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Abstract

In this thesis we study the growth of a Li electrode-electrolyte interface in the pres-
ence of an elastic prestress. In particular, we focus our interest on Li-air batteries
with a solid electrolyte, LIPON, which is a new type of secondary or rechargeable
battery. Theoretical studies and experimental evidence show that during the process
of charging the battery the replated lithium adds unevenly to the electrode surface.
This phenomenon eventually leads to dendrite formation as the battery is charged and
discharged numerous times. In order to suppress or alleviate this deleterious effect
of dendrite growth, we put forth a study based on a linear stability analysis. Taking
into account all the mechanisms of mass transport and interfacial kinetics, we model
the evolution of the interface. We find that, in the absence of stress, the stability of
a planar interface depends on interfacial diffusion properties and interfacial energy.
Specifically, if Herring-Mullins capillarity-driven interfacial diffusion is accounted for,
interfaces are unstable against all perturbations of wavenumber larger than a critical
value. We find that the effect of an elastic prestress is always to stabilize planar
interfacial growth by increasing the critical wavenumber for instability. A paramet-
ric study results in quantifying the extent of the prestress stabilization in a manner

that can potentially be used in the design of Li-air batteries. Moreover, employing



vii
the theory of finite differences we numerically solve the equation that describes the
evolution of the surface profile and present visualization results of the surface evolu-
tion by time. Lastly, numerical simulations performed in a commercial finite element

software validate the theoretical formulation of the interfacial elastic energy change

with respect to the planar interface.
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Chapter 1

Introduction

1.1 General Overview

1.1.1 Battery: Description, Operation, and Types

A battery is an electrical device that converts chemical energy into electrical energy.
As in all electrochemical systems, a battery consists of two electrodes separated by an
electrolyte. An external, electronic conductor wire connects the two electrodes and
is used as a pathway for electrons to flow and create the electric current. Batteries
are essential parts of mechanical structures because, when connected to an external
circuit, the chemical reactions that take place on the electrolyte-electrode interface
produce energy that is delivered to the structure in order to perform mechanical
work. Due to their high gravimetric energy (energy per unit mass), batteries have
received extensive interest in the recent past decades. This fact makes their study

and development important in order to fulfill the needs of a demanding society.

Some objects found by archaeologists are speculated to have been used in the

early 6" century for production of electric energy; one such object is known as the
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“Baghdad Battery”. However, it was not until the year 1800 that the first electro-
chemical battery was built. It was the Italian physicist and chemist Alessandro Volta
who invented the “Voltaic pile”, a stack consisting of layers of zinc and copper sepa-
rated by paper soaked in salt water. Volta proved that electricity could be generated
chemically, and his invention triggered other scientists’ interest in the development
of the field of electrochemisty. In 1836, J.F. Daniel invented the first trustworthy, in
terms of constant voltage and sufficient electric current, battery system, which was
named after himself and called the “Daniel cell”. His invention has been widely used
in the industry, especially in the electrical telegraph network of that age. Since then,
battery cells have been thoroughly developed but they still remain a source of great

interest today.

The operation of the battery is based on the flow of electrons and ions, which are
products of the chemical reactions that take place in the battery [75]. As mentioned
before, a typical battery consists of a positive terminal, or cathode, a negative termi-
nal, or anode, and an electrolyte. More specifically, the two electrodes are electronic
conductors in which the mobile species are electrons and are usually made of metal.
The electrolyte, which separates the two electrodes, is an ionic conductor -electronic
insulator-, in which ions are the mobile species, and is formed when salt is placed
into a solvent, such as water. The electrodes’ ability to conduct the flow of electrons
is measured by the electrical conductivity in S(Siemens)/cm and is of order of 10?
to 10* [S/em], while ionic conductivity measures the ionic flow in the electrolyte and

is of order of 107* to 107! [S/cm].
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Figure 1.1: Battery operation, flow of electrons, and cations during the process of
discharge (blue vectors) and charge (red vectors).

In a discharging battery the anode is the negative terminal. Electrons are moving
outward through the electrical circuit to the positive terminal, the cathode, as shown
in Fig. 1.1. In contrast, cations are moving through the electrolyte from the negative
electrode to the positive one. In a recharging battery things are reversed: the anode is
the positive terminal, it receives current from an external generator, and the electrode,
which was the anode during battery discharge, becomes the cathode. Likewise, cations
are now moving from the positive electrode to the negative one. In order to avoid
confusion, the electrode on the left in Fig. 1.1 is often referred to as the negative
electrode and the one on the right as the positive electrode, since this description is
correct in both charging and discharging cycles.

In electrochemisty, a reduction reaction occurs when the electrode receives elec-
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trons while an oxidation reaction occurs when the electrode loses electrons. Thus,
during discharge oxidation occurs in the anode and reduction in the cathode. This is
the main difference between a chemical and an electrochemical reaction. Specifically,
in a chemical reaction, reduction and oxidation happen in the same place, while in an
electrochemical reaction, reduction takes place at one electrode and oxidation takes

place at the other.

The electrical driving force across the two electrodes is known as the “Voltage”
of the cell and is measured in V(Volts). The voltage of a cell when disconnected
from any circuit, when no external electric current flows between the terminals, is
called “Open-circuit voltage” (OCV). In electric circuits the flow of the electrons
that travel through the external wire is called the electric current and is measured in
A(Ampere). One Ampere is defined as the current that flows with an electric charge

of one Coulomb per second [1A = C(Coulomb)/sec].

Batteries play an important role in the worldwide market and have found numer-
ous applications in electronic appliances, energy storage systems, and transportation.
More specifically, batteries can be found in power tools and portable electronic de-
vices, e.g., laptops, cell phones, and cameras. In addition, military and aerospace
industry use batteries in satellites, robots, communication devices, and air-structures.
However, the most appealing application of batteries is for transportation. Electric
vehicles that operate solely with an electric engine are already on the market and, as
soon as researchers manage to provide adequate driving range in combination with

reduced cost, the consumer demand is expected to rise significantly.
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Batteries are classified into two main groups, see Fig. 1.2: primary, or non-
rechargeable, batteries and secondary, or rechargeable, batteries. Primary cells, such
as alkaline batteries, are used only once since the electrode is irreversibly changed
during discharge and cannot be restored. Secondary cells can be discharged and
recharged multiple times since all the chemical reactions can be approximately re-
versed and the original composition of electrodes can be restored almost completely.
Common examples of secondary cells are lithium-ion batteries and most recently

lithium-air batteries. The last type is going to be of interest in this work.

Primary cells Secondary cells
(non-rechargeable batteries) (rechargeable batteries)

Alkaline battery Zinc-carbon Lithium-ion battery Lithium-air battery

Aprotic Aqueous Mixed aqueous/aprotic Solid-state

Figure 1.2: Types of batteries.

1.1.2 Li-Air Battery: Description, Limitations, and Promises

Metal-air batteries [15, 43, 88] are promising candidates for next generation power
sources due to their low cost, long shelf life, environmental friendliness, and high
theoretical gravimetric and volumetric energy density, c.f., Table 1.1. Furthermore,

materials used in metal-air batteries are inexpensive, abundant, and environmentally
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benign. Metal-air batteries are unique because unlike other types of batteries, they
do not store one of the electroactive materials (oxygen). As a result, they can store
the same, or even a greater, amount of energy when compared with other types of
batteries, but they weigh much less. From all the metal-air batteries, see Table 1.1,
the most promising category is the Li-air battery technology due to its having the

highest theoretical gravimetric energy density and one of the highest open-circuit

voltage.
Metal-Air Calculated Theoretical Gravimet-
Battery Open Circuit ric Energy [Wh/kg]
Voltage [V] (including O,)
Li-Os 2.91 5200
Al-O, 2.73 4300
Na-O, 3.2 2174
Ca-0O, 3.12 2990
Mg-Oq 2.93 2789
Zn-0, 1.65 1090
Fe-O, 1.28 750

Table 1.1: Open circuit voltage and theoretical gravimetric energy for various types
of metal-air betteries [3].

A typical Li-air battery consists of a lithium metal anode and a carbon porous
cathode with metal catalysts. The type of electrolyte that is used in between the

electrodes can vary and thus the battery can be categorized into four main types [63]:

Aprotic

e Aqueous

Hybrid aqueous/aprotic

Solid-state
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In this work, we plan to focus only on one type of metal-air batteries, namely
solid-state Li-air (oxygen) batteries. An up-to-date, state-of-the-art, critical review
of Li battery technology may be found in the article of Christensen et al. 2011 [21]
and in [42,52,56,57,65,77]. Note here that while in the literature, as well as in this
work, the batteries are widely referred to as Li-air batteries, the actual work has
been on Li-oxygen (Li/Os) batteries, since the air is composed of other elements as
well, e.g., NO5 or COs, that can have an undesired electrochemical interference with
Li. A typical non-aqueous Li/Oy battery is composed of a Li-metal foil (negative
electrode), a thin solid Li-ion conducting electrolyte membrane, and a high surface
area positive carbon electrode that is loaded with a catalyst (for example, Mn, Ni, Co)
for the Li/Os reduction reaction at the positive electrode. The cell is exposed to the
atmosphere at the carbon positive electrode, but is otherwise enclosed in a metallized
case that is isolated from the environment. Oxygen from the environment is adsorbed
onto the carbon electrode and reduced in the presence of Li during battery discharge.
Non-aqueous Li-air batteries are controlled by the following overall reaction: 2Li* +
Oy + 2e~ — Lis0,. This reaction corresponds to a calculated open circuit voltage of
approximately 3 [V]. Based on the mass and density of LiyO, Li-air batteries have

maximum theoretical gravimetric and volumetric energy densities of approximately

5,200 [Wh/kg] and 8,000 [Wh/l], respectively.

Lithium compounds are widely used as an electrode material for rechargeable
batteries, due to the high electropositivity and low weight of lithium metal. During

battery operation, lithium at the negative electrode gives up electrons to become Lit,
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Figure 1.3: Li-air battery cell. Taken from [1].

which dissolves into the electrolyte, c.f., Fig. 1.3. This process is reversed during the
recharge cycle, but the replated lithium adds unevenly to the electrode surface. As
the battery is charged and discharged, dendrites have been observed to grow from
one electrode to the other through the electrolyte [4,8,23,71,80,107]. One of the
mechanisms that trigger dendrite formation is thought to be the localized higher
current density at the dendrite tip rather than its base [21]. Dendrite formation can
cause a short-circuit (electrons find an easier path to move through the electrolyte
and the voltage difference diminishes to zero) and make the battery useless. The size
of dendrites ranges between hundreds to thousands of micrometers 200-3000 [um]
depending on the material system. In some cases, dendrite can be seen by naked eye,

c.f., Fig. 1.4.



, COUNTER ELECTRODE

DEPOSITED SURFACE

Figure 1.4: Dendrites in real battery cell. Taken from [9].

As of now, Li-air batteries are not for use outside of laboratory environments since
they are still far from practical application due to challenges and limitations that
need to be tackled. Apart from the morphology changes that the negative electrode
undergoes, there are several other issues that need to be addressed. In particular, Li-
air batteries are secondary type batteries and this requires that all chemical reactions
that take place in them are reversible. However, experimental evidence [39,66,105,108]
has shown that carbonate solvents react with the reactions products, e.g., CO, instead
of Oy is evolved during charging, and as a consequence the chemical composition of the
system in not the same as it was originally. Other noncarbonate solvents have been
under investigation, with the intent to increase the cyclability of the battery, given
the fact that those solvents are stable against the electrode material. In addition, it
appears that the capacity of the positive electrode can be severely reduced by three
main mechanisms [5,6,89,90]: i) passivation of the electrode surface, ii) pore blocking,

and iii) poor oxygen transportation. Enhancing the solubility of the discharging
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products in combination with the use of gas channels to accelerate the kinetics of the
oxygen could be a possible solution to this issue. Another challenge that needs to be
addressed is the accommodation of significant volume changes that occur during the
battery operation due to accumulation and release of mass (oxygen). Some solutions
to this problem may be the application of pressure, which will help to obtain good
contact between the different layers of the cell, and the use of flexible seals and
electrolyte reservoirs [85]. Lastly, the challenge of providing pure oxygen to the cell
still remains alluring. Air contains contaminants that are chemically active to react
with the reaction products resulting in poor cyclability of tankless cells. On the other
hand, the use of oxygen tanks inside the cell increases the weight and tarnishes one of
the big advantages of Li-air batteries, which is the high specific energy. As a possible
avenue, lightweight membranes [112,113], in which only oxygen will be allowed to

move in and out, could be used to protect the cell from other contaminants.

These critical issues make the commercialization of Li-air batteries daunting. The
understanding of the fundamental aspects of these challenges would highly accelerate
the process of searching and designing efficient and safe batteries. By the time these
challenges are met, we can reap the benefits of this promising technology. Li-air
batteries have the potential for having five times the specific energy of current lithium-
ion batteries. This can be applied to the manufacturing of electric cars that have

comparable driving range with current gas powered automobiles.

This work focuses only on the deleterious effect of dendrite growth. As mentioned

before, the surface of the negative electrode tends to roughen and develop dendrites
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with cycling. An effort to suppress or alleviate the dendrite propagation will be

comprehensively discussed in the next chapters.

1.2 Previous Work

Dendritic lithium deposits on the battery electrode, after being subjected to multiple
charges and recharges, were first observed in the work of Epelboin et al. 1980 [35]
and later on by Yoshimatsu et al. 1988 [110]. Dolle et al. 2002 [28] reported dendritic
growth of the interface on lithium polymer batteries and confirmed direct correlation
between current density and dendrite formation. A statistical approach was taken
by Deutscher and Fletcher [24-26] in order to describe dendrite initiation. Many
other authors (Peled 1979 [83], Chazalviel 1990 [20], Sundstrom and Bark 1995 [99],
Kanamura et al. 1996 [53], and Yamaki et al. 1998 [109]) studied the deposition
mechanisms of metals in non-aqueous battery systems. In particular, Barton and
Bockris 1962 [11] and Diggle et al. 1969 [27] put forth the first comprehensive model
of dendrite growth. More recent studies can be found in the work of Ely and Garcia
2013 [34], Nishida et al. 2013 [76], and Monroe and Newman 2005 [72]. The latter ones
conclude from their analysis that interfacial roughening is mechanically suppressed
when the separator shear modulus is about twice that of lithium.

Improvement in lithium cycling efficiency by using additives in lithium metal is
discussed in the work of Saito et al. 1997 [94], Eweka et al. 1997 [36], and Richarsdon
and Chen 2007 [92]. Mikhaylik et al. 2010 [67] experimentally proved that applica-

tion of pressure between the electrodes lowers the dendritic growth rate, which is an
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approach that was first introduced by Hirai et al. 1994 [49]. A similar effect, i.e.,
application of elastic prestress that substantially reduces the morphology changes of
the negative electrode, will be thoroughly discussed later in this thesis.

Previous work has also focused on characterizing Green’s function within the
context of the theory of linear elasticity. More specifically, Kelvin 1848 [54] first
determined the Green’s function for the problem of a point force applied to the full-
space isotropic solid. Later, Boussinesq 1885 [17] derived a surface Green’s function
for a force normal to the free surface in isotropic solids. Finally, Mindlin 1936 [68]
developed the half-space Green’s function by superposing a complementary part of
the solution to the Kelvin’s full-space function. The Green’s function corresponding
to a point force applied to a bimaterial isotropic solid was solved by Dundurs and
Hetenyi 1965 [33] and Fares and Li 1988 [37]. In addition, expressions for Green’s
function obtained for problems with anisotropic material properties can be found in
the work of Barnett and Lothe 1975 [10], Mura 1987 [74], Ting [102,103], and Tonon
et al. 2001 [104]. Recently, the work of Pan [81,82] provided us with the bimaterial
Green’s function and with relationships for the displacement and the stress fields in

the transformed domain in anisotropic bimaterials.

1.3 Motivation - Objectives

The objective of the present study is to ascertain the effect of elastic prestress on the
stability of interfacial growth in Li-air batteries. As noted before, dendrite growth is

the most common failure mode for cells with Li metal anodes. Indeed, dendrites can
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grow from the negative electrode surface through the electrolyte during the charging
of the cell, resulting in an internal short-circuit. There is, therefore, a need for new
designs that suppress or alleviate the deleterious effect of dendrite growth, assuring
an improved reliability and a longer lifetime of the cell. A possible avenue to that
effect is suggested by recent experimental work by Mikhaylik et al. [67], who report
that the application of modest pressures in the range of 10 [kg/cm?] (~ 1 [M Pal))
results in a substantial reduction in the roughening of the Li surface during cycling.
However, a fundamental understanding of the effect of pressure and, more generally,
prestressing on the stability of lithium-electrolyte interfaces appears to be lacking at

present, which hampers the practical exploitation of prestress in battery design.

The principal aim of the present study is to ascertain conditions under which an
electrode-electrolyte interface grows in a planar geometry and how such conditions
are influenced by the elastic field of built-in prestress. Of particular interest is to
ascertain how elastic prestress can be utilized in the design of Li-air batteries in
order to eliminate dendrite formation and its pernicious effects in the lifetime of the
cell. 'We base our analysis on a model of an interfacial growth that accounts for
the kinetics of Li™ transport through the solid electrolyte (e.g., LIPON) and within
the interface, the kinetics of Lit adsorption by the anode, electrostatics, and the
elastic field. In principle, these fields are coupled due to pressure-assisted diffusion,
swelling of the intercalated electrolyte, and the Maxwell stress of the electrostatic
field and contribute jointly to the chemical potential driving the motion of interface.

In particular, the elastic field is sensitive to the shape of the interface, with the result
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that its roughening may be self-sustaining and eventually lead to the formation of
dendrites.

In this work, we account for this feedback effect through an asymptotic analysis
of the elastic field of a nearly flat interface between two semi-infinite elastic bodies.
Similar asymptotic analyses have been applied to nearly flat surfaces and interfaces
between elastic bodies in the work of Srolovitz and Gao [40,41,96]. The present
analysis results in explicit analytical expressions for the dependence of the critical
unstable wavelength of the interfacial roughness, and growth rates thereof, on the
state of prestress and on fundamental parameters such as surface diffusivities, surface

energy, deposition kinetics, and elastic moduli.

1.4 Outline of the Thesis

This thesis is organized in six chapters. The layout is as follows:

In the present chapter, Chapter 1, the scientific context for this work, such as
fundamental electrochemical aspects behind battery technology, is presented together
with reviews of previous work. In addition, limitations and in particular advantages of
Li-air batteries are critically evaluated. Lastly, we state clearly and comprehensively
the objectives of this work.

In Chapter 2, we formulate the mathematical model and derive the governing
equations of lithium transport through the solid electrolyte based on the bulk free-
energy in it. The equation that describes the evolution of the surface is also derived

using interfacial energy and kinetics. Furthermore, an asymptotic analysis on the
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nearly flat electrode-electrolyte interface is performed, in order to find the dependence
of the elastic energy on the surface profile. Finally, the surface Green’s function is
numerically obtained and expressions for the displacement and the stress fields on two
semi-infinite linear-elastic solids, corresponding to the electrode-electrolyte domain,
are derived and verified with similar work in the literature.

In Chapter 3, results are presented on the surface evolution with and without the
effect of elastic prestress. In particular, a numerical code is built based on a suitable
finite difference scheme that enables the visualization of the surface evolution by time.

In Chapter 4, we develop a theoretical framework using the properties of Fourier
series to obtain a simplified version for the analytical expression of the elastic energy
change derived in Chapter 2. This analytical expression is verified with numerical
simulations performed in a finite element software, Abaqus FEA [2]. Results are
presented and demonstrate the validity of the theory.

In Chapter 5, we perform a stability analysis on the surface evolution equation
that was derived in Chapter 2, so as to examine the conditions that initiate dendrite
formation. We find the dependence of the critical wavenumber of the interface on
various parameters, such as surface diffusivities, interfacial energy, and the state of
prestress. The effects of these parameters are then quantified for a specific, lithium-
LIPON, material system by performing a parametric study, and a selected set of
numerical results is presented.

Finally, in Chapter 6, the conclusions of this thesis are outlined together with

possible directions for future work in the area.
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Chapter 2

Formulation of the Model -
Equation of Surface Evolution

In this chapter, we wish to formulate the governing equations of lithium transport
in the electrolyte region. The stress field and the effective chemical potential of the
electrolyte follow from the bulk free-energy density while conservation of mass, con-
servation of linear momentum, and charge balance provide us with the constitutive
equations for ion flux and electric current. Finally, the governing equations are re-

duced for the case of solid electrolyte, i.e., LIPON.

In parallel, we seek a continuum equation of motion for the evolution of an

electrode-electrolyte interface profile
T3 = h(Il,ZE27t) (21)

during the early stages of charge. In this representation, we assume the interface to be
shallow, thus representable as a graph, and we describe its profile by means of a height
function h. In so doing, we choose Cartesian axes such that (z1, z5) span the interface

and xj3 is transverse to it. The physical processes which are assumed to contribute
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to the growth are i) surface diffusion, capillarity-driven by particle exchange between
the anode and the electrolyte; ii) electrochemical deposition; and iii) energetic forces
associated with the elastic and electrostatic fields of the anode/substrate. We proceed
to formulate models for each of these processes in turn. Taking into account all these
mechanisms, conservation of mass will provide us with the equation of evolution of
the surface profile. An explicit expression for the dependence of the elastic energy on

this surface profile is derived by recourse to an asymptotic analysis.

As part of the stability analysis, we also compute the surface Green’s function,
which allows the evaluation of the displacements that express the deviation from
flatness. Lastly, we present results that verify the displacement and the stress fields

of this electrode-electrolyte bimaterial domain.

2.1 Bulk Free-Energy and Lithium Transport through

Electrolyte

For definiteness, we take lithium phosphorus oxynitride (LisPO4N) [12,13,32,106,111],
a solid-state electrolyte which is far safer against other conventional liquid lammable
electrolytes that were being widely used in the past in lithium ion batteries. LIPON
is considered to be one of the most promising electrolyte enhanced materials (demon-
strated thousands of cycles) due to its stability when attached to lithium surfaces and
sufficient ionic conductivity (~ 2 - 1075 [S/cm] at room temperature). Amorphous

LIPON films are being composed by sputtering LIPO (LizPOy) in pure nitrogen (Ny)
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and its mechanical characterization is reported in the work of [47] using nanoinden-

tation techniques.

We then consider the following bulk free-energy per unit volume in the electrolyte:

1 . Sl . S
Ale, T, ¢, ) = Scijuleij — € — ?5@')(%1 ok )
€ V|?
+ §|V<,0|2 + 2y Fovic+ z_Fov_c+e(p,i ¢,; —%&j)eij (2.2)

+ ppe+ VRT(log(ficﬁ) —1)c,
0

where c;jx; are the elastic moduli, €; is prescribed pre-strain, €2 is the partial molar
volume of ion dissolved in the solid electrolyte [m3/mol], c is the salt concentration
given by ¢ = %(CJF + c_), where ¢, = v,c and ¢ = v_c are the concentration of
the positive/negative ions (in our case, negatively charged immobile vacancies) and
vi(v = vy + v_) are the numbers of cations/ions into which a mole of electrolyte
dissociates, ¢y is a reference ion concentration [mol/m?], ¢ is the electric permittivity
[F/m,F = J/V? = C?/J = Farad], ¢ is the local electrostatic potential [V], 2z
is the charge number per ion (dimensionless), F' is Faraday’s constant [F = 96487
[C/mol],C = Coulomb], ¥ is the ideal chemical potential per mole of salt in the
electrolyte [J/mol], R = 8.314462175 [J/(molK)] is the ideal gas constant, T' the
absolute temperature [K], and fY (fY = fi7f7) is the activity coefficient (dimen-
sionless). The bulk free-energy density (2.2) accounts for the elastic field, including
the effect of swelling due to an ion concentration and a pre-strain; the electrostatic
field, including coupling to the charged lithium ions and the coupling between the elec-

trostatic and the elastic fields; and the entropy of mixing of the intercalated lithium
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ions. Note here that the bulk free-energy can be simplified, without any significant
loss of accuracy, if the terms that are being multiplied by the electric permittivity

of LIPON (g ~ 1077 [F//m]) [62] are considered to be negligible compared to the rest.

In addition, the total concentration of the electrolyte is given by

cr = Zci, (2.3)

where the sum is over all species ¢ in solution. In the case of a binary salt in a single
solvent, i takes values from 1 to 3 (or o, +, -), since the mixture consists of one solvent

(0) and two ions (+, -).

The stress follows from the free-energy density (2.2) as

4
862‘]'

. Vl|?

Qc
= Cijri(€p — €5y — ?5141) + (@i 0y ———

] (2.4)

Uij =
This expression accounts for the swelling due to the intercalating lithium ions
and the coupling between the elastic and the electrostatic field through the Maxwell

stress.

The effective chemical potential [J/mol| of the electrolyte follows as

DA c
WE = 50 = Ve v = g +vRT log(f2 =) = Op, (2.5)

where

py = vypio s + v_pio + RTlog ((v4)"* (v-)") (2.6)
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is the ideal chemical potential,

P = 30kk (2.7)

is the hydrostatic stress, and u.,u_ are chemical potentials of the ions defined as

follows:

c

iy = po4 + RT 10g(f+0—2) —Qp+ Fzip (2.8)

p— = po— + RT log(f_cc;) —Q_p+ Fz_p. (2.9)
0

Note here that while the individual chemical potentials of the cations and anions,
respectively, account for the electrostatic field, this effect is absent in the consideration

of the effective chemical potential due to the charge neutrality of the salt, i.e.,

vizy +v_z_ =0. (2.10)

We also note that the chemical potential (2.5) accounts for the coupling of the elastic

field through the pressure.

We progress by setting up the general governing equations of lithium transport in
the electrolyte region. A similar analysis can be found in the work of [14,29-31, 59—
61,86,87,93]. Finally, we solve for the concentration and potential profile specifically

for the case of a solid electrolyte, LIPON.

Initially, conservation of mass demands that
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3C+
—_— . = 2.11

where ¢, is the concentration of Li™ [mol/m?] and J . the vector flux of Li, in moles

per unit time per unit area, through the electrolyte.

As a second governing equation, charge balance is considered in the following

form:

00
ot

+V-i=0, (2.12)

where % is the total current density [A/m?| and g, is the charge density [C'/m?]. Due

to charge neutrality in the salt, the charge density always sums up to zero, i.e.,

Oc = z4Cp +2_c_ =0, (2.13)

In order to complete the formulation, conservation of linear momentum requires

that

V.o =0. (2.14)

The constitutive relations for the fluxes are derived from the governing equations
in the electrolyte, that have been formulated earlier. More specifically, we start with
the constitutive equation for the ion flux. This equation appears in the following
form:

t
J+ = —C+M(C+)VME + —+'L7 (215)
Z+F
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where

D

M(cy) = T

fler) = Mof(eq) (2.16)

is the mobility coefficient [m?mol/(s.J)], concentration dependent, of lithium through
the lattice, D is the diffusion coefficient [m?/s], and finally the function f is defined

as follows:

1— = , for solid electrolyte
~+,max

fley) =

T , for aqueous electrolyte.

veo
This implies that in the case that all the solid electrolyte lattice sites are occupied by
lithium ions, i.e., ¢4 = €y e, the mobility coefficient drops down to zero. As noted
in the literature [16], it never takes the value zero but in such case it is a couple of

orders of magnitude less than its original value.

Completing the formulation, we finally consider the constitutive equation for the

electric current to follow as

. Kt_ E
= — — 2.17

where r is the conductance [A/(Vm)] and ¢,,t_ are transference number of ions
(t+ + t, - 1)

So far, the formulation of transport in the electrolyte is general and valid for all
models of electrolyte material. In case of a solid electrolyte, e.g., LIPON, the concen-

tration gradients are negligible in the bulk of the material since the concentration of
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the Lit remains constant through the electrolyte. Therefore, mass and charge balance
(2.11) and (2.12) reduces to

Ap =0, (2.18)

that is, the potential satisfies Laplace’s equation in a region of uniform composition.

This result is consistent with the literature [75].

Applying the following boundary conditions for the electrostatic potential ¢,

o at 3 =0= ¢(0) =0(V)

e at x3 =L = ¢(L) =2(V),

we obtain a linear response of the potential as a function of the x3 variable from

equation (2.18).

2.2 Electrode-Electrolyte Interface Energy and Ki-
netics

Next we consider the kinetics of the electrode-electrolyte interface growth resulting
from interfacial mass transport. We suppose that the kinetics of the interface is
governed by three main mechanisms: i) interfacial diffusion; ii) electrochemical depo-
sition; and iii) the chemical potential resulting from interfacial and bulk free-energies,
including the coupling to the elastic field. We proceed to consider these contributions

in turn.
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We assume the interfacial mass flux j,, of Li* to be of the form

3, =—V(D:ih + D,V?h), (2.19)

where V denotes the in-plane gradient and D; [m?/s] and Dy [m?/s] are surface
diffusivities. The first term in (2.19) accounts for Mullins diffusion by particle ex-
change between the electrode and the electrolyte, whereas the second term models

Herring-Mullins capillarity-driven interfacial diffusion [7,48, 58, 73].

We additionally assume the mass flux j,, of Li* from the electrolyte to the elec-
trode, in units of moles per unit time per unit area, to be governed by diffusion
controlled adsorption and by a linear kinetic equation of the form

_ Kdp® — g

im= o 8, (220)

where pf is given by (2.5), uj3 is the ideal chemical potential per mole [J/mol] of
Li in the solid electrode, d is the atomic interplanar distance in the solid electrode,
and K [1/s] is an equilibrium exchange rate coefficient for mass transfer between the

electrolyte and the electrode.

The above equation (2.20) is the linearized version of the Butler-Volmer (B-V)
equation, which is usually used in the literature [60] to describe the transport of
ions across the interface. The ionic current density follows from the Butler-Volmer

approach as
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lion = io{%}?(%%) - ewp( - O;—:,]Tns> } (2.21)

where i is the concentration of Li* dependent exchange current density [A/m?] which
is an interfacial property and should not be confused with the charging current density,
a, and . are the anodic and cathodic transfer coefficients, respectively (dimension-

less, a, + a. = 1), and 7 is the surface overpotential [V] given by

E S
s E_H TH
=5 — , 2.22
n Z+F ( )

where the label E refers to the electrolyte and the label S refers to the solid electrode.
Finally, for small values of ratio i;,,/io (< 0.4) the B-V equation can be linearized,

without any significant loss of accuracy, as follows from (2.20) where

(2.23)

Lastly, we account for deposition driven by the energetics of the interface and the
electrode-electrolyte system. In order to identify the corresponding driving force, we
begin by noting that the free-energy F[h| of the system per unit area of the interface at
equilibrium depends, parametrically, on the interface profile function h(xy, xs,t). The

corresponding chemical potential density [J/m?] is given by the functional derivative

SE
= (2.24)
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Assuming linear kinetics, the corresponding mass deposition rate jj, in units of
moles per unit time per unit area, is proportional to uy, i.e.,
Kd KdoE

“RT™ = TR oh (22

Jh =

Taking into account all the mechanisms of mass transport just described gives the

equation of evolution for the surface profile
—+V-jp = Qjm + Jn), (2.26)

or

oh

oh _ s o QKdSE
ot

Kd
2 2 ey o e

This equation describes the evolution of the surface profile function. In order
to complete the definition of the governing equations, an explicit expression for the
dependence of E on h is required. This dependence is derived later, section 2.4, by

recourse to an asymptotic analysis [40,41,96].

2.3 List of Key Assumptions

The mathematical model developed so far is based on some key assumptions. All

these assumptions are listed below:

e The terms in the equation of bulk free-energy, equation (2.2), that account for

the electrostatic field and the coupling between the electrostatic and the elastic
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fields, can be neglected. This assumption is valid in the case that the electric
permittivity € of the electrolyte takes really small values compared to the rest

quantities.
e Charge neutrality of the salt is assumed

e The concentration of the Li™ remains constant in the case of a solid electrolyte,

e.g., LIPON

e The Butler-Volmer (B-V) equation can be linearized and take the form of equa-

tion (2.20) for small values of ratio i;,, /0.

e The dependence of E on h is found by assuming an interface that is shallow

and nearly flat

2.4 The Nearly Flat Electrode-Electrolyte Inter-

face

We wish to estimate the dependence of the free-energy of an idealized electrode-
electrolyte system on a possibly non-planar profile {3 = h(xy, z2,t)} of the interface.
We derive this estimate asymptotically in the limit of a shallow, or nearly flat in-
terface. Conveniently, this asymptotic limit suffices to establish the linear stability
properties of a planar interface, which is the main focus of the present work.

Since we are only interested in the local behavior of the interface, we may idealize

the domain of the electrolyte as being {h(z1,z2,t) < x3 < +00}, and the domain of
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the Li electrode as being {—oco < x5 < h(z1,22,t)}, c.f., Fig. 2.1.

X3

Figure 2.1: Electrolyte (E)-electode (S) domain and area projection on the plane.

Next let us consider the function, g, as follows:

g(x1, 29, x3,1) = x3 — h(x1, 29, 1). (2.28)

Then, to leading order in |Vh/|, the corresponding unit normal to the interface is

given by

dg dg dg

g el
8561 8902

n = Vg €3 = (_h,l ) _h72 ) 1), (229)

where e; is the standard basis.



29

Whereas the element of area is

1
dA ~ (1 + §|Vh|2) dxidxs.

(2.30)

From this latter identity, the interfacial energy differential with respect to the

planar interface follows to leading order as
int _ Y 2

where v is the interfacial energy per unit area.

(2.31)

In addition to the concentration and electrostatic fields, that were defined previ-

ously in section 2.1, the planar interface carries along an elastic field. We specifically

assume a piecewise uniform and equilibrated prestrain field €;;(x, ) and residual stress

field o7 (@,t) at zero Lit concentration. As a result, in the planar frame, we have

* _ *xB

* %5

* E *FE _ _xF

* S xS __ xS

xF *S —

(2.32a)
(2.32b)
(2.32¢)
(2.32d)

(2.32¢)

Thus, for the planar interface the elastic field consists of equilibrated constant

residual stresses o’F and o7 in the electrolyte and the solid electrode, respectively.

ij ij
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satisfies the problem,

o8 (u) =0, x3 < h(@1, 2,1),
0573'(”) — O, xr3 > h(x17$2>t)7

T3 = h(l’l, Z9, t),

u; — 0, T3 — £00,

O—zsj(u’) = ijklegl(u)

‘75(“) = CgkzekEz(u)-

In order to fix the geometry, we introduce the change of variables

ui(x1, 0o, 23, ) = v; (21, T2, w3 — h(x1, 22, 1), 1).

We have

Ui = Vi — Uz‘,sh,a )

U; 3 = Uy 3,

However, the deviation from the planar profile modifies the planar elastic field

(2.32) to leading order in |Vh|. The corresponding correction displacement field u

(2.33a)

(2.33b)

(2.33¢)

(2.33d)

where, here and subsequently, Greek indices take values in {1,2}, and we write

(2.34a)

(2.34b)

(2.35)

(2.36a)

(2.36b)
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or
Uij = Ui — Uigh,g ;s (2.37)
whence
1
€ij(u) = €5(v) — 5(%',356]' + v;,30p:) g (2.38)
and
0ij(u) = 0ij(v) = Cijrsveshs - (2.39)

In this representation, the equilibrium problem becomes, to first order,

o5 () =0, r3 <0, (2.40a)
ol (v) =0, x3 >0, (2.40Db)
oi5(v) — 075 h,g= o (v) — Jfﬁsh,ﬂ : x3 =0, (2.40c¢)
v; — 0, xr3 — £00. (2.40d)

The attendant change in elastic energy is (c.f., section 2.5 for a derivation based

on the Fourier transform)

1 / % * / /
Eela _ /R2 /R2 ész(w — @ )[[Jzﬁﬂ [[O-ké]]th (m)h,5 (w ) dx dx 5 (241)

where

[o7] = oiF —orf (2.42)

is the jump in the residual stress tensor at the interface, and G(x, ') is the interfacial
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Green’s function (c.f., section 2.6).

The total elastic energy differential with respect to the planar interface is

E[h] = E™[h] + B[] :/ %|Vh|2da:
R (2.43)

T /R2 /R2 %le(w — ') [[0':5]] lorslh,g (x)h,s (x') de da'.

Note here that the total elastic energy change vanishes for the case of planar interface,

ie., h,,=0.

The corresponding functional derivative in the equation of evolution (2.27) may

now be written explicitly as

@) = V@ - [ Gusle - o lloislhs @) dr'. (24

2.5 Elastic Energy of a Planar Interface

We wish to compute the energy of a planar interface {x3 = 0} separating two semi-
infinite linear-elastic solids and subject to prescribed tractions t, c.f., Fig. 2.2. This
derivation is based on the properties of the Fourier transform and the