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ABSTRACT

Stars with a core mass greater than about 30 Mg
become dynamically unstable due to electron-positron pair
production when their central temperature reaches 1.5-2.0 x
109 OK. The collapse and subsequent explosion of stars
with core masses of 45, 52, and 60 Mg is calculated.
The range of the final velocity of expansion (3,400-
8,500 km/sec ) and of the mass ejected (1-40 Mg ) is
comparable to that observed for type 1I supernovae.

An implicit scheme of hydrodynamic difference
equations (stable for large time steps) used for the
calculation of the evolution is described.

For fast evolution the turbulence caused by con-
vective instability does not produce the zero entropy
gradient and perfect mixing found for slower evolution.

A dynamical model of the convection is derived from the
equations of motion and then incorporated into the diff-

erence equations,
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Chapter 1
INTRODUCTION

In attempts to explain the phenomena of super-
novae a number of mechanisms have been proposed as the
triggering device of a stellar explosion. Fowler and
Hoyle (1960 ) suggested thermal instability in degenerate
stars as the cause of type I supernovae. Thermal insta-
bility may be explained briefly as follows. If heat is
added to the core of a star it will expand. Thermal
instability arises in the case in which the temperature
in the core increases; if the instability persists, the
temperature increase may raise the rate of energy gener-
ation until the evolution reaches an explosive time scale.,
% we assume that the envelope responds by expanding uni-
formly, to maintain hydrostatic equilibrium the pressure
in the core must change proportionally to the 4/3 power
of the density. Whether or not the temperature rises in
the core depends on whether or not the (appropriately
averaged) value of (3Jlog P/&logf) )y in the core is
greater or less than 4/3.

If the value of J/( = (D1log P/alog'p)s ) of
the envelope (which expands isentropically) is 4/3, the
enQelope will respond to any change in the core by expand-
ing uniformly, and the assumption is satisfied. When a/

is greater than 4/3, the pressure in the uniform expansion
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drops too rapidly to mointain hydrostatic equilibrium.

The degree of expansion must decline toward the suriace;
since the mass of the envelope is closer to the center,

the value of @ logk/d logfﬂ in the core must now be some-
what less than 4/3. Thig value is the critical value of
(S 1log P/iglogfl)T for thermal instability. The insta-
bility depends not only on the stellar structure, but on
the way in which the heat absorption is distributed, as

the core referred to is the region in which the energy is
effectively absorbed. The instability requires a higher
degree of degeneracy for relativistic material (for which
(o log P/ glogt;:'» Jr = 4/3 for total degeneracy) than for
non-relativistic material (for which it is 5/3). Charac-
teristically the degree of degeneracy is greater for points
closer to the center. The central temperature may there-
fore increase when the star contracts due to neutrino losses
(which are spread over a large part of the star), and then
continue to increase as the star begins to expand when nu-
clear energy generation (which is concentrated near the
center) becomes greater than the neutrino losses,

Fowler and Hoyle proposed that the instability would
cause explosions in stars with masses slightly above the
Chandrasekhar 1limit, which would be relativistically degen-
erate at temperatures lLigh enough to burn oxygeﬁ or silicon.
Investigations of the instability were carried out by the

author for oxygen and silicon burning. If convection is
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neglected all the heat is deposited in a small highly
degenerate core, and the evolution does reach an explo-
sive time scale. The effect of the convection spreads
the energy generated over a larger less degenerate region,
and the instability disappears long before the nuclear
burning reaches an explosive rate. Shaviv (1966 ),who
followed the advanced evolution of stars above the
Chandrasekhar limit, also found no explosions due to
thermal instability. The helium flash, because it takes
place in non-relativistic material, is more likely to
reach explosive proportions.

When the value of ¢ falls below 4/3 throughout
a sufficient amount of the star, it will become dynami-
cally unstable, OUOne may easily show that the sum of the
internal and gravitational energies decreases for a per-
turbation with a uniform contraction.when the value of
/ﬁ%(PZp)dm {jkP{f:)dm falls below 4/3. The rest of the
energy is converted into the kinetic energy of the pertur-
bation. This is discussed by Ledoux (1958 ). Basically,
the pressure cannot increase enough to maintain hydro-
static equilibrium if the star begins to contract. Any
process which absorbs energy and does not increase the
pressure proportionately will lower a'; this may be seen

by its explicit formulation.
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a/ = [(p +5E/8v )il’ T - &P/av_l v/pP
n§

ST
(The independent variables are the temperature and spe-
cific volune).

Fowler and loyle (1960 ) also proposcd the decom-
position of iron into helium and neutrons in massive stars
as the cause of type II supernovae. Each iron nucleus
nced 124 MeV for the decomposition which takes place over
a relatively small temperature range. The value of J’be-
comes as low as .8; this mechanism works so well that the
core of the star collapses faster than the envelope. 1In-
vestigations of the collapse have been carried out by Col-
gate and White (1966 ) and Arnett (1967 ). Unless the col-
lapse is reversed by rotation, the star collapses until
the central density becomes as large as 1015 gm/cc. At
these densities nuclear interactions affect the equation
of state. Arnett found that large mass stars (8 and 32
solar masses) lost energy after the collapse was stopped
primarily by muon-type neutrinos; these could not interact
with the material in the envelope, and no mass was ejected.
Lower mass stars (2 and 4 solar masses) lost energy by
electron-type neutrinos; these were caught in the envelope,

and in both cases about 1.5 solar masses were ejected
from the star.

Another cause of dynamic instability is the for-

mation of electron-positron pairs, a significant number of
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which exist in equilibrium with the original clectrens
at high temperatures and low densitics. The effect of
pair formotion on the equation of state is discussed in
Fowler and Hoyle (1964 ). The essential feature is that
at the relevant temperatures (T9 = 1-3 ) about two or
three times as much energy is absorbed in creating the
rest mass of the pairs as in forming their kinetic energy;
the additional pressure created is proportional only to
the latter. Radiation pressure (for which by itself
7’= 4/3)‘dominates ion pressure and the pressure of the
original electrons at low densities. The effect of the
pairs is to push ¥ below 4/3. At low temperatures the
number of pairs decreases exponentially while the radia-
tion pressure varies only as the fourth power of the tem-
perature. At high temperatures the pressure of the pairs
is about the same as that of the radiation; however their
rest mass becomes less significant. The effect on J'then
is most important at intermediate temperatures. The boun-
dary of the''unstable area' (i.e., where ¢ is less than
4/3 ) reaches a maximum density of about 7 x 10° gm/cc
at a temperature Tg =2.8 (see Figure 1).

Rakavy and shaviv (1966 ) showed that stars of
more than about thirty solar masses would become dynami-
cally unstable due to the pair formation. As tﬁe star
collapses , the temperature and density increases, and

eventually material near the center emerges from the un-
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stable area on its high temperature boundary. The
resulting stiffening of the star halts the collapse, and
it rebounds. If the star is sufficiently massive the
length of the path in the unstable area is long enough
so by the time the collapse has been reversed, oxygen is
burning at an explosive rate. The energy release is
enough to disrupt all or part of the star and to eject
the material with high velocities. The explosions of
45,52, and 60C solar mass stars are investigated in this
paper.

Two of the problems are the numerical techniques
used in calculating the hydrodynamics and the effects of
convective instability. The usual method of dealing with
the hydrodynamics is an explicit scheme in which the accel-
eration during the time step is made proportional to a
force term known at the beginning of the step. The dif-
ference equations ure then stable only if the time step is
less than the Courant 1limit; this is the time it takes
sound to cross a mass zone. For comparatively slow evo-
lution, conditions change only slightly during a time step
restricted by the Courant limit; it is themn preferable to
take larger steps. This may be done by an implicit hydro-
dynamics scheme which is used here. The way in which
quantities including the force are averaged oveé the time

step is allowed to vary. One of the special cases reduces
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the hydrodynamics to hydrostatic equilibrium; this is
used when appropriate.

For slow evolution the efifect of convective in-
stability is to produce essentially a zero entropy gra-
dient and perfect mixing throughout the convective zone.
This no longer holds true as the evolution is speeded
up. For example, the convective turbulence tends to be
more efficient at convecting energy (which is roughly
proportional to the third power of the speed of the tur-
bulencz) than it is in diffusing new material into the
‘area where energy geﬁeration is taking place most strongly
(proportional to the first power). The result is that the
strongly burning areas tend to run out of fuel. For very
fast evolution the effects of the conﬁection may not be
immediately important. However, once the turbulence and
convective energy flux have been set up ,they take some
time to decay and may affect conditioms at a later stage
of the evolution. A dynamic model of the convection is
derived from the equations of motion and then incorporated

into the difference equations.
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Chapter 2
DIFFERENCLE EQUATIONS

2.1. Equatious of Motion

The equations of motion and of energy conser-

vation under spherical symmetry are
(1) OU/Dt = -4TRZIP/AM - GM/RZ

(2) QE/Adt + POv/Qt = € -F/OM

- where
U = radial velocity
R = radius
P = pressure
E = internal energy per unit mass
v = specific volume
€ = rate of energy generation per unit mass

F = total flux of energy across the spherical
surface at R

The flux due to radiation is

-167%cR4( dW4/AM)/3k

where

W temperature

Ik opacity

The independent variables are M,the total mass
interior to the point, and the time,t. As Lagrangian
co-ordinates are used, the time derivatives follow the

motion of the matter.
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2.2.Finite Difference Approximations

In the numerical calculation of the evolution
the star is divided into N mass zones. The velocity and
the radius are defined at the boundaries of the zones.

The specific volume, temperature, pressure, energy and

rate of energy generation are defined at the midpoints

of the zones. The midpoints are denoted by half-integers;

the boundaries,by integers. The size of the time step is
n+l n

Dr ¢ = t -t ). The mass of the zone centered at I-%

is DM(I-3); the mass interior to I is M(I). We define

DM(I) = .5 [DM(I-%) + DM(I+%:ZI

The specific volume at I-% is

v(i-3) = 47J‘I:R(I)3 - R(I—l)?—’] /3 DM(I-%)
The pressure at I-% at time tn+l is P(I-%); its value at
t? is PO(I-3). Its average value over the time step is
denoted by <§(I-%§> . A similar notation is used for

other variables. The thermal flux is
F(I) = 32ﬂ‘2acR(I)4 W(I—%)4 - w<1+%){| F i

{3 DM(1I) [k(I—%)Hc( I+—,%-zl}

Cquations (1) and (2) are then approximated by

(3) oUCr)/T = 47 {12 K)(I--%))-é(n%—)],/nmu)
- 6 M(I) <1/R(l)2>

(4) DE(1I-3) + <p(i-1) Dv(i-3)
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DT{E(I—%) - [@(14) " <F(I)>] /DM(I—%)}
where the symbol D indicates a finite difference,e.g.,
DUCI) = U(1) - UO(1)
The usual method of defining the averaged value

of a variable is as follows:

@)

o<, U(I) + (1- =<¢,) UO(1)
where
RCI)
i)
Ead

€ (I-%)

ROCI) + DT (U(1>

o< P(I-%)  + (1-e<y) PO(I-3) + (I-%

<3 F(I) + (1- o) FU(I)

1}

<, €(1-3) + (1-e¢y)eo(l-3)

0$°<',°< 1‘;(_{:0(45 8 8
Q(I-%) is the artificial viscosity used to handle shock

waves (Richtmyer, 1957 ).

2.3. Treatment of the Surface and Center

The basic interest was in processes taking place
in the interior of the star; therefore conditions at the
surface were not treated precisely. The surface is defined
by zero pressure, We define

i) =0

DM(N) .5 DM(N-%)

Then (3) may be used at the surface. The optical depth of
the last zone was large. The surface temperature can then
be neglected in forming the derivative of w4, The surface

luminosity becomnes



E(N) = 167 acR(NIAW(N-4 )% /3K (N-2)DM(N)

The center is defined by zero radius and velocity.

2.4. Conservation of Encrgy

The value for each o< and the way in which R2
and 1/R? are averaged must first of all be determined by
stability. Once stability is ensured,one would like the
equations to be as accurate as possible. Ordinarily a
time-centered definition (i.e.,“<=.5) should be more ac-
curate. Another guide is to ensure that conserved quan=-
tities do not change when these are now defined in a rea-
sonable manner from the finite number of points where
conditions are known. The mass is automatically con-
served in a Lagrangian formulation, and the momemtum in
a spherically symmetric body is always zero. This leaves
the total energy; conservation of energy is particularly
important when the intermal and gravitational energy in

the star almost balance. The total energy is defined as

(5) Ep = Z [oMcz-2oBCr-4) + Lsomcnun? -

=1
GDM(I)M(I)/R(I):I

The following is to be satisfied.

(6) Ep(n+1l) - Ep(n) = DT[Z DM(1-%) @(I—é} < F<Nz‘

If o<, is .5,the change in kinetic emergy at I over the

time step is
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«5 [U(I)z-UO(I)Z_] = DR(I) DU(1) / DT

It is then easily shown that (6) is satisfied if

7)) RS

13 - ro13] /[ DR(1 )]
El(I)z + R(I) ROCL) + RO(I)2] /3

1}

(8) <1/R(I)2>

[1/Ro<1) = 1/R(I)] /DR(1)
1/ [RC1) ROCD)]

In the case that o<, is not .5 the kinetic energy differ-

i

ence at I is

DR(I) DU(CI) /DT + (.5~ o<,)DU(I)2
When relations (7) and (8) are used in this more general
case the change of the total energy in excess of the right
hand side of (6) is N
Z (.5- =< )DM(T) DU(T )2

-—

=1
When ©¢, is less than .5 the energy increases by too large

an amount, and when it is greater tham .5, the energy is
smaller than it should be. The former case indicates

among other things that the equations are probably unstable.,
It will be seen that the best value is usually slightly

greater than .5.

2.5, Stability

While the stability of the non-linear equations
cannot be theoretically predicted, the stability of their
linearized forms serves as a guide as to the stébility of

the former. The simplest linearization of the equations
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of motion is that for sound waves. A stability analysis

of these suggest that (3) and (4) will be stable if both

o<, and ©<p are equal to or greater than .5 . This ap-
peared to be approximately the case when the non-linear
equations were tested,including heat flow and energy gen-
eration. The values of e<,, &, , o<;,and =Ngwere all made
.5, and tests were made under a number of dynamic as well as
essentially hydrostatic conditions. The equations were mar-
ginally stable. Perturbations and irregularities continued
for a considerable number of time steps with about the same
magnitude. LCxcent for the case of fast motion (i.e., at

the speed of sound or greater) the time steps were signi-
ficantly larger than the Courant limit. ‘W“hen ©¢; and &<p
were increased slightly the irregularities smoothed out.

The value of =¢£, and o{ usually used was .51.

2.6. Hydrostatic Equilibrium

In a difference equation the change in a variable
A is usually given by
(9) DA/DT = o<(BA/S )™ + (1-=)(Ja/d )"
where the derivatives on the right hand side are evaluated
at t8*1 ang tn respectively. For time steps much larger
than the relaxation time (appropriate only when A is approx-
imately in equilibrium) the left hand side is much smaller
than the terms making up 9A/9Q t. Providing the value of
(B A/It)P is sufficiently small, the solution of equation

(9) is then approximately the equilibrium value for A, as
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<3;%/8t)“*1 is effectively set equal to zero. In gen-
eral the derivative at t™ may not be small (for example,
when A is approaching equilibrium); therefore for large
time steps < must be 1, The dynamic equation (9) then
reduces effectively to the equilibrium case for these
large time steps.
In equation (3) the averages of the square of the
radius and its inverse are redefined by
RIDD = e R(1I2 + (1-otp) Ez(1)2+R(1)R0(1)+R0(1)2J/3
Q/RC1IZ> = g /R(1)Z + (1-=<5)/ R(IIROCI)
When'§%= 0 they return to their previous definitions, which
are appropriate for the hydrodynamics case. When <5 ande<g
are both 1, the change in the velocity is made proportional
to the force at t0*l; this is the appropriate form for
hydrostatic equilibrium which is used for slow evolution.
Since it is preferable to have a time-centered
definition of the pressure in the energy equation, its
average value in (4) is now defined separately as
(10)  PE(1-3)> = 4 P(I-3) + (1-a<,)PO(I-3) + Q(I-3)
where ©%¢ is usually made .5 for hydrostatic equilibrium.
As long as the change in the pressure is continuous (no
shock waves) the left hand side of (2) is TdS/dt. The
error for.//}ds in (4) is’//Pdv - (?E(I—%§> Dv(I-%) .
By expanding the pressure in a power series this is est-
imated to be -(d2P/dv2)(Dv)3/12 (for <4 =.5). Fror a frac-

tional change in the density of 5% and 10% the error in
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the entropy is of the order of one part in 105 and 10%
respectively.

2.7. Method of Sclution

Let the values of (3) and (4) be E1 and E2 when
all terms are on the left hand side. The following set
of equations are to be solved.
(11) B1(1) = 0 , EB2(I) = 0 I =1,N
( E2(I) is the energy equation at 1-% ). There are two
independent variables at each point, for example, the vel-
ocity and the temperature (at I-3). The radius is given by
the velocity, and the specific volume by the two neighbor-
ing radii. The solution is by a linearization procedure,
so the independent variables chosen should be those in
which the equations are reasonably linear,

The equations at 1 depend on the variables at 3 or
4 points. We denote the independent variables at I by
W1(I) and W2(I) and the changes in their values(the un-
knowns, by DW1(I) and DW2(I). In the more general case
-(dependence on 4 points) the linearization gives
(12) E(I) + A1(CI)DW(CI-2) + A2(I)DW(I=-1) + A3(IJDOW(1)

+ A4(IXDW(I+1) = O
E1(I) DW1(I)

where EC(1) = and DW(I) =

E2(1) DW2(1)

Al1,A2,A3, and A4 are 2x2 matrices; the value of.the ele-
ment of Al in the first row and column is 951(1)/3\“(1-2)

The other elements are defined similarly. E1(I) and E2(I)
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are the(known)values of the equations found by the given
values of the variables.

The solution consists of invérting an NxN matrix
(whose elements are the 2x2 matrices) where each row has
only four non-zero elements centered near the diagonal.
This is done basically the same way as for the case of
three non-zero elements(Richtmyer,1957 ).

It is assumed that
(13) DW(I+1) = B(I+1) + C3(I+1J)DW(I) + C2(I+1)DW(I-1)
This is substituted into (12), and B(I),C3(I), and C2(I)

are solved. Let

(14) D(I) = E.’S(I) + A4(I)C3(I+1_)] o

Then  B(I) = -D(I) [BCI) +A4(I1)B(1+1)]
C3(1) = -n(1) [A2(1) + A41)C2a(1+1)]
C2(I) = -D(I) AL(I)

Relation (13) exists for the equations centered at N.
The procedure works down from N to 1 where DW(1l) = B(1).
The procedure then works back up to N, giving OW(I) at
each point. The linearization is iterated until (11)
converges to a sufficient degree of accuracy.

As the equations are at times rather non-linear,
the linearization did not always work, and supplementary
procedures had to be added. T[hey consist basically in

limiting the size B(I) and DW(I) may take.
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2.8. The Treatment of Energy Generation

With nuclear reactions present, eguations (1)
and (2) must be supplemented by the rate of change of
each isotope. In the simplified version of reactions
considered here the reaction chain has no loops. In that
case in a finite difference scheme one '"sweep' along the
chain gives the change in each mass fraction. For each

isotope (j) the rate of change of its mass fraction,xj,

is
. : - . - 6- -
(15) 0 Xj/ot XP; J/QJ
where XP: is the rate of production of the isotope(deter-

J
mined by reaction rates farther down on the chain), and
Qj is the energy released by a unit mass reacting via

E .
J

The finite difference approximation is

(16) DXj(I-$)/DT = XPj(1-3) - (& 5(1-3)> /Q,
The quantity XPj;(I-3) is known when the isotopes are
solved for in the right order. One method used to define

<€j(1—%)> was the following; €. is usually the product

J
of Xj to some power V and a function f depending on the

specific volume and temperature.

v
E.J = Xj f(V,W)
Denoting by Xj(I*%),XO(I—é&,f(I—%), and fo(I-%) the values

of Xj and f at t2*1 and t® respectively, we define



y-1
(17) <£j(1-—»;;> = Xj(I-3) XO(I-3)s [ fC1-3) +

(1-‘xg)fo(1-%ﬂ

Then Xj(I-%) may be directly solved for by (16) and (17).
In solving the set of equations (11) the set of equations
(16) and (17) act as definitions in giving the average
rate of energy generation at I-3 as a function of W(I-3%)
and v(I-%). The mass fraction of each isotope automat-
ically remains between 0 and 1.

At the densities at which investigations were
carried out virtually all neutrinos escape directly from
‘the star. Neutrino losses are then treated as a negative

rate of energy generation.
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Chapter 3
CONVECTION

3.1. Introduction

The general method for the derivation of the
convective model is taken from Cowling (1936 ). At any
point the velocity U is divided into a mean velocity V and
a convective velocity W. The latter is defined so that it
does not effect,on the average, any mass transfer. (For
the case of spherical symmetry the averaging is done by

integrating over a spherical shell).

(1) oU; = V. + W, = O V.
g Jora T P VA i=1,2,3

V; remains constant over the area of averuging. By this
definition the convective velocity does not possess any

average momemtum. It is also possible to divide the kin-
etic energy into the energy of the mean motion and of the

convective turbulence, the latter being, in a sense, a form

of internal energy.

i =71 11 1. o E = T T
= ], = = .V +5 - W.
(2) qulul zf’vlvl “Jowlwl
(A pair of the same indices indicates a summation).
The equations of motion are averaged in the same
way. The equations for the conservation of mass,energy,

and momemtum are

(3) op/at + Vi(jjUi) =0
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(4) S(JOE)/&t + vi(JpEUi) + PV;U;

joé - V3P - PijViUs
(5) B(Joui)/at +Vj(JoUin) = ‘/oGi - VP - vjpij

Pjj is the viscosity stress tensor; G;

i 1s the externally

applied force. Equation (5) may also be written

6) pl[ovyPt +usvu] = oy - Ve - Ve

When averaged (3) becomes

o/t = -pU.V.
(7) DP/Dt PVJ 3
where
D/t = 9/0t + V; v;
si.e., a Lagrangian derivative following the mean motion.

The left hand side- of (4) may be written
D E)/Dt + E V. + (POEW:) + P V. + PV W,
(f / g VJ J VJ £ A VJ J VJ J

and when averaged it becomes

(8) }SD( F,'E/)'E)/Dt + PP oOv/ut = - V(W) - PV g

-+ = -F - - P.. .

Pé VJkJ Pl_]v_]Ul
The basic difference of (8) with (4) is the

convective energy flux, ngWj . It will be seen that the

second term on the right hand side usually acts to rein-

force the convective flux. The viscosity term largely
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represents heat formed by the decay of the turbulent kin-
etic energy. Its approximate value is given later on.

Neglecting the effect of viscosity on the mass

motion, equation (5) becomes

e e

(9) pbVi/ut = pG; - ViP - ijwiwj
For spherical symmetry the radial component is

(10) pDV /Dt = pG. - OB/«
- [&(r2f>wr2)/é}r - r)’:v:fg - rp—ng/rz

It will be assumed that the distribution of the kin=tic

energy of the turbulence is approximately isotropic,i.e.,
2 2 2
PY= = F¥g = Py

In that case the Reynolds stresses act as a pressure-like

term,

L o Lo G g 2
(11) pDV,/Dt = pG, =~ (¢ + pW . “)/Jr
The rate of formation of the kinetic emnergy of the mean
- motion is

(12) ﬁD(%vrz)/Dt = pG V. -v, S(p +Jowf )/ Or

3.2. Treatment of the Turbulent Energy and Energy Flux

In addition to the usual equations of motion we
need the time rate of change of the turbulent kinetic en-
ergy and of the convective energy flux. [wo assumptions
are made. One is that the density fluctuations over any

spherical surface caused by the convection are small.
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Another is that the pressure remains constant over the
area of averaging or at least that it is not correlated
with ( the radial component of ) the convection so that
it may be averaged separately.

The energy flux is roughly proportional to the

averaged convective velocity.

n

C13J Li

PEW; = oW [E+ (E/3pr,(p-p) +

(3E/3 ) (P - '13):]

(BE/af))P/pWi(P-}S) = (al:./a)o)PJozwi
F - (Or/Op) PO
To the extent the pressure is correlated with the convec-

tion the derivative becomes

(CE/Op)p—> dE/dp = (D E/OP)p + (DE/DP), dP/d
> P ia » dr/dp

Contracting equations (5) and (6) with U; and
adding gives the rate of change of the total Kkinetic

energye.

D(-;’;-)DUiUi)/Dt B %ﬁUiUiVjVj + %‘Vj(WjJOUiUi)

= UijpG; - Uj VP - U; V;Pij
The derivative of the energy of the mean motion is sub-
tracted, leaving that of the convective turbulence. The

term involving the external force is neglected.

(14) JBD_Di%Pwiwi/)S)= - WiViP - W;V;Pjj
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)
-z Vj(wj)owiwi> - Jowiwjvjvi

The first term on the right is the basic driving force,

The term Jowi may be added to it ,and under hydrostatic

equilibrium it becomes g wicvo + It is seen that the
turbulent kinetic energy is created by "buoyancy forces',
i.e., the differential acceleration the pressure gradient
has on elements of varying density. Whether or not the
buoyancy effect acts to increase or decrease the turbu-
lence depends on how the density fluctuations are correl-
ated with the convective velocity. This,of course,ultim-
ately depends on whether or not the material is convec-
tively unstable. From (13) this effect is proportional
to the energy flux.

The second term is the dissipation by the vis-

cosity. From the study of homogeneous turbulence this has

been shown to be approximately JPIWIS/;Q;JZ is roughly the
length of those eddies which have the maximum kinetic en-
ergy (Batchelor,1953 ). This is valid when these eddies
have a large Reynolds number which is ordinarily true for
the conditions under consideration. Under these condi-
tions, to & first approximation, the turbulent spectrum
may be divided into two groups. One group,with a charac-
teristically small wave number,is dominated by inertial
forces and contains most of the ikinetic energy. ihe sec-

ond group, with a larger wave number, has a Reynolds num-
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ber of the order of one. The large eddies(the first
group) do not directly convert their energy into heat; it
is instead transferred to the smaller eddies. The small
eddies, for which viscosity is important, are roughly in
equilibrium, converting kinetic energy into heat as fast
as they receive it from the large eddies. Even if the

. turbulence is not homogeneous at the scale of the large
eddies, it should be at the smaller scale, and the dissi-
pation rates should remain about the same.

The factor 1 is more or less the equivalent of a
mixing length. Since the larger the eddy the slower it
decays, } should be about the size of the (smallest, char-
acteristic length of the system as we would expect that
the largest eddies formed would be of this magnitude.

For convection in a stellar atmosphere the mixing length
is often taken equal to a scale height. However the eddy
size can hardly be larger than the radius,which near the
center is less than a scale height. 'The procedure adopted
was to make j’proportional to the minimun of the pressure
scale height, the radius, and the length of the convective
zone itself. The constant of proporticnality can be
changed to determine what effect this might have on the
evolution of the system.

The third term represents the diffusion of the
convective energy. It tends to spread out the turbulence

evenly; it also introduces it to regions previously stable.
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It disappears when integrated over the entire convective
zone. In estimating its magnitude the derivative can be
replaced by 1/}(, since the energy should not change sub-

stantially in a smaller distance.

‘Vj(Wj}OWiWi)

s prr(M2 * zawm)l /X
& OCEHIW—I—‘?’/X)

As the term is small compared to the dissipation it is,

for simplicity, neglected here. However,if one is inter-
ested in determining how far the turbulence extends beyond
the convectively unstable region, this term mﬁst be retained,
Here it will be assumed that the turbulence effectively
stops at the edge of the convectively unstable zone (except
for decaying turbulence in a previously convectively unsta-
able region). Another effect of the diffusion is to trans-
port energy from the area where the turbulence is produced
most vigorously to the fringes of the turbulent arca. How-
ever as long as the speed of the convection is small com-
pared to the speed of sound, this effect will be counsider-
ably smaller than the flux of internal energy (M@ME -

For isotropic turbulence the last term is

-;P W2 Dv/Dt

For W, we substitute its value as given by (13) and equa-

tion (14) becomes

(15) D(1.5_Pwr2/;5)/pt = Lr(éff/c)r)/l_}_)3 (dE/dp):l
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- |34 - )owr2 DV/Dt

The time derivative of L; is

(16) D(_pEwi)/Dt = pE D(U;-V;)/Dt + WiD(JQEJ/Dt

- PEM VW - pEW; VLV ¥ _pE/f; Vi (pWw)

1 2 3

—[EViP -Josvip/}?] - [Evjpij -JoE/JE?vJ-PijJ
4 5
6 (i 8

+ W;P(Dp /Dt)ya + Pwiwjvjf’/)O +)°Wi€

9 10 i
- WV F, - wiijijk

12 13

The terms on the right hand side are numbered. Their
approximate values for the radial component ot the flux
are given below.

Terms 1,3, and 7 combine to give

It reflects the fact that the RXeynolds stresses tend to

have a greater effect on the lighter usually more ener-

getic elements. >imilarly term 4

" I:Evip - ﬁ/fvip]
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shows that the lighter elements are given a preater
acceleration by the pressure gradient. The effect is
usually to increase the energy flux. Both these terms are

proportional to

B, = JEEZf; = -(dE/qfa) 4&)2/4}9
Since the square of the density fluctuations is supposed

to be small, these terms will be neglected.

Terms 2 and 6 are

- PLW. 2V /r - PEW_2(3Vy/Or)
Terms 8 and 10 give

-/pw;z[agyar-+$&;yar]
This is the entropy gradient (except for the effects of
composition gradients). This is the basic driving force
term that with the '"buoyancy force' effect on the turbu-
lent energy creates the convective turbulence and energy
flow.

Term 9 is proportional to the rate of change of
density. It is usually comparatively small and will be
neglected.

Term 11 is caused by the difference in the rate of
energy generation between the hot and cold elements. Since
nuclear reaction rates are strongly dependent on the temp-
erature, it may be significant in some cases. DBelow a cer-
tain value of the speed of convection the energy gained is
greater than that lost by the mixing of hot and cool ele-

ments. Its value is



-28 =

_)oEWI. (d€ /dE)
Term 12 is a dissipation effect whereby energy

is radiated from hot to cool elements. Under the condi-
tions considered here this was not important. Lhe visco-
sity (terms 5 and 13 ) should not have an important effect
on the large scale eddies which are important for the euner-
gy transport. The dissipation for the turbulent energy may be
interpreted as a "mixing'" of the material in a distanoazq .
This same estimate will be used here.

Equation (16) now becomes

(17) D(rZLr)/Dt /re = —)c>wr2 [-_a'é/ar +—1;67/ar]

+ L. d€/dE - L_ |wr' /f - 2Ly (dVy /1)

3.3. Conservation of Energy

The wviscosity term in the energy equation (8)
is approximated as the energy lost by the turbulence
through its dissipation. Then using the approximations

developed in (15) the energy equation may be rewritten as

(18) ; D(,P_E/J; + 1.5f>wr2/;)/Dt + (;— *opWL )D?/D{,
= - (aJ:‘?'I..I__/()r)/r2 - (6:25_@/6:)/:2 - (arzf-":/ér)/rz

+ PE
o ﬁ{rz[Lr(l- 'F/E?%E/qul ) + 53}/r~2+ f’—é

As was mentioned before, the second term on the right hand

side of (8) usually makes the effective energy flux larger.
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The coefficient of L, was generally given the value 4/3.
Adding the rate of formation of the kinetic energy of the

mean motion gives

(19) pDCpE/p + 1.5 pW.%/ 0 + % .2/t =
- i {r2[4Lr/3 v B v (R +fwr2>vr__]}/ar /2

+ );‘3_Gr\,rr +Jo'_e:

The approximations developed do not violate the conser-

vation of energy.

3.4. The Condition of Convective Instability

We now show that the equations developed here
are consistent with and predict the condition for convec-
tive instability. Eliminating usually unimportant terms
and dissipative effects, equations (15) and (17) may be

written

D(r2L_)/Dt /r? = -_PWr2 [6E/ar + FGV/GEI

D(l.SPwrz)/Dt B, (8'5/& r)/[)g-:;(dﬁ/dj) ):I

If the pressure and entropy gradients have opposite signs,
the solution is an oscillation which will decay when the
dissipation is added (convective stability). 1f they have
the same sign, the solution grows until checked by the dis-
sipation (instability). In a star,of course, there is in-
stability if the entropy increases toward the center. 1In

using this approach the effect of a composition gradient
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on the stability (e.g.,semi-convection) does not enter

explicitly.

3.5. Convective Difference Equations

The averaged speed of the convective turbulence
( WWZT ) and the total convective energy flux across the
spherical surface ( 47 r2L,. ) are defined at the boundary
of each mass zone. Their values at tn+1 are denoted by
W(I) and L(I) and at t® by WO(I) and LO(CI). lhe equations
to be approximated are (11,,(18),(15), and (17). vuften
the relaxation time for the convection is smaller than the
characteristic time of the evolution of the star. The
convection is then approximately in equilibrium, and as
the time step used is proportional to the evolution time,
the (dynamical) difference equations for the convection
must reduce to the equilibrium case for these large time
steps. This is done by giving all quantities on the right
hand side of the difference forms of equations (15) and
(17) their values at the advanced time t"(as explained in
section 2.6.).

The pressure-like term caused by the Reynolds
stresses is defined at I-% as S(I-%). This is usually
given the average value

Ga-1D» = s [wa-12 + w?]  fea-
The term dE/d}7,under typical conditions, was usually

approximated by -3Pv°. e define Y(1) as the mean of the
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value of (DE/%O )P/(6 L/%:) Jp defined at I-3 and I+3
at the forward time t"*l, Here the symbol D indicates the
(finite) change in a variable over the time step DI. The

difference equations are

(20) DU/ = -47 QP [P+ + Saa+id
» <P(I—-f;;> - é(l-é—}]/m(l) - G M(I) <1/1{(I)2>
(21) DE(I-3) + [CE-1) + $-4) | Dv(1-4)

+ .75 [DW(I)Z + Dw(z_l)E:] 2

DT {(5(1-%>+ [GL1-13/3+ E(1-1D- GLT)/D - E Y] omMc-4)

Equations (20) and (21) are the new versions of (3) and (4)

\W

of the previous chapter. Note that (18) instead of (8)
is used as the basis of (21)., While the change in the
turbulent energy is usually relatively small, the rate at
which it is being produced and dissipated is quite large
(and nearly cancel each other). By using (18) two large
non-linear terms are replaced by two smaller relatively
linear quantities, which is to be preferred in numerical
work., U(CI) now indicates the average radial velocity.
The two convective equations are
(22) DL(I)/DI = W(I)? R2P(I) { .5 [P(I——;-) + P(I+é-)]
E/(I-é) - v(1+-;;>] +  E(I-%) - E(1+—§~)} + L) ¥(1)
-87 LEIDR(IL)? [U(I+1) - U(I—l)] /{DM(I) v(I-%) + v(1+{,~)]}
- LWL/ 0 (1)
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where

k2p(1) = 3277°R(1)4/ fomc1) [v(z-3)2 + v(1+~;—)2]}

(23) 1.5 DW(I)2/Dr = L(I) [P(I—%) - P(I+%):|/{1.5E°(I—-§-)
+ P(I+§-)]DM(1)} - w(1)3/X(I)
- o5 W2 [(ov(I-3)/01)/v(1-3) +(Dv(1+%)/m~>/v(1+%£[

The termjﬂ(l) is detined within a coefficient as the mini-
mum of the pressure scale height, the radius, and the

length of the convective zone.

Energy Conservation and Stability of the Difference

Equations
The total energy is redefined by adding to it
the sum

N
2 1.5 DM(I) w(I,?

The energy is then conserved to the same extent as in the
previous chapter. As mentioned before, ecquations (22) and
(23) reduce to the equilibrium form for large time steps.
Using these forms of the convective equations, the stab-
ility appeared to be about the same as that of the equa-

tions omitting convection that were described in chapter 2

Detection of Convective Instability

When there is no convection (W(1),L(I) = 0),

equations (22) and (23) are not applied. Instability is
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considered to exist at I when the term

o5 [P('I-%) # P(1+~;_-£] [v(I-%) - v(1+%}:| + B(I-3) - E(1+3)
becomes positive. This is tested for at the beginning of
each time step and ,optionally, at several times during
the convergence procedure, When instability is detected,
an initial estimate is made for L(I), usually by equating
it to the sum of L(I-1) and <?£(l-%i> /D' W(I) is then
found through equation (23). Lquations (22) and (23) are
then applied at I until the turbulence has died out, which
will be a number of time steps after the boundary at 1 has
become stable again.

Diffusion Effects

When convective diffusion is added, equations

(15) and (16) of the previous chapter become
S . P Y g B oEme—— s T
(24) DXj/Dt = XPj - <3/Q; + EQ(rJowrxj)/o) rJ/f)rz
and
\r A (g ) BE— an) | % \\
(25) DX;(I-3)/0T = Xp(I-3)5 - @j(l-é-;/ /Q;

+ 27??’1‘{(1)%:(1) [xjc1+2) - x5(1-3]]

+ R(I-1)2W(I-1) [Xj(l-— 2) - xJ-(I-%)]}/ [E)M(I-%DV(I-%_)]

The composition at I-4 now effectively depends on the com-

position of all points of the convective zone. The value
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of Xj(I-%) does not fit in with the solution scheme
which assumes dependence on only 3 or 4 neighboring
points about I. Xj(I-%) may be solved for ,using equa-
tion (23), before each new iteration,using values of the
other variables as given by the previous iteration. A
simpler method is to hold the value fixed during the
time step, solving only at the beginning of the step.
The former procedure should be more accurate; however,

it usually slows down the rate of convergence.

lethod of Solution

Equation (23) may be used to solve for W(I) in
terms of the other variables. 7The method of solution is
the same as that outlined in the previous chapter, ‘The
only difference is that there are three equations and
three independent variables at each point where convec-

tion exists.
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_ Chapter 4
THE EQUATION OF STATE AND RATES OF ENLRGY GENERATION

4.1. Equation of State

The pressure and energy used includes the effects
of radiation,ions, and electrons. The density and the

pressure and energy of the electrons, including electron-

positron pairs, are _
3.3 2 .
£1J = 87 m”c H adx x { 1/ |lexp(z(y-Eg + 1
B e / / [expCz(y-£p)) |
37
h o)
-1/ [exp(z(y+hb)) + 1]/
(2) P = 87Tm4c5 dx x4/y{1/|:exp(z(y Eg)) + 1]
3
3h
+ 1/'Exp(z(y+Lb)) + J}
oD
(3) E = v8wmtcS dx xzy'{l/'@xp(z(y-ﬁp)J + 1J
h3

o A ¥ Faxp(z(yﬂip)) + l:l}
where/q is the electron molecular weight(excluding pairs)
z = mc2/kT
X is the nomemtum in terms of mc
y is the energy including rest mass in terms of mcd
Egp is the chemical potential in terms of mcz, and is
defined by equation (1) as an implicit functiou of the
temperature and density.
For non-degenerate material where Eg is less than
one, the denominators can be expanded, and the integral of

eazch term of the sum may be expressed in terms of modified
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Hankel functions of the second kind, giving

. o n+l
(4) p= gndcd3uH 2 (-) Ko(nz)/nz [eXP<nZEpJ
h3 hH=] )
- exp(—anPd
o n+l
(5) P= 877m4c5 n%i (=) 3K2(nz)/n222 exp(nzEg)
3n3 _
+ exp(-anFl]
[ ] n+1
5 .= 4,5 - .— 2,2
(6) E = v8nprm'c nz; (=) [3kz(nz)/n z< + Kl(an/né]

h3
Exp(nzﬁp) + exp(-anF)]
For z greater than 5 the Hankel functions may be accurate-
ly expressed by the first several terms of their asymp-
totic expansions. For z between 1 and 5 the following
expressions give the functions better than one part in

104,
'
(7) Ko(z) = exp(-z) (TF/22z)% (1 + 15/8z2) +
2 exp[—z(.95851 z2 + 14,122 z + 14.2067)/(2z° + 10.957 z

+ 3.4912)] /22

1

(8) K1(z) = exp(-z) (T /22)° +

2

exp [-—z(l.blb:ﬂ 22 + 7.5624 z + 6.1480)/(2° + 5.2018 z

+ 1.3085)] /2
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The general method of determining the electron
pressure and energy was to interpolate between tabulated
values. The actual (linear) interpolation was in each
tabulated variable divided by appropriate powers of the
density and temperature, each power chosen so the inter-
polated quantity varied slowly. Because of the high tem-
perature dependence of the pressure and energy where pair-
production was important, this method was not found to be
satisfactory, if the number of points in the tables were
to be kept within a reasonable limit. The method used here
was to tabulate the difference between the chemical poten-
tial (solved by iterating (4) ) and the '"first order'" po-
tential ( the value when only the first term of the sum in
(4) is kept)s The first order chemical potential is easily
determined, and the difference was usually small enough
so its value found by linear interpolation was sufficient.
Once the potential is known, the pressure and energy are

given by the first few terms of the sums in (5) and (6).

4,.2. Nuclear Reactions

Important reactions include oxygen burning in
which silicon is taken as the chief end product. The rate
of energy production is (Fowler and Hoyle, 1964 )

(9} log€y = 55.7 + 1og(jax02)', 2/3 log Tg

—

- 59.04 (1/Tg + .080)7  ergs/sm-sec
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The energy per reaction is 16.5 MeV.

By the alpha process silicon is converted
largely to Ni%®, The rate is determined by the brealkup
of Lg24, a small amount of which exists in equilibrium
with the silicon. The rate was found to be (Finzi and
Wolf, 1966 )

. =1)

(10) log € ;= 3G.47 + log Xg -1/7 1og(1/xs

+6.31 1log(Tg/3) -61.67/Ty ergs/gm-sec

The energy release per gram of material is 1.5 x 1Ul7ergs.

4,3. Neutrino Losses

For non-degenerate material at elevated temper-
atures the major losses are due to pair-annihilation and
the photo-neutrino process. The former predominates for
temperatures abbve Tg =5 . The non-degenercte non-rela-

tivistic rates are (Levine,1963 )

- \
pa. .49 x 1019 I'g exp(—llS.é/Tg){P ergs/gm-sec

]

(11) €

il
. s 8, [ oo B _ N ﬂ
(12) €, = 1.0 x10° Tg°/ |_1+1.u4x10 T, exp( 118.6/19)/f>

ergs/gm-scc
For Tg greater than .5, values for the loss due to pair-
annihilation were determined by interpolating,using the
table given by Chiu (1%61 ). The last coefficient in
equation (12) (photo-neutrino losses) is to include the

cffects ol the extra particles due to pair formation.
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Plasmon neutrino losses are important only at high den-

sities.where the material is degenerate.

4.4 Opacity

The opacity used was

(13) k = E38/(1+T9) * 4.6x107 <22/}>J0/T93.5 JQL

The first term is due to electron scattering, and the
second is bound-free absorption( Schwarzchild,1958.,

The important term was the electron scattering. The
coefficient 1/(1+Tg) is a relativistic correction.
Equation (13) is only appropriate for non-degenerate
material. For degeneracy the effective opacity becomes
much smailer, and is determined largely by the heat con-
duction of the degenerate electrons. For the opacity
the definition of the electron molecular weightz/ﬂi,
must include the pairs. This means that at 1ow.densities
the opacity is much larger than would otherwise be the

case,.
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Chapter 5
EXRLOSIONS OF 45, 52, AND 60 SOLAR MASS MODELS

5.1. Initial Models

The initial models were approximately isentropic
with a central temperature Tg =.7 . The density gradient
was determined by making (i9v/f9P)s/(dv/dP) a constant,
Cl, throughout the star., Table 1 gives properties of the
initial models,

The composition chosen was pure oxygen through-
out the star. At a central temperature of roughly Tg =
5, neutrino losses begin to dominate loss of energy
through radiation. Unless the oxygen core (for stars in
this mass range helium is converted mostly into oxygen)
already extends throughout most of the star, helium will
begin to burn at its edge as the star contracts. 'The en-
ergy generation will grow until it approximately equals
the neutrino losses, As‘evolution is proceeding too fast
for much energy to be lost by radiation, most of it goes
into raising the entropy of the material outside the core
(neutrino losses being concentrated near the center). <Lthe
convective zone formed should extend most of the way to
the surface, and so most of the star will be converted
into oxygen. This extension of the convection nearly to
the surface for shell burning should be a common feature
of the evolution when neutrino losses predowinate., If

there is a substantial envelope of helium or hydrogen,
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Table 1

Mass . Central Total

" Specific Energy

Volume (ergs)

(cc/gm)

45 1.185 E-4 * -2,38 E51
52 1.267 E-4 -2.73 LE51
60 1.416 E-4 -3.17 ES51

C1

«995
«980

«995

Number of **
Mass Zones

50
50
50U

* The term E-4 indicates the preceding factor is to be

multiplied by 10”4,

** The number of (equal mass) zones used was the smallest
number for which it was felt would give reasonable results.
As neither a smaller nor larger number of zones was used in

the evolutionary calculations, it is not known how sensi-

tive the results depend on the number of the zones.
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the masses given here refer to the mass of the core,
since .the low molecular weight envelope should be suffi-
ciently extended so as to not significantly affect con-
ditions near the center (sce RemarksJ.

For stars of sufficient mass the entropy near the
center is high enough that, when the central temperature
reaches Tg = 1.5-2.0, the material near the center pene-
trates the '"unstable area™ (i.e., where ;V’ is less than
4/3) caused by the production of electron-positron pairs
(see Figure 1). The material approaches this area at a
very oblique angle, as its boundary almost follows a line
of constant entropy. Eventually the pressure does not in-
crease sufficiently to continue to support the star as it
slowly contracts, and it begins to collapse., Whether or
not the star becomes dynamically unstable, the extent of
the collapse if it does, and the intensity of the possible
resulting explosion, depends heavily on the entropy near
the center. For this reason the size of the explosion
is probably fairly sensitive to fhe initial conditions
chosen, For the same reason it is also scnsitive whether
or not neutrino losses are included (they are included
here). When they are included, the entropy gradient of

about the outer half of the star is frozen in. In the
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interior an increasingly large entropy gradient is cre-
ated near the center where the losses are concentrated.,
Because of the relatively low entropy near the center, the
length of the path of the material through the unstable
area is smaller, As soon as enough material emerges on
the high temperature side of the unstable area, the stif-
fening effect starts to reverse the collapse, The inclu-
sion of neutrino losses should then reduce the intensity
of the explosion.

Because of the probable sensitivity on initial
conditions more realistic starting conditions should give
somewhat different results, However, the masses and ini=-
tial conditions used cover most of the range of the inten-
sities of the explosions; this range of the intensities

was the basic feature of interest.

5.2. Onset of Instability

From a central temperature Ty = .7, the models
took roughly 1C0 years to reach the point of instability.
Over this period neutrino losses increased by more than a
factor of 104. At the end evolution was quite fast, on the
order of a day or less. As the net energy of the star is
roughly proportional to the inverse of the radius, the
average inward velocity should be proportional to the neu-
trino loss rate. 7The onset of instability was determined
when the (logarithmetic) rate of change of the kinetic

energy was observed to be much larger than the correspon-
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Table 2 M = 45
Mass | volume Temperature (3 logP/ o 1ogf3 )S neutrino
Fraction (cc/gm) losses
Xy v T, 3/ (ergs/gm-sec)
€y
U1 «253 E-5 1.95 1.338 «166 E13
.03 «339 E-5 1,89 1.328 .154 E13
.11 665 E-5 1,70 1.309 «871 E12
«21 .109 E-4 1.52 1.305 «363 E12
« 31 .159 E-4 1.36 1.311 <139 E12
.41 « 227 E-4 1.23 1.326 «468 E11
« 31 «324 E-4 1,09 1.344 +1285 Ell
«61 479 E-4 960 1.360 «238 E10
sl 1l .755 LE-4 821 1.370 «257 E 9
«81 .135 E-3 .671 1.376 .104 E 8
.91 .336 E-3 .487 1.378 .181 L 6
Radius(km)
R

«10 «208 E 5

.20 299 E 5

«30 «378 E 5

.40 +453 E 5

3 53U E 5

60U 613 E 5

«70Q .701 E 5

+ 80 «822 £ 5

« 2 .988 E 5

1.00 .151 E 6



.11
.21
.33
.41
.51
.61
71
.81

w21

.10
«20

.30

.80
.9C

1.00

+364
<491
962
«156
229
« 327
472
705
«113
. 206

.519

« 246
«354
.448
« 537
«629
728
.842
«983
110

«LE3

B H B @B B BB

lea]

o
o e S S T & T S D C S B

1.334
14323
1.306
15307
1.318
1.332
1.352
1.363
1.369
1.374

1.375

E12
£12
k12
Ei2
E1l1
El1

E10

e B v
N o o



.10
«20
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#9519
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Table 4
T9
E-5 1.68
E-5 1.62
E-4 1.46
E-4 1,31
E-4 1.18
E-4 1.06
E-4 . 949
LE-4 «835
E-3 «718
E-3 « 567
E-3 «430
E 5
E 5
E 5
B 5
E 5
E 5
E 5
E 6
E 6
E 6

60

1.324
1.314
1.302
1.307
1.321
1339
1.354
1.364
1.369
1.372

1.373

€y
o627

« 556
« 281
«106
. 386
;786
« 241
«398
« 360
174

.862

El2
k12
L12
£E12
E11l
E10
E10
E 9
L 8
E 7

E 5
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ding rate of change of the neutrino losses. Tables 2,3,
and 4 give conditions at the onset of instability. In
each case it took somewhat more than 500 seconds to reach
a total kinetic energy of 2. E 48 ergs. In the descrip-
tion of each explosion this was chosen,more or less

arbitrarily, as the zero point for the time.

5.3. Evolution of 45 Solar Mass Model

At about 63 seconds the kinetic energy reached
its peak (during the collapse) of 6,88 E49 ergs. The
velocity at the surface was -1,072 km/sec . At 73 sec-
onds the nuclear burning reached its peak value of 1.24
E50 ergs/sec. Although the temperature increased slightly
after this, oxygen depletion near the center more than
offset the temperature increase. The neutrino loss rate
was about 200 times smaller, .635 LE48 ergs/sec. At 76
seconds the collapse was halted at the center; the central
density and temperature were 1.3 E6 gm/cc and 3.1 E9 o
Table 5 gives conditions throughout the star at this point.
At the halt of the collapse about 2.9 solar masses of oxy-
- gen were burnt, and about 2.9 L51 ergs liberated. As the
star rebounds oxygen depletion and the fall of the temper-
ture quickly cut off the nuclear burning. At 100 seconds
the rate had decreased to the neutrino loss rate, about
.2 E48 ergs/sec; a total of 3.3 solar masses of oXygen were

burned. Table 6 gives energy generation rates throughout
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the evolution,

The effects of convective instability were not
significant., At 82 seconds the star became convectively
unstable at a mass fraction X_. = .(8. At 133 seconds the
convective zone reached its maximum value of X = ,12 ,
The onset of the convection at a point some distance from
the center was a common feature of the three models; it
would appear to be due to the following. The high temper-
ature dependence of the neutrino losses creates an increa-
singly large entropy gradient as the center is approached.
Ordinarily nuclear burning is even more sensitive to the
tempefature; this causes the convection to start at the
center. However, in this case the collapse quickly pushed
the material to high temperatures where the dependence of
the oxygen burning on the temperature is somewhat lower.
This and the depletion of oxygen at the center spreads the
energy generation over a larger area. The start of convec-
tion away from the center is then favored by an initially
lower entropy gradient that exists farther out in the star.

Except in the outer few per cent of the mass, no
shock wave was observed to develop. This was also true of
the other models, (There appeared to be a weak shock near
the surface). Ono and Sakashita (1962) investigated an
analytical formulation of the progress of a shock wave
through a star. Their estimate of the power necessary to

generate a shock wave in the interior was
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3 E 46 (M/R)z's ergs/sec
where' the mass and radius are in terms of those of the
sun. This is about 1 E53 ergs/sec, or about 1000 times
the actual rate.

After the collapse was halted the basic feature
was the increase of the kinetic energy. The 45 solar mass
model was the only one in which the total energy remained
negative; however, this did not prevent some of the mater-
ial at the surface from being ejected. It does mean that
the entire star would not be disrupted. At 145 seconds
the kinetic energy reached a moximum of 1.81 E51 ergs.

The surface velocity was 4,337 km/sec. At 189 seconds the
surface velocity reached its maximum of 4,652 km/sec.
This is only about 1/3 of the escape velocity at the
time of maximum contraction. At 940 seconds about the
inner 90% of the star began to collapse again. The cen-
tral specific volune was .3 E-2 cc/gm. Slightly more than
two periods of the oscillation which was set up were fol-
lowed. The period was about 1300-1400 seconds. During
the first oscillation the central density increased by a
factor of 30 , and then decreased by a factor or 10. In
the second oscillation it increased by a factor of 5, and,
during the expansion phase, decreased by a factor of 3.
At least initially the oscillations were being rapidly

damped out. The chief cause of the damping was probably
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the interaction with the e jected material. The evolution
was carried out to about 4,000 seconds. Conditions at
this point indicated a final velocity at the front of the
e jected material of about 3,400 km/sec. From one to two
solar masses were ejected. Table 7 gives conditions

where the calculation was terminated.

5.4. Evolution of the 52 Solar Mass Model

At 112 seconds the kinetic energy reached its
peak during the collapse of 2.64 E50 ergs, with a surface
velocity of -1,849 km/sec. At 118 seconds the oxygen bur-
ning reached its maximum value of 3.35 E50 ergs/sec. At
125 seconds the collapse was halted at the center, and
the star began to expand. The central density was 1.6 L6
cc/gm, and the central temperature was about T9 = 33 «
Table 8 gives conditions at the time of the halt of the
collapse. The neutrino loss rate was 1.98 LE48 ergs/secc.
This was slightly less than 1% of the nuclear rate. At
this time about 6.4 solar masses of oxygen had been burnt.
By 139 seconds the oxygen burning rate was reduced to the
neutrino loss rate of .6 E48 ergs/sec. A total of 7.3
solar masses of oxygen were burnt. This made the total
‘energy positive (2,21 E 51), so a large fraction ot the
mass of the star should be ejected. Energy generation

rates throughout the evolution are given in Table 9.
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Table 5
To
E-6 3.01
E-5 2.92
E-5 2.66
E-5 2.42
E-5 2.19
E-5 2.01
E-5 1.81
-5 1.61
E-4 1.40
E-4 1.15
E-4 ,844
L5
ES
E 5
E 5
E 3
E S
E 5
E 5
E 5
B 5
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M= 45
Nuclear
Lnergy
Generation
(ergs/gn-sec)
(S E€p
«336 E14 599 E16
.447 E14 .128 E17
.243 E14 .505 E16
.136 E14 ,251 E16
.710 E13 ,114 E14
«389 E13 .415 E12
+176 E13 102 Ell
.663 E12 .121 E 9
.178 E12 .,425 E 6
232 El1 #
388 L 9

Mass
Fraction,
Oxygen

xlé

«1310
«3156
«51u1
«9968
« 9999
1.600
1,000
1.060
1.000
1.000

1.000



Table 6 M = 45
Time - Total Total Nuclear Neutrino
(sec) Energy Kinetic Energy Losses
t (ergs) Energy Generation (ergs/sec)
Ep (ergs) (ergs/sec) L,
Eyg Lp
0 -.461 E52 ,224 E49 ,630 E45 2198 E47
45 -.456 E52 .309 E50 .451 E49 .150 [48
59 -.415 E52 ,642 E50 574 E50 «310 E48
66 -.350 E52 ,667 E50 .103 E51 .448 E48
76 ~-.231 E52 ,230 E50 ,119 Es1 .693 E48
85 -»151 ES2 ,136 B50 .575 EB50 <715 £48
100 -.132 E52 ,423 E51 ,175 E48 .209 E48
112 " .104 ES52 - -
145 K «181 E52
166 # . «169 ES52
197 e .148 ES52
519 i «309 E51
943 H « 171 E51
1490 M M
1702 L 161 ES51
1893 L .240 E51
2237 L .120 ES51
2011 L .141 ES51
3177 " 977 LS50
3354 i «134 E51

3989 H + 975 E5]
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Table 7 M = 45
Tg

E-3 «398

E-3 « 385

E-3  .346

E-2 . 308

E-2 + 20D

E-2 .250

L£-2 «211

E-2 o i

E-1 137

=-1 . 080

E 3 «139 E-1

velgcity(km/sec)

E 6 -51

E 6 ~-83

E & -98

E 6 =116

E 6 -135

E 6 -177

LE 6 =212

L6 -334

E 7 278

E 8

3,506
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At 116 seconds convection started at Xr =,08.

At the time of the reversal of collapse the convective
zone spread to X, =.28. he maximum value of the con-
vective luminosity was 4,7 LE49 ergs/sec. The total tur-
bulent energy was 3.3 E49 ergs, with a maximum speed of
the turbulence of 420 km/sec. At 138 seconds the convec-
tive zone reached an approximate maximum value of X, =
.58. The maximum turbulent energy was 8.6 E49 ergs; the
largest value of the speed of the turbulence was 550 km/
sec. 7This was less than 10% of the speed of sound, and
the turbulent energy density less than 1% that of the
internal energy. Therefore the dynamic effect of the
turbulence was probably quite small. As the entropy
gradient in the outer part of the star was small, a slight-
ly larger release of energy would probably have extended
the convection to the surface.

At 191 seconds the kinetic energy reached its
maximum of 4,88 E51 ergs. 'The velocity at the surface
was about 6,400 km/sec. At 310 seconds the surface velo-
city reached a maximum of 6,774 km/sec. The evolution
was carried out to 1,257 seconds, by which time the sur-
face velocity declined to 6,622 km/sec. By subtracting
the gravitational energy from the kinetic energy at the
surface, the final velocity was estimated at 6,500 km/sec.

By finding the point where the velocity equaled the velo-
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city of escape, it was found that a minimum of 20 solar
masses would be ejected. Since the total energy is
positive, it may be that essentially all the mass would
be found to be ejected if the evolution were followed
long enough, Table 10 gives conditions at the point

where the calculation of the evolution was stopped.

5.5. Evolution of the 60 Solar Mass Model

During the collapse the maximum kinetic energy
of .625 E51 ergs was reached at 137 seconds. The surface
velocity was -2,750 km/sec. At 142 seconds oxygen burning
reached a peak of .774 LE51 ergs/sec. Neutrino losses were
about 3% of this. At about 148 seconds the collapse began
to be reversed. At this point the nuclear burning rate
was .582 E51 ergs/sec; the decrease was due to oxygen
exhaustion near the center. The central density was
2 E6 gm/cc, and the central temperature was about T, = 3.6.
Energy release from the e&<-process never became signifi-
cant. 'The collapse was halted before the temperature at
the center reached the point where heavier nuclei begin
to decompose back into helium. It may be that in a con-
sjderably more massive star(e.g.,100 solar masses,if any
exist) the collapse would not be reversed until the center
reached this point; in that case the collapse might never
be stopped. At the reversal of the collapse in the 60

solar mass model about 12,4 solar masses of oxygen had
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M = 52
Tq €, )
3.28 123 E15 720 E15
3.18 +110 El5 .183 El6
2.92 561 LE14 ,161 E17
2:67 .301 E14 ,516 E16
2.46 .168 E14 ,423 E15
225 +»893 E13 232 E14
2.05 .470 E13 .868 E12
1.84 «211 BE13 4169 £11
1.61 708 E12 L118 E 9
1.35 «136 E12 L1001 E 6
1.0C 471 E10 -
Convective Luminosity
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+135 ES50
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0142
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4086
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1.000
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1.000

1.C00
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Table 9 M= 52

Total

Turbulent

Kinetic

Energy

(ergs)
t Ep By * EC "Ly L,
(0] -.524 E52 L207 E49 «455 Ed44 127 E47
80 -.524 E52 .,441 ES50 .433 E48 ,101 L48
97 -.510 E52 ,137 E51 «259 E50 ,264 E48
112 -,292 E52 .,264 ES51 «259 E51 ,.893 EA48
118 -.100 E52 L,164 E51 - ¢332 E51 ,144 £49

125 719 E51 .401 E49 ,328 E50 .222 E51 ,198 k49

134 «219 E51 396 E51 .826 E50 .242 E50 .,125 E49
138 «221 E51 .836 E51 .863 E50 ,957 E48 ,589 148
143 e +153 BE52 827 ES50 - =
157 1 «356 E52 .692 E50

191 i «487 E52 4503 ES0

315 L .406 E52 .,209 E50

610 " «333 E52 ,990 E49

1257 5 .288 E52 ,682 E49

* does not include turbulent energy
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been burnt; as in the case of the 52 mass star more than
enough energy was released to disrupt the star. Table 11
gives conditions throughout the model at this point.

At 137 seconds convection started at Xr =,08.
By 148 seconds it had reached X = .56. The largest
value of the convective luminosity was .21 E51 ergs/sec.
The maximum value of the speed of the turbulence was about
1,000 km/sec. This was about one tenth the speed of sound.
As in the previous case this was probably too small for
the turbulence to have much dynamic effect. At 156 sec-
onds the front of the convective zone reached X, =.82,and
at 162 seconds it reached the surface. These last two
figures are not very meaningful. TIhere is no emergy gen-
eration in the outer half of the star, and the front of
the convective zone moved considerably faster than the
speed of the turbulence. The convective equations repre=-
sent a type of diffusion, and so are not very good in des-
cribing the motion of the front of the convection zone when
it is moving very fast. 1In the program that was used,the
time it takes the convective front to move across a mass
zone is the time it takes the mass zone to absorb enocugh
energy to raise its entropy above that of the next zone.
In some cases for nearly isentropic material this time may
be much less than the time it should take the turbulence

to cross it; this makes the front of the convection zone
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advance faster than it should. As in the other cases
the evolution was too fast by about a factor of 10 for
the mixing by convective diffusion to keep the high temp-
erature areas supplied with fuel from the rest of the
zZone.

As in the previous cases the nuclear energy gen-
eration decreased very rapidly after the reversal of the
collapse; by 158 seconds it was reduced to the neutrino
losses, about .14 E49 ergs/sec. A total of 15 solar
masses were burned. Table 12 gives the energy generation
rates. At 224 seconds the kinetic energy rose to its max-
imum of .109 E53 ergs; the velocity of expansion was 8,741
km/sec. Evolution was carried out to 390 seconds. Table
13 gives conditions at this point. The maximum surface
velocity of 8,948 km/sec was reached at 345 seconds.

Using the same methods as in the previous case, the final
velocity was estimated to be greater than 8,500 km/sec,
and at least 40 solar masses were ejected. At the time
when the calculations were stopped (390 seconds) convec-

tion had carried about 7 E49 ergs to the surface.

5.6, Summary; Comparison with Observations

Table 14 gives the results for each mass.
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«182
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Table 11
I
E-6 3.56
E-6 3.46
E-5 3.18
E-5 2,92
E-5 2.71
E-5 2.50
E-5 2.29
E-5 2.09
E-5 1.83
E-4 1.57
E-4 1.23
Le
E 5 .134
E 5 .13C
ES5 ,209
E 5 .147
ES 4338
E 5 -
E 5
E 5
E 5
E S

E48
E51
E51
ES5L

k56

€y

«215
.184
.147
.649

« 366

E15
E13
E15
El4
E14
E14
L14
E13
E13
E12

E11l

341
«815
-134
« 278
£672
» 619
. 380
« 107
w178

421

E15
E15
E17
E17
LE16
E15
E14
E13
E11

L 8

£16

0026
0665
« 0919
5141
<9086
« 9929
.9997
1.606
1.0C0
1.600

1.000
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By *

E52 ,221
E52 .,918
E52 .576
E52 ,625
E52 ,360
E52 .541
E52 .602
E52 .176
« 296

oo

i .

«107
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E52

«311
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.648
.623
« 5392
«475
« 389
+176

E51
E51
E51
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E51
ES51
BES1
E51

include turbulent energy
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&7 L
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«617
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582
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. 286
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E43
E48
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E51
E51
LE51
E51
E49

E47

«932
«152
.124
=196
«360
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411
«158

.623

E46
£48
£49
£49
E4Y
E4Y
E49
E49

48
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Table 13

To
+125
121
SLLT
975
.881
791
.706
615
« 545
.441

.318

.162
«919
77
s 379
549
497
. 508
« 327

«398

E4T7
E47
E47
E47
L47
LE47
L47
E47

47

M =

1,519
2,035
2,563
3,000
3,448
3,885
4,522
5,238
6,190

8,943

60
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Table 14
Mass Solar Masses Solar Masses, Velocity of _
. Ejected Oxygen,Burned Expansion(km/sec)
45 1-2 3 3,400
52 7 20 7 6,500
60 2 40 15 8,500

The best known features of Type 11 supernovae
are their light curves; they take perhaps a week to rise
to maximum luminosity and then several weeks to decay.
The investigation of this was beyond the scope of the
evolution followed here. Type 11 supernovae are observed
to expand with a velocity of 5,0C0-10,000 km/sec. The
mass of supernovae remnants is not well known. It is
usually estimated to be of the order of several solar
masses. OUne estimate of 60 solar masses was made by
Shklovskii (1960 ). The results of the explosions induced
by pair production fit in roughly with these observations.

There is also the question of whether there are
enough massive stars to account for these supernovae.
It has been estimated that there is one type II supernova
per galaxy about every 500U years. The solar luminosity
function gb(number of stars per cubic parsec per unit
visual magnitude on the main sequence in the solar neigh-
borhood) was computed by Sandage (1957) to M, = -6; the
mass for this magnitude was estimated to be about 33 solar

masses. llere we estimate that<¢ ,for more massive objects,
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.96 = ,20 E-8 x 10

Assuming the luminosity is proportional to the cube of

is

the mass, and neglecting changes in the bolometric cor-

rection, 96', the number of stars per unit solar mass,is

¢ = .6 E-8 (M/33) 7/
The time on the main sequence is estimated to be

T 16 EF (25/M)2 vears
Taking 33 solar masses as the lower 1limit for pair pro-
duction explosions and neglecting any mass loss after the
main sequence is left, the number of explosions per cubic

parsec is ea

N = /amgyﬁ'/’r

33
The values above give N = 1.5 L-16/yr. When all material
is projected onto the central plane of the galaxy, the
number of these massive stars per pc2 is 220?6; the total
mass per pc2 is 55 solar masses(Schmidt,1959), Taking the
mass of the galaxy as 10ll solar masses, there will be
about one explosion every 15,000 years if the solar neigh-
borhood is representative of the galaxy as a whole. TLhis
is too low by about a factor of 30. It might be noted that
the relative abundance of these massive stars in young gal-
actic clusters is about 2,500 times as great as in the
solur neighborhood. It would be necessary that these

clusters be representative of somewhat more than 1Y% of the
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of the mass of the galaxy to provide a sufficient number

of massive stars.
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Remarks

It was argued in section 5.1. that if there is
any shell burning after neutrino losses become important,
it should extend the effective convective zone over much
of the envelope (to the point where the envelope becomes
so extended that mixing cannot be effectively established
during the burning fime). Fowler and Hoyle (1964),how-
ever, took the mass of the envelope to be 1/3 of the total
mass. I1f this is correct, the masses given here (which are
the effective core masses) should be multiplied by 1.5 to
give the total mass.

With the possible exception of the lower mass
star, the total amount of oxygen burnt should not be
very sensitive to the rcaction rate. Most of the oxygen
near the center is consumed; a higher rate would just ex-
tend the burning region outward somewhat, while a lower
rate would still be sufficient to burn most of the oxygen
near the center. Since the increase in pressure due to the
energy release of the burning is partly responsible for the
reversal of the collapse, a lower reaction rate should re-
sult in a collapse to a higher temperature. It is esti-
mated that if the rate does not differ from the one used
in the calculations by more than a factor of 10C, the
amount of material consumed should not change Ly more than

a factor of 2.
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It now appears that the reduced width,éSLf .
for the 012(04,3/)016 reaction is .1 (Fowler,1967).

About 25% of the helium is then converted into carbon
in these massive stars (Deinzer and Salpeter,1964 ).

A convective core due to carbon burning should then be
formed at a central temperature of about Tg =1.1. The
small amount of neon formed will burn at a higher temp-
erature (Tg = 1.3-1.6 ). The result will be a somewhat
greater central entropy (at the onset of instability)
than that found for the models investigated here.

Barkat, Rakavy, and Sack (1967) recently computed
the explosion for a star with a core of 40 solar masses.
Six solar masses of oxygen were burnt for no convective
mixing, and 12 were burnt for instantaneous mixing. the
convective mixing for the models investigatcd here only
increased the amount of oxygen consumed by a few per cent,
Therefore 6 solar masses should be about the right figure.
This is about what would have been burnt for a 5U solar

mass version of the models investigated in this paper.
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Figure 1 outlines the boundary of the area in which J’
becomes less than 4/3 because of electron-positron

pair production.
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