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ABSTRACT

Sufficient stability criteria for classes of parametrically
excited differential equations are developed and applied to example
problems of a dynamical nature.

Stability requirements are presented in terms of 1) the modu-
lus of the amplitude of the parametric terms, 2) the modulus of the
integral of the parametric terms and 3) the modulus of the derivative
of the parametric terms.

The methods employed to show stability are Liapunov's Direct
Method and the Gronwall Lemma. The type of stability is generally re-
ferred to as asymptotic stability in the sense of Liapunov.

The results indicate that if the equation of the system with
the parametric terms set equal to zero exhibits stabillity and possesses
bounded operators, then the system will be stable under sufficiently
small modulus of the parametric terms or sufficiently small modulus of
the integral of the parametric terms (high frequency). On the other
hand, if the equation of the system exhibits individual stability for
all values that the parameter assumes in the time interval, then the
actual system will be stable under sufficiently small modulus of the

derivative of the parametric terms (slowly varying).
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INTRODUCTION

Systems of explicit ordinary differential equations have been
studied by pure and applied mathématicians since the beginning of the
century. Cesari's work (1) is an excellent reference in this field.
Sufficient existence and uniqueness theorems have been credited to
Osgood, Kamke, Cauchy, Peano and Lipschitz. Most have been based on g
bounded Lipschitz constant or an integrable Lipschitz constant over the
period of applicability. Fortunately, the mathematical representations
of physical problems encountered by the engineer and scientist usually
fall into the class of equations which can be shown to exhibit solu-
tions which are unique.

For application, the properties of the solution are desired.
Ideally one would like the exact solution wherein the value of the
solution vector can be readily obtained for any time t . However,
with the exception of the linear equation with constant coefficients,
this is not feasible. Some beneficial statements nevertheless can be
directed to such solutions. The continulity with respect to initial
conditions generally follows from the existence proof. Continuity of
higher derivatives of the solution was studied by Coddington and
Levinson. Investigation of equations often reduces to finding bounds
on the solution and thus restricting the solution to some reglion of
the phase space. For a fixed time, the bounds are considered improved
if the region can be reduced in size. Two distinct methods have
been utilized to demonstrate such bounds. The application of the

Gronwall Lemma directly to the integral equation has been effective.
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Many of the existence proofs are based on this lemma. The other
epproach is the Liapunov Direct Method (2) which considers an equation
of the stability boundary rather than the trajectory equation directly.

The stability of the class of linear equations with para-
metric coefficients has received considerable attention in the
literature. Iiapunov, Hukahara and others investigated the case where
the coefficients approach constant values with time. Conditions on the
time dependent characteristic roots were analyzed by Cesari, Wintnexr
and Markus. The Floquet Theory considers coefficients which are
periodic in time. More recently Kozin (11) and Csughey (6) consider
the cases where the coefficients are stochastic. Wang (9) extended
Kozin's method to linear partial differential equations.

The concept of utilizing particular properties of the co-
efficient matrix has been the motivation of research into the stability
of such equations. The introduction of the derivative and integral of

the parameters (frequency content) is the aim of this thesis.



CHAPTER I

SECOND ORDER ORDINARY LINEAR SYSTEM
INTRODUCTION

In this chapter a Liapunov type theorem is proved (Theorem A)
and then applied to demonstrate the asymptotic stability of the origin
of X + cx + [mz + E(t)]x = 0 . Theorem B demonstrates the stability
of the equation under sufficiently small bounds on the derivative of
§(t) and for a narrow banded function in the frequency domain this is
equivalent to "low fregquency bounds." Theorem C demonstrates the
stability of the equation under sufficiently small bounds on the in-~
tegral of ¥E(t) and for a narrow banded function this can be referred
to as 'high frequency bounds." Theorem D considers the stability
under only the condition of a small modulus of &(t) without any re-
gard to its frequency content and hence is referred to as "™universal

stability bounds.”

PRELIMINARIES
The following theorem is an extenslion, for time dependent
functions, of Theorem VI of LaSalle and Lefschetz (8). It is similar
to Liapunov's Direct Method but develops asymptotic stability for the
av

case when Iz is not negative definite.

Theorem A

Given the system of equations:



dx _ o/=
-(-ﬁ:-—f(x,t) £ 20

2(0) = &, LL3)

where f(X,t) together with its first partial derivatives is continu-
ous in X and t , such that the existence and uniqueness of the in-
itial value problem associated with 1.1 is assured for ieso .

Then if there exist functions V(%,t), Vz(i), V3(i) and

compact sets St(io), Sl(io) with the following properties:

i) Vv(x,t) +together with its first partial derivatives is

continuous in X and t

i1) v(0,t) =0 ¥t =0

|

111) V(k,t) 2 Vy(X) >0 ¥t V||| £0©

iv) v(x,t) = V3(i) <0 ¥t , along any trajectory X(t) of

Lo
v) Vz(i) B V3(i) are continuous in X and v2(6) ; V3(5) =0
vi) |¥(%,t)| <= along any trajectory of 1.1
vii) R is the set R : {:‘clv3(§:) = 0}
viii) s, (%) {x|v(x,t) = v(:'co,o)} C s (k) Cs, vt 2 0

then: 1) solutions of 1.1 arecontained in S,(X)) .
2) solutions of 1.1 tend to N as t tends to infinity,

where N is the largest invarient set in Sl(io)f1 R .



Proof:

Part 1. This part establishes the boundedness of the solu-
tions. Along any trajectory of 1.1 V(x(t),t) is a positive, non-

increasing function (by 4iii and iv )

s V(E(L)5E) sv(:?:o,o) (1+28)
Thus by viii) Et) e st(:'co) (1.3)
.*. X(t) is contained in sl(:‘co) ¥t 20 .

Part 2. This part establishes the asymptotic stability of
the solutions. Before proving Part 2 of Theorem A, it is necessary to
establish the following lemma. This lemma develops a sufficient con~

dition for Lim V=0 4if Iim V=4 .

T Tt
Lemma 1
If 1) v(t) is twlce differentiable for t ¢ (to,aﬁ ‘

2) V(t) tends to a limit £ as t ‘tends to infinity.

3) V(t) is bounded for t e (t_,®) .

Then Lim V(t) = 0 .
R Fna]

Proof:

By Taylor's Theorem:

2
V(t+h) = V() + HU(s) + > ¥(g) (1.4)



Vvh 3>t and t+h € (to,m) and t < € <t+h .

thus V(&) = § [(V(em)-2) - (V(£)-)] - 3 (E) (2.5)
. . 2 h .
e tfiif V()| = ¢ tggtc lv(t)-4] + % tlﬁiif |7 (¢) | | (1.6)

The minimum of the right hand side of 1.6 occurs for

= =\/;1§§:; [vee)-6 oz [¥(2)] (1.7)
tf?é | V()| = 2\/1523: | v(t)-2| tI;Izié 1% ()] (1.8)

Let t© w5 # and hence 1 , tend to infinity

.*. Lim Max|V(t)| < 2\/§Lﬂx tmziclv(t)—zltmj tM:i:lV(t)]}

£ t St
(1.9)
But Lin V(t) =4 and |[V(t)] <=t e (t,,°) .
t‘]);_:g t(}fzztc |v(z)| =0 (1.10)
g v(t) =0 (1.11)

Returning to the proof of Part 2 of Theorem A, V(X(t),t) is
.a positive, non-increasing function, bounded below; hence

V(x(t),t) = V(t) must tend to a limit ¢ as t tends to infinity.
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Using vi) and Lemma 1, this implies that the %ig V(i(t),) = 0 , which
in turn implies that [im V4(%(t)) =0 . Thus I"eR , where I'" is the
positive limit set for equation 1l.l. Since x(t) is bounded in

Sl(io) , its positive limit set ™ is a non-empty invariant set.
Hence all solutions of equation 1.1 must tend to N &as t +tends to
infinity, where N is the largest invariant set in the intersection of

R and 8 (X)) , i.e., In RN 5/ (X) .

Main Problem

Given the differential equation:

X 4 e ¢ [ma +E(t)lx =0

X(O) &= XO 3 J-C(O) = }.CO
o (112)
where 1) &30, @ >0
1) |at/at [s(t)]| <= 1=0,1,2, 3 & )

The space So of existence and uniqueness of this initisl value
problem is the two dimensional REuclidean space EZ .

We have the following theorems:

Theorem B "Low Frequency Stability Bound"

If in equation 1.12 there exists B,s ei and € greater than

zero such that:



i) «®>B 2m2-[§(t)lzel'>o t =0

.1
(1.13)

11) [2e-]5(8)]| [0P-lE@®)1MIze>0 t=zo0

Then equation 1.12 is asymptotically stable at the origin,

and further:

A\ 2 -
|x| =V} + x7/e;

(1.1k4)
|x| S-\/(jcﬁ + :'cg/ei)Bl
Proof
Let V(x,%,t) = x° + %[’ + 8(t)]7F (1.15)
Then V(x(t), %(t),t) = -%%[w? + E(t)]™ {2c + 8(t) [of + B(t)]™*]
(1.16)
Let Vy(x,%) = x° + 2%/B, >0 (1.17)
v3(x,5c) = —:‘cze/Bl {1.18)

R is then the set R:{x|x = 0}

- - -1.2 so =L 2 o -1
Let S,(x) be the set Sl(xo):{x\x + xaBl x4+ xo(ei) }
(1.19)
Let S_(X,) be the set St(io):{i!xz + iz[w?+§(t)]-l S:x§+i§[aﬁ+§(o)}-l}

(1.20)

Then S,t(z_co) c sl(n':o) cs, £ 21)



All the conditions of Theorem A, except Vi), are satisfied.
Hence

1) All solutions of 1.12 are caatainsl in Sl(io) . Hence

\

| SVaZ 4 3

$ (1.22)

) <V + 55en) ™,

/

Using 1.12, 1.13, 1.16 and 1.22 it is easily seen that V(x(t),%(t),t)

is bounded, hence:

2) All solutions of 1.12 tend to N , the largest invariant

set within sl(io) NR, i.e., within f{xk =0, k| <Vx +1'c (el) }
Now dx/dx = [-cx - [a)2 + 8(%) 1x) [k}-l (1.23)
lax /ax ‘x:O = ® except at x=0

Thus R contains no arc of a trajectory of 1.12 except at x = 0.
Hence N 1is the origin itself. Therefore all solutions are bounded
end tend to zero as tends to infinity, the origin is therefore

asymptotically stable.

Theorem C "High Frequency Stebility Bound”

If in equation 1.12 there exists Bz, eé, ¢ and ' greater

than zero such that:



1) > B2 (w? + 82 - c|&]1=2 ey >0 t2 0

i1) ¢ - 2|8 za >0 t 20 oles
i 2 0 . as

1ii) 20 + 28 - 2¢|8] - [E|l =z’ >0 t 20

2k)

Then equation l.12 is asymptotically stable at the origin, and further

x| s-\[xi + %+ x_ 5(0)1% [e1]™F expl2 Max |s|]

(1.

25)

(%1 SV;§+[:'co+xo é(O)]2 [eé]-l {/ﬁé + Max|8|] exp[2 Max|s|]

Proof:
Let x = exp(-s)y - (A
Equation 1.12 becomes
¥+ [c-231F + [0 + 3% - c8ly = 0 (1.
Let VY, ¥,t) = ¥° + $ol0? + 8% - a1t (1.
L V(y(t),5(t),t) = -§Ple-28] [0 H8Z-c8]™Y [2-BloP5%-cE1] (1.
= 2 2
Let Vo(¥) =¥ + /B, (1.
T P -
V3(y) = -y o' B, (1.
The set R 1is given by R:{S'rlz;r = 0}
- - wi BBl A B sl
Let 8,(¥,) be the set 5, (¥ ):{¥|y +y?‘B2 < ¥ v (el) 7} . (1.

Let St(yo) be the set:

8, () {725 16fs(0)-ea ()17 = yorille82(0)-cs(01™) (2

26)

27)
28)
29)

30)

32)

«33)



Then st(i'o) e sl(irc) c8, (1.34)

All conditions of Theorem A, except Vi), are satisfied,

hence

1) All solutions of 1.27 are comtained in Sl(ﬁo), hence

|9 s\/;g + ey
(1.35)
13 < Vo2 + 53ep™)s,
Using 1.26 and 1.35 it is easily shown that:
ke | SWJ:KE + [io + X 5(0)]2 [eél-l exp[2 Max‘s‘]
(1.36)

| x| Sf\/xg + [& 5(0)1° [eé]-l [Jﬁé + Max|s|] exp[2 Mex|s|]

Using 1.27, 1.29 and 1.35 it is easily seen that G(y(t),&(t),t) is
bounded, hence:

2) All solutions of 1.27 tend to N , the largest invariant

set within:

_ o o
$,(¥,) N R, 1.e., within {75 = 0, Iy =VyZslres1™)
Now: ay/ay = [-[c-281F - [w+d°-cdly] [¥]17F (2.37)

« s ld?/dy[y=o = ®
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Thus R contains no arc of a trajectory of 1.27 except at
¥y =0 . Hence N 1is the origin itself. Therefore all solutions of
1.27 are bounded and tend to zero as t tends to infinity; the origin
is therefore asymptotically stable. Uslng 1.36, all solutions of 1.12
are bounded, and since s 1is bounded, all solutions of 1.12 tend to
zero as t tends to infinity; therefore equation 1.12 is asymptotically

stable at the origin.

Theorem D "Universal Stability Bound"

If in equation 1l.1l2 there exists a & greater than zero
such that:

1) 1-|5(8)| [ + =] =8 >0 t> 0 (1.38)
w

Then equation 1l.12 is asymptotically stable at the origin, and further:

N

_\/>C wz 2 - XE c
lx\ . {(§+?)xo+xo ko +'—F}'—2'
W
‘ (1.39)
-\/ 2 x2
. C L W,y 2 . o]
x| = {QE + )% + x ko + ??} 2c
%
Proof';
5 o = o wz 2 g %2
let V(x,%,t) = V(%) = (5 + )X+ x4+ s (1.40)
W %t) = -5 ¢ o7 - Bx® 4 2 k) (1.41)
Let Va(x) = (5% 4 0P8 (1.42)

The set R is given by R:{x| x =% =0} .

Let sl(i) be the set sl(io):{i\vz(i) SV,(X)1 -



1L

All conditions of Theorem A, except vi are satisfied, hence:
1) All solutions of 1.12 are comtmined in Sl(io) , therefore

from 1.40:

2

X
+ _c_o_} c/wz

' ' 2
‘x‘ S\/{(% 4 -Ug—)xg & XX

[ole)

\545\/{(% 2 22

WA\ 2 . o
+ T)xo + X X+ c—} 2c

(1.43)

In this case the set St(io) coincides with Sl(io) . Using 1.12,
1.13, 1.41 and 1.43 it is easily shown that V(X(t),t) is bounded,
hence:

2) All solutions of 1.12 tend to N , the largest invariant
set in R Sl(fco) which in this case is simply the origin. Therefore
all solutions of 1.12 are bounded and tend to zero as t tends to

infinity; therefore system 1.12 is asymptotically stable at the origin.

Examples

For illustration, the Liapunov stability domains will be
applied to a restricted class of the Hill equation 1.12 where §(t)
is narrowly banded in the frequency domain. This includes the
special cases:

i) E(t) = M sin Tt (Mathieu equation) and

1) E(t)

M sin('ﬂit + cpi) (generalized Mathieu equation)
5 -

where the set {’nl} is narrowly banded.

The application of the theorems to the Mathieu equation allows comparison

with the known stability boundary. The effect of broadening the frequency
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band is to broaden the minimum amplitude region about w/7 = 1/2 ,
as would be expected. The sufficient stability regions of two cases
of multiple degree of freedom systems which possess classical modes
are developed and illustrated.

The interest in this class of Hill equation arises, for
example, in the stability analysis of a base excited pendulum and also
in the equation of first variation about a periodic solution of a non-

linear equation (the forced Duffing equation).

Example 1.1
Consider the equation of the linear oscillator with a

parametric stiffness term:

%X+ ex + [mz + 8(t)]x =0

(3.1
x(0) = x_, %(0) = %_ £ =0 -
where
M(148) ]
s(t) = j A(w)wra sin [wt + o(w)]dw
1(1-6)
1(1+8)
NM>0;86>0; 8« 1;0 <.{ |A(w)|do = M < =
n(1-6)

We note that:



11)

111)

iv)

13

n(1+6)
f A(u))w-l cos[wt + oplw) Jdw

5(t) = |
n(1-6)

|8(t)] < M/n(2-0)

N(1+6)
g(t) = - A(w) sinfwt + opw) Jdw

(1-6)

|5(t)| <u

7(1+8)
s(t) = -Jr wA(w) cos[at + op(w) Jdw

N(1-86)

ls(t)| = n(2+o)u

1(1+6)
BT (t) = j sz(a)) cos[wt + cp(w) Jdw
n(1-8)

w8y < nP(2+e) A

(1.45)
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The function s(t) satisfies condition 12 II. Thus the
criteria for asymptotic stability for this example reduce to the

following:

"T,ow Frecuency Stability Boundary"

From 1.13:
1) M< of
(1.46)
i1) m(1+0)M < 2c(m2—M)
"High Frequency Stability Boundary"
From 1.24:
1) & - eM/n(1-8) > O
ii) e - 2v4/n(1-8) > O 5
2 2 (1.47)
[Note: 1ii) implies i) if ¢ < 2w ].
111) 2w® - 2eM/M(1-8) - M > O !
"Unlversal Stability Boundary"
From 1.38:
1) M< ae/(1 + .;l)) (1.48)

Figure 1 shows the resulting stability boundaries for this
example. It will be noted that M/mz reaches its minimum value in the
vicinity of T/w equal to two. Figure 2 shows the resulting stability
boundaries for the case 0 equal to zero. Superimposed on the graph

are the known stability boundaries for the Mathieu equation (7).



M/ w®
A

2

/—M/wz =2/ [I+2c/('77*779)]

M/wz‘—"'qc(l—g)/(sz)

M/wz=20/('q+'r)3+20)

w/7

c/w
| | I\
we (1-0) (1-9) (146 :
2(2 w-c) 2 2(1-c/w)

Fig.| SUFFICIENT STABILITY BOUNDARY FOR EXAMPLE I.I

ST



M/w

A
2._

3 RD.

INSTABILITY
5 ND. REGION
INSTABILITY
|ST. REGION
INSTABILITY

REGION

9T

| ' 2
Fig.2 SUFFICIENT STABILITY BOUNDARY OF THE MATHIEU EQUATION
SHOWN WITH THE ACTUAL STABILITY BOUNDARY

4 w/ 7
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Example 1.2

Consider the system of linear equations:

e .

Iy + CY + Ky + (%) Py = O
(1.49)

50) =%, ,  ¥(0) =73,

where C, X and P are commutable, symmetriec n X n matrices, C and K

are positive definite and E(t) is a scalar function of time given by

1.45.
Since C, K and P commute, there exists an orthogonal matrix
such that:
1) e -1
11) #cs = [-c,-]
) (1.50)
iii) aTKE = [‘mjzh..,], O<wy Sw, .00 <@ <o
T /

iv) %P3 = Ay~

Using the transformation ¥y = ¥Xx , equation 1.49 is reduced

to the set of n uncoupled equations:

os . 2 se
X, o+ Cp X o+ [a& + Ay S(t)]xi =0
1 =2dy B wea ? {1<51)
= T- = -
x(0) =8y, ,  X(0) =3'y,
Z

Two special cases will be examined.
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Case 1

p iy

i) X (parametric term proportional to the frequency)
ii) C; = 2wC (same percent of critical demping in each mode)

The criteria for asymptotic stablility for this example reduce to:

"low Frequency Stability Boundaries"

Fram l.13:
i) M<o = W e S
(1.52)
Eg hg w
ii) M < 1::1 " < 1+92 e
e e
"High Frequency Stability Boundaries™"
From 1.2L4:
ii) M< gn(1-e) ¥, <1
(1.53)
2 2
iii) M< - - £— - — e
W20 (1-0) ™ @y eag T (2-0) ™
"ﬁniversal Stability Boundaries"
Fram 1.38:
1) M < 20,0/(3+20) < 20,0/(1+20) ... (1.54)

In this case 1t is seen that the lowest mode, 1i=1 , de-
termines the stability of the whole system. Since ¢ 1is a matrix with
bounded elements, and since each X ii is bounded and tends to zero

as t tends to infinity, it follows that ||| is bounded and tends
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to zero as t tends to infinity; thus, under conditions 1.52, 1.53

and 1.54, system 1.49 is asymptotically stable at the origin.

Case 2
i) A = af (parametric term proportional to the frequency
squared)

i | ey = amig (same percent of critical damping for each
mode )

The criteria for asymptotic stability for this example reduce to:

"Low Frequency Stability Boundaries™

From 1.13:
i) M<1 vi
(1.55)
i1) M< zg-l Bc_l
11+ Qa] +2C  N1+Qw, +2¢
"High Frequency Stability Boundaries™”
From 1.24:
ot 3
11) M < c(l-e)wn < (-8 _; ++--- T <1
. . (1.56)
i1i) M < e
-1 -1 -1 a
l+2ay g1~ (1-8) +2a 4 CT (1—9)41
"Universal Stability Boundaries"
Fram 1.38;
i) M< 2g/(1+2;) vi (1.57)

In this case the "low frequency" and the universal stability boundaries

are determined by the lowest mode. However, the "high frequency"
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stability boundary is determined by the highest mode i=n .
As in Case 1, it is easily shown that conditions 1.55, 1.56
and 1.57 are sufficient to guarantee that system 1.49 is asymptotically

stable' at the origin. Figures 3 and 4 show the stability boundaries

for Case 1 and Case 2 respectively.



1 // /////////// /

Fig.3 SUFFICIENT STABILITY BOUNDARY FOR CASE |, EXAMPLE 1.2
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Fig.4 SUFFICIENT STABILITY BOUNDARY FOR CASE 2, EXAMPLE 1.2
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CHAPTER II

N'TH ORDER LINEAR SYSTEMS
INTRODUCTION

The stability analysis of n-dimensional systems of equations
dx
dt

of the form: = A(t)x is developed in this chapter along the same
lines as for the equation considered in Chapter I. The criteria for
stability are developed for a very general class of problems and the
basic concern 1s to demonstrate validity of the methods and the exist-
ence of stability boundaries. Therefore the bounds developed are ex-
pected to be crude but the methods would accommcdate, in a particular
example, better approximation on the bounds of quadratic forms, etc.
Also, for classical systems the approach of Example 2 of Chapter I
would give sharper results.

Sufficient stability boundary for small derivative bounds on
the parameters is developed in Theorem E by a Liapunov method.

Sufficient stability boundaries for small integral bounds on
the parameters are developed using four independent methods. Tﬁeorem
F first transforms the equation to introduce the integral of the
original parameters into the parameters of the transformed equation and
then utilizes Gronwall's Lemma (Kozin's (11) approach). Theorem G
introduces the same transformation as above but utilizes the Liapunov
approach (Caughey's (6) approach). Theorem H attacks the integral

representation of the original differential equation directly and

makes use of Gronwall's Lemma. Theorem I demonstrates the stability



2k

by a Liapunov method applied directly to the differential equation.
Sufficient stability boundaries for small bounds on the
parameters are demonstrated in Theorem J, developed by Kozin (11)
utilizing Gronwall's Lemma, and Theorem K, developed by Caughey and
Grey (6) utilizing a Liapunov approach. Proof of these theorems will

not be included since they are available in the literature.

Theorem E "Small Derivative Bounds"

This theorem considers the stability of the parametric equa-
tion wherein the parameters are "slowly varying." The basic idea is
that 1f the system is asymptotically stable for any fixed wvalue of the
parameters then one might expect the actual system to be stable if the
time derivatives of the parameters are sufficiently small. Theorem E,
under suitable restrictions demonstrates this concept.

Given the system of equations:

dx =

(2.1)

%(0) = %

Let Qg < Aij(t) < By where Qy 5 and Byy are bounded and
independent of time. ILet SAo be the compact n2 dimensional space
with elements denoted as A, Where C%j s'Aoij < Bij . Clearly
A(t)eSAo ¥t .

Then if 1) Aij(t) possesses a bounded derivative for all t
11} AO Ppossesses eigenvalues with negative real parts every-

where in the parametric space SAo
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ii1) H%%l is sufficiently small (bounds developed in the
proof of the theorem)
Then the system 2.1 is asymptotically stable in the sense of Liapunov

and further there exists an A and @ > 0 such that Hi“ < Aeﬁzt

Prooi’;

Liapunov's Theorem shows that 1ii implies there exists a

unique matrix Po symmetric and positive definite such that
8Tp + P A =-I . Clearly then there exists a P(t) such that
AT(t) P(t) + P(t) A(t) = -T for all t and further
- T - -
P(t)eSPo = {POIAOPO + PA, =-I, AOGSAO} . The uniqueness of B

and the relation Ag‘dPo + dPvo = -dAgPo - PodAo implies that i is
continuous on Ao . Since the eigenvalues of a matrix are always con-
tinuously related to the parameters of the matrix it is seen that the
eigenvalues of Po are continuocus on the space SAO . This, along
with the fact that the eigenvalues of Po are positive everywhere on
SAO ) which is a closed and bounded set, implies, since a continuous
function on a compact set assumes its minimum,that there exists an

€ >0 such that )?o 2 € vWwhere lPo is any eigenvalue of POeSPO s

Let the Liapunov function V(X,t) be:

V(%,t) = XTP(t)E =2 eX'% vt . 8.2}

Teking the time derivative of V(xX,t) along the trajectory

of the system:
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&V _ oy 4 5T5% + KTpk = XX + ¥R < 2% + ¥ |B] = -<TR(-[l5)
[V

(2.3)
The n-dimensional matrix equation AEPC> + Pvo = -I can be formulated

in n® space as [J\O] {PI = -{<!} eand the unigueness of B
implies {Po} - -[AO]-]‘ {&} . Due to the continuity between a
matrix, its inverse and its modulus, one can conclude, as above, that

H{Ao]-ln < M< o everywhere in §, .

Therefore if ”PH <1l

end since V(%,t) < % ||p|| < X% M (2.1)
implies -g% < - % 1 - HPH)
or V=V exp ‘[(l—-bl‘l;ﬂ'l')“l (2.5)

which implies from 2.2 that |%(t)|| is asymptotically stable, and

using Cauchy's inequality

%l < \/ V,O: exol- 3 (1—'}1,?“)1 :

To demonstrate that iii) implies HPH <1 , the following

argument suffices.

ATS 4 PA = -ATP - PA (2.6)
or (B} = -[AT™ [4] {P) (2.7)
and 2 = LA™Y (LAl (o3l < m |ATp + 2i| ' (2.8)

equivalently, since |[P|| <M, |[P]| < ZMZHAH and for Al <l/2M2
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implies Hf“ < 4

This completes the proof of the theorem. However it.is
felt, but cannot be proved, that the condition 1i should more
reasonably be replaced by the less restrictive condition of only the
eigenvalues of A(t) possessing negative real parts bounded away

from zero for all times.

Theorem F "Small Integral Rounds No. 1"

This theorem as well as the next three theorems G, H, I con-
sidersthe case where the parametric terms exhibit rapid variation about
a zero mean and further the system, neglecting the parametric terms, is
stable. Physically this stability is realizable when one considers a
finite elastic system subjected to parametric excitation of a frequency
much greater than its highest elgenfrequency. This parametric excita-
tion has no effect on the stability if damping is present. Theorem F
makes use of a matrix exponential transformation to cast the equation
into a form that is applicable to the theorem demonstrated in Kozin's
vaper (11). Lemmas B and C, which are invoked in the proof of this
theorem, are matrix theorems that are obvious for the scalar cases.

Given the system of equations:

&X - A% + B(D)X
(2.9)
x(0) = x

o
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Then if:; 1) A is a stability matrix, that is 4 a & b> 0

ay

Y]l <o exp(-at) where = = AY, Y(0) =T .

dt

11) |sll exolsll {2llall + llall lisll explisl] + 2lig]| explis]|} <5

t
where S =‘Jr B(T)aT

.t
(o]

Then the system 2.9 1s asymptotically stable in the sense of Liapunov.

Proof:
dax - i
IF = A+ B(t)x
t
let X = exp[Jr B(mdrlw
t

(o}

taking the derivative of X :

t t
= - = {exp[J B(T)atl} v + w‘p[__ir B(narl g
t %
O (@)

(2.10)

(2.11)

replacing this into the equation of motion 2.9 and pre-multiplying by

i

exp[-Jr B(T)dT] the equation of motion in terms of w(t) is:

t
[}

_ t ¥
dw

o} tO

Tt = AW+ {exp(-] B(7)an) 4 exp([ B(r)an-a%
t
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t T
+ fexp(-| B()ar) B exp(] B(r)ar) L o550
t t
o )
t t
- exP('j B(T)ar) é% [exp(j B(t)dr)1} w
t t /
) )
By writing %% = AW + Q(t)¥ and from Lemmas B and C (Appendix F), the
modulus of Q(t) can be bounded above as follows:
5 ot
r w
lall = tlall I B(xacll expll| B(ar|
to to
t t
2+ | B(mar] exll] B(nar|) > (2.13)
to to
t t
+ 2|l ||| B(r)ar|| exp 2||[ B(r)ar|)3 d
t T
o o

From this it can be seen that for bounded ||A|| and |[B|| the modulus of
t
Q(t) cen be made small with the HI B(T)ar| .

t
o

The proof of the theorem is then just a direct application of Kozin's
Theorem denoted as Theorem J, as the stability of ﬁ(t) implies the
%

stability of Xx(t) since the transformation exp[j B(t)dr] is

t
o
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bounded under condition ii .

It should be noted that the stability boundary is dependent
on the ratio a/b, which as pointed out in Caughey's paper (6), tends
to zero for the second order linear equation as the damping ratio tends

to one. The following theorem overcomes this weakness.

Theorem G "Small Integral Bounds No. 2"

This theorem utilized the same matrix exponential transfor-

mation as Theorem F but then applies Caughey's Theorem on the modulus

of Q(t) .

Given the system of equations:

9—-: = AX + B(t)Xx
(2.1k)
x(0) = X

Then if: 1) A is a stability matrix, that is, § a matrix P

symmetric and positive definite 3-

ATP + PA = =T 3 Xﬁax = maximum eigenvalue of P

11) 8|l exells|| L2llall + llall sl exlls]| + 2||B|| exp||s|}

1
“wE P
¥,
where S = J B(r)ar
tO

Then the system 2.14 is asymptotically stable in the sense of Liapunov.
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Utilizing the same transformation as in Theorem F
X = [exp S(t)jw the equation 2.12 in Ww 1is %% = AW + Q(t)W where
lall < [lsll explisll f2llall + llall sl explisll + 2llsll explisl3

and the modulus of lb’l/ZQ?Pl/z & Pl/qu'l/zn , that appears in
Caughey's Theorem, can be bounded above by Z‘E_l/zﬂ lbl/zn HQH .

By Theorem K the criteria ii) will imply asymptotic stebility of W
and thereby the stability of Xx . Appendix E shows that the HPl/ZH
and {P—l/zn can be bounded above by n7/2u[5;;;g_a;; and respectively

nT/2 VTrace (P-l) , where n 1s the dimension of the system of equa-

tions, i.e., the size of P.

Theorem H "Small Integral Bounds No. 3"

This theorem utilized Gronwall's ILeumma by first putting the
equation into the integral formulation and then integration by parts
introduces the integral of the parametric terms into the integral
equation. Gronwall's Lemma 1s then used to establish bounds on the
integral of the parameters for asymptotic stabllity of the equation of
motion.

Consider the system of equations:

(2.15)
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Then 1f: 1) A is a stability matrix, that is, J a& b >0 >

l¥ll < v exp(-at) where %% =4Y 3 TO) =X .

ii) S(t) is sufficiently small such that [I-S(t)]-l exlsts

¥t and is bounded by M, i.e., ||l[I-s(t)17Hl <m vt .
b

where S(t) = r B(T)ar
(o]

111) o [lall sl 2 + %m a/v

Ther the system 2.15 i1s asymptotically stable in the sense of iiapunov.

Proof;

It can be shown that the equation of motion can be put into

the integral form:

t
x(t) = y(t)io + j Y(t-7) B(7) x(7)dT (2.16)

by integration by parts Xx(t) can be put in the form:

T t w
%(t) = Y(£)%, + ¥(t-7) | B(Man () |
s e b (2.17)
t T . t T _
EX%%ZIQ j'B(Tpdn x(T)dT - j Y(t-T) J B(ﬂ)dﬂgggzl ar
o o o o , /

by defining the integral of B(t) as:

s(m) = j' B(m)dn (2.18)

o
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x \
then: (t) = Y(£)% + S(t)X(t) +_[ AY(t=r) S(r)&(r)dr
(o]
> (2.19)
t
- | ¥(t=r) 8(r) (4 + B(x))E(r)ar
5 /
or:
t
[I-s(t)Ix(t) = ¥(£)x, + I (AY(t-7) S(1) - Y(t-1) S(7) [A+B(T)]X(T)dT
e (2.20)

For |ls(4)|| sufficiently < 1 implies [I—S('I;)]"l = U exists and

there exists an M such that H[I-s(t)]‘ln < M, ¥t ; note

il cz-8) 17 < sy -
Replacing [I-S(t)]'—l by U(t) yields:

t .
%(t) = Urk_ + U ‘fgay(t-T) s(7) - ¥(t-r) 8(7) [4+B(7)]1} X(r)dr (2.21)

(o]

To establish bounds;

~
(o)l = m il UGl + flall [ Ihece=m))l llscoll {2 « %@ﬂ} [|x()llar]

(2.22)

and since HYH < be_at one gets:

t
&)™ = R + o [ s 12 + LA x(n)) o*Tar (223

and by Grenwall's Lemma:
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%
Hi(t)]leat <MD ||x || exp[M Db ||4] ‘J‘ ls(m)]| f2 + B}(&T)’} ar] (2.2k)
%)l < Mp |||l expl-a + M b |[4] ||s]| f2 + H}Jt (2.25)
nence if M b |all |8l {2 + M} <a (2.26)

Al

Then equation 2.15 is asymptotically stable.

Here again it is seen that for bounded ||A|| and ||B]| the
equation can always be made stable by taking HSH sufficiently small.
As in the comments following Theorem F the ratio a/b may tend to

zero undesirably.

Theorem I "Small Integral Bounds No. 4"

This theorem uses a ILiapunov approach to show stability but
does not develop the stability of the equation on the basis of the
time derivative of the Liapunov function being negative. The idea is
to bound V(i) above by an exponentially decreasing function in time.
This then would imply asymptotic stability.

Consider the system of equations:

(2.27)
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Then if: i) A is a stability matrix, that is, 4 a matrix P

symmetric and positive definite > ATP + PA = =T

P
1) fo0) gzlal + 2l + -2 + ZBILIEL;  Jmn

P
%min Bmin kmax
where A? are the eigenvalues of P, and
t
where S'(t) = j (BTP + PB)dT
o]

Then the system 2.27 is asymptotically stable.

Proof:
. =T =
Let: V = XPx (2.28)
%% - -%T% + XT(8TP + PB)X (2.29)
. =T - P =T-
and since < A x x it follows that
max
_T T -
W Y GEER B, (2.%0)
A X PX
max
v t
_T T s
OF’s l- ﬂsj — + = (BP+PB)X<.‘1T (2.31)
¥ Y P iTPi
v o Xmax
o}
&7
let s'(t) =f (BTP + PB)dr * [B38)
o

and integrating 2.31 by parts ylelds:
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%
T Tt T,
% G | 2 ! xS
v <V, exp{- =— + th E - ] sz S = xvz ar} (2.33)
Nax X PX o X Px (x7Px)

and taking the modulus of the matrices and utilizing the equation of

motion 2.27T:

\
- —t t
v(x) < LA exp{ - vz + -Hg—u
max min
> (2.34)
+ N (afl + ol + L2 v 2l el 1e)
}min (%nin) /
hence if;
hat
sl c2llall + 2ll + 32— « 2BLIElL, o Juto (2.35)

)iuin )ﬁnin )‘max

Then the system 2.27 is asymptotically stable.
It should be noted that the modulus of S' can be bounded
above by a constant times the S matrix of the previous three

theorems. That is:

st < 2llell lIsl| (2.35)

hence the results 2.35 can be put in terms of HSH as follows:

P
s1) 2lsll el czlall + 2l + 2 o 2IELURLy  Cmn o)

; : A
min min max |

Also this theorem illustrates the inherent difficulty that

will be encountered in Chapter IV concerning continuous systems.
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o P P ;
Clearly for lmin/lmax to be bounded away from zero requires the A
matrix to have bounded eigenvalues. For most continuous operators,
however, this is not the case and therefore the methods for demonstrat-

ing stability under small integral bounds do not seem applicable.

Theorem J "Universal Bounds No. 1"

This theorem is taken from an article by Kozin (11) entitled
"On the Almost Sure Stability of Linear Systems with Random
Coefficients."” It utilizes a direct Gronwall Lemma approach. It is
included since Theorem F utilizes its results as well as the fact that
under certain conditions the universal bounds will be better than
those bounds developed in Theorems F, G, H and K.

Given the system of equations:

9% = Ax + B(t)x
(2.38)
x(0) = %

Then if: i) A is a stability matrix, that is 4 a &b >0

such that |¥l| s b exp(-at) where

fof

X _ Ay with Y(0) = I

jol)

i1) |Bll < a/®

Then the system 2.38 is asymptotically stable.
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Theorem K "Universal Bounds No. 2"

This theorem is taken from an article by Caughey and Grey
(6) entitled "On the Almost Sure Stability of Iinear Dynamic Syétems
with Stochastic Coefficients." A direct Liapunov approach is used.
The results, at least in the case of a second order dynamic system,
are stronger than those in Theorem J. (See reference (6)).

Given the system of equations:

9{ = AX + B(t)x
(2.39)
x(0) = X

Then if: i) A 1s a stability matrix, that is 4 a matrix P

symmetric and positive definite > ATP + PA = -1

vy oY/ T2, P By /E) < L

Anax

is the maximum eigenvalue of P .

where XP
max

Then the system 2.39 is asymptotically stable.

Application of the Theorems of Chapter IT

The following example, the Mathieu equation, is used to
demonstrate Theorems E, F, G, H, I, J, K. Figure 5 shows these
boundaries along with the previously derived results (Figure 2,
Chapter I). It should be noted that the only region where the bounds

are improved is in the vicinity of w/T =0 . One expects, however,
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that as the generality of a +theorem increases the quality of the
bounds would decrease.

Consider the equation:

" . Z

% + 28wk + (@ + M sin Mt)x =0
x(0) = X x(0) =%

with g0 €8 =]l , 0>y

This can be written in the following form:

0 0 X

- 0 X x
4 |ax) ax| ax
e (o -mz - 2Ew o ~M sin Tt O at

For stability of the above equation:
Theorem E requires:

i) M <a.)2
ii) For this example the P(t) matrix can be easily

developed and is (See Appendix D):

cn2+M sin Mt " 1 + Ew 1L
oo o (cu2+M sin T) 2(m2+M sin Tt)
P(t) =
I 1. 1
=
i 2(m2+M sin Tt) o l&-E(.L)(cu2+M sin t)
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and the requirement that H%—iu be sufficlently small is satisfied if

E@.l < 1 (See Proof of Theorem E). This condition is met if:
at

I Ew 2l 51
ke ,:hgw N (wB-M)z * (cnz-M)2 ) h%w(wz-M)z] =
It is easily seen that for M < wz and T sufficiently small the
system is stable.
Theorem F requires:
i) The A matrix is always stable under the requirement of
o and € being greater than zero. The Y(1) matrix

for the problem, as well as values for a and b, are

given in Appendix C.

b < [2\T1 cos v + (2la] + 1 + wz) sin 9]

-
where: Y = @V l-'§2
a = ok
%
2|a| +1+ o0
0 =
tan © = AlY . 0s8<n/2

a = wf

ii) The modulus of S(t) == and therefore:

3I=

!

A exp(b—,?]) [2(l+m2+2§w)+(l+m2+2§m) }% exp(-l.%)+2M exp(%)] <§
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implies stability. Note that for fixed M , M can
always be chosen sufficiently large to insure stability.
Theorem G requires:

i) A is always a stability matrix under the conditions on
aF and & and the P matrix and its eigenvalues take
the form given in Appendix D. Values for the modulus of
HPl/ZH and HP-l/ZH are developed in Appendix E.

ii) sl 1s less thean % and therefore the criteria is of

the form;

M M 2 2 M M M
7 exp(ﬁ)£2(1+m +28w) +(1+w +2§w)-ﬁ exp(ﬁ)+2M exp(ﬁ)}
1
< : which implies stablility.
i L

max

Theorem H requires:
i) A is always stable and the values for a and b are
given in Appendix C.

1

ii) The bound on H[I-S(t)l_ln is <=1 T

111) () (+e2ge) ¥ [2+ — ] <a/p
l-ﬁ 8 (1+w +25w)

and therefore for any M there is an T sufficiently
large so that 1i) and 1ii) are satisfied and the system
is stable.
Theorem I requires:
i) A is always stable and the P matrix along with its

eigenvalues 1s given in Appendix D.
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i1) llsll < M/M and therefore

P
| <
2 M Bl [2(1+0Pr2e0) + 24 + ; " Zij,lPl\] B N;un
n x o\ X
min min max

will imply stebility.
Theorem J requires:
i) The values for a and b are developed in Appendix C and
therefore: M < a/b will imply stability.
Theorem K requires:
i) The P matrix along with its eigenvalues are developed

in Appendix D and bounds on the modulus of Pl/2

-1/2

and
P are given in Appendix E. Therefore

implies stebility.

< :Ll T
2% |2 1P
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CHAPTER III

N'TH ORDER NONLINEAR SYSTEMS

INTRODUCTION
The following three theorems develop a method of attack for
the parametric stability analysis of nonlinear equations. They are
generalizations of scme of the previous theorems for linear systems.
One important weakness of the theorems is that for application one
must find an "exponential Liapunov function" relating to the equation.

In the linear case this can be done as illustrated in Chapter II and

therefore certaln equations of the type BE & A(t)x + g(x) can be

dt
analyzed, for example, using the following theorems. Theorem I con-
cerns small derivative bounds on the parameters, Theorem M concerns
small Integral bounds on the parameters, and Theorem N concerns small
bounds of the amplitude of the parameters. This chapter vividly illus-
trates the basic ideas of all the theorems of this thesis. Although
the other chapters éoncern only linear systems, conceptually the
methods are in no way restricted to linear systems. However, for

application, the existence of the "exponential Liapunov function" is

assured only for the discrete linear systems by the Liapunov Theorem.

Theorem I, "Small Derivative Bounds"

The idea, again, is that 1f the system is exponentially
stable for each value of the parametric terms then the parametric
system is asymptotically stable for sufficiently slowly varying

parameters.
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ii
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Consider the system of equations:

dx a,=
(3.1)
x(0) = X
i) 4 a Liapunov fumction V(X,t) >0 X #£0 and )
v(0,t) = O such that VV-£(X,t) < -av(%,t)
> 1| < R
¥t, >0
) \B log V‘ &

Then the system 3.1 will be asymptotically stable at the origin.

Proof:

Therefore;

Let the Liapunov function be V(x,t)
Viksh) > 6

The time derivative along the trajectory of the system is;

av av .=
= -VV'f(x,t) $T (x,t)
(3.2)
= -aV(i,'b) '*'%g (th)
t
. r dlog V
V sV, exp | {~a +——-%i—-} dr (3.3) -
o]

Since V(i,t) is continuous at the origin one can choose

for eny R' <R an io > v(x) >V, for Ikl = " -



Then if sup \B_lg%_vl <, ¥ H)-CH <R', then VvV is
t

decreasing and therefore Hiﬂ < R' and further V(x) going to zero

implies

stable at

under the

Then if:

111) \\v(w'%(i)f\;w'Bé(i))“'\\é(:’c) I

HiH goes to zero, hence the system 3.1 is asymptotically

the origin.

Theorem M "Small Integral Bounds"

This theorem concerns the stability of the parametric system
condition of sufficiently small integral bounds.

Consider the system of equations:

ak =

X - £(x) + B(t)g(x)

(3-4)

x(0) = x_

i) There exists an exponential Liapunov function V(x) ,
X!l <R , for the system with B(t) = 0 of order -a,
that is vv(X) $(X) < -av(X)

v-5(2)a(3) k

are continuous

N

bounded functions

at the origin

) [FIIE & - 52| /
t
v) sl = Hj B(T)dr| is sufficiently small (bounds given

in proof)
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Then the system 3.4 is asymptotically stable at X =0 .

roof:
Let the Lispunov function be V(x)
V() >0, X #0O (3.5)
5] < =
then e (x) < -qv(x) + Yv-B(t)g(x) (3.6)

dividing by V(xX) and integrating 3.6 yields:

G
V <V, exp {-of + J %g'B(T)é(i)dT} (3.7)

o

and integration 3.7 by parts:

T t
V=V, exp {-at + %;-j B(M)an a(x) |
(o]
(o]
(3-8)
T T
- [ 1z G- B(man @ + F- j B(m)an SEjar)
o (o]
T
let s(T) = _[B('n)dn (3.9)
then:
V gV, exp{-at + EK s(t)a(x)
dx . (3.10)
W . dg dx
j[V( )Sg Vsaﬂ;d_t]d'r}



-
V() = v, exof |T-s(£)E(X) ) expff |9(QUEE TV BER) )55 )
o
?(3-11)
- 195 28 (2(x) - 36())|a¢) expl-ct] /
From 1i)-iv) there exists an R' >0 and M, My, My <@ such that
‘vv.s(:f;)é(i)\ < )

“v(vv.%(i);vv-aé(:’c))“_né(i) | <n, ?“fc“ <R', ¥t (3.12)

ISEI-ASE (F + ma@) | <, ;

Then one can pick for any R" 2 O <R" < min(R,R') an X(0) >
) > P Il = ™

v(x) >v_ expu for |kl ==

hence if:

lsl| < M_g—%_l\{—é ¥t (3.13)

then V 1s decreasing and therefore Hi“ remains less than R" and
further V(X) going to zero implies ||l goes to zero, hence the

system 3.4 is asymptotically stable at the origin.
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Theorem N "Universal Bounds"

The concept of the bounds on the parametric terms being
sufficiently small is developed in this theorem.

Consider the system of equations:

& _3E) + B6)EE)

(3.14)
x(0) = io

Then i1f: 1) 4 an exponential Liapunov function V(X) for the

system with B(t) = O of order =-¢¢, that is
(X)) £(%) < -av(x) with ||| <® .
ii) ﬂ%¥H lZ&(%)|l is continuous and bounded &t X = O .
| is sufficiently small. (Bounds given in proof)

i11) s

Then the system 3.1L is asymptotically stable at X = 0 .

Proof':

Let the Liapunov function be V()
v(x) <O

= vv.£(k) + vv-B(t)g(x) ||| <R

(3.15)

< -av(x) + YV B(t)g(xk)
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t
V=V, exp{-at + j %; B(t)g(x)dt} (3.16)

From ii) there exists an R' < R such that
I gzl <m <= or 7] <& (327)

then one can always choose for any R" < R' an io such that
v(x) > v, for |x|| =R".
Therefore if:
lell <5z ¥ (3.18)

then from 3.16 V is decreasing, hence ||X|| remains less than R"
and further V(x) going to zero implies X goes to zero, hence the

system 3.1k is asymptotically stable at the origin.
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DISCUSSION

No examples are included for this chapter for two reasons.
First, the purpose is to illustrate the generality of the Liapunov
approach to demonstrate asymptotic stability of ordinary differential
equations, linear or nonlinear, and second, the author was unable to
find en exponential ILiapunov function relating to any worthwhile
example.

The criteria for stability developed within Theorems I, M
and N basically require that the vector f(i) is not dominated by
g(x) in the neighborhood of the origin. That is to say, that the

type of stability is characterized by the nature of %(i) .



52

CHAPTER IV

CONTINUOUS DYNAMIC SYSTEMS

INTRODUCTION

This chapter demonstrates sufficient asymptotic stability
conditions for a class of continuous parametric systems by Liapunov's
Direct Method. The parficular ILiapunov function used is a somewhat
logical extension of that used in Theorem D, Chapter I. However, it
is conjectured that perhaps there exists a better quadratic functional
for the system in contrast to the discrete system where the guadratic
form iTPi appears to be unique in regard to the quality of the re-
sults. The one used nevertheless proves quite useful as demonstrated
in the example problems.

Theorem O demonstrates a universal stability bound on the
paremetric terms and Theorem P concerns bounds on the derivative of
the parametric terms. No results could be obtained for the case of
small bounds on the integral of the parametric term (see discussion
after Theorem I). The examples include both classical and non-
classical systems and demonstrate the generality of the functional

approach in contrast to a modal approach.

Preliminaries
et S Dbe a bounded subset of an M-dimensional Euclidean

space {x} with boundary denoted by I . The equation under

consideration will be:
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wo o+ Lug o+ Lz(t)u + g(u) =0 (4.1)
with initial conditions:

u(0,x) = uo(}_c)

(k.2)
o
with boundary conditions:
Bu(t,X) = 0 , for Xel (%.3)

The solution of 4.1, 4.2 and 4.3 will be assumed to exist
and to possess sufficient smoothness so that Llu and Lzu are continu-

ous. An inner product is defined on this space as j w(X)v(z)ax = {u,v) .
S

L, and Lz(t) are linear spatial operators where Lz(t) can be ex-

il

pressed in the following form:
Ly(t) = 8, (t)Lyy + a,(t)Lpy + -0 8 (E)Ly) (b.4)

vwhere L2 are independent of time.

J

Main Problem

Given the continuous differential equation:

It
(@]

u Liu, + Lz(t)u + g(u)

tt T
(k.5)

u(O,i) = uo(i) ut(O,i) =Yg (x)

|
e



5L

where: 1) (u,Llu> 3 (u,Lzu), <Llu’L2U> and
u
o J g(u)du) are positive functionals for all t

o
and all acceptable functions u(t,x) .

da,

i1) —— from equation 4.4 is defined and
dt
. m dai(t)
IL,= o —— 1, -
2 i1 dt 21

Theorem O '"Universal Stability Bound"

The particular case where 4.5 can be put in the form:

'\

u, . + Lju, + Lou + L3(t)u + g(u) =0
Y (k.6)
u(0,%) = u_(x) ut(O,x) = uto(x) |
Then 1f: 1) (u,Lzu) > 0 \
1) (WLw =x (@ A>0
El(LuLu}\ﬂ.tl(LuLu)l
A 73773 3 "1
iii) < M (t)
[ (L u, Lw 4
iv) s%le(t)s’.—i-_%EE where Ostand0<€<-]é
and there exists an M, (4.7)

u
v) M, (Llu,g(u)) = 2(1; Jr g(u)du)
o



)

3

vi) M, (I.lu,Lzu} = (Llu,Llu) + (u,Lzu)
vii) Mzk z2 .

Then the equation is asymptotically stable in the following sense:

i) l(u,LzuH <A exp(-alt)

ii) I(Llu,Llu)\ <Ay exp(-czl‘t)

. Lw 2
111) {5 + u )| <A exp(-opt)

L.8)
P (I P To i3 (
where A= b o P s (uo,L2u0> + ((_}2_9 +ug )2>
+
u
o
+ {1,282 !r g(u)du) ]
o
and o = .Miz f1-(1+2¢) SUp Ml('t)}
/
Proof:
(L ,L u) L u 2 1‘:“
Let v(t) = —1‘_—— + Q,Lou) + ((—— +u )% + Q2 g g(u)du)
(%.9)

and along the trajectory:

% - '[<ut’1‘lut> % (Llu,Lzu) & (Llu,L3u) + (.Llu,g(u)) * (Zu_t,LBu)] 5

Using equation 4.T:
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-3-% < —[(Llu,L2u> + (Llu,L3u) + (Llu,g(u)> + (elu_t,ut>

L3u 2 Lu, 3u
+ 2 (1-¢) ([u, +T(T€7] Y = <‘T(—)'>1
and from 4.7

u
< - %E [2{1; Jr g(u)au) + Ze(ut,ut)

O

av
at

+ (@I + @Lm)) (1M (t) - 2aM (8))] . (4.10)

However, from 4.9

1}1‘ L u,L u 5 >
V & 1,2 | g(u)du) +<—,+———) + .1 u) + (2( ) ¥ & (Zu_t>
o
u
= 1,2 jg(u)du) + (Tf- L u,Lju) + Q,Lu) + (Zut,ut) ’ (k.11)
o

Hence from 4.10 and 4.11 and 4.7:

L Miz [1 - (1 + 2e)M () IV
or
V< vo(io) fexp - o— [l - (1 + 2¢) =up My (t)11. (k.12)
Me

From equation 4.9 and 4.12 the results 4.8 follow directly.



Theorem P "Small Derivative Bounds"

The particular case where 4.5 can be put in the form:

u,o+ Lyug + Ly(t)u + g(u) =0
U.(O,-;() == uo(i) ut(O,i-'c) == u‘t (i) (14"13)
(o}
Then if: 1) <u,L'2(t)u) >0 vt )
ii) (u,Llu> = A{u,u) A>0
|(u,£.2u)\

iii) THIE < Ml(‘t)

iv) sup Mi(t) <1l for 0=t & (.24
and there exists an Mz
u
V) M, (Dgne(u)) = 2, | g(u)aw)
(o]
vi) M, (Lw,Lw 21% (Lyw, L) + (u,Lu)
vii) Mph = 2 )

Then the equation 4.13 is asymptotically stable in the following sense:
i) \(u,Léu)l < A, exp(-azt)
11)  |{1yu,Lyw| < A, exp(-a,t)

(k.15)
iii) ]((%1—1 + Ut)%\ = A2 EJCP(-C!Z'E)
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where:
(L u )L u > L
A, = [_—IF—— & (uo,Lz(O)uo> 4 € .'Lzo s uo)2>
Yo
+{L2 ] glw)aw]
and
& = 3 (3 - b 4y (5))
2
/
Proof:
(L u, L) Lu v
Let V(x,t) = — e & <u,L w o+ {{—= = ut) ) 4+ {1;2 j g(u)au)
° (4.16)
and along the trajectory:
dV [(u t> 4 <Llu’L2u> + (Llu,g(u)) - (u,izuﬂ

~[Ouu) + Epu,Lu) (=M (8) + @qu,e(u)d]

Using equations 4.1L4

u

—g—g < - T&lz (a4, J‘ g(u)au) + ACHPL N

+ (2 O Lu) + (L)) (1-My (1)) ] (%.17)

However, from 4.16
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u
¥ = (1,2 Jr g(u)du) + (1;3 LlU,Llu) + (u:Lzu> ik <2u't’u‘t>
0
(k.18)
and with 4.17 and 4.18
(1-M, (%))
g% = - __—Mg_dz v (%.19)
= -
v s'VO(xo) {exp - ﬁg (l-szp Ml(t))} (&.20)

From 4.16 and 4.20 the results 4.15 follow directly.

Example 1
Consider the equation of a string with parametric excitation

proportional to the slope:

w o+ 22u -u. o+ v(t) u =0
(k.21)
u(0,x) = uo(x) ut(O,x) = uto(x)
with boundary conditions:
i) u(t,0) =0 u(t,l) =0 fixed-fixed
(k.22)
or ii) wu(t,0) =0 ux(t,l) =0 fixed-free

Part A

Conditions 4.7 from Theorem O are satisfied if:
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2
v(gi + 2z |v(t)]

sup <1 . 4,23
3 N (4.23)

Then since lu Liax < (ux,ux) , see 4.25, the theorem implies

ifi lu 1max = 0 , providing BUP |[v(t) | is sufficiently small.
Part B

Conditions 4.14 from Theorem P using 4.25 are satisfied if:

v (%) |

Then as before lim \u[max = 0 , providing Sup |v(t)| is less than 1

-t—m

and S%p Vt(t) is sufficiently small.

Note:
(u,uxx> =uwl! - (ux,ux) - - (ux,ux)
~ (k.25)
1/2
[l g = (L |0y ]) < (aouy™
Example 2 Buckling of a Beam with Force p(t)
u o+ 22U + 1 +p(t) u, =0
(k.26)

u(o,x) = uo(x) u(0,x) = ﬁo(x)
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Boundary Conditions allowed:

fixed-fixed

I
©
o
=
L —
1}
(@]

i) u(0) =0 ux(O) =0 u(l)

ii) u(0) 0 u(l) =0 u (1) =0 fixed-pinned

0 ux(O)

i1i) u(0) =0 ux(O) 0 uxx(l) =0 um(l) =0 fixed-free

iv) u(0) =0 u (0) =0 ux(l) =0 wu_ (1) =0 fixed-semifixed
v) u(0) =0 uxx(o) =0 ux(l) =0 wu__ (1) =0 pinned-semifixed
Part A

Conditions 4.7 from Theorem O are satisfied if;

2
LeCOI® , 2a)p(9))]

sgp = = <1 (k.27) |

or if one excludes BoundaryCondition i1ii) then 4.27 can be put in the

form:
2
Le(0)| ® | 22l n(s)
% ?\min
511.:113 == <1 (k.28)

d2

where X\ _— is the minimum eigenvalue of Sy with the respective
dx

boundary conditions. Then since ‘u‘max < (uxxuxx> , see 4.31, the

theorem implies lim \ul

bim (el = 0 , providing S\_éplp(t)! is sufficiently

small.
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Part B

Conditions 4.14 fram Theorem P are satisfied if:

|, (£)}

P |=EEE (+-29)

or if one excludes Boundary Condition iii) then 4.29 can be put in
the form:

|2, ()]

0 ey | St (. 30)

sup
t

Then as before lim \u‘ = 0 , providing s%p \p(t)\ is less than 1

o max
or lmin and smtlp]pt(t)l is sufficiently small.
Note:

1 1
(u,u Y = C\) -uu (l + {uou )

1ulmax £ {1, 1uxl) < (uxux>l/2 < \ux\max = (uxxuxx>l/2

(4.31)
Glfuxx>

i
(u’uxxxx> } kmin

Condition iii.

with the exception of Boundary
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Example 3 Buckling of a Plate

o2 o2
u., o+ 22 u o+ vev(vevu) +7 x(t) H-‘él- +ﬂy(t) "‘% =0
X o4
(k. 32)
u(0,x) = uo(XJY) ut(O,;:) =-u‘bo(x1y)
with boundary condition:
u(lD) =0 and [ -g (vasyu)*ndr = 0 (k. 33)

T
Part A

Conditions 4.7 from Theorem Q with N(t)

mex {| (¢ 5 [n,(%)]3

requires:

A

min
smép = < X 5 (&.34)

Nzéz) . ZzNFt)

where A . = is defined in L.36.

2 2 a i
Then since l:_L’m(Luxx + uy_.Y + 2uxy>= O , Appendix B and Sobolev's
-t <@
Lemma (10)
[ 2 2 2 2 2 2
Iulmax < const J [u™ + u, o+ uy + Mo & uxy + uyy]ds
S

with the only restriction that S satisfy the "cone condition™ (10),

the lim |ul = 0 , providing sup |N(t)| is sufficiently
too X %

small.
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Part B
Conditions 4.14 from Theorem P with N (t) = max{l'nx(t)l . ln‘y(t)l}

requires;

t
sup 27, Nt( ) <d. (4.35)
t (" o-K(%))

Then by the previcus argument lim lu‘

i max = O » Providing s*jglp\N(t)\

is less than X . and S’;éPth(t)l is sufficiently small.

Note: (see Appendix A and B)

2
i vu-vu as
S I
r = }\min
| wv(v-vu)ds
S
and
IV u? as
s 1
) kmin
S -
where A sk is the minimum eigenvalue of the
operator V<“u where u(r’) =0 .
and Jr WV (V:Vu)ds = -|% (Vu-vu)-d 4ar
S r
2 2 2
+ [ (ug + vy + 2u0)as J
S



65

Comments

The Theorems O and P considered only global stability but the
argument for stability of the equilibrium solution, wu(t,x) = 0, when
the conditions 4.7 and 4.1k are not global can in most examples, by the
following argument, be demonstrated. Whenever the displacemeﬁt u can
be bounded above by the Lispunov function, as in all the examples pre-
sented, then since V(u) is always less than V(uo) one can choose
the initlel conditions sufficiently small so that w always remains
in the region of validity of conditions 4.7 and L4.14 about the
equilibrium position.

The author has been unable to obtain stability under the

requirement of sufficieqtly small integral bounds on the value

t

ft

]J ai(t)dt\ in the operator Lz(t) , i.e., "high frequency bounds."
o
This is supported from investigations on discrete systems (see

Theorem X) and indicates that for systems where L2 possesses an un-

bounded spectrum of eigenvalues, as is the case for most continuous

dynamic systems, the approach fails.
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DISCUSSION

The theorems developed within demonstrate the existence of
sufficient exponential asymptotic stability boundaries in the sense of
Liapunov for homogeneous parametric ordinary and partial linear dif-
ferential equations.

For many applications the bounds will not be good enough,
that 1s, the parameters of the system will not be included in the
sufficient stability region, and design requirements will not permit
conservatisms in the parameters to assure stability under the theorems
developed. However, the theorems do demonstrate the existence of
stability boundaries and perhaps enlarge the presently known stability
region by considering more properties of the system. (Caughey and Grey
considered stability under conditions on the maximum of |[B(t)||

whereas the developed theorems consider the effect of the maximum of

F
v

I B(ryar] ama LR .

(o]

Besides the physical problems to which the considered
equations apply directly (i.e., the example problems), the application
to the study of locel stability of a non-trivial solution of nonlinear
equations appears promising. Under certain restrictions (sée

‘Struble (12)) the stability of a trajectory Xx(t) of the equation

%

%% = f(X,t) is determined by the asymptotic stability of the trivial
solution of %% = %i(;(t),t)i (i.e., the equation of first variation)

which is of the form treated in the theorems developed for linear
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systems with parametric coefficilents. If x(t) is not exactly known
but one is able to set bounds on 1ts modulus or Tthe modulus of 1ts
integral or derivative, the theorems will stili be epplicable.
For nonhomogenecus equations (the existence of forcing terms
%(t)) the Lispunov functions used to prove asymptotic stability can, in
rnost cases, be used to show boundedness of the solution for bounded

t .
forcing terms. Thls can be done by recognizing that in many cases,

IR > -av(x) will dominate |vv-f(t)| for |Xx|| > R and nence the
Lispunov function will be exponentially decreasing for k|| >R and
therefore the solution will be bounded within R for all times pro-

viding the initial conditions are sufficlently small. Tt may even be

possible to improve R by consideration of the frequency content of

1 i 7 I
The thecrems were developed with deterministic parameters in
mind but the concept of almost sure asymptotic stability can 1in

requirements.



68

APPENDIX A
A proof is presented of the following inequality:

Jr Ju'yu ds
S 1

<
7tm:i.n

J uv -y (vu-vu)ds
S

where Xmin is the minimum eigenvalue of the continuous operator
-V.V , i.e., the Laplacian, and further that wu(T') = O wvhere T is
the boundary of S.

By suitable restrictions on wu(X) , it may be expressed as

u= % a,e (x) where V:Ve, + e =0, that is e, is an eigen-
g +1i i 1 i

vector of -V-V and )‘i 1s the associated eigenvalue. Clearly then:

0= & & J“ vu: [V(V-Ve; + Ae,)lds
S

r <
J Vu-v(v-vu)ds + = ai?xij vusve, as

s L S

and by Green's Theorem;

B = [ wv (V+vu) -ndl’ - J’ uv-v(v.vu)ds
T S
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> r
+ i:l ai)\i | VuVei ds
S
since u(T) = 0 , then:
S r
T a,\ ] va-ve, ds
i1 + i i
S o i
j uv. v(V-Vu)ds
S

and since the eigenvectors of -V+V are orthogonal and the eigen-

values are positive it can be shown that:

Jf' vu*Vu ds

S 1
< g .

min

j uv.v(V.vu)as
S
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APPENDIX B

This appendix demonstrates the application of Green's

Theorem to the functional J u(v- (v(7-vu)))ds .
S

The following identities can easily be shown:
i) v-(W(V-Vu)) = (V- (v(v-vu))) + (vu)-(V(V-vu))
i1) v-((V-9u)(Vu)) = (V-Vu)(V-Vu) + (V(V-vu))-(Vu)

iii) 4in two-dimensional rectangular coordinates:

2 2
§Tonm) = () Gle) + EHAEH ety

Therefore by Green's Theorem

| u(v-(v(v-m)as = | o(v-w) - (vowa) (w)1-E ar
& I

& J (V-vu) (v-vu)ds

S

or

J w(v- (v(v-vu)))ds =j [w9(veyu) - % (Vu-vu)]-d ar

=]

T
2 2 2
S u 2 d™u, 2 d1u2
+‘£ £(§;§) 4 (g;g) + 2(§§5§) las
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APPENDIX C
The Y(t) matrix for the equation:
X + 28wk + wPx = 0 w>0 and 0 <g<1

is Jjust the solution of the matrix equation:

0 h: 1 0
% " 2 Y with Y(0) =
- -2E8w 0 1
and is easily shown to be of the form
Y cos vt-1 sin 7t sin 7t ﬂt
Y(t) & ' E@r
(-v2-1%) sin vt Y cos vt-1 sin vt
where: M =-w and y = uﬂJl-gz
clearly:
t

lx(e)]| = [2rlcos vt} + (2|0l + 21 + uF)]sin rtl] E?—

; t
< [2r cos v + (2|M] + 1 + aF) sin 761 E?—

2l + 1+ w?
- ar

where tan

0<#0 < xn/2

This expression then allows one to pick values for a and b such

that Y| <ve™8% .
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APPENDIX D

For a matrix A of the fomi:

the associested P matrix that gives ATP + PA = -I 1is as follows:

e

o 0 +E Bl h
P =
2 1, 1
L.Zm.’?' T 4gm3J
The eigenvalues of P are:
_ & X w E i
A=13 (Zim et + I;ZS)
-J__\/_J;_ W E el 2_ W 1 2 1 w & Ik
+3 (ZEcu+ §+mf)_(__§:;3) 4[(1@'*‘@"'&) m+(r§+@)(—u§m3)]
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APPENDIX E

This appendix is to develop bounds on P-'l/2 and Pl/2
for use in the theorems that involve these expressions. Since P is

e symmetric positive definite matrix, there exists an orthogonal

transformation ¢ such that

§T€§=I

Where kf are the positive eigenvalues of P . Clearly then:

P = éf‘x§~]§T
and Pl/ = §[~ (7\. )1/2 ]é

FHE < B2

If P is an nxn matrix, then by Cauchy's Inequality:

< 14 2 - .2
5l = R e

n

and since the modes are mormal ( T &. ,j) = ik
i=1

therefore:

n
p i T
i=1 15!
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P\1/2

n
hence: HPl/z ] 1}31 ()‘i)

127/ 3| < 23 s (B)~1/2
1=k >

Agein using Cauchy's Inequality:

% (Ki)l/z < \/Q_%i Kf)n = \/;race(P)n
1=

i=1

end i§_~ "1/ \/(z ahH™ 2 - \/mece(z )

Thus we get:

| Pl/ﬁ] < n7/2 Trace(P)

and ”qu/EH snT/z \/Trace(P—l)

This is presented as a simpler alternative to calculating

all the eigenvalues and eigenvectors of P .
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APPENDIX F

. Lemma B
This lemma demonstrates that ||exp(-S)T exp(s)-T| goes to

zero continuously with HSH .

Let
@ n
Il = hexe(-9)7 exp(s)-mll = llox + 2 - GO Y -3 (&) 1|
@ © - & - bal - n
R R L
) n @ n -] n
wt 12 -z Brle s 2 G- e o
hence lull = 2lzl] lisl| e\ I + i) \$H c2lsll

therefore Huﬂ -0 as HSH =50 &

Lemma C

This lemma demonstrates that

llexp(-8) %% exp(8) - exp(-8) dexp(s)\ goes to zero continuously

with ||sl] .



Il = llexp(-8) § exp(s) - exp(-s) L&)

< olisll IS [7:, JL_ > n)z; w]

Zk—O

= ol ygy oy oMol 5 L5

< 2s] )l 2lsl
Hence
llull < 2lls|| 8] e sl

and therefore Huﬂ - 0 as HSH - 0.
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