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ABSTRACT 

Stars with a core mass greater than about 30 M0 

become dynamically unstable due to electron-positron pair 

production when their central temperature reaches 1.5-2.G x 

109 °K. The collapse and subsequent explosion of stars 

with core masses of 45, 52, and 60 Me is calculated. 

Tiie range of the final velocity of expansion (3,400-

8, 500 km/sec ) and of the mass ejected ( 1-40 Me ) is 

comparable to that observed for type II supernovae. 

An implicit scheme of hydrodynamic difference 

equations (stable for large time steps) used for the 

calculation of the evolution is described. 

For fast evolution the turbulence caused by con­

vective instability does not produce the zero entropy 

gradient and perfect mixing found for slower evolution. 

A dynamical model of the convection is derived from the 

equa tions of motion and then incorporated into the diff­

erence equations. 
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Chapter 1 

INTRODUCTION 

In attempts to explain the phenomena of super-

novae a numbe r of mechanisms h ave been proposed as the 

triggering device of a stellar explosion. Fowler and 

Hoyle (1960 ) suggested thermal instability in degenerate 

stars as the cause of type I supernovae. Thermal insta-

bility may be explained briefly as follows. If heat is 

added to the core of a star it_ will expand. Thermal 

instability arises in the case in which the temperature 

in the core increases; if the instability persists, the 

temperature increase may raise the rate of energy gener-

ation until the evolution reaches an explosive time scale. 

If we assume that the envelope responds by expanding uni-

formly, to maintain hydrostatic equilibrium the pressure 

in the core must change proportionally to the 4/3 power 

of the density. Whether or not the temperature rises in 

the core depends on whether or not the (appropriately 

averaged) value of ( 3 log P/ dlogf )T in the core is 

greater or less than 4/3. 

If the value of ;( ( = (C}log P/dlogp)s) of 

the envelope (which expands isentropically) is 4/3, the 

envelope will respond to any change in the core by expand­

ing uniformly, and t he a ssumption is sa ti sf ied. When 0 
is greater than 4/3, the pre ssure in the uniform expansion 
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drors too raµi d ly lo 111 ;1 intain hydros tatic equilibrium. 

The deBree of e x pansion must decline toward the surf a ce; 

since the mass of the envelope is closer to the c e nter, 

th e valu e of (d logP/d lo~f) in the core must now be some­

wh a t less than 4/3. This value is the critical value of 

(dlog P/dlog) h· for thermal instability. The insta­

bility d 2pen<ls not only on the stellar structure, but on 

the way in which the heat absorp tion is distributed, as 

the core r e f e rr e d to is the r eg ion in which the energy is 

ef f e c ti vel y absorbed . 'l'he instability re qui r e s a higher 

degree of degeneracy for relativistic material (for which 

( d log P/ dlogJ' )T = 4/3 for tot al degeneracy) than for 

non-rel a tivistic materi a l (for which it is 5/3). Charac­

t e ristically the degree of degeneracy is greater for points 

closer to the center. The central ternperature may there-

fore increase when the star contracts due to neutrino losses 

(which are s p read over a large part of the star), and then 

continue to increase as the star begins to expand when nu­

clear energy generation (which is concentrated near the 

center) become s g r eater than the neutrino losses. 

Fowler and Hoyle proposed that the ins t ability would 

c au se explosion s in s t ars with masse s slightly above the 

Ch a ndrasekhflr limit, which ·would be rel a tivi s tically degen-

erate a t t e mpe ratures J;ig h e nough to burn oxygen or silicon. 

Inves tiga tions o f the instability we re carried out by the 

author for o x ygen a nd silicon burning. If convection is 
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neglected all the heat is deposited in a small hi Ghly 

degenerate core, and the evolution does re ach an explo-

:; ive time scale. The ef fee '.: of the convection spre ads 

the energy generated over a large r less degenerate region, 

and the instability disappears long before the nuclear 

burning r eaches an explosive rate. Shaviv (1966 ),who 

followed the advanced evolution of stars above the 

Chandrase h:h a r limit, also found no explosions due to 

thermal instability. The helium flash, because it takes 

place in non-relativistic material, is more likely to 

reach explosive proportions. 

When the value of ~ falls below 4/3 throughout 

a sufficient amount of the star, it will b e come dynarni-

cally unstable. One may easily show that the sum of the 

internal and gravitational energies decreas es for a per-

turb2tion with a uniform contraction-when the value of 

ftcP/f)drn !}<Pip )dm falls below 4/3. 'i11e rest of the 

energy is converted into the kinetic energy of the pertur-

bation. This is discussed by Ledoux (1958 ). Basically, 

the p ressure cannot increase enough to maintain hydro-

stat ic equilibrium if the star begins to contract. Any 

process which absorbs energ y and does not incre ase the 

pr e ssure proportiona t e ly will lower O; tllis may be seen 

by its explicit formulation. 



~ = 

-4 

)dP~ t=j T 
~E ;~ T 

d P/ d v] v/P 

(The independent vari a bles are the temperature and s pe -

cific volume ). 

fowl e r and Hoyle (1960 ) also proposed the decom-

position of iron into helium and neutrons in massive stars 

as the cause of type II supernovae. Each iron nucleus 

need 124 t.leV for the d e composition which takes place over 

a relatively small temperature range. ~he value of {be-

comes as low as .8; this mechanism works so well that the 

core of the star coll apses faster than the envelope. In-

vestisations of the collapse have been carried out by Col-

gate and White (1966 ) and Arnett (1967 ). Unless the col-

lapse is reversed by rotation, the star collapses until 

the central density becomes as large as 10
15 

gm/cc. At 

these densities nuclear interactions affect the equation 

of state. Arnett found that large mass stars (8 and 3 2 

sola~ masses) lost energy after the collapse was stopped 

primarily by muon-type neutrinos; these could not interact 

with the material in the envelope, and no mass was ejected. 

Lower mass stars (2 and 4 solar masses) lost energy by 

e lectron-type neutrinos; these were caught in the envelope, 

and in both cases about 1.5 solar masses were ejected 

from the star. 

Another cause of dynamic instability is the for-

mation of electron-positron pairs, a significant number of 
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which exi s t in equilibriu11i with the origin;il c l e ct::-c·n s 

a t high tellipe ra tu res and lo\v densi tics . The ef ice t of 

pair form <.1tion on the eriuo.tion of state i s discussed in 

~owler and Hoyle (1964 J. ·rhe essential feature is that 

at the relevant tempe ratures (T9 = 1-3 ) about two or 

three times as much energy is a bsorbed in creating the 

rest rnass 0f the pa irs as in forming their ldne tic energy; 

the additional pressure cr•=ated is proportional only to 

the 1 a tte r. It<ldi a t ion pressure (for which by itself 

{= 4/3) . dominat e s ion pressure and the p r essure of the 

original electrons at low densitie s. The effect of the 

pairs is to p ush (J' below 4/3. At low temperatures the 

number of pairs de creases exponential! y while the radi a­

tion pressure varies only as the fourth po~er of the tem­

perature . At high temperatures the pressure of the pairs 

is about the same as that of the radi a ti o n; however their 

rest mass be comes less significant. The effect on o then 

is mo s t important at intermediate temperatures. The boun­

dary of the"uns t a'i)le a rea" (i.e., where O is less than 

4/3 ) reaches a maximum density of about 7 x 1c5 gm/cc 

a t a t empe rature T9 =2.S (see figure 1). 

Ralca vy and .::ihaviv (1966 ) showed that stars of 

more than about thirty solar masse s would be come dynam.i- .· 

cally unstable due to the rair formation. As the star 

collapses , the temperature and density increases, and 

eventually material near the center emerges from the un-
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stable area on its high temperature boundary. The 

resulting stiffening of tl1e star halts the collapse, and 

it rebounds. If the star is sufficientl y massive the 

l e nt;th of the path in the unstable area is long enough 

so by the time the collapse has been reversed , oxygen is 

burning at a n e x p losive rate. The energy release is 

enough to disrupt all or part of the star and to eject 

the material with high velocities. The explosions of 

45,52, and 60 solar mass stars are investigated in t his 

paper. 

Two of the p roblems are the numerical techniques 

used in c alcul a ting the hydrodyna111ics and the effects of 

convective instability. The usual method of dealing with 

the hydrodynamics i s an explicit scheme in which the accel­

eration during the time step is made proportional to a 

force term known a t the beginning of the step. The dif­

ference equations are then stable only if the time step is 

less than the Courant limit; this is the time it takes 

s ound to cross a mass zone. For comparat ively slow e vo­

lution, conditions change only slightly dnring a tinie step 

restricted by the Courant limit; it is then preferable to 

take large r steps. This may be done by an implicit hydro­

d ynamics s cheme which is u sed here. The way in which 

quantities including the force are ave raged over the time 

step is allowed to vary. One of the s pecial cases reduces 
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the hydroclyn<1li1ics to hydrostatic equilibrium; this is 

used whe11 appropriate. 

~or slow evolution the effect of convective in­

stability is to produce essentially a zero entrODY gra­

dient and perfect mixing throughout the convective zone. 

'.!.'his no longer holds true as the evolution is speeded 

up. for example, the convective turbul e nce ten<ls to be 

more efficient at convecting energy (which is roughly 

proportional to the third power of the S~)eed of the tur­

bule nce ) than it is in diffusing new mate rial into the 

are a where energy generation is taKing place most strongly 

(propor tional to the first power). The result is that the 

strongly burning areas tend to run out of fuel. for very 

fast evolution the effects of the convection may not be 

immediately important. However, once the turbulence and 

convective energy flux have been set up ,they take some 

time to decay and may affect conditions at a later stage 

of the evolution. A dynamic model of the convection is 

derived frcim the equations of motion and then incorporated 

into the difference equations. 
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Chapter 2 

DIFFERENCE EQUATIONS 

2.1. Ecuatio11s of r-.otion 

The equations of motion and of energy conser­

vation under spherical symmetry are 

(1) dU/dt = -4'17'R2 ClP/dM - Gt.-ijR2 

(2) dE/ dt + P dv/dt = € - dF/dM 

· where 

U = radial velocity 

R = radius 

P = pressure 

E = internal energy per unit mass 

v = specific volume 

€ = rate of energy generation per unit mass 

F = total flux of energy across the sp~erical 

surface at R 

where 

The flux due to radiation is 

-16712-acH.4( ow4/(.jM)/3k 

W = tempe rature 

k = opacity 

The independent variables are M, the total mass 

interior to the point, and the tirne,t. As Lagrangian 

co-ordinate s are use d, the time derivatives follow the 

motion of the matter. 
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2 .2.finite Dif f e r ence Approximations 

In the nume ri c al calculat i on of the evoluti o n 

the s tar i s divide d into N mass zones . The vel ocity and 

t he r adius a r e defined at the bounda ries of t h e zones. 

The s pe cific volume, t er.1pe r a ture , pressure , ene rgy and 

r a te of ene rgy g ene r a ti on a r e defi ne d at the midpoint s 

of the zone s. The midpoints are denoted by half-integers; 

the bound a ries,by intege rs. The size of the time step is 

D'f ( -- t n + 1 - t n ) • 1'h f t h t I 1 e mass o e zone cen ered at - 2 

is Dt·1 ( I-1·); the mass interior to I is M( I). We define 

DM(I) = .5 [DM(I- t ) + DM( I+t II 
The specific volume at I--~-

"' 
i s 

v( I--t ) = 41l[R( I)3 - R(I-1)3] /3 DM(I-t ) 

The pre ssure at I-t at time tn+l is P( I-~- ); its value at 

tn is PO(I-f ) . Its average value over the time step is 

denoted by {?<r-t J> . J\ similar notation is used for 

othe r variables. The thermal flux is 

F( I) = 321J'
2acR( I )

4 [w< I-t ) 4 - W( I+t )j / 
{ 3 DM( I ) [k( I--} )+k( I+-~-]} 

Equations (1) and ( 2 ) a r e then ap proxima ted by 

(3) DU(I)/DT = 4 ff (!((I )2> ~(I--} ~-~(I+~~p] ./DM(I) 

- G M(I ) (1/1(( 1 )2) 

(4) OE(I-t ) + <P(I-t~ Dv(I-t ) = 
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DT { € (I-1) + [~« l-1 ~ 
where the symbol D indicu.tes a finite difference,e.g., 

OU(I) = U(l) - UO(I) 

The usual method of defining the averaged value 

of a variable is as follows: 

~(I}> = o<..
1 

U (I ) + (1- a<,) UO( 1) 

where 

R( I) = RO( I) + DT <U(I~ 
~CI--}p = o<,P(I-1-) + ( 1- o<.~) PO( I -1-) + <..<< r-t) 

o<... 

~er} = o<i F( I) + (1- ~) P0( I) 

€ ( I-t) = c><..,_ ~ (I-~-) + ( 1- c<..,_) E:. o( I-~- ) 

o ~ o<., , a(a , .:x.:3 , ~ ~ 1 

Q(I-f) is the artificial viscosity used to handle shock 

waves (Richtmyer, 1957 ). 

2 .3. Treatment of the Surface and Center 

The basic interest was· in processes taking place 

in the interior of the star; therefore conditions at the 

surface were not treated precisely. The surface is defined 

by zero pressure. We define 

1<N+t)> = 0 

DM ( N) = • 5 DM ( N-t) 

Then (3) may be used at the surface. The optical depth of 

the last zone was large. The surface temperature can then 

be neglected in forming the derivative of w4 • The surface 

luminosity becomes 
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P(N) = 1677 .. 
2
acR(N) 4 W(N-t)4/3k(N-t)DM(N) 

The center is defined by zero radius and velocity. 

2.4. Conservation of Energy 

The v a lue for each o< and the way in which R
2 

and l/R2 are averaged must first of all be determined by 

stability. Once stability is ensured,one would like the 

equations to be as accurate as possible. Ordinarily a 

time-centered definition (i.e. ,o<=.5) should be more ac-

curate. Another guide is to ensure that conserved quan­

tities do not change when these are now defined in a rea­

sonable manner from the finite number of points where 

conditions are known. The mass is automa tically con-

served in a Lagrangian formulation, and the momemtum in 

a spherically symmetric body is always zero. This leaves 

the total energy; conservation of energy is particularly 

important v•hen the internal and· gravitational energy in 

the star almost balance. The total energy is defined as 

@M ( I - ~- ) E ( I -t ) + • 5 DM ( I ) U ( I ) 2 

GDM( I )M( I )/R( I~ 

The following is to be satisfied. 

N 

(6) ET(n+l) - E'f(n) = 01'[[ DMU-i) ~(I-i~ - - F(N~ 
1 =I 

If o<..1 is .5,the change in ldnetic energy at I over the 

time step is 
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. s [uo )2-uo< r ) 2J = DH.< r) ou< r) / DT 

It is then easily shown that (6) is satisfied if 

(7) = 
= 

RO( I)~ I ~ DR( I 8 
R(I) RO(l) + RO(I) 2J 

(8) 4/R(I) 2) = [1/RO(I) - l/R(ID /DR(IJ 

= l/~(l) RO(IB 

/3 

In the case that t><-
1 

is not .5 the kinetic energy differ­

ence at I is 

DR(I) DU(I) /DT + (.5- ~,)DU(I)2 

When relations (7) and (8) are used in this more general 

case the change of the total energy in excess of the right 

hand side of (6) is 

When ex: 1 is less than 

N 

L ( . 5- ~ t) D~l (I ) DU (I ) 2 

Z= I 
.5 the energy increases by too large 

an amount, and when it is greater than .5, the energy is 

smaller than it should be. The former case indicates 

among other things that the equations are probably unstable. 

It will be seen that the best value is usually slightly 

greater than .5. 

2.5. Stability 

While the stability of the non-linear equations 

cannot be theoretically predicted, the stability of their 

linearized forms serves as a guide as to the stability of 

the former. The simplest linearization of the equations 
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of motion i s that for so1rnd 1vave s . A stabiUty analysis 

of these suggest that (3) and (4) will be stabl e if both 

t>-<: 1 a nd t><2 a re equ al to or g r eate r than .5 • This ap-

pe8red to be approximntely the c nse when the non-linear 

e quations were t ested ,including heat fl ow and e nergy gen-

eration. The v a lues of i><,, « 2 , CX:..3 ,and CX.:4-were all made 

.5, and t ests were made under a number of dyn amic as well as 

essentially hydrostatic conditions. The equations were mar­

ginally stable. Perturbations and irregularities continued 

for a considerable number of time steps with about the same 

magnitude. £xce9t for the case of fast motion (i.e., at 

the speed of sound or greater) the time steps were signi­

ficnntly larger than the Courant limit. \\'hen ex:, and <><.a 

were increased slightly the irregularities smoothed out. 

The value of ...(, and o<2- usually used was • 51. 

2.6. Hydrostatic £oujlibrium 

In a difference equation the change in a variable 

A is usually given by 

(9) DA/OT = C><:(dA/dt)n+l + (1-°')(dA/d t)n 

where the derivatives on the right hand side are evaluated 

at tn+l and tn respectively. ~or time steps much larger 

than the relaxation time (appropriate ~mly when A is approx­

imately in equilibrium) the left hand side is much smal ler 

than the terms making up dA/ d t . Providing -.:he value of 

(~A/Cl t)n is sufficie ntly small, the solution of equation 

(9) is then app roximately the equilibrium value for A, as 
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( d A./()t)n+l is e ffectively se t equal to zero. In gen­

e ral the derivative at tn may not b e sma ll (for exampl e , 

~J e n A i s approaching equilibrium); therefore for l arge 

tim~ s teps ~ nrnst be l~ The dynamic e qu ation (9) then 

r e duces e ff e ctive ly to the equilibrium case for these 

large time s t eps . 

In equation (3) the averages of the squ a re of the 

radius and its inverse are redefined by 

(RCI )~ = o<
5

RC I ) 2 + (1- ~s·) ~(I ) 2+R( I )RO(! )+RO( I )::]/3 

(1/RCI ) 2> = o-c::5 /R( I )
2 

+ ( 1- o< 5)/ R( I )RO(I) 

When~= 0 they return to their previous definitions, which 

are appropriate for the hydrodynamics case. When °'<2 ando<.3 

are both 1, the change in the velocity is made proportional 

to the force at tn+l; this is the appropriat e form for 

hydrostatic equilibrium which is used for slow evolution. 

Since it is preferable to have a time-centered 

definition of the pressure in the energy equation, its 

average value in (4) is now defined separately as 

(10) ~E(I-t~ 

whe re ~6 is usually made .5 for hydrostatic equilibrium. 

As long as the change in the pressure is continuous (no 

shock waves) the left hand side 

error for Jrds in (4) is }Pdv 

of (2) is TdS/dt. The 

<P.E(I--fr~ Ov(I--}) . 

By expanding the pressure in a power series this is est-

ima.te d to be -(d2P/dv2)( Dv)3/12 (for o<:.6 =.5). ~or a frac-

tional change in the density of 53 and 10% the error in 
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thE: entropy is of tile orde r of one part in 10
5 

a11d 104 

respectively. 

2 .7. Method of Solution 

Let the values of (3) and (4) be El and .b2 when 

all terms are on the left hand side. The following set 

of equations a r e to be solve d. 

( 11) El (I) :: 0 , E2(I) = CJ l =1, N 

( E2(l) is the energy equation at I-t ). There are two 

inde pendent variables at eacll point, for e xalil ple, the vel­

ocity and the tem pe rature (at I-t). The radius is given by 

the velocity, and the specific volume by the two neighbor-

ing radii. The solution is by a line arization procedure, 

so the independent variables chosen should be those in 

which the equations are reasonably linear. 

The equations at I depend on the variables at 3 or 

4 points. We denote the independent variables at I by 

Wl(I) and W2(I) and the changes in their values(the un­

l~nowns) by DWl(l) and DW2(I). In the more general case 

· (dependence on 4 points) the linearization gives 

(12) E(l) + Al(l)DW(I-2) + A2(l)DW(I-1) + A3(l)DW( l) 

+ A4(I)DW(I+l):: 0 
El(I) DWl(I) 

where E(I):: and DW(I):: 
E2(l) DW2(I) 

Al,A2,A3, and A4 are 2x2 matrices; the value of . the ele­

ment of Al in the first row and column is ~£1(1)/~Wl(l-2) 

The other elements are defi ned simil a rly. El(I) and £2(1) 
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a re the (known)valuc s of the equ<-:.tions found by the c iven 

values of the variables . 

The s olution cons i s ts of inverting an NxN ma trix 

(whose elements are the 2x2 ma trices) where e ach row has 

only four non-zero e l e me nts centered near the diagonal. 

Yhis is done bas icall y the s am~ way as for the case of 

three non-zero elements(Richtmyer,1957 ). 

It is assumed that 

(13) DW(I+l) = B(I+l) + C3(I+l)DW(I) + C2(I+l)DW(I-l) 

This is substituted into (12), and B(I) ,C3(I), and C2(I) 

are solved. Let 
-1 

(14) D(I) = ~3(I) + A4(I)C3(I+l~ 

Then B( I) = -D( I) lE(I) +A4(I )B(I+l~ 

C3(I) = -D(I ) 02(1) + A4(I)C2(I+l~ 
C2(I) = -D(I ) Al( I) 

Relation (13) exists for the equations centered at N. 

The proce dure worlcs down from N to 1 where D\V(l) = B(l). 

The procedure then works b a c lc up to N, giving 0 '."I( I) at 

each point. The linearization is iterated until (11) 

converges to a sufficient degree of accuracy. 

As the equations are at times rathe r non-linear, 

the linearization did not always work, and supplementary 

procedures had to be adde d. They consist b a sically in 

limiting the size B(I) and DW(I) may take. 
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2.8. The Treatment of Energy Generation 

With nuclear reactions present, equations (1) 

and (2) must be supplemented by the rate of change of 

each isotope. In the simplified version of reactions 

considered here the reaction chain has no loops. In that 

case in a finite difference scheme one "sweep 1
' along the 

chain gives the change in e ach mass fraction. For each 

isotope (j) the rate of cha nge of its mass fraction,X . , 
J 

is 

( 15) d X j/ ~ t = XP j - E.-/Q. 
J J 

where XPj is the rate of production of the isotope(deter­

mined by reaction rates farther down on the chain), and 

Qj is the energy released by a unit mass reacting via 

€.. .• 
J 

The finite difference approximation is 

(16) DXj<I-t)/DT = XPj(I--~- ) - «:- j(I-t)> /Qj 

The quantity XPj(I-j-) is known when the isotopes are 

solved for in the right order. One n~ thod used to define 

was the following; €,. is usu a lly the product 
J 

of X j to some power V and R function f depending on the 

srecific volu~e and t empe r a ture. 

£. = 
J 

( • c· l\ ·c J ) f l ) Denoting by Xj I-2),XO I-2 j,f I-2 , and o(I-2' the values 

of Xj and f at tn+l and t 0 respectively, we define 
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y-f 

= x j< 1-t) xoo-t ~ [ ~f O-t) + 

( 1- o<"°) f o ( I-t ~ 
Then Xj<I-~}) may be directly solved for by (16) and (17 ). 

In solving the set of equations (11) the set of equations 

(16) and (17) act as definitions in giving the average 

rate of energy generation at I-t as a function of W(I-tJ 

and v(I-t). The mass fraction of each isotope automat-

ically remains between 0 and 1. 

At the densities at which investigations were 

carried out virtually all neutrinos escape directly from 

·the s tar. Neutrino losses are then treated as a negative 

rate of energy generation. • 
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Chapter 3 

CONVECTION 

3.1. Int~oduction 

The general method for the derivation of the 

convective model is taken from Cowling (1936 ). At any 

point the velocity U is divide d into a mean velocit y V and 

a convective ve locity w. The l a tter is defined so that it 

does not ef f ect,on the average, any ma s s transfer. (For 

the case of s pherical symmetry the aver aging is done by 

integ rating over a spherical shell). 

(1) _JJUi = = 
i=l,2,3 

V· r emains cons tant ove r the a r e a of aver;·,ging. By this 
1 

definition the convective vel ocit y doe s not possess any 

aver age momemtum. It is a l s o possible to d ivide the ~in-

etic energ y into the ene r g y of the mean motion a nd of the 

conve ctive tu r bulence, the l a tt e r be ing , in a sense , a form 

of intern a l ene rgy. 

( 2) -2
1 f u . u. = -2

1 '° v . v. +-t.-p w. w. 
1 1 J 1 1 u 1 1 

( A p atr o f t he same indice s indica t es a summa tion). 

The e q u a tions of mo tion a r e ave raged in the s a me 

way. The e qu a ti ons for the c o nserv a tion of mass,ene r g y, 

and momemt um are 

+ \7 . (Q U · ) 
1 ) 1 

= 0 
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(4) J<_p E)/dt + \Ji(pEUi) 
..I 

+ = 

= .f G i - \7 . p - \7 . p .. 
1 J 1J 

Pij is the viscosity stress tensor; Gi is the externally 

applied force. Equation (5 ) may also be written 

= oGi - \7 .P - \J.P .. 
j 1 J 1J 

When averaged (3) be comes 

where 

o/Dt = d; at + v j 1V j 

,i.e., a Lagrangian derivative following the mean m9tion. 

The left hand side· of (4) may be written 

and when a ve rag e d it be come s 

= - \l.(oEW.) - .Pyr.vv . 
J .J J J J 

'\! .p . 
J J 

The basic differe nce of ( 8 ) with ( 4 ) is the 

convective e ne r g y flux , _pEWj • It will be see n th a t the 

sec o nd t·~rm o n t he r i g h t h a nd s i de u sually a ct s t o rei.n~ 

f o rce the convect ive f lux . The vi s c osity t erm l a r ge ly 
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represents heat formed by the decay of the turbulent kin-

etic ~nergy. Its approximate value is given later on. 

Neglecting the effect of viscosity on the mass 

motion, equation (5) becomes 

( 9) .f l)V i/Dt 

For spherical symmetry the radial component is 

(10) jovr/Dt = pGr - rYP/ar 

- [c,,cr2pwr2)/dr - r?wi - rpw$ J;r2 

It will be assumed that the distribution of the kinetic 

e nerg y of the turbulence is approximately isotroµic,i.e., 

~ 
_pWr = .f w~ = ;w~ 

In that case the Reynolds s tresses act as a pressure-like 

term. 

d ( 1! + .P W r 2) / .J r 

The rate of formation of the kinetic energy of the mean 

motion is 

(12) pG V .. r r 

3.2. Treatment of the Turbulent Energy and Energy Flux 

In addition to the usual equations of motion we 

need the time rate of elm n ee of the tu rbul e n t kine tic en-

e r g y and of the convective energy flux. ~wo assumptions 

a r e made . One i s that th e de n ::>i ty fluctuations over any 

spherical s urf z•. ce caused by the convec tion ar~ small. 
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Another is that the pressure remains constant over the 

area of averaging or at least that it is not correlated 

with ( the radial component of ) the convection so that 

it may be averaged s eparately. 

The energy flux is roughly proportional to the 

averaged convective velocity. 

(13) Li : _pEWi = .f Wi [ E + (c)l E/d_f )p(_p -_?) + 

( d E/ () P} ( P - P)] 

= < d E/ o__p)p .f wi <p -J) = < CJE/ (Y_p)p _p2
wi 

To the extent the p ressure is correlated with the convec-

tion the deriva tive becomes 

Contra cting equations (5) and (6) with Ui and 

adding gives the rat e of change of the total kinetic 

energy. 

= 
The deriva tive of the e nergy of the mean motion is sub-

tracted, l eavi ng th a t of the conve ctive turbule nce . The 

tcr.111 involving the e xternal force is neg l e cte d. 

- W·fJ· p .1 .1 
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t V'/wjfwiwi) - pwiwj\Jjvi 

TI1e first term on the right is the basic driving force. 

-The term pwi may be added to it ,and under hydrostatic 

equilibrium it becomes g WiA.f> • It is seen that the 

turbulent kinetic energy is created by "buoy ancy forces"~ 

i.e., the differential acceleration the pressure gradient 

has on elements of varying density. \~he the r or not the 

buoyancy effect acts to incre ase or decrease the turbu-

lence de pends on how the density fluctuations are correl-

ated with the convective velocity. This,of course,ultim-

ately depends on whether or not the ma terial is convec-

tively unstable. from (13) this effect is proportional 

to the energy flux. 

The second term is the dissipation by the vis-

cosity. From the study of homogeneous turbul e nce this has 

been shown to be approximately pjwj 3/~;) is rougl1ly the 

len g th of those eddies which have the maximum kine t i c en-

e r gy (Batchelor,1953 ) . Thi s is v a lid whe n the s e eddies 

have a l a r ge .K.eynolds numbe r which is ordinar i ly true f or 

the c onditions under consideration. Under these condi -

tions, to a first approxim~tion, t he turbulent spec trum 

may be divided into two g r o ups . One group ,with a cha r ac-

teristically small wave nu11Jber,is dominated by inertial 

force s and contains most of th e ~inetic energy . file sec-

on cl group , with a 1 arge r wc.ve nunibe r , h as a Reynolds num-
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ber of the order of one. The large eddies(the first 

group) do not directly convert their energy into heat; it 

is instead transferred to the smaller eddies . The small 

eddies, for which viscosity is important, are roughly in 

equilibrium, converting kinetic energy into heat as fast 

as they receive it from the large eddies. Even if the 

turbulence is not homogeneous at the scale of the large 

eddies, it should be at the smaller scale, and the dissi­

pation rates should remain about the same. 

The factor J is more or less the equivalent of a 

mixing length. Since the l arger the eddy the slower it 

decays, 1 should be about the size of the (smallest) char­

acteristic length of the system as we would expect that 

the largest eddies fornred would be of this magnitude. 

For convection in a stellar atmosphere the mixing length 

is often taken equal to a scale height. However the eddy 

size c an hardly be large r than the radius,which near the 

center is less than a scale height. The p rocedure adopted 

was to make ) proportional to the minilllum of the pressure 

scale height, the radius, and the length of the convect ive 

zone itself. The constant of proportionality can be 

chv.nged to de te rrnine what effect this mi g ht ha ve on the 

evolution of th e system. 

'l'he third tern: re p r e se n ts the diffusion of the 

convect ive e ne rgy . It t e nds to spread out the turbulence 

evenly; it al so introduces it tu r eg i o ns previously stable . 
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It disappears when integrated over the entire convective 

zone. In estimating its magnitude the derivative can be 

replaced by 1/) , since the energy should not change sub­

stantially in a smaller distance. 

'

M -(W ·t W·lfl· )' ~ v J J :t. 1 

= o< l~Alwl 3 /J. ) 
As the term is small compared to the dissipation it is, 

for simplicity, neglected here. However,if one is inter-

ested in determining how far the turbulence extends beyond 

the convectively unstable region, this term must be retained, 

Here it will be assumed that the turbulence effectively 

stops at the edge of the convectively unstable zone (except 

for decaying turbulence in a previously convectively unsta­

able region). Another effec~ of the diffusion is to trans-

port energy from the area where the turbulence is produced 

most vigorously to the fringes of the turbulent area. How-

eve r as long as the speed of the convection is small com-

pared to the speed of sound, this effect will be consider­

ably smaller than the flux of internal energy (IPl'°J1lwl E ). 

For isotropic turbulence the l c:1s t term is 

-_JJ pwr 2 Dv/Dt 

for Wr we substitute its value as given by (13) and equa­

tion (14) becomes 

(15) 
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lwrl3/j - pwr2 
uv/Dt 

1be time derivative of Li is 

= - DEW· t7. V • + D Ej O \J. ( D W.W.) 
.~ J J 1 J ~ JJ 1 J 

1 2 3 

-[E\i'iP - J>E \liP/_?] 
4 

[ E V j Pi j - j> E/;; V j Pi j J 
5 

+ 

W·pE V ·V · 
1 J J 

W·V .F. 
1 J J 

12 

6 

- W·EV'·(W· O) 
1 J J; 

9 

7 

13 

8 

10 11 

The terms on the right hand side are numbered. Their 

approximate values for the radial component of the flux 

a r e given below. 

Te rms 1,3, and 7 combine to g ive 

- [s'7jCw1wjp) - .PE/,P V/wiwjp)] 
It r ef l e ct s the fact th a t the Re ynol ds stresses tend to 

h ave a g r eat e r effec t on til e ligh t e r usually more e ner-

getic e l e ments. .::.i n,il <• rly te rm 4 
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shows that the lighter elements are given a greater 

acceleration by the pressure gradient. The effect is 

usually to increase the energy flux. Both these terms are 

proportional to 

Since the square of the density fluctuations is supposed 

to be small, these terms will be neglected. 

Te rms 2 and 6 are 

- ,PEWr2( dVr/ d r) 

Terrr.s 8 and 10 give 

- f wr2 [ °dE/ ()r + P dv/d r J 
This is the entropy gradient (except for the effects of 

composition gradients). This is the basic driving force 

term that with the "buoyancy force" effect on the turbu-

lent energy creates the convective turbulence and energy 

flow. 

Term 9 is proportional to the rate of change of 

density. It is usually comparatively small and will be 

neglected. 

Term 11 is caused by the difference in the rate of 

energy generation between the hot and cold elements. Since 

nuclear reaction rates are strongly dependent on the temp-

erature, it may be significant in some cases. Below a cer-

tain value of the speed of convection the energy gained is 

greate r than that lost by the mixing of hot and cool ele-

ments . Its value is 
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.P EWr (d €: /dE) 

Term 12 is a dissipc;.tion effect whereby energy 

is radiated from hot to cool elements. Under tl1e condi-

tions considered h e re this was not important. The visco-

sity (terms 5 and 13 ) should not have an i mportant effect 

on the l a rge scale eddies which are important for th~ ~n.~r.-

gy trans port. The dissipation for the turbulent ene rgy may b e 

interpreted as a "mixing" of the material in a di s tance J.. . 
This ~ame estimate will be used here. 

Equ a tion (16) now becomes 

+ Lr d£ /dE - 2Lr ( O V r/ O r) 

3.3. Conservation of Energy 

The viscos ity term in the energy equation (8) 

is a pproximat ed as the e ne rgy lost by the turbulence 

through its dissipation. Then using the ap proximat ions 

de veloped in (15 ) the energy e qu a tion may be rewritte n a s 

~ - 1 
+ pwr )Dv/D:J 

( d r 2
Fr/ d r )/r 2 

As was ment i o ne d before , tll e se cond t e rn: on the right hand 

si de of ( S ) u s u a l ly malc"; s the e ff ec tive ~ ne rg y f lux large r. 
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The coefficient of Lr wa s generally given the value 4/3. 

Adding the rate of formation of the kinetic energy of the 

mean motion gives 

- - 2 - 2 
(19) y D<y£/.? + 1.5 pwr Ip + tvr )/Dt = 

- d { r 2 [ 4Lr/3 + Fr + (; + .f' Wr 
2
)vrJJ /~ r /r2 

+ 

The approximations developed do not violate the censer-

vat ion of energy. 

3.4. The Condition of Convective Instability 

We now show that the equations developed here 

are consistent with and predict the condition for convec-

tive inst ability. Eliminating usually unimportant terms 

and dissipative e ffects, equations (15) a nd (17; may be 

written 

D(r2Lr)/Dt /r 2 = -pwr2 [d.E/or + "Pa;-;a~ 

D(l.5 pwr 2
)/Dt = Lr ( d P/0 r )/[P 3(dE/dy )] 

If the pressure and entropy gradients have opposite signs, 

the solution is a n oscill a tion which will decay whe n the 

dissipation is added (conve ctive s tability). If they have 

the same sign, the solution g rows until checlced by the dis-

sil.-Jation (instability). In a s tur,of course, there is in-

stability if the e ntrop y increci_se s tow c. r d the center. In 

us ing thi s <:t pp roach the e ffec t of a co111µo s ition g radi e nt 
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on the stability (e.g.,semi-convection) does not enter 

exp lid. tl y. 

3.5. Convective Difference Equations 

The averaged speed of the convective turbulence 

( IWrf ) and the total convective energy flux across the 

spherical surface ( 4..,, r2Lr ) are defined at the boundary 

of each mass zone. 
n+l 

TI1eir values at t are denoted by 

W( I) and L( I) and at tn by WO( I) and LU( I). l'he equations 

to be approximated are (11),(18),(15), and (17). 0ften 

the relaxation time for the convection is smaller than the 

characteristic time of the evolution of the star. The 

convection is then approximately in equilibrium, and as 

the time step used is proµortional to the evolution time, 

the (dynamical) difference equations for the convection 

must reduce to the equilibrium case for these large time 

steps. This is done by giving all quantities on the right 

hand side of the difference forms of equations (JS) and 

(17) their values at the advanced ti~e tn+l(as explaine d in 

section 2.6.). 

The pressure-like term caus e d by the Reynolds 

stresses is defined at I-t as S(I-t). This is usually 

given the average value 

(s<r-t)) = .s [wc1-1; 2 + W(I) 2] /vCI-t) 

The term d.E/d p , under ty pical conditions , vvas usu a l 1. y 

approxitiw.ted by -3Pv 2 • \ve defi11e Y(l) as the me an of the 
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value of ( d£/ d..f' )p/( 0 E/~ ) p defined at I-~- and I+-} 

at the forward time tn+l. Here the symbol D indicates the 

(finite) change in a variable over the time step UT. The 

difference equations are 

(20) DUCl)/DT = -477'(R(I) 2) [<P(I+~-p + ~(!+-}~ 

(P(I-~- 9 - ~(!-~->] /DM(I) - G M(l) 4/H.(1) 2
) 

(21) lJECI-i- ) + [4>E(l-~-)> + ~o-t~ J Dv(I-~) 

DT { (f..<1-t ~ + [~L( 1-1 )/~+ i< I-1 ~- ~L(I )/:}-i<I ~/DM( I--lj 
Equations (20) and (21) are the new versions of (3) and (4) 

of the previous chapter. ~ote that (18) instead of (8) 

is used as the basis of (21) . While the change in the 

turbulent energy is usually r e latively small, the rate a t 

which it is being produced and dissipated is quite large 

(and nearly cancel each othe r). By using (IS) two l a r ge 

non-linear terms are re place d by two smaller r e l a tive ly 

linear quantities, which is to be µreferred in nume rical 

\\!Ork. U(I) 110\\1 indicates the aver ag e rad ial velocity. 

The two c o nvective e quations are 

(22) DL(I)/DT = W(l)2 

[~(I - i ) - v ( I +-} ~ + 

- 8 'fl' L (I ) H. (I ) 2 [ U (I+ 1 ) -

- L(l)W(I)/jCI) 

R2P(I) { . 5 [PCI- -} ) + P(I+~-)J 
E( I-t ) - E(I+f )} + L(IJ Y(I) 

U ( I -1 ) J / { DM CI ) [v ( I - ~- ) + v ( I +-} )] } 
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where 

1(2P(l) = 32'11'2R(I)4/{rn•t(I) [v<I-~-) 2 + v(I+t) 2J} 

(23) 1.5 DW(I)2/DT = L(I ) i!<I-1) - P(I+t~/[1.5 ~0-t) 

+ p ( I +~· 8 DM ( I ) } - w ( I ) 3 I ~ ( I ) 

- .5 ~v(I) 2 [<ov(I--})/DT)/v(I-t) +(Dv(I+-})/DT)/v(I+t] 

The term f.<r) is defined within a coefficient as the mini­

mum of the pressure scale height, the radius, and the 

length of the convective 2 one. 

Energy Conse rvation and Stability of~ Difference 

the sum 

Equations 

The total energy is r e defined by adding to it 

N 
°i: 1.5 DM(I) W(I) 2 

I=t 

The energy is then conserved to the same extent as in the 

p revious ch apter. As mentioned before, equ a tions (22 ) and 

(23) reduc e to the equilibrium form for l arge time s t eps. 

Us ing these forms of the convective equation s , the st ab-

ility appeared to be about the same as that of the equa-

tions omittinG convection th a t we re desc ribe d in cha p t e r 2 • 

.De tection of Convective Ins tability 

'·"i11.=n the r e i s no co n ve cti o n (W(I),L(I) = 0), 

:~ qu a t ions ( 22) a nd ( 2 3) a re not a ppli e d . Ins t abi lity is 
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considered to exist at I when the term 

+ E(I-t) - E(I+tJ 

becomes positive. This is tested for at the beginning of 

each time step and ,optionally, at several times durin g 

the convergence procedure. When ins tability i s detected, 

an initial e s timate is made for L(I), usually by equ a ting 

it to the sum of L(I-1) and (C.CI--})) /D'l'. W(I ) is the n 

found through equation (23). Equations (22) and (23) a re 

the n ipplie<l at I until the turbulence has di e d out, wh i ch 

will be a number of time steps af ter the boundary at I has 

become s table again. 

Diffus ion Effects 

When convective diffusion is added, equations 

(15) and (16) of the previous chap ter become 

and 

(25) DXj(I--~· )/lJT = XP(I-i)j - ~j(I--} )) /Qj 

+ 2"11iR(I) 2 WCI) [x/I+{-) - Xj(I--}~ 

+ R(I-1.)
2
W(l-1) [xj(I- ~) - Xj(l-i8}1[?MCI--})v(1-~j 

The c ompo sit ion at I- -~· now ~ffect ive ly d epe nds on the com-

position of a ll points of the conve ctiv 2 zone . The v a l ue 
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of Xj(I-t) does . not fit in with the solution scheme 

which .assumes dependence on only 3 or 4 neighboring 

points about I. Xj(I-t) may be solved for ,using equa­

tion (23), before each new iteration,using values of the 

other variables as given by the previous iteration. A 

simpler method is to hold the value fixed during the 

time step, solving only at the beginuing of the step. 

The former procedure should be more accurate; however, 

it usually slows down the rate of convergence. 

Method of Solution 

Equation (23) may be used to solve for W(I) in 

terms of the other variable s. Tiie method of solution is 

the same as that outlined in the previous chap t e r. The 

only difference is that there are three equations and 

three independent vari a bles at each point where convec­

tion exi s ts. 
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Chapter 4 

THE EQUATION OF STATE AND RATES uF ENhRGY GENERATION 

4.1. Equation of State 

The pressure and energy used includes the effects 

of radiation,ions, and electrons . The density and the 

pressure and energy of the electrons , including electron-

positron pairs, are C.>oO 

(1) p = 8"11 m3 c 3 u H J dx x2{ 1/ ~xp (z(y-Ep) ) + ~ 7 
113 0 

- 1/txp(z(y+EpJ) + D_} 
~ 

( 2) p = 87T m4 c5 I dx x4/y { 1/ ~xp(z( y-Ep)) + 1] 

3h3 

+ ~} 0 + 1/ ~xp(z(y+Ep )) 
0.0 

(3) E = v8 'ffm4 c5 f dx x2y{l/~xp(z(y-.EF)) + 1] 

h3 
1/ fxp( z (y+Ep )) + 1J) 0 + 

where.)< is the e l ectron molecular we i gh t(excluding p a irs) 

z = mc 2/IcT 

x is the momemtum in terms of me 

y i s the energy including rest mass in terms of 
2 

me 

Ep is the chemical potential in t erms of 
...., 

me.:::, , and 15 

defined by equation ( 1) as an implicit functiou of the 

t em perature and density. 

For non-dege nerate material where EF is l ess than 

one , the denond.n a tor s can be e x pandec!. , nnd the intesral of 

e <:tc l1 t e rm of the·? s 1u:1 ma y be exp r 1= s s e d in t e rms of rnodi f i e d 
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Hankel functions of the second kind, giving 

QC n+l 
(4) _p = B1r m3c3 µ H L (-) K2(nz)/nz [exp ( nz.E F) 

I 
I)= I 

h3 
exp(-nzEp J -

00 n+l 
4 5 £ 3K2 (nz)/n2z 2 ~xp(nz£p) (5) p = 87' m c (-) 

I)=/ 

3h 3 

exp(-nzEp)J + 

c-., n+l 
(6) E ·- v8'7r m4c5 I (-) [3K 2 (nz )/n2z2 + K

1 
( n:d/nz] 

h3 11=/ 

~xp(nzEp) + exp(-nzEF>] 

For z greater than 5 the Hankel functions may be accurate-

ly expressed by the first several t e rms of their asymp­

totic expansions. For z between 1 and 5 the following 

expressions give the functions better than one part in 

1 

(7) K 2(z) = exp(-z) ('fr-/2zf'-- (1 + 15/8z) + 

2 exp[ -z(.95851 z 2 + 14.122 z + 14.267 )j(z2 + 10.957 z 

+ 3 • 4 9 12 )] / z 2 

) .. 

(8) K 1 (z) = exp(-z) ('11' / 2z) + 

exp [-z( l . G1L3 z 2 + 7.56 24 z + 6 .1 486)/(z2 + 5 . 2018 z 

+ l . 3 C·85~ /z 
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The general metho d o f de t ermining the elec t ron 

p ressure and energy was to interpol a te between tabulated 

v a lues. The actual (line a r) interpolation wa s in e ach 

tabulated v a riable divide d by a p pro priate powers of the 

density and ternpe ra tu re , e ach power chosen so the inte r-

polated quantity varied slowly. Because of the hi gh t e rn-

pe rature dependence of the pressure and ene r g y where pair-

production was important, thi s method was not found to be 

satisfactory, if the number of points in the tables we re 

to be kept within a reasona ble limit. Th e me t hod use d here 

wa s to tabulate the differe nce be twe en the chemi cal po ten-

tial (solved by iterating (4 ) ) and the "firs t orde r" po-

t e n ti al ( the value when only the first t e rm of the sum in 

(4) is ke pt). The first orde r chemical potential is easily 

de termine d, and the dif f ere nce was u s u a lly small enoug h 

so it s value found by line ar interpol a tion was s uffici2 nt. 

Once the potential i s known, the pressur e a nd e nerg y a re 

given by the f ir s t f e w t e rms o f the sums in (5) and (6 ) . 

4. 2 . Nucl ear Reactio n s 

Impor tant r e actions include oxyge n burning in 

\.vhich s ilico n i s taken as the chief e nd p r oduct. The rat e 

of ene r g y p rodu cti o n i s (fowl e r a nd Hoy l e , 1 96 4 ) 

(9) log f- 0 = 55.7 + l og CpX0
2 ) - 2/3 log T

9 
..J_ 

- 5 9 .04 (l/T9 + .080)
3 

e r gs/ gm- sec 
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The energy per reaction is 16.5 MeV. 

· · By the alpha process silicon is converted 

largely to Ni56. The rate is determined by the brea kup 

of f\.g 24 , a small amount of which exists in equilibrium 

with the silicon. The rate was found to be (finzi and 

~folf' 1966 ) 

(10) log€..s:= 3C.47 +log Xs; -1/7 log(l/X
5

; -1) 

+6.31 log(T9/3) -61.67/Tg ergs/gm-sec 

17 . 
The energy release per gram of material is 1 .5 x 10 ergs .. 

4 .3. Neutrino Losses 

For non-degenerate material at elevated temper-

atures the major losses are due to 9 air-annihilation and 

the photo-neutrino process. The former p redordna te s for 

temper <).ture s above T9 =.5 • The non-degene r <: te non-re l a -

tivistic rates are (Levine,1963 ) 

(11) Ep,a
4 

= .49 x 1019 T9
3 

exp(-ll8.6/'T9)p ergs/g m- s ec ..!-

- _i 

(J. 2 ) epn. = 1.0 x108 T9
8f;... ~+1.u4x1012T9 3exp(-118.6/T9 )1J 

ergs/gm- se c 

For T9 gre a t e r than .5, value s for the loss clu e to pair-

2nnihilation 1\'ere dete r mined. by inte q Jol a ting ,u s ing the 

table given by Chiu (lS-61 ) . Tile ! <1s t coe f f ici e nt in 

equ ;1tion (1 2) (photo-neu trino losses ) i s to inc lude tl1e 

e f fec t s of the extra [)a cti c l cs du e to pair fortn<l t .i on. 
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Plasmon neutrino losses are important only at high den­

sities. where the material is degenerate. 

4.4 Opacity 

The opacity used was 

(13) k = E38/(l+T9 ) + 4.6xto-7 (z2/~_,f /T9
3

•
5 ]~ 

The first term is due to electron scattering , and the 

s e cond is bound-free absorption( Schwarzchild,1958). 

TI1e important term was the electron scattering. The 

coe fficient l/Cl+T9) is a rel a tivistic correction . 

Equation (13) is only appropriate for non-degenerate 

mate r ial. For deg ener acy the e ffective o pacity become s 

much smal ler, and is determined large ly by the heat con-

duction of the degene rate electrons. For the opacity 

the definition of the ele ctron mole cul ar weight~JZ-, 

must include the pairs. This means tha t at low densities 

the o pacity i s much larger than would othe r wis e be the 

c ase. 
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Chapter 5 

EXPLOSIONS OF 45, 52, AND 60 SOLAR MASS MODELS 

5.1. Initial Models 

The initial models were approximately isentropic 

with a central temperature Tg =.7 • The density gr adie nt 

was determined by making ( d v/CJ P) 5 /(dv/dP) a constant, 

Cl, throughout the star. Table 1 g ive s p roperties of the 

initi al models. 

The composition chosen was pure oxygen through­

out the star. At a central temperature of roughly T9 = 

.5, neutrino losses be gin to domina te loss of energy 

through radiation. Unless the oxyg e n core (for stars in 

this mass r a ng e h e lium is converted mostl y into oxygen) 

already extends throughout most of the star, he lium will 

begin to burn a t its edge as the star contr a cts. The en­

ergy generation will g row until it approximately equals 

the neutrino losses. As evolution is proceeding too f ast 

for much energy to be lost by r adi a tion, most of it goes 

into raising the e ntrop y of the mn t e ri a l outside the core 

(neutrino losses being concentrated nen r the cente r). l'he 

convective z one formed should extend most of the way t o 

the surface, and so most of the .star will be c onve rte d 

into oxyge n. This extension of the conve ction nearly to 

the s u rface f or s h e ll burning s houl d be a common featur e 

of the evolution \vhen neutrino l osses predo11.ina t e . I f 

there i s a s ub s t an ti a l e nve lope of h e liu111 or hy<lrogen, 



Mass 

45 

52 

60 

Central 
Specific 
Volume 
(cc/gm) 

1.185 E-4 * 
1. 267 E-4 

1.416 E-4 
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Table 1 

Total 
Energy 
(ergs) 

-2.38 E51 

-2. 73 E51 

-3.17 £51 

Cl 

.995 

.980 

.995 

Number of ** 
Mass Zones 

50 

50 

Su 

* The term E-4 indicates the preceding factor is to be 

multiplied by 10-4 • 

** The number of (equal mass} zones used was the smallest 

number for which it was felt would give reasonable result s . 

As ne ither a smaller nor larger number of zones was used in 

the evolutio na ry calculations, it is not known how sensi-

tive the results depend on the number of the zones. 



- 42 -

the masses given here refer to the mass of the core, 

since .the low molecular weight envelope should be suff i­

ciently extended so as to not significantly affect con­

ditions near the center (see Remarks). 

For stars of sufficient mass the entropy near the 

center is high e nough that, when the central temperature 

reaches T9 ; 1.5-2.0, the material near the center pene­

trates the "unstable are a" (i. e ., where / is less than 

4/3) caused by the production of e·lec tron-posi tron pairs 

(see Figure 1). The material appro a ches this area at a 

very oblique angle, as its boundary almost follows a line 

of constant e ntropy. Eventually the pressure does not in-

crease s ufficiently to continue to suppo rt the star as it 

slowly contracts, and it begins to collapse. Whether or 

not the star becomes dynamic a lly unstable, the extent of 

the coll apse if it does, and the inte nsity of the possible 

r e sulting explosion, depends heavily on the entropy near 

the ce nte r. for this r eason the s ize of the e xplos ion 

i s probably f airly s e ns itive to the initial conditions 

chosen . for the same reason it i s a lso sensitive wh e ther 

or not ne utrino l osses a r e include d (the y a r e included 

he re). When they a r e included , the e ntrop y gradi e nt of 

about the oute r h a lf of the s tar i s froz e n in. In the 
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interior an increasingly large entropy gradient is cre­

ated near the center where the losses are concentrated. 

Because of the relatively low entropy near the center, the 

length of the path of the material through the unstable 

area is smaller. As soon as enough material emerges on 

the high temperature side of the unstable area, the stif­

fening effect starts to reverse the collapse. The inclu­

sion of neutrino losses should then reduce the intensity 

of the explosion. 

Because of the probable sensitivity on initial 

conditions more realistic starting conditions should give 

. somewhat different results. However, the masses and ini­

tial conditions used cover most of the range of the inten­

sities of the explosions; this range of the intensities 

was the basic feature of interest. 

5.2. Onset of Instability 

From a central teniperature T9 = .7, the models 

took roughly lCO years to reach the point of instability. 

Over this period neutrino losses increased by more than a 

factor of 104 • At the end evolution was quite fast, on the 

order of a day or less. As the net energy of the star is 

roughly proportional to tile inverse of the radius, the 

average inward velocity should be proportional to the neu­

trino loss rate . The onse t of instability was deter111ined 

when the ( logari thme tic) r a te of change of the l<.ine tic 

energy was observed to be much l arge r than the correspon-



- 44 -
Table 2 M = 45 

Mass volume Temperature ( d logP/ d logj )
5 

neutrino 
Fraction (cc/gm) losses 

Xr v T9 '( (ergs/gm-sec) 
€v 

.01 .253 E-5 1.95 1.338 .166 E13 

.03 .339 E-5 1.89 1.328 .154 E13 

.11 .665 E-5 1.70 1. 3(19 . 871 E1 2 

• 21 .109 E-4 1.52 1.305 .363 E12 

.31 .159 E-4 1.36 1.311 .139 .El 2 

.41 . 227 E-4 1.23 1.326 .468 .Ell 

.51 .324 E-4 1.09 1.344 .1 25 Ell 

.61 .479 E-4 .96U 1.36(; • 238 Elv 

.71 • 7 55 E-4 .. 821 1. 37 0 • 257 E 9 

.81 .135 E-3 .671 1.376 .104 E 8 

.91 .336 E-3 .487 1.378 .18 1 E 6 

Radius(km) 
R 

.10 .208 E 5 

.20 . 299 E 5 

• 30 .378 E 5 

.40 .453 E 5 

• SU .53 U E 5 

• 6CJ .613 E 5 

• 70 • 701 E 5 

. 80 . 8 2 2 E 5 

• 9 CJ . 988 E 5 

1. CJO .151 E 6 
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Table 3 M = 52 

Xr v T 9 y €-y 

.01 .364 E-5 1.80 1.334 .950 E12 

.03 .491 E-5 1.74 1.323 .858 £12 

.. 11 .962 E-5 1.56 1.306 .452 f.12 

• 21 .156 E-4 1.39 1.307 .175 E12 

.31 .229 E-4 1.25 1.318 .603 Ell 

. 41 . 327 E- 4 1.1 2 1.332 .17 5 Ell 

.51 .472 .E-4 .994 1.352 .420 ElO 

. 61 .705 E-4 .870 1.363 .680 f. 9 

.71 .113 .E -3 .745 1.369 . 614 E 8 

.81 • 206 E-3 .607 1.374 . 225 E 7 

.91 .519 E-3 .438 1.375 .101 .E 6 

R 

.10 .246 E 5 

• 20 .354 .E 5 

.30 .448 E 5 

.40 .537 E 5 

.so .6 29 E 5 

. 6U .728 .E 5 

• 70 .842 . E 5 

. so • 983 E 5 

• 9(; .119 E 6 

1.00 .183 E 6 
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Table 4 .M = 60 

x r v T 9 t E:v 

. 01 .555 E-5 1.68 1 .324 .6 27 E1 2 

• 03 . 728 E-5 1. 6 2 1. 314 • 556 .E1 2 

.11 . 1 33 E-4 1. 46 1 .302 .281 .E12 

. 21 . 208 E- 4 1.31 1.307 . 106 f:. 1 2 

. 31 . 297 E-4 1.18 1. 321 .386 .Ell 

. 41 .41 5 E-4 1. 06 1. 339 . 786 ElO 

.51 .587 E-4 .949 1. 3 54 . 241 E10 

.61 . 859 E-4 . 835 1.364 . 398 .E 9 

. 7 1 .134 .E-3 .718 1.369 . 360 ..t. 8 

. 81 . 24 0 E- 3 .567 1. 37 2 .174 L 7 

. 91 .592 E- 3 . 430 1.37 3 . 862 L 5 

R 

.10 . 29 2 E 5 

• 20 .415 E 5 

. 30 . 51 9 .E 5 

. 40 . 61 9 E 5 

. so .7 20 E 5 

• 60 . 828 E 5 

. 70 . 9 51 b 5 

. 80 . 1 1 0 E 6 

• 9() .126 E 6 

1. 00 . 184 E 6 
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ding rate of change of the neutrino losses. Tables 2,3, 

and 4 .give conditions at the onset of instability. In 

each case it took somewhat more than 50(! seconds to reach 

a total kinetic energy of 2. E 48 ergs. In the descrip­

tion of each explosion this was chosen,more or less 

arbitrarily, as the z e ro point for the time. 

5.3. Evolution of 45 Solar Mass Model 

At about 63 seconds the kinetic energy reached 

its peak (during the collapse) of 6.88 £49 ergs. The 

velocity at the surface was -1,072 km/sec • At 73 sec­

onds the nuclear burning reached its peak value of 1.24 

E50 ergs/sec. Although the temperature increased slightly 

after this, oxygen depletion near the center more than 

offset the temperature increase. The neutrino loss rate 

was about 200 times smaller, .635 E48 ergs/sec. At 76 

seconds the collapse was halted at the center; the central 

density a nd t empera ture were 1.3 E6 gm/cc and 3.1 .E9 °K.. 
Table 5 g ives conditions throughou t the star at this point . 

At the halt of the collapse about 2 .9 solar masses of oxy­

gen were burnt, a nd about 2 . 9 b51 ergs liberated. f\.s t he 

star rebounds oxygen depletion and the fall of the temper­

ture quic kly cut off the nuclear burning. At 100 seconds 

the r a te had decre ased to the neutrino loss rate, about 

. 2 b48 e r g s/se c; a total of 3.3 solar masses of oxygen were 

burne d. Table 6 g ives ene rgy generation rates throu ghout 
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the evolution. 

1be effects of convective instability were not 

significant. At 82 seconds the star became convectively 

unstable at a mass fraction Xr = .cs. At 133 seconds the 

convective zone reached its maximum value of Xr = .12 .. 

The onset of the convection at a point some distance from 

the center was a common feature of the three models; it 

would appear to be due to the following. The high temper­

ature dependence of the neutrino losses creates an increa­

singly large entropy gradient as the center is approached. 

Ordinarily nuclear burning is even more sensitive to the 

temperature; this causes the convection to start at the 

center. However, in this case the collapse quickly pushed 

the ma terial to high temperatures where the dependence of 

the oxygen burning on the temperature is somewhat lower. 

This and the depletion of oxygen at the center spreads the 

energy generation over a larger area. The start of convec­

tion away from the center is then favored by an initially 

lower entropy gradient that exists farther out in the star. 

Except in the outer f e w per cent of the mass, no 

shock wave was observed to develop. This was a lso true of 

the other models. (There appeared to be a weak shock near 

the surface). Ono and Sakashita (1962) investig ated an 

analytical formulation of the progress of a s hock wave 

through a star . Their estimate of the powe r neces s ;-lry to 

generate a s hock wave in the inte rior was 
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3 E 46 (M/R) 2 • 5 ergs/sec 

where· the mass and radius are in terms of those of the 

sun. This is about 1 E53 ergs/sec, or about 1000 times 

the actual rate. 

After the collapse was halted the basic feature 

was the increase of the kinetic energy. The 45 solar mass 

model was the only one in which the total energy remained 

negative; however, this did not prevent some of the mater­

ial at the surface from being ejected. It does mean ~hat 

the entire star would not be disrupted. At 145 seconds 

the kinetic energy r e ached a maximum of 1.81 E51 ergs. 

The surface velocity was 4,33'/ km/sec. At 189 seconds the 

surface velocity reached its maximum of 4,652 km/s ec. 

This is only about 1/3 of the escape velocity a t the 

time of maximum contraction. At 940 seconds about the 

inner 903 of the star beg an to collapse ag ain. The cen­

tral specific volume was .3 E-2 cc/gm. Slightly more than 

two pe riods of the oscillation which was s e t up were fol­

lowed. The period was about 1300-1400 seconds. During 

the first oscillation the central density increased by a 

factor of 30 , a nd then decreased by a factor or 10. In 

the second oscill a tion it incre a sed by a factor of 5, and, 

during the expansion ~h ase , decre ased by a factor of 3. 

At least initially the o s cill a tions were be ing rapidly 

d ampe d out. The chie f caus e of the danipi ng was probahl y 
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the interaction with the ejected material. The evolution 

was carried out to about 4,000 seconds. Conditions at 

this point indicated a final velocity at the front of the 

ejected material of about 3,400 km/sec. Prom one to two 

solar masses were ejected. Table 7 gives conditions 

where the calculation was terminated. 

5.4. Evolution of the 52 Solar Mass Model 

At 112 seconds the kinetic energy reached its 

peak during the collapse of 2.64 b50 ergs, with a surface 

velocity of -1,849 km/sec. At 118 seconds the oxygen bur­

ning reached its maximum value of 3.35 E50 ergs/sec •. At 

125 seconds the collapse was halted at the center, and 

the star began to expand. The central density was 1.6 E6 

cc/gm, and the central temperature was about T9 = 3.3 • 

Table 8 gives conditions at the time of the halt of the 

collapse. The neutrino loss rate was 1.98 E48 ergs/se c. 

This was slightly less than 13 of the nuclear rate. At 

this time about 6.4 solar masses of oxygen had bee n burnt. 

By 139 seconds the oxygen burning rate was reduced to the 

neutrino loss rate of .6 E48 ergs/sec. A total of 7.3 

solar masses of oxygen were burnt. This made the total 

energy positive (2.21 E 51), so a large fraction of the 

mass of the star should be ejected. Energy generation 

rates throughout the evolution are given in Table 9. 
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Tabl e 5 M= 4 5 

Nuclear Ma s s 
.Energy Fr act i on, 
Generatio n Oxygen 
(ergs/ gm- s ec ) x16 . 

Xr v T9 €.v €n 
. 01 . 904 E-6 3. 01 .536 El 4 0599 £ 16 .131(; 

. 03 . 1 05 E-5 2 . 92 . 447 El 4 . 1 28 .El 7 .3156 

. l l .150 E- 5 2.6 6 . 243 El 4 . 505 .El6 . 9191 

• 21 . 222 E- 5 2 . 42 .136 El4 • 251 .E1 6 . 9968 

. 31 . 313 E-5 2. 1 9 .710 El 3 . 11 4 E14 . 9999 

. 41 . 438 E-5 2 . 01 . 389 b 13 . 4 1 5 E12 1. (j(j(J 

• 51 • 6 26 E- 5 1. 81 . 176 El 3 .102 Ell l. uco 

. 61 . 933 E-5 1. 61 . 663 El 2 .1 21 E 9 l. OGO 

. 71 .150 E- 4 1. 40 . 178 E12 . 425 E 6 1. {jlJ(i 

.81 . 276 E- 4 1.15 . 232 b l l l. Gl.10 

. 91 . 695 E- 4 .844 . 388 E 9 1 . (J(;(J 

R 

. 10 .13 5 E 5 

. 20 .184 E 5 

. 30 • 227 E 5 

. 40 • 269 E 5 

• su . 311 E 5 

• 6 () . 358 E 5 

• 7 (j . 412 E 5 

. 8 G . 480 E 5 

. 90 . 58C E 5 

1 . (!() . 899 E 5 
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Table 6 M = 45 

Ti me To t al Total Nu c l ear Neutrino 
( sec) Energy Kinetic Ene r g y Losse s 

t (e r gs) Energy Gene r ation (ergs/sec) 
ET (e r gs) (ergs/sec) Ly 

EK Ln 

0 -. 461 E52 .224 E49 . 6 30 E45 . 1 98 E47 

4 5 -.456 E52 . 3 09 E50 .451 f.49 . 1 50 E48 

59 -. 415 E52 . 642 .E50 • 57 4 E5U . 310 £48 

66 -. 350 E52 . 667 E 50 .103 E51 . 448 £48 

76 -. 231 E52 . 230 .E5Ci .119 .E51 . 693 f.48 

85 -.151 E5 2 .136 E50 .57 5 E50 . 7 15 E48 

1 00 -.132 E52 . 423 E51 . 175 E48 • 209 f.48 

112 " .104 E52 

145 " .181 E52 

166 ti .169 E52 

197 " . 145 E52 

519 " . 309 E51 

943 " .171 E.51 

1490 II . 381 E51 

1 702 II . 1 61 E51 

1893 " . 240 E51 

2237 " . 1 20 E51 

2611 fl .141 E51 

3177 " . 977 .125() 

3354 " . 134 E51 

398 9 fl • 97 5 E51 
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Table 7 M = 45 

Xr v T9 

• 01 .470 E-3 .398 

.03 .572 E-3 .385 

.11 .812 E-3 .346 

.21 .119 E-2 .308 

.31 .171 E-2 . 27 5 

.41 . 247 E-2 .250 

.51 .372 .E-2 . 211 

.61 .619 E-2 .177 

.71 .126 E-1 .137 

. 8 1 .69 5 E-1 .080 

.91 .229 E 3 .139 .E-1 

velocity(km/sec) 
R u 

.10 .110 .E 6 -51 

.20 .150 E 6 -83 

.30 .18 5 E 6 -98 

.40 . 219 E 6 -116 

.so • 256 E 6 -135 

.60 . 298 E 6 -177 

• 70 .353 E 6 - 212 

. 80 .450 .E 6 -334 

• 90 .182 .E 7 278 

1.0Ci .136 E 8 3,506 
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At 116 seconds convection started at Xr =.OB. 

At the time of the reversal of collapse the convective 

zone spread to Xr =.28. The maximum value of the con­

vective luminosity was 4.7 E49 ergs/sec. The total tur­

bulent energy was 3.3 E49 ergs, with a maximum speed of 

the turbulence of 420 lcm/sec. At 138 seconds the convec­

tive zone reached an approximate maximum value of Xr = 
.58. 1'he maximum turbulent energy was 8.6 E49 ergs; the 

largest value of the speed of the turbulence was 550 k.m/ 

sec. This was less than 103 of the speed of sound, and 

the turbulent energy density less than 13 that of the 

internal energy. Therefore the dynamic effect of the 

turbulence was probably quite small. As the entropy 

gradient in the outer part of the star was small, a slight­

ly larger release of energy would probably have extended 

the convection to the surface. 

At 191 seconds the kinetic energy reached its 

maxirm.1m of 4.88 E51 ergs. The velocity at the surface 

was about 6,400 k.m/sec. At 310 seconds the surface velo­

city reached a maximum of 6,774 km/sec. The evolution 

was carried out to 1,257 seconds, by which time the sur­

face velocity declined to 6,62~ km/sec. By subtracting 

the gravitational energy from the kinetic energ y a t the 

surface, the final velocity was estimated at 6,50Li l\.lu/sec. 

By finding the point where the velocity equaled the velo-
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city of escape, it was found that a minimum of 20 solar 

masses would be ejected. Since the total energy is 

positive, it may be that essentially all the mass would 

be found to be ejected if the evolution were followed 

long enough. Table 10 gives conditions at the point 

where the calculation of the evolution was stopped. 

5.5. Evolution of the 60 Solar .Mass Model 

During the collapse the maximum kinetic energy 

of .625 E51 ergs was reached at 137 seconds. TI1e surface 

velocit y was -2,750 km/sec. At 142 seconds oxygen burning 

reached a peaK of .774 E51 ergs/sec. Neutrino losses were 

about t% of this. At about 148 seconds the collapse began 

to be reversed. At this point the nucl ear burning rate 

was .582 E51 ergs/sec; the decrease was due to oxygen 

exhaustion near the center. The central density was 

2 E6 gn~cc, and the central tempe r a ture was about T = 3.6. 
l) 

Energy release from the o<-process never be came signif i-

cant. The collapse was halted before the tempe rature at 

the center reached the point where heavier nuclei begin 

to decompose back into helium. It may be that in a con-

sjderably more mas5ive star(e.g.,100 solar masses,if any 

exis t) the collapse would not be reversed until the center 

reached this point; in that case the collapse might never 

be stopped . At the reversal of the collapse in the 60 

sol ~ r mass model about 12 .4 sol ar masses of oxygen h ad 



- 56 -
Table 8 M = 52 

Xr v T9 €.y c" x 16 

. 01 .7 34 £ -6 3. 28 .1 2 3 £ 15 .720 E15 . 0142 

• 03 . 900 £-6 3.18 .116 E15 .183 .E16 • 037 (; 

.11 .132 E-5 2 .92 .561 E14 .161 .El'( .4086 

• 21 .176 E-5 2.67 .301 E14 .516 E16 . 9CJ8(J 

.31 . 232 E-5 2 . 46 .168 E14 .423 E15 . 99 5(; 

. 41 .317 E-5 2 . 25 . 893 E13 . 232 E14 .9998 

.51 . 444 E-5 2 . 05 • 47 (J E13 . 868 £12 1.Ci{J(J 

. 61 .655 E-5 1. 84 • 211 E13 .169 Ell 1.0(;(.; 

• 71 .104 E-4 1.61 • 7 0 8 .E12 .118 E 9 1. 00(; 

. 81 .190 E-4 1.35 .136 E12 . 101 E 6 1. 000 

.91 . 474 E-4 1. oc • 471 ElO 1. (;(j(J 

R Conve ctive Lu minosity 
(ergs/se c ) 

Le 

.10 .136 E 5 .135 E5 0 

. 20 .18 3 E 5 .454 E50 

• 3 (J . 230 E 5 

.40 • 260 E 5 

. so • 298 .E 5 

• 60 • 34(! E 5 

• 7 (J .38 9 .E 5 

. 80 . 45U E 5 

. 90 . 541 E 5 

1. uO . 837 .i..:. 5 
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Table 9 M = 52 

Total 
Turbulent 
Kinetic 
Ene rgy 
(ergs) 

t ET EK* .E c Ln L" 

0 -.524 E52 .201 E49 .455 £44 .127 E47 

80 -.524 £52 .441 E50 .433 E48 .101 E48 

97 -.510 E52 .137 E51 • 259 E50 . 264 E48 

112 -. 292 E52 . 264 .E51 . 259 E51 . 893 E48 

118 -.100 E52 .164 E51 . 332 E51 .144 ..E49 

125 • 719 E51 .401 E49 .328 .E50 . 222 E51 .198 E49 

134 . 219 E51 .396 E51 . 826 E5U • 242 E50 .125 E49 

138 • 221 E51 . 836 E51 .863 E50 .957 E48 .589 .E48 

143 II .153 .E52 .827 E5u 

157 " .356 E5 2 .692 E50 

191 " .487 E52 .503 ESU 

315 II .406 E52 . 209 E50 

610 II .333 E52 . 990 1::49 

1 257 II • 288 E52 .68 2 .E49 

* does not include turbulent energy 
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Table 10 M = 5 2 

xr v T9 

.01 . 183 . 484 E-1 

. 03 . 249 . 469 E- 1 

.11 .415 .406 E-1 

• 21 .597 .358 f. -1 

. 31 . 8 33 . 320 .E- 1 

.41 1. 25 • 276 E-1 

.51 1.8 5 . 241 B-1 

. 61 3 .01 . 202 E-1 

. 7 1 5 .53 .164 £-1 

. 81 11. 7 .1 26 E-1 

. 91 33. 9 . 851 E-2 

R Le u 

.10 . 89 5 E 6 . 1 53 .E46 651 

. 20 .124 E 7 . 257 E45 935 

.30 .154 E 7 11.61 

. 40 . 182 E 7 1390 

.so . 21 3 E 7 1661 

. 60 . 248 E 7 1973 

. 70 . 29 1 .E 7 2368 

. 80 . 351 E 7 2931 

. 90 . 443 .E 7 3841 

1 . 00 . 719 E 7 6662 
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been burnt; as in the case of the 52 mass star more than 

enough energy was released to disrupt the star. Table 11 

gives conditions throughout the model at this point. 

At 137 seconds convection started at X =.08. 
r 

By 148 seconds it had reached Xr= .56. The largest 

value of the convective lumino~ity was .21 E51 ergs/sec. 

The maximum value of the speed of the turbulence was about 

1,000 km/sec. This was about one tenth the speed of sound. 

As in the previous case this was probably too small for 

the turbulence to have much dynamic effect. At 156 sec­

onds the front of the convective zone r eached Xr =.8 2 ,and 

at 162 seconds it reached the surface. These last two 

figures are not very rueaningful. !'here i s no energy cen-

erHtion in the outer half of the star, and the front of 

the convective zone moved considerably faster th an the 

speed of the turbulence. The convective equations repre-

sent a type of diffusion, and so are not very good in des ­

cribing the motion of the front of the convection zone when 

it is moving very f as t. In the program that was used,the 

time it takes the convective front to move across a mass 

zone is the time it takes the mass zone to absorb e noug h 

energ y to raise it s ent ropy above that of the ne xt zone. 

In some case s for nearly i se ntropic rnat e rial tlli s tinie may 

be much le ss than the time it should take the turbule nce 

to cross it; this malce s the front of the convection zo ne 



-60 

advance faster than it should. As in the other cases 

the ev9lution was too fast by about a factor of 10 for 

the mixing by convective diffusion to keep the high temp­

erature areas supplied with fuel from the rest of the 

zone~ 

As in the previous cases the nuclear energy gen­

eration decreased very rapidly after the reversal of the 

collapse; by 158 seconds it was reduced to the neutrino 

losses, about .14 £49 ergs/sec. A total of 15 solar 

masses were burned. Table 12 gives the energy generation 

rates. At 224 seconds the kinetic energy rose to its m2~x­

imum of .109 £53 ergs; the velocity of expansion was 8 , 741 

km/sec. .Evolution was carried out to 390 seconds. Table 

13 gives conditions at this poirit. The maximum surface 

velocity of 8,948 km/sec was reached at 345 seconds. 

Using the same methods as in the previous case, the final 

velocity was estimated to be greater than 8,500 km/sec, 

and at least 40 solar masses were ejected. At the time 

when the calculations were stopped (390 seconds) convec­

tion had carried about 7 E49 ergs to the surface. 

5.6. Summary ; ~omoarison with Observations 

Table 14 gives the results for each mass. 
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Table 1 1 M = 60 

Xr v T 9 €.v £,, X1 6 

. Gl . 629 E-6 3 .56 . 21 5 b l5 .34 1 E15 . 0026 

.03 0 76 2 .E-6 3. 4 6 .184 E15 . 8 1 5 E15 • (J(J6 5 

.11 . 111 E- 5 3 .18 . 147 E1 5 . 134 .E17 .091 9 

• 21 .147 .E- 5 2 ~ 92 . 649 E1 4 • 278 E17 . 514 1 

.31 .189 E- 5 2 . 7 1 . 366 E1 4 .672 .E16 . 9086 

. 41 .244 E-5 2 .50 .21 4 E1 4 . 619 E1 5 . 9929 

. 51 . 324 E-5 2.29 .112 .E14 .380 £1 4 . 9997 

. 6 1 . 442 .E-5 2 . 0 9 ."57 5 E1 3 .1 07 .E1 3 1. GOC 

• 71 • 7 0 6 E-5 1 . 8 3 . 2 1 9 E1 3 .17 5 .E l l 1. (J(;(J 

. 8 1 . 121 .E- 4 1. 57 . 597 E1 2 . 421 .E 8 1. G00 

. 91 • 278 E- 4 1 . 23 . 523 Ell 1. (Jl;(J 

R Le 

.l(J .135 .E 5 .134 £48 

. 20 .182 E 5 .130 E51 

• 30 . 220 E 5 . 209 E51 

. 40 . 25 5 .f. 5 . 147 E51 

.50 • 290 E 5 . 5 38 .E5 U 

. 60 . 327 E 5 

. 70 .368 E 5 

• 80 . 421 E 5 

. 9U . 497 E 5 

1. 0 0 . 672 E 5 
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Table 12 M = 6 0 

t E'r Bi<.* Ee Ln Lv 

0 -. 563 E52 . 221 E49 .322 E43 . 932 .E46 

107 -. 565 E5 2 .918 E50 • 57 1 E48 .152 E48 

133 -.314 E5 2 .576 E51 . 428 E51 . 124 E49 

137 -.10 5 E52 . 625 E51 .617 .E51 . 196 .E49 

143 . 31 4 £ 52 .360 E51 .761 E51 . 360 b49 

1 48 . 668 E 5 2 . 541 .E49 .311 £ 51 • 582 1:.51 . 476 E49 

152 . 815 E52 . 602 E51 .489 £51 . 132 .E51 . 411 E49 

156 . 825 E52 .17 6 E5 2 .6 27 E51 .286 E49 .158 f.49 

159 II • 296 E52 . 64 8 E51 . 451 f.47 . 623 l.48 

1 66 II . 533 E52 . 623 f.51 

174 II • 772 E52 .592 E51 

201 II .107 E53 . 475 £51 

224 II .109 £ 53 . 389 E51 

390 " . 992 E52 . 176 E51 

*doe s not includ e t urbule nt e nergy 
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Table 13 M = 6U 

xr v T9 

.01 .162 E-1 .125 

.,03 .209 E-1 .. 121 

.11 • 279 E-1 .111 

• 21 .395 E-1 .97 5 E-1 

.31 .521 .E-1 .881 E-1 

.41 .699 E-1 .791 E-1 

.51 .953 E-1 .706 E-1 

.61 .139 .615 E-1 

.71 .193 .545 E-1 

.81 .333 .441 E-1 

.91 .742 .318 E-1 

R Le u 

.10 .403 E 6 .162 E47 1,519 

• 2(; .544 . E 6 .919 E47 2,035 

.30 • 660 E 6 .777 .E47 2,563 

.40 • 770 E 6 .579 E47 3,000 

.so .881 E 6 .549 E47 3,448 

.60 .999 E 6 .497 E47 3,885 

• 7 (J .113 .E 7 .508 E47 4,522 

• 8G .129 E 7 • 527 E47 5, 238 

• 90 .151 E 7 .398 £ 47 6,190 

1.00 . 214 E 7 8 ,943 
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Table 14 

.Mass Solar Masses Solar Masses, Velocity of 
Ejected Oxygen,Burned .Expansion( km/ sec) 

45 1-2 3 3,400 

52 '7 20 7 6,500 

60 ,, 40 15 8' 500 

The best known features of Type II supernovae 

are their light curves; they take perhaps a week to rise 

to maximum luminosity and then several weeks to decay. 

The investigation of this was beyond the scope of the 

evolution followed here. Type II supernovae are observed 

to expand with a velocity of 5,0C;0-10,000 km/sec. The 

mass of supernovae remnants is not well known. It is 

usually estimated to be of the order of several solar 

masses. One estimate of 60 solar masses was made by 

Shklovskii (1960 ). The results of the explosions induced 

by pair production fit in roughly with these observations. 

There is also the question of whether there are 

enough massive stars to account for these supernovae . 

It has been estimated that there is one type II supernova 

per gal axy about every 500 years. The solar luminosity 

function ¢ (nu1nber of stars per cubic parsec per unit 

visual magnitude on the main sequence in the solar ne igh-

borhood) was computed by Sandage ( 19 57) to M = -6; the 
v 

mass for this magnitude was estimated to be about 33 solar 

masses. Here we estimate that~ ,for more massive obj e cts, 
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is 
"" (.Mv +6) 

.y/ = e20 E-8 x 10 

Assuming the luminosity is proportional to the cube of 

the mass, and neglecting changes in the bolometric cor­

rection, ~', the number of stars per unit solar mass,is 

-7.5 
.6 E-8 (M/33) /M 

The time on the main sequence is estimated to be 

T = 1.6 E 7 (25/M)2 years 

Taking 33 solar masses as the lower limit for pair pro-

duction explosions and neglecting any mass loss after the 

main sequence is left, the numbe r of explosions per cubic 

parsec is 

N = 
oc 

I dM "''/T 
33 er 

The values above give N = 1.5 E-16/yr. When all material 

is projected onto the central plane of the galaxy, the 

number of these massive stars per pc 2 is 220 f; the tot a l 

mass per pc 2 is 55 solar masses(Schrnidt,1959). Taking the 
11 

mass of the galaxy as 10 sol ar masses, the re will be 

about one explosion every 15,000 years if the solar ne i gh-

borhood is representative of the gal axy as a ~vhole. This 

is too low by about a factor of 30. It might be noted that 

the relative a bundance of these massive stars in you n g gal-

a ctic clu s t e r s is about 2 ,5C C1 times as gre at as i n the 

sol ~'-r neighborhood. It would be nece s sary that t hese 

cluste rs be representative of sorne ~vh a t mo r e than 1% of the 
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of the mass of the galaxy to provide a sufficient number 

of massive stars. 
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Remarks 

It was argued in section 5.1. that if there is 

any shell burning after neutrino losses become important, 

it should extend the effective convective zone over much 

of the envelope (to the point where the envelope becomes 

so extended that mixing cannot be effectively established 

during the burning time). Fowler and Hoyle (1964),how­

ever, took the mass of the e nvelope to be 1/3 of the total 

mass. If this is correct, the masses given here (which are 

the effective core masses) should be multiplied by 1.5 to 

give the total mass. 

With the possible exception of the lower mass 

star, the total amount of oxygen burnt should not be 

very sensitive to the r~action rate. ~ost of the oxygen 

near the center is consumed; a higher rate would just ex­

tend the burning region outward somewhat, while a lower 

rate would still be sufficient to burn most of the oxygen 

near the center. Since the increase in p ressure due to the 

energy rel e ase of the burning is partly r e s ponsible for the 

reversal of the collapse, a lower reaction rate should r e ­

sult in a collapse to a highe r tempe rature. It is esti­

mcit e d thal if the rate doe s not diff e r from the o ne u sed 

in the calc~lations by more than a factor of 1 00 , the 

amount of ma t c rial c o nsumed should not ch a nGe by niore than 

a f ;ic tor of 2 . 
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It now appears that the reduced width, e_: , 
for the c1 2 (o<: ,((")o16 reaction is .1 (fowler,1967 ). 

About 253 of the helium is then converted into carbon 

in these massive stars (Deinzer and Salpeter,1964 ). 

A convective core due to carbon burning should then be 

formed at a central temperature of about T9 =1.1. The 

small amount of neon formed will burn at a highe r temp-

erature (T9 = 1.3-1.6 ). The result will be a somewhat 

g reater central entropy (at the onset of instability) 

than that found for the models investi 8 ated here. 

Barkat, Rakavy, and Sack (1967) recently computed 

the explosion for a star with a core of 40 sol ar masses. 

Six solar masses of oxygen were burnt for no conve ctive 

mixing, and 1 2 were burnt for instantaneous mixing. l'he 

convective mixing for the models investigat e d he re only 

increased the amount of oxygen consumed by a few per cent. 

Therefore 6 solar masses should be <lbout the ri ght figure. 

This is about what would h a ve been burnt for a SU sol a r 

mass version of the models investigated in this paper . 
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Figure 1 outlines the boundary of the area in which ;( 

becomes less than 4/3 because of electron-positron 

pair production. 
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