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ABSTRACT

Let E be a compact subset of the n-dimensional unit cube,
ln, and let C be a collection of convex bodies, all of positive n-
dimensional Lebesgue measure, such that C contains bodies with arbi-
trarily small measure, The dimension of E with respect to the covering

class C is defined to be the number
dC(E) = SuP(B:HB,C(E) > 0) ,

where H is the outer measure

B, C

inf (2 m(Ci)E’:U C.oE, C €0 .

Only the one and two-dimensional cases are -studied. Moreover, the
covering classes considered are those consisting of intervals and rec-
tangles, parallel to the coordinate axes, and those closed under trans-
lations. A covering class is identified with a set of points in the left-
open portion, 1;1, of 1n' whose closure intersects 1n - 1;1. For n= 2,

the outer measure HB C is adopted in place of the usual:

inf (I (diam. (C))P:UC, 5 E, C, € Q) ,

for the purpose of studying the influence of the shape of the covering

sets on the dimension dC(E).

If E is a closed set in 11, let M(E) be the class of all non-

decreasing functions p(x), supported on E with pu(x) = 0, x< 0 and

w(x) =1, x> 1. Define for each pu € M(E),
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R . log Ap(c)
dc(p.) = 121’111(1)’& —'—1—6?%— ’ (c € Q)

where Ap{c) = V(p(x+tc) - p(x)). It is shown that
x
d-(E) = sup(d-(w:p € M(E)) .

This notion of dimension is extended to a certain class & of sub-
additive functions, and the problem of studying the behavior of dC(E)
as a function of the covering class C is reduced to the study of dc(f)

where f € &, Specifically, the set of points in 12,
(*) {(dg(f), d (D) ):f € &)

is characterized by a comparison of the relative positions of the points
of B and C. A region of the form (*) is always closed and doubly-
starred with respect to the points (0,0) and (1,1). Conversely, given
any closed region in 12, doubly-starred with respect to (0,0) and (1, 1),
there are covering classes B and C such that (*) is exactly that region.
All of the results are shown to apply to the dimension of closed sets E,
Similar results can be obtained when a finite number of covering classes
are considered.

In two dimensions, the notion of dimension is extended to the
class M, of functions f(x,y), non-decreasing in x and y, supported on

12 with f(x,y) = 0 for x-y =0 and f(1,1) = 1, by the formula

log Af(s, t)

dC(.f) = lim inf Tog 5. &

set-0

; (s,t) € C

where



AM(s,t) = V (f(x+s, y+t) - f(x+s, y) - f(x,y+1t) + f(x,t)) .
X, Y
A characterization of the equivalence dg 1(f) = d¢ 2(f) for all £ € M, is
given by comparison of the gaps in the sets of products s:t and quo-

tients s/t, (s,t) € Ci (i=1,2),
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INTRODUCTION

Let E be a subset of the n-dimensional unit cube 1ln and let
S be a collection of convex bodies, all of positive n-dimensional
Lebesgue measure, such that S contains bodies with arbitrarily small
measure, The dimension of E with respect to the covering class S is

defined to be the number
dS(E) = sup(b:Hb(E) >0) ,
where Hb is the outer measure
. b
1nf(Z‘, (m(Ci)) :UCi oE, Ci € S) .

The dimension dS(E) is always a number between 0 and 1. Moreover
it is monotone with respect to the covering class in the sense that
Sc T implies dS(E) 5 dT(E),

The purpose of this dissertation is to study the behavior of
dS(E) as a function'of the covering class S. Only the one and two-
dimensional cases are considered. In the one-dimensional case con-
vex sets are intervals but the question could arise as to the behavior of
dS(E) when covering classes other than those consisting of intervals
are considered, Although this question is for the most part unan-

swered, some statement can be made,

Theorem. If S is any covering class of open sets which

contains the intervals and their finite unions, then dS(E) =0 or

ds(E) = 1, as E has measure zero or positive outer measure,




Proof: If E has positive outer measure p, then any cover=-

ing (Ci) by sets in S has the property that,
0 < p<Z m(C,) <Tm(C,)" (b <1)

and so Hb(E) >0, b< 1, which shows dS(E) = 1, On the other hand, if

E has measure zero, there is a sequence of intervals (lj) such that

For any r > 0, there is a seq. Nk such that

. N %
E E m(lJ) < .
k=1 _]=Nk_ 1+1
Thus
-
© Nk
k=1 3=Nk_ 1+1
and so let m be such that
® Nk i #
Z) m U 1.] < €
k=m+1 j=Ny _+1
then
T T
Nm © Nk.
Hr(E) <|ml U 1, + 23 m U] 1,
jul ¢ k=m+ 1 =Ny +1

Since ¢ was arbitrary and r > 0, Hr(E) =0, and dS(E) =0,



Since part of‘the interest of a dimension such as (1) lies in
the study of sets of Lebesgue measure zero, it appears that for this
purpose the covering classes cannot be too large with respect to the
intervals, The fact that the intervals themselves do not form too large
a covering class was proved by Hausdorff [11]. The approach taken in
this study is motivated by these facts and so covering classes are con-
sidered here to be collections of intervals, closed under translation,
which contain intervals of arbitrarily small length, Thus a covering
class is completely determined by the lengths of its members.

Of great importance to this study is the fact that the study of
dimension with respect to covering classes which consist of intervals
can be reduced to the study of a dimension of a certain class of increas-
ing functions. The notion of the dimension of a function considerably
facilitates the investigations and carries a certain interest for its own
sake,

In two dimensions the situation is more interesting because
the shape of the covering sets, along with the area, plays a fundamental
role, Although the results are fragmentary, certain indications of the
role of shape can be made., As a first attempt, covering classes which
consist of rectangles are considered and an analysis made of the influ-
ence of shape on the dimension.

When S is the collection of all convex bodies, the expression
(1) is called the Hausdorff dimension of E., This dimension function on
closed sets has been studied in connection with the theory of Trigono-
metric Series, for example, by Bari [1] and Kahane and Salem [5].

For certain applications to Number Theory and some interesting
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properties of the Hausdorff dimension see Besocovitch [8] and
Eggleston [9]. Finally, for the relationship of the Hausdorff dimen-
sion of a closed set to the topological dimension see Hurewitz and

Wallman [4].



CHAPTER I

PRE LIMINARIES

§l. Sub-additive Functions

A real valued function f(x), defined en x > 0, is said to be

sub -additive provided that

f(xt+y) < £(x) + £(y) ,

for all x, y > 0. Only non-negative functions are considered.

Lemma 1, If f(x) is sub-additive and non-decreasing for

sz, then for all tzO
f(tx) < 2(t v 1) £(x) "

Proof: There is a non-negative integer n, such that

n< ten+l, Thus

f(tx) < f((nt+1)x) < (n+1) £(x) < (t+1) £(x) < 2(t v 1) £(x) .

)

In particular, if t=—, 0<x51,
2
f(1)5§ f(x) , or

(1. 1) f(x)zxf(l)/Z.

A second fact, due to Hille [ 3], useful in the following, is

Lemma 2. If f(t)/t is non-increasing for t> 0, then f(t)

is sub-additive.




Proof:

< f(x+y) % Yf(x-%y)

flxty) X+y Xty

Sx%+ y-f—(%’-)- = f(x) + £(y) .

A sub-additive function which will be important for later con-

siderations is the function
(1. 2) p(s) = v [(xrs) - i)
p. 9

where f is supposed non~-decreasing., The fact that Af is sub-additive
can be seen by writing,
flxctstt) - £(x) < (f(x+t+s) - f(x+t)) + (f(x-l-t) - £(x)
< ME(s) + Af(D)
and so,

p(s+t) < Af(s) + Af(t) .

Further, if f itself is sub-additive, then
f(x+s) - f(x) % f(s) ,

and so if £(0) = 0, Af(s) = {(s).

§2. The Class M

Let M denote the class of all realwalued, non-decreasing
functions f(x), defined on x > 0 such that £(0) = 0, and Af is bounded
on [0, 1].

Define a transformation T on M as follows:



£(y)
ox<ygx—%- ; if x50
(1. 3) T(f)(x) =
0 ; x=0.,

Some elementary properties of T are listed below.

Theorem 1,
a) T(f) <f,feM.
b) T(f)(x)/x is non- increasing for x > 0.
c) T(M) c M.

d) T(f) is continuous at each x> 0.

Proof: a) Since yéxf(y) ly < f(x)/x, it{follows that

A .fM<f(x) J
y<x Ty =

T()(x) = x
when x> 0. For x =0, the same is true.
b) If x>0, T()(x)/x = Ygx f(y)/y, which is

evidently non-increasing.

c) T(f)(0) = O by definition, Let x,t> 0, then

f(ly) - £(y) £(y)
ans Y5/§<+t_3}fr_ = {ath) (YQXT N xcyxtt T)
£(y) £(x)
> x A .f_(_ﬁ. .
- Y% Y

which shows that T(f) is non-decreasing. By Lemma 2, § 1 and the

remarks following it, parts a) and b), above, imply

AT(f) = T(D) < £,



so that

AT(f)(x) < f(x) < £(1) , (0<x<]) .

d) Let Xy > 0 and write g = T(f). If x> X0 then
glxg) &lx)  glxy)

x S Tx =7

0

by c) and so,

0 < 80 - 8xg) < (- ] gty -

*0
On the other hand, if x < x4

glx)  glx) g

which implies

XO » XO
0 < glxg) - glx) 5(— ® ) g(x) 5(—— - 1) glxg) -
X X

Thus,

x Xq
lg(x) - (0| < 8lxy) [(?6 - ) v(—xi’- )]

which shows that g is continuous at X0

If f ¢ M and if £(t)/t is non-increasing, it is clear that

T(f) = £f. In the case that f(x) is only sub-additive, there is the follow-

ing estimation,

Theorem 2. If f ¢ M is sub-additive, then

£(x) /2 < T(O(x) < £(x) .
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Proof: The fact that T(f) < f was just proved above. By

Lemma 1,

£(x) = flxy/y) < 21 v x/y) £y) .

If y<x, then £(x) < Zx%, and so
fly) _
f(x) < 2x Yng = 2T{E)(x)

Denote by ¥, the class T(M), then JF has the following

properties:

Theorem 3.

a) I fe M, then f € ¥ if and only if £(t)/t is non-
increasing.
b) If f, g€F and 0<q, B, a+p<1, then

© gB € %, where 0° is defined to be zero.

c) I fa € & for all a € A, then
f €3 and agA fa € &, provided these exist,
Proof: a) is proved by Theorem 1, c) and the remark fol-

lowing it.

b) Let t>=x. Then

t t

X

£2(9 - gPo _ (f(t) % (g(t))B otp-1

t ) ° ’

(f(_x)_ o (_g_(ﬂ)s @tp-1
X

X xX

_ ) . gPx) (_g) atp-1
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- 24 gP)

X

c) If fa is a non-decreasing for all a ¢ A, then so

A f_ and vV f1f_,
aeAa aeAa

ficient to show A f.(t)] /t and V. f,(t)) /t are non-increasing for
acA acA

are and both are zero at x = 0, By a) itis suf-

ts> 0. Indeed, since fa €F, for x< t,

A () A f
(fﬁ_a(_ )) _ oA G, (ae " a(x))
t acA t acA x x
( v fa(t)) ( v fa(x))
and acA o achA
t S x

for the same reasons,
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CHAPTER 1II

DIMENSION OF FUNCTIONS

§ 1. Covering Classes, Dimension

A non-empty set S of points in (0, 1] is called a covering

class, provided that S has 0 as a limit point,

Definition: Given a function feM, f £ 0, and a covering
class S, the dimension of f with respect to S is defined to be the
number,

o B 5 log Af(s)
(2. 1) dg(f) = 1181’?‘: 161f Tz s (s € 5)

2

where Af is defined by (1. 2).

Remark l: Observe that if fe M, and f £ 0, then Af(x) > 0,

if x> 0. Indeed, if f(xo) > 0, for some x_ > 0 and M(x) = 0 for some

0
positive x, then let n > 1 be such that Xy < DX Then

1

n
f(xo) < f(nx) 121 flkx) - f((k-1)x)
< n M(x) = 0 ,

which is a contradiction. Thus ds(f) is well-defined.

Remark 2: The dimension, ds(f), is always between 0 and

l. Since feM, 0< Af(s) < C, for some constant C, when s¢S. Thus
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log Af(s) e log C

Tog s -—logszo(l) 5

and so dS(f) = 0, On the other hand, since it was observed in §1,

Chapter 1, that A is sub-additive,

log Af(s) _ log s Af(1)/2 _ log M(1)/2 _
log s = Iog s _l+iﬁs—_1+o(l) i B

and so by (1. 1) it follows that dS(f) < 1. Moreover, x* is in M, for

O<g< 1l and dS(xa) =q. The function x°  defined by

1, x>0

satisfies ds(xo) =0. Therefore dS(f) can take any value in [0, 1].

The following can be used as an alternate definition for ds(f).
Theorem. ds(f) = sup(g:s_B M(s) = O(1), s € 9S).

Proof: Let r(S,f) = sup(B:s_6 M(s) = O(1l), s € S), and
suppose that dS(f) >0, If 0<pc< ds(f), then for s € S and s small
enough,

log Af(s)

og 5 > B

which implies Af(s) < sB. In this case, s B M(s) < 1 when s ¢ S, s

small enough so that g < r(S,f). Since r(S,{) >0,
dglf) < (5,9 .

On the other hand, suppose now that r(S,f) > 0, and take 0 < g < r(S,f).
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Then s P M (s) < M, BES ,

for some constant M, and so

log Af(s) log M
log s = log s

which implies dS(f) > p. Thus ds(f) > r(S,f), and equality follows.

§2. An Equivalence Relation on M

For the study of the dimension ds(f) when f ¢ M, there is a
natural equivalence relation induced on M which considerably simpli-
fies the work. Namely, two functions f and g in M will be called
equivalent, in symbols f ~ g, provided that ds(f) £ ds(g) for all cover-
ing classes S. The main result concerning this equivalence is the

following:

Theorem 1. Given f ¢ M, f £ 0, there is a function g € ¥,

such that f ~ g, thatis, ds(f) = dS(g) for all covering classes S,

Proof: If f € M, define g = T(Af) where T is the transfor-
mation defined by (1. 3). Since Af is sub-additive, Theorem 2 (§2, 1),

gives
T(af) < M < 2T(Af) .
By Theorem 1, c) of that section and chapter, T(Af)(x)/x is non-

increasing and T(Af) is therefore sub-additive by Lemma 2 (§1,1).

Thus the relation,

log 2 4 log T(Af)(s) log Af(s) log T(X)(s)
<
log s log s = logs = log s ’
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implies that dS(T(Af)) = dS(f), for all covering classes S, or

f . T(Af) € F,

The advantage of being able to replace f € M by an equivalent

g in & is that formula (2. 1) simplifies to:

L e doap 1O B18)
ds(g) = lt;rr_x’t)nf g © (s €89).

For functions f,g in & which are not identically zero, the
equivalence f ~ g has an interesting interpretation. Recall that by

Remark 1, if f € § and f # 0, then f(x) > 0 when x > 0,

Theorem 2. If f,g € &, and neither f nor g is identically

zero, then f~ g, if and only if,

Proof: Let a(x) —Tos X ° b(x) = lologf(i) . For every

covering class S,

lim sup (a(s)=-b(s)) = -lim inf (b(s)-a(s))
s+ 0 s =0

> lim inf a(s) - lim inf b(s)
~ s=0 i s » 0

> lim inf (a(s)-b(s)) , (s €9)

s =0

since lim inf (A+B) > lim inf A + lim inf B. If lim 22 lfé;‘)}/c g - o,
x=0
it follows that

ds(f) = lim inf a(s) = lim inf b(s) = ds(g) 2
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Conversely, if lim sup (a(x)-b(x)) > 0, then there exists S such that
x=-=0

lim inf (a(s)=-b(s)) >0, (s € 9)
s =0

which implies

lim inf a(s) > lim inf b(s) (s € S) .
s -0 s ~0

This would contradict f ~ g, so that

lim sup (a(s)-b(x)) < 0 .
x-0

A similar argument shows that f ~ g implies

lim sup (b(x)-a(x)) < 0,
X — 0

and so lim Ia(x) - b(x)l = 0, which completes the proof.
x=-0

For future use, the following lemma is established,

Lemma 2. j._ffe& and Oiail, then

Q
dS(f A x) a Vv dS(f)
and

a
ds(fo )

a A dg(f)

Proof: Since both f and x* are in ¥, Theorem 3 (82,0

implies that f A x* and f Vx* are in & Consequently

: o
A (EAX®) = lim int 108 £(8) A S
S log s
s =0
and (s € 5)
05— s s log f(s) Vv s&
ds(f V)= lim inf o s

s =0
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log f(s) A s*  log f(s)

e log s - log s

and

log f(s) Vv s _ log f(é)

log s - log s Ao g
it follows that
Ay -
dglf A x%) = o V dgd)
and
oy
ds(fo)—c(,/\dS(f).

§3. Special Functions in &

Given a covering class S and any point s € S, define
s* = sup(t:t<s, t€S) .
If S is a covering class, denote by S*, the new covering class,

SN(0,1], where S is the closure of S. For f € ¥ define,

(f)s(x) =V (f(s) Ax £(s¥)/s%) (x>0) .
s € §* -

The next theorem lists some important properties of (f)s.

Theorem 1. If f € §and S is a covering class, then:

a) (f)s € &,
b) dg((Dg) = dg(D.

c) dT( (f)s) < dT(f), for all covering classes T.

Proof: a) For each s € S*, the function

f(s) A x f(s%) /s%*

is in ¥. By Theorem 3,c) (§2,I) it follows that (f)S € F.
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b) Since s* <s and f € &, it{follows that

f(s) < s f(s*)/s* and so,
f(s) = f(s) A s f(s*)/s* ,
If t€ S* and t> s, then t*Zs, so that
£(t) A s £(t¥) /t* < s £(t¥) [tk < {(s) .

On the other hand, if t € S% and t<s, then f(t) < f(s), so that

£(s) = Vv (£(t) As £(t%)/t%] = (£)(s),
tes¥ ( ] S

holds for s € S* and in particular for s € S. This implies that
dglf) = dg((D g).

c) Finally, observe that
f(s) A x £(s%)/s* > f(x) ,

whenever s¥*< x < s, s € S¥, Since every x > 0, satisfies such a rela-

tion for some s €S¥%, it follows that (flg > f, for x>0, and thus
dpl (f)s) < dg() ,

for any covering class T,

Remark: Observe that when s¥* < x<s, s€ S*%, it holds

that (f)s(x) = f(s) A x f(s*)/s*, Indeed, when t€ S*, t> s, then

tk > s so that x < s implies

£( %) ;}f-; < f(t9) < £(1) .
Moreover, since t:*z 8%,

x f(s%) /s%* > x f(t¥) /tx |



Again x < s implies

so that when t > s,

£(s) Ax-f-(:—:l > (1) Ax

£( 1)

G

On the other hand, when t< s, t € S¥%, then t< s*, so that

(o £ £(9)

X = t - t¥

or

£(4) Axf_(:T*) = £(y) .

Since £(t) < f(s) and

it follows that

£()

e
£t ax 28D < g(s) axHS2)

for all t € S%, which verifys the statement,

Of special interest are the functions (xc‘) , 0<a<1l, In
[ Sa=

this case more can be said.

Theorem 2. If f € F such that dS(f) =a, 0 <a<1, then

a ,
dT(f) > dT( (x )S) for all covering classes T,

Proof: The proof is based on the following.

Lemma: If g € & and if S is a covering class such that

g(s) < sP for s € S, then g < (xB)S for 0<x< 3§ for some positive &,
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Proof of the Lemma: Let t¥ <x<t for t€ S% By Theorem

1,d) (§2,1) and the definition of S¥%,
g(x) < glt) < P

and

500 < x Bt < x w7
It follows that

B B-1
g(x) < t¥ Ax t*

and so g(x) < (XB)S(X)
by the remark made following Theorem 1. This establishes the lemma.

Returning to the proof of Theorem 2, suppose first that

ds(f) >a. Then for all s € S, s sufficiently small, it follows that

log f(s)
+0g S >

or

f(s) < s% .

By the lemma, f(x) < (xa‘)s(x) when x is sufficiently small, so that
Py
dr(f) > do((6Hg) |

for any covering class T. Now suppose that dS(f) = and consider the

function fl-t-xt, 0 <t< l. This function is in &, by Theorem 3 (§2,1),

and

log £ e« a®
log s

'ds(fl't-xt) = Yim inf
' s =0



; 20

log £(s)

(1-t) lim inf
og s

s » 0

+ t

(1-8) dg(B .+ t = (l-ha + t .
Similarly,
dT(fl't-st) = (1-9 dp(D + t.

Since (l-t) o + t >0 when 0 < t, it follows that
a‘ —_
dT( (x )S) < (1-1) dT(f) + t .

The right-hand side of this last inequality approaches dT(f) as t

approaches zero, and so dT( (xa)s) < dT(f), as desired.

In the case g = 1, the situation is not so simple because while
dT( (x)S) = 1, there can be f such that ds(f) = 1 but dT(f) < 1, The fol-

lowing theorem makes this clear.
Theorem 3. E fe3d and ds(f) = 1, then

dm(f) > sup d((x%) ) ,
T _a‘;l'r S

and there exists a function g € & such that ds(g) =1 and dT(g)

= d( 65V .
;zpl iy S

Proof: Suppose that f € & and ds(f) =1, If dT(f) <

& i Y
O.S‘épl dT( (x )S), then there exists vy < 1 such that dT(f) < dT( (x")

Consider now the function f(x) V x', Then

ks

dS(foY) = v Adglf) = v
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and
dp(f VxY) = y Adp(f) < dp() < dp((xV)g)
but these two statements are in contradiction to Theorem 2. Thus

d(f) > sup d.((x")) .
T —a‘il'r S

To prove the second part, suppose first that sup d ((xa‘) ) = I,
In this case there is nothing to prove, since dT(x) = 1. Now let

sup d((x%)) = 6<1 .
G.<1T S

Select an increasing sequence (an) such that

Iim oy = 1

n-—o
and cx,n>5 o= Xy 2yen o Vs
Since dT( (xa)s) < 8 for all ¢< 1, there is a decreasing sequence (Sk)
of points in S which have the following properties: For each k, there
a
. _ % 8+ 1/k,
exists t = tk € T such that 51 < tkf. 51 and (x 1<')5 (tk) >t ; and
the points S satisfy:
l-ac
% ¢ Okt 1
5141 < (89 AR ¢ TF

Define

It will now be shown that ds(g) =1 and dT(g) =§. First, it is clear
G.'k -1

that g € ¥, since each of the functions s, “ Ax sl’:: (k=1,2,...),
is in &. Moreover, if s € S and Bk+1 <s< Sic? then
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Ot 1 .a'k-l
= .
gls) = 8., Vo8-8 .

Indeed, if t> k+1, then

a a,-1 o
t/\ss*t = 8

e ekl _ Tkl Piep1” !
t t t S50 T Pyl

AE Bral ,

since s > s On the other hand when t < k,

k+1°

o3 a,-1 a1 a, -1 o ., -1
Stt’\sstt =ss’:‘t <ssik - s EpAg.g* K

since s < S‘: and

Thus

log g(s) log s ’ log s
k+1

—_— =y /\1+(ak-1)____

log s log s log s

log S*k

2 a1 - 1m0y S
log s

Oyl A Oy = Oy -

Since O approaches 1 as k approaches =, it follows that dS(g) = i,

sk

Consider the sequence (tk) of points in T such that Sic

ay bt
(x )s (t) > .

<t _<s,  and

k k

Since,

: a Ka~ 1 a 6+
Blh) 28, At sk ¢ =(x k)s(tk)?-tk .
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it follows that dT(g) <68, and since g € ¥ and by the first part of the

theorem, dT(g) = §is

Remark: It is indeed possible that sup d.( (x“)s) < 1, Infact,
a<l
there exist covering classes S and T for which sup dT( (x%)
a<l

2
_ok
S be the sequence (2 2 ) (k=1,2,,,.) and T=(0,1]. Thenif g <1,

S) = 0. Let

azkz
d ((xc‘) ) < lim
TS T ke 2 BB "
PRSI (S VL (Y50
a
= lim
k-ocoa._ a22k+1+ 22k+l
a
= lim =0,
= 2
Koo 2% 1)

§4. A Partial Ordering and Equivalence Relation for Covering Classes

As a first step in the study of ds(f) as a function of the cover-
ing class, it is natural to consider the following partial ordering on the
collection of covering classes: a covering class S is said to be less
than, or equal to, the covering class T, in symbols S < T, provided
that dS(f) < dT(f) for all functions f in &, Itis clear thatif T C S,
then Si T. Indeed, if for a given f in &, S_Bf(s) is bounded for all
s in S, then the same is true for t € T. By the Theorem of §1,1II,
it follows that dS(f) < dT(f) and thus S< T. With the help of this re-

mark, the following lemma can be proved.

Lemma 1, _I;f_ A,B are covering classes and f € &, then

daypld) = dpE)Aadglh) .
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Proof: Since AU B contains both the sets A and B, the

inequality,
dAUB(f) < dA(f) A dB(f)

is immediate by the remarks made above. To show the reverse, let

f € ¥, and suppose that dA(f) < dB(f). If dA(f) = 0, then

d,up(® > a,H Adg(H

automatically., Thus assume dA(f) > 0, and let g be such that

0<a < dA(f). Then

a%f(a) < M (ac A) .

A
Since it is assumed that dA(f) = dB(f), it follows that
b P(b) < My (b €B).
If M= rnax(MA, MB), then
c®(c) <M (c€AUB) ,
and so o < dAUB(f). It then follows that

d,(6) Adp(® < d, gl ,

which proves the lemma.

The following theorem gives a characterization of the rela-
tion S< T in terms of a comparison of the gaps in the covering classes

S and T.
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Theorem, A necessary and sufficient condition that S< T,

is that there exist a function g, g:T = S, with the property

lirnl_(ig_..g(_t) =1 (teT.
t=0 og t

Proof:

Sufficiency: Let g:T - S be such that

i Log g(t) _

By Lemma 1, (§1,I), for f € &,

£(t) < 2(1 vgf-ﬁ) £g(t) ,

or

%(1 A#) £(t) < £(g(t)) .

Thus it follows that

1 g(t)
log f(g(y)) = °87  log (1 A —t-) log £(t) . log t

<
Tog g(f) —Togg® ~ Togg(® ' Togt

log g(t) ~
Since
log (1 A 5-(1))
t _ log g(t) _ )
0 < TR = ll iaw 3 - = of(l) (t-0) ,
and

+ 1 =o0(l) + 1 (t - 0)

’

log t log (t)
o<ty < |- iy

it follows that

log £
Oiog (gl(ttj)) g ol (1 ¥ hiﬁgf(tt)) * l(irgngf(tt) (x=0) .
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By (1. 1) and the fact that f € &, 1+ _r_.lofé £(t)

=t is bounded for t € T, so

that

log f{g(t log f(t)
ciog(g(t” £ oLl 4 Tog t il

which implies that

.. o log f(g(t)) .. o log f(t) _
d (f) = lim inf < lim inf = d(f) .
2(T) t =0 log g(ts ~ t20 I_og t B

Since g(T) c S, itfollows that

and thus SE .,

Necessity: The following lemma is needed,
Lemma 2. S < S%,

Proof of the Lemma: By what has been proved above, itis

sufficient to exhibit a mapping, h:S* - S, such that

1im1‘i§—h(tt)= 1 (tes¥ .,
t=0 g
% : . log r
If teS", there is r € S, such that, either r <t and lf-log t§1+’c,
ort<r and 1 -1t< igg Z_<_ 1. Choose any such r in S and write

h(t) = r. Then it is clear that

lim log h(t) -

3

and the lemma is proved.

Now define a function g:T —» S* as follows: If s¥< t<s,
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5 € S*, write

.. log t _ log s*
- log s 2 log t

5 ,

g(t) =

if log s*<log t

¢
S log t log s

Then g is defined on all of T, and since it is now assumed that
dS(f) & dT(f) for all £ € &, it follows, in particular, that
= (0] Q.
for Of a < l. Fix o such that 0< g, and consider 0 < ¢ <qa. Then
a
= e < dT()x )S) ’
and so
(xMglt) < &7°
for t€ T, t< §, for some positive §, From the definition of (xa)s,

it follows that

sa‘ A ts”‘(x-1 _<_ ta"e

for s € s* and t< 8, and so, either

(2. 2) s < (7€
or
(2. 3) gx0-l . @-e-1

Thus given t € T, t< 8, choose s € 5™ such that s* < t<s. If (2, 2)

holds, then



and so
a-€ log s log t o
aiiogtili ogssa-e'
By the definition of g(t), either

log s _ log g(t)
logt logt

or

log t _ log g(t) _ log s*
logs->- logt =~ logt 2 s

Thus in any event,

a-e . log g(t)< a .
a — logt —aq-¢

Similiarly, if (2. 3) holds, then

l-o
¥ < t < grlOFE
and so
l-a . logt <1< log s* _ l-a-¢

l-g-¢ — log s* logt — 1I-q
Again, since either

log s* _ log g(t)
Iogt =~ Togt

or

log t log g(t) _ log s
Ji.ogs?v-‘E Iog t = Iog g2 L

it follows that

l-q & log g(t) 2 l-g+e
I-qg+te — logt = I-gq
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Since € >0 was arbitrary, these considerations show that

lim 2808 .7 (teT) .
log t,
t-0
Finally, consider the composition h(g), where h is the function defined
in Lemma 1. Then h(g):T - S in such a way that

lim lo I:g( 0) -1 (tem)
t—h

»

and this completes the proof of the theorem.

Remark: The partial ordering S < T, described above for
covering classes, leads immediately to the equivalence S = T, when
both Sf T and T < S. In Lemma 2 it was shown that SE S*. Since

S¢c S*, it follows that S"‘f S, so that S S*. For this reason it will

be assumed henceforth that any covering class in question is closed in
the left-open unit interval, unless specifically stated otherwise. Further,
since it is clear that the addition or deletion of a finite set of points to

or from a covering class does not alter the dimension function, such
additions or deletions will be assumed without specific mention when-
ever convenience dictates. Thus, for example, in later chapters the
peoint, 1, will be assumed to belong to any covering class under con-

sideration, whenever convenient.
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CHAPTER 1II

COMPARISON OF COVERING CLASSES

§1. Doubly-starred Sets

Given any set A in 12, define the transpose of A, tr A, by
tr A = {(x,v):(y,x) € A} .
If (a,b) is a point of 12 and a >b, write
s
(a,b)” = {(x,y):ix>y, ay>bx, (t-b)(t-x) > (1-a)(1l-y)}
and if b >a,
(2,b)° = tr(b,a)° .

Given any set AC 12, write

]

A® = U{(a,b)®:(a,b) € A} .

A set A will be called doubly-starred with respect to the points (0, 0)

and (1, 1), or more simply, doubly-starred in 12, provided that A = AS.

The next few lemmas describe some properties of doubly-starred sets.

Lemma 1. If Azz, then A° = A® .

. s _ . _
Proof: ‘Suppose (xn,yn) € A” with x >y, (= 1,2,...) and
s
X =X, ¥y =Y. Then x >y. Let anzbn be such that (xn, yn) € (an,bn)

(an,bn) € A, Since A = -K, there is a subsequence (aj’bj) - (a,b) € A,
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Since

a.y. > b.x.
JYJ— JJ

’

it follows that ay >bx and (1-b)(1-x) > (1-a)(l-y). Thus (x,y) € (a,b)s

< As, which shows A° = AS.

If A is a setin 12, then the sets tA and A+ s for real s

and t are defined by

tA = {(ta,tb):(a,b) € A},
A+ s = {(ats,b+s):(a,b) € A} .
Lemma 2. A= A®, if and only if
_——

tA U (tA+1-t) S A,

for all Oitil.
Proof: IfA=AS, 0<t<l, (a,b) € A with a >b, then

ta tb ,

v

a(tb) > b(ta) ,

(1-b)(1-ta) = (1-b)(1l-a) + a{l-b)(1-t)

> (1-b)(1-a) + b(l-a)(1l-t) = (l-a)(1l-tb) .
This shows (ta,tb) € (a,b)s. Moreover, since

ta + l-tz tb + 1-t ,
a(tb+1-t) > b(ta+l-t) ,

(1-b)(1-(ta+1-t)) = (1-b)t(l-a) = (l-a)(l-(tb+1-t)) ,
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it follows that (tat+l-t, tb+1l-t) € (a,b)°. Thus
tA U(tAtl-t) < A® = A,

On the other hand, let (x,y) € (a,b)s with (a,b) € A. Without loss of
generality, suppose a>b. If x =y, then(l,1) € A implies (x,y) € xA

C A, by hypothesis. Thus suppose x>y, and so a>b. Write

6 i (3-y)
(x-y) + (by-ax)

and

_ {x-y) + (by-ax)
a-b ‘

Since by > ax, it follows that 0 <t< 1 and s >0, Writing

(x-y) + (by-ax) = (1-a)(l-y) - (1-b)(1-x) + a-b ,

shows that s < 1, Since

s(tat+1-t)

]

s x(a=b} = x
X-y + by - ax

and

B y(a-b) =
s(tb+1-t) S(x-y+by — ax) = ¥ 4

it follows that (x,y) € s(tA+ 1-t). Since s(tA+1-1t) < A, it follows that

(x,y) € A. Thus (a,b)sf_:_ A which shows that A = As.
Lemma 3. (A%)® = AS,
———————— ]

Proof: Suppose (a,b) € A with a >b and assume

(x,y) € (a,b)°. Since, for 0<t< 1,
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[».4

v

ty ,

aty

|V

btx ,
(1-b)(1-%) + x(1-t)(1-b)

> (1-a)(1-y) + y(1-t){1-a) = (1-a)(l-ty) ,

(1-b)(1-tx)

it follows that (tx,ty) € (a,b)®, Moreover,

tx + 1-t > ty + 1-t ,
a(ty+1-t) = aty + a(l-t) > btx + b(1-t) = b(tx+1-t) ,
(1-b)(1-(tx+1-t)) = (1-b)(1-x)t

> (l-a)(l-y)t = (l-a)(l-(ty+l-t)) ,
and so (tx+l-t, ty+l-t) € (a,b)°. It follows that
t(a,b)® U (t(a,b)°+ 1-t) S (a,b)" ((a,b)‘ € A)
for all t, 0<t< 1. This implies
tA® U (tA®+ 1-1) © AS ,
for 0<t< 1; and so by Lemma 2, (A%)S = AS,

The next lemma asserts that the transpose of a doubly-

starred set is again doubly-starred.

Lemma 4, If A = AS, then trA = (trA)S :

—

Proof: tr(A®%) = tr(U{(a,b)%:(a,b) € A})

U {tr(a,b)®:(a,b) € A}

U{(b,a)%:(a,b) € A}
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U{(b,a)’:(b,a) € trA}

(trA)S .
Since A = A°, itfollows that trA = (trA)°.

Under the same assumption made in Lemma 4, it can be

shown that A = (T.)S.
: s . , = e
Lemma 5. A= A implies A= (4) .

Proof: By Lemma 2, tAE A. Since tA = tA, it follows that

tKEK. Similarly
tA + 1-t = (tA+1-t) C A,
so that by Lemma 2, A = (T&)S.

Given any set AC 12, and t, 0<t< 1, define a function

A(t) by
A(t) = inf(y:(t,y) € A) ,
where A(T) is defined to be equal 1, if (y:(t,y) € A) =¢.

Lemma 6, If A= AS, then the functions A(t) and trA(t) are

continuous on (0, 1), non-decreasing on [0,1], and

(3.1) A(t)/t, trA(/t, (1-A(1))/(1-t), (l-trA(t))/(1-t) ,

are all non-decreasing on (0,1).

Proof: Given 0 < t< 1, itfollows that (t, A(t)) € A. By

Lemma 5, A= (A)°, so thatfor 0<a <1, (at,aA(t)) € A and



35
(at+l-a, aA(t)+1-0) € A. Then
Alat) < aAl(t)
and

Alattl-a) < aA(t) + 1-a .
These inequalities imply

Alat) . A
ot — t

and

1 - Alattl-g) _ 1 - A(t)
T=wig = T=¢t °

which shows that A(t)/t and (1-A(t))/(1-t) are non-decreasing on (0, 1),
Since trA = (trA)s, it follows that trA(t)/t and (l-trA(t))/(l-t) are non-

decreasing on (0,1). If 0<x<y, then

Alx) < § Aly) < Aly) ,

so that A(t) is non-decreasing. The same is true for tr A(t). Since
A= A®° implies (0,0) € A and (x,x) € A, it follows that A(0) = 0 and
A(x) < x, which shows A(x) is continuous at x=0. If t>0 and

0<x<l1,

1 - A(x+t) - 1 - A(x)
I -(xt) = 1-x °

so that
A¥) < Alx+) < T + (1 - Tt—x) A .

By the same reasoning,

Ax) > Alx-t) > (1 + -1%{-) Alx) - =
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1

These relations show that A(x) is continuous at each 0 < x< 1, and

the lemma is proved.

§2. Main Results

In Chapter II, the partial ordering on covering classes:
dS(f) < dT(f) for all f € ¥, was introduced and studied, The question

arises as to what can be said in general about the behavior of d (f) and

gl
dT(f) when the covering classes S and T are not necessarily com-

parable in this ordering. For this purpose the set

R(S,T) = {(dg(f), dp(f)):f € &} ,

is now studied.

The main results concerning the dimension of functions state
that the set R(S, T) is closed and doubly-starred in 12; and conversely,
any closed, doubly-starred set in 12 is of the form R(S, T) for some
covering classes S and T. Apartfrom the inherent interest in these
results, they take on significance when, in Chapter IV it is shown that

they have direct application to the study of the dimension of closed sets.
Theorem 1, - R(S,T) = (R(S,T))".

Proof: Suppose (a,B) € R(S, T). Then there is f € § with
ds(f) =q and dT(f) =p. I oi t 1, then Loth f(x)t s f(x)t- xl't are

in F by Theorem 3 (§2,I). Since

d, (i = td,(f)

and

t _1-
a (e xh td,(f) + 1-t ,
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for every covering class A, itfollows that (ta,tp) € R(S, T) and
(too+ 1-t,tB+ 1-t) € R(S, T). By Lemma 2, §1, it follows that R(S, T)

= R(S, T)°.

The set R(S, T) canbe described in terms of the special

functions introduced in §3, Chapter II,

Lemma. R(S,T) = {(a,B):a > >£fla) or B>a >gla)l,

where (a,B) € 12 and,

(3. 2) fla) = dp((xFg), 0<a<1l; £(1) = sup f(a)
a<l

g

(3. 3) gla) = dg((x) ), 0<a<1l; gll) = sup gla) .
a<l

Proof: If f € F and dS(f) =a, o<1, then
-
() > a (g ,
by Theorem 2 (§3,II). Further, by Theorem 3 (§3,1II), f € ¥ and
ds(f) = 1 implies dT(f) > sup dT( (xa)s) , for any covering classes S

a<l
and T, Consequently

R(5,T) < {(a,B):a >B >f(a) or B>a>g(p)}.
On the other hand, suppose
1>a >8> dp((xNg) .

Then put f = (xa‘)s A xa. By Lemma 2 (§2,II)



38

[N

m"h

o
I

dg((x")g) v 8

a VB =«

and

=R

'—]ﬂs

s
n

dp((xMg) v B

1]
W

Now, if ¢ =1 and 1 > 8 > sup dT( (xa)s) , let g be the function defined
- Ta<l

in the proof of Theorem 3, (§3,II) such that dS(g) =1 and dT(g)

= sup dT( (xu')s). Write h=g /\xB and, as before, it follows that

1
—

dg(h)

dp(h)

1}
™

This shows that

{(a,B):a > B>1fla) or B>a>gla)} < R(S,T)
and the proof is complete.
Theorem 2. R(S, T) is closed in 12.

Proof: Writing R = R(S, T), the lemma above implies that

R(t)

f(t)

trR(t) = g(t) ,

where f and g are defined by (3. 2) and (3. 3). By Lemma 6, 81, f and g

are continuous on [0,1] so that R(S, T) is closed.

The values that (ds(f), dT(F)) may take, in general, are

quite unrestricted as the following theorem demonstrates.

Theorem 3. If R is any closed, doubly-starred set in 12,

there are covering classes S and T such that R = R(S, T).
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Proof: For each positive integer k, define

£(x) = 2“% V R(x)
and

gk(x) = EXE Vv trR(x)

Then the functions fk and 1 decrease monotonically to R(t) and trR(t)

respectively; and they are continuous on [0,1], since R(t) and trR(t)

are continuous, Further, since

B 1 R
x 2K x= °
gk(X) _ 1 ’ trR(x)
x 2k x ?
1- fk(x) 1 -x/2k 1- R(x)
E— A
1 -x 1 -x I-x
and
1- g, (%) 1 -x/2k 1- trR(x)
= A
I =% 1l -x 1-x 2

the functions —i—xlﬁl—c being non-decreasing in x, it is clear that
fk(x) and gk(x) satisfy condition (3. 1) for each k,

Define functions

Vk(x) ’ wk(x) 3 uk(x) » ! zk(x)

x 1- fk(x)
fk(x) 1 -x

wk(x) = gk};x) ( L =% ) ‘

as follows:

v (%)
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X

uk(x) = T-I{T;,

X

Zk(x) = m .
Let

T T e > 8 r o
1’ 2! ’ nl

be an enumeration of the rational numbers in (0, 1) and write
¥y 18 vk(rk) y W = wk(rk) you = uk(rk) y 2y = zk(rk)
Now define sequences Py and q, as follows:
1 " Vi
P1 =2 Pak T Par-1 P2yl ® Pox

u z
qzk_1=p2k_1’ q2k=p2ky (k= 1’2’--0) .

Since vkzukz 1 and sz zkz 1, it follows that

Pok S 92k-1 £ P2k-1

and
Polepl = 921 = P

If for some k> 1, both vk(x) = 1 and wk(x) = 1, then it fol-
lows that
fk(x) _ 1 - fk(x)
x 1 -x
or

1 1
fk(x)(§+ T:E) = Tox

which implies fk(x) = x, Similarly, wk(x) = 1 implies gk(x) = %
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These relations in turn imply that R(x) = x and trR(x) = x since

§E<x (k=1,2,...)

Thus taking any covering classes S, T with S = T, would give
R(S,T) = R .

Therefore, without loss of generality assume that for some k> 1, there

is a point Xy 0<x. <1, such that, vk(xo) >8> 1. There is then a

0

neighborhood, U, of x, on which vk(y) =14

implies fj(x) < fk(x), it follows that

1-f, o
wilgh = wi ( JM) . (1 me)
J m l-y l-vy fJIY)

J
v 1l - fk(Y)
1- y fk(y) = vk(Y) ’

s-1

gzl > 1. Since .jzk

v

and so,

vj(y)zl+ = 1

for y in U and j> k. Since rj is in U for infinitely many indices j,

it follows that there are infinitely many j for which

and thus the product AMEEE vj approaches infjnity as j approaches in-

finity. Since

1)(w1 wk)(vl... vk) - (l)vl"' Vk

Pors1 ~ (7 Z

and since the sequence (pk)

to zero as k tends to infinity. Thus covering classes S and T can

is non-increasing, it follows that Py tends
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be defined by writing:

(p) U(a,) (k=1,2,...)

(pk)U(qZk-l) (k=1)2’oo-) .

T

The next step is to show that for 0 <g < 1

dp( (g = R{a)
and

trR(a) ,

]

(04
dg( (%) )
and this will complete the proof., First consider the function (xa)s. At
the points p,, (k=1,2,...)
o d _ x
(xglp) = P s

since p, € S. It remains to determine the values (xa)s(qZk_ 1)

(k=1,2,...). Since Por < 9211 S Poreo1’ it follows that

a B . - o-1
(M gldpe.1) = P21 A 921 P2 -

by the remark made following Theorem 1 (§3,1I). By definition,

v u
Py = Por and gq = p=
2k 2k-1 2k-1 = P2k-1
so that
o | Tk
u, 1-(1-q) U

a s
(xgla1) = 921 A Yoo

Q Vi
o (rea2)

k
= 92k-1
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Using the definitions of ¥ie and u, and substituting, yields

k
afy () ( (l-a)(l-fk(l‘k)))
. =T YT =
(= glaz 1) = 921
Thus, for t€ T,
(o if ttpk (k=1,2,...)
log (x™)g(t)
TEt T ar ey ( (1-a)(1-£, (r)) )) |
L_TV 1- I o 3 Tolp o ABeL Byl
- i fklflrck) ol il (1-a)((11_-:b(rk)) ’
dpl (M) g) = 11(%;&(% v (1 - (1_a)(1l-:frk) )D

Since the rational numbers are everywhere dense in (0, 1), it follows

that

af, (r)) (1-q)(1-£ (r.))
dp( Q) = inf(aka V(l T e D

e k b

Now if, T >, then fk(rk) < r, implies

k
alf (r) - ) > rk(fk(r.k) -1,
which in turn implies |
af(r) -ar, -af (r )7,

2
& rkfk(rk) -T- G'fk(rk)rk + (rk - rk)

or
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a(fk(rk)) (l-rk) 2 rk(l-rk) = rk(l'a) (l-fk(rk)) ’

and thus

afy{ry) _ (ea)(l-fy(ry))

T = 1-rk

Similarly, if rkiq, then

r—kﬁ y T=_
Hence
af, (r,) (1-a)(1-£f, (r.))
dpl(xM)g) = inf (ﬁ) A inf (1 i T Kk
rkZa Tk rkia -rk_

It is now easy to verify that

and

1- 1-f
. (1 (1= k(rk”) o~
rkﬁa 1-rk

when 0 <qg < 1. Indeed, when rk_>_g, 5

——= > () > R(),

so that

£ (r)
inf (Ek_rli.) > R(q)

is immediate,
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On the other hand, given ¢ > 0, there is § > 0, such that

a<r <a+ b implies

k

T

< f (@) += .
. — K z

Since q < rksq + §, for arbitrarily large k and since fk(a) tends to

R(a) as k tends to infinity, it follows that there is k, with o <r, and,

k

af, (r.)

—kTi<R(a)+e.
B

and this shows that
a.fk(l‘k)

inf s mia— (5= R(a) n
r
rkZa k

Similarly, when rkﬁ a

F—— 2 fido) 2 Rl

so again

(1-a)(1-f, (r,))
inf (1- : kk)?_R(a)-

rkza > -rk

An analogous argument shows that dS( (xc’) T) = trR(g) when ¢ < 1. Since

R is closed, the assertion of the theorem follows by the Lemma above.

§3. A Characterization of R(S, T)

Let S and T be given covering classes, For each point

t € T, there is associated a unique poiht (a(t),b(t)) in the unit square

1,. This association is made as follows: Given t, there are points
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0]
1}

sup (s:s <t, s €95)

3]
1]

inf (s:s>1t, s €5) ,

where 5 is defined to be 1, if there are no s € S with s >t, Write
s0 = & and iy = tB , where a > 12 B. Observe that if either o = 1 or
B =1, thenboth are equal 1,

In this case define
a(t) = b(t) = 1/2,
when g > 1 > B, the equations in a(t), b(t),

b(t) = g a(t) ,

a(l-a(t)) ,

1

1 - b(t)

have the solution

a() = &=L, by = Bl

o= a-B

Altogether then,

al) =3, a=1; a® =92, o>
(3. 4)
b9 =3, p=1; by = el gy,

Note that a(t) > 0 for all t € T and that b(t) > 0 for t € T sufficiently
small., Also, if B < 1 then both »

B(Ot-l) < 1
o -

and

Fﬂ<1
_B e

e}
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Thus, in any event a(t) < 1 and b(t) < 1, with a(t) zb(t), for all t € T,
1t follows that

- (B /alt)

and

_ (1-b(8) /(1-a(t)

Define

A_(S:T) = {(a(t),b(t)):te T tf_%} .

and finally write,
(3. 5) A(S:T) = N A (S:T) ,
n=1 n

where A denotes the closure of A,

In a similar manner, there is associated with each point

s €S, a point (c(s),d(s)) in 12, such that
1-c(s) c(s)
~-d(s _ s
tO = s ’ tl = s o
where tO’ tl are the analogues of 50° 51 above, Then the set
(3. 6) A(T:S) = N An(T:S)

n=

can be defined, where
' 1
An(T.S) — {(c(s),d(s)):s €S, s 53} "

Since An(S:T) =) An+ 1(S:T) and each of these sets is non-
empty, it follows that the sets A(T:S) and A(S:T) are non-empty. The
interest in the sets A(S:T) and A(T:S) is that while they are defined

solely in terms of the points of S and T, the smallest doubly-starred
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set containing A(S:T) U A(T:S) is precisely R(S, T), as the following

results make clear,
Theorem 1. . (A(S:T) U A(T:S)F < R(S, T) .

Proof: Since R(S,T) is doubly-starred, it is sufficient to

show that

A(S:T) U A(T:S) € R(S,T) .

The proof demonstrates only that
A(S5:T) c R(S,T) ,

the proof that A(T:S) C R(S, T) being similar. Hence let
@© e

(a,b) € ﬂl An(S:T) , and 0 < a< 1l, Then there is a decreasing se-
n=

quence (tn) c T, such that E. ¥ 0 and

o
I

a(tn) - a

(n =),

o’
n

b(tn) - b

l-a

: a s
Write s, < t. .58 and put x =8, 8, , then for t satisfying

00—

<
xn—tns Sl’

(xa)s(tn) = s"; =t

and for s, <t _<x_ ,
O— n—="mn

1]
o+
ot

(Pglt) = 27



49

Thus in any case

a bn (l-bn)
T 1+ (a-1) Tﬁ-an
(xM)glt) >t At
ab (l-bn)
V 1+ (a-1) Ty
at B “2n
" 'n
and so
log (xa) (t) ab 1-b
BB g el 4 1 T e
log t a l-a
n n n

Since b(tn) -~ b and a(tn) -~ a as n=-o, itfollows that
a
dpl(xg) < b,

which shows (a,b) € R(S,T). Now, if a =0 and (a,b) € A(S, T), then
b=0, and (0,0) is clearly in R(S,T). If a=1 and b =1, then (a,b)

is clearly in R(S, T). The only remaining case is a =1, b< 1, Again
let a.(tn) - a, b(tn) -b tn €T, ‘cn - 0. Since b(tn) < 1 for n sufficiently

large, a(tn) < 1 for the same n. Let g < 1 and consider (xc‘)s(tn). As

above
ab_ (l-bn)
V Lo (1] y—ee
(Mglt) >t n “n/,
and

log (xc‘)s(t ) ab 1-b
=< ==V 1'“'“(‘1—_.;3.:)

log tn n
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Since a(tn) - 1, it follows that

)glt) . ab

log tn a

log (x%

-ab , n-—-o,

n
and therefore dT( (xc‘)s) <ab, for all ¢ < 1. This implies

sup d ((xa) ) <b.
a(lT 5 =

By the lemma of §2 it follows that (a,b) € R(S, T).

Theorem 2. R(S,T) < (A(S:T) U A(T:S))® .

Proof: Let f € & with dS(f) b dT(f). If actually dS(f) =
dp(f) then (dg(f), dp(f)) € (A(S:T) U A(T:S))° automatically. Thus
assume dS(f) > dT(f), and let q,p be such that

dT(f) < Bp<qa< ds(f) .
By Lemma 1, (§1,I) for any t€ T, s € S,

£(t) < (1 v%) £(s) ,

and so,
Bty < ¢7Ps® (1 V%)s-af(s) :
Since q < dS(f), it follows by the Theorem of §1, Chapter II, that
5]

£~ Ps(t) < £~ Bl (1 Vv t) M (t€ T)s €8) .

Since B > dT(f) there is a set T0 cT TO a covering class, such that

t € TO’ implies



51

t'Bf(t) > M .
- 04
Thus for s €S and t € TO’
1 < t™PgC (1 v-:;) .

Choosing t € TO, and so(t) <t< sl(t), (si(t) €S) (i=0,1) , it follows

that
- o
1< t7%s,(1) (t€ Tp)
and
1-8 a-1
l<t so(t) " (t € TO)
Since sl(t) = tb(t)/a(t) and so(t) £ tl_b(t)/l-a(t), these equalities imply
that
b(t)
—B+a
1<t EE (t€ Ty
and
1-b(t)
1-B+(a-1)( )
1<t I-afd) | (t €Ty
Since t< 1, it follows that
b(t) 1-8 _ 1-b(t)
0 Eg aad. e £ T (t € Tp)

Let (a,b) € A(S, TO) C A(S5,T) and let t be a'sequence in T, such that

0

a(tn) - a, b(tn) - b.

Then it follows that

plo
A
Qjw

1-8
il =
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which implies that (q,p) € A(S, TO)S < A(S:T)® c (A(S:T) U A(T:S)) ",
Since (a,B) can be chosen arbitrarily close to (dS(f), dT(f)) it follows
that (ds(f), dT(f)) € (A(S:T) U A(T:S) )s, this latter set being closed by

Lemma 1, §1., The case dS(f) < dT(f) is treated similarly, and so the

proof is complete,
Theorems 1 and 2 combine to give

Theorem 3. R(S,T) = (A(S:T) U A(T:S))s :
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CHAPTER IV

APPLICATIONS TO CLOSED SETS

§1. Introduction and Preliminaries

Hausdorff [11] introduced the following outer measure on the
subsets of the real line. If 0<p<1,

Hp(E) = sup (inf(z 2(1)P: I,(lj) = %)

e>0

where (lj) is any countable collection of open intervals containing E,
and z(lj) denotes the length of lj' The set function HP(E) is called the
p-th dimensional Hausdorff measure of E, For an elementary discus-
sion of the properties of HP(E) see Halmos [2] or Munroe [7].

The interest in the outer measure Hp for this work lies in
the fact that given any closed set E, there is precisely one value p,
0<p<1 for which r < p implies Hr(E) = o, and r > p implies
Hr(E) = 0. The value of Hp(E) may be any non-negative real number
or » (for a proof of these facts, see Hurewitz [4]). This unique value
P is called the Hausdorff dimension of E and is denoted dH(E). A‘
slightly different, but more useful description of the Hausdorff dimen-

sion of a closed set E is given by the following:

Lemma 1. For each 0<p<1, define
xE:inf{Z‘:f,l.p:UL:;E},
S(E) (1L)%0 1, 5

Then H_(E) = 0 if and only if A (E) = 0.
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Proof: If }\P(E) > 0, then since XP(E) S_Hp(E) it follows that
Hp(E) > 0, On the other hand, if HP(E) > 0, then there are 6> 0, b >0,
such that if (Ji) is any sequence of intervals containing E such that

JZ(Ji) < &, then
Z)z(JJ.)p shis B
For any other covering (lk) of E by intervals,
Za19P > 6P >0,
Thus )LP(E) > 0.
Hence the dimension dH(E) can be defined by
dH(E) = sup (p:)\p(E) > 0) .

This notion, of course, depends upon the particular kind of covering
class used to cover the set E. A study is now made of this dependence
when the intervals belong to a given class C. Further, this class C is
assumed to be closed under translations, thatis, 1 € C =1+t € C for
all real t. Thus whether or not a given interval 1 belongs to C de-
pends only on £(1l). Moreover it will be assumed that C contains
intervals of arbitrarily small length, and that (1) < 1if 1€ C., Sucha

class C will be called a covering class., Obsérve that the set

S(C) = S = {4(1):1 €C}

is a covering class in the sense of §1,II, Then given C new set

functions,
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E) = infl2 g(1)P:U1. S E, 1. €eC| ,

can be defined. If Hp C(E) is defined by

= i 1 p: 1 E, 1 ’ 1 C ’
Hp,C(E) es\;% (nxf(z (2( j)) U 3 2 2( J) < & JE ))

then the proof of Lemma 1, shows that:

Lemma 2.

Hp,C(E) = 0 if and only if )‘p,C(E) = 0,

Since )‘p C(E) is clearly a non-increasing function of p it

follows that there is precisely one 0 < q< 1 such that r > q implies
Hr,C(e) = 0 and r < q implies Hr,C(E) = o, This value q will be

called the Hausdorff dimension of E with respect to the covering

class C (or S(C)) and is denoted dC(E)_ Thus it follows that

dC(E) = sup (p:)\p’c(E) > 0) .

Remark: To avoid confusion, the notation dS(E), )\p S(E)

will be used where S refers to a covering class in the sense of §1,

Chapter II.

A final lemma is needed for later considerations,

Lemma 3. If E; and E, are any closed sets in {0,1 ] and

S any covering class, then

dS(E1 U EZ) = dS(E 1) Y, dS(EZ) "
Proof:

For each p, the set function )\p S(E) is monotone,

E]

so that
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Ao, 5B UE 2 A, o(E) (i=1,2) .
It follows then that

dg(E; UE,) > d(E) V &g(E,) .

On the other hand, assume 0 < dS(E1 U EZ)' and take 0 < p< dS(E1 9] EZ).
Thus

Xp,S(El U EZ) > 0,

Since XP-S is sub-additive, either )\P, S(E 1) >0 or AP,S(EZ) > 0. In
any event,

p < dg(E)) V dg(E,) ,

which shows

dS(El UE,) < dS(E 1) V dS(EZ) ¢
If dS(E1 u Ez) = 0, there is nothing to prove.

§2. Frostman's Theorem

Frostman [10] proved that the Hausdorff dimension of a
closed set E < [0,1], has the property that if 0 <o < dH(E), there
exists a function p(x) defined on (-®,») which satisfies the following
conditions: p(x) is non-decreasing, p(x) = 0 when x< 0, w(x) =1
when x > 1, and if (a,b) is any open interval not intersecting E, then
w(a) = p(b). Further u(x) satisfies a Lipschitz condition of order o at
each point of [0,1]. In this section, a generalization of this result to
dimension with respect to a covering class is given.

If p is a non-decreasing function defined on (-®,x), the

support of u is defined to be the closed set,
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8, = (U{(a,b):u(a) = w®Y N,

where x° denotes the compliment of x with respect to (-=,»). Let
M(E) denote the collection of all non-decreasing functions p defined

on (-»,») with Sp.i E and w(x) = 0 for x< 0, u(x) =1 for x> 1.
Observe that if u € M(E) for some closed set E, then y € M, defined

in § 2 of Chapter I. Indeed, the requirements u(0) = 0, p non-decreasing
and Ap bounded on [0, 1] are all satisfied. With this observation the

following fundamental theorem can be stated.

Theorem. Given any closed set'E, and any covering class S,

dg(E) = sup (dg(p):p € M(E)) .

Proof: First suppose p € M(E), ‘and consider dS(p.). By the

Theorem of §1, Chapter II,
dg(w) = sup (B:s™°au(s) = O(1), s €9) .

Let B < dS(p.). Then there is a finite constant M, such that Ap(s)
< sBM, for all s € S, If {lk} is a covering of E by intervals such that

L(lk) € S, then
Z 1P > g T aue(l)) .

Since E is compact, a finite number of the intervals lk’ (k=1,2,...)
cover E, say (a_]’bJ) (J = 112:--- rn)- I ls= (a)b)l then Al-"(f'(l))

> u(b) - u(a). Since SPEE and p(l) = 1, itfollows that
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<) 1

n
b)) -ula)>1.
24 wby) = wla) >

Consequently AB S(E) > 0, and it follows that
d5(E) > 8 .
Since B was arbitrary < dS(p.), this shows that dS(p.) < dS(E) or that
sup (dg(p)):p € M(E)) < dg(E) .

To show the reverse inequality, suppose that dS(E) >0, If dS(E) =0,

there would be nothing to prove, Let 0 < B < dS(E), Then

0< J\B S(E) < o, and it can be assumed that .’\B S(E) = 1, multiplying by
» b

an appropriate constant, if necessary. Put

w(x) = ?LB gE Nnlo,x]), -if x>0
w(x) = 0 if x<0 .
Then p(x) is non-decreasing since kB S is monotone, Since )LB S is a

sub-additive set function and since dS(A) =0, if A is a finite set, it

follows that u(0) = 0 and for x> 1

M=) = Ag G(ENL0,x] <Ay o(E) + Ay o(ENLLx]

A

B
= Ag,st®) =1

The fact that . is non-decreasing implies p(x) = 1 when x> 1, More-

over, if (a,b) is any open interval not intersecting E, then E n [a,b]

consists of at most two points so that

bb) =2y G(ENL0,b] < g o(ENL0aD) + 2 oEn[ab])

= p(a) .
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This implies that Sp CE and hence y € M(E)., Now,

w(x+s) XB, S(E N [o, x+s ])

< )\.B,S(E n [O,X]) + )\B’S((E n [x,x+s])

Since )\B S(E n [x, x+s]) < sB, it follows that for every x,

alxts) - pix) < 8P,

and so Au(s) < sB. This implies that

dglp) > B,
and so
sup (dg(p):p € M(E)) > B .
Since B was arbitrary < q, it follows that
sup (ds(p):p. € M(E)) > dS(E) g

and the proof of the theorem is complete,

Remark 1: To obtain Frostman's result from the above
theorem, take S = (0,1]. Then given E with dS(E) > 0 and
0<B< dS(E), there is p € M(E) such that ds(p.) > B. By the Theorem
of §1, Chapter II, s P au(s) = O(1) for s € (0,1]. It follows that p

satisfies a Lipschitz condition of order B at each point x.

Remark 2: It follows immediately from this theorem that
S < T implies ds(E) = dT(E) for every closed set, where '<'" is the

partial ordering introduced in §4 of Chapter II. Indeed, since S <T
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implies dS(f) < dT(f) for every f € &, the same is true for everyg € M
and thus for every p € M(E). It follows that dS(E) < dT(E). The con-
verse is also true, thatis, if dS(E) < dT(E) for every closed set E in

1 then S < T. This fact will follow from the results in §4 of the

1!

present chapter.

§3. Generalized Cantor Sets

It will be useful to distinguish a certain class of closed sets

in 11. Let (nk) be a given sequence of positive integers, whose k-th
: _ : -1 -
partial products Nk SNy, eees O satisfy, % Nk < », Define
Q = X{O,l,...,nk—l],
k
where the set {0,1,... ’nk-l} has the discrete topology and () the topo-
logy of pointwise convergence, (For definitions and notations see
Kelley [ 6].) In this topology () is compact and satisfies the first
axiom of countability. The space (Q is totally ordered by the lexico-
graphic ordering: If a = (ai) and b = (bi) are distinct points in Q, then
a < b provided that if p is the smallest integer for which ap # bp, then
a_ <b_.
p P
Define a mapping ¢:Q - [0,1] by

-1
(4. 1) p(a) =Zi3 a,N. " .

Then ¢ has the following properties:

Theorem 1, a) E a,b, €Q, and a<b or a=>b, then

o (a) < @(b).

b) For all a€Q, 0<¢p(a) <1
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c) ¢ is onto.

d) ¢ is continuous.

Proof: a) Let a,b € Q.If a =b, then clearly ¢(a) = ¢(b),
hence suppose that a <b. Then there exists k such that a; = bi’
i=1l,...,k=1, and a.k< bk' In this cas‘e,

;3 -1 -1
o) - ola) =T bN; " - DaN;

_ ) %, | _ -1
= (b -a N, " + 2 (b, aj)Nj

i>k
>N];1 - B ants B ot
- j>k 44 i>k
=Wt . B ot . ZN.'1=0,

i>k j>k I
and so

ola) < (b) .

b) Clearly ¢(a) > 0 for all a € Q. Further, since a €Q,
implies a<w = (ni-l) , it follows from part a) that
-1
@la) < p(w) = Z(n -1)N;

1
O

Ng
c) Now let 0 < x <1, and define a = (a,) in Q as fol-

lows. Let 2y be the greatest integer n, satisfying:

and
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If al’aZ" ey have already been defined, choose a, to be the

greatest integer n satisfying:

and

k-1 -1 -1
arNr + nNk < x,
r=1

The point a = (ai) so defined clearly satisfies
pla) < x .

Suppose that ¢(a) < x, then two cases arise. If for infinitely many

integers j, aj < nj-l, then choose j large enough so that
-1 x-p(a)
N. < + s
J
and put a.; = aj+ 1, Then,

a N =+ a N~ < p(a) + Nj'1

IA

pla) + Xgl2)
=X,

which would contradict the choice of aj made above. On the other hand,

suppose there exists an integer r such that for all k> r,
a, = n - S Q.

Let j be the least such integer r. Since @(a) < x< 1, itfollows that

j>1l. Moreover aj-l <n, ,-l. Thus

j=-1
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=& =] ] =1
pla) = 2 a N + a, N+ 2 (n_-1) N

r=1 £z )= r>j L
j-2 - - _

= 24 a . + a. 1 .1 + N.1
om] T £ i-17] j
j-Z &1

= & a N_" + (a, (+1) N, < x,
r=1

which contradicts the choice of aj-l' Thus the only possibility is
¢(a) = x which was to be proved,

d) Suppose a(n) is a sequence in () such that a(n) converges
to b € Q. Then for each integer i=1,2,..., there exists Mi such that
k> Mi implies ai(k) = bi’ Let N be such that k> N implies

2 (n_-1) N;l < ¢ and put
rzk %

M = max (M) .
i<i<N !

I nzM, then ai(n) =bi’ i=l,...,N and so

N
olaln) =ZamN = ToN'+ T a(n Nl
1 1 1=l 11 1>N 1 1
Thus
) " N =]
2, b.N, < ¢p(a(n)) < Z b.N, + ¢,
i=1 11— — =1 11
1 i=
and since
= )
o(b) - e < '21 b.N. = < o(b) ,
1=

it follows that
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o(b) - ¢ < pla(n)) < p(b) + ¢ .
Since () is first countable, this shows that ¢ is continuous on (.

Assume that the sequence of positive integers (nk) is fixed,
Given positive sequences (o'k) and (gk), the triple (nk, crk.gk) is said

to be admissible, provided that

crk<§k (k=1,2;...) » and
(4. 2)

nkE, 2L, B 2@ o (b= 23u.. .

Given an admissible triple (nk, Oy gk) and a point a € ), consider the

n
sum 2 a.E. . By (4.2) and the fact that a, < n, 1
j:l J J 1 - 1=-

> 5 2 2
alk. < (n.-1)g. = ng. - £,
j=1 JJ =1 J J j=1 J7J j=1 J

Thus the series 2J aig.l is convergent, and defines a number {(a). The

function y:Q — [0,1] so defined is called the derived mapping of

(n.k,O'k,Ek). Such a function { satisfies:

Theorem 2. a) a<b, if and only if, {(a) < §(b).

b) 0< y(a) <1, for all a € Q.

c) | is continuous.
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Proof: a) If a,b€(Q and a<b, let k be such that a, = bi’

=185 54 s RK=l, 2nd ak<bk. Then

¥(b) - ya) =2LbE - Dakt,

= 2 (b.-a) E,
j>k(JaLJ)EJ

v

- 2 (n.~1) €.
>kl Y J

w 24 O + 4 @
i>ktl L j>k+l J

gk
Sk
=§k—0k>0.

Therefore {(b) > y(a). It follows that {y(b) > y(a) implies b > a.
b) It is clear that y(a) > 0. The remarks made preceeding

the Theorem established that {(a) < 1.
c) Since Z (ni-l) gi is convergent, the same argument as

that used to show the continuity of ¢ suffices,

A set E is called the Generalized Cantor Set of type

(n_k,ok,gk) , or more briefly, the GCS of type (nk,ck,gk), provided
that (n.k, o'k,gk) is admissible and that E = §((), where { is the de-
rived mapping of (nk,o'k,gk). Since { is continuous and () compact,

the following theorem is immediate.

Theorem 3. If E is a GCF of type (.nk,ck,gk), then E is

a closed subset of [0,1].

Given an admissible triple (nk, O gk), define a function

w(x) on (-=,=) by writing:
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w(x) = 0, if x<0 ,

p(x) = sup (p(b):¢(b) < x), if x>0,

where ¢ is defined by (4. 1) and { is the derived mapping of (n_k, ck,gk)_
The function p is called the Generalized Cantor Function of type
(nk,ck,gk), or the GCF of type (nk,ok,gk).

The following lemma will be useful for the study of General-

ized Cantor Functions,
Lemma 1. If x = y(a), then n(x) = p(a) .

Proof: If x = {(a), then by definition u(x) > p(a). Since
o(b) > p(a) only if b>a, and u(x) > p(a) implies the existence of
b € 0 such that @(b) > p(a) and §(b) < x, itfollows from Theorem 2,

a) that p.(x) i(p(a).

The first general statement about Generalized Cantor func-

tions is:

Theorem 4. E u is a GCF of type (nk’ck’gk , then

b€ M(¥(Q) .

Proof: Suppose x<y. Then y(b) < x implies y(b) <y, and

it follows that p(x) < p(y). Since a<w for a €Q, u(x) < ¢@(w) = 1. The
fact that
and ¢(w) = 1, implies that u(x) = 1 when x> 1. Now write E = () and

suppose that the open interval (x,y) is disjoint from E, Iy ¢ E, then
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it is clear that (x,y) N E = ¢ implies
w(x) = sup(p(c):y(c) < %) = sup(p(c):iylc) <y} = uly) .

Suppose then that y € E. If also x € E, then there exist points a,b €
such that x = §(a), y = ¥(b). Then by Lemma 1, u(x) = ¢(a), uly) = ¢o(b).

If p(a) < ¢(b) then there would be ¢ € Q, such that

p(a) < plc) <pld) ,

since ¢ is onto. This would mean a<c<b, and so {y(a) < y(c) < y(b) ,
which would contradict E N (x,y) = ®. Thus in the case x,y € E,

u(x) = u(y). Finally, if x ¢ E and x< 0, then y<0 and
p(x) = w(0) = uly) ,
since 0 € E, If x> 0, then
x > sup(tit€E, t<x) = tl €EE
since E is closed., Further (tl,y) NE = ¢ and so
wly) = ult) < u(e)
and so p(x) = p(y), which shows that p € M({y(Q)).

The next theorem gives an alternate definition of p(x).

Theorem 5. For all x,

(4. 3) p(x) = inf ((p(c):wy(c) > x) ,

where the infimum is defined to be 1 in the case that there is no ¢ €

such that y(c) > x,
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Proof: If x is such that x > y(c) for all ¢ in Q, then

w(x) = 1, which agrees with (4.3). I x< 0, then
inf (p(c)iy(c) >x) = 0,

so that u(x) = inf (p(c):¢¥(c) > %) in this case. Thus suppose that 0 < x
and that there is ¢ € Q for which {§(c) > x, Again write E = y(Q) and

let

a2
I

sup(t:t € E, t< x)

Tt
]

inf(t:t € E, t>x) .

Since E is closed, t, belong to E, Then there are points a,b € Q

Y00ty
such that

]
o+

y(a) 0 < %

]
-+

y(b) 1 > %

If u(x) < @(b), then ¢(a) £ p(x) < ¢(b), and so there would be c € O
with (a) < p(c) < p(b) or a<c<b., This would imply y(a) < y(c) < {(b)

which contradicts the choice of t,,t,. Thus u(x) = ¢(b) which implies

0’71
w(x) > inf ((c): (<) > x). The fact that p(x) < inf (¢p(c): ¥(c) > x) follows

from the definition of u.

The foregoing proof also establishes:

Lemma 2, Given 0<x and w(x) < 1, there is b € 9 such

that y(b) > x and u(x) = ¢(b).

The following lemma will be instrumental in the proof of

Theorem 6 ‘below.
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Lemma 3. Given a and b in (, there is a sequence (ek)

where €y = 0 or & = 1 (k=1,2,...), such that the point c = (Ci) defined

by

beloEs to Q.

Proof: a,b € Q. The existance of the required (ek) is

proved as follows., Define

(ee]
A= X {o0,1},
k=1

where {0,1} has the discrete topology and A, the topology of pointwise
convergence relative to the compact spaces {0,1}. For each positive
integer k define

= J:0<a.+b.+ e. -e.n.<n.-1; = A s 2 RE <
By, = 023,48, % g,y ~ 0 20 4 }

Thus A'k is closed in A for each k, since if (egcn)) is a sequence in

Ak converting to (ék) then there exists M such that n> M implies

e(ln) = 61,. - 5 e{::_)l = 6k+l’ and so (6k)' is in Ak’ Further it is obvious

that A,kg A‘k+1 for all k, and that A‘k is non-empty for each k. Since

A is compact and the sets A'k have the finite intersection property, it
fee]

follows that N A.k is non-empty. Hence there is a sequence (ek) which
1

satisfies the required conditions.

Remark: Let a,b be points of ) and ¢ a point determined

by the lemma above., Then
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pla) + (b)) = ¢lc) + € -
Moreover, if {§ is the derived mapping of the admissible triple
(D2 Oy2 8y then
o) = @) + yb) - e .

Indeed, if there exists (ek) such that c = (ci) defined by

Ci=ai+bi+ €41 - &My (i=1,2,...)

is in (), then

n

, |
ENi (a;+b;+e;

ole)

= f)

1]

ola) + lb) + DN, * 61 -2 N, |

X T A

ola) + p(b) - € -
Moreover,

> y(a) + ¥(b) + 2€i+lai -z €,0: 1

1

W(a) + W(b) = el .

Theorem 6, I p(x) is a GCF of type (nk,ck,gk), then

pw(x) is sub-additive,

Proof: If either x < 0 or y< 0, then x+y < xVy, so that

p(x+y) < wx=vy) < wx) + ply). I either p(x) =1 or u(y) =1, then

clearly

wx+y) < p) + uly) .
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Thus suppose that x>0, y >0, u(x) <1 and u(y) < 1. By Lemma 2,

there are points a,b € 0 such that

y(a) >x, §(b) >y

and

wx) = ¢la),  uly) = o(b) .

According to Lemma 3, and the remark following it, there is c €

such that
olc) = fa) + @(b) - ¢,

and (e1=00r 1) .
§e) > wla) + y(b) - e

I € = 0, then y(c) > x+y. By Theorem 5, this implies

u(xty) < olc) = @la) + ob) = wx) + uly) .
On the other hand, if e; = 1, then
wixty) < wy(@) + 4()) < ulvle) + 1)
< 1T+ p(y(e)) .
Since p(y(c)) = plc) = p(a) + ¢(b) - 1, by Lemma 1, it follows that
w(xty) < @(a) + o(b) = wx) + uly) .
Hence in all cases p(x+y) < u(x) + p(y), which proves the theorem.

It will now be shown that a GCS, E, of type (nk, Oy gk) and
its GCF, pu have the same dimension with respect to any covering

class, but first some useful lemmas,
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For each positive integer k, define a set Bk by

By = {bb€q, b, =0, j>K},

Then Bk has exactly N, points and has the following property:

Lemma 4. If (n k,gk) is admissible and { its derived

k:U

mapping, then

@ c U t, t+ 3 (k=1,2,...).
¥ _tEMBk)[ Mt 1 k+1]

Proof: Let c¢c € Q. Since Bk is finite, let

b(c) = max (b:b<¢c) ,
bEB, -

this maximum being taken with respect to the lexicographic ordering on

Q. Then

§(c) > y(ble)) .

I¥ y(c) > y(b(c)) + N 181 then

k
v(c) > J?l bJ(C)gJ * nk+1§k+1

M=

b. ) 2 ~1) €. ,
> 1 J(c)gJ+ j>k(nJ )EJ

J

: _ & - . ; :

since j?k (nj 1)§j < nk+1§k+1‘ If bj(c) nj 1l for 1< j<k, then it
would follow that {(c) > 1, which is false. Thus there is a largest

integer r < k such that br(c) < nr-l, and so
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y(c) > E b(c)g + b ()5 + L (n-l)g
j=1 j>r J
-1
> Z) b. (c)§ + (b_(c) + DE
j=1

Then there would be a point b' in B, with b} =b.(c) (i=1,...,r-1),

br = br(c) + 1, and

b(c) <b' < ¢ ,
which contradicts the choice of b(c). Consequently
¥b(e)) < () < bb(e)) + mE

and the lemma is established.,

With the help of Lemma 4, it is easy to verify

-1
Lemma 5. u(€,) = ploy) = N

Proof: Let 6jk =0, if j#k, =1 if j=k, Then (éjk) €Q
and B = \U((G )). By Lemma 1,
sl

To show p(€,) = wlo,), observe that g, > n implies that
M gk K’

e = Pl el

Wwac U [t t+o ],
t€B,

by Lemma 4. Since p is non-decreasing and u(l) = 1, it follows that

1< Z plt+o) - w(t)
tE€B,

-1
and so for some t € Bk' w(t + o'k) - u(t) > Nk . Since p is sub-additive,
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N s u(g) 2 eloy) > wltroy) - w(e > N

and so p.(gk) = u(o‘k) .

Lemma 6., For all s >0, u(s) <2(1v=— Nt
—_—— = ' S gk k

Proof: By Lemma 1 (§1,I), Theorem 6, and Lemma 5,

s s s -1
ui(s) = “L(E; " gk) < 2(1 VE—IZ) p,(gk) = 2(1 VE—k)Nk .

The next theorem is a partial answer to the question: For
what sets E is it true that there is p € M(E) such that dS(p,) = dS(E)

for all S?

Theorem 7. If u is the GCF of type (ﬁk, o-k,gk) and E the

GCS of the same type, then

dglw) = dg(E) ,

for every covering class S,

Proof: If § is the derived mapping of (n then

1 T S
E = §(Q) by definition and u € M(E) by Theorem 4. From the Theorem
of §2, itfollows that dg(u) < dg(E). On the other hand, if A € M(E) and

s € S with o-k_<_ s -<-°k-1’ then

S, sy c U [t t+n

g ]
= tE\),r(Bk) kt13k+1

c U [t, t+s],
t€ y(By)
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by Lemma 4. Then

1 < 2 A(t+s) - A(t) ,

£E qr(Bk)
and it follows that
M(s) > N
e PO
If nkgkﬁ s <0L_1’ then since
(4. 4) ¥ < u (¢, t+n g, 1 C u [t t+s] ,
t€ (B, _,) teEy(B, ;)

it follows that

M(s) > Ny~ = plop_q) > uls) .
On the other hand, if o <8< nkgk, then (4. 4) and Lemama 1 (§1,1)
imply

2nE
= 1k
N1 = Moy &y) = —5— anls)

from which it follows that

-1

M(s) > 5 TS'ST: N

Altogether then, for 0, <82 O

AX(s) 3(—%%{ N{(l A u(S)) v N];l

& - w -1
BE(E;Nk VNk)A(p(s)VNk)

Z 1) A us) = uls),

Iv
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-1
by Lemma 6 and the fact that p(s) > p.(ak) = Nk . It follows that for

all s € S,

log AM(s) 2 log 1/4 & log u(s)
Iog s — logs log s

which implies dS(M < dS(p.). Hence ds(p.) = dS(E) as desired.

The next result is concerned with the computation of ds(p.) ;
where . is a GCF of type (n.k,o'kgk), in terms of some of the concepts
introduced in §3 of Chapter III. Given a covering class S and a pos-
itive sequence (o-k) decreasing to 0, recall the definition of a(o-k) and

b(ck) relative to S, given by (3. 4).

Theorem 8. _]'{ p is a GCF of type (nk, o'k,gk) where nkgk

= 01’ and if S is any covering class, then
log u(o,) log p(o,)
(4.5)  dg(W = lim inf Y 1—1‘)/\ Yo, it v 1|,
k-o \Uk *°8 Oy k=-o \'k ©°B Oy Vi

where u, = b(ck) /a(O'k), Ve = (1-b(0'k))/(1'a(0'k)) .

O

covering classes, it follows from Theorem 1 (§2,II) and Lemma 1 (84,

Yk Vi
Proof: Since (ok) and ( ) are contained in S and are

II), that
dg(w) < d

u,) (W) A d v, (W) .
CONN (Y

Since akk > Oy

k
log p|oy 1 log uloy)
& == ]
log @ U — v, log O
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and thus

1 log ploy)
[ B S
Tk

v
Moreover, the fact that ckks Oy and the sub-additivity of p imply that

l-v v l1-v v
~k k) _ k k
u(ok) < 2(1 Vo, )u(crk) = 20, _u(crk) "

by Lemma 1, (§1,I). Thus

$
\4 v

-
log p.(o'kﬂ log 1/2 v, -1 log w(o,)
< & NERAIN...

Y ” Yk k k log oy

log O log Oy

which implies that

log w(o,)
a, (u)iliminf(;-l-___-‘i+1_v_1) .
(ckk) k- \Vk log o Kk

It follows that,

log w(o) log u(o,)
dg(p) < lim inf _.1..—1‘) Alimin_f(.l_____E__l. R
T keo \%k log o) k-=o \ 'k log o, v

By Lemma 6 and the fact that nkgk =1

s -1
u(s) & 2(1 Vq) Nk

-1 s -1
2N \% N

(4. 6)

Suppose now that s € S and o'ki s < crk_ 1° Then necessarily
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Y Vi-1

<s< ak-;. , and this with (4. 6) implies

v

-1 -1
log u(s) log 2 N (log Nk A log ls Nk—l/ck- 1))

log s log s log s log s

log 2 1 log o) 1 log N, .o '
(4.7 > 27, __.__LA(l- o1 k-l)
-

log oy \Ux log oy k-1 108 G,

a1y 4| — w1 =
u, log oy k-1 108 0y, Vit

1 log ploy) 1 log wloy_;) 1
A ,
v

since u(ok = N{;l and Nkcrki 1. If s €S and k(s) denotes the integer
k such that °k< s < Oh_1 then k(s) = as s - 0. Thus (4. 7) implies

that

1 log u(oy) 1 log wloy_4) 1
ds(u.) > lim inf{— A & L =

ke ga dog o NPy 198 Oy Vik-1

Since lim inf (Ak A Bk) = lim inf A A lim inf B equality in (4. 5) is

proved.

The last theorem of this section asserts essentially that if

E is a GCS of type (nk’lck’gk , m & =0,-1, then

log N{(l
dH(E) = lim inf — —
k- o log O

Theorem 9. If u is a GCF of type (nk,ckgk), with

BB = Ok-1° then dS(u‘) > d(ck)(p.) for every covering class S,
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Proof: By Lemma 6,

s -1
uls) < 2(1 vq) N

f g <820, then for every 0 < g < d(o,k)(u) ’
s-Bu(s) < 2P v 25!~ = 25 7P v 251F
= Ny SNk Ne o o 1Ny

< 207" wlo) v 20{;?1 wloy )

< 2C_ ,
- B

where CB is a constant independent of k. By the Theorem of §1,

Chapter II, it follows that B < dS(p.), and so d(O' )(p,) < ds(p.). Note that
k

if d (W) = 0, the result is trivial.
(o)

Remark: Theorem 9 can also be proved as a consequence of

Theorem 8.

§4. Main Results

The purpose of this section is to show that the results of §2,
Chapter III apply to the dimension of closed sets with respect to a
covering class, More precisely, let C be the collection of closed sub-

sets of [0,1] and

M(S, T) = {(dg(E), d(E)):E € C},

where S and T are any covering classes. It will be shown that M(S, T)

is identical with R(S, T). To show M(S, T) € R(S, T) is relatively easy:
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Theorem 1. M(S,T) € R(S,T) .
Proof: Let E be a closed sét such that
ds(E) > do(E) .
There exists p € M(E) such that
dg(E) > dg(p) > dq(E) ,

by the Theorem of §2, Since p € M, there is f € & such that £~ .,

that is dA(f) = dA(p,.) for all A, by Theorem 1 (§2,1I). Now
dp(E)
p.<

fA € &, and the lemma of §2, Chapter II implies that
dT(E))
ds(f A x = dg(p) Vv dp(E) = dglu)
and
e
dp\f A x = dplw) V dp(E) = d(E) ,

since p € M(E). It follows that
(dgw), d (E)) € R(S, T) ;
and, since dS(p.) can be chosen arbitrarily close to dS(E), and since
R(S, T) is closed, this implies
(dg(E), d(E)) € R(S,T) .
The case dS(E) < dT(E) is treated similarly. If dS(E) = dT(E), then

the fact that R(S, T) is doubly-starred shows that (dS(E), dT(E))

€ R(S, T), and this completes the proof.
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Theorem 2, Given B such that 0 < < 1, and any covering

class S, there is a GCF, yu of type (nk,ok,gk), with nkgk =0

k-1’
(ok) €S and

d(o,k)(p-) =8 = ds(u) .

Proof: Let (o'k) € S be a decreasing sequence satisfying:

1- - -B "
(Uk/0k+l) 221 00 = ll cl(cl + 1) < 1) (k—O,l,Z,,,,) .
Write
n; = [GIB:I + 1,
= -8 -
nk = [O'k /Nk-lj+ 1 ’ (k— 2’ 3’---) ’

where [x] denotes the greatest integer less than or equal x, Further,
put g = Uk-—llnk' In order to show that o-k.< €, it suffices to show

n O < 0.1 Indeed, for k=1,

-B -
n1°15(°'1 +1)<1=g¢g

o *

- 2] = b ;
For k22 My g=MNy 5% 2 Mep O Wi = 0 g Bnd 6

follows that

MO 5("1;5/Nk-1 * 1) Oy = ("1;3/"1;?1 * '{) "

1A

(2 °11<-B/°11<:E15) C1 = Oy -

B

Since Nkz c{( and 23cr,?< is a convergent series, it follows that 2 N;{l

is convergent. It follows that there exists a function p which is a

GCF of type (nk,o'k,gk). Since
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log N{(l
d( )(u) = lim inf ——a ,
- O k= o log O

_B .
and Nkz 0'k , it follows that

gy} 2 8-

On the other hand, given k sufficiently large, there are integers j< k

for which nj > 2, Let jk be the largest of these integers, Then

no < 1+0P /N | <20P /N,

Ik k Ik Kk Ikt
or
N, =N, <2¢.P<2¢gf,
k I — e — k
since jki k. Thus
log N;;l log 2™
— <t —
log o log o,

. . ; - : (e

which implies d(o_k)(u.) < B, or d(o_k)(u) B . Since (crk) €S,

do(p) < B. But by Theorem 9, §3, d.(u) >d (uw) = B, which proves
5w < s 2 (g

the theorem.

Given covering classes S and T, recall the definitions of

A(S:T) and A(T:S) given by (3.5) and (3. 6) of §3, Chapter III

Theorem 3, Given any (a,b) € A(S:T) U A(T:S), and any t,

_0_<_ t< 1, there are closed sets E and F, such that
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and

(dS(F), dT(F)) = (tat+1-t, tb+1-1t) .

Proof: Since any finite set E has dS(E) = 0, and any closed
interval F of positive length has dS(F) =1, for all S, only the values
t, 0 < t< 1l need to be considered. Assume (a,b) € A(S:T), then there
is a sequence (tr), tO =], (tr) cT, (tr) decreasing to zero such that

lim a(tr) =a and Ilim b(tr) =b., Four cases are considered.

T = Ir—w®
Case 1, If a_>_b>0, b<1l, and 0<t5 1, then there is a

GCF, u, of type (nk, ck,gk) with nkgk = o-k-l, (ak) c (tr) c T, and
dT(u') = d(ck)(li') = tb ,

by Theorem 9, §3, and Theorem 2 above. Since (o-k) c (tr), it follows

that a, - a, bk -b (k- ), where a = a(dk), bk = (c'k), and thus

Theorem 8, §3 implies that

_ l-a l-a
ds(p..) = %a N (-1-:5 ta + 1 - -ITB) .
Since ta< 1 and -i—:% < 1, itfollows that

l1-a

l-a

so that

ds(p.) = ta .

By the same reasoning, since 0 < t< 1 implies 0 < tb+ 1 - t< 1, there
" 1 1 1 3 LI 1 1
is a GCF, )\, of type (nk,o'i, Ek) with n g, = Ora1’ (O'k) < (tr). and

dT(M = tb+ 1=-t. Applying Theorem 8, §3, and reducing, implies
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dg(\) % (thb+1-1t) A(ta+1-1)

tat+1l-t,

since a >b. Thus taking E to be the GCS of type (nk,c'k,gk) and F
the GCS of type (n{{,c{(,g{{) and applying Theorem 7, §3, proves the

theorem in this case,

Case II, Ifa=b=1, and 0<t< 1, then there is a GCF, u;

of type (n.k,ck, gk . nkgk = ok-l’ and (o'k) c (tr) with dT(p.) = ,d(O'

Then by Theorem 9, §3, dS(“‘) > t. On the other hand, by Theorem 8, §3,

(W = t.
k)u

a, log u(oy)

dg(p) < lim inf B_k _W = d(ck)(p,) =t ,

k =» o

and so ds(p.) = t. In this case take E to be the GCS of type (n.k,ck, gk)

and F any closed interval of positive length,

Case IIl, If a=b=0 and 0<t< 1, then let y be the GCF

described in Case II, with t replaced by 1-t. Then

ds(p.) < lim inf

l-ak log p,(ck) ].-a.k
k - o

+ 1 -
l-bk log Oy 1-bk

=d (IJ:) = 1-t .
Ok

It follows that ds(p.) =1-t= dT(u), and in this case take E to be a

finite set and F the GCS of type (nk, O §k).

Case IV, The only remaining caseis a>b =0, If 0<t< 1,
then tb4+ 1=t > 0, and there is a GCF, p, of type (n.k,ok,gk), n g =0

such that
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= = th+l-t=1-t> 0,
dT('lJ') d(ck)(UJ) +

Since bk—- 0, a

-a>0 and d (p) >0, it follows from Theorem 8, §3,
k (o)

that

” nf(l-ak log w(a,) X 1'6'1()
da(w lim i - + d = o
S % o E bk log Ok T Bk

(1-a) d(ck)(p.) +1 - (1-a)

ta + 1 =% ,

1}

Thus let F be the GCS of type (nk,o' The existance of a closed

k’ gk)-
set E such that

dS(E) = ta, dT(E) =0 (t>0) .
requires special consideration. Without loss of generality, it can be
assumed that the sequence (tr) is chosen so that b(tr) decreases to
b = 0, and that between tr and tr-l there is a point of S, for every r,

This implies that

b(t,) /a(t)
t

T = tr-l 2
or

-tb(t) ta(t )

t g ¥

T =~ Tr-1

Since a(tr) -+a>0 and t> 0, itfollows that

-tb(tr)

(4. 8) tl‘ - ® r = o,

Further, a(tr) - a>0 and b(tr) - 0 implies that
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(4.9) a(t,) (’srlt—y - t) - e (=) .

r

On the basis of statements (4. 8) and (4. 9), there is a subsequence,

(o'k) of (tr) which has the following properties:

O > o. ol (bkz b(ck))
(4. 10)

Yo Feo

k

; )
a, |l— -t]> 2.
(& )z

Given such a sequence (g,) € T, define

»

=]
—
1
’QI
-1
&
)
| I |
e
(=1

-tbk
n = |o. /Nk_1 + 1 (k=2,3,...)

where Nr = Djs.e..n and [x] denotes the greatest integer in x,

Further, put
€k = O‘k_l/nk :

In order to find a GCF of type (nk, Oy s gk), the sequences (nk), (o-k),
(gk) must satisfy:
2 N.L_{l < o,
n’kgkiok_l (k=112’---)

ak<§k.
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Since
-tb
U'k ® -tbk
Me = M M1 2N 7 M1 T %
it follows that
tb
-1 k
2 Nk < 2 O .

this latter series being convergent by (4. 10), The fact that nkgkf Ok-1

follows from the relation By = Uk—llnk' This same relation implies

that O < 8y whenever n0 <0 1 Now
-tb
1 -1/2
nlcli(cl +1)°1-<-G’1 +1)°1
1/2 3 _
=8 +TH SFElRo.

by (4. 10). To verify n oy < Okl for k> 1, observe that

~-tb

kt1l
Ne £ Ore1 -
-tbl -tb2
Indeed, N1 =n; <0, + 1< o, by (4. 10). Suppose that
k-1 -tb
Nk-l = O + 1
r=l
Then
-tbk
Ok
Phe = P11 2 k] M.
k-1
-tbk k -tbr
=g, +N_;< Zo, T+1
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-tb

: ; ; ; kt+1
The choice of O et 1 described by (4. 10) implies that Nkiak+l .
This fact implies that

-t"bk ' -1:bk
g 2g
n 0 < L + 1)@, < -
b =\ Beq k=N

b, /a -tb, 4

Since O S-ck-l’ 1 - tka 0 and Nk-l > ck-l , it follows that

1
N
MO S 20

k-1"
by (4. 10).
Thus let , be the GCF of type (n,,0,,€,). As has .already
tb Tl e tb
been observed, Nkzck k . Itis also true that Nks 2 O k. Indeed,
-tbk
since Nk—l < c'k , it follows that
-tb -tb
ck « zok «
< 1+ < ’
Yo = TN = TN

and multiplying both sides of this inequality by Nk-l gives

It then follows, since p,(crk = N;l, that

log w(o,) log 1/2

k.-<- 1og0'k S-Iogcr &

(4. 11) tb

k
k
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and, bk - 0 implies

d(o'k)(“) =4

Since (o'k) cT, dT(p,) = 0 as well, By Theorem 8, §3,

o a, log ploy) "

The estimation (4. 11), implies

Since

it follows that ds(p.) = ta N a = ta, Hence take E to be the GCS of type
(nk’ck’gk , and in this case dS(E) = g, dT(E) = 0,

Thus cases I-IV show the theorem true for (a,b) in A(S:T).
A symmetric argument establishes the result when (a,b) € A(T:S).

Therefore the theorem is proved,

The principal theorem concerning the dimension of closed

sets is the following:
Theorem 4. M(S,T) = R(S,T) .

Proof: By Theorem 1 and Theorem 3 (§3,III), it suffices to
show that (A(S:T) U A(T:S))S c M(S, T). Let (a,b) € A(S:T),
(x,y) € (2,b)°, and (c,d) € A(T:S). KE'x=ta, 0<t<l, let E, be the
closed set with
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dg(E)) = ta and d(E)) = tb .

There exists 0 < s < 1 such that either y =sd or y=sd+ l-s, and a
closed set Ez with dT(Ez) = y. In either case, dS(EZ) <y. Since
ay > bx, it follows that y >tb. By Lemma 3, 81, dA(El U Ez)

= dA(E l) \v dA(EZ) for any A, so that

clS(E1 UEZ) = tanS(EZ) = ta=x
and

dT(EluEZ) =tbhVy =vy.

If x=ta+1l-t for 0<t< 1, then let E3 be the closed set such that

dS(E3) = ta+1-t and dT(E3) = tb+1-¢t .

If (x,y) € (a,b)®, then (1l-a)(l-y) < (1-b)(l-x) which implies that
(1-y) < t(1-b). Itfollows that y > tb+1-t, Consider the set E3 u EZ’

E2 defined above. Then

]

dg(E; UE,) = (ta+1-1) VA(E,) = xV dg(E,) = x

and

dp(E;UE,) = (tb+1-1) Vy=y.

It follows that (a,b)s C M(S, T) if (a,b) € A(S:T). A symmetric argu-
ment shows that (a,b)s < M(S, T) when (a,b) € A(T:S), These facts

prove that

(A(S:T) U A(T:S))° < M(S, T) ,

and hence R(S, T) € M(S, T), which proves the theorem.
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§5. Conclusions and Generalizations

Theorem 4 of §3 shows that the results obtained in Chapter III
apply to the dimension of closed sets, Thus, for example, a knowledge
of the relative positions of the covering classes S and T, thatis a
knowledge of the sets A(S:T) and A(T:S) introduced in §3 of Chapter III,
gives a complete description of the values of (dS(E), dT(E)) as E wvaries
over the collection of closed sets in [0,1]. Moreover, it is clear from
the material of §4, that questions of this sort may be dealt with entirely
by considering finite unions of Generalized Cantor Sets,

In general, when a finite number of covering classes are con-
sidered, a similar analysis can be made using essentially the same
methods,

The question arises as to what can be said for closed sets in
the unit square, If' C is any collection of open rectangles, whose sides
are parallel to the coordinate axes, and if C is closed under transla-
tions and contains rectangles of arbitrarily small area, the dimension

of a closed set E with respect to C is defined to be the number

dc(E) = suP(B:XB,c(E) > O) ’
where

Ag, c(E) = inf(z (m(R))P:UR, o E, R, € c)

The covering class C can be associated with a set of points in the
left-open portion, 1'2 , of the unit square 12, whose closure intersects

- B,

1y = 1,

If M denotes the class of functions f(x,y), defined on

x>0, y>0, non-decreasing in x and in y such that f(x,y) = 0 if
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x-y = 0, and such that

M(a,b) = \Y G(x+a,y+b) - f(x+a,y) - f(x, y+b) + f(x,y))
(x,y) ERT

is bounded in 12, then for £ # 0, the dimension of f with respect to the

covering class S is defined to be the number

= Tim inf log Af(s,t)
ds(f) = lslfnllonf —Tog st (8,8 €85 .

Since Af(a,b) is sub-additive in each variable, it follows that

Af(ta, ) < 4(tV 1) (rVv 1) Af(a,b)

for r,t> 0. In particular, for (x,y) € 12, this implies
C > Af(x,y) > x-y Af(1,1) /4,

where C is some positive constant. It follows that 0 < dS(f) < 1 for
f € M. On the other hand, the functions (xy)a, 0<a <1l (with the con-

vention 0 = 0) are sub-additive in each variable and so for g > 0

Af(a,b) = Vv ((x+a)® - x*) (y+Db)* - y%)
XY

(ab)* = £(a,b) ,

IA

while for g = 0, Af(a,b) = 1. This implies that dS( (xy)%) = a, so that
the dimemnsion can take any value between 0 and 1. The interest in
studying the dimension of functions in M with respect to various cover-
ing classes lies in the study of the influence of the shape, along with
the area, of the members of the covering class. In the case of rec-

tangles the shape of the members of a covering class, S, is given by
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the set of quotients s/t where (s,t) € S. The following theorem is a

first indication of the role of shape on the dimension of functions in M.

Theorem. A necessary and sufficient condition that

dS(f) S dT(f) for all £ € M, is that there exist a function g, g:T = S with

the properties:

. log g(ty)g(t,) . ( :
im = t L) € T
tt, =0 lag 4ty 172

and

b, Elts)
lo —1-/ 1
\E 5,

lim

log t.t
t;t,=0 172

= 0 .

The proof is carried out in a similar manner to that of the Theorem of

§4, Chapter IL
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