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ABSTRACT 

Let E be a compact subset of the n-dim.e nsional unit cube, 

1 , and l e t C be a collection of convex bodies, all of positive n
n 

dimensional Lebesgue measure, such that C contains bodies with arbi-

trarily small measure. The dimension of E with respect to the covering 

class C is defined to be the number 

where Hf', C is the outer m e asure 

in£(6m(C .}13:uc. ::iE, C . EC}. 
1 1 - 1 

Only the one and two-dime nsional cases are ·studied. Moreover, the 

covering classes considered are those consisting of intervals and rec-

tangles, parallel to the coordinate axes, and those closed under trans-

lations. A covering class is identified with a set of points in the left-

I - l' open portion, l , of 1 , whose closure intersects 1 
n n n n· For n = 2, 

the outer measure Hf', C is adopted in place of the usual: 

inf (6 (diam. (C.} }S:uc. ::i E, C . EC} • 
1 1 - 1 

for the purpose of studying the influence of the shape of the covering 

sets on the dimension dc(E}. 

If E is a closed set in 1 1 , let M(E) be the class of all non

decreasing functions µ.(x}, supported on E with µ.(x) = 0, x < 0 and 

µ.(x) = 1, x > 1. Define for each µ. E M(E), 
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= lim inf log 6µ(c) 
log c c ... 0 

where 6µ.(c) = V (µ.(x+c) - µ(x) ). It is shown that 
x 

(c EC) 

This notion of dimension is extended to a certain class J of sub-

additive functions, and the problem of studying the behavior of dC(E) 

as a function of the covering class C is reduced to the study of dC(f) 

where f E J. Specifically, the set of points in 1
2

, 

is characterized by a comparison of the relative positions of the points 

of B and C. A region of the form (':<) is always closed and doubly

starred with respect to the points (O , 0) and (1, 1). Conversely, given 

any closed region in 12 , doubly-starred with respect to (O,O) and (1, 1), 

there are covering classes B and C such that('!~) is exactly that region. 

All of the results are shown to apply to the dimension of closed sets E . 

Similar results can be obtained when a finite number of covering classes 

are considered. 

In two dimensions, the notion of dimension is extended to the 

class M, of functions f(x, y), non-decreasing in x and y, supported on 

12 withf(x,y) = 0 for x•y= 0 andf(l,l):::: 1, by the formula 

= lim inf log M(s' t) 
log s. t (s, t) E C 

where 
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M(s, t) = V (f(x+s, y+t) - f(x+s, y) - f(x, y+ t) + f(x, t)) . 
x,y 

A characterization of the equivalence de (f) = de {f) for all f E M, is 
1 2 

given by comparison of the gaps in the sets of products s· t and quo-

tients s/t, {s,t) Ee . {i = 1, 2). 
l 
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INTRODUCTION 

Let E be a subset of the n-dimensional unit cube ln and let 

S be a collection of convex bodies, all of positive n-dimensional 

Lebesgue measure, such that S contains bodies with arbitrarily small 

measure. The dimension of E with respect to the covering class Sis 

defined to be the number 

where Hb is the outer measure 

inf(~ (m(C.) )b:uc . ::::>E, c. Es). 
1 1 - 1 

The dimension d
5

(E) is always a number be.tween 0 and 1. Moreover 

it is monotone with respect to the covering class in the sense that 

The purpose of this dissertation is to study the behavior of 

d
5

(E) as a function ·of the covering class S . Only the one and two-

dimensional cases are considered. In the one-dimensional case con-

vex sets are intervals but the question could arise as to the behavior of 

d
5

(E) when covering classes other than those consisting of intervals 

are considered. Although this ques ti.on is for the most part unan-

swered, some· statement can be made. 

Theorem. If S is any covering class of open sets which 

contains the intervals and their finite unions, then d 5 (E) = 0 ~ 

d
5

(E) = 1, !!;,! E has measure zero or positive outer measure. 
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Proof: If E has positive outer measure p, then any cover-

ing (C .) by sets in S has the property that, 
1 

and so Hb(E) > 0, b ~ 1, which shows d 5 (E) = 1. On the other hand, if 

E has measure zero, there is a sequence of intervals ( 1.) such that 
J 

m(Ul.) < e, 6m(l.) <oo, Ul.::>E. 
J J J -

For any r > 0, there is a seq. Nk such that 

Thus 

CX> 

6 
k=l 

and so let m be such that 

CX> 
r 

€ ' 
6 

k=m+l 

then 

H (E) < 
r - ( (

Nm )~ r 00 

( ( Nk )~ r m U 1. + 6 m U 1. 
j= 1 J k=m+ 1 j=Nk- l + l J 

Since e was arbitrary and r > 0, Hr(E) = 0, and d
5

(E) = O. 
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Since part of the interest of a dimension such as ( 1) lies in 

the study of sets of Lebesgue measure zero, it appears that for this 

purpose the covering classes cannot be too large with respect to the 

intervals. The fact that the intervals themselves do not form too large 

a covering class was proved by Hausdorff [11]. The approach taken in 

this study is motivated by the se facts and so covering classes are con

sidered here to be collections of intervals, closed under translation, 

which contain intervals of arbitrarily small length. Thus a covering 

class is completely determined by the lengths of its members. 

Of gre~t importance to this study is the fact that the study of 

dimension with respect to covering classes which consist of intervals 

can be reduced to the study of a dimension of a certain class of increas

ing functions. The notion of the dimension of a function considerably 

facilitates the investigations and carries a certain interest for its own 

sake. 

In two dimensions the situation is more interesting because 

the shape of the covering sets, along with the area, plays a fundamental 

role. Although the results are fragmentary, certain indications of the 

role of shape can be made. As a first attempt, covering classes which 

consist of rectangles are considered and an analysis made of the influ

ence of shape on the dimension. 

When S is the collection of all convex bodies, the expression 

( 1) is called the Hausdorff dimension of E. This dimension function on 

closed sets has been studied in connection with the theory of Trigono

metric Series, for example, by Bari [l] andKahane and Salem [5 ] . 

For certain applications to Number Theory and some interesting 
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prope rties of the Hausdorff dimension see Be socovitch [8] and 

Eggleston [9 J. Finally, for the relationship of the Hausdorff· dimen

sion of a closed set to the topological dimension see Hurewitz and 

Wallman [4]. 
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CHAPTER I 

PRELIMINARIES 

§ 1. Sub - additive Fune tions 

A real valued function f(x). defined 0n x > 0, is said to be 

sub-additive provided that 

f(x+y) .:s, f(x) + f(y) , 

for all x, y ~ 0. Only non-negative functions are considered. 

Lemma 1. If f(x) is sub-additive and non-decreasing for 

x > 0, then for all t > 0 

f(tx) .:s, 2(t v 1) f(x) . 

Proof: There is a non-negative integer n, such that 

n < t < n+ 1. Thus 

( 1. 1) 

f(tx) .:s, f( (n+ l)x) ~ (n+ 1) f(x) .:s, (t+ 1) f(x) .:s, 2(t v 1) f(x) • 

In particular, if 
1 

t = -, x 

2 
f( 1) < - f(x) , or 

-x 

f(x ) ~ x f( 1) /2 • 

A second fact, due to Hille [ 3 J, us eful in the following, is 

Lemma 2. If f(t) /t is non-increasing for t > 0, the n f(t) 

is sub-additive. 
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Proof: 

f(x+y) = x f(x+y) + y f(x+y) 
x+y x+y 

< x f~) + y f(;) = f(x) + f(y) 

A sub-additive function which will be important for later con-

sider ations is the function 

( 1. 2) t:if(s) = V {f(x+s) - f(x)} 
x 

where f is supposed non-decreasing. The fact that M is sub-additive 

can be seen by writing, 

f(x+s+t) - f(x) .s, {f(x+t+s) - f(x+t)} + { f(x+t) - f(x)} 

.s, t:if(s) + t:if(t) , 

and so, 

MC s+t) .s. M( s) + t.£( t) • 

Further, if f itself is sub-additive, then 

f(x+s) - f(x) .s, f(s) , 

and so if f(O) = 0, M(s) = f(s). 

§2. The Class M 

Let M denote the class of all real ........ alued, non-decreasing 

functions f(x), defined on x > 0 such that f(O) = 0, and M is bounded 

on [O, l]. 

Define a transformation T on M as follows: 
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if x > 0 

( 1. 3) T(f)(x) = 

0 x = 0 • 

Some elementary properties of T are listed below. 

Theorem 1. 

a) T(f) < f , f E M. 

b) T(f)(x) /x is non- increasing for x > O. 

c) T(M) SM. 

d) T(f) is continuous at each x > 0. 

Proof: a) Since /\ f(y) /y < f(x) /x, it follows that 
y~x -

T(f)(x) = x /\ f(y) < f(x) 
Y< x y - ' - . 

when x > O. For x = 0, the same is true. 

b) If x > 0, T(f)(x) /x = /\ f(y) /y , which is 
Y<X 

evidently non-increasing. 

c) T(f)(O) = 0 by definition. Let x, t > 0, then 

(x+t) /\ !irL 
y~x+t y 

= (x+t) ( /\ f(y) /\ /\ f(y)j 
y~x y x~y~x+t y} 

> x /\ f(y) /\, (x+t) f(x) 
Y<X y x+t 

which shows that T(f) is non-decreasing. By Lemma 2, § 1 and the 

remarks following it, parts a) and b), above, imply 

~T(f) = T(f) < f 
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so that 

tiT(f)(x) < f(x):s_ f(l), 

d) Let x
0 

> 0 and write g = T(f). If x > x 0 , then 

by c) and so, 

On the other hand, if x < x
0

, 

g(x) 
< x 

which implies 

Thus, 

which shows that g is continuous at x
0

. 

If f E M and if f(t) /t is non-increasing, it is clear that 

T(f) = £. In the case that f(x) is only sub-additive, there is the follow-

ing estimation. 

Theorem 2. If f E M is sub -additive, then 

f(x) I 2 < T(f) (x) :s_ f(x) • 
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Proof: The fact that T(f) :s_ f was just proved above. By 

Lemma 1, 

f(x) = f(xy /y) :s_ 2( 1 v x/y) f(y) • 

If y ~ x, then f(x) :s_ 2x f(;) , and so 

f(x) :s_ 2x /\ f(y) = 2T(f)(x) 
Y:S, x y 

Denote by J, the class T(M), then J has the following 

properties: 

Theorem 3. 

a) If f E M, then f E J if and only if f(t) /t is non-

increasing. 

b) If f, g E J and O :s_ a. .. e, a.+ e :s_ 1, then 

ra. gS E J, where o0 
is defined to be zero. 

lowing it. 

c) If f E J for all a E A, then 
- a 

cfEA fa E J .5!:.llil a¥A fa E J, provided these exist. 

Proof: a) is proved by Theorem 1, c) and the remark fol-

b} Let t > x. Then 

to:+e-1 

< ec:))a.. ( g~x)) e to:+s-1 

= fX(x) ~gS(x) ( ~) a.+s- 1 
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(l(x) g f'(x) 
< 

x 

c) If f is a non-decreasing for all a E A, then so 
a 

are I\ fa and . V fa, and both are zero at x = O. By a) it is suf-
a EA a EA 

ficient to show (a~ A fa(t))/t and (a~ A fa(t))/t are non-increasing for 

t > 0. Indeed, since f E ;;: , for x < t, a 

( I\ fa(t1 · f ( t) f (x) (a~A fa(x)) aEA I\ a I\ a 
= -< = 

t aEA t a EA x x 

and 
( V fa(t~ 
aEA 

·< 
( V fa(x~ 

a EA 

t x 

for the same reasons. 
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CHAPTER II 

DIMENSION OF FUNCTIONS 

§ 1. Covering Classes, Dimension 

A non-empty set S of points in (0, 1 J is called a covering 

class, provided that S has 0 as a limit point. 

Definition: Given a function f EM, f J, 0, and a covering 

class S, the dimension of f with respect to S is defined to be the 

number, 

( 2. 1) 
log M(s) 

ds(f) = lim inf log s 
s ... 0 

(s E S) , 

where Af. is defined by ( 1. 2). 

Remark 1: Observe that if f EM, and f '1:. 0, then M(x) > 0, 

if x > O. Indeed, if f(x0) > 0, for some x
0 

> 0 and M(x) = 0 for some 

positive x, then let n > 1 be such that x
0 
~ nx. Then 

n 
f(x

0
} < f(ruc} = ~ f(kx} - f( (k- l)x} 

k=l 

< n M(x) = 0 , 

which is a contradiction. Thus dS(f) is well-defined. 

Remark 2: The dimension, dS(f), is always between 0 and 

1. Since f EM, 0 ~ M(s} ~ C, for some constant C, when s ES. Thus 
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. lo{c M(s) > log C = o( l) 
og s - log s s ... 0 ' 

and so d
8

(£) = O. On the other hand, since it was observed in § 1, 

Chapter 1, that t::J is sub-additive, 

log t::J(s) log s M( 1) /2 
log s < log s 

= 1 +log t::J.(1)/2 = 1 + o(l) 
log s 

and so by ( 1. 1) it follows that d
8

(f) .:s, 1. Moreove r, x!1- is in M, for 

0 < a..:S, 1 and d 5 (x.9-) =a. . The function x
0 

defined by 

0 
x 

= {l, 
0, x = 0 ' 

0 
satisfies d

5 
(x ) = O. Therefore d

5
(f) can take any value in [O, 1 ] . 

The following can be used as an alternate definition for d
8

(f) . 

Theorem. d
5

(£) = sup(13:s-13 t::J(s) = 0(1), s ES). 

Proof: Let r(S,f) = sup(13:s-1:3 t::J(s) = 0(1), s ES), and 

suppose that d5 (£) > O. Ii 0 .:s, 13 < d8 (f), then for s E S and s small 

enough, 

log M(s) , 
log s > 1:3' 

which implies tif(s) .:s, sl3. In this case', s -13 M(s) .:s, 1 when s E S, s 

small enough so that 13 .:s, r(S, f). Since r(S, f) 2: 0, 

On the other hand, suppose now that r(S, £) > 0, . and take 0.:::, 13 < r(S, £) . 



Then 

13 

s -13 M(s) ~ M , s ES , 

for some constant M, and so 

lot M(s) > log M 
og s log s + 13 ' 

which implies d
5

(£) 2: 13. Thus d
5

(f) 2: r(S, £), and equality follows. 

§ 2. An Equivalence Relation on M 

For the study of the dimension d
5

(f) when f E M, there is a 

natural equivalence relation induced on M which conside rably simpli-

fies the work. Namely, two functions f and g in M will be called 

equivalent, in symbols f,..., g, provided that d
5

(£) = d
5

(g) for all cover -

ing classes S. The main result concerning this equivalence is the 

following: 

Theorem 1. Given f EM, f I= 0, there is a function g E 3'., 

such that f,...., g, that is, d
5

(£) = d
5

(g) for all covering classes S. 

Proof: If f EM, define g = T(6£) where T is the transfor-

mation defined by ( 1. 3). Since M is sub-additive, Theorem 2 ( § 2, I), 

gives 

T(6£) < M < 2T(M) . 

By Theorem 1, c) of that section and chapter, T( 6£) (x) /x is non-

increasing and T(6£) is therefore sub-additive by Lemma 2 (§ 1, I). 

Thus the relation, 

~ + log T(6f)(s) < log 6f(s} log T(lf)(s) 
log s log s log s < log s 
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implies that a
8

(T(M)) = d
8

(f), for all covering classes S, or 

f...., T(M) E J. 

The advantage of being able to re place f E M by an equivalent 

g in 3 is that formula (2. 1) simplifies to: 

a
8

(g) = lim inf log g ( s) 
0 

log s 
s -+ 

(s E S) • 

For functions f, g in J which are not identically zero, the 

equivalence f...., g has an interesting interpretation. Recall that by 

Remark 1, if f E J and f i 0, then f(x) > 0 when x > O. 

Theorem 2. If f, g E J, and neither f nor g is ide ntically 

zero, then f,.., g, if and only if, 

lim 
x-+ 0 

1 f(x) 
og i\if = 

log x 
0 . 

Proof: Let a(x) = logf(x) , b(x) = 
log x 

log f(x) 
log x • 

covering class S, 

lim sup (a(s)-b(s)) 
s -+ 0 

= -lim inf (b(s)-a(s)) 
s -+ 0 

For ev ery 

> lim inf a(s) - lim inf b(s) 
s-+O · s-+0 

> lim inf (a(s)-b(s)) , 
- s-+ 0 

since lim inf (A+ B) _;:: lim inf A+ lim inf B. If lim 
x -+ 0 

it follows that 

(s E S) 

log f(x) / g (x) = 
1 0' og x 

d8 (f) = lim inf a(s) = lim inf b(s) = d
8

(g) • 
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Conversely, if lim sup (a(x)-b(x)) > 0, then there .exists S such that 
x ... 0 

lim inf (a(s)-b(s)) > 0 , (s E S) 
s ... o 

which implies 

lim inf a(s) > lim inf b(s) (s E S) • 
s -+O s -o 

This would contradict f,...., g, sci that 

lim sup (a(s)-b(x)) < 0 • 
x-0 

A similar argument shows that f,...., g implies 

lim sup (b(x)-a(x) .> < 0 , 
x-o 

and so lim I a(x) - b(x) I = 0, which completes the proof. 
x ... 0 

For future use, the following lemma is established. 

Lemma 2. If f E 3' and 0 <a.< 1, then 

and 

Proof: Since both f and xa. are in :J, Theorem 3 (§ 2, I) 

implies that f /\ xa. and f V xa. are in 3'. Consequently 

and 

log f(s) /\ sa. = lim inf -""""-...,._...__ __ 
log s 

s - 0 

d
8

(f V xa.) = lim inf log f(s) v sa 
log s 

s - 0 

(s E S) 
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Since 
los f(s) A sa. = log f(s) v a. log s log s 

and 

los f(s) v sa. 
= 

log £( s) 
/\ a. log s log s ' 

it follows that 

ds(f /\ xa.) = a. v ds(f) 

and 

ds(f v xa.) = a. " ds(f) . 

§3. Special Functions in 3 

Given a covering class S and any point s ES, define 

s* = sup(t:t< s, t ES) • 

If S is a covering class, denote by s*, the new covering class, 

Sn (O, l], where Sis the closure of S. For f E 3 define, 

V (f(s) Ax f(s):c) /s*) 
s ES* 

(x ~ 0) 

The next theorem lists some important properties of (f)S. 

Theorem 1. If f E 3 and S is a covering class, then: 

a) (f)s E 3. 

b) ds( (£) s> = ds(f). 

c) dT( (£) s> :::_ dT(f), for all covering classes T. 

Proof: a) For each s E S*, the function 

f(s) /\ x f(s*) /s* 

is in :J. By Theorem 3, c) (§2, I) it follows that (f)S E ;J. 
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b) Since s* < s and f E ;J, it follows that 

f ( s) .s_ s f ( s *) Is* and so, 

f(s) = f(s) /\ s f(s>:C) /s* • 

If t ES* and t > s, then t>:C > s, so that 

On the other hand, if t E S >:C and t ,S_ s, then f(t) ,S_ f(s), so that 

f(s) = v , {f(t) /\ s f(t*) /t*} = (f)S(s), 
tES':c 

holds for s E S* and in particular for s E S. This implies that 

c) Finally, observe that 

f(s) /\ x f(s>:<) /s* > f(x) , - . 

h * < < ES*. w enever s _ x _ s, s Since every x > 0, satisfies such a rela-

ti on for some s ES*, it follows that (f) S ,;:: f, for x > 0, and thus 

for any covering class T . 

Remark: Observe that when s* ,S_ x ,S_ s, s E S*, it holds 

that (f) 8 (x) = f(s) /\ x f(s>:C) /s*. Indeed, when t ES*, t > s, then 

t* > s so that x < s implies 

f(t*) ~ < f(t*) < f(t) . 
t"" -

Moreover, since t* .2:. s*, 

x f(s*) /s* > x f(t*) It* . 
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Again x < s implies 

f(s) f(s) f(t>:C) 
-- > -- > ~t)'' , X - X - r 

so that when t > s, 

f( ''' ) f(t>'r) 
f(s) /\ x 2;. > f(t) Ax -t'" • s >.- - .... 

On the other hand, when t< s, t E S>le, then t.:: s >le , so that 

f(t) < f(t) f(t*) 
x -t-<tr, 

or 

f( t) /\ 
f ( t >'.c) 

xt* = f(t) • 

Since f(t) .:: f(s) and 

f(t) .:: f(s >:C) .:: ~ f(s*) ' 

it follows that 

for all t E S>le, which verifys the statement. 

Of special interest are the £Unctions (xa.)
8

, 0 <a. < 1. In 

this case more can be said. 

Theorem 2. If f E 3' such that d 8 (f) = a., 0 _::: a. < 1, then 

dT(f) ~ dT( (xa.)
8

) for all covering classes T. 

Proof: The proof is based on the following. 

Lemma: If g E ;J and if S is a cove ring class such that 

g(s) .:: s~ for s E S, ~ g.:: (x~)S for 0 < x < o for some positive o. 
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Proof of the Lemma: Let t* < x < t for t E s):c. By Theorem 

1, d) ( § 2, 1.) and the definition of S*, 

g(x) < g(t) < ti3 

and 

It follows that 

and so 

by the remark made following Theorem 1. This establishes the lemma. 

Returning to the proof of Theorem 2, suppose first that 

d
5

(£) >ex.. Then for all s E S, s sufficiently small, it follows that 

lofc f(s) > 
og s ex. ' 

or 

f(s) < sex. 

By the lemma, f(x) .:::, (x°') 5 (x) when x is sufficiently small, so that 

for any covering class T. Now suppose that d
5

{f) =a. and conside r the 

1-t t 
function f • x , 0 < t < 1. This function is in J, by Theorem 3 {§ 2, I), 

and 

1-t t = lim inf log f ( s) • s 
log s s .... 0 
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= ( 1-t) lim inf log f(s) + t 
log s s .... 0 

= ( 1 - t) <ls ( £) . + t = ( 1 - t) a + t • 

Similarly, 

Since ( 1-t) a + t >a when 0 < t, it follows that 

The right-hand side of this last inequality approaches dT(f) as t 

approaches zero, and so dT( (xa)S) ~ dT(f), as desired. 

In the case a = 1, the situation is not so simple because while 

dT( (x)S) = 1, there can be f such that dS(f) = 1 but dT(f) < 1. The fol-

lowing theorem makes this clear. 

Theorem 3. If f E J and dS(f) = 1, then 

and there exists a function g E J such that dS(g) = 1 and dT(g) 

= sup dT( (xa) S) • 
a<l 

Proof: Suppose that f E J and dS(f) = 1. If dT(f) < 

sup dT( (xa.) S), then there exists y < 1 such that dT(f) < dT( (x y) s> • 
a.< 1 
Consider now the function f(x) V xY. Then 
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and 

but these two statements are in contradiction to Theorem 2. Thus 

dT{f) .:::_ sup dT{ (xa.) S) . 
a.< 1 

To prove the second part, suppose first that sup dT{ {xa.)S) = 1. 
a.< 1 

In this case there is nothing to prove , since dT{x ) = 1. Now l e t 

sup dT{ {xa.)S) = o < 1 • 
a.< 1 

Select an increasing sequence {a. ) such that 
n 

and a.n > o {n= 1,2, .. . ). 

Since dT{ {xa.)S) .:::, o for all a. < 1, there is a d e creasing s e que nce {sk) 

of points in S which have the following properties : For each k, the re 

* a.k. o+ l/k 
exists t = ~ E T such that sk.:::, tk.:::, sk and {x >s {~) .:::_ ~ ; and 

the points sk satisfy: 

1-a. k 

{ 
):c) 1 -a. k+ 1 

sk ' {k = 1, 2 , .•• ) • 

Define 

It will now be shown that dS{g) = 1 and dT{g) = o. First, it is cle ar 

f f 
a.k >:C°'k-1 

that g E 3, s;i.nce each o the unctions sk /\ x sk {k = 1, 2, .•. ), 

is in 3. Moreover, if s ES and sk+l.:::, s .:::, s~, the n 
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a. -1 ... k 
V s • s·.-

k 

Indeed, if t > k+ 1, then 

CL a. -1 
k+ 1 >:C .k+ 1 

= 8 k+l /\ 6 8 k+l 

since On the other hand when t < k, 

a. -1 a. -1 
= s s~ t < s s~ k 

a. a. -1 
k * k = sk /\ s · sk 

since s < s* and 
- k 

l -a. k- l l -a. t 1 -a t 

*
I )I' l -a.k 1-a. k 1-Clk 

< s < s.. < s* < s* 5
k - k - k-1 - k-1 - t 

Thus 

log g(s) 
, .. 

log sk+ 1 log sk 
= a.k+ l ---- /\ l + (ak - 1) ---

log s log s log s 

Since a.k approaches l as k approaches ... , it follows that dS(g) = 1. 

>:C Consider the sequence (tk) of points in T such that sk:::, tk:::, sk and 

1 

(xak)s (tk) 2: t:+ k 

Since, 
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it .follows that dT(g) :::_ o, and since g E ~ and by the first part of the 

theore m, dT(g) = o. 

Remark: It is indeed possible that sup dT( (xcx') 8 ) < 1. In fact, 
ex.< 1 

there exist covering classes S and T for which s.up dT( (xcx.) 8) = O. Let 

S be the sequence ( Z_zk
2

) (k = 1, 2, •.. ) and T : ~O~ 1 J. Then if o. < 1, 

2 

dT( (xcx.) S) lim 
CX.2 k 

< 
k-+oo k2 

- cx.2(k+l)2 + 2Ck+ 1) 
2 

cx.2 

ex. 
= lim 

k-+ Cl) . 22k+1 22k+l ex. - ex. + 

ex. 
0 . = lim = 

k-+ Cl) 

ex. + 22k+ 1( 1 - ex.) 

§4. A Partial Ordering and Equivalence Relation for Covering Classes 

As a first step in the study of d
8

(f) as a function of the cover

ing class, it is natural to consider the following partial ordering on the 

collection of covering classes: a covering class S is said to be less 

than, or equal to, the covering class T, in symbols S :::_ T, provided 

that d
8

(f) :::_ dT(f) for all functions f in ~ • . It is clear that if T ~ S, 

then S < T. Indeed , if for a given f in ~, s -!'f(s) is bounded for all 

s in S, then the same is true for t E T. By the Theorem of § 1, II, 

it follows that d 8 (f) :::_ dT(f) and thus S :::_ T. With the help of this re

mark, the following lemma can be proved. 

Lemma 1. If A, B are covering classes and f E ~. then 
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Proof: Since AU B contains both the sets A and B, the 

inequality, 

is immediate by the remarks made above. To show the reverse, let 

f E J, and suppose that dA(f).::. dB(f). If dA(f) = 0, then 

automatically. Thus assume dA(f) > 0, and let a. be such that 

0 .::. o. < d A ( £) • Then 

-a. 
a f (a) .::. MA (a c A) • 

Since it is assumed that dA(f).::. dB(f), it follows that 

b -13f(b) < MB (b EB) 

If M = max(MA' MB), then 

c -o.f(c) < M (c E AU B) , 

and so a..::. dAUB(f). It then follows that 

which proves the lemma. 

The following theorem gives a characterization of the rela-

tion S < T in terms of a comparison of the gaps in the covering classe s 

S and T . 
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Theorem. A necessary and sufficient condition that S ::_ T, 

is that there exist a function g, g:T .... S, with the property 

Proof: 

lim log g(t) = 1 
t .... o log t 

(t E T) • 

Sufficiency: Let g:T ... S be such that 

lim log g(t) = 1 
t .... 0 log t 

(t E T) • 

By Lemma 1, ( § 1, I), for f E 3', 

f(t) ::. 2(1 v gCt>J f(g(t) > • 

or 

{(1 /\ g~t)) f(t) < f(g(t)) . 

Thus it follows that 

Since 

and 

log ~ log (1 /\ g(tt)) 
log f(g(t)} c. log f(t} 

log g(t) < log g(t) + log g(t) + log t 

1
1 - log g(t} ' I = o(l} 

log t 

0 log t I l _ log ( t} I + 1 = 
< log g(t) ::_ log g(t) 0 ( 1) + 1 

it follows that 

log f(g(t}) < o(l) ( 1 + log f(t)'\ + log f(t} 
log g(t} - log t ') log t 

log t 
log g(t) 

(t .... 0) 

( t .... 0) , 

( t .... 0) • 
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By ( l. 1) and the fact that f E J, l + log f(t} is bounded for t E T, so 
log t 

that 

logf(g(t}} _< o{l) + logf(t} 
log g(t) log t 

( t ... O} , 

which implies that 

d (£) = 1. .nf log f(g(t)) < lim inf log f(t} = 
i;: io log g(t) t ... o log t g(T) 

Since g( T} CS, it follows that 

and thus S < T. 

Necessity: The following lemma is needed. 

Lemma 2, s < s):<. 

Proof of the Lemma: By what has been proved above, it is 

>:< sufficient .to exhibit a mapping, h:S ... S, such that 

lim log h(t) = 1 
t ... 0 log t 

If t E s*, there is r E S, such that, either r < t and 1 < 1
1
°g r < 1 + t, 

- - og t -
log r 

or t < r and l - t < -1 t < l. 
- og -

h(t) = r. Then it is clear that 

Choose any such r in S and write 
I 

lirn log h( t) = 1 
t ... 0 log t 

and the lemma is proved. 

Now define a function g: T ... s* as foUows: If s*.:::, t.:::, s, 
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s E s•:<, write 

s ' 
if log t < 

TOgS-
lo~ s >:C 
log t 

g(t) = 

s*, if lo~ s* <~ log t og s 

Then g is defined on all of T , and since it is now assumed that 

d
8

(f) :::_ dT(f) for all f E 3, it follows, in particular, that 

for 0 <a. < 1. Fix a. such that 0 <a. , and consider 0 < e <a.. Then - -

and so 

for t E T, t < i5, for some positive (S. From the definition of (x°') S' 

it follows that 

for s E s* and t < 5, and so, either 

(2. 2} a. .rL- € s < r 

or 

( 2. 3) 

Thus given t E T, t < ~. choose s Es* such that s * < t < s. If (2. 2} 

holds, then 
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a. 
a.-€ 
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s < t < s , 

By the definition of g(t), either 

or 

Thus in any event, 

log s 
log t 

= log g(t) 
log t 

~ > log g(t) = 
IOgS - log t 

9:..:.! < log g ( t) < a. 
a. log t - a. - € 

Simi liar 1 y, if ( 2. 3) holds, then 

and so 

1-a. 

s* < t < s*l-a.+e 

1-a. < log t < 1 < log s* < 1-a.-e 
1-a.-e log s* log t 1-a. 

Again, since either 

or 

it follows that 

log s* 
log t 

= log g(t) 
log t 

log t < log g(t) = 
log s* log t 

~< 1 IOgt - • 

1-a. < log g(t) < 1-a.+ e 
1-a.+e log t - 1-a. 
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Since e: > 0 was arbitrary, these considerations show that 

lim log g (t} :a l 
t -+O log t 

(t E T} • 

Finally, consider the composition h{g}, where h is the function defined 

in Lemma 1. Then h(g} :T -+ S in such a way that 

lim log h(g(t}} = 1 
log t 

(t E T} , 
t--0 

and this completes the proof of the theorem. 

Remark: The partial ordering S _s T, described above for 

covering classes, leads immediately to the equivalence S = T, when 

both S < T and T < S. In Lemma 2 it was shown that S < S):c . Since 

S 5= ~, it follows that s'f. < S, so that S = fi:C. For this reason it will 

be assumed henceforth that any covering class in question is closed in 

the left-open unit interval, unless specifically stated otherwis e . Further, 

since it is clear that the addition or deletion of a finite set of points to 

or from a covering class does not alte.r the dimension function, such 

additions or deletions will be assumed without specific mention when-

ever convenience dictates. Thus, for example, in later chapters the 

point, 1, will be assumed to belong to any covering class under con-

sideration, whenever convenient. 
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CHAPTER III 

COMPARISON OF COVERING CLASSES 

§ 1. Doubly-starred Sets 

Given any set A in 12 , define the transpos e of A, tr A, by 

tr A = ((x, y):(y, x) EA) 

If (a, b) is a point of 12 and a_;:: b, write 

s 
(a,b) = ((x,y):x_;::y, ay_;::bx, (t-b)(t-x)_;::(l-a)(l-y)) 

and if b > a , 

(a, b)s = tr (b, a) 8 
•• 

Given any set A::; 1 2 , write 

As = U((a, b)s : (a, b) EA) 

A set A will be called doubly-starre d with respe ct to the points (O, 0) 

and (1, 1), or more simply, doubly-starred in 12 , provided that A = As. 

The next few lemmas describe some prop~rties of doubly-starred sets . 

Lemma 1. If A= A, then As = As • 

Proof: ' Suppose (x ,y) E As with x > y (n = 1, 2, ••. ) and 
n n n- n 

s 
yn ... y. Then x _> y. Let a > b be such that (x , y ) E (a , b ) , n- n n n n n 

(a , b ) E A Since A= A, there is a subsequence (a . , b .) - (a, b) E A. 
n n J J 
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Since 

a.y . > b .x. , 
J J - J J 

(l-b.)(1-x .) > (l-a .)(1-y .) , 
J J - J J 

it follows that ay .=::bx and (1-b)(l-x) .=:: (1-a)(l-y). Thus (x,y) E (a, b)s 

CA8
, whichshows A

5
=A

5
• 

If A is a set in 12 , then the sets tA and A+ s for real s 

and t are defined by 

tA = ((ta, tb):(a, b) EA} , 

A+ s = ((a+s, b+s) : (a, b) EA} 

Lemma 2. A = A 
6

, if and only if 

tA U ( tA + 1- t) ~ A ; 

for all 0 < t < 1. 

s 
Proof: If A= A , 0 _:: t _:: 1, (a, b) E A with a.=:: b, then 

ta· > tb , 

a(tb) _=:: b(ta) , 

(1-b)(l-ta) = (1-b)(l-a) + a(l-b)(l-t) 

> (1-b)(l-a) + b(l-a)(l-t) = (1-a)(l-tb) . 

This shows (ta, tb) E (a, b)s. Moreover, since 

ta+ 1-t _=:: tb + 1-t , 

a( tb+ 1-t) .=:: b( ta+ 1-t) , 

(1-b)(l-(ta+l-t)) = (1-b)t(l-a) = (1-a)(l-(tb+l-t)) , 
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s 
it follows that (ta+l-t, tb+l-t) E (a, b) . Thus 

tA U ( tA+ 1- t) .'.:: As = A • 

s 
On the other hand, let (x, y) E (a, b) with (a, b) E A. Without loss of 

generality, suppose a> b. If x = y, then ( 1, 1) EA implies (x, y) E xA 

c A, by hypothesis. Thus suppose x > y, and so a> b. Write 

= (x-y) 
t (x-y} + (by-ax} 

and 

= (x-y) + (by-ax) 
s a-b 

Since by.?: ax, it follows that 0 ~ t ~ 1 and s > O. Writing 

(x-y) +(by-ax)= (1-a)(l-y) - (1-b)(l-x) + a-b, 

shows that s < 1. Since 

and 

s(tb+ 1-t) = s( y(a-b) ~ = y , 
x-y +by - axJ 

it follows that (x, y) E s(tA+ 1-t). Since s(tA+ 1. t) ~ A, it follows that 

(x, y) EA. 
s s 

Thus (a, b) ~A which shows that A c: A . 

Lemma 3. (As )6 = A6
• 

Proof: Suppose (a, b) E A with a> b and assume 

s 
(x, y) E (a, b) • Since, for 0 ~ t ~ 1, 
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tx ~ ty ' 

aty > btx , 

(1-b)(l-tx) = (1-b)(l-x) + x(l-t)(l-b) 

> ( 1 - a)( 1 -y) + y( 1- t)( 1 - a) = ( 1 - a)( 1- ty) 

it follows that (tx, ty) E (a, b) s. Moreover, 

tx+ 1-t > ty+ 1-t' 

a(ty+l-t) = aty + a(l-t) ~ btx + b(l-t) = b(tx+l-t) , 

(1-b)(l-(tx+l-t)) = (1-b)(l-x)t 

> ( 1 - a)( 1-y) t = ( 1 - a)( 1 -( ty+ 1 - t) ) , . 

s 
and so (tx+l-t, ty+l-t) E (a, b) • It follows that 

t( a, b) s U ( t( a, b) s + 1-t) =. (a, b) 5 ((a, b) E A) 

for all t, 0 < t < 1. This implies 

tA s U ( tA s + 1 - t) =- As , 

for 0 < t < l; and s·o by Lemma 2, (As}s = As. 

The next lemma asserts that the transpose of a doubly-

starred set is again doubly-starred. 

Lemma 4. s s If A= A , then trA =(tr A) 

Proof: tr(As) = tr(U ((a, b)s:(a, b) EA}) 

= U (tr(a, b)s:(a, b) EA} 

= U((b,a)s:(a,b) EA} 
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= U ((b, a) s: (b, a) E tr A} 

s = (tr A) • 

s . s 
Since A= A, it follows that trA= (trA). 

Under the same assumption made in Lemma 4, it can be 

- - s 
shown that A = (A) • 

Lemma 5. 
s - -s 

A= A implies A= (A) • 

Proof: By Lemma 2, tA c A. Since tA = tA, it follows that 

tA c A. Similarly 

tA + 1-t = (tA+l-t) c A 

- - s 
so that by Lemma 2, A = (A) . 

Given any set A~ 12 , and t, 0 < t < 1, define a function 

A(t) by 

A(t) = inf(y:(t, y) E A) 

where A(T) is defined to be equal 1, if (y:(t, y) E A) = ¢. 

Lemma 6 . 
s 

H A= A , then the functions A(t) and trA(t) ~ 

continuous on (0, 1), non-decreasing on [O, l] , and 

( 3. 1) A( t) It , tr A( t) It , ( l -A( t)) I ( l - t) , ( 1 - tr A( t)) I ( 1-t) , 

are all non-decreasing on (O, l). 

Proof: Given 0 < t < 1, it follows that (t, A(t)) E A. By 

- -s 
Lemma 5, A= (A) , so that for 0 <a.:::_ 1, (a.t, a.A(t)) EA and 
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(at+l-a, aA(t)+l-a.) EA. Then 

A(a. t) _:: a A( t) 

and 

A(a t+ 1-a.) _:: a.A( t) + 1-a. • 

These inequalities imply 

and 

A(a. t) < A( t) 
ctt t 

1 - A(a.t+l-a. ) < 1 - A(t) 
1 - (at+ 1-a) - 1 - t ' 

which shows that A(t) It and ( 1-A(t)) I( 1-t) are non-decreasing on (O, 1). 

Since tr A = (tr A) s, it follows that tr A(t) It and ( 1-tr A(t)) I( 1-t} are non-

decreasing on (0, 1). If 0 < x < y, then 

A(x) < ~ A(y) < A(y) , 
- y 

so that A(t) is non-decreasing. The same is true for trA(t). Since 

A= As implies (O, O) EA and (x, x) EA, it follows that A(O) = 0 and 

A(x) _:: x, which shows A(x) is continuous at x = O. If t > 0 and 

0 < x < 1, 

so that 

1 - A(x+t) 1 - A(x) 
l - ( x+ t) > l - x 

A(x} .::_ A(x+t) _:: l :x + ( 1 -: l :x) A(x) . 

By the same reasoning, 

A(x) > A(x-t) ~ ( 1 + l:x) A(~) - l:x · 
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The s e relations show that A(x) is continuous at each 0 < x < 1, and 

the lemma is proved. 

§ 2. Main Results 

In Chapter II, the partial ordering on cove ring classes: 

d
8

(£) .:S. dT(f) for all f E J, was introduced and studie d. The question 

arises as to what can be said in general about the behavior of d
8

(£) and 

dT(f) when the covering classes S and T are not necessarily com

parable in this ordering. For this purpose the set 

is now studied. 

The main results concerning the dimension of functions state 

that the set R(S, T) is closed and doubly-st'3;rred in 12 ; and conversely, 

any closed, doubly..: starre d set in 1
2 

is of the form R(S, T) for some 

covering classes S and T. Apart from the inherent interest in these 

results, they take on significance when, in Chapter IV it is shown that 

they have direct application to the study of the dimension of closed sets. 

Theorem 1. R(S, T) 
s 

= (R(S,T)). 

Proof: Suppose (a., 13) E R(S, T). Then the r e is f E J with 

t t 1-t If 0 < t < 1, then both f(x) and f(x) · x are 

in J by Theorem 3 (§2,I). Since 

and 
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for every coyering class A, it follows that (ta., t13) E R(S, T) and 

(ta+ 1-t, tl3 + 1-t) E R(S, T). By Lemma 2, § 1, it follows that R(S, T) 

s 
=R(S,T). 

The set R(S, T) can be described in terms of the special 

functions introduced in §3, Chapter II. 

Lemma. R(S, T) = ((a, 13):a;:: 13;:: f(a) or 13 >a;:: g(a)} , 

where (a., 13) E 12 and, 

(3. 2) 

and 

( 3. 3) 

f( 1) = sup f(a.) 
a.< 1 

g( 1) = sup g(a.) 
a.< 1 

Proof: If f E J and d
8

(£) =a. , a. < 1, then 

by Theorem 2 ( § 3, II). Further, by Theorem 3 ( § 3, II), f E J and 

d 8 (f) = 1 implies dT{f) ;:: sup dT( (xa.) 
8

) , for any covering classes S 
a.< 1 

and T. Consequently 

R(S, T) ,:: ((a., 13) :a.;:: 13 ;:: f(a.) or 13 ;:: a;:: g(13)} • 

On the other hand, suppose 

Then put f = (xa.)
5 

/\ xl3. By Lemma 2 (§2,II) 
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and 

Now, if ex. = 1 and 1 _?: 13 _?: sup
1 

dT( (xcx.)S) , let g be the function defined 
ex.< 

in the proof of Theorem 3, ( § 3, II) such that d5 (g) = 1 and dT(g) 

= sup dT( (xcx.)
5
). Write h = g /\xi' and, as before, it follows that 

This shows that 

d
5

(h) = 1 

dT(h) = 13 

[(ex., 13) :ex._?: 13 _?: f(cx.) or 13 _?:ex. > g(cx.)} ~ R(S, T) 

and the proof is complete. 

Theorem 2. R(S, T) is closed in 12. 

Proof: Writing R = R(S, T), the lemma above implies that 

R(t) = f(t) 

tr R ( t) = g ( t) , 

where f and g are defined by (3. 2) and (3. 3). By .Lemma 6, §1, f and g 

are continuous on [O, 1 J so that R(S, T) is closed. 

The values that (d5 (f), dT(F)) may take, in general, are 

quite unrestricted as the following theorem demonstrates. 

Theorem 3. ..!!_ R is any closed, doubly-starred set in 1
2

, 

there are covering classes S and T such that R . = R(S, T). 
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Proof: For each positive integer k, define 

and 

gk(x) = Ti< V trR(x) . 

Then the functions fk and gk decrease monotonically to R(t) and trR(t) 

respectively; and they are continuous on [0, l], since R(t) and trR(t) 

are continuous. Further, since 

and 

gk(x) = 1 V trR(x) 
x "Zk x 

= 

= 

1 - x/2k 
---- /\ 1 - x 

1 - x/2k 

1 - x 
/\ 

1- R(x) 

l - x 

1 - trR(x) 

1 - x 

the functi.ons 1 - x/Zk b · d · · · · 1 th l _ x eing non- ecreasing in x, it is c ear at 

fk(x) and gk(x) satisfy condition (3. 1) for ·each k. 

Define functions 

as follows: 

vk(x) = 
x c -fk(x)) 

f"0X' 1 - x 

wk(x) = x ~l - gk(x)) 
gk(x) 1 - x 
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x = ~ 
x 

= gk(x) . 

... ' r ' ... n 

be an enumeration of the rational numbers in (O, 1) and write 

Now define sequences pk and qk as follows: 

(k = 1, 2, ••• ) • 

Since vk 2: uk 2: 1 and wk 2: zk 2: 1 , it follows that 

and 

.:: ~2k • 

If for some k > 1, both vk(x) = 1 and wk(x) _ 1, then it fol-

lows that 

= x 

or 

which implies fk(x) = x. Similarly, wk(x) = 1 implies gk(x ) = x. 
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These relations in turn imply that R(x) = x and trR(x) = x since 

x 
7k < x {k= 1,2, ••• ). 

Thus taking any covering classes S, T with S - T, would give 

R(S, T) = R . 

Therefore, without loss of generality assume that for some k _;:: 1, there 

is a point x
0

, 0 < x
0 

< l, such that, vk(x
0
);:: s > 1. There is then a 

s-1 
'neighborhood, U, of x

0 
on which vk(y) > 1 + -

2
- > 1. Since j _;:: k 

implies 

and so, 

f.(x) < fk(x), it follows that 
J -

v.(y) = y (1-f/y)) = _Y_(l -f/y)) 
J 1jlY1 1 - y 1 - y f /Y) 

y (1 - fk(y)\ = 

;:: 1 - y l f;k(y) ) 

s-1 
v .(y) > 1 + -- > 1 ' 

J - 2 

for y in U and j _;:: k. Since r . is in U for infinitely many indices J. 
J ' 

it follows that there are infinitely many j for which 

and thus the product v 
1 

••• 

fini ty. Since 

v. approaches infj.nity as j approaches in
J 

and since the sequence (pk) is non-increasing, it follows that pk tends 

to zero as k tends to infinity. Thus covering classes S and T can 



be defined by writing: 

s = (pk) u (q2k) 

T = (pk) U (q2k- l) 
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(k=l,2, .•• ) 

(k=l,2, ••. ) 

The next step is to show that for 0 <a. < l 

and 

and this will complete the proof. Fir st consider the function (xa.) 
8

. At 

the points pk' (k = 1, 2, .•• ) 

since pk E s. It remains to determine the V?-lues (xa.) s< q2k- l) 

(k = 1, 2, ••• ) • Sinc·e p 2k < q 2k- l .::_ p 2k- l' it follows that 

by the remarkmade following Theorem l (§3,II). By definition, 

and 

so that 

vk 

1-( 1-a) Uk 

q2k-l 



Using the definitions of 

Thus, for t ET, 

log (xa.) s< t) 
log t 

Since 

a. ' 

= 

43 

vk and uk and substituting, yields 

a.fk(rk) V (.1 - (l-a.)(1-fk(rk) >) 
rk 1-rk 

= qZk-1 

and 

if tsp 
k (k= 1, 2, .•• ) 

Since the rational numbers are everywhere dense in (0, 1), it follows 

that 

which in turn implies 

or 
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and thus 

Similarly, if rk~a., then 

( 1-a.)( 1-fk(r k) ) 
1 - ---------1-r 

k 

Hence 

It is now easy to verify that 

and 

when 0 <a.< 1. Indeed, when rk >a., 

so that 

is immediate. 
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On the other hand, given e > 0, there is o > 0, such that 

a. :::_ r k :::_ a. + o implies 

Since a:::_ rk:::_a. + o, for arbitrarily large k and since fk(a.) tends to 

R(a.) as k tends to infinity, it follows that there is k, with a:::_ rk and, 

and this shows that 

= R(a.) • 

Similarly, when rk <a, 

so again 

> R(a.) • 

An analogous argument shows that dS( (xa.)~) = trR(a.) w hen a< 1. Since 

R is closed, the assertion of the theorem follows by the Lemma above. 

§3. A Characte rization of R(S, T) 

Let S and T be given covering classes. For each point 

t E T, there is associated a unique point (a(t), b(t)) in the unit square 

12• This association is made as follows: Given· t, the re are points 
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SO' sl in s, defined by 

so = sup (s: s :::_ t, s ES) 

sl = inf ( s: s 2:. t;', s E S) 

where s 1 is defined to be 1, if there are no s E S with s > t. Write 

s
0 

= t°' and s 1 = tl3, where a. 2:_ 12:_ 13 · Observe that if either a.= l or 

13 = l, then both are equal 1. 

In this case define 

a(t) = b(t) = 1/2, 

when a.> l > 13, the equations in a(t), b(t), 

have the solution 

a(t) 

Altogether then, 

l 
a(t) = 2' 

(3. 4) 

b(t) = 13 a(t) , 

1 - b( t) = a ( 1-a( t) ) 

a-1 
= a-13 ' 

a. = l ; 

b(t) = 13(a- l) 
a-13 

(t) a-1 1 
a =a.-13' a> 

b ( t) = ~ • 13 . = 1 ; b ( t) = 13 ~~-al) • 13 < 1 • 

Note that a(t) > 0 for all t E T and that b(t) > 0 for t E T sufficiently 

small. Also, if 13 < 1 then both 

and 

13(a- l) < 1 a-13 

a-1 -- < 1 • a.-13 
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Thus, in any event a(t) < l and b(t) < 1, with a(t) ~ b(t), for all t E T. 

It follows that 

and 

Define 

= tb ( t) I a( t) 
sl 

= t( 1-b(t)) /( 1-a(t)) so 

An(S:T) = {ca(t). b(t) ):t E T. t:::. ~} • 
and finally write, 

(3. 5) A(S:T) = n A (S:T) , 
n=l n 

where A denotes the closure of A. 

In a similar manner, there is .associated with each point 

s ES, a point (c(s), d(s)) in 12 , such that 

t = 0 

1-c(s) 
l-d(s) 

s ' 

c(s) 
d\51 s .. 

where t
0

, t
1 

are the analogues of s
0

, s 1 above. Then the set 

(3. 6) 

can be defined, where 

A(T:S) = II 
n=l 

A (T:S) 
n 

An(T:S) = {(c(s), d{s) ):s E S, 's,::: ~} • 

Since An(S:T) ? An+l(S:T) and each of these sets is non

empty, it follows that the sets A(T:S) and A(S: T) are non-empty. The 

interest in the sets A(S:T) and A(T:S) is that while they are defined 

solely in terms of the points of S and T, the smallest doubly-starred 
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set containing A(S: T) U A( T:S) is precisely R(S, T), as the following 

results make clear. 

Theorem 1. . (A(S: T) U A(T:S) f = R(S, T) • 

Proof: Since R(S, T) is doubly-starred, it is sufficient to 

show that 

A(S: T) U A( T:S) = R(S, T) • 

The proof demonstrates only that 

A(S: T) ::; R(S, T) , 

the proof that A( T:S) :=; R(S, T) being similar. Hence let 
co 

(a, b) E n A (S:T), and 0 < a< 1. Then there is a decreasing se
n=l n 

quence (t ) c T, such that t -+ 0 and 
n - n 

a = a(t ) ... a 
n n 

(n -+co) • 

b = b(t ) ... b n n 

a 1-a 
Write s 0 ::::. tn::::. s 1 and put x n = s 1 s 0 , then for tn satisfying 

x <t <s 1 , 
n- n-

and for s 0 < t < x , 
- n- n 

(x~S(tn) = 

= 

a-1 
to 

ab /a 
= t ' n n 

n 

t 
n 

1-b n + l (a-1) 1-a 
t n n 



Thus in any case 

and so 

log t 
n 
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ab 
n 

ab 
n 

= t n 

a 
n 

ab 
n 

a 
n 

/\ t 
n 

( 1-b ) 
n 

1 + (a-1) (l-a) 
n 

( 1-bn) 
V 1 + (a-1) {1-a) 

n 

1-b 
V 1 + (a-1) __ n 

1-a 
n 

Since b(t ) ... b and a(t ) ... a as n ... co, it follows that 
n n 

which shows (a, b) E R(S, T). Now, if a= 0 .and (a, b) E A(S, T), then 

b = 0, and (0, 0) is clearly in R(S, T). If a= 1 and b = 1, then (a, b) 

is clearly in R(S, T). The only remaining case is a = 1, b < 1. Again 

let a(t ) ... a, b{t ) ... b t E T, t -+ O. Since b(t ) < 1 for n sufficiently 
n n n n n 

large, a(tn) < 1 for the same n. Let a.< 1 and consider (xa.)S(tn). As 

above 

and 

log {xa.) s< tn) 
------< 

log t · 
n 

a. b n 
a 

n 
(

1-b ) 
V 1 - ( 1-a.) l-a: 



Since a(t ) ..... 1, it follows that 
n 
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log (xa.) s< tn) a b n 
------ < -- .... ab, 

log t a 
n n 

and the re fore dT( (xa.) 
5

) ~ab, for all a < 1. This implies 

By the lemma of §2 it follows that (a, b) E R(S, T}. 

Theorem 2. R(S, T) ~ (A(S: T) U A( T:S)) s 

Proof: Let f E :J with d 5 (f) ~ dT(f). If actually d
5

(f) = 

dT(f) then (d
5

(£), dT(f)) E (A(S: T) U A(T:S) )s automatically. Thus 

assume d
8

(f) > dT(f). and let a, 13 be such that 

By Lemma 1, (§1,I) for any t ET, s ES, 

f(t) ~ (1 V !) f(s) , 

and so, 

Since a< d
8

(£), it follows by the Theorem of §1, Chapter II, that 

( t E T) ( s E S) • 

Since 13 > dT(f) there is a set T 0 ~ T, T 0 a covering class , such that 

t E T 0, implies 



51 

t-13f(t) > M • 
a. 

Thus for s E S and t E T 0 , 

Choosing t E T
0

, and s
0

(t) _::: t_::: s 1(t). (si(t) ES) (i = 0, 1) , it follows 

that 

and 

Sl(t) -- tb{t)/a(t) and so(t) -- tl-b(t)/1-a(t). h 1 Since t ese equa ities imply 

that 

-13 +a. b( t) 
l<t affj 

and 

1-13 + (a.-1) (1-b(t)j 
1 < t 1-a(ijj . 

Since t _::: 1, it follows that 

b(t) < ]. anr - a. 
and 

1- 13 1-b( t) 
T=a _::: 1-a( t) 

Let (a , b) E A(S, T 0) ~ A(S, _T) and let tn be a 'sequence in T
0 

such that 

Then it follows that 

a(t ) ... a, b(t ) ... b • 
n n 

~ < ]. 
a a. and 1-13 1-b < 1-a. - 1-a 
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s s s 
which implies that (a., 13) E A(S, T

0
) ~ A(S:T) ::; (A(S:T) U A(T:S)) . 

Since (a., 13) can be chosen arbitrarily close to (d
5

(£), dT(f)) it follows 

that (d
8

(f), dT(f)) E (A(S: T) U A(T:S)) s, this latter set being closed by 

Lemma 1, § 1. The case d 8 (£) < dT(f) is treated similarly, and so the 

proof is complete. 

Theorems l and 2 combine to give 

Theorem 3. R(S, T) = (A(S: T) U A(T:S)) s • 
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CHAPTER IV 

APPLICATIONS TO CLOSED SETS 

§ 1. Introduction and Preliminaries 

Hausdorff [11] introduced the following outer measure on the 

subsets of the real line. If 0 ~ p ~ 1, 

H (E) = sup (inf (6 t( lj) P: t( 1.) < ~) 
p e>O J J 

where ( 1.) is any countable callee tion of open intervals containing E, 
J 

and t( 1.) denotes the length of 1.. The set function H (E) is called the 
J J p 

p-th dimensional Hausdorff measure of E. For an elementary discus-

sion of the properties of H (E) see Halmos [ 2] or Munroe [ 7] . p . 

The interest in the outer measure H for this work lies in 
p 

the fact that given any closed set E, there is precisely one value p, 

0 < p < 1 for which r < p implies H (E) = CD, and r > p implies 
- - r 

H (E) = O. The value of H (E) may be any non-negative real number 
r p 

or CD (for a proof of these facts, see Hurewitz [4]). This unique value 

p is called the Hausdorff dimension of E and is denoted d
8

(E). A 

slightly different, but more useful description of the Hausdorff dimen

sion of a closed set E is given by the following: 

Lemma 1. For each 0 ~ p ~ 1, define 

:X. (E) = inf {6 t ( 1.) p: U 1. ~ E} • 
p J J -
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Proof: !£ A. (E) > 0, then since A. (E) < H (E) it follows that 
p p - p 

H (E) > O. On the other hand, if H (E) > 0, then there are .6> 0, b > 0, 
p p 

such that if (J.} is any sequence of intervals containing E such that 
1 

.t(J.) < o, then 
1 -

6 .t(J.)p >b > 0. 
J -

For any other cov:ering ( lk) of E by intervals, 

Thus A. (E) > 0. 
p 

Hence the dimension ~(E) can be defined by 

~(E) = sup (p:A.p(E) > 0) • 

This notion, of course, depends upon the particular kind of covering 

class used to cover the set E. A study is now made of this dependence 

when the intervals belong to a given class C. Further, this class C is 

assumed to be closed under translations, that is, 1 E C => l+t E C for 

all real t. Thus whether or not a given interval 1 belongs to C de-

pends only on .t( 1). Moreover it will be assumed that C contains 

intervals of arbitrarily small length, and that .l( 1) ~ 1 if 1 E C. Such a 

class C will be called a covering class, Observe that the set 

S( C) = S = ( .l( 1): 1 E C} 

is a covering class in the sense of § 1, II. Then given C new set 

functions, 
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A.p,C(E) = in£(6 £,(lj)P: u lj;;) E, lj E c) , 
can be defined. If Hp, C (E) is defined by 

H C(E) = sup (in£(6 (.t(l.) )p:U 1. :? E, .t(l .) < e, 1. E c\) , 
p, e > 0 ~ J J J J l 

then the proof of Lemma 1, shows that: 

Lemma 2. H C(E) = 0 if and only if A. C(E) = O. p, p, 

Since A. C(E) is clearly a non-increasing function of p it p, 

follows that there is precis:ely one 0 :::_ q :::_ 1 such that r > q implies 

H C(e) = 0 and r < q implies H C(E) = oo. This value q will be r, r, 

called the Hausdorff dimension of E with respect to the covering 

class C (or S(C)) and is denoted dC(E). Thus it follows that 

Remark: To avoid confusion, the notation d
5

(E), A.p, 
5

(E) 

will be used where S refers to a covering class in the sense of § 1, 

Chapter II. 

A final lemma is needed for later considerations. 

L e mma 3. If E 1 and E 2 are any closed sets in [O, 1 J and 

S any covering class, then 

so that 

Proof: For each p, the set function A. 
5

(E) is monotone, 
p, 
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A s<E 1 u E 2) > A s<E.) p, p, l 
(i = 1, 2) • 

It follows then that 

On the other hand, assume 0 < d
8

(E 1 U E 2), and take 0 < p < d
8

(E 
1 

U E 
2
). 

Thus 

Since A.p,S is sub-additive, either A.p,S(E 1) > 0 or A.p,S(E 2) > O. In 

any event, 

which shows 

If d 8 (E 1 U E 2) = 0, there is nothing to prove. 

§2. Frostman's Theorem 

Frostman [io] proved that the Hausdorff dimension of a 

closed set E.::, [O, l], has the property that if 0 < a.< ~(E), there 

exists a function µ(x) defined on (-co, co) which satisfies the following 

conditions: µ.(x) .is non-decre asing, µ(x) = 0 when x < 0, µ(x) = 1 

whe n x > 1, and if (a, b) is any open interval not intersecting E, then 

µ.(a) = µ(b). Further µ(x) satisfies a Lipschitz condition of order a. at 

each point of [O, 1 ]. In this section, a generalization of this result to 

dimension with respect to a covering class is given. 

If µis a non-decreasing function defined on (-co, co), the 

support of µ. is defined to be the closed set, 
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= (U((a, b):µ.(a) 
c 

= µ.(b)}) , 

where xc denotes the compliment of x with respect to (-co, co). Let 

M(E) denote the collection of all non-decreasing functions µ. defined 

on (-co,co) with g < E and µ.(x) = 0 for x < 0, µ.(x) = l for x > 1. 
µ.- - -

Observe that if µ. E M(E) for some closed set E, then µ. E M, defined 

in § 2 of Chapter I. Indeed, the requirements µ.(O) = 0, µ. non-decreasing 

and 6µ. bounded on [O, l] are all satisfied. With this observation the 

following fundamental theorem can be stated. 

Theorem. Given any closed set · E, and any covering class S, 

Proof: First suppose µ. E M(E), and consider dS(µ.). By the 

Theorem of § 1, Chapter II, 

ds(µ.) =sup (13:s- 13 6µ.(s) = 0(1), s ES). 

Let 13 < dS(µ.). Then there is a finite constant M, such that 6µ. (s) 

:::_ sl'M, for all s ES. If ( lk} is a covering of E by intervals such that 

t( lk) E S, then 

Since E is compact, a finite number of the intervals lk, (k = 1, 2, ..• ) 

cover E, say (a.,b.) (j = 1,2, ••• ,n). If l = (a,b), then 6µ.(.t(l)) 
J J 

> µ.(b) - µ.(a). Since g c E and µ.( 1) = 1, it follows that 
µ.-
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1 n 
~ .t(lk)l3 > M ~ µ.(b .) - µ.(a.) > 1 • 

- j=l J J -

Consequently A. S(E) > 0, and it follows that 
13, 

Since 13 was arbitrary < <ls(µ.), this shows that <ls(µ.) ~ dS(E) or that 

To show the reverse inequality, suppose that d
8

(E) > 0. If d
8

(E) = 0, 

there would be nothing to prove. Let 0 < 13 < d
8

(E). Then 

O < A.
13

, 8 (E) < oo, and it can be assumed that A.
13

, 8 (E) = 1, multiplying by 

an appropriate constant, if necessary. Put 

µ.(x) = A.l3,S(E n [O,x]) 

µ.(x) = 0 

.if x>O 

if x < 0 

Then µ.(x) is non-:decreasing since A.
13

, S is monotone. Since A. l3, S is · a 

sub-additive set function and since ds(A) = 0, if A is a finite set, it 

follows that µ.( 0) = 0 and for x > 1 

µ.(x) = A.l3,S(E n [O,x] < A.l3,S(E)
1 

+ A.l3,S(E n [l,x] 

= A. l3, 8 (E) = 1 • 

The fact that µ is non-decre asing implies µ.(x) = 1 when x > 1. More-

over, if (a, b) is any open interval not intersecting E, then E n [a, b] 

consists of at most two points so that 

µ.(b) = A.
13
,s(E n [O,b] < A.

13
, 5 (E n [O,a]) + A.

13
,
5

(E n [a,b]) 

= µ.(a) • 



59 

This implies that g c E and hence µ. E M(E). Now, 
µ. -

µ.(x+s) = A.S, S (E n [O, x+s] J 
r' 

~ A- 13 ,s(E n [o,x]J + A.s,s(<E n [x,x+s]) 

Since A.!3, s(E n [x, x+s ~ ~ sl', it follows that for every x, 

µ.(x+s) - µ.(x) ~ s a , 

and so t.µ.(s) < s 13. This implies that 

and so 

sup (d
8

(µ.):µ. E M(E)) > 13. 

Since S was arbitrary <a., it follows that 

and the proof of the theorem is complete. 

Remark 1: To obtain Frostrnan's result from the above 

theorem, take S = (O, 1 ]. Then given E with d
8

(E) > 0 and 

0 < 13 < dS(E), there is µ. E M(E) such that d5 (µ.) > 13. By the Theorem 

of § 1, Chapter II, s -13 f:lµ.(s) = 0( 1) for s E (0, 1 ]. It follows that µ. 

satisfies a Lipschitz condition of order 13 at each point x, 

Remark 2: It follows immediately from this theorem that 

S < T implies d
8

(E) ~ dT(E) for every closed s~t, where 11~11 is the 

partial ordering introduced in §4 of Chapter II. · Indeed, since S < T 



60 

implies d
5

(f) < dT(f) for every f E J, the same is true for every g E M 

and thus for every µ. E M(E). It follows that d
5

(E) .S, dT(E). The con

verse is also true, that is, if d
5

(E) < dT(E) for every closed set E in 

1
1

, then S < T. This fact will follow from the results in §4 of the 

present chapter, 

§3. Generalized Cantor Sets 

It will be useful to distinguish a certain class of closed sets 

in 1
1

. Let (~) be a given sequence of positive integers, whose k-th 

"'"' -1 partial products Nk = n 1, .•• , nk satisfy, k Nk < oo, Define 

O = X( 0, 1, ... , nk -1} , 
k 

where the set (0,1, ... ,~_ 1 } has the discrete topology and o the topo

logy of pointwise convergence, (For definiti_ons and notations see 

Kelley [ 6].) In this topology O is compact and satisfies the first 

axiom of countability. The space O is totally ordered by the lexico-

graphic ordering: If a= (a.) and b = (b.) are distinct points in o, then 
1 1 

a< b provided that if p is the smallest integer for which a =!. b , then 
p p 

Define a mapping cp:O ..... [O, 1 J by 

( 4. 1) "<;"""' - 1 cp{a) = L.J a.N. • 
1 1 i 

Then cp has the following properties: 

Theorem 1, a) If a, b, E O, and a< b or a= b, then 

cp(a).::, cp(b). 

b) For all a E O, 0 .S, cp(a) .S, 1, 
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c) cp is onto. 

d) cp is continuous. 

Proof: a) Let a, b E o. If a= b, then clearly cp(a) = cp(b), 

hence suppose that a< b. Then there exists k such that a. = b., 
l l 

i= 1, •.. , k-1, and ~ < bk. In this case, 

~ -1 ~ -1 
cp (b) - cp(a) = LJ b. N. - LJ a. N. 

l l l l 

-1 6 -1 6 -1 
> Nk - n.N. + N. 

j > k J J j>k J 

-1 6 -1 6 -1 
0 = Nk - N. + N . = , 

j~k J j >k J 

and so 

cp(a) 2 cp (b) . 

b) Clearly cp(a) ~ 0 for all a E O. Further, since a E O , 

implies a< w = (n. -1), it follows from part a) that 
l 

~ -1 
~a) _< cp(w) = LJ (n. - l)N. 

l l 

c) Now let 0 2 x 2 1, and define a = (ai ) in 0 as fol

lows. Let a
1 

be the greatest integer n, satisfying : 

and 
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If a
1
,a2 , ••• ,ak-l have already been defined, choose ak to be the 

greatest integer n satisfying: 

and 

k-1 1 -1 
6 a N- + n Nk < x • 
r=l r r 

The point a = (a .) so defined clearly satisfies 
1 

cp(a) ~ x • 

Suppose that cp(a) < x, then two cases arise. If for infinitely many 

integers j, a . < n.-1, 
J J 

then choose j large enough so that 

I 
and put a. = a.+ l. Then, 

J J 

j-1 -1 I -1 -1 6 a N + a.N. < cp(a) + N . 
r=l 

r r J J J 

< cp(a) + 
x-~(a) 

2 

< x 
' 

which would contradict the choice of a . made above. On the other hand, 
J 

suppose there exists an integer r such that for all k ~ r, 

a = k ~ - 1 • 

Let j be the least such integer r. Since cp(a) <x< 1, it follows that 

j > l. Moreover a. 1 <n. 1-1. 
J- J-

Thus 
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j-2 -1 -1 6 -1 
<P (a) = 6 a N + a . 1N . + (n -1) N 

r=l 
r r J- J r ~j 

r r 

j-2 -1 -1 -1 
= 6 a N + a. 1N . + N. 

r=l 
r r J- J J 

j-2 -1 
= 6 a N + (a. l + 1) N . < x 

' r=l 
r r J- J 

which contradicts the choice of a. 1• Thus the only possibility is 
J-

<P (a) = x which was to be proved. 

d) Suppose a(n) is a sequence in O such that a(n) converges 

to b E o. Then for each integer i= 1, 2, ... , there exists M. such that 
1 

k > M . implies a . (k) = b.. Let N be such that k > N implies 
- 1 1 1 

L; (n -1) N-l < e and put 
r>k r r 

M = max (M.) 
i<i<N 1 

If n _> M, then a . (n) = b . , i=l, ••. , N and so 
1 1 

""' -1 
<P (a(n)) = LJ a. {n) N. = 

1 1 

N 1 
6 b.N~ 

i= 1 1 1 
+ ""' -1 LJ a.(n) N. 

i>N i i 

Thus 

and since 

it follows that 

N 1 
~ b.N~ < cp(a(n}} < 

i=l 1 1 

N 
~ -1 b.N. + e, 

i= 1 1 1 
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cp(b) - e < cp(a(n)) _:: cp(b) + e . 

Since o is first countable, this shows that cp is continuous on o. 

Assume that the sequence of positive integers (~) is fixed. 

Given positive sequences (ak) and (sk), the triple (nk, O'k' sk) is said 

to be admissi .ble, provided that 

( k = 1 , 2, .•. ) , and 

(4. 2) 

(k= 2,3, ..• ). 

Given an admissible triple (nk' O'k' sk) and a point a E O, consider the 

n 
sum ~ a .s .. 

j= 1 J J 
By (4. 2) and the fact that a. < n. 

1
, 

1 - 1-

n n n n 
~ a .s. < ~ (n. -1) s . = ~ n .s. - ~ 

j= 1 J J j= 1 J J j= 1 J J j= 1 

n n 
< ~ O' . 1 - ~ 

j=l J- j= 1 

=1-a<l. n-

S· 
J 

O' . 
J 

Thus the series ~ a.i;. is convergent, and d e fines a number v(a). The 
1 1 

function v:o _, [O, 1] so defined is called the derive d mapping of 

(~, O'k' sk). Such a function ~ satisfies: 

Theorem 2. a) a< b, if and only if, ~(a) < ~(b). 

b) 0 _:: ~(a) _:: 1, for all a E O. 

c) ~ is continuous. 
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Proof: a) If a, b E O and a< b, let k be such that a . = b., 
1 1 

i=l, 2, ••• , k-1, and ak <bk. Then 

ijr(b) -v(a) =L)b.t;. -L)a. i;. 
1 1 1 1 

= ~ {b . -a .) s. 
j~k J J J 

> s - ~ {n. -1) s. 
k 

j~k+l J J 

> sk - .6 a + .6 a . 
j~ k+ 1 k-1 j~k+l J 

= sk - ak > 0 . 

Therefore w(b) > w(a). It follows that ijr(b) > ~(a) implies b > a. 

b) It is clear that ijr(a) ~ 0. The remarks made preceeding 

the Theorem established that ~(a) ::_ 1. 

c) Since .6 (n. -1) s . is convergent, the same argume nt as 
1 1 

that used to show the continuity of <P suffice s. 

A set E is called the G e n e ralized Cantor Se t of type 

(~,a k' sk) , or more briefly, the GCS of type (nk' ak' sk), provide d 

that (~, ak' sk) is admissible and that E = ijr(O), where ~ i s the de -

rived mapping of (nk' ak' sk). Since ijr is continuous and O compact, 

the following theorem is immediate. 

Theore m 3. If E is a GCF of type (~, ak' sk), then E is 

a closed subset of [O, 1 J. 

Given an admissible triple (~, ak' sk), define a function 

µ.(x) on (-00,00) by writing: 
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µ.{x) = 0 , if x < 0 

µ.{x) = sup (cp (b): v(b) :s x) , if x > 0 

where cp is defined by ( 4. 1) and * is the de rived mapping of (~, O'k' sk). 

The function µ. is called the Generalized Cantor Function of type 

(~, O'k' sk), or the GCF of type (nk, O'k' sk). 

The following lemma will be useful for the study of General-

ized Cantor Functions. 

Lemma 1. If x = *(a), then· µ. (x) = cp (a) . 

Proof: If x = w(a), then by definition µ.(x) 2::. cp (a). Since 

cp(b) > cp{a) only if b >a, and µ.(x) > cp{a) implies the existence of 

b E O such that cp (b) > cp (a) and v(b) :S x, it follows from Theorem 2, 

a) that µ.(x) :S cp (a). 

tions is: 

The first general statement about Generalized Cantor func-

Theore m 4. If µ. is a GCF of type (nk, O'k' sk), then 

µ. E M( * ( O) ) • 

Proof: Suppose x :Sy. Then v(b) :S x implies *(b) < y, and 

it follows that µ.(x) :S µ.(y). Since a< w for a E O, µ.(x) :S cp(w) = 1. The 

fact that 

v(w) = :E (n. - 1) s. < 1 , 
1 1 -

and cp (w) = 1, implies that µ.(x) = 1 when x 2::, 1. Now write E = w(O) and 

suppose that the open interval (x, y) is disjoint from E. If y f- E, then 
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it is clear that (x,y) n E = ¢ implies 

µ.(x) = sup(cp(c):~(c).:::_x) = sup(cp(c):~(c).:::_y) = µ.(y). 

Suppose then that y E E. If also x EE, then there exist points a, b E O 

such that x = V(a), y = iV(b). Then by Lemma 1, µ.(x) = cp(a), µ.(y) = cp(b). 

If cp(a) < cp(b) then there would be c E O , such that 

cp (a) < cp( c) < cp(b) , 

since cp is onto. This would mean a< c < b, and so iV (a) < ~(c) < ~ (b) 

which would contradict En (x,y) = ¢. Thus in the case x,y E E, 

µ.(x) = µ.(y). Finally, if x r/. E and x .:::_ 0, then y .:::_ 0 and 

µ.(x) = µ.( O) = µ.( y) , 

since 0 EE. If x > 0, then 

x ~ sup (t:t EE, t,:::. x) = t
1 

EE 

since E is closed. Further (t
1

, y) n E = ¢ and so 

µ.(y) = µ.(t 1) ,:::. µ.(x) , 

and so µ.(x) = µ. (y), which shows that µ. E M( i¥(0)). 

The next theorem gives an alternate definition of µ.(x)~ 

Theorem 5. For all x, 

(4.3) µ.(x) = inf(cp(c):v(c)~x), 

where the infimum is defined to be 1 in the case that there is no c E O 

such that w(c) ~ x. 
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Proof: If x is such that x > *(c) for all c in o, then 

µ.(x) = 1, which agrees with (4. 3). If x< 0, then 

inf(cp(c):*(c) _2: x) = 0 , 

so that µ.(x) = inf (cp .(c) : ~(c) > x) in this case. Thus suppose that 0 < x 

and that there is c E o for which ~(c) > x. Again write E = *(O) and 

let 

t 0 = sup (t: t E E, t ~ x) 

. t l = inf ( t: t E E , t ,2: x) • 

Since E is closed, t
0

, t 1 belong to E. Then there are points a, b E O 

such that 

~(a) = t 0 < x 

~(b) = tl > x • 

If µ.(x) < cp(b), then cp(a) .:S, µ.(x) < cp(b), and so there would be c E o 

with c.o(a) < cp(c) < cp(b) or a< c < b. This would imply w(a) < *(c) < *(b) 

which contradicts the choice of t
0

, t 1• Thus µ.(x) = ~b) which implies 

µ(x) .2: inf(cp(c):w(c) .2: x). The fact that µ.(x) .:s, inf(cp(c):*(c) .2: x) follows 

from the definition of µ.. 

The foregoing proof also establishes: 

Lemma 2. Given 0 < x and µ.(x) < 1, there is b E o such 

that ~(b) ~ x and µ.(x) = cp(b). 

The following lemma will be instrumental in the proof of 

Theorem 6 below. 
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Lemma 3. Given a and b in ,....,, there is a sequence ( E:.) 
~• -K 

where ek = 0 2!. ek = 1 (k= 1, 2, ••• ), such that the point c = (ci) defined 

(i = 1, 2' ..• ) ' 

belongs too. 

Proof: a, b E o. The existance of the required (E:k) is 

proved as follows. Define 

CXl 

A= X (0,1}, 
k=l 

where ( 0, 1} has the discrete topology and A, the topology of pointwise 

convergence relative to the compact spaces ( 0, 1} . For each positive 

integer k define 

A. = ((e .):O <a . + b . + e.+l - E: .n . < n . -1; 
-l<. J - J J J J J - J 

j = 1, ... 'k} . 

Thus ~ is closed in A for each k, since if (ekn)) is a sequence in 

~ converting to (ok) then there exists M such that n > M implies 

( n) ( n) d ( I'. ) . • • A F th · t · b · e 1 = o l' •.. , ek+ 1 = ok+ 1 , an so uk is in k. ur er i is o v1ous 

that ~ 2~+ 1 for all k, and that ~ is non-empty for each k. Since 

A is compact and the sets ~ have the finite intersection property, it 
CXl 

follows that n ~ is non-empty. Hence there is a sequence ( ek) which 
k=l 

satisfies the required conditions. 

Remark: Let a, b be points of O and c a point determined 

by the lemma above. Then 
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cp(a) + cp(b) = cp(c) + e 
1 

• 

Moreover, if v is the derived mapping of the admissible triple 

v(c) .2: *(a) + *(b) - €1 • 

Indeed, if there exists (ek) such that c = (ci) defined by 

(i=l,2, ••• ) 

is in O, then 

"" -1 cp( c) = L.J N. (a. + b . + e . + 1 - e . n.) 
1 1 1 1 1 1 

= cp(a) + cp(b) - e 1 • 

Moreover, 

1f ( c) = 6 c . s . = 6 a. s . + 6 b . s . + 6 e . + 1 s . - 6 e. n. s . 
11 11 11 1 1 111 

= *(a) + *(b) - e 1 . 

Theor e m 6. If µ(x) is a GCF of type (~, O'k' sk), then 

µ.(x) is sub-additive. 

Proof: If either x < 0 or y < 0, then x+y :::_ xVy, so that 

µ.(x+y) :::_ µ.(xVy) :::_ µ.(x) + µ(y). If either µ(x) = l or µ(y) = 1, then 

clearly 

µ.(x + y) < µ(x) + µ.(y) • 
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Thus suppose that x .:::_ 0, y .:::_ 0, µ.(x) < 1 and µ.(y) < 1. By Lemma 2, 

there are points a, b E O such that 

v(a) .:::. x' 

and 

µ.(x) = <P(a) , µ.(y) = cp (b) • 

According to Lemma 3, and the remark following it, there is c E O 

such that 

cp(c) = <P(a) + cp(b) - e 1 

and ( e 1 = 0 or 1) • 

If e
1 

= 0, then v(c) .:::_ x+y. By Theorem 5, this implies 

µ.(x+y) .S, cp( c) = cp( a) + cp(b) = µ.(x) + µ.( y) • 

On the other hand, if e 
1 

= 1, then 

µ.(x+y) < µ.('¥(a) + ~(b)) < µ.( v(c) + 1) 

< 1 + µ. ( v(c)) . 

Since µ.( ~(c)) = cp(c) = cp(a) + cp(b) - 1 , by Lemma 1, it follows that 

µ.(x+y) < cp(a) + cp(b) = µ.(x) + µ.(y) . 

Hence in all cases µ.(x+y) .:::, µ.(x) + µ.(y), which proves the theorem. 

It will now be shown that a GCS, E, of type (nk' O'k' sk) and 

its GCF, µ. have the same dimension with respect to any covering 

class, but fir st some useful lemmas. 
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For each positive integer k, define a set Bk by 

Bk = (b:b E O, bj = 0, j > k} • 

Then Bk has exactly Nk points and has the following property: 

Lemma 4. .!f {nk' O'k' sk) is admissible and ~ its derived 

mapping, then 

{k= 1,2, ••• ). 

Proof: Let c E O. Since Bk is finite, let 

b{c) = max {b:b < c) 
bEBk -

this maximum being taken with respect to th.e lexicographic ordering on 

o. Then 

\f{c) ~ ~{b{c)) . 

k 

~ { c) > I; b . { c) s . + ~+ 1 s k+ 1 
j= 1 J J 

k 
> ~ b.{c)i;. + ~ {n.-1) S · , 

j= 1 J J j > k J J 

since I; { n. - 1) s . .:S, n.+ 1 s l + 1. If b . { c) = n. - 1 £or 1 < j < k, then it 
j>k J J K <: J J - -

would follow that ~{c) > 1, which is false. Thus there is a largest 

integer r < k such that b {c) < n -1, and so 
r r 
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r-1 
~(c) > 6 b.(c)s . + b (c)s + 6 (n.-l)s . 

j= 1 J J r r j > r J J 

r-1 
> 6 b .(c)s. + (b (c) + l)s . · 

j= 1 J J r r 

Then there would be a point b' in Bk with b'. = b . (c) (i=l, ..• ,r-1), 
l l 

I 
b = b ( c) + 1, and 

r r 

b(c)<b'<c, 

which contradicts the choice of b(c). Consequently 

~{b(c)) < ~(c) ~ ~(b(c)) + ~sk 

and the lemma is established. 

With the help of Lemma 4, it is easy to verify 

L e mma 5. 

Proof: Let ojk = 0, if j -J. k, = 1 if j = k. Then (ojk) E O 

and sk = ~( (o jk) ). By Lemma 1, 

by Lemma 4. Since µ. is non-decreasing and µ.( 1) = 1, it follows that 

and so for some t E Bk, µ.(t + O'k) 
-1 

µ.(t) ~ Nk Since µ. is sub-additive, 
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Lemma 6. ( 
s ) -1 For all s > 0, ~(s) .:::_ 2 l V Sk Nk • 

Proof: By Lemma l (§ l, I), Theorem 6, and Lemma 5, 

The next theorem is a partial answer to the question: For 

what sets E is it true that there is µ E M(E) such that d
8

(µ) = d
8

(E) 

for all S? 

Theorem 7. If µ is the GCF of type (~, O'k' sk) and E the 

GCS of the same type, then 

for every covering class S. 

Proof: If w is the derived mapping of (nk' O'k' sk) I then 

E = *(O) by definition and µ E M(E) by Theorem 4. From the Theorem 

of §2, it follows that d
5

(µ.) :::_ d
5

(E). On the other hand, if A. E M(E) and 

s E S with O'k .:::_ s .:::_ O'k- l' then 

c U [t,t+s], 
- tE ~(Bk) 



by Lemma 4. Then 

and it follows that 

it follows that 

1 < 
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I; A. ( t + s) - A. ( t) , 
t E v(Bk) 

On the othe r hand, if O'k ::_ s ::_ nksk' then (4. 4) and Lemma 1 (§ 1, I) 

imply 

from which it follows that 

Altogether then, for O'k S. s S. O'k- l 

1 ( s - 1 - 1) ( - 1 ) > 2 sk Nk V Nk /\ µ.(s) V Nk 

1 1 
~ 

4 
µ.(s) /\ µ.(s) = 4 µ.(s), . 
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by Lemma 6 and the fact that µ.(s) ,:::. µ.( O'k) 

all s E S, 

It follows that for 

log tiA.(s) < log 1/4 + log µ. (s) 
log s log s log s 

The next result is concerned with the computation of d
5

(µ.), 

where µ. is a GCF of type (~, O'kSk), in terms of some of the concepts 

introduced in §3 of Chapter III. Given a covering class S and a pos-

itive sequence (ak) decreasing to 0, recall the definition of a(ak) and 

b{ak) relative to S, given by ( 3. 4). 

Theorem 8. If µ. is a GCF of type (nk, O'k' sk) where ~sk 

and if S is any covering class, then 

( 4. 5) 
( 

1 log µ(ak)~ ( 1 log µ.(crk) 1 ) 
d5 ( µ,) = lim inf -

1 
I\ lim inf - + 1 - -

k-+ro uk og O'k k-+ro vk log O'k vk ' 

Proof: Since ( O':k) and ( O': k) are contained in S and are 

covering classes, it follows from Theorem 1 (§2, II) and Lemma 1 (§4 , 

II), that 
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. . ( 1 log µ.(ak)) 
d(au.k ~. (µ.) < hm inf - 1 l<.J - k -+ ex> Uk og (J k 

vk 
Moreover, the fact that (]k .::;_ (]k and the sub-additivity of µ. imply that 

by Lemma 1, (§ 1, I). Thus 

which implies that 

It follows that, 

By Lemma 6 and the fact that ~gk = O'k- l' 

(4. 6) 

Suppose now that s ES and ak .::;_ s .::;_ (]k- l" Then necessarily 
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Uk Vk-1 
O'k < s .:::_ O'k- l , and this with ( 4. 6) implies 

log µ.(s) > log 2 + (log N~ 1 
/\ log \ s N~: 1 /O'k- 1)) 

log s log s log s log s 

log 2 (~log µ(cr k) ( 1 
log Nk-117k-1)) ( 4. 7) > + /\ 1 ---

log O'k Uk log O'k vk-1 log Ok-1 

o( 1) 
( 1 log µ (crk) ( 1 log µ(crk_ 1) l )) 

= +- /\-- +1---

uk log ak vk-l log a k-l vk-l 

since If s E S and k{s) denotes the integer 

k such that O'k < s .:::_ O'k- l' then k{s) ... CXl as s ... O. Thus ( 4. 7) implies 

that 

Since lim inf (Ak /\ Bk) = lim inf ~ /\ lim inf Bk' equality in ( 4. 5) is 

proved. 

The last theorem of this section asserts essentially that if 

<\r(E) 

-1 
log Nk 

= lim inf ---
k ... CXl log O'k 

Theorem 9. If µ. ' is a GCF of type (~, aksk), with 

nksk = O'k-l' ~ d 8 (µ.) ~ d(a )(µ.) for every covering class S. 
k 
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Proof: By Lemma 6, 

( 
s ) -1 µ.(s) :::_ 2 1 V i;k Nk 

If ak ::_ s ::_ ak- l' then for every 0 < 13 < d(a ) (µ.) , 
k 

< 2C l3 , 

where c
13 

is a constant inde pendent of k. By the Theorem of§ 1, 

Chapter II, it follows that 13 ::_ d 8 (µ.), and so d(a )(µ.) :::_ d8 (µ.). Note that 
k 

if d(ak)(µ.) = 0, the result is trivial. 

Remark: Theorem 9 can also be proved as a consequence of 

Theorem 8. 

§ 4. Main Results 

The purpose of this section is to show that the r e sults of § 2 , 

Chapte r III apply to the dimension of closed sets with respect to a 

covering class. More precisely, let C be the collection of closed sub-

s e ts of [ 0, 1 J and 

where S and T are any covering classes. It will be shown that M(S, T) 

is identical with R(S, T). To show M(S, T) ~ R(S, T) is relatively e asy: 
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The orem 1. M{S, T) ~ R{S, T) 

Proof: Let E be a closed set such that 

There exists µ. E M{E) such that 

by the Theorem of § 2. Since µ. E M, there is £ E 3' such that £,...., µ., 

that is d A{f) = d A{µ.) for all A, by Theorem 1 {§ 2, II). Now 

dT(E) 
f A x E 3', and the lemma of § 2, Chapte r II implie s that 

and 

since µ. E M(E). It follows that 

and, since d
5

(µ.) can b e chosen arbitrarily close to d
5

{E), and since 

R(S, T) is closed , this implie s 

The case d
8

{E) < dT{E) is treated similarly. If d
8

{E) = dT{E) , then 

the fact that R{S, T) is doubly-starred shows that {d
5

{E), dT(E)) 

E R(S, T), and this completes the proof. 
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Theorem 2. Given f3 such that 0 < f3 < 1, and any covering 

class S, there is a GCF, µ. of type (~, ak' sk), with nksk = ak- l, 

(a k) :;: S and 

Proof: Let (ak) :;: S be a decreasing sequence satisfying: 

(k = 0 J 1 J 2 J ••• ) • 

Write 

n 1 = '[a i 13 J + 1 ' 

= -~~13 /Nk-1]_ + 1 J (k = 2, 3, ... ) J 

where [x] denotes the greatest integer less than or equal x. Further, 

put sk = ak- l /~. In order to show that ak < sk' it suffices to show 

~ak < ak- l' Indeed, for k = 1, 

For k~ 2, Nk-l = Nk_ 2 ~-l > Nk_ 2 a~~ 1 /Nk-Z = a~~l' and it 

follows that 

~ak 5_ ( a~l3 /Nk-1 + i) ak 5_ ( a~l3 la~~ l + i) ak 

5. (2 a~-13 la~=~) Dk-1 < ak-1 . 

-13 " 13 " -1 Since Nk ~ ak and_ LJ ak is a convergent series, it follows that LJ Nk 

is convergent. It follows that there exists a function µ. which is a 

GCF of type (~, ak' sk). Since 
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-1 
log Nk 

= lim inf ---
k ..... m log O'k 

and Nk ~ O'~~ , it follows that 

On the other hand, given k sufficiently large, there are integers j ::_ k 

for which n. > 2. Let jk be the largest of these integers. Then 
J-

or 

since jk :S, k. Thus 

which implies d(O' ) ( µ.) :S, ~, or 
k 

d
5

(µ.) ::_ ~. But by Theorem 9, 

the theorem. 

log 2- 1 

<~+---
log O'k 

Given covering classes S and T, recall the definitions of 

A(S:T) and A(T:S) given by (3. 5) and (3. 6) of §3, Chapter III. 

Theorem 3. Given any (a, b) E A(S: T) U A(T:S), and any t, 

. 0 ::_ t :S, 1, there are closed sets E and F, such that 
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and 

(ds(F), dT(F)) = (ta+ 1 - t, tb + 1 - t) . 

Proof: Since any finite set E has d
5

(E) = 0, and any closed 

interval F of positive length has d 5 (F) = 1, for all S, only the values 

t, 0 < t < 1 need to be considered. Assume (a, b) E A(S: T), then the re 

is a sequence (t ) , t
0 

= 1, (t ) c T, (t ) decreasing to zero such that 
r r - r 

lim a(t ) = a and lim b(t ) = b. Four cases are considered. 
r r r-+oo r-oo 

Case 1. If a> b > 0, b < 1, and 0 < t < 1, then there is a 

by Theorem 9, §3, and Theorem 2 above. Since (O'k) c (t ) , it follows 
- r 

that ak - a, bk ... b, (k-+ oo), where ~ = 
Theorem 8, §3 implies that 

a(ak), bk = (O'k), and thus 

ds(µ.) = ta /\ (tb ta+ 1. - tb) . 
1-a 

Since ta< 1 and T:'b,:: 1, it follows that 

1-a 1-a 
T=b ta + 1 - 1-b ~ ta , 

so that 

By the same reasoning, since 0 < t < 1 implies 0 < tb + 1 - t < 1, there 

is a GCF, A., of type (~,a~, s~) with ~S~ = a~_ 1, (a~} ::; (tr), and 

dT(A.} = tb + l - t. Applying Theorem 8, §3, and reducing, implies 



84 

d
5

(A.) = ~ (tb+ 1- t) "(ta+ 1-.t) 

= ta+l-t, 

since a> b. Thus taking E to be the GCS of type (nk, ak' sk) and F 

the GCS of type (~,a~, s~) and applying Theorem 7, §3, proves the 

theorem in this case. 

Case II. If a= b = 1, and 0 < t< 1, then there is a GCF, µ; 

of type (~,ak,i;k), ~sk = ak-l' and (ak)::: (tr) with dT(µ) = .d(ak)(µ) = t. 

Then by Theorem 9, §3, d 5 (µ) 2: t. On the other hand, by Theorem 8, §3, 

= d(CT ) ( µ) = t , 
k 

and so d5 (µ) = t. In this case take E to be the GCS of type (~, ak' sk) 

and F any closed interval of positive length •. 

Case III. If a = b = 0 and 0 < t < 1, then let µ be the GCF 

described in Case II ,, with t replaced by 1-t. Then 

d ( µ) < hm inf -- + 1 k 
. . (1-ak log µ(CTk) 1-a ) 

S k ... 
00 

1-bk log CT k - 1-bk 

= d (µ) = 1-t . 
C1k 

It follows that d 5 (µ.) = 1-t c dT( µ.), and in this case take E to be a 

finite set and F the GCS of type (nk' O'k, sk). 

Case IV. The only remaining case is a > b = 0. If 0 < t < 1, 

then tb + 1 - t > 0, and there is a GCF, µ, of type (~, ak' sk), ~sk = C1k- l 

such that 
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dT( µ.) = d(O' ) ( µ.) = tb + l - t = l - t > 0 . 
k 

Since bk ..... o, ak ..... a>O and d(O'k)(µ.) >O, it f ollowsfromThe orem 8 , §3, 

that 

c-a log µ(erk) + 1 _ 1-akj 
ds(µ.) = liminf l-bk 

k ..... 00 k log O'k ~ 

= ( 1-a) d(ak) ( µ.) + l - ( 1-a) 

= ta + l - t . 

Thus let F be the GCS of type (~, O'k' sk). The existance of a closed 

set E such that 

(t > 0) • 

requires special consideration. Without los.s of g e nerali ty, it can b e 

assume d that the s e quence (t ) is chosen so that b(t ) d e cre ases to 
r r 

b = 0, and that between t and t 
1 

there is a point of S, for every r. r r-

This implies that 

b(t ) /a(t ) 
t r r < t 

l 
, 

r r-

or 

-tb(t ) ta(t ) 
t r > t r 
r r - 1 

Since a(t ) ..... a> 0 and t > 0, it follows that 
r 

( 4. 8) 
-tb(t ) 

t r 
r 

..... 00 r-.co • 

Further, a(t ) ..... a > 0 and b(t ) ..... 0 implies that 
r r 
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( 4. 9) (r -+ ro) • 

On the basis of statements (4. 8) and (4. 9), there is a subsequence, 

(ak) of (tr) which has the following properties: 

( 4. 10) 

a (-
1 

- t) ~ 2 k bk 

Given such a sequence (ak) ::; T, define 

nl = ~~tbl] + 1 

= ~~tbk /Nk-1] + 1 . (k= 2,3, ... ) 

where N = n
1

, ••. , n and [x] denotes the greatest integer in x, 
r r 

Further, put 

In order to find a GCF of type (~, O'k' sk), the sequences (~), (ak), 

(sk) must satisfy: 

(k=l,2, ... ) 
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Since 

it follows that 

this latter series being convergent by (4. 10). The fact that 1\:Sk::, O'k- l 

follows from the relation sk = O'k- l /1\:. This same relation implies 

that ak < sk' whenever nk"k < O'k- l" Now 

(, -tb ) 
\_°'1 1 + 1 O'l r -112 ' 

.:::. \_°'1 + 1) 0'1 

1/2 3 = O' + O' < - < 1 - O' 1 1 - 4 - - 0 

by (4. 10). To verify ~ak < ak-l fork> 1, observe that 

-tbl -tb2 
Indeed, N

1 
= n 1 .:s_ a 1 + 1 .:s_ a 2 by (4. 10). Suppose that 

Then 

= 1\:~k-1 

k-1 - tb ' 
""' r Nk- l < LI a r + 1 . 

r=l 

(

-tb ) 

.:S, ~k k + 1 Nk-1 
k-1 

-tbk k -tb 
= O'k + Nk-1 < 6 O' r + 1 . 

r=l r 
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-tbk+ 1 
The choice of O'k+ 1 described by (4. 10) implies that Nk.:::, O'k+ 1 . 

This fact implies that 

by (4. 10). 

Thus let µ. be the 

-tbk 
been observed, Nk 2: O'k . 

GCF of type (nk' O'k' sk). As has already 
-tbk 

It is also true that Nk.:::, 2 O'k . Indeed, 

-th 
since Nk_ 1 .:::,ak k, it follows that 

-th -th 
ak k 2crk k 

~ .:::, 1 
+ N=k---1- < Nk-1 

and multiplying both sides of this inequality by Nk- l gives 

It then follows, since 

( 4. 11) 
log µ.(O'k) 

th < < 
k - log O'k 

log 1 /2 

log O' + tbk 
k 
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and, bk ... 0 implies 

Since (O'k).:;: T, dT(µ.) = 0 as well, By Theorem 8, §3, 

The estimation (4. 11), implies 

Since 

(k-+ o:i) ' 

it follows that d5 (µ.) = ta /\a = ta. Hence take E to be the GCS of type 

(~, O'k' sk), and in this case d 5 (E) = ta, dT(E) = O. 

Thus cases I-N show the theorem true for (a, b) in A(S: T}. 

A symmetric argument establishes the result when (a, b} E A(T:S). 

Therefore the theorem is proved. 

The principal theorem concerning the dimension of closed 

sets is the following: 

Theorem 4. M(S, T) = R(S, T) . 

Proof: By Theorem l and Theorem 3 (§ 3, III}, it suffices to 

s 
show that (A(S:T) U A(T:S)) .:;: M(S,T). Let (a,b) E A(S:T), 

s 
(x, y) E (a, b) , and (c, d) E A(T:S). If · x = ta, 0 .:S:. t .:S:. 1, let E 

1 
be the 

closed set with 
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There exists 0.:::;, s.:::;, 1 such that either y = sd or y = sd + 1-s, and a 

closed set E 2 with dT{E 2) = y. In either case, d
5

{E 2).:::, y. Since 

ay ~bx, it follows that y ~ tb. By Lemma 3, § 1, d A(E 1 U E 2) 

= d A(E 1) V d A(E 2) for any A, so that 

and 

If x =ta+ 1 - t for 0.:::;, t.:::. 1, then let E
3 

be the closed set such that 

s 
If (x,y) E (a,b) , then (1-a) (1-y).:::;, (1-b) (1-x) which implies that 

(1-y).:::. t(l-b). It follows that y _::: tb+ 1- t. Consider the set E
3 

U E
2

, 

E 2 defined above. Then 

and 

It follows that (a, b) s:;: M{S, T) if (a, b) :;: A(S: T). A symmetric argu

s 
ment shows that (a, b) :;: M(S, T) when (a, b) E A(T:S). These f acts 

prove that 

(A(S:T) U A(T:S) )s:;: M(S, T) , 

and hence R(S, T).::; M(S, T), which proves the the orem. 
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§ 5. Conclusions and G e n e rali zations 

Theorem 4 of § 3 shows that the results obtained in Chapter III 

apply to the dimension of closed sets. Thus, for example, a knowledge 

of the relative positions of the covering classes S and T, that is a 

knowledge of the sets A(S:T) and A(T:S) introduced in §3 of Chapter III, 

gives a complete description of the values of {d
5

(E), dT(E)) as E varies 

over the collection of closed sets in [O, 1 J. More ove r, it is clear from 

the material of §4, that questions of this sort may b e dealt with entirely 

by considering finite unions of Generalized Cantor Sets. 

In general, when a finite number of covering classes are con-

sidered, a similar analysis can be made using essentially the same 

methods. 

The question arises as to what can be said for closed sets in 

the unit square. If C is any collection of open r ectangle s, whose sides 

are parallel to the coordinate axe s, and if C is clo s ed under transla-

tions and contains rectangle s of arbitrarily small are a, the dimension 

of a closed set E with respect to C is defined to b e the number 

where 

The covering class C can be associated with a s e t of points in the 

I 
left-ope n portion, 12 , of the unit square 12 , whose closure intersects 

I 

12 - 12. 

If M denotes the class of functions f(x, y), de fined on 

x 2:: 0, y 2:: 0, non-decreasing in x and in y such that f (x, y) = 0 if 
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x· y = 0, and such that 

M(a, b) = \/ fi(x+a, y+b) - f(x+a, y) - f(x, y+b) + f(x, y)) 
(x, y) ER+ ( 

is bounded in 12 , then for f-$. 0, the dimension of f with respect to the 

covering class S is defined to be the number 

= lim inf log M(s' t) 
log st (s, t) E S • 

st .... 0 

Since M(a, b) is · sub-additive in each variable, it follows that 

M(ta, rb) ::, 4(t Y 1) (r Y i) M(a, b) 

for r,t~O. In particular, for (x,y) E 1
2

, this implies 

C > M(x, y) > x · y M( 1, 1) I 4 , 

where C is some positive constant. It follows that 0::, d
8

(f) .::::, 1 for 

f E M. On the other hand, the functions (xy)a,, O _:::a, < 1 (with the con

vention 0 ° = 0) are sub-additive in each variable and so for a, > 0 

M(a, b} = Y ( (x+ a)a, - xa,) (y+b}a, - ya,} 
x,y 

< (ab}a, = f(a, b} , 

while for a, = 0, M(a, b) = 1. This implies that d
8

( (xy}a,} =a,, so that 

the dimension can take any value between 0 and 1. The interest in 

studying the dimension of functions in M with respect to various cover-

ing classes lies in the study of the influence of the shape, along with 

the area, of the members of the covering class. In the case of rec-

tangles the shape of the members of a covering class, S, is given by 
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the set of quotients s It where (s, t) E S. The following theorem is a 

first indication of the role of shape on the dimension of functions in M. 

Theorem. A necessary and sufficient condition that 

d
8

(f) .:::_ dT(f) for all f EM, is that there exist a function g, g:T - S with 

the properties: 

and 

log g ( t 1) g (t2) 

log t 1t 2 
= 1 

= 0 • 

The proof is carried out in a similar manner to that of the Theorem of 

§ 4, Chapter IL 
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