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ABSTRACT 

Sufficient stability criteria for classes of parametrically 

excited differential equations are developed and applied to example 

problems of a dynamical nature. 

Stability requirements are presented in terms of l) the modu­

lus of the amplitude of the parametric terms, 2) the modulus of the 

integral of the parametric terms and 3) the modulus of the derivative 

of the parametric terms. 

The methods employed to show stability are Liapunov's Direct 

Method and the Gronwall Lemma. The type of stability is generally re­

ferred to as asymptotic stability in the sense of Liapunov. 

The results indicate that if the equation of the system with 

the parametric terms set equal to zero exhibits stability and possesses 

bounded operators, then the system will be stable under sufficiently 

small modulus of the parametric terms or sufficiently small modulus of 

the integral of the parametric terms (high frequency). On the other 

hand, if the equation of the system exhibits individual stability for 

all values that the parameter assumes in the time interval, then the 

actual system will be stable under sufficiently small modulus of the 

derivative of the parametric terms (slowly varying). 
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INTRODUCTION 

Systems of explicit ordinary differential equations have been 

studied by pure and applied mathematicians since the beginning of the 

cen~.u-y. Cesari's work (1) is an excellent reference in this field. 

&u.""ficient existence and uniqueness theorems have been credited to 

Osgood, Kamke, Cauchy, Peano and Lipschitz. Most have been based on ~ 

bounded Lipschitz constant or an integrable Lipschitz constant over the 

period of applicability. Fortunately, the mathematical representations 

of physical problems encountered by the engineer and scientist usually 

fall into the class of equations which can be shown to exhibit solu­

tions which are unique. 

For application, the properties of the solution are desired. 

Ideally one would like the ex.act solution wherein the value of the 

solution vector can be readily obtained for any time t • However, 

with the exception of the linear equation with constant coefficients, 

this is not feasible. Some beneficial statements nevertheless can be 

directed to such solutions. The continuity with respect to initial 

conditions generally follows from the existence proof. Continuity of 

higher derivatives of the solution was studied by Coddington and 

Levinson. Investigation of equations often reduces to finding bounds 

on the solution and thus restricting the solution to some region of 

the pha·se space. For a fixed time, the bounds are considered improved 

if the region can be reduced in size. TWO distinct methods have 

been utilized to demonstrate such bounds. The application of the 

Gronwall Lemma directly to the integral equation has been effective. 
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Many of the existence proofs are based on this lemma. The other 

approach is the Liapunov Direct Method (2) which considers an equation 

of the stability boundary rather than the trajectory equation directly. 

The stability of the class of linear equations with para­

metric coefficients has received considerable attention in the 

literature. Liapunov, Hukahara and others investigated the case where 

the coefficients approach constant values with time. Conditions on the 

time dependent characteristic roots were analyzed by Cesari, Wintner 

and Markus. The Floquet Theory considers coefficients which are 

periodic in time. More recently Kozin (ll) and Caughey (6) consider 

the cases where the coefficients are stochastic. Wang (9) extended 

Kozin's method to linear partial differential equations. 

The concept of utilizing particular properties of the co­

efficient matrix has been the motivation of research into the stability 

of such equations. The introduction of the derivative and integral of 

the parameters (frequency content) is the aim of this thesis. 
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CHAPTER I 

SECOND ORDER ORDINARY LINEAR SYSTEM 

INTRODUCTION 

In this chapter a Liap\Ulov type theorem is proved (Theorem A) 

and then applied to demonstrate the asymptotic stability of the origin 

of x +ex+ [m2 + s(t)]x = 0 . Theorem B demonstra tes the stability 

of the equation under sufficiently small bounds on the derivative of 

s(t) and for a narrow banded f'unction in the frequency domain this is 

equivalent to "low frequency bounds." Theorem C demonstrates the 

stability of the equation under sufficiently small bounds on the in-

tegral of s(t) and for a narrow banded function this can be referred 

to as ''high :frequency bounds." Theorem D considers the stability 

under only the condition of a small modulus of s(t) without any re-

gard to its frequency content · and hence is referred to as "universal 

stability bounds." 

PRELIMINARIES 

The following theorem is an extension, for time dependent 

functions, of Theorem VI of LaSalle and Lefschetz (8). It is similar 

to Liapunov's Direct Method but develops asymptotic stability for the 

case when dV 
dt is not negative definite. 

Theorem A 

Given the system of equations: 
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a...x -
dt = f(x,t) t ~ 0 

x(O) 
(1.l) 

x 
0 

where f(x,t) together with its first partial derivatives is continu-

ous in x and t , such that the existence and uniqueness of the in-

itial value problem associated with 1 .1 is assured for XES 
0 

Then if there exist functions v(x,t), v 2(x), v
3

(x) and 

compact sets st(x
0

) , s
1

(x
0

) with the following properties: 

i) v(x,t) together with its first partial derivatives is 

continuous in x and t 

ii) v(o,t) = 0 Vt~ 0 

iii) v(x,t) ~ v 2 (x) > o vt vllxl\ I= o 

iv) v(x,t) ~ v 
3

(x) s; 0 Vt , along any trajectory x(t) of 

1.1 

v) v 2 (x) , v 3(x) are continuous in - and v 2(o) = v 3(0) x 

vi) IV(i,t) \ <"" along any trajectory of l.l 

vii) R is the set R : [x jv
3
(x) = 0) 

fx\v(x,t) ~ v(x ,o)} c s1 (x ) c s 
0 0 0 

Vt ~ 0 

then: l) solutions of 1.1 areccntained in s1 (x
0

) • 

2) solutions of l . l tend to N as t tends to infinity, 

where N is the largest invarient set in s1 (x
0

) n R • 

= 0 
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Proof: 

part l. This part establishes the boundedness of the solu-

tions. Along any trajectory of l.l v(x(t),t) is a positive, non-

increasing i'unction (by iii and iv ) 

• •• v(x(t),t) ~vex ,o) 
0 

(l. 2) 

(l. 3) 

Vt :<:: 0 . 

part 2. This part establishes the asymptotic stability of 

the solutions. Before proving Part 2 of Theorem A, it is necessary to 

establish the following lemma. This lemma develops a sufficient con­

dition :for Lim V "" 0 if Lim V "" J, • 
t-t<X> 

I:f l) V(t) 

Lemma l 

is twice differentiable for t € (t Joo) • 
0 

2) V ( t) tends to a limit J., as t tends to infinity. 

3) v(t) is bounded for t € ( t , 00) • 
0 

Then Lim V( t) = 0 • 
t-oo 

Proof: 

By Taylor's Theorem: 

2 
v(t+h) = v(t) + hv(t) + .!]- v(s) (l.4) 
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¥h 3- t and t+h € (t
0

, 00 ) and t < e; < t+h • 

thus v(t) = ~ [(v(t+h)-1) - (V(t)-~)] - ~ V(s) (l.5) 

Max lv(t)I ~ i Max !v(t)-t\ + ~ Max \v(t)I (l.6) 
t0~t t0~t t0~t 

The mini.mum of the right hand side of l. 6 occurs for 

h 
2= Max lv(t)-t\ /Max lv(t)l 

t0~t t0~t 

Max jv(t)-tl Max lv(t) I· 
t0~t t0~t 

Let t
0 

, and hence t , tend to infinity 

(l. 7) 

(l.8) 

.·.Lim Max!v(t)j ~ 2 (Lim Maxjv(t)-~I Lim Max\v(t)J} 
t -Cl t ~t t -.co t ~t t -co t ~t 

0 0 0 0 0 0 

(l.9) 

But Lim v(t) = t and \v(t)\ < 00 t € (t , 00 ) • 
t-co 0 

• Lim Max \v(t)\ ~ o (l.lO) 
t 0 -c:o t0~t 

Lim v(t) = o (i.u) 
t--co 

Returning to the proof of part 2 of Theorem A, V(x(t),t) is 

.a positive, non-increasing :t'unction, bounded below; hence 

v(x(t),t) = V(t) must tend to a limit t as t tends to ini'inity. 
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using vi) and Lemma l, this implies that the Lim V(x(t ),) = O, which 
t-+GO 

in turn implies that ~ v
3
(x(t)) = 0 • Thus rt°€R , where r+ is the 

positive limit set for equation 1.1. Since x(t) is bounded in 

Sl(x
0

) , its positive limit set rt" is a non-empty invariant set. 

Hence all solutions of equation l.l must tend to N as t tends to 

infinity, where N is the largest invariant set in the intersection of 

where 

Main problem 

Given the differential equation: 

x +ex+ [ro? + s(t)]x = 0 

x(O) 

I) c > 0 , 

:ic( 0) = :ic 
0 

II) \di /dti [s(t)] \ < 00 i = o, 1, 2, 3, 4 

The space s
0 

of existence and uniqueness of this initial value 

problem is the two dimensional Euclidean space E2 • 

We have the following theorems: 

Theorem B "Low Frequency Stability Bound" 

(l.12) 

If in equation 1.12 there exists B1 , €l and € greater than 

zero such that: 
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t ;;:: 0 

(l.l3) 

t :2:: 0 

Then equation l.l2 is asymptotically stable at the origin, 

and i'urther: 

\xi ~-vx~ + x~/€i 
(l.l4) 

\x\ ~-Vex~+ x~Ei)Bi 

Proof: 

Let ( . ) 2 .2( 2 ··ct)J-i V x,x,t = x + x ill + s (l.l5) 

Then v(x(t), x(t),t) = -x2[ro2 + s(t) fl [2c + ;(t) [ro2 + s(t) J-i1 

Let ( .) 2 .2/ 0 v2 x,x = x + x Bl > 

R is then the set R:[x\x = o} 

(- ) c- ) r-1 2 .2 2 ··c -i Let St X
0 

be the Set St x
0 

; XX + X [<.0 +st)] 

Then stc.x ) c si<.X ) cs 
0 0 0 

(l.l6) 

(l.l 7) 

(l.l8) 

(l.l9) 

2 .2[ 2 ··c )J-i 1 ~ x +x ill +s 0 
0 0 

(l. 20) 

(l. 2l) 
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All the conditions of Theorem A, except vi), are satisfied. 

Hence 

l) All solutions of l.l2 are ccnta:ir.ei in Sl (5c
0

) • Hence 

Ix\ ":V 2 • 2( )-l ~x + x €' 
0 0 l 

(l. 22) 

Using l.l2, l.l3, l.l6 and l.22 it is easily seen that V(x(t),x(t),t) 

is bounded, hence: 

2) All solutions of l.l2 tend to N , the largest invariant 

set within sl (x
0

) (\ R , i.e., within [i \x = o, \x \ ~-V x; +x;( €i)-l} • 

Now dX/dx = [-ex - [a} + s(t) ]x] [.}::]-l (l. 23) 

. · . \aY./ax \. " = CX> except at x = 0 
X=v 

Thus R contains no arc of a trajectory of l.l2 except at x = 0. 

Hence N is the origin itself. Therefore all solutions are bounded 

and tend to zero as t tends to infinity, the origin is therefore 

as:ymptotically stable. 

Theorem C "High Frequency Stability Bound 11 

If in equation l.l2 there exists B2, €z' a and a' greater 

than zero such that: 
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[ 
2 . 2 

ill + s - c\slJ:2: €2 >o 

ii) c - 21 .s \ :2: a > o t ~o (l. 24) 

iil.. ) 0 ... 2 2. 2 2 \' I \" I I > 0 U.J.J + s - c s - s >- a t ~ 0 

Then equation l.l2 is asymptotically stable at the origin, and f'urther 

(l. 25) 

\x\ ~-vx2+[x +x s(O)J 2 
[€ 2']-l [/B.2

1 + Max\s\J exp[2 Max\s\J 
0 0 0 . 

Proof: 

Let x = exp(-s)y 

Equation l.l2 becomes 

y + [c-2s]y + [ill
2 + s2 - cs]y = 0 

Let ( . ) 2 • 2[ 2 . 2 . ]-l v y,y,t = y + y ill + s - cs 

• . ( ( ) . ( ) ) • 2 [ • J [ 2 . 2 • ]-l [ .. [ 2 . 2 • ]-l] •• V y t ,y t ,t = -y c-2s ill +s -cs 2-s ill +s -cs 

Let ( -) 2 .2/ V2 y = y + y B2 

( -) .2 -2 
v 3 y = -y act I B2 

The set R is given by R:[YIY = O} 

Let st(y
0

) be the set: 

(-) [-\ 2 .2[ 2 .2() '(t)J-l 2-+-,',2[ 2 .2( ) '( )1-l} St y
0 

: y y +y ill +s t -cs ~ y
0

.J
0 

ill +s 0 -cs O 

(l.26) 

(l. 27) 

(l. 28) 

(l.29) 

(l. 30) 

(l. 3l) 

(l. 32) 

(l.33) 
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Then (l. 34) 

All conditions of Theorem A, except vi), are satisfied, 

hence 

l) All solutions of l. 27 are contrune:l in Sl ( y 
0
), hence 

(l. 35) 

Using l.26 and l.35 it is easily shown that: 

Ix I '.!:. -v x 2 + [x + x s(o)] 2 
[€2' 1-1 exp[2 Max Is I] 

0 0 0 

(l. 36) 

lx·J '.!:.\} 2 [" ·(0) ] 2 [ ']-l [c l"lJ [2 l JJ x
0 

+ x
0

+x
0 

s €2 vB
2 

+ Max s exp Max s 

Using l.27, 1.29 and 1.35 it is easily seen that V(y(t),y(t),t) is 

bounded, hence: 

2) All solutions of l.27 tend to N , the largest invariant 

set within: 

NOW: (l. 37) 
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Thus R contains no arc of a trajectory of l.27 except at 

y ~ 0 • Hence N is the origin itself. Therefore all solutions of 

l.27 are bounded and tend to zero as t tends to infinity; the origin 

is therefore asymptotically stable. Using l.36, all solutions of l.l2 

are bounded, and since s is bounded, all solutions of l.l2 tend to 

zero as t tends to infinity; therefore equation l.l2 is asymptotically 

stable at the origin. 

Theorem D "Universal Stability Bound" 

If in equation l.l2 there exists a o greater than zero 

such that: 

i) l-\ s ( t) \ [ 
1
2 + ! ] ~ 0 >0 t > 0 (l. 38) 

(!) 

Then equation 1.12 is asymptotically stable at the origin, and further: 

Proof: 

Let 

Let 

\< I ""~<:=. + °'2 )x2 

.2 x 
+x x +~}~ 2 c 0 0 0 c 2 

(!) 

"-~(:=_ + °'2)x2 
.2 x 

Ix I + x x + ~} 2c 
2 2 0 0 0 c 

2 2 • 2 
v(x,x,t) = v2 (x) = (~ + ~ )x + x:X: + : 

v(x,x,t) 2 2 2 
-(x + w x 1 

( -) .2 "'2X2)~ V 
3 

x = -[x + ......, u 

•• [ 2 2 · 1 SX +-XX c 

The set R is given by R: (x\ x = x = O} . 

(l. 39) 

(1.1+0) 

(l.4l) 

(l.42) 



from 1.40: 

ll 

All conditions of Theorem A, except vi are satisfied, hence: 

l) All solutions of l.12 are contmned in s1 (x0
) , therefore 

\x I 
.2 x 

+ x x + __.£} 2c 
0 0 c . 

(l.43) 

In this case the set St(x
0

) coincides with s1 (x
0

) • Using l.12, 

1.13, 1.41 and l.43 it is easily shown that V(x(t),t) is bounded, 

hence: 

2) All solutions of l.12 tend to N , the largest invariant 

set in R s1 (x
0

) which in this case is simply the origin. Therefore 

all solutions of l.12 are bounded and tend to zero as t tends to 

inf inity; therefore system l.12 is asymptotically stable at the origin. 

Example s 

For illustration, the Liapunov stability domains will be 

applied to a restricted cla ss of the Rill equation l.12 where s(t) 

is narrowly b anded in the frequency domain. This includes the 

special cases: 

i) s(t) = M sin TF (Mat hieu equation) and 

11) s(t) !; M:i_ sin(~it +~i) ( generalized Mathieu equation) 
i . 

where the set {1\} is narrowly banded. 

The applica tion of the theorems to the Mathieu equation allows comparison 

with the known stability boundary. The e f fect of broadening the frequency 
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band is to broaden the minimum amplitude region about m/11 = l/2 , 

as would be expected. The sufficient stability regions of two cases 

of multiple degree of freedom systems which possess classical modes 

are developed and illustrated. 

The interest in this class of Hill equation arises, for 

example, in the stability analysis of a base excited pendulum and also 

in the equation of first variation about a periodic solution of a non-

linear equation (the forced Duffing equation). 

Example l.l 

Consider the equation of the linear oscillator with a 

parametric stiffness term: 

x + cX + [m2 
+ s(t)]x = 0 

x(O) x(O) = xo' 

where 

= x 
0 

11(1+0) 
s(t) = J 

11(1-e) 

-2 
A(ro)m sin [mt+ ~(m)]dm 

11(1+e) 

t ~ 0 

11 > o; e > O; e << l; o < J I A(m) \ dm = M < co 

11(1-e) 

We note that: 

(l.44) 
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11(1+9) 

i) s(t) = I -1 
A(ro)ro cos [rot + cp(ro) ]dro 

11(1- 9) 

!s(t)\ ~ M/11(1-9) 

1)(1+9) 

ii) s"(t) ::: - r A(ro) sin[rot + ttf_ro) ]dro 
.J 
11(1-9) 

!s"(t) I ~ M 

1l(l+9) 

iii) ~(t) =: -J illl\(ro) cos[rot + ~(ro)]dro 
11(1-e) 

11(1+9) 

iv) ·5· ( t) 
=: I 2 

ro A(ro) cos[rot + ~(ro)]dro 

11(1-e) 

(l. 45) 



14 

The i'unction s(t) satisfies condition 12 II. Thus the 

criteria for asymptotic stability for this example reduce to the 

:t;ollowing: 

"Low Frequency Stability Boundary" 

From l.13: 

1) 

ii) 

2 
M < m 

2 
11(l+e)M < 2c(m -M) 

"High Frequency Stability Boundary" 

From l. 24: 

i) 2 
ru - cM/11(1-e) > O 

ii) c - 2M/11(1-6) > 0 

[Note: ii) implies 2 2 
i) if c < 2m ] • 

iii) 2ru
2 

- 2cM/11(l-6) - M > 0 

"Universal Stability Boundary" 

From 1. 38: 

1) M < ~/(1 + ~) 
(i) 

(1.46) 

(1.47) 

(l. 48) 

Figure l shows the resulting stability boundaries for t hi s 

example. It will be noted that M/m2 reaches its min imum value i n the 

vicinity of 11/m equal to two. Figure 2 shows the resulting stability 

boundaries for the case e equal to zero. Superimposed on the graph 

are the known stability boundaries for the Mathieu equation (7). 



M/w2 

2Jp- M/w2=2/ (1+2c/h7-778)] 

r M/w2 = 71c (l-8)/(2w
2

) 

wc(l-8) 
2{2w-c) 

{1-8) 

2 

'-.. 
(1+8) 

2(1- c/w) 

2. 
M/w = 2c/(77+ 778 + 2c) 

2 

Fig.I SUFFICIENT STAB ILITY BOU NDARY FOR EXAMPLE I.I 

I-' 
Vl 



M/w2 

2j_ 

c/w 

I ST. 
INSTABILITY 

REGION 

2 ND. 
INSTABILITY 

REGION 

3 RD. 
INSTABILITY 

REGION 

2 

Fig.2 SUFFICIENT STABILITY BOUNDARY OF THE MATH IEU EQUATION 
SHOWN WITH THE ACTUAL STABILITY BOUNDARY 

~ 
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Example 1. 2 

Consider the system of linear equations: 

.. . 
ry + cy +KY"+ s(t) .PY ·= o 

(l.49) 
. . 

y(O) y(O) = y
0 

where c, K and p are commutable, symmetric n x n matrices, C and K 

are positive definite and s( t) is a scalar f'unction of time given by 

l.45 . 

Since c, K and P commute, there exists an orthogonal matrix 

such that: 

i) <pT 4> I 

ii) 2TC<p = [-Ci -J 
(1. 50) 

iii) ~TKip 2 
0 < °1. s: (J.)2 s: • . • [- roi_ ], s: (}.) < co n 

iv) 

using the transformation y = ipx , equation 1.49 is reduced 

to the set of n uncoupled equations: 

i = l, 2, . .. n (1. 51) 

- T-x(O) = ip y 0 , 

. 
x(O) 

TWo special cases will be examined. 
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case l 

i) Ai = wi (parametric term proportional to the frequency) 

ii) Ci = 2wiC (same percent of critical damping in each mode) 

The criteria for asymptotic stability for this example reduce to: 

"Low Frequency stability Boundaries" 

From. l.l3: 

(l. 52) 

ii) 
+ 4c 

"High Frequency Stability Boundaries" 

From l.24: 

ii) M < C'l\(1-9) Vi, C < l 

(l.53) 

iii) 
2 2 

M < -1 -l -ls: -1 -l -l 
~ +2C:'J\ (l-9) Wz +2C'J\ (l-9) 

"Universal Stability Boundaries" 

From l. 38: 

(l. 54) 

In this case it is seen that the lowest mode, i=:l. , de-

termines the stability of the whole system. Since ~ is a matrix with 

bounC.ed elements .J and s::.nce each xi, xi is bounded and tends to zero 

as t tends to infinity_, it follows that \\Y\I is bounded and tends 
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to zero as t tends to infinity; thus, under conditions 1.52, l.53 

and 1 .54, system l.49 is asymptotically stable at the origin. 

case 2 

i) 
2 

A.i =mi (parametric term proportional to the frequency 

squared) 

ii) c. = 2ro. c 
1. 1. 

(same percent of critical damping for each 

mode) 

The criteria for asymptotic stability for this example reduce to: 

"Low Frequency Stability Boundaries" 

From l.13: 

i) M < l Vi 

ii) -1 
11(1+e)ro2 +2i;: 

"High Frequency Stability Boundaries" 

From l.24: 

ii) M < C:(l-9)ro~1 ~ <:(l- e)ah:l 

iii) 
2 

"Universal Stability Boundaries" 

From l. 38: 

i) M < 2r;,/ (l+2C:) Vi 

(l. 55) 

'< l 
(l. 56) 

(l. 57) 

In this case the "low frequency" and the universal stability boundaries 

are determined by the lowest mode. However, the "high :frequency" 
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stability boundary is determined by the highest mode i:::::n • 

As in Case l, it is easily shown that conditions 1.55, l.56 

and 1.57 are sufficient to guarantee that system l.49 is asymptotically 

stable· at the origin. Figures 3 and 4 show the stability boundaries 

for case l and case 2 respectively. 
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CHAPTER II 

N'TR ORDER LINEAR SYSTEMS 

INTRODUCTION 

of the form: 

The stability analysis of n-dimensional systems of equations 

dx 
dt = A(t)x is developed in this chapter along the same 

lines as for the equation considered in Chapter r. The criteria for 

stability are developed for a very general class of :problems and the 

basic concern is to demonstrate validity of the methods and the exist-

ence of stability boundaries. Therefore the bounds developed are ex-

:pected to be crude but the methods would accommcnate, in a :particular 

example, better approximation on the bounds of quadratic forms, etc . 

Also, for classical systems the approach of Example 2 of Chapter I 

would give sharper results. 

Sufficient stability boundary for small derivative bounds on 

the parameters is developed in Theorem E by a Liapunov method . 

Sufficient stability boundaries for small integral bounds on 

the parameters are developed using four independent methods. Theorem 

F first transforms the equation to introduce the integral of the 

original parameters into the par ameters of the transformed equation and 

then utilizes Gronwall's Lemma (Kozin's (11) approach) . T~eorem G 

introduces the same transformation as above but utilizes the Liapunov 

approach (caughey's (6) approach). Theorem H attacks the integral 

r epresentation of the original differential equation directly and 

makes use of Gronwall's Lemma. Theorem I demonstrates the stability 
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by a Liapunov method applied directly to the differential equation. 

Sufficient stability boundaries for small bounds on the 

parameters a re demonstrated in Theorem J, developed by Kozin (11) 

utilizing Gronwall's Lemma, and Theorem K, developed by Caughey and 

Grey (6) utilizing a Liapunov approach. Proof of these theorems will 

not be included since they are available in the literature. 

Theorem E "Small Derivative Bounds" 

This theorem considers the stability of the parametric equa-

tion wherein the parameters are "slowly varying." The basic idea is 

that if the system is asymptotically stable for any fixed value of the 

parameters then one might expect the actual system to be stable if the 

time derivatives of the parameters are sufficiently small. Theorem E, 

under suitable restrictions demonstrates this concept. 

Given the system of equations: 

dx 
dt 

x(O) 

A(t)i 

-x 
0 

( 2.l) 

Let Oj_j ~ Aij(t) ~ ~ij where aij and ~ij are bounded and 

2 
independent of time. Let SAo be the compact n dimensional space 

with elements denoted as Clearly 

Then if i) Aij(t) possesses a bounded derivative for all t 

ii) A possesses eigenvalues with negative real p arts every­o 

where in the parametric space SAo 
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iii) \\~\ is sufficiently small (bounds developed in the 

proof of the theorem) 

Then the system 2.l is asymptotically stable in the sense of Liapunov 

and f'urther there exists an A and a: > 0 such that \\x\\ ~ Ae -at • 

Proof: 

Liapunov's Theorem shows that ii implies there exists a 

unique matrix p
0 

symmetric and positive definite such that 

ATP + p A = -I . Clearly then there exists a P(t) such that. 
0 0 0 0 

AT(t) P(t) + P(t) A(t) = -I for all t and further 

and the relation ATdP + dP A 
0 0 0 0 

p dA implies that p
0 

is 
0 0 

continuous on A
0 

Since the eigenvalues of a matrix are always con-

tinuously related to the parameters of the matrix it is seen that the 

eigenvalues of p
0 

are continuous on the space SAo This, along 

with the fact that the eigenvalues of p
0 

are positive everywhere on 

SAo , which is a closed and bounded set, implies, since a continuous 

function on a compact set assumes its minimum,that there exists an 

€ >0 such that \>o :<!: € where A.Po is any eigenvalue o:f Po€Spo . 
Let the Liapunov :function v(X.,t) be: 

v(x,t) = xTP(t)x :<!: €XTx Vt . (2.2) 

Taking the time derivative of V(x,t) along the trajectory 

of the system: 
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dV .:T -T·- -T .: -T- -T·- -T- -T- 11·11 T II ·11 ~ = x px + x px + x PX = -x x + x px ~ -x x + x X P = -x x(l- p ) 
a ... 

( 2. 3) 

The n-dimensional matrix equation ATP + P A = -I can be fonnulated 
0 0 0 0 

. 2 in n space as [d\ ] f-P} = -[Jl.} and the uniqueness of p 
0 0 0 

implies [ P } = - [ .,..\ ]-l [Jl } . Due to the continuity between a 
0 0 

matrix, its inverse and its modulus, one can conclude, as above, that 

\\ [ .!f\
0 
J-ll ~ M < oo everywhere in S Ao • 

Therefore if \\:Pl\ < l 

and since v(x, t) ~ .xT.x \\Pl\ ~ 5<?.X. M (2.4) 

dV V · 
implies dt ~ - M (l - \IP\\) 

or V ~ V exp - [ (l- \\:P\\) ] 
o M ( 2. 5) 

which implies from 2.2 that \\x(t)\\ is asymptotically stable, and 

using Cauchy's inequality 

To demonstrate that iii) implies \\:P\\ < l , the following 

argument suffices. 

T· · ·T · A P + PA = -A P - PA ( 2 . 6) 

or [p} = -[~]-l [.!A] [p} ( 2. 7) 

and ( 2. 8) 

equivalently, since \\Pl\ < M, \\:Pl\ ~ 2M
2\\A\\ and for \\A \l < l/2M

2 
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ir:lplies \\:P\l < l . 

This completes the proof of the theorem. However it is 

felt, but cannot be proved, that the condition ii should more 

reasonably be replaced by the less restrictive condition of only the 

eigenvalues of A(t) possessing negative real parts bounded away 

from zero for all times. 

Theorem F "Small Integral Bounds No. l" 

This theorem as well as the next three theorems G, H, I con-

sidersthe case where the parametric terms exhibit rapid variation about 

a zero mean and further the system, neglecting the parametric terms, is 

stable. Physically this stability is realizable when one considers a 

finite elastic system subjected to parametric excitation of a frequency 

much greater than its highest eigenfrequency. This parametric excita-

tion has no effect on the stability if damping is present. Theorem F 

makes use of a matrix exponential transformation to cast the equation 

into a form that is applicable to the theorem demonstrated in Kozin's 

paper (ll). Lemmas Band c, which are invoked in the proof of this 

theorem, are matrix theorems that are obvious for the scalar cases. 

Given the system of equations: 

dx 
dt = Ax + B(t)x 

x(O) -=X 
0 

( 2 .9) 
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Then if: i) A is a stability matrix, that is j a & b > 0 

1\Y\I ~ b exp( -at) 
dY 

where dt = AY, Y(O) = I . 

ii) \ls\\ exp\\s\I [2\\A\l + \IA\! \Isl\ exp\ls\I + 2\\B\\ exp\\s\\} <% 
t 

where S = J B(T)dT 

to 

Then the system 2.9 is asymptotically stable in the sense of Liapunov. 

Proof: 

let 

dx - ( -dt = Ax + B t)x 

t 

x = exp(J B( T)dT]w 

t 
0 

-taking the derivative of x 

t 

[exp[ J 
to 

t 

B( T)dT]} w + exp( s 
t 

0 

(2.10) 

( 2.11) 

replacing this into the equation of motion 2.9 and pre-multiplying by 

t' 

exp(-J B(T)dT] the equation of motion in terms of w(t) is: 

t 
0 

t 

dw - r ( J dt = Aw + lexp - B( T)dT) 

t 
0 
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t .... v 

+ [exp( - J B( ,-)d,-) B exp(J B( T.) d ,-) 
(2 .12 ) 

t t 
0 0 

t t 
r exp( - j 

d 
B(T)dT) dt (exp(J B(,-)d,-))} -

'W 

t t 
0 0 

dw - - C By writi ng dt = Aw + Q(t )w and from Lemmas B and C Appendix F) , the 

modulus of Q(t ) can be bounded above as follows : 

t t 

\IQ!\ ~ [\\A !l l!J B( ,-)d,- 1\ expl\f B( ,-)d ,- \1 

t t 
0 0 

t t 

• (2 + llJ B( T)dT\! exp l\J B( ,-)d,-1\ ) ( 2 .13) 

t t 
0 0 

t t 

+ 2\!BI\ \\J B(,- )d,-\\ exp 211J B( ,-)d,-l\} 

t t 
0 0 

From thi s it can be seen that for bounded \\Al\ and \\Bl! the modulus of 

t 

Q(t) can be made small 'Wi t h the HJ B(T)dT\I • 

t 
0 

The proof of the theorem is then just a direct application of Kozin ' s 

Theor em denot ed as Theorem J , as t he stability of w(t) implie s the 
t 

stability of x(t) since the transformation exp (J B(,-)d,- ] is 

t 
0 
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bounded under condition ii . 

It should be noted that the stability boundary is dependent 

on the ratio a/b, which as pointed out in Caughey's paper (6), tends 

to zero for the second order linear equation as the damping ratio tends 

to one. The following theorem. overcomes this weakness. 

Theorem G "Small Integral Bounds No. 2" 

This theorem utilized the same matrix exponential transfor-

mation as Theorem F but then applies Caughey's Taeorem on the modulus 

of Q(t) . 

Given the system of equations: 

dx 
dt = Ax + B(t).X 

x(O) = i 
0 

Then if: i) A is a stability matrix, that is, ~ a matrix p 

symmetric and positive definite 3-

ATP + PA = -I ; t..!ax =maximum eigenvalue of p 

ii) \IS\\ exp\\S\\ [ 2\\A\\ + \\A\\ \\s\I exp\\s\\ + 2\IB\\ exp\\sl!} 

t 

where S = J B(T)dT 

to 

(2.14) 

Then the system 2.14 is asymptotically stable in the sense of Liapunov. 
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Proof: 

Utilizing the same transformation as in Theorem F 

-x ( - - dw - -[exp S t) jw the equation 2.12 in w is dt = Aw+ Q(t)w where 

l!Qll ~ l\sl\ expl\s\\ [21\A\\ + \\All \\SI\ expllsl\ + 21\BI\ exp\\sl\} 

and the modulus of \\P-l/ 2QTPl/ 2 + P1/ 2QP-l/ 2 \\ , that appears in 

Caughey's Theorem, can be bounded above by 2\\P-l/2 \\ llP112 \\ \\Q\\ . 

By Theorem K the criteria ii) will imply asymptotic stability of w 

and thereby the stability of x . Appendix E shows that the l\P1
/

2 \\ 

\fn-l/2 11 7/2J ( ) and ~ can be bounded above by n Trace P and respectively 

n7/2 JTrace (P-l) , where n is the dimension of the system of equa -

tions, i.e., the size of p. 

Theorem H "Small Integral Bounds No. 3" 

This theorem utilized Gronwall's Lemma by first putting the 

equation into the integral formulation and then integration by parts 

introduces the integral of the parametric terms into the integral 

equation. Gronwall's Lemma is then used to establish bounds on the 

integral of the parameters for asymptotic stability of the equation of 

motion. 

Consider the system of equations: 

di - -
dt = Ax + B(t)x 

x(O) -= x 
0 

( 2 .15) 



32 

Then :i:.:f: i) A is· a stability matrix, that is, .j a & b > O :;r­

\\Y\\ ~ b exp(-at) where ~; = AY ; Y(O) = I . 

ii) S(t) is sufficiently small such that [I-S(t)]-l exists 

Vt and is bounded by M, i.e., \\ [I-S(t) ]-l\\ < M Vt . 

t 

where S(t) = l B(T)dT .., 
0 

iii) M \IA\\ \\s\I [2 + \\!!\}< a/b 

Tnen the system 2.l5 is asymptotically stable in the sense of Liapunov. 

Proof: 

It can be shown that the equation of motion can be put into 

the integral form: 

t 

x(t) = Y(t)xo + J Y(t-T) B(T) x(T)dT (2.l6) 

0 

by integration by parts x(t) can be put in the form: 

T t 

x(t) = Y(t)xo + Y(t-T) J B('fl)d'f1 x( T) 

0 0 
(2.l7) 

t T t T 

- J dY~~-T) s B('f1)d1) x(T)dT - s Y(t-T) J B(1l)d1ld~~T) dT 

0 0 0 0 

by defining the integral of B(t) as: 

'!" 

S( T) := s B(1))d1l (2.l8) 

0 
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t 

then: x(t) :::: Y(t)x
0 

+ S(t)x(t) + J AY(t""l") S(T )x(T )dT 

or: 

0 

t 

-J Y(t-T) S(T) [A+B(T)]x(-r)dT 

0 

t 

( 2.19) 

[I-S(t)]x(t):::: Y(t)xo + J [AY(t-T) s(T) - Y(t-T) S(T) [A+B(T)]}x(T)dT 

0 (2.20) 

For \Is( t)\\ sufficiently < 1 
-1 implies [I-S(t)] = U exists and 

there exists an M such that II [I-S(t) J-l\ < M , Vt ; note 

[\\ [I-S(t) ]-4, < 1-11 ~(t)I!} • 

Replacing [I-S(t)]-l by U(t) yields: 

t 

x(t) = UYx
0 

+ u J [AY(t-T) s(T) - Y(t-T) s(T) [A+B(T)]} x(T)dT (2.21) 

0 

To establish bounds; 

t 

!!x(t)jj ~ M [jiY\I \\x
0

\\ + \IA\I J \\Y(t-T)\\ \IS(T)\I [2 + \lfii~)\\} \!x(T)!\dT ] 

0 
(2.22) 

and since l!Yl! ~ be -at one gets: 

t 

\\x(t)\leat ~ M (b!\x
0

\I + \\A\lb s \IS(T)\I [2 + ''oio)\I} \\x(T)\I eaT dT) (2.23 

0 

and by Gronwall's Lemma : 
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t 

l[x(t)\\eat ~Mb \lXo\I exp(M b !!All I l!s(T)\I f2 + lloio)ll1 dT) 

0 

or 

l\x(t)ll ~Mb 1lx0 ll exp(-a +Mb !IA\\ l\SI\ f2 + //!l/1Jt 

hence if Mb \\Al\ !Isl\ f 2 + ~} <a 

Then equation 2.l5 is asymptotically stable. 

( 2. 24) 

(2.25) 

(2.26) 

Here again it is seen that for bounded \\All and \\Bii the 

equation can always be made stable by taking l\s II sufficiently small. 

As in the comments following Theorem F the ratio a/b may tend to 

zero undesirably. 

Theorem I "Small Integral Bounds No . 411 

This theorem uses a Liapunov approach to show stability but 

does not develop the stability of the equation on the basis of the 

time derivative of the Liapunov f'unction being negative. The idea is 

to bound v(i) above by an exponentially decreasing f'unction in time. 

This then would imply asymptotic stability. 

Consider the system of equations: 

dx - -
dt = Ax + B(t)x 

x(O) -= x 
0 

( 2. 27) 
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Then if: i) A is a stability matrix, that is, i a matrix p 

symmetric and :positive definite 7 ATP + PA = - I 

ii) 
1..P 

!Is'\\ [ 2!\A\\ + 2\\B\\ + _l_ + 21\B\I \\Pl!] < ~ 
AP . K. A p 
min min max 

where AP are the eigenvalues of P, and 

t 

where S' (t) =I T (B P + PB)d'T 

0 

Then the system 2.27 is asymptotically stable. 

Proof: 

Let: 

or: 

v t 

f dv ~ J -l xT(BTP + PB)x 
· V -p- + -T - d'l" 

o A;ax x px 

t 

(2.28) 

(2.29) 

(2. 3'.)) 

(2.3l) 

let s I (t) =I (BTP + PB)d'T 

0 

. ( 2 . 32) 

and integrating 2. 3l by :parts yields: 



( 2. 33) 

and taking the modulus of the matrices and utilizing the equation of 

motion 2. 27: 

t 11 8 i11 
v(x) ~ v exp[- -- + .lt:__lL 

o AP AP 
max min 

hence if: 

Then the system 2.27 is asymptotically stable. 

(2.34) 

( 2. 35) 

It should be noted that the modulus of S' can be bounded 

above by a constant times the S matrix of the previous three 

theorems. That is: 

\ls •\\ ~ 2\IP\\ \ls\\ ( 2. 36) 

hence the results 2. 35 can be put in terms o:f \\s\\ as :follows: 

ii) ( 2. 37) 

Also this theorem illustrates the inherent difficulty that 

will be encountered in Chapter IV concerning continuous systems. 
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Clearly for AP. /AP to be bounded away from zero requires the nun max A 

matrix to have bounded eigenvalues. For most continuou s operators, 

however, this is not the case and therefore the methods for demonstrat-

ing stability under small integral bounds do not seem applicable. 

Theorem J ''Universal Bounds No . l" 

This theorem is taken from an article by Kozin (ll) entitled 

"On the Almost Sure Stability of Linear Systems with Random 

coefficients." It utilizes a direct Gronwall Lemma approach . It is 

included since Theorem F utilizes its results as well as the fact that 

under certain conditions the universal bounds will be better than 

those bounds devel oped in Theor ems F, G, H and K. 

Then if : 

Given the system of equations: 

dx 
dt AX + B(t)x 

x(O) = -x 
0 

i) A is a stability matrix, that is 

such that \\Y\\ ~ b exp( - at) where 

dY 
= AY with Y(O) I dt 

ii) \\B\\ < a/b 

Then the system 2. 38 is asymptotically stable. 

-1 

(2 . 38) 

a&b>O 



Theorem K "Universal Bounds No. 2" 

This theorem is taken from an article by Caughey and Grey 

(6) entitled "On the Almost Sure Stability of Linear Dynamic Systems 

with Stochastic Coefficients." A direct Liapunov approach is used. 

Tne results) at least in the case of a second order dynamic system, 

are stronger than those in Theorem J. (See reference (6)). 

Given the system of equations: 

dx 
dt = Ax + B(t)X. 

x(O) -x 
0 

Then if: i) A is a stability matrix, that is ~ a matrix P 

symmetric and positive definite ~ ATP + PA = -I 

ii) 

where AP is the maximum eigenvalue of p • max 

Then the system 2.39 is asymptotically stable. 

Application of the Theorems of Chapter II 

( 2. 39) 

The following example) the Mathieu equation, is used to 

demonstrate Theorems E) F, GJ H, I, J, K. Figure 5 shows these 

boundaries along with the previously derived results (Figure 2, 

Chapter I). It should be noted that the only region where the bounds 

are improved is in the vicinity of w/~ = 0 • One expects) however, 
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that as the generality of a theorem increases the qual ity of the 

bounds would decrease . 

Consi der the equation: 

x + 2sm:ic + (ru2 
+ M sin 1'\t)x = o 

x(O) = x ; x(O) = x 
0 0 

This can be written in the following form : 

d 
dt 

For stability of the above equat ion: 

Theorem E requires: 

i) M < ru2 

sin 1lt : J (fr) 

ii) For this example the P(t) matrix can be easily 

developed and is (See Appendix D): 

2 ~ . TJt l l ru + 1 sin S ru 
4§1) +~+ 2 2 - ru (ru +M sin 'rt;) 2(ru +M sin 

P(t) = 

l l l 

l1t) 

2(ru
2
+M sin Ttt) 

~+ ,..ru 
4-s;ru( ru 

2 
+M s i n 1'\t) 
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and the requirement that \\~I be sufficiently small is satisfied if 

11dPi\ ~ o::t1 < l (See Proof of Theorem. E). This condition is met if: 

1lM [ ~"' + - 2 'Sm 2 + / 2 + l 2 2 J < l 
""' (m -M) (m -M) ~m(m -M) 

It is easily seen that for M < w2 and 1l su:fficiently small the 

system is stable. 

Theorem F requires: 

i) The A matrix is always stable under the requirement of 

w2 and S being greater than zero. The Y(t) matrix 

ii) 

for the problem, as well as values for a and b, are 

given in Appendix c. 

b ~ [2\Y1 cos re+ (2\a\ + l + w
2

) sin Y9] 
y 

where: 

tan e = 2 I a I + i + w 2 
2\a l 

a = roS 

0 ~ e ~ rc/2 

The modulus of S(t) = !:! and therefore: 
11 

MM 2 2 MM M a 
':) exp(Ti) [ 2(l+ro +2Sro)+(l+w +2Sro) Ti exp(Ti)+2M exp(Ti)] < b 
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implies stability. Note that for fixed M , 1l can 

always be chosen sufficiently large to insure stability. 

Theorem G requires: 

i) A is always a stability matrix under the condit ions on 

2 m and s and the P matrix and its eigenvalues t ake 

the form given in Appendix D. Values for the modulus of 

II l/211 \IP-l/2\\ 1 P and .are developed in Appendix E. 

ii) \\s\\ is less than M and therefore the criteria is of 
1l 

the form: 

M M 2 2 MM M :n- exp(';fi") ( 2(l+m +2sm)+(l+m +2sm) - exp(-)+2M exp(-)] 
I( 11 Tl 1l 'fl 

l 
< -2"-___ !_ax-\\P-1,....,7-=-21-\ -\\P-_--1...,..,7 2...-1\ 

which implies stability. 

Theorem R requires: 

i) A is always stable and the values for a and b are 

ii) 

iii) 

given in Appendix c. 

The bound on \I [I-S(t) f 1
\\ is l 

~ l-M/11 

( 
1 

M) (l+m
2 
+2sro) ~ [ 2 + 2M ] < a/b 

l-~ (l+ro +2sm) 

and therefore for any M there is an 1l suffici.ently 

large so that ii) and iii) are satisfied and the system 

is stable. 

Theorem I requires: 

i) A is always stable and the p matrix along with its 

eigenvalues is given in Appendix D. 
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ii) \Isl\ < M/'T) and therefore 

2 !.T\1 \IP\\ (2(l+ro2+2sro) + 2M + _l_ + 2M\\P\\] 
A.P. A.p 
min in.in 

will imply stability. 

Theorem J requires: 

i) The values for a and b are developed in Appendix C and 

therefore: M < a/b will imply stability. 

Theorem K requires: 

i) The p matrix along with its eigenvalues are developed 

in Appendix D and bounds on the modulus of pl/2 and 

p-l/2 are given in Appendix E. Therefore 

M <l implies stability. 
2"-!ax \\Pl/2\1 \\P-l/21\ 
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CHAPTER III 

N'TH ORDER NONLINEAR SYSTEMS 

INTRODUCTION 

The following three theorems develop a method of attack for 

the parametric stability analysis of nonlinear equations. They are 

generalizations of some of the previous theorems for linear systems. 

One important weakness of the theorems is that for application one 

must find an "exponential Liapunov function" relating to the equation. 

In the linear case this can be done as illustrated in Chapter II and 

therefore certain equations of the type ~ = A(t)x + g(x) can be 

analyzed, for example, using the following theorems. Theorem L con-

cerns small derivative bounds on the parameters, Theorem M concerns 

small integral bounds on the parameters, and Theorem N concerns small 

bounds of the amplitude of the parameters. This chapter vividly illus-

trates the basic ideas of all the theorems of this thesis. Although 

the other chapters concern only linear systems, conceptually the 

methods are in no way restricted to linear systems. However, for 

application, the existence of the "exponential Liapunov f'unction" is 

assured only for the discrete linear systems by the Liapunov Theorem. 

Theorem L "Small Derivative Bounds" 

The idea, again, is that if the system is exponentially 

stable for each value of the parametric terms then the parametric 

system is asymptotically stable for sufficiently slowly varying 

parameters. 



consider the system of equati ons: 

dx 
dt 

x(O) 

:rcx.,t) 

-= x 
0 

Then i f: i) 1 a Liapunov f'unction V(i., t ) > 0 i ~ 0 and 

v(o,t) = o such that vv·r(i,t) ~ -av(i, t) 

vt ., a > o 

ii) \Cl log v\ at <a 

( 3. l ) 

\Iii\< R 

Then the system 3.l will be asymptotical ly stable at the origin. 

Proof : 

Let the Li apunov f'unction be V(x,t ) • 

v(i, t) > o 

The time derivative along the trajectory of the system is: 

dV :;: VV· f(x,t) (lV (i,t) dt + (lt 

(3. 2) 

~ -av(i, t ) (lV 
+dt cx,t) 

Ther efore: t 

v ~ V exp r 
[-a+ Cl log V} d 

0 J Clt ,- ( 3. 3) 
0 

Since v(i, t) is continuous at the origin one can choose 

:for any R' < R an x
0 
~ v(i) > V

0 
for J\X\I = R' • 



Then if su:p \Cl l~~ V \ < a , v \Ix\\ < R' , then v is 
t 

decreasing and therefore \Ix\\ < R' and further v(x) going to zero 

i.m:plies \\x\l goes to zero, hence the system 3.l is asym:ptotically 

stable at the origin. 

Theorem M "Small Integral Bounds" 

This theorem concerns tbe stability of the :parametric system 

under the condition of sufficiently small integral bounds. 

Consider the system of equations: 

~~ = !(x) + B(t)g(x) 

x(O) -= x 
0 

( 3.4) 

Then if: i) There exists an exponential Lia:punov function v(x) , 

ii) 

iii) 

iv) 

l\x\\ < R , for the system with B(t) :::: 0 of order -a , 

that is w(x) ·f(x) ~ -av(i) . 

\<:7v·s( t)g(x) 1 v 

\lwv ll·lld~ (f + Bg) \\ 
dx 

t 

are continuous 

bounded functions 

at the origin 

v) l\sl\ == \IJ B(-r)d-r\\ is sufficiently small (bounds given 

0 

in proof) 



Then the system 3.4 is asymptotically stable at x = 0 . 

Proof: 

Let the Liapunov function be V(x) 

v(x) > o , i f o ( 3. 5) 

l\x\\ < R 

then ~~ (x) ~ -av(x) + vv·B(t)g(x) ( 3.6) 

dividing by v(x) and integrating 3.6 yields: 

t 

v ~Vo exp (-ext + I ~·B(T)g(x)dT} ( 3. 7) 

0 

and integration 3.7 by parts: 

T t 
[ vv r ( ) -(- \ V ~ V 

0 
exp -ext + -y· j B i\ di\ g x) 

0 
0 

( 3.8) 

t 
T T --s [d~ (~v)·J B(i\)di\ g(x) + ~·J B(i\)di\ ~~]dT} 

0 0 0 

T 

let S ( T) = J B ('Tl ) di\ ( 3.9) 
0 

tfien: 

V ~ V 
0 

exp(-ext + ~V ·S(t)g(x) 

- s 
t dx 

W· dt - W dg di J 
['V( ) ·Sg + -·S -:: -]dT v v dx dt 

. ( 3.10) 

0 



or 

t 

v(x) ~Vo exp[\~v·S(t)g(x)\} exp(I \~(lV·f(x);VV·Bg(x))Sg\ 
0 

(3.ll) 

+ \~·S ~ (f(x) + Bg(x))\dt} exp[-cxt} 

From ii)-iv) there exists an R' > 0 and Ml' M2, M3 < ro such that 

( 3.l2) 

Then one can pick :for any R" :r 0 < R" < min(R,R') an x(O) 7 

v(i) > v 
0 

exp ~ :for \Iii\ = R" 

hence if: 

\Is\\ < M a M 
2 + 3 

Vt ( 3.l3) 

then V is decreasing and therefore \\xi\ remains less than R" and 

:further v(x) going to zero implies \\xi\ goes to zero, hence the 

system 3.4 is asymptotically stable at the origin. 



Theorem N "Universal Bounds 11 

The concept of the bounds on the parametric terms being 

su:fficiently small is developed in this theorem. 

Consider the system of equations: 

dx - -a:t = r(x) + B(t)g(i) 

i(o) -= x 
0 

T'nen ir: i) 1 
j an exponential Liapunov function v(x) for the 

system with B(t) := 0 of order -ex ' that is 

w(i)·r(i) ~ -CtVCx) with \Iii\ < R • 

ii) \\~VI\ \lg(x) I\ is continuous and bounded at - = 0 x 

(3 .l4) 

. 

iii) \\B\\ is su:fficiently small. (Bounds given in proof) 

Then the system 3.l4 is asymptotically stable at i = 0 . 

Proof: 

Let the Liapunov :f'unction be V(x) 

v(x) < o 

dV(x) -
dt = 'VV·f(x) + 'VV•B(t)g(x) \\ ij\ < R 

(3.l5) 

s: -CtV(x) + vv B(t)g(i) 
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t 

v ~ V
0 

exp[-at + J ~v B(t)g(x)dt} 

0 

Fro:n ii) there exists an R 1 < R such that 

~ \\g(x)\\ < M < 00 for llx!I < R 1 

v 

then one can al ways choose for any R" < R 1 

v(i) > v 
0 

for l!x\I = R" • 

Therefore if: 

\\B\\ <9: 
M 

Vt 

-an x such that 
0 

( 3.l6) 

(3.l7) 

( 3.l8) 

then from 3.l6 V is decreasing, hence \\x\I remains less than R11 

and f'urther v(x) going to zero implies -x goes to zero, hence the 

system 3.l4 is asymptotically stable at the origin. 



51 

DISCUSSION 

No examples are included for this chapter for two reasons. 

First, the purpose is to illustrate the generality of the Liapunov 

approach to demonstrate asymptotic stability of ordinary differential 

equations, linear or nonlinear, and second, the author was unable to 

find an exponential Liapunov f'unction relating to any worthwhile 

example. 

The criteria for stability developed within Theorems L, M 

and N basically require that the vector f(x) is not dominated by 

g(x) in the neighborhood of the origin. That is to say, that the 

type of stability is characterized by the nature of f(x) . 
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CHAPTER IV 

CONTINUOUS DYNAMIC SYSTEMS 

INTRODUCTION 

This chapter demonstrates sufficient asymptotic stability 

conditions for a class of continuous parametric systems by Liapunov's 

Direct Method . The particular Liapunov function used is a somewhat 

logical extension of that used in Theorem D, Chapter I. However, it 

is conjectured that perhaps there exists a better quadratic functional 

for the system in contrast to the discrete system where the quadratic 

form -T -x px appears to be unique in regard to the quality of the re-

sults. The one used nevertheless proves quite useful as demonstrated 

in the example problems. 

Theorem O demonstrates a universal stability bound on the 

parametric terms and Theorem P concerns bounds on the derivative of 

the parametric terms. No results could be obtained for the case of 

small bounds on the integral of the parametric term (see discussion 

after Theorem I). The examples include both classical and non-

classical systems and demonstrate the generality of the functional 

approach in contrast to a modal approach. 

Preliminaries 

Let S be a bounded subset of an M-dimensional Euclidean 

space fx } with boundary denoted by r . The equation under 

consideration will be: 



with initial conditions: 

u(O,x) = u (x) 
0 

ut ( 0, x) = ut ( x) 
0 

with boundary conditions: 

Bu(t,x) = o , for X€f 
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(4.1) 

(4. 2) 

( 4. 3) 

The solution of 4.1, 4.2 and 4.3 will be assumed to exist 

and to possess sufficient smoothness so that L1u and L2u are continu­

ous. An inner product is defined on this space as J u(x)v(x)dx = (u,v) 

s 
L1 and L

2
(t) are linear spatial operators where L2(t) can be ex-

pressed in the following form: 

where are independent of time. 

Main Problem 

Given the continuous differential equation: 

u(O,x) = u (x) 
0 

ut(o,x) = ut (x) 
0 

(4.4) 

(4.5) 



where: i) (u,Llu) , (u,L2u), (Llu,L2u) and 

u 

ii) 

(l, J g(u)du) are positive i'unctionals for all t 

0 

and all acceptable f'unctions u(t,x) • 

da. 
). 

dt from equation 4.4 is defined and 

Theorem O "Universal Stability Bound" 

The particular case where 4.5 can be put in the form: 

u(o,x) = u (x) 
0 

ut(o,i) = ut (x) 
0 

Then if: i) (u,L2u) > 0 

A.> 0 

l l 
s~p Ml (t) ::::: l+2€ where 0 ::::: t and O < € < 2 

and there exists an M2 
u 

v) M2 (Ll u, g(u)) ':?: 2(l, J g(u)du) 

0 

(4.6) 

( 4. 7) 



55 

J 

Then the equation is asymptotically stable in the following sense: 

where 

Proof': 

i) 

ii ) 

iii) 

[
(Lluo,LluO) Llu 2 

( ) ((-_o + u ) ) .Al = + u ,L2u + 2 o o ot 

u 
0 

+ (1,2 J g(u)du)) 

0 

(4.8) 

u 

Let 
(Ll u,Ll u) Ll u 2 

v(t) = --i--- + (u,L2u) + ((- 2- + ut) ) + (l, 2 I g(u)du) 

0 

(4.9) 

and along the trajectory: 

Using equation 4.7: 



and from 4.7 

u 
dV 1 I ) ~ ~ - ~ (2(1, j g(u)du) + 2€(ut,ut dt M2 

0 

However, from 4.9 

u 
I Ll u' Ll u Ll u 2 2 

v ~ (l, 2 .J g(u)du) +< 4 ) + (u,L2u) + (2(-2-) ) + (2ut) 

0 

u 

(l, 2 J g(u)du) + ~ L1 u,L1 u) + (u,L2u) + (2ut' ut) . 

0 

Hence from 4.10 and 4.ll and 4.7: 

or 

From equation 4.9 and 4~12 the results 4.8 follow directly. 

(4.10) 

(4.ll) 

(4.12) 
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Theorem p "Small Derivative Bounds" 

The particular case where 4.5 can be put in the form: 

u(o,x) = u (x) 
0 

ut(o,i) = ut (x) 
0 

Then ff: i) (u,L2 (t)u) > 0 Vt 

)..>0 

iii) 

iv) s~p ~(t ) < l for 0 ~ t 

and there exists an M2 

v) 

u 
r 

M2 (L2u , g(u)) <:! 2(l, J g(u)du) 

0 

(4. l3) 

(4.l4) 

Then the equation 4.13 is asymptotically stable in the following sense: 

(4.l5) 



where: 

and 

Proof: 

A2 = [(Lluo,Lluo) + (uo,L2(o)uo) + ((Ll;o + uo)2) 

u 
0 

+ (l, 2 J g(u)du)] 

0 

1 
a = - (l - sutp M1 (t)) 2 M

2 

(L1u,L1u) L
1

u 
2 

u 
Let v(x,t) = -~~- + <u,L2u> + ((~ + ut) > + (l, 2 J g(u)du) 

0 (4.16) 

and along the trajectory: 

using equations 4.14 

(4.17) 

However, from 4.16 
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u 

V ~ (l, 2 J g(u)du) + (~ Ll u,Ll u) + (u,L2u) + (2ut' ut) 

0 

and with 4.l7 and 4.l8 

dV (l-~(t)) 
dt ~-----v M2 

v ~ v (x) [exp - Mt (l-sup Ml(t))} 
0 0 2 t 

From 4.l6 and 4.20 the results 4.l5 follow directly. 

Example l 

(4 . l8) 

(4 .l9) 

(4. 20) 

consider the equation of a string with parametric excitation 

proportional to the slope: 

u(O,x) = u (x) 
0 

with boundary conditions: 

i) u(t_,O) = 0 

or ii) u(t,o) = o 

part A 

u(t,l) = 0 fixed-fixed 

u (t,l) = 0 fixed- free x 

Conditions 4.7 from Theorem. 0 are satisfied if: 

(4. 2l) 

(4. 22) 



Then since 

sup 
t 
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< l . 

\u 12 s: (u ,ux) , see 4.25, the theorem implies 
'max x 

lim \u\ = 0, providing sutp\V(t) \ is sufficiently small. 
t-oo max 

Pe.rt B 

conditions 4.l4 from Theorem. P using 4.25 are satisfied if: 

sup 
t 

r \vt<t) I ] 
L2z.(l-1vct) \] 

<l . 

(4.23) 

(4.24) 

Then as before lim \ul ~ 0, providing 
t-oo Im.ax 

s¥p\V(t) \ is less than l 

and s¥p vt(t) is sufficiently small. 

Note : 

(u, u ) = uu 1 ' - (u , u ) xx x-o x x 

lul s: (l,\u \) s: (u ,u )l/2 
max x x x 

(u ,u ) x x 

Exn....~ple 2 Buckling of a Beam with Force p(t) 

u( o,x) = u (x) 
0 

(4.25) 

(4.26) 
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Boundary Conditions allowed: 

i) u(O) = 0 ux(O) = 0 u(l) = 0 u (1) = 0 x fixed-fixed 

ii) u(O) = 0 u (0) x = 0 u(l) = 0 u (1) xx = 0 fixed-pinned 

iii) u(O) = 0 u (o) x = 0 u (1) = 0 xx u (l) xxx = 0 fixed-free 

iv) u(o) = 0 ux(O) = 0 u (l) x = 0 u (l) xxx = 0 fixed-semi fixed 

v) u(O) = 0 u (0) = 0 u (l) = 0 u (l) = 0 :pinned-semifixed xx x xxx 

part A 

conditions 4.7 from Theorem 0 are satisfied if: 

[ I P~ll 2
2
: 2z\p(tl\J 

su:p 
t 

< l (4. 27) . 

or if one excludes Boillldary Condi ti on iii) then 4. 27 can be :put in the 

form: 

su:p 
t 

[ 

\ :p(t)\ 
2 

2zj :p(t)\ J 
2z + A. . 

min 
2z 

<1 

where A.min is the minimum eigenvalue of 

(4.28) 

d2 
with the respective 

boundary conditions. Then since 
2 

\u \ ~ (u u ) see 4. 31, the max xx xx ' 

theorem implies lim \u \ = 0 , :providing max t-tGO 

small . 

su:pl :p ( t )I 
t 

is suffi ci en tly 
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P.::!rt B 

conditions 4.l4 from Theorem P are satisfied if: 

sup 
t 

I IPt(t) \ J 
t2z(l-\p(t)\) 

<l (4 . 29) 

or if one excludes Boundary Condition iii) then 4.29 can be put in 

the form: 

sup 
t 

(4.3)) 

Then as before lim \ul = 0, providing sup1p(t) \ 
t...co max t 

is less than l 

Note: 

s~p\pt(t) \ is sufficiently small. 

l l 
(u,u ) = u,u \ - u u \ + (u ,u ) xxxx xx x xx xx xx 

0 0 1 
I I ~ (1, \ux\) ~ (u u )l/2 < \u \ ~ (u u )l/2 
u max x x x max xx xx 

(u,u ) 1 xx ~ -- with the exception of Boundary 
\ u_, uxxxx) \m.n 

Condition iii. 

(4. 31) 



Example 3 Buckling of a Plate 

u(O,x) = u (x,y) 
0 

with boundary condition: 
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u( f') = 0 and J ~ ('VU '\i'U) •ndf = 0 

r 

(4. 32) 

(4. 33) 

Conditions 4.7 from Theorem Q with N(t) =max fl ~x(t) I , l'fly(t) 11 
requires: 

N2(t) 2zN(t) 
2z + X • 

min 

2z 

where A.min is defined in 4.36. 

Then since lim ;;:u2 + u 2 + 2u
2 }= 0 , Appendix B and Sobolev 1 s 

t-. CD'* XX yy xy1 

Lemma (lO) 

I 12 I (u2 2 2 2 2 2 ]d u ~ const + u + u + u + u + u S max x y xx xy yy 
s 

with the only restriction that S satisfy the "cone condition" (10), 

the lim \u\ = 0 , providing 
max t.....::o 

small . 

sup \N( t) \ 
t 

is sufficiently 
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Part B 

Conditions 4 .l4 from Theorem p with Nt ( t) = maxf111) t) I , I ri / t) I} 
requires: 

( 4. 35) 

T'nen by the previous argument lim \u \ ::: 0 , providing sup \N(t) \ 
t-+GO max t 

is less than A. and sup\Nt(t)\ is sufficiently small. 
m:l.n t 

Note : (see Appendix A and B) 

and 

I' 

j vu·vu dS 

s 1 

i u<v .. v (v ·vu)dS 
J 

~ x-:­
m:l.n 

s 

j u
2 

dS 
··' 8 1 

~~ 
r min J u'V ·'Vu dS 

8 

where Amin is the minimum eigenvalue of the 

operator V' "'Vu where u(r) ::: 0 • 

and J uv·v(v·vu)ds::: -J~ (vu·vu)·n df 

s r 
+ J (u

2 
+ u

2 
+ 2u

2 
)dS xx yy xy 

s 

( 4. 36) 



Ca.'7.ments 

The Theorems O and P considered only global stability but the 

a rgument for stability of the equilibrium. solution, u(t,x) = O , when 

the conditions 4.7 and 4.14 are not global can in most examples, by t he 

following argument, be demonstrated. Whenever the displacement u can 

be bounded above by the Liapunov :function, as in all the examples pre-

sented, then since v(u) is alwa ys less than v(u ) 
0 

one can choos e 

the initial conditions sufficiently small so that u always remains 

in the region of validity of conditions 4.7 and 4.14 about the 

equilibrium position. 

The author has been unable to obtain stability under the 

requirement of sufficiently small integral bounds on the value 

t 

\J ai (t)dt \ in the operator L2(t) , i.e., "high frequency bounds." 

0 

This is supported from investigations on discrete systems (see 

Theorem K) and indicates that for systems where L2 possesses an un­

bounded spectrum of eigenvalues, as is the case for most continuous 

dynamic systems, the approach fails. 
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DISCUSSION 

The theorems developed within demonstrate the existence of 

sufficient exponential asymptotic stability boundaries in the sense of 

Liapunov for homogeneous parametric ordinary and partial linear dif-

ferent i al equations. 

For many applications the bounds will not be good enough, 

that is, the parameters of the system will not be included in the 

sufficient stability region, and design requirements will not permit 

conservatisms in the parameters to assure stability under the theorems 

developed. However, the theorems do demonstrate the existence of 

stability boundaries and perhaps enlarge the presently known stability 

region by considering more properties of the system. (Caughey and Grey 

considered stability under conditions on the maximum of \IB(t)\\ 

whereas the developed theorems consider the effect of the maximum of 

t 

!lj B(T)dT\l and \\d~~t ) \l) • 

0 

Besides the physical problems to which the considered 

equations apply directly (i.e., the example problems), the application 

to the study of local stability of a non-trivial solution of nonlinear 

equations appears promising. Under certain restrictions (see 

Struble (l2)) the stability of a tra jectory x(t) of the e quation 

di -dt = f(x,t) is determined by the a symptotic stability of the trivial 

l ti Of 
dy 

so u on dt f-(~(t),t)y (i.e., the equation of first v ariation) x 

which is of the form treated in the theorems developed for linear 



systems with parametric coeflicients . If x( t) is not exactly knOim 

but one is able to se t bo'l:.nds en its modulus or the modulus of its 

integr al or derivative) the theora1s will still be ap:?licable. 

For nonhomogeneous equations (the existence of forcing terms 

-
f(t)) the Liapunov I"unctions used to prove a s ymptotic stability can, in 

nost cases) be used to show boundedness of the solution for oounded 

f orcing terms. 'I'hi s can b e done by recognizing that in many cases, 

~R:;... - c.N(x) will doL1inate \vv·t(t)\ for \\x\\ > R and :O.ence t:ne 

Liapunov function will be exponentially decreasing for and 

therefore the solution will be bounded within R for all times pro-

viding the initial conditions are suff iciently small. It may even b e 

possible to improve R by consideration of the fre quency content of 

-
f(t) • 

The theorems were developed with deterministic parameters in 

mind but the concept of almost sure asymptotic stability can in 

most cases be deduced by com?ar able statements in t he stability 

re_quirements . 
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APPENDIX A 

A proof is presented of the following inequality; 

J vu ·vu dS 

s l 
~~~~~~~ ~ r::---

J min 
u'V ·v (vu ·vu) dS 

s 

where A . is the minimwn eigenvalue of the continuous operator min 

- 'V ·'V ) i.e., the Laplacian, and f'urther that u(r) = 0 where r is 

t he boundary of s. 

By suitable restrictions on u(x) , it may be expressed as 

u :E a.e . (x) 
1 l. 

where 'V·'Vei + ~ei = 0 , that is ei is an eigen-

vector of -'V·'V and Ai is the associated eigenvalue. Clearly then: 

0 

=Jr 'Vu·V'(V'·'Vu)dS + ~ a. A. J 'VU"'Ve. dS 
i=l l. l. l. 

s s 

and by Green's Theorem: 

o J u'V('V ·'Vu)·ndf - J u'V·'V('V·'Vu)ds 

r s 



°" r 
+ ~ a. A.. j' 'VU·Y'e1 dS 

i::l l. l. • 
s 

since u(r) = O , then : 

s 
------------------~ = l I u '\7. '\7 ( '\7. 'V'u) dS 

s 

and since the eigenvectors of -'\l·V' are orthogonal and the eigen-

values are positive it can be shown that: 

s 'IJu•'Vu dS 

s _,, l -------------- ~ -,;:---

u'V • V' ('V ·Vu) dS J min 

s 
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APPENDIX B 

This appendix demonstrates the application of Green's 

Tneorem to the functional J u('i7·('i7(ry· 'i7u)))dS • 

s 

The following identities can easily be shown: 

i) V·(u'i7('i7·'i7u)) = u('i7·('i7('i7·'i7u))) + (vu)·('i7('i7·Vu)) 

ii) 'i7·(('i7.'i7u)('i7u)) = ('i7·'i7u)('i7·'i7u) + ('i7('i7•'i7u))·('i7u) 

iii) in two-dimensional rectangular coordinates: 

l °'2 'i7 ·'ii' ('i7U•'i7U) 

Therefore by Green's Theorem 

J u ( v • ( v ( v • w) ) ) ds = J [ u 'i7 ( v • w) - ( 'ii'· vu) ( 'i7ll) J • Ii d r 
s r 

+ I ('ii'·'ii'u) ('i7·'i7u)ds 

s 

or 

J u('i7·('i7('i7·'i7u)))dS = J [u'i7('i7 ·'i7U) - ; (vu·'ii'u)]·n df 
s r 

s 
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APPENDIX C 

The Y(t) matrix for the equation: 

ro > 0 and 0 < s < 1 

is just the solution of the matrix equation: 

dY 
dt = l ]y with Y(O) = 

-2sro 

and is easily shown to be of the form 

Y(t) 
sin rt ] 

rt-T\ sin rt r cos 

where: T\ = -(l) 

clearly: 

l\Y(t)l\ ~ [2r\ cos rt\ + (2\T\ \ + l + ro
2

) I sin rt\ ) 
T\t 

e 
r 

T\t 
:s: [ Zt" cos ye + (2\T\I + l + ro2) sin ye] e, 

wbere tan 
2 

+l+ro o :s: e :s: 1C/ 2 

Tnis expression then allows one to pick values for a and b such 

that \IY\I ~be -at . 
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APPENDIX D 

For a matrix A of the form: 

A = 

the associated P matrix that gives ATP + PA = -I is as fo~lows: 

p 

l 

2m
2 

The eigenvalues of P are: 

l l 

4;m + 4sm3 
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APPENDIX E 

This appendix is to develop bounds on -1/2 p and 

for use in the theorems that involve these expressions. Since p is 

a symmetric positive definite matrix, there exists an orthogonal 

transformation ~ such that 

<QT~ I 

where Ai are the positive eigenvalues of p • Clearly then: 

p-l/2 L( P)-1/2 ] T 
= <P Ai - 9? 

If P is an nx:n matrix, then by Cauchy's Inequality: 

n - 2 n 2 
< ~ I <i? •• \ ) :s: < ~ Qij )n 
i=l iJ i=l 

and since the modes are normal 1 

/ 

therefore: 



hence: 
3 n 

~ n ~ 
i=l 

Again using Cauchy's Ine~uality: 

and 

Thus we get: 

and 
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This is presented as a simpler alternative to calculating 

all the eigenvalues and eigenvectors of P • 
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APPENDIX F 

. Lemma B 

This lemma demonstrates that II ex:p(-S)T ex:p(s)-~I goes to 

zero continuously with II s\\ · • 

Let : 

\lull = \lex:p( -S)T ex:p(s)-Tl\ = \l [I + r: ( - s)n]T [I+ ;, (S)n] -T \l 
n=l Ln n:i Ln 

oo (S)n oo (-S)n oo (-S)n T ~ (S)n I\ 
= \\T ~ ---n_- + ~ Ln T + ~ tJ 

n=l L n=l n=l Ln n=l Ln ' 

but \\ ~ (sn)n \\ = \\s ~ (s)n I\~ l\sl\ ~ (sLn)n =\ls\\ e\\s\\ 
L Ln+l ' ' n=l n ::0 n::O 

hence \ \ u\ \ ~ 2 \IT \ \ \ \s \ \ e \ ~ \ \ + \IT \\ \ \s \ \ 2 
e 

2 
\ ~ \ \ 

therefore \\u\\ -+ 0 as \IS\\ --+ 0 • 

Lemma C 

This lemma demonstrates that 

\\ex:p( -s) ~~ ex:p(S) - ex:p(-s) de~(s) \\ goes to zero continuously 

with \\s\\ • 
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\\u\\ = \\exp(-s) s exp(S) - exp( - s) de~(s)\\ 

~ e\\s\\ \\s ;:: (S)n - ~ 2: (S)n I\ 
nd Ln dt n=2 Ln ' 

~ 2\ls\\ \ls\I e 211s!I 

Hence 

\\u\\ < 2i1s\I \\s\\ e
2\\s\I 

and therei'ore \\u\\ -+ 0 as \ls\\ -+ O • 
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