ts 

( 1. 62) 

The dispersion and attenuation coefficients obtained from equation 

1. 62 are plotted in Figures 5 and 6 and compared with the previous 

calculation for no thermal relaxation within the droplets. 
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5. LIMITING CASES FOR FROZEN AND EQUILIBRIUM INTERAC-. 
TIO NS 

The dispersion and attenuation coefficients, calculated from 

equation 1. 62, involve four equilibration times, 'Tv, 'T'T, TD, and 

'T' .t' in a complicated way. The role of each equilibration process is 

more clearly demonstrated by considering several limiting cases in 

which certain equilibration times go to either zero or infinity. 

If a certain equilibration time 'T. is 'zero, the flow is in equi-
1 

librium with respect to the ith equilibration process. For example, 

if TT is zero, ·the droplets are in thermal equilibrium with the local 

gas mixture. That is, we see that, by equation 1. 11, for Q to re-

main finite as TT goes to zero we must set Tp = T. This is equiv­

alent to saying that the heat transfer berween phases occurs at an in-

finite rate. On the other hand, if an equilibration time becomes in-

finite, the flow is frozen with respect to the corresponding equilibra-

tion process. For example, if 'T' T is infinite, there is no heat 

transfer due to conduction be t ween the droplets and the gas. This 

does not mean, however, that the droplet temperature remains con;.. 

stant, since heat is transferred between phases by the evaporation 

and condensation processes. 

Since e ach of the four equilibrati on times may take on a ny of 

the three values, zero, infinity, or finite and non-ze.ro, there are 

eighty-one possible combinations. The attenuation and dispersion for 

some of these limiting cases are of particular interest. They can all 

be calculated as limiting cases of equation 1. 62. 

(a) Completely frozen flow. is obtained from equation 1. 62 by 
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setting T v = TT = TD = (X) • The result is 

Ka 2 
(~) = 1 (1. 63) 

This result gives just the frozen speed of sound with no attenuation, 

independent of the value of T .(, . Since the re i s no he at or mass trans -

fer to the droplets, these temperature remains constant and T .(, does 

not enter.. In this case , there is no coupling between the two phases, 

so sound propagates as it would in the gas phase alone . 

(b) Heat and mass transfer frozen is obtained l;>y setting 

If T remains finite we have 
v 

Ka 2 

<T) = 1 + K 
1-iWT 

v 
( 1. 64) 

Again, the thermal relaxation within droplets characterized by T .(, 

does not enter because there is no heat or mass transfer between 

phases. If, in addition, T = 0 , the droplets and gas are in kinetic 
v 

equilibrium and equati on 1. 64 gives for the speed of sound 

a 2 
(av) 

0 

l 
(1. 65) = l+x. 

' 
which is just t?e speed of sound in a gas of density p = p(l+x.) There 

. is no attenuation with T = 0 • This shows how the momentum ex­
v 

change between phases, characterized by '!" , increases the effective 
v 

mass of the gas. 

(c) Momentum and mass transfer frozen is a limiting case in 

which '!" v = TD= ro. The resulting complex wave number is given ·by 

= { 1 + x.Fs - iWT TFs } 

l + '<.)'Fs - iwT TFs 
(1.66) 
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If the liquid thermal conductivity is very large compared to that of the 

gas such that T:t, ..... 0 , then F ..... 1. Further, if the droplet and gas 

are in thermal equilibrium, that is, TT= 0, then the speed of sound 

is given by 

1 + x.ys· 
1 + X.s 

(1. 67) 

where the attenuation is zero. This is just the speed of sound in a 

gas whose specific heat ratio is. y = y( l·hts )/ ( l+x.ys) . Thus, the 

thermal interaction between phases changes the eftective specific 

heat 'of the gas. 

(d) Momentum and heat transfer frozen is ob~ained by setting 

T v = TT = ro • The complex wave number is given by 

v-1 2 
K ..1-.-:..Tl + x.yFsK - Fs[iW'I" -.x(l-K ) 

VO Y VO V VO 

-1 2 . 
K .Y..:..:. Tl - F s [ iW'I" - x ( 1-K ) 

vo y D VO 

( 1. 68) 

If 'I" .t = 0 such that F = 1 , and if the gaseous phase is pure vapor so 

that K = 1 and 'l"D = 0 , the speed of sound is given by 
VO 

1 + _y_ (!£i..) 
y-1 2 ,, (1.69) 

This is the speed of sound in a wet vapor with only mass transfer and 

no heat or momentum transfer between phases. 

(e) Droplet temperature frozen is the case for 'I" .t = ro . This 

may be because either c -+ ro or k.t ..... 0 • This implies that the par­

ticle temperature remains constant. The complex wave number is 

given by the relation 
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iWT - x. ( 1-K ) } 
/1 X. ){- (1--K-)+(1-~)( ' D VO) • \:'. + 1-iWT KY iWTT iWTT K 

V VO 

(1.70) 

If we let the mixture be a pure vapor then K = 1 and TD = 0 , the 
vo 

speed of sound becomes zero and the attenuation infinite. Thus, 

sound will nqt propagate. Since the particle temperature is constant 

for this case, . the vapor pressure at the surface of the droplets is also 

constant. This places upon the system the constraint· that the pres-

sure be constant so that sound cannot propagate. 

(f) Complete equilibrium is obtained if all the equilibration 

times are zero. If the gaseous phase is pure vapor, the equilibrium 

sound speed is 

2 
·a J 

equil 
2 

a 
0 

= 

and the dispersion is zero. 

1 
"(( l+x.) [

l - ~ + _y_ 
Tl "(-1 

(1. 71) 

The other limiting cases may be readily obtained from equa-

tion 1. 62. They will not be discussed here, however, since they do 

not add much to the clarification of the roles played by the equilibra-

tion processes. If the flow is in equiiibrium and/or frozen with re-

spect to all the equilibration processes, the attenuation is zero and 

the effect of the droplets is to alter the sound speed from that value it 

would have in the .absence of the droplets. 
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6. EFFECT OF PRESSURE RELAXATION 

In writing the general equations, the pressure was assumed 

locally uniform. That· is, the pressure at a droplet surface was as-

sumed equal to the local pressure in the gaseous bulk. This i's a 

reasonable assumption if the relaxation time for a pressure differ-

ence across a droplet surface is sufficiently small compared to the 

other relaxation times. Such a pressure difference arises, for ex-

ample, if the droplets in an elemental volume are heated or ~ooled by 

conduction. This causes a change in the vapor pressure at the drop-

let's surface. The pressure disturbance propagates into the gaseous 

bulk which alters the state of the gas. This interaction is in general 

a continuous process taking place over a finite relaxation time. In 

the following, . we will consider the relaxation of a pressure differen-

tial across a liquid surface for the one-dimensional case. We will 

assume the initial condition that the equilibrium vapor pressure of 

the liquid at the liquid surface is unequal to the pres sure of the vapor 

just adjacent to the liquid surface. The governing equations will be 

written down and the pressure relaxation time computed from a line-

arized solution. The effect of finite liquid conductivity is considered 

in the subsequent section. 

Consider a semi-infinite duct of constant cross -sectional area. 

The closed end of the duct contains liquid of mass m per unit area, 
0 

and the remainder of the duct is filled with vapor as shown in Figure 

7a. The vapor is assumed an ideal gas and the liquid incompressible. 

The origin of the x-coordinate is at the initial location of the liquid 

surface. The surface of the liquid and the vapor immediately adjacent 
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to it are assumed to be in equilibrium for time greater than zero. 

Assume that there is initially a pressure discontinuity at the liquid 

surface 

Define 

where 

and write the initial conditions as follows. 

P(x, o) = p2 x>O 

= pl x<O 

T(x, o) = T . x>O 
2 

= Tl x<O 

u(x, o) = 0 all x 

u . (t) = velocity of the liquid interface 
1 

m(t) = mass of liquid per unit area 

m(o) = m 
0 

(1.72) 

Equating the rate of increase of the mass of the liquid to the 

vapor mass flow rate at the liquid surface, we obtain 

= -p(x.,t)u(x.,t) 
1 1 

(1.73) 

where x . is the coordinate of the interface. The energy balance at 
1 

the interface is written 

d u . 2 
dt (mcT-l) = p(x.)u(x.)[ ~ - l][c T(x.)+h-l +iu (x.)J (1. 74) 

1 1 U\Xi/ p 1 1 

where the liquid is assumed to have infinite thermal conductivity. 

Conduction of heat between the two phases is neglected in writing the 

energy balance 1. 74. This assumes that the pressure relaxation 

takes place before a significant amount of heat is conducted to the 

surface. It is equivalent to the assumptl.on that the pressure relaxa-

tion time is small compared to the thermal relaxation time TT • 

The conditions for this to be true are obtained in the following. 
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Assume that the vapor pressure at the liquid surface is given 

by the Clausius -Clapeyron equation 

p .t = e ~ (1 - T 1 ) 
P 1 RT 1 T.t 

(1. 75) 

where P .t is the equilibrium vapor pressure of the liquid at the liquid 

temperature T .t . The equations governing the vapor phase are those 

of conventional one-dimensional gas dynamics 

~ + ~ (pu) 0 
at ax 

(1. 76) 

au au ap 
p at + pu ax = - ax (1.77) 

1 aP 
pat (1. 78) 

and 

P = pRT (1. 79) 

Assume that the liquid density i s much greater than the vapor density 

so that u. can be neglected with respect to u and x. can be set equal 
1 1 

to zero. Equations 1. 73 and 1. 74 can then be written 

dm 
dt = - p(o, t)u(o, t) 

and 

dm dT .t 
cT .t dt + me dt = 

( 1. 80) 

(1. 81) 

In addition to the equations 1. 7 5 - 1. 81 in terms of the dependent 

· variables u , p , P , T , m , P .t , and T .t , equilibrium at the liquid 

surface requires that 

P(o, t) = P .t (o, t) t > 0 • ( 1. 82) 

If P 2 > P 1 , and expansion wave propagates into the vapor as 

shown in Figure 7b. Vapor flows toward the liquid surface and con-
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denses. This raises the temperature of the liquid which in turn in-

creases the vapor pressure P .t· so that compression waves propagate 

into the vapor, following the expansion. This continues until the va-

por pres sure reaches P 
2 

• The final liquid temperature is not neces­

sarily equal to T 
2 

since the initial vapor state may not lie on the 

saturation curve. The question of accommodation will not be consid-

14, 15 
ered here • Rather, it is assumed that all the vapor impinging 

upon the liquid surface condenses. In a finite . system, the pressure 

equilibration would be complicated by reflected waves and the final 

vapor pressure would be less than P 2 • However, the time required 

for pressure equilibration in the finite system would be less than that 

in the present case. 

If P 
2 

< P 
1 

a similar equilibration process occurs, except that 

the leading wave is a compression which is followed by a series of 

expansion waves as the liquid is cooled by evaporation. The vapor 

flow in this case is non-isentropic and, in general, more difficult to 

calculate. However, we will limit this discu.ssion to the linearized 

flow in which the cases for P 1 < P 2 and P 1 > P 2 are both covered by 

the calculation. 

A calculation very similar to this has been carried out by 

16 . 
Porter. He treated the reflection of sound from evaporating and 

adsorbing surfaces. 

(a) Linearized solution. Assume that the initial pressure 

discontinuity at the liquid surface is small. Then a perturbation so-

lution to equations 1. 75 - 1. 81 can be obtained. Assume a perturba-

tion about the initial state 1. 72 which is valid for 
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Write the liquid vapor pressure and temperature as 

p.{, pl+ P.!_ 
= pl pl 

( 1. 83) 

and 

( 1. 84) 

where P.!_ and T.!_ are perturbation quantities. For the pressure, 

temperature, and density of the vapor write 

and 

p 

Pz 
= 

T 

TZ 
= 

_e_ = 
Pz 

p +P' 
2 
p2 

T +T' 2 

T2 

Pz+p' 

Pz 

(1.85) 

{ 1. 86) 

(1. 87) 

From the linearized vapor equatims 1. 76 - 1. 79 we obtain the 

familiar expression for the perturbation v~locity 

u 1 P' 
a2 - ::; p 2 

( 1. 88) 

where u is the vapor velocity and a 2 is the speed of sound in the un­

disturbed vapor. We will be concerned with the vapor quantities only 

at the liquid surface, so in the following let all primed vapor quanti-

ties refer to values at x = 0 • 

With the aid of equation 1. 80, the first order part of equation 

( 1. 81) can be written 

d T.!_ 
dt (~) = (1. 89) 
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The term cp T 2-cT 1 represents the excess non-latent heat carried 

into the liquid surface by the condensing vapor. Since c and c are 
p 

of the same order, ·this term will be neglected in comparison with 

ht /RT 1 unless T 2 is much greater than T 1 • In the linearized solu­

tion we assume T 1 and T 2 nearly equal. With the aid of equation 

1. 88, write equation 1. 89 as 

From the linearized Clausius-Clapeyron equation 

P_(, hl T_(, 
pl = RTl Tl 

and from equation 1. 82, 

= 
p +P' 

2 

equation 1. 90 can be written 

P pa c h 2P :t (p ~) = - ;;,02 ~-21 ( ~ )(R * 1) p ~ 

This can be integrated directly to give 

= e 

where 

-tlT 
p 

(1.90) 

(1. 91) 

(1. 92 

(1.93) 

( 1. 94) 

(1. 95) 

is the pressure relaxation time. For a vapor-droplet system, the 

pressure relaxation time is 

(1. 96) 
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The pressure relaxation time compared to the velocity relaxation 

time gives 

T 9 c u I ( h.t. 2 ~ = 2 (y- l) c a Re RT ) 
v p 0 0 

( 1. 97) 

where Re is the Reynolds number of the droplets based upon the va-

por velocity u. Since by assumption Re,...., 1 and c/c ,...., 1 , T /-r is 
p p v 

proportional to the perturbation quantity u/a divided by (h, /RT )
2

. 
0 . 'I.I 0 

The ratio {ht/RT 
0

) · is of order 10 for most systems of interest {see 

Table I). For the systems tabulated in Table II, T Ir is of order 
p v 

10- 2 to 10-4 . So if r << T , we are justified in neglecting the 
p v 

pressure relaxation in relation to the other relaxation processes. 

(b) The effect of finite liquid conductivity upon pressure re-

laxation. In the previous calculation, the liquid thermal conductivity 

was assumed infinite. During the pressure relaxation of a droplet of 

finite conductivity, the liquid surface is hotter or colder than the in-

terior as condensation or evaporation takes place. If the pressure 

equilibration takes place rapidly compared to the time for heat to be . 
conducted from the droplet surface to the interior, the heat is ef-

fectively confined to a thin layer near the surface. This would effec-

tively decrease the mass entering into the equilibration process, 

thereby decreasing the pressure equilibration time T 
p 

amined analytically in the following. 

This is ex-

Consider the same one-dimensional system as before, shown 

in Figure 7a, subject to the initial conditions 1. 7 2. Assume that the 

wall at x = -.t is insulated. Then the liquid temperature satisfies the 

heat equation 



subject to the end conditions 

and 

ST' 
-l ax- (-.t, t) = 0 ' t > 0 

(1. 98) 

(1.99) 

t > 0 (I. 100) 

where the primes stand for perturbation quantities as before. The 

right hand side of equation 1. 100 is the linearized heat flux into the 

fluid surface due to condensation. From equation 1. 88, the condition 

1. 100 can be written 

h-l P' = -p a - --
2 2" p2 

Using equatiop 1. 91 this becomes 

8 (Tl :'\ 
8x T 1 (0, t)/ 

x=O, t>O 

(1. 101) 

Equation 1. 98, subject to the conditions 1. 99 and 1. 101, and the ini-

tial condition 

T 1 (x, 0) = 0 .(, -.t ~ x < 0 (1. 102) 

can be solved formally in terms of Fourier series 
17 

. However, this 

solution does not give the characteristic time explicitly. The follow-

ing approximate solution by an integral method gives an explicit ap-

proximation for the characteristic pressure relaxation time. 

Assume that at any time greater than zero the total heat car-

ried to the liquid surface by condensation is contained in a layer of 
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constant thickness o . From the differential equation l. 98 we write 

0 

P c a JT~dx = .(, 8t .,,, (1. 103) 

-6 

where T.!_ is assumed zero at x = -o. Then, from equation 1. 101, 

0 
a I c h.t 2 

P,iCat Tldx = -p2a2y:1I(C""".f)Tl(O,t) 
- 6 p 1 

Assume the following expansion for T ~ (x, t) : 

8T' 
T.!_ (x, t) = Tt (O, t) + ax.t (0, t) x + 

Substitute equation 1. 105 into 1. 104 and use 1. 101 to obtain 

8T.!_ 
at (0, t) = 

Tt(O, t) 

,. >:C 
p 

(1. 104) 

(1. 105) 

( l.· 106) 

(1. 107) 

T >l: is the pressure relaxation time for finite liquid conductivity. 
p 

Compare ,- * with the pressure equilibration time for infinite 
p 

thermal conductivity of the liquid T • 
p 

T >:C 6 6 
_E... = -[ l+-] 

'T' (] 2~ 
p 

where 

(1.108) 

(1. 109) 

The thermal layer thickness 6 is of the same order or smalle r than 

the particle radius a , and can always be taken of the order of ~ , 

such that T * is less than T 
p p 

From equations 1. 101 and 1. 105, we 

see that to the first order ~ is the depth at which T~ (O, t},...., 0 • That 
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is, 6 is a measure of the thickness of the layer at the surface in 

which the heat due to condensation is contained. Therefore, by dE;fi­

nition, o ......, 6 • 
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7. DISCUSSION OF RESULTS 

Temkin and D~bbins 9 have shown that their theory, which 

does not include mass transfer, gives values of attenuation very close 

to the theory of Epstein and Carhart 
3 

, and values of dispersion very 

7 
close to the calculations by Chu and Chow Measurements, reported 

by Temkin and Dobbins 
10

, of the attenuation and dispersion of sound 

in a system consisting of oleic acid in a nitrogen carrier gas were in 

close agreement with their theory. A comparison between their re-

sults. for a system with no mass-transfer between phases and the 

present calculations, which include mass transfer, is shown in Fig-

ures 1 and 2. At low frequencies, (WT < O. 5),the dispersion coeffi­
v 

cient for the case which includes mass transfer is up to 40 per cent 

higher than that in which there is no mass transfer. The effect of 

mass transfer is to increase the attenuation by about 20 to 30 per cent 

in the middle frequencies, (WT = O. 1 to 1. O), and to shift the maxi­
v 

mum attenuation from a value of WT = 1 to. about WT ......, 0. 5 ~ Conse-
v v 

quently, in some systems, mass transfer has significant effects upon 

the attenuation and dispersion coefficients. 

The effects of different values of the latent heat of vaporiza- . 

tion, ht , upon the attenuation and dispersion is shown in Figures 3 

and 4. Generally, higher values of ht/RT 
0 

give larger value s for 

the dispersion coefficient at lower frequencies, and higher attenuation 

· in the middle frequencies, as can be seen from the curves . In Fig-

ures 5 and 6, the effect of finite droplet thermal conductivity upon the 

dispersion and attenuation is shown for a particula r system. For 

this system, the re is some change in dispersion in the middle fre-
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quencies due to particle conductivity effects, and less change in at-

tenuation. For this system, finite particle conductivity does not have 

a very significant effect. 

The attenuation and dispersion have been plotted as functions 

of W'l" 
v 

The variation of W'l" may be thought of in two ways. It 
v . 

may be considered with respect to a variation in the angular frequen-

cy w for a given system, that is '!" fixed, or it may be considered 
v 

as a variation. of '!" for a fixed frequency. Since '!" is a function of 
v v 

the droplet radius, the latter interpretation may be used, for ex-

ample, to determine which particle radius, other conditions being the 

same, gives the maximum attenuation of sound of a given frequency. 

In the first order theory, considered here 1 the problem of 

droplet collisions, or coagulation, was avoided by assuming all drop-

lets to be of the same size. In a second order theory, however, co-

agulation must be considered, even for droplets of the same size. 

The re as on for this is that droplets at different locations along the 

path of the sound wave have different velocities at any given time. 

The order of magnitude of this velocity difference, L:i.u , is given by 
p 

the relation 

L:i.u 
p 

au 
at 6 (1. 110) 

where. o is a measure of the spacing between droplets. Alternately, 

this relation may be expressed as 

L:i.u 
__£. 

a 
(1. 111) 

whe re A. is the wave length of the sound. The gas velocity u is sma ll 

compared to the speed of sound, a , in the acoustic approximation, 
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and the quantity o/"A. is assumed to be, at most, of the same order. 

Hence, the velocity difference b.u , which leads to the possibility of 
p 

coagulation, should be included in a second order theory. Second 

order coagulation effects may be an appreciable factor in experi-

mental work where measurements are made over time periods which 

include ·many cycles, that is, over· time periods large compared to 

1 /w • 
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APPENDIX A. DERIVATION OF THE BASIC EQUATIONS 

Consider a system consisting of liquid droplets dispersed in a 

mixture of condensible vapor and inert gas. Equations governing the 

flow of this system are derived in a treatment which largely parallels 

11 
the work of Marble . Viscous stresses and heat conduction in the 

gaseous phase are included for generality. The gaseous species are 

assumed thoroughly mixed and assumed to move together in thermo-

dynamic equilibrium so that differential diffusion rates may be ne-

glected on a scale large compared to the droplet dimensions and so 

that one may consider the transport properties of the mixture. The 

liquid droplets are assumed finely divided so that any volume element 

we may choose contains many droplets; then the droplets may be 

treated from the continuum viewpoint which clearly does not hold on 

a scale comparable to the droplet dimensions .. A necessary condi-

tion for this type of treatment is that the scale of the problem be 

large compared to the droplet dimensions. 

On a scale comparable to the droplet dimensions, there are 

local variations in velocity, temperature, and vapor concentration. 

It is a major assumption that these microscopic fields depend only 

upon the local bulk state of the matter and not upon the relatively 

large scale properties of the gross motion. Further, the droplets 

are assumed sufficiently separated that the local fields of one droplet 

do not interact with the fields of another droplet. As a consequence 

of these assumptions, it is admissible to employ knowledge of the be-

havior of isolated droplets in uniform gas fields to calculate the inter-

action between phases. The liquid density is assumed much greater 
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than the gas density and the mass fraction of the liquid phase is as-

sumed to be at most of order unity so that the volume fraction occu-

pied by the liquid maybe neglected. The ensuing calculations are carried 

out assuming that the droplet and gas are two continua, coexisting in 

space, and interacting with each other through. the transfer of heat, 

mass, and momentum. Further details and consequences of the as-

sumptions will be treated as they arise in the development of the 

governing equations. 

Separate laws of mass, momentum, and energy conservation 

are written for the liquid phase and the gaseous mixt'l.lre . Actually, 

separate conservation laws may be written for the two gaseous spe-

cies, but since the gases are thoroughly mixed, this is redundant. In 

the derivation of the conservation equations, we consider a collection 

of matter bounded by a surface that always consists of the same ele-

ments of matter under consideration. We will frequently calculate 

the time rate of change of some property integrated over a volume 

which moves with the substance under consideration. Any tensor 

quantity Akt in the volume V may be differentiated by time through 

writing 

I fJA kl 
fJt 

v 
dV. + I AkluinidS 

s 
(A. l} 

where the first term represents the local time derivative and the 

second term is the amount convected through the surface S bf the 

volume. If A kt is a sufficiently smooth function of xi , the integral 

transformation gives 
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(A. 2) 

This is the familiar form for the time rate of change of the quantity 

Ak t in a volume moving with the fluid. 

The conservation of mass for the gaseous phase requires that 

the time rate of change of mass in the volume V be equal to the rate 

at which vapor is added to the volume by evaporation from the liquid 

droplets. This may be expressed as 

(A. 3) 

where µ is the mass of vapor per unit volume of gaseous mixture · 
v 

evaporating from the droplets and where p and ui refer to the gase-

ous mixture. A net condensation would mean that µ is negative. 
v 

In keeping with the earlier assumptions, µ is considered to be a 
v 

continuous smooth function of x. in spite of the fact that, from a · 
1 

microscopic point of view, the phase change is restricted to a negli-

gible fraction of the volume. Since equation A. 3 holds over an arbi-

trary volume, by the familiar argument, it mu.st hold point by point. 

Hence we obtain the differential equation 

!.e_ + ~ (pu. ) = µ (A. 4) at ax. 1 v 
1 

which is the continuity equation for the· gaseous phase. This reduces 

to the usual continuity equation for gas dynamics if the vapor mass 

production rate µ vanishes. 
v 

A similar argument is used to obtain the continuity equation 

for the droplet phase. Denote by p the -density of the droplet phase, 
p 
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defined as the mass of liquid per unit volume of mixture, and by u . 
pl 

the velocity vector of the mass motion of the droplet phase. Then, 

the continuity equation for the droplet cloud is 

~a 
at + ax. (ppupi) = - µv . 

1 

Since µv is the mass evaporation rate from the droplets, 

(A. 5) 

-µ is the 
v 

mass condensation rate because matter is neither created nor de-

strayed, but just transferred from one phase to the other by evapora-

tion and condensation. The conservation of total mass may be illus- · 

trated by adding equations A. 4 and A. 5 to obtain 

a a 
at (p+p ) +a- (pu.+p u . ) = 0 • 

p xi 1 p p1 
(A. 6) 

This represents the continuity equation for the composite system m 

which there is no mass production term. 

The principle of momentum conservation and its change due to 

external forces is also applied to the separate phases of the multi-

component flow. The momentum vector per unit volume of the gas 

mixture is pu. , and the time rate of change in the total momentum 
1 

of the moving region is 

(A. 7) 

The gaseous phase is acted upon by two dis t inct sets of 

forces: (1) those imposed by the motion or presence of the droplets; 

.and (2) those stresses set up within the gas mixture itself. We ex-

plicitly neglect external body forces due to gravitational, electro-

magnetic, or other fields. The forces per unit volume acting upon 
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the gas due to the droplets will be denoted by F. • Their nature and 
1 

origin will be examined later. The internal stresses set up within the 

gas mixture are assumed to be of the same form as those which would 

exist in the absence of the liquid phase, since the volume fraction oc-

cupied by the liquid phase is assumed negligible. Under these condi-

tions, the stresses in the gaseous medium may be written 

cr .. = 
lJ 

2 auk aui au . . 

- 0ij (P + 3 µ a x k) + µ(a x. + a;f) 
J 1 

(A. 8) 

The pressure P is the local scalar pressure corresponding to the 

local temperature and density through the equation of state. Thus, 

the thermodynamic pressure is defined so long as the gas is in a 

state where the other thermodynamic quantities are defined. The 

viscosity coefficient µ is assumed to be that for the gaseous mixture, 

and due to the small volume fraction occupied by the droplets, the 

familiar Einstein correction is neglected. For convenience, define 

the viscous part of the stress tensor as 

au. au . 2 a~ 
T = µ(-1 + --1) - - µ - O ij ax . ax. 3 axk ij 

J 1 

so that the complete stress tensor is written 

a.. = 
lJ 

P o . . + T . . • 
lJ lJ 

(A. 9) 

(A. 10) 

Thus, the forces a cting upon the volume of matter under considera-

tion are 

(A. 11) 

Under the conditions of normal fluid mechanics, the time rate of 

change of momentum, e quation A. 6, . would be e quate d to the external 
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forces, equation A. 11. Here, however, there is an additional source 

of momentum due to the creation of gaseous medium by evaporation 

of the droplets. In accounting for this process, we assume that, 

since the phase transition takes place at the surface of a droplet, the 

mass is added to or subtracted from the gaseous phase at the droplet 

velocity. Therefore, the momentum added to our region due to va-

porization is 

I µ u . dV . v pl (A. 12) 

v 

Thus, the complete relationship for the change of momentum of the 

gaseous phase is 

(A. 13) 

Use equation A. 10 for a .. , and convert the surface integral into a 
lJ 

volume integral. Then we make use of the familiar argument to ob-

tain the equation of motion of the gas phase 

a a aP aT i · 
at ( pui) + axJ. (puiuj) =Fi - ax. +a;f- +µvupi 

1 J 
(A. 14) 

A similar argument may be applied to the change in momen-

tum of the corresponding collection of liquid droplets. However, 

since the droplets do not form a continuum in the usual sense,, there 

is no surface stress associated with the surface bounding the collec-

tion of droplets. The only forces which tend to alter the momentum 

of the droplet collection are those exerted upon the individual drop-

lets by the gas flow over them; call this force F. per unit volume. 
1 

The momentum of the droplet cloud is also modified by the phase 
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transition taking place at the droplet surfaces. Corresponding to the 

assumption made for the similar term occurring in the momentum 

consideration of the gas phase, we assume that the condensing mass 

carries with it the velocity of the droplet as it condenses and that the 

acceleration or retardation of vapor to the droplet velocity makes it-

self felt through the drag of the droplet. Utilizing these assumptions, 

an argument similar to that for the gas phase leads to the droplet 

momentum equation, 

a a 
Ft (ppupi) + ox. (ppupiupj) = 

J 

F . -µ u . 
pl v pl 

(A. 15) 

The forces F. and F . on the gas and particle collection,· 
1 pl 

respectively, are not independent since they result from the interac-

tion between the two phases a t the droplet surface . Thus, clearly, 

F. + F . = 0 , 
1 pl 

(A. 16) 

which just states that action and reaction are equal. It is interesting 

to note that the sum of the two momentum eq'uations, equations A. 14 

and A. 15, are particularly simple. We find that 

a +_a_ Cit (p .+p u .) a (pu .u . + p u .u .) = 
v Ul p p 1 X . 1 J p p 1 p J 

J 

oP 
- ax. 

1 

O'J" .. 
+ _21. ax. 

J 

(A. 17) 

where the interaction terms do not appear. This tota l equation rep-

resents the momentuµi conservation relation for the composite gas-

·droplet mixture. 

To complete the statement of the conservation laws, we now 

apply the conservation of energy to the two phases. We use this 
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principle to state that the rate at which energy (internal and kinetic) 

of the system is increasing is equal to the sum of ( 1) the rate at wtiich 

work is done on the system by external forces (2) the rate at which 

heat is transferred to the system by outside sources, and (3) the gain 

in energy from vapor mass increase due to p:iase change. Denote by 

e the internal energy per unit mass of the gaseous mixture. The 

change of energy with respect to time of the gas vapor mixture in a 

volume V at time t is 

S { ~t [p(e+iu.u.)] + J- [p(e+i~. u.}u . J}dv 
<J 1 1 vx. 1 1 J 

v J 

(A. 18} 

Work is done on the gas phase by surface stresses represented by 

the stress tensor a .. , and by the force F. exerted by the droplets 
~ 1 

and treated here as a distributed volume force. The. work done on the 

volume V by ext'ernal forces is then 

Sa . . n.u.dS + JF.u .dV = f {J- (a . . u.} + F.u . } dV 
. lJ J 1 1 pl vX . lJ 1 1 pl 

s v v J 

(A. 19) 

The heat flux vector q. defines the rate at which heat is 
1 

transported out of a unit area normal to the orientation of the vector. 

Then the heat flowing out of the surface bounding the sample of matter 

in question is 

r 
J q .n.dS = 

1 1 

s 
S 

fJq. · 
a/ dV . 

v 1 

(A. 20) 

Finally, there is the energy gained or lost from our sample of 

matter due to phase transition. This change also takes place very 

close to the liquid surface. Hence, for consistency with the previous 

assumptions, the kinetic energy associated with the vapor which is 
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condensed or evaporated must correspond to the velocity of the drop-

let. Similarly, the internal energy of the vapo.r which is gained or 

lost from the local vapor-gas mixture must correspond to the vapor 

internal energy at the droplet temperature, since that is the gas tern-

perature immediately adjacent to the droplet. The latent heat of 

phase change requires further consideration. If evaporation is taking 

place, a molecule escaping the liquid must have left the liquid with 

sufficient energy .to achieve the vapor state, that is, to escape its 

local liquid bonds. Therefore, the latent heat is extracted from the 

liquid. Conversely, if the vapor molecule strikes the liquid and re-

mains a part of the liquid structure, then this latent heat again shows 

up in the liquid droplet. Therefore, the latent heat associated with 

phase transitions is absorbed from or given to the liquid state. Then 

if e(T ) denotes the internal energy of the gas-vapor mixture at the 
p 

local droplet temperature, the energy added to our sample per unit 

time due to vapor production is given by 

Jµ {e(T )+iu .u. + (~ )}dv v p pl pl p 
v p 

(A. 21) 

In addition, there is the heat added to the gas-vapor mixture due to 

heat conduction from the droplets. If Q represents the rate of heat 

addition to the gas-vapor mixture by condensation from the droplets, 

the energy added to our sample by this process is given by 

IQ dV • 

v 
(A. 22) 

Utilizing equations A. 18-22, we now write the appropriate energy 

equation for the gas-vapor phase. 
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! (p(e+~u.u . )}+Qa [pu.(e+ju.u. )} =-
8

a (a .. u . )+F.u . - ~qi+ 
vt 1 1 vxj J l l xj lJ l l p1 vxi 

This equation may be transformed into a form that corre spends more 

clearly to the usual energy equation for a single component. Using 

the continuity equation A. 4, the momentum equation can be written 

au. au. aa .. 
pa/+ pu . r = F. + µ (u · .-u.) +a-21 . (A. 24) 

J xj l v p1 l xj . 

Arranged in this way, it appears that the droplet cloud exerts an ad-

ditional trhust on the gas mixture due to change of phase. This is. the 

counterpart of the familiar thrust associated with source flow in an 

ideal fluid. If this equation is multiplied by u . and rearranged; an 
l 

equation for the rate of change of kinetic energy is obtained. 

a <1 ) a <1 ) _ a · . · pat -au .u . + pu. a- -au.u. - F.u. +µ (u .-u.)u. +u. -!'.1- (a .. ). (A. 25) l l l vx. l l l l v pl l l l vx. lJ 
J J 

With the aid . of the continuity e·quation A. 4, and by using equation 

A. 25 to subtract out the kinetic energy terms, the energy equation of 

the gas mixture may be written as 

au. aq . 
l . l = a . . -Q-+F. (u . -u. }-a-+O+ 

lJ vx. l pl l vx. 
J l 

ae ae 
p Tt + puj ax . 

J 

+µ O;·u .u. -iu.u. ·-u.(u .-u.)} +µ (e(T )+ ('f) -e} v pl pl l l 1 pl l v p p 
p 

(A. 26) 

au. 
If the term a . . --1 is 

lJ ax. 
J 

expanded using equation A. 8, 

au. au . 
a 1=4>-P--1 

ij ax:- ax. 
J l 

where 

one can write 

(A •. 27) 
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4 aui 2 1 (aui au.)2 
~ - - µ (-) +- µ - + ---1 3 ax. 2 ax. ax . . ..1. 

1 J 1 H·J 

(A. 28) 

is the familiar viscous dissipation function. Using this in equation 

A. 26, one obtains as the energy equation for the gaseous phase 

ae ae au. ' aq. 
P -at+ pu. -a +P ~ = t + (u .-u.)(F.-µ u.)+Q __ 1 

J xj oxi pl 1 1 v 1 axi 

1 1 } - e + ~u . u . - ~u. u. pl pl 1 1 

(A. 29) 

This equation is now in the conventional form for the first law of 

thermodynamics. 

The energy equation for the droplet cloud may be derived in 

the same manner. It is 

a
at (p (e +ju .u . )} +-a

8 
(p (e +ju .u .)} = 

p p p1 p1 xj . p p p1 p1 

u .F . -Q-µ (e +h,+ju .u . } (A. 30) 
pl pl v p 'V pl pl 

The quantity e represents the thermodynamic internal energy of the 
p 

liquid, and h.t represents the latent heat cif phase transition which is 

defined by the relation 

h + h, = h(T ) 
. p 'V p 

(A. 31) 

where h denotes the enthalpy of the liquid per unit mass and h(T ) 
p p 

is the enthalpy of the gaseous phase per unit mass at the local droplet 

temperature. 

The sum of the energy equations, equations A. 23 and A. 30, 

with the aid of equations A. 15 and A. 31 gives 

\' 
' 
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aat [p(e+iu.u . )+p (e +iu .u . )}+a
8 

[p(e+iu.u . )+p (.e +tu .u . )} = 1 1 p p p1 p1 xj 1 1 p p p1 p1 

a aq . 
-
8 

(cr .. u.) - -
8 

1 (A. 32) 
x . lJ 1 x. 

J 1 

which is the energy equation for the composite system. This equation 

has the form of the energy equation for a single-phase system and 

shows that there is no net production or destruction of energy~ 

To complete the formulation, it is necessary to develop the 

appropriate expressions for the forces and heat and mass transfer 

that occur between the liquid and gas phases. In the course of ex-

amining this, it will prove necessary to extend the number of trans-

port equation~ that have been developed. We will, from the begin­

ning, make the assumptions that the droplets are spherical and all of 

the same size or radius. In addition, the interaction between a single 

droplet and the gas mixture is summed over the n:umber of droplets 

to give the total interaction. Further assumptions will arise in the 

following discuss ion. 

Assume that the force exerted upon a single droplet is given 

by Stokes law. 

droplet is 

Then the force f. exerted upon the gas by a single 
1 

f . = 6Trcr µ(u . -u.) 
1 p1 1 

(A. 33) 

where a is the droplet radius, and µ is the viscosity coefficient of 

the gas-vapor mixture. If n is the number of droplets per unit 'vol-

ume locally, the total force F . is simply nf. • Further, if m de-
1 1 

notes the mass of a single droplet, and since all the droplets are 

assumed to be of the same radius, the local density of the condensed 
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1 
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and consequently 

6'1fGll = ..:...:.:...:;, p (u . -u.) 
m p p1 1 (A. 34) 

The quantity m/ 6'1f<J µ has the dimension of a time and, in the case of 

a single free particle of constant radius, it is the time required for 

-1 
the velocity of a droplet relative to the gas to decay to e of its 

initial value. Hence, define the velocity relaxation time to be 

(A. 35) 

Note that for a given system, T varies as the square of the droplet 
v 

radius. As a consequence of these assumptions, the volumetric 

distribution of body force may be written as 

F . = 
1 

u .-u. 
pl 1 

T v 
(A. 36) 

so that the only additional quantity which the volumetric forces bring 

into the problem is the characteristic time T • 
v 

Two assumptions , implicit in the above analysis, must be 

kept in mind. First, the Reynolds number of the drople t motion 

through the gas is assumed low enough that the Stokes approximation 

is valid. If this condition is not fulfilled, the characteristic t i me T 
v 

becomes a f unction of Reynold~ number; this variation maybe c a rried 

along numerically in a,ny problem, but will only be mentioned he re. The 

second assumption has to do with the effect of m as s transfer upon the 

drag law. Strictly speaking, within the Stokes approximation, there 

is no effect and, to higher degrees of approximation, the effect is of 

the order µ (u . . -u.) • The ref ore, to neglect this phenomenon, as we 
v pl 1 

shall do, leads to an inconsistency in the order of terms retained. 
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Those that have been retained have been done so in order to achieve a 

certain internal consistency among the equations themselves regard-

less of the form for the internal forces. In the acoustic problem 

these terms are of higher order and do not enter in any of the equa-

tions, but in other problems where the term µ (u .-u. ) might be of 
v pl 1 

the same order as other force and inertial terms, an error of this 

order must; be expected if the Stokes law is used. 

The processes of heat and mass transfer between the two 

phases are treated in much the same manner as the i~terphase forces. 

The heat trapsfer rate from a single particle, q, is taken to be 

q = 4rrcr 2 k ( T - T) 
a P 

(A. 37) 

where k is the coefficient of thermal conductivity for the gas-vapor 

mixture. As before, . utili'zing the number n of droplets locally per 

unit volume, the total rate of heat transfer from droplets to the gas-

vapor mixture is a = nq , which may be written 

T -T 
a = p 

'T v 

whe re the the rmal relaxation time 'f T is given by 

me 
____£ 
4rrcrk 'T = T 

(A. 38) 

.(A. 39} 

and where. c is the specific heat at constant pres s ure of the gas­p 

vapor mix ture. As in the case of the forces exerte d between phases, 

the effect of m a ss transfe.r upon the heat transfer betwee n phases 

has been neglected in writing equation A. 38. In the acoustic equa-

tions, however, these terms do not enter, and will not be discussed 

further. 
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The mass transfer between phases µ , as in the cases of the 
v 

other transfer quantities, is assumed continuously distributed 

throughout the volume. In detail, there are three processes which 

enter into the rate at which vapor condenses on or vaporizes from a 

droplet. These are the rate of heat exchange, the rate of vapor 

transfer, and the kinetic rate of condensation. We shall assume that 

the condensation rate is infinitely fast in comparison with the other 

two and consequently is not rate controlling. The approximation is, 

in principle, that the vapor transfer rate to the liquid surface is slow 

in comparison with the mass rate of collision of vapor molecules 

upon the droplet surface. This fact, that the collision rate is very 

rapid, implies that very close to the droplet surface, the vapor and 

droplet surface must be in thermodynamic equilibrium. This region 

is so small that the temperature and composition variation over it 

are negligible. Thus, at the droplet surface, the partial pressure of 

vapor must be that corresppnding to the surface temperature of the 

droplet. For the rest of this derivation, we' shall consider the drop-

let bulk to be the same temperature as its surface so the partial 

pressure of vapor at the droplet surface is the saturation pressure 

corresponding to the droplet temperature. 

From the abov~ observations, it appears that droplet conden-

sation depends_ only upon the diffusion of vapor to the droplet surface 

and the conduction away of the resultant heat of condensation. Denote 

by pv the local density of condensable vapor and by uD the diffusion 

velocity of vapor relative to inert gas. Then the mass rate of vapor 

production from a single droplet is just 
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where pv and uD· are evaluated at the droplet surface. If there are 

n droplets per unit volume, the total vapor mass production rate is 

just 

It is convenient to introduce the mass fraction of vapor K based 
v 

upon the total mass of gaseous species. That is, define 

K = p Ip . (A. 41) 
v v 

Then, according to the theory of binary diffusion, the diffusion ve-

locity uD may be written 

(A. 42) 

where D is the binary diffusion coefficient and al{ I or is the radial 
v 

vapor concentration evaluated at the droplet surface. We may then 

write 

This gives for the mass vaporization rate 

µ = 
v 

2 8K I - n p D 4Tf0' __:x_ or. 

(A. 43) 

(A. 44) 
a 

Under the assumption that the relative motion of the droplets, or the 

mass flux from the surface, does not appreciably affect the diffusion 

problem, the surface concentration gradient may be written rigorously 

as 

(A. 45) 

where K (oo) is the vapor mass fraction far from the droplet, that is, 
v 
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in· the gas vapor bulk. Thus, K {oo) = K , where K is understood 
v v v 

to be the vapor mass fraction in the medium considered as a continu-

um. The vapor mass fraction at the droplet is the equilibrium vapor 

concentration at the ambient mixture pressure and at the droplet 

temperature. Thus, 

e K {a) = K {T ) 
v v p 

{A. 46) 

where the superscript denotes equilibrium and the argument indi-

cates that it is evaluated at the particle temperature. Utilizing these 

results, the vapor mass production rate can be written as 

µ = -npD4rrcr (K - K e{T )} 
V V .V p 

(A. 47) 

It is advantageous to treat the vapor production rate in a way analo-

gous to the heat and momentum transfer rates. Define the charac-

teristic concentration equilibration time as 

'T == D -
m 

4rrcrpD 

. Then the vapor production rate per unit volume is 

µ = v - p p 

K 
v 

{A. 48) 

. (A. 49) 

The temperature of the droplets, and consequently the heat transfer 

between the droplets and the gaseous phase, enters the vapor produc-

tion rate problem in setting the value of the equilibrium vapor con-

centration at the droplet surface. 

When the vapor is considered as · an ideal gas, as it will be 

here, the equilibrium partial pressure of the vapor is given by the 

well-known Chausius-Clapeyron relation, 
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hl T 
=exp[-RT (To-l)J 

0 p 
(A. 50) 

where P and T are the vapor pressure and temperature at some 
vo 0 

known reference state. However, since the system is in thermody-

namic equilibrium, and consequently bot~ vapor and inert gas have 

the same temperature, then the local equilibrium vapor concentration 

is 

p e(T ) 
v p 

p 

P h, T 
= Ke (T ) __£ exp [ - -"'- (To - 1) J 

v o P RT 
0 p 

(A. 51) 

where K e(T ) is the equilibri um vapor mass fraction at the refer­
v 0 

ence temperature and P is the total pressure at the reference state. 
0 

Two new ·variables have been introduced in the calculation of µ , the 
v 

local mass fraction of vapor K , and the vapor mass fraction at the 
v 

liquid surface K e(T ) . The latter is related to the other dependent 
v p 

variables through equation A. 51. An additional differenti al equation 

to account for the local vapor mass fraction can be obtained Jrom the 

continuity equation for the vapor constituent alc;:me. It is easily shown 

that 

apv a 
-at + -a - < P u . > = µ · x . v 1 v 

(A. 52) 
1 

By the definition of the mass fraction, and utilizing the continuity 

equation of the gas phase, equation A. 4, it follows that 

SK 8K 
v v 

at+ ui ax. 
1 

1 = - (1-K )µ 
p v v 

(A. 53) 

This is the required equation for the local mass fraction of vapor. 

In dealing with the relations governing the interaction between 
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P hases, we have introduced ·the three characteristic times 'T" ,. v' T' 

and ,. D • Each of these depends explicitly on the square of the drop­

let radius. Thus, the droplet radius must be accounted for point by 

point. This is fairly straightforward in the present case because we 

have assumed that no droplet nucleation, coagulation, or fractionation 

takes place in the flow field. Then the continuity equation for the 

liquid phase, since p = nm , may be written 
p 

:t (nm}' + a a (nmu . ) = - µv , 
xi p1 

and since the number of particles is conserved, 

on a at + a- (nu . ) = 0 • 
xi p1 

(A. 54) 

(A. 55) 

Thus, if m is the particle mass corresponding to the reference 
0 

radius, equation A. 54 may be written 

{ a cr3 a cr3} 
nmo at (a) + upi ax. (a ) 

0 1 0 

= - µ • 
v . 

(A. 56) 

By utilizing equation A. 49 to give an explicit expression for the vapor 

mass production· rate we may write 

where 

aI: + u aL: 
at pi ox. 

1 

= 3_ Kv -Kve(Tp) 

3 1 Do 

L: = (cr /cr )2 
0 

(A. 57) 

(A. 58 ) 

and 'T"Do is the diffusion equliibration time at the reference state. 

This equation completes the relations required for the treat·-

ment of heterogeneous gas dynamics with phase change. The trans -

port properties of the gaseous phase, of course, depend upon the 

thermodynamic state of the gas-vapor mixture. If this dependence is 
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known, then the above equations can be used to solve problems in-

volving heterogeneous flow with mass transfer. 

11 
Marble has introduced characteristic lengths in place of the 

characteristic times Tv, TT, and TD, and has shown how to ac­

count for the variation in the transport properties of the gas mixture 

with temperature in a simple way. Define the characteristic lengths 

A = a T 
v v 

AT = a TT (A. 59} 

AD = a TD 

If the viscosity of the gas mixture is taken to vary· as ifT, then the 

velocity characteristic length may be written, since a Iµ = a Iµ , , 
0 0 

A 
v 

ma = 6trcr µ 

m a 2 
= .....---o_o_ ( __.£. } 

6'!fcr µ cr 
0 0 0 

= A I: 
VO 

(A. 60} 

Similarly, if it is assumed that k , the thermal conductivity of the 

gas mixture, and pD are assumed to vary as~. then the other two 

characteristic lengths may be written as 

(A. 61} 

and 

AD = "Dol: • (A. 62} 

Though in the acousti c problem the characteristic times are used, it 

is convenient in some cases to use the characteristic lengths to 

describe the interaction parameters. 
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APPENDIX B. INTERNAL ENERGY OF DROPLETS 

Consider a spherical. droplet of radius a whose surface tern-

perature is a function of time T (t) • Assume that the density, spe­
s 

cific heat, and thermal conductivity are constant. The temperature 

within the droplet then satisfies the heat conduction equation 

oT 
at = ~ ( 2 oT) 

or r or J 
OS:r<cr, t>O 

subject to the conditions 

T(cr, t) = T (t) 
s 

Define the dimensionless quantities 

2 
p .f.? c 

Tl = kl 

and 

R = r/a • 

Then equation B. 1 can be written 

t ~ 0 • 

(B. 1) 

(B. 2) 

(B. 3) 

(B. 4) 

(B. 5) 

Assume that the temperature depends upon time only through the 

factor exp{-iwt) • Then equation (:i3. 5) is redu<;:ed to the ordinary 

differential equation 

The solution, subject tp the condition B. 2, is 

T(R) 

where 

= T 1 sincj>R 
s R sincj> 

(B. 6) 

(B. 7) 

(B. 8) 
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The energy in the droplet is given by 

R 

e:p = pi I cT(r )4rrr
2
dr 

0 

When integrated using equation B. 7, this gives 

= me T 2- [ 1-<j>cot<j> J . 
s <j>2 

(B. 9) 

(b. 10) 

Equation B. 10 gives the internal energy of a droplet of mass m 

whose surface temperature T varies with time like exp(-iwt) • The . s 

parameter <j> is a complex phase factor. The assumption that T is 
s 

a function of time only is valid if the acoustic wavelength is ' large 

compared to the droplet radius. This is certainly true for problems 

of interes.t here. 
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TABLE I 

Some Properties of Potassium and Sodium Droplets 

in Their Respective Vapors, and of Water Fog in Air 

Potassium in Sodium in Water 
Units Potassium Vapor Sodium Vapor in Air 

T 1500°R 2500°R 1500°R 2500°R 60°F 

Pv psia 1. 50 1. 65 o. 23 80 o. 26 

P,1/P 1. 20X 10
4 1. 38X 10

2 
1. 44X 10

5 
5. 38X 10 8. 16Xl02 

c BTU/lb0 R o. 182 o. 210 o. 300 o. 326 1. 00 

c 
p 

BTU/lb0 R o. 127 o. 126 o. 214 o. 213 o. 240 

'I 1. 64 1. 57 1. 62 1. 53 1. 40 

k.t/k 3. ox 103 1. 4X 103 2. 8X 103 1. 7 X 103 2. 3 X 10 

Pr o. 75 o. 73 o. 73 o. 73 o. 71 

h.t/RT 11. 8 6. 7 14. 7 8. 5 17. 8 

Sc o. 585 
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TABLE II 

Equilibration Times for Potassium and Sodium Droplets 

in Their Respective Vapors and for Water Fog i n Air 

Potassium in Sodium in Water in 

Droplet 
Potassium Va:eor Sodium Va:eor Air 

Diameter l 500°R 2500°R 1500°R 2500°R 60°F 

,. v<sec) l.OXl0- 3 0.63 Xl0- 3 1. ox 10-3 0.73Xl0-3 1. 2X 10-3 

,-T/,-V 1. l 1. l 1. l 1. l 1. 0 

10 µ 
,-D/,-V 0.88 

,. ,,)'T" v 1. lX 10- 3 2. 3X 10- 3 1. 2X 10-3 1. 9Xl0- 3 o. 54 

Tp/,-V 9. 5Xl0-3 5. 4 Xl0- 4 5.6Xl0- 2 8.7 Xl0- 4 1. 3X 10- 3 

,. v<sec) 1. ox io-5 0.63Xl0- 5 I. OX 10- 5 0.73 Xl0- 5 1. 2X 10- 5 

'T"Tl'f'y I. 1 1. 1 1. 1 1. 1 1. 0 

l µ 
'T"D/'f'y o. 88 

'T",if,.v 1. l Xl0-3 2. 3X 10-3 1. 2Xl0-3 l.9Xl0- 3 o. 54 

Tpf'f'y 
-2 9. 5Xl0 . 5. 4 Xl0-3 5.6Xl0-l 8.7Xl0-3 1. 3Xl0-2 
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Li quid Vapor 
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II. THE FLOW OF A GAS-PARTICLE MIXTURE 

DOWNSTREAM OF A NORMAL SHOCK IN A NOZZLE 
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l. INTRODUCTION 

The linearized problem of one-dimensional gas-particle flow 

in a nozzle has been treated by Marble l, 2 and by Rannie 3 The 

linearization was based upon the assumption of small velocity and 

temperature lag between the gas and particles. The unperturbed 

state was taken as equilibrium flow where the gas and particles have 

equal temperatures and velocity. Equilibrium flow was shown to be 

equivalent to the conventional one-dimensional gas dynamic flow with 

modified gas properties. 

Under the proper conditions, a normal shock may occur in the 

nozzle, as in the conventional gas dynamic problem. Immediately 

downstream of the shock the assumption of small lag between the gas 

and particles.is no longer valid,and in this region the above linearized 

treatment is not applicable . 

The normal shock problem for gas-particle flow was original­

ly treated by Carrier 
4 

and extended by Marble 
1

. Solutions were ob­

tained which were applicable to a shock in a constant area duct. The 

problem was treated under the assumption that the parti cle thermal 

and momentum ranges were large compared to the thickness of a gas 

dynamic shock. Thus, the shock wave in the m ixture w a s treated as 

a conventional gas dynamic shock followed by a relaxation zone in 

which the gas and particles come to equilibrium. The thickness of the 

relaxation zone is of the order of the thermal and momentum ranges 

of the particles. 

1£ the nozzle area changes appreciably over the relaxation zone 

downstream of the shock in a divergent nozzle, the shock solution for 
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a constant area duct is no longer adequate, and a solution must be 

obtained which accounts for the area change. The problem here is to 

find a solution for a · shock in a divergent nozzle and to match this 

with the small slip solution which is assumed valid far downstream 

of the shock. The problem is linearized by assuming .that the particle 

thermal and momentum ranges AT and Av are small compared to the 

length of the nozzle, which is the length over which the gas properties 

change appreciably. It is shown that this linearization leads to the 

appropriate shock solution which can be asymptotically matched with 

the small slip solution. 

The problem is posed as follows. Given a nozzle with a di­

vergent section of length L in which there is a shock, obtain a solu­

tion for the gas 7 particle flow which describes the flow downstream of 

the shock for Av and AT small compared to L • Assume that imme­

diately upstream of the shock the gas and particles are flowing in 

equilibrium and that the flow is known. 
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. 2. GOVERNING EQUATIONS 

One is referred to the paper by Marble 
1 

for the formulation of 

the equations governing one-dimensional gas-particle flow. The 

equations for the two phases are 

puA = m 

p u A = km 
p p 

du+ dP (u -u) 
pu - - = p a --.,._P __ 

dx dx p A. 
v 

du (u -u) 

pp up ct! = ppa ....,"-,.....:~-

dT dP 
puc - - u- = 

p dx dx 

(u -u)
2 

+ p a~P.,__ __ 
p A.v 

dT (T -T) 
p u c ---1: = - p c a -~P __ 

p p dx p p A.T 

P = pRT 

( 2. 1) 

(2. 2) 

(2. 3) 

(2. 4) 

(2. 5) 

(2. 6) 

(2. 7) 

The thermal and momentum ranges are f..T an.d "-v , respectively. 

The subscript p :refers to particle quantities except for c , the gas 
p 

specific heat at constant pressure, and c , the specific heat of the 

solid material of the particles. Both c and c are considered con­
p 

stant. The nozzle area A(x) , the net gas mass flow rate m , and the 

mass fractional flow rate of the particles k, are assumed known. 

It is convenient to replace equations 2. 3 and 2. 4 with equa-

tions in which interactions between the two phases are absent. Equa-

tions 2. 3 and 2. 4 may be combined to give 

du du dP 
pu dx + p u __£, + - = 0 p p dx dx 

(2. 8) 

and equations 2. 3-2. 6 may be combined to give a conve nti onal form 
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of the energy equation 

pu [c d T + _i_ (u 2 
)] + p u [c ~ + _i_ (~)] = 0 

p dx dx 2 p p dx dx . 2 
(2. 9) 

With the aid of the continuity equations the above equation may be in-

tegrated. Thus, 

2 u 
2 

(cp T + uz ) + (cTP + f ) = const. (2.10) 

A set of governing equations equivalent to 2. 1-2. 7 .is obtained 

by replacing 2. 3 and 2. 5 with 2. 8 and 2. 10, respectively. 

Assume that A. , AT , and x are non-dimensionalized in 
v . 

terms of L , which is equivalent to setting L equal to unity. Let the 

origin of the x-coordinate be at the shock wave. 
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3. SMALL SLIP SOLUTION 

A straightforward perturbation solution of the governing equa-

tions, for small Av , AT leads directly to the linearized problem 

treated by Marble and Rannie. Since, in general, Av,.._, AT , ~e may 

use A as the perturbation parameter, realizing that AT/A = 0(1) 
v v 

as A. --+ 0 • The zeroth order equations are those obtained by setting 
v 

A. equal to zero in the governing equations 2. 1, 2. 2, 2. 4, 2. 6, 2. 7, 
v 

2. 8, and 2. 10. From equations 2. 4 and 2. 6, we see that (u -u) and 
p 

(T -T) are of order A as A. --+ 0 • 
p v v 

The small parameter A ef-. v 

fectively multiplies the derivatives of u and T , which is the clas-
p p 

sical warning of the singular behavior of boundary-layer theory. As 

expected, this restricts the initial values that can be satisfied by this 

solution. 

The small slip or small lag solution is designated as the outer 

solution. It will turn out to be valid far downstream of the shock. By 

"far" it is meant a distance large compared to A. • 
v 

To carry out the solution it is convenient to replace the parti-

cle quantities in the governing equations by the slip quantities 

u - u-u 
s p 

T - T-T 
s p ( 2. 11) 

PS - 1 - p /kp p 

If modified gas constant and specific heats are defined as. fol-

lows 
c +kc 

c = p 
p 1 + k 

c +kc 
v (2. 12) c = v 1 + k 
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R 
R = c c = p v 1 +k 

c 
'I = ~ c 

v 

four of the appropriate equations for the system are 

(l+k) u du+ dP 
P dx dx 

du 
s = kpu-­

dx 

puA = m 

P = (l+k)pRT 

( 2. 13) 

(2. 14) 

(2. 15) 

(2. 16) 

Equation 2. 13 follows from 2. 8 and equation 2. 14 from 2. 10. 

The reference state u , T , P can be taken as the reservoir con­
o 0 0 

dition for flow in a nozzle in which there is no shock. Here, they are 

determined to all orders by the shock solution, which will be called 

the inner solution. For the present, consider u , T. , P as a yet 
0 0 0 

unspecified reference state. 

Equations 2. 13-2. 16 may be used to write an isentropic inte-

gr al. y-1 
p -i (p 0) 'I 

0 

It will be convenient to take equations 2. 14- 2. 17 as part of the system 

to be solved. 

By substituting the slip quantities in the particle equations 2. 2, 

2. 4, and 2. 6, the additional equations required for the solution of the 

problem are obtained. 

u 
s = 0 (2. 18 ) 
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du 
du 

du 
du 

a + u--s +u s u- = \ u s dx - u 
dx dx s dx s 

. V 

(2. 19) 

dT 
c T dT 

dT 
dT 

J: a~+ u--s + s u- = u dx - u 
dx dx c >..T dx s s 

(2. 20) 

Equations 2. 14-2. 20 are equivalent to the original set of equa-

tions 2. 1-2. 7 and are formulated in terms of the gas. and slip quanti-

ties rather thC!-n the gas and particle quantities. The convenience of 

this' is due to the vanishing of zeroth order slip quantities, which can 

be easily shown from equations 2. 18-2. 20. 

To carry out the perturbation solution, assume that the gas 

quantities can be expressed as an asymptotic series as follows. 

u(x;;\ ) UCO) (x) + A. u C:l) (x ) + A 2 u (2) (x) + 
v v v 

p(x;;\ ) -<OJ (x) + A. p<i) (x) + • • • p 
v . v 

(2. 21) 
P(x;;\ ) p(O) (x) + A p<l) (x) + 

v v 

T(x;;\ ) "' Col {x) + A T <ii (x) + T 
v v 

In addition, assume that th_e slip quantities can be written 

u {x;;\ ) "' A ~ ( l) {x) + A 2 ~ < 2 > {x)· + 
s v v s v s 

p (x;;\ ) 
s v 

A ,..., C1l (x) + 
v PS (2. 22) 

rJ ( 1) 
A T (x) + ..• v s . 

T (x;;\ ) 
s v 

To determine the various order terms, these expansions are 

substituted in equations 2. 14-2. 20 which are then separated in like 

powers of A 
v 

Since the shock solution can influence the reference 

state u
0 

, T 
0 

, P 
0 

, to a ll orders of "-v , it is appropriate to write . 

these quantities as expansions of the form 2. 21 and 2. 22. However, 

to simplify the calculations, it is sufficient to keep 'only the zeroth 
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order of u , T , P . Then the solutions obtained for higher order 
0 0 0 

gas and slip quantities will be correct except for an additive constant. 

The additive constant is determined by matching with the shock, so 

there is no benefit in carrying higher order terms of the reference 

state through the calculations. 

1 
Marble has carried out the calculations in some detail. Only 

the results are given here. The zeroth order part of equations 2. 14-

2. 17 determine completely the zeroth order gas quantities. The 

equations are 

or 

where 

"' 101 "' Col A p u = m 

p(O) = (l+k) p(O) R TIO} 

T(O} p 0 ('y-1 )/y 

(-;:;--)("'Co) ) = O 
T p 

0 

~Co\ 2 
.., (0) 2 

= (~lo)) 
a 

-a (O} 2 = y R T (0) 

(2. 23) . 

{2. 24) 

(2. 25) 

{2. 26) 

(2. 27) 

(2. 28) 

Clearly, the equations 2. 23-2. 26 represent the conventional 

"is entropic 11 flow of a gas of density { l+k)pC0 l with modified gas 

properties. It represents equilibrium flow where there is no thermal 

or velocity slip between the gas and particles. 

The first order slip quantities can be obtained directly from 

the zeroth order parts of equations 2. 18-2. 20 using the known zeroth 
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order gas solution. The results of carrying through the calculation 

are 

IV ( 1) 
U (O) du!O) 

(2. 29) u = dX s -a<ol 

rJ (1) 1 ( AT u_Col u < 1) T = - - ~)- (2. 30) 
s - - A s 

c c v 
p p 

,.., l l) - 1 du(OJ 
(2. 31) Ps = dX a<o> 

The first order gas quantities are calculated from the first 

order part of equations 2. 13-2. 16 using the known first order slip 

quantities. The first order gas quantities are written in terms of the 

known zeroth order solution as 

\f Cl) 

.., CO) 
u 

,..., 
-Cl) 

= - .£.__ 
-Col 
p 

= - _!s_ ( 1 ) _l_ [F(x)--:YG(x)J + ul 
l+k l-M(O) 2 :V- l ~~o) 

,..., 
k 1 2 Tl = ( 

2
) [F(x)--yM10

) G(x)J + -
1 +k 1 - M CO} T (0) 

,..., 
p 

k (__L) l (F(x)-[l+(y-l)M<oJ 2 JG(x)}+-1-= l+k y- l l-MCo) 2 p(o) . 

where 

F(x) = (y-1)M:1
q 

A . 
2 [ 1 - (~) ~ J _l_ 

- A ..JIO) 
c v a 

p 

x r 1 { c A T .d u Co) 2 

G(x) = J ~ <o> [ 1 - (::-)r] dx ( ..... coi 

0 c T c v a 

du(O)) 
dx 

p p 

- U(o) . _i_ (~(O) d~(O))} dx 
dx .., (OJ dx 

a 

(2. 32) 

( 2. 3 3) 

(2. 34) 

(2. 35) 

(2. 36) 

,.., ~ ~ 

The terms u 1 , T 
1 

, and P
1 

are constants that will be determined by 

matching this solution with the shock solution. 
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The singularity at M(o) = 1 will present no difficulty here 

since our region of inte~est is not near a throat section. 

The solution for the gas quantities can clearly satisfy arbi-
....., ,.., ,.._, 

trary initial conditions which determine u , P , T and u
1 

, P
1 

, 
0 0 0 

,....., 
T 

1 
However, the slip quantities cannot independently satisfy 

initial conditions since, from equations 2. 29-2. 31, they depend en-

tirely upon the zeroth order gas solution. 
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4. SHOCK SOLUTION 

The small slip solution is not valid near the shock since the 

initial conditions at the shock (x = O) cannot in general be satisfied. 

This nonuniformity occurs because the line of reasoning which leads 

to slip quantities of order A. as A. -+ 0 , is no longer correct. In the 
v v 

region near the shock, gas and particle quantities change very rapidly, 

so that we can no longer say that terms which appear on the left-

hand side of equations 2. 3-2. 6 are small when multiplied by A. • 
v 

That is, near the shock, (X"'A ) , A. (du /dx) is no longer arbitrarily 
v v p 

small as A. -+ 0 ·• The region of nonuniformity of the small slip s olu-
v 

tion is of thickness of order A. 
v 

This suggests that a magnified 

variable be introduced in order to obtain a solution valid at the shock. 

Define the magnified coordinate by 

s = x/A . . v 
' (2. 37) 

The governing equations 2. 1, 2. 2, 2. 4, 2. 6, 2. 7, 2. 8, and 

2. 10 can be written in terms of £ as follows. 

puA(A. £ )= m 
v 

p u A(A. £) = km 
p p v 

[ c T + tu 
2 J + k [ c T + tu ~ J = cons t. 

p p p 

du 

up crf = 

= 

a(u -u) 
p 

A. 
a....:!.. (T -T) 

A.T p 

( 2. 3 8) 

(2. 39) 

( 2. 40) 

( 2. 41) 

(2. 42 ) 

(2. 43) 

The a rea A(x) is written in the continuity equations in terms 
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of the stretched coordinate . We are looking for solutions f or small 

A. with s of order unity, so it is reasonable to expect that the area 
v 

A(A.s) can be expanded as a Maclaurin series 

A(x) = Aco) + A. sA (.l) + (A. s )2 A< 2 J + 
v v 

( 2. 4 4 ) 

where A (i) {i = 0, 1, 2, •• , ) , the usual Maclaurin coefficients, are 

the constants 

A<o) = A(o) 

. A<1) = dA(o) 
(2. 45) 

dx 

A (2) 1 d
2 

A{o) = 2T 
dx 

2 

Assume the following exp ans ions for the flow qua ntities: 

and 

u(s;A.) 

p(£;A.) 

P(£;A.) 

T(£;A.) 

u(o) (s) +A. ull) (s) +A. 2u<2> (s) + ••• 
v v 

....., p(O)<s>+t.. p<l)<s>+ •.• 
v 

P'0
) <s) + /.. p\l) <s> + ••• 

v 

T(O) {s) + A T(l) (s) + ••• 
v 

( s A. ) u < 0 ) ( s ) + A. u li) ( s ) + up ; p v p 

p (s;t..) p <01 <s) + t.. p (l) <£) + 
p p v p 

T (s;A. >,...., Tc.0 )(s>+t.. T o)(s)+ •. • 
p v p v p 

(2. 46) . 

Substitution of equa tions 2. 45 and 2. 46 into e quations 2. 3 8 -

2. 43 and the ideal gas equation yields a s et of equations for the vari-

ous order terms. The zeroth order continuity equations are 

(o) <oJ A<o) p u = m , 

Co) co) A'oJ k 
pp up = m • 

(Z.47) 

(2, 48) 
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The zeroth order momentum equation can be integrated di-

rectly, since the area is constant to the zeroth order. Thus, from 

equation 2. 40, using 2. 47 and 2. 48, 

mu(o) + kmu~ OJ+ plo) = ( l+k)mu
1
+P

1 
. 

The remaining equations are 

cp T(o) +ju<o) 2 +k(cTP(O) +jup( o) 2) = (cp +kc)T 1 + (l+t) ul2 

du (o) 

u/o) crf-- = 

dT \o) 

Up(O) + = 

to) ( lo) ( o) ) a u -u 
p 

pCo) = p (O) R T(o) 

(2. 49) 

(2. 50) 

( 2. 51) 

(2. 52) 

(2. 53) 

The state u 1, P 1, T 1 is the equilibrium state to which the 

flow would approach far downstream of the shock if it were in a con-

stant area channel. The initial conditions at the shock are calculated 

from the known upstream conditions using the conventional gas dy-

namic shock relations . Since the shock thickness is negligible in 

comparison to "-v and "-T , the initial conditions on the particles are 

just the upstream state. Thus the initial conditions for equations 

2. 4 7 - 2. 53 are 

U(O) (0) = 2 ( 1 + y+2 l Mu2 ) 
uu (y+l)M2 

u 

TIO) (0) = T ( 1 + .l::i_ ( M 
2 

- 1 )) ( 1 + - 2
-

u y+l u y+l 

p(O) (0) = (2. 54) 

U CO) (0) = U 
p u 
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T Co) (0) = T 
p u 

p (0) (0) = kp 
p u 

where the subscript u refers to the equilibrium state upstream of the 

shock; M is the Mach number of the gas just ahead of the shock. 
u 

The quantities u 1 , P 
1 

, T 1 can be calculated directly from 

the upstream state using the momentum and energy conservation 

equations 2. 49 and 2. 50. 

The numerical solution of equations 2. 47-2. 53 has been given 

1 
by Marble • It can be shown that the zeroth order flow approaches 

the u 1, P 
1

, T 
1 

state exponentially. 

The first order inner problem is obtained from the first order 

part of equations 2. 38 - 2. 43 and the ideal gas equation. 

(o) (o) 
p u 

ll) · P 
p(O) 

(l) 
..e__ 

(0) 
p . 

( l) 

~ 
(o) 

pp 

(l) 
+ ;:____ + 

u 
(0) 

u ti) 

+-P-
u \o) 

p 

A<D 
s = 0 

A(O) 

Al1) 
+-s = 0 (O) 

A 

du(l) 
du (l) 

dP(l) 
err + 

(o) (o) 
pp up 

p 
d~ +~ + 

(O) 
+ ( (o) (1) + (1) (o) ) du + (p (O) U (1) + ( 1) U (o) ) p u p u err p p pp p 

(c T(l) + u(ol u(l)) + k(cT (l) + u to) u (l)) = 0 
p p p p 

(2. 55) 

(2. 56) 

( 2. 5 7) 

(2. 58) 

du (o) 
E 

d£ 
= 0 

(2. 59) 

du (l) du fo) 

up(o) ---ck-+ up(1) * = a Co} (u(l) - u (l)) + a(l) (u(o) - u (o)) (2. 60} 
p p 
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dT (l) dT (o) A. 
u Co) _£__ + u ~ 1) __£_ = __..:!._ [a Co) ( T (1) _ 

P ds P ds "-T 
T (1) )+ a(l) (TCo) -T (o) )] 

p p 

(2. 61) 

The initial condi.tions for equations 2. 55-2. 61 will be that the first 

order quantities are zero at the shock (x = O) • That is 

T (1) 
p 

= (1) - 0 pv -

at s = 0 (2. 63) 

Using the zeroth order and first order continuity equations, 

the first order momentum equation 2. 58 can be written 

(1) [ Co)] dulll .J.. du A(o) dP(l) - A'o.) du<o) du 
---crf . k + + ---r.n-- ----cir - A (l) s <Ir + k + 

Eliminate pfl) from this using equations 2. 55 and 2. 56 to 

obtain 
(0) 

( 1 - 1 )u(1) +ku (1) + _u __ 
yMlol 2 p )'Mlol 2 T<o} 

= H(s) 

where, with the aid of the zeroth order momentum equation, 

ll) s 
H(s) = Am J p<o) ds 

0 

(2. 64) 

Now equations 2. 59-2. 61 and 2. 63 can be written in terms of 

the four quantities u(l), u {l), T(l}, and T (l) as follows. 
p p 

(c T(l) +u'0 l uCl) )+k(cT ll) +u Co) u ll)) = 0 
p p p . p (2. 65) 

(
l 1 ) (1) +k <1) + u<Ol (T(l)) = 

- )'MCo) 2 u up )'M<o) 2 TCo) H(s) (2. 66) 

du (l) du (o) 

up(o) --!r+up\1) + = a(o) (ul1) -u (1) )+aC1) {u(o) -u Co)) 
p p {2. 67) 
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<,o) 
u p 

dT <1 > 
_ _.P~ +u (1) 

d£ p 

dT {o) A. df- = A~ [a(ol (T(1) -T/1) ) + al1) (T(o) -T/o) )] 

(2. 68) 

This set of equations may be reduced to a set of two coupled 

first-order differential equations for u<1
> and u ( 1) • 

p 

where 

Assume that Av = AT in the following. Then 

du C1) 

. p = A u<1l + A u (1> + A 
d£ 1 2 p 3 

B Cl) + B u (l) + B 
lu 2 p 3 

= - aloJ {1 + kyMo) 
(o) 2 

2 U CO) du (O) 

( 1. - __E__ ) + _l __£_._ } 
(O) (o) d~ 

A = 3 

u u a 
p 

(o/ . . Mo)2 u (o) 

\
0

i {-v 2 (1 -~) .H(s)} 
u u 

p 

) 2 (0) 

M 10 {kc a (o) 1 [ 1 T ] ' B =- ---(1- ) l+-(1-_E_) + 
1 M(o) 2_ 1 cv u (o) "{M(o)2 a T(o) 

p 

M(o) 2 -1 . a(o) 1 du (o) d M(o) 2 -1 
( Meo) 2 )(u (o) + uCo> ~) + ds ( M<o) 2 ) + 

p 
(0) (0) 

ky (1 -~ L)(a(o)) [1 - (yM(o) 2-1) Ii - L)]} . 
"'{ (O) (O) 2 \• (O) 

u u u 
p 

(2.69) 

(2. 70) 
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[
l + i (1 - T p ( 

0 »J + 
T~O) 

( ) ) 
u (o) 

( 
a 

0 
1 du(o )( _ .Y.::..!_ __£__) _ 

+ "Y -col + Co) ~ 1 u u '=' "Y u{o) 
p 

u (o) (o) [ (o) 2 u (o) du (o)] 
- "Y (1 - .Y.::..!_ __E_) c~ \ ky M (1 - __E_ ) + 1 + _l __£__ + 

-y (o) (o)/ 2 (o) ~) d~ 
u u u a 

M(o) 2 
B = ---=--

3 M<o> 2_1 

p 

+ (-y-l)l. (o)c (o) Lu u 
p 

dT (o) u (o) ,l 
d[ + c& ( :(o) )J} 

( ) [ T (O) ] 
H( s) { kc ~ 1 + .!. (1 - _E_ ) + 

c (o) z T\o) 
vu 

p 
(~ (~ 

1 du(oJJ .Y..:..!_ up a(o) yM(o) 2 ( L } 
+Co) dY - k-y (1 - "Y (;) )( (;;))( 2 ) 1. - (0)) 

u u u u 

M(o) 2 
+----

M(O) 2 _ l 
dH(s) 
d~ 

p . 

. Equation 2. 69, subject to the initial conditions 2. 6 2, can be 

integrated straightforwardly by numerical methods, using the A. and 
l 

B. , ( i = 1, 2, 3) which ·are written ab ave in terms of the known zeroth 
l 

order quantities. In order to asymptotically match this solution with 

the outer solution, it is only necessary to calculate the asymptotic 

solution of equation 2. 69 for large values of s . To accomplish this, 

it is convenient to reduce the first order system 2. 69 to a second 

order equation for, 

d 2u ( l) 
p 

where 

say, u ( i) . The result is 
p 
du Cl) 

+ .p(s) c&-- + q(s)uP <1) = r(s) ( 2. 71) 
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1 dAl 
Ci31+A2+rcrr) 

1 

(2. 7 2) 

The initial conditions for equation 2. 71, obtained from 2. 62 

and 2. 69, are 

u ll) 
p 

du {i) 

=-!r=O at s = 0 • (2. 73) 

To obtain the asymptotic form of the solution of equation 2. 71, · 

it is necessary to make use of the fact that the zeroth order solution 

( (o) p(O) T(O) (o) T (0) 
u ' ' ' u ' p p 

) exponentially approaches the equi- . 

librium values {u 1 , P 1 , T 1 ) downstream of the shock. This may be 

written 

u (o) = u 1 +exp 

T(o) . = Tl +exp 

p(O) = pl +exp 

and (2. 74) 

up(o) = u
1 

+ exp 

T p( 0 ) = T 
1 

+ exp 

where "exp" stands for terms that are exponentially small as £-+co . 

It is easy to show from the differential equations that 

du (o ) 

exp p = exp 

dT(o) 
.err- = exp 

dT (o> 

p = exp 
d~ 

(2. 7 5) 

as £ -+ co • 
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With the aid of equations 2. 74 and 2. 75, the coefficients A . 
l 

and B. (i = 1, 2, 3) may be written for large £ 
l . 

al 
A 1 = - +exp 

ul 

AZ 
al 

= - -+exp 
ul 

A3 = exp 
(2. 76) . 

The coefficients p(£), q(s)· , and r(£), then have the limiting form 

p(£) = al 1 {M2{kc+2+k)-(2+kc)}+exp 
u 1 M 2 l 1 c c 

1- v p 

q(s) (2. 77) 

The ·expression for r(£) can be further simplified if H(s) is 

written in its limiting form for large £ . 

where 

Instead of the equation 2. 74, P 0 (£) may be written 

plo) (£) = p 1 + . pm(~) 

as £-+ 00 

(2. 78) 
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Then H(s) , given by equation 2. 64, can be written 

H(s) (2. 79) 

Using equation 2. 77, r(;) may be written in the simpler form 

(2.80) 

where 

( 2. 81) 

. The s elution of equation 2. 71, subject to the conditions 2. 73, 

is simply the particular solution given by 

as (2. 82) 

where p 1 and qi" are just the parts of p and q in equations 2. 77 

which are of order unity as s -+ ro • 

( l) >:< 
It is easy to show that u is an asymptotic s elution for 

p 

u ( l) as s -+ ro • 
p 

The coefficient of s may be written in a form that is particu-

larly convenient for matching with the outer solution. If the substitu-

tions are carried out, the result is 

= (2. 83) 

where 

(2. 84) 
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The asymptotic form for u(l) (s) may be obtained in a similar 

way. It is given by 

C' 
(1) >:C ( 1 

u = - +pl 
ql 

(2. 85) 

\l) >:C 
The only difference between this and the expression 2. 82 for u 

p 

is in the term CJ. , which is given by 

a M 2 A< 1 > P a . 00 p 
. c' = _1 ( . 1 )( l){-1 (y+kc) J ~ds+(f.y+kc)}(2. 86 ) 
. 1 ul M 2 _ l . ~ ul cv p 1 cv 

1 0 

The asymptotic form for the slip can be calculated from 2. 82 and 

2. 85, 

( l) >:C 
u 

s 
11) >): u ( l) >:C ) = (u ~ = 

P . 
(2. 87) 

Carrying out the calculation gives the asymptotic form for the slip as 

( l) >:C 
u = s 

as s ...... oo • (2. 88) 
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5. MATCffiNG OF THE INNER AND OUTER SOLUTIONS 

Asymptotic matching of the inner or shock solution with the 

5 
outer or small slip solution follows the methods of Van Dyke • Each 

flow quantity in the inner solution must be asymptotically matched 

with the corresponding quantity in the out~r solution. To illustrate 

the procedure, use the gaseous velocity u • The two-term outer ex-

·pans ion for the gas velocity is 

u ,....., u<0 > (x) + A.uu) (x) (Z. 89) 

and the two-term inner solution is 

(Z. 90) 

Matching requi res that 

~(o) (0) = u\o) (oo) (Z. 91) . 

and 

as £ ... oo • (Z. 9Z) 

Recall that u is the zeroth order reference state for the outer or 
0 

small slip solution. Then , using equations Z. 74, equation Z. 91 re-

quires that 

"' u 
0 

(Z. 93) 

Using equations z. 85 and z. 8"3, the condition 2 • . 9Z requires 

both that 

~(l) (0) (cl. CZ 
= -+ pl z) 

ql 
ql 

.(Z. 94) 

and 
du(o) (0) CZ An.) ul 

= = --dx ql A COJ. MZ-1 
1 

(Z. 9 5) 

,..., 
Thus, the additive constant u 1 in equation z. 35 is determined by the 
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matching condition 2. 94. Similarly, the other additive constants ap-

pearing in the first order outer solutions 2. 3.3 and 2. 34 can be deter-

mined by matching with the corresponding inner solution. 

Application of the well known relations of OIJ.e-dimensional gas 

dynamics to the zeroth order outer flow, described by equations 

2. 23- 2. 26, gives the following 

or, at x = 0 ' 

. d~(O) (0) 
= dx 

N 

- uo 

~<o) - 1 dA 

-p;- l-M(O) 2 . dx 

Ac1) -A<.1) ul 

1-M 
2 = ACo) A'-o) l-M

2 
1 0 

(2. 96) 

where equation 2. 93 has been used. Thus the condition required by 

2. 95 is satisfied. Condition 2. 95 does not involve a matching which 

determines some unknown constant. Rather, it is a requirement that 

must come out of the ca1culations if the asymptotic matching of solu-

tions is to be valid. 
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6. COMPOSITE EXPANSION 

The composite solution is constructed from the inner and outer 

expansions in such a way as to be a uniformly valid solution for small 

A One convenient representation for the composite expansion is 
v 

u(x) ,..., [u<ol (x) - \i(O) (0) + U(O) (S) J + 

· dii(o) (0) 
+A [ ~(l) (x) + u<i) (s) -~Cll (O) - s d ] • (2. 9. 7) 

v x 
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7. APPLICATION TO A CONICAL NOZZLE 

Assume that a shock exists at a known location in a conical 

nozzle whose area ratio is given by 

A 
A 

0 

(2. 98) 

where A is the area of the nozzle at the shock. The parameter a is 
0 

assumed to be of. order unity. The gas-particle flow just upstream of 

the shock is assumed to .be a known equilibrium flow. The problem is 

to calculate the flow far downstream of the shock, using the ass ump-

tion that A is small compared. to the nozzle length. 
v 

First, the inner, or shock, sol'ution is calculated since it is 

completely determined by the known upstream conditions • . The up-

stream variables at the shock are denoted by u , P , T 
. u u u Then . 

the values of u(o) , P(o) , T(o) are easily cal~ulated from the. con-

ventional shock relations, equations ·2. 54, and the particle values 

are taken as u (o) = u and T (o) = T • These quantities serve as 
p u p u 

the initial conditions on the inner solution. 

The area is expanded in ·a power series as in equations 2. 44 

and 2. 45. 

A(x) 
0:.2 2 = A

0 
( 1 + a.x + 4 x + ••. ) 

or 

(2.99) 

The coefficients defined in equation 2. 45 are 

A \o) = A 
0 

A(1) = A a 
0 

(2. 100) 

A(a) = A a.2 
/4 

0 
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The zeroth order shock solution was carried out by Marble 
1

, 

using the equations 2. 49-2. 53. The zeroth order quantities approach 

an equilibrium state ui , T 1 , P 1 , exponentially._ The values of u 1 , 

T 
1 

, P 1 can be calculated directly
1 

from the upstream conditions, 

using the conservation of energy and momentum. A little manipula-

tion of equatio'ns 2. 49- 2. 53 then yields the hodograph relation 

. d(u(ol -u ) 
____ l_ = F(u(o) , u (O)) 

d(u (O) -U ) p 
p 1 

where 

F = - (u(o> -u . ) [ Y (ufo.> 1 ) 1 ( (O) + )l - --.-2 ul - 2kc u ul 'j 
p kc(y-1) yM

1 

- (u ( o) -u )[ Y u~o) + _l_ (u (o) + u )1 -
P 1 c(y-l) 2c p l~ 

.!. [(u<ol -u )-(u (ol -u )] [ _::j__ (u(o) -u )+(u (ol -u ) +-1- u ] 
c . 1 p 1 y- 1 1 p p y-1 1 

(2.101) 

(2. 102) 

2 
yM -2 

- 1- [ (u<o) -u )-(u (o) _u ) J [ ~ (u<ol -u )+ 1 +~ (u (o) -u
1
)] 

kc 1 p 1 y-1 1 2M[(y-l) y-1 p 

Equation 2. 101 may then be numerically integrated in the 

hodograph plane • . To obtain the dependence upon the physical coor-

dinate s ' use is made of equation 2. 51 to write 

u (o) du (o) 
p p 

a Co) (u<o) -u (o) 
p 

(2. 103) 

The ··zeroth order speed of sound can be calculated in terms of u<o) 

and u (o) using equations 2. 49 and 2. 53. ·The result in terms of T<o) 
p 

is 
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T101 -T = - uR(o) [(ulo) -u )+ k(u (o) -u )] + T 1 (u(o) 
1 p p 1 u

1 
-ul) • 

(2. 104) 

Equation 2. 103 can then be integrated numerically to get the zeroth 

order inner solution. 

The first order inner solution can be obtained from a numeri-

cal integration of equations 2. 69. In practice, how ever, the details 

of the first order inner solution would most likely not be required. 

If only the first order correction factors for the small slip or outer 

solution reference state are required, then it is only necessary to 

calculate the asymptotic form of the first order inner solution. 

Thus, directly from equations 2. 32, ;-J'.(1) (0) may be written 

M2 
tV(l) k ( 1)( c) u . (0) = - - 1 - -

l+k 1 M2 -
- 1 cp 

and by the matching condition 2. 94 

2 
"J _ ~ (Ml )(l _ ~) ~ du<ol (0) 
ul l+k l-M 2 - a 1 d~ 

1 cp , 
= (2. 105) 

du<°' (0) 
Using the familiar gas dynamic equa tions, the term dg 

may be written in terms of the area 

= = 
ul 

---.,,.. (Aa.) 
i-M: 2 o 

1 
(2. 106) 

,.., 
Then u

1 
is given by 

(2. 107) 
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00 

I [p(O) (s) ] 
- 1 ds 

pl 
0 

(2. 108) 

Similarly, the other first order corrections to the small slip solution 

T 
1 

and P 
1 

(see equations 2. 33 and 2. 34) may be calculated. 

All the terms in 2. 107 except 11 are written directly from the 

easily calculated u 1 , P 1 , T 1 state. The integral 11 contains the 

zeroth order inner solution implicitly. Thus, directly from the 
,.., ,..., 

zeroth order inner s elution, the zeroth order reference state . u
0 

, P 
0

, 

T 
0 

= (u
1 

, P 
1 

, T 
1

) and the first order corrections u
1 

, P 
1 

, T 
1 

for 

the outer solution may be calculated. It is not necessary to calculate 

the detailed first order inner solution unless second order terms of 

the outer solution are required. 
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8. POSITION OF SHOCK IN A NOZZLE 

In the case of conventional gas dynamics, it is a straight-

forward calculation to determine the location of a shock in a nozzle. 

The flow is assumed to be isentropic, except across the .shock, and 

the shock is positioned so that the conditions at the nozzle exit are 

satisfied. This problem is considered in detail by Crocco
6, and will 

not be repeated here, except in connection with the corresponding 

problem for two-phase flow. 

In the small slip approximation, that is, the asymptotic so-

lution as A. ... 0 , the location of the shock in an ideal nozzle can be 
v 

calculated to various orders of A. . v Assume for the present dis-

cuss ion that the coordinate x is measured. from the nozzle throat, 

increasing toward the nozzle exit, and let x denote the location of s . 

the normal shock. Assume that x can be expanded in powers of 
s 

A. as follows. 
v 

x 
s 

= x (o) + A. x \1) + A. 2x Ua) + .•. 
s v s v s 

(2. 109) 

where, as before, A has been normalized with respect to the nozzle 
v 

length. Then x (o) is the position of the shock for A. = 0 , or for 
s v 

equilibrium flow. The zeroth order or equilibrium flow, as men-

tioned earlier, is analogous to the conventional isentropic flow of a 

gas of density (l+k)p, with modified thermal properties. This flow 

is described by the zeroth order equations, equations 2. 23-2. 28. 

Clearly, X (O) 
s 

is determined in the same way as the shock location 

problem for conve ntional gas dynamics. Once the shock location is 

known to the zeroth order, then the first order slip quantities can be 

·directly calculated from equations 2. 29-2. 31. 
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The next step is to calculate the first order correction, x (l) 
s ' 

to the shock location. The first order correction does not follow 

directly from the previous calculations without a closer· look at the 

flow conditions. The ·stagnation conditions upstream of the nozzle 

'are assumed fixed so the flow, for a given system, is completely, 

specified for an ideal nozzle by giving the exit pressure, P • The e 

specification of P , then, determines the equilibrium flow and the . e 

zeroth order location of the shock. Now, if we calculate the first 

order correction to the gaseous pressure from equation 2. 34, as-

suming that the shock location is fixed, the exit pressure will be 

changed by a first order term, say P e(l) . By assumption, however, 

the exit pressure of the nozzle is fixed, so a correction must be 

made, which amounts to moving the location of the shock by a first 

order amount. This may be done in two ways which are actually 

equivalent. 

One way is to modify the zeroth order flow to allow for the 

first order pressure correction brought about by the slip between 

phases. Thl.s is done by calculating the zeroth order flow for a new 

exit pressure P' = P - A. P (l) , which changes the shock location 
e e v e 

by an amount of order A. The corresponding change in the first 
v 

order gas calculation is of order >.. 
2 

, so the exit pressure, calcu­
v 

lated with the shock at its corrected location will be P + O(A. 2
) . 

e v 

Higher order corrections may be made by repeating this ·process 

but, strictly speaking, terms involving the second order gas flow 

must be included. 

An alternative method is to fix the zeroth order flow, then to 
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move the shock location in such a way that the first order pressure 

correction, calculated from equation 2. 34, gives a zero correction 

at the nozzle exit. Then; again, the exit pressure will differ from 

P by, at most, an amount of order A 2 
e v 
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