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Extension theorems for functions of vanishing mean oscillation 

Peter J. Holden 

Department of Mathematics 

California Institute of Technology 

Abstract 

A locally integrable function is said to be of vanishing mean oscillation (V MO) 

if its mean oscillation over cubes in Rd converges to zero with the volume of the 

cubes. We establish necessary and sufficient conditions for a locally integrable func

tion defined on a bounded measurable set of positive measure to be the restriction 

to that set of a V MO function. 

We consider the similar extension problem pertaining to BMO(p) functions; 

that is, those V MO functions whose mean oscillation over any cube is O(p(L(Q))) 

where £( Q) is the length of Q and p is a positive, non-decreasing function with 

p(o+ ) = o. 

We apply these results to obtain sufficient conditions for a Blaschke sequence 

to be the zeros of an analytic BMO(p) function on the unit disc. 
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1. Introduction 

Let F be a locally integrable function on Rd and let Q be a cube in Rd with sides 

parallel to the axes. (We denote the set of all such cubes in Rd by CS'.) We denote 

the Lebesgue measure of Q by IQI and the length of Q by f(Q). We denote the 

average of F on Q by FQ ; that is FQ = ibi JQ F dt. We say F is of bounded mean 

oscillation (abbreviated EMO(R d) or simply EMO) if 

sup -1
1
1 r IF - FQ I < 00. 

QE~' Q JQ (1.1) 

We denote this supremum by llF!I* . II II* defines a norm on EMO and EMO 

is a Banach space with respect to this norm. (We identify functions which differ 

by a constant.) If in (1.1) we restrict the cubes to be dyadic we obtain the space 

dyadic-EMO. (By a dyadic cube we mean a cube of the form Q = {kj < Xj < 

(kj + 1)2-n; 1 ::; j ::; d} where n and kj, 1 ::; j ::; d, are integers .) The function 

space EMO was introduced in 1961 by John and Nirenberg [7] who proved the 

following fundamental theorem: 

Theorem 1.1 

Let F be a locally integrable function on Rd , and for each n E Z deflne: 

P:n (F) = inf { ~ : sup inf -
1
- J e>.IF - al < 2} 

,\ e(Q) ::; 2- n aER IQI Q 

Then, 

(1) F E EMO if and only if, 

(2) sup P:n (F) < oo . 
n E Z 
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The implication (2)=>(1) is straightforward while (1)=>(2) is obtained by means 

of a Calderon-Zygmund stopping time argument. (This result and other basic re-

sults on EMO can be found in [4] and [12].) 

A closed subspace of EMO that we will be mainly concerned with, is the space 

of functions of vanishing mean oscillation (V MO) which was introduced by Sarason 

in [ 11] and is defined as: 

. 1 1 VMO ={F E EMO: hm( sup -
1 

-

1 

IF - FQ I) 
0--+0 QE'Ji' Q Q 

l (Q) <8 

= O} 

Equivalently, by the theorem of John and Nirenberg, F E V MO if and only if 

FE EMO and limn--+oo fin (F) = 0. 

A bounded function p : R + --+ R + is called a growth function if p is non-

decreasing and satisfies p(o+ ) = 0. Furthermore, we will always assume p(2t) ::; 

2p(t).We define 

EMO(p)={F E VMO: sup I I t( ))f IF -FQ I < oo} 
Q E~' Q p £ Q Q 

We define p(t) = t J/ P~~) d8 and say pis regular if 3 C > 0 such that p(t) ::; Cp(t). 

If E is a Lebesgue measurable subset of Rd of positive measure (throughout 

we will always assume E has positive measure unless stated otherwise), we can ask 

for necessary and sufficient conditions for a locally integrable function defined on 

E to be the restriction to E of a function in EM 0 (Rd). This characterization was 

given by Wolff [14] and is based upon a technique due to Rubio de Francia [10] 

which generalizes Jones' factorization theorem for Ap -weights [8]. The main result 

of this dissertation is to obtain a similar characterization for V MO functions and 

this is the content of the following theorem: 
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Theorem I 

Let E be a bounded measurable subset of Rd and let f be a locally integrable 

function defined on E. For each n E Z defi.ne: 

µn(f) =inf { _!_ : sup inf -
1
- / e>- IJ-al < 2} 

). £(Q)s;2-n aER JQJ QnE 

Then the following are equivalent: 

( 1) f is the restriction of a V M 0 function on Rd to E 

(2) supnEZ µn(f) < oo and Iimn _, 00 µn(f) = 0 

The proof of this theorem consists of two parts. In the first part we obtain 

an extension to a function F which is a V MO function relative to a certain net of 

cubes (in particular, F will be in dyadic VMO(Rd)). We then obtain an extension 

for each translation of this net of cubes and the second part of the proof consists of 

averaging these extensions to obtain an extension to VMO(Rd). 

We also obtain a similar characterization for functions in BM 0 (p): 

Theorem II 

Let E be a bounded measurable subset of Rd. Let f be a locally integrable 

function defined on E and define µn (!) as in Theorem I. If p is a growth function 

satisfying : 

(2) inf t >O p(t) J log ti > 0 

(3) ::J ). > 1 such that for all m E Z and for all cubes Q,f(Q) < 2 - rn with 



0 < \Q n El < IQ!/>. we have 

inf p(2- n) I log \{x E Q n E: 
n > m 
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sup 
x E Q' 

t ( Q ') :::;2- n 

\Q'I >>.} \I> p(2- m)llog IQ n E\ I 
\Q' n E\ - IQI 

then f is the restriction to E of a function in BMO(P). In particular, if p 1s 

regular then f is the restriction to E of a function in BMO(p). 

Finally we examine some uniqueness properties of these extensions and consider 

various applications of the above results to Blaschke sequences and the zero sets of 

analytic BMO(p) functions on the unit disc . 

Throughout C will denote a positive constant which will be independent of 

the variables in the equation in which it occurs but which may be different at each 

occurrence. 
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2. Preliminary Results 

Let E be a measurable subset of Rd and let S' be a collection of cubes in Rd with 

Definition: 

(1) If Fis a locally integrable function on Rd, we define the maximal function 

of F relative to S' by 

(M~F)(x) = sup -
1

1

1 

J F dt 
X EQ Q Q 
QE~ 

for all x E Rd 

If S' = S'' , this is the usual Hardy-Littlewood maximal function. 

(2) If f is a locally integrable function on E, we define the maximal function 

of f relative to S' by 

Definition: 

(m~J)(x) = sup -
1

1

1 

J f dt 
XEQ Q QnE 
QE~ 

for all x E E. 

(1) Let w be a positive locally integrable function on E and let 1 < p < oo. We 

say w is an Ap (E)-weight relative to S' if 

< ()() (2.1) 

and we denote the collection of all such weights by Ap(E, S<). If E = Rd and S' = S'' 

we abbreviate Ap(E, S') by Ap and say w is an Ap-weight. 

(2) We say a positive locally integrable function w is an A 1 (E)-weight relative 

to S' if 
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We denote the collection of all such weights by A1(E,8'). 

We record some properties of Ap (E, 8')-weights in the following proposition 

Proposition 2.1 

1 

(i) If w E Ap(E,8') then w E Ar(E,8') for all r > p and (tJ-)v=T E A __E__ . 
p-1 

(iii) If w E Ap then F = log w E EMO. By the theorem of John and Nirenberg 

(Theorem 1.1), if F E EMO there exists {) > 0 such that e8F E Ap. 

(iv) We mention here the following result of Coifmann and Rochberg [3] : 

If F E Li0 c(Rd) and Mf(x) < oo a.e., then for each 0 < 8 < 1, (Mf) 8 E A 1 . 

(We prove a similar result in lemma 2.1 below ) . 

Definition: 

Let 1 < p < oo and let w E Ap(E, 8'). We say w satisfies a reverse Holder 

inequahty if there exists f. > 0 such that wl+c E Ap(E, 8'). 

Remark : If w E Ap then w satisfies a reverse Holder inequality with f. depending on 

p and the supremum in (2.1). This fact may be deduced from (2.1) by a repeated 

application of a Calderon-Zygmund stopping time argument. See [1], [9]. 

The next theorem is a variation of a theorem of Muckenhoupt [9]. The proof 

is the same and so will be omitted. 

Theorem 2.1 

Let 1 < p < oo and let w E Ap (E, 8'). If w satisfies a reverse Holder inequality then 
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there exists a constant C > 0 such that 

and 

p 
where q = -

p - 1 

(2.2) 

(2.3) 

By a theorem of Rubio de Francia [10] ,(2.2) and (2.3) imply that there exist w 1 , w 2 E 

A 1(E,8') such that w = w1w~ -p · We summarize what we need from the above in 

the following corollary 

Corollary 2.1 

If w E Az (E, 8') and w satisfies a reverse Holder ineq uality then there exist w 1 , w 2 E 

Az(E, 8') such that w = ~ · 

We are now in a position to give the EMO ex.tension theorem of Wolff [14] . 

Theorem 2.2 

If f is measurable on E, then the following are equivalent: 

( 1) f is the restriction of a BM 0 function on Rd to E 

(2) 3..\ > 0 such that 

sup _l_ f /lf - 1CJAE 1 f QnE f l < CXl 

QE~' IQI J QnE 

(3) 3 ..\ > 0 such that 

sup inf - e,\lf-a l 1 1 
QE~' aE R IQJ QnE 

<(X) 
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We give the proof as it provides one of the basic steps needed m provmg 

theorem I. 

Proof The equivalence of (2) and (3) are straightforward and the implication 

(1)=> (3) is similar to the proof of (1) => (2) in theorem I which we give in §3. 

(2)=> (1): (2) implies that w = e¥ E A 2 (E, 8-0 ) and satisfies a reverse Holder 

inequality. Hence by corollary 2.1, there exist w1,w2 E A 1 (E,8'o) such that w = 

e¥ = ~- Define Wi = M ;s1 (xE wi) t, i = 1, 2 . By Proposition 2.1 (iv), W1, W2 E 

m;s1(wi), a.e. on E, (i = 1,2), it follows that 3 g E L 00 (Rd),g > 0 such that 

~ = e '.:? a.e. on E. 

Define F = "f {log g + 2 log (Wi/W2)}. Then F = f a.e on E and by Proposi-

tion 2.1 (ii) and (iii), F E BMO(R d) . • 

Finally we prove 2 lemmas which are needed in the next section. The first is 

a variation of the theorem of Coifmann and Rochberg mentioned above whi le the 

second is based on lemma 2. 2 in [ 5]. 

For each k E Z we define 

Dk = {Q E 8'': Q dyadic, £(Q) = 2- k}. 

Lemma 2.1 

Let m, n E N with m > n and let 

S' = {Q : Q = LJ Qi and if£( Q) :::::; 2 - n then Q ~ Qn E Dn} 
Q;E D,,, 
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Then 

(1) Given Q E S', ::JC > 0 and Q1 E S' such that Q ~ Q1, IQ1 I :S CIQI and 

whenever Q2 E S' satisfies IQ2 n QI > 0 and IQ2 n Q~ I > 0 there exist Q3 E S' 

such that Q, Q2 ~ Q3 and jQ3I :S CIQ2I- (The constant C depends only on the 

dimension.) 

(2) \:/8, 0 < 8 < 1, 3 C s > 0, depending only on 8, such that 

Proof (1) If t'.(Q) 2 2- n then we take Q 1 to be that cube with the same center 

as Q and of length 3£( Q) . 

If t'.( Q) < 2- n then 3Qn E Dn with Q ~ Qn. If dist( Q, oQn) 2 t'.( Q) we can 

again take Q1 as above. In the remaining case it is not hard to see that there exists 

cubes {Qi} in S' satisfying IQ n Qil > 0 and !£(Q) :S t'.(Qi) :S 4t'.(Q) and such that 

if we take Q1 to be the completion of the Qi to a cube in S' then Q1 satisfies (1). 

(2) To prove (2) it suffices to show ::J C > 0 such that VQ E S', 

Fix Q E S' and let Q1 be as in (1) and let 91 = 9XQ
1 

, 92 = (1 - xQ
1

) 9 so that 

9 = 91 + 92· 

Claim: ibi JQ (M~9i) s dt :S C s infxEQ (M~9)s, i = 1, 2. 

Proof : i = 1: The weak-type estimate for the Hardy-Littlewood maximal function 

implies 
l 

I{ x E Q1: (M~91) s > >-} I :S C\Q1\ ( \
0

) 

6 
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where C depends only on the dimension and Ao = ( 
1
J

1 
I JQ

1 
g1 dt) 

8

. This implies 

! (M~g1) 8 dt :::; >.. o lQ1 I+ c >.. t IQ1 I r= >.. - t d>.. 
Qi j>..o 

~ c, c~. 1 1Q. g, dt r 
:::; c 5 (M~gi) 8 (x) Vx E Q1 

i = 2: Fix x E int(Q) .Then (1) of the lemma implies that whenever Q 2 E 8' contains 

This implies 

:::; C inf (Mc.sg) (y) 
y EQ 

1 ! 8 . 8 IQ[ Q (Mc.s g2) dt :::; C ;~~ (Mc.s g) (y) 

and this proves the claim in the case i = 2. (2) of the lemma now follows from the 

claim and the fact 

Lemma 2.2 

Let E be a measurable subset of the unit cube Q o with 0 < IE I < l. Then if 

o < {3 < log l / IE I, 3H E V MO(Qo), ll Hll * ::; Co s uch that : 

(1) 0 :::; H :::; {3, supp(H) ~ Q, H = {3 on E 

(2) supq,e(Q) 2 1 l~I f q H dt :::; Co. 

Proof W.l.o.g we may assume IE I :::; 2 - 4
d (otherwise we may take H to be con-

stant ). Let {Qi} be the maximal subcubes of Q for which IQ i n E l> ! /Qi /· For 
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each j ;:::: 1 choose nj so that 

[log L IQil[ > 2i[log IU Qil [ 
i?_nj 

and define di> = {Qi: nj :S i< nj+ i} so that LQEGU> IQI :S 4- ,BjdlQoJ where 

{Jj = 2i fJo , fJo = [ 2
1
d [log I U Qi I [] and [ ] denotes the greatest integer function. 

{ 
( ") },Bj 

For each j we now construct a sequence of generations G/ i= l as follows: 

( j ) ( ") 

(2) Suppose G i has been defined. For each Q E G/ let Q(k) denote that 

dyadic cube of length 2k£(Q) containing Q. Choose k minimal so that 

(j) . . { (k) (j)} 
We define Gi+ l to be the maximal cubes m Qr : Qr E Gi . We note that 

4 - d L { JQI: Q E G~J)-i- 1} :S L { JQ I : Q E G~;_, } 

:S 2 - d L { JQI : Q E G~:- i - 1} 

Now fix i, 1 :S i :S {Jj. Let G~i> = {Qk}~= l and we assume these cubes are 

indexed so that IQrl ;:::: JQs l whenever r < s. Let rk,i E C 00 satisfy 

(i) 0 :S rk,i :S 1, 

~ ~ 

(ii) rk,i = 1 on Qk,supp(rk,i) s;;; Qk where Qk denotes that cube with the same 

center as Q k and of length 3£( Q k). 

ork · 
(iii) \~ \:S C /£(Qk), V l :S l :S d. 

uxz 
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Now define Al ,i = r1 ,i 

and define b1,i = r1,i 

bk i = Tk i (1 - Ak- 1 i) 2 < k < N. 
' ' ' 

""!3 . "" U{ (j) } Define aj = L...i~ l L., QkEc'.il bk,i and note that aj = {3j on Qk: Qk E G 1 

a· 
We now define H = min(~= 2~ , f3o). • 

j ?'. 1 

Remark : Let min{£( Qi) : Qi E G~;J} = 2-n and let Q be a cube with£( Q) = 2 - m. 

Then for all m > n , 

Proof: For any xo E Q, 

Now I a:k ,i I :::; c / £(Qk) -this follows from the definition of the bk,i and the fact 
uxz 

I dAk,i I :::; C / R(Qk) which can be established by .induction. Furthermore there are 
dxz 

at most a fixed number of cubes in any G~i) which intersect Q. If Qk, is any such 

cube and Qk
2 

is a generation cube containing Qk, then for all x E Q n Qk2 

and hence 
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3. Proof of Theorem I 

Theorem I 

Let E be a bounded measurable subset of Rd and let f be a locally integrable 

function defined on E. For each n E Z define: 

µn(f) = inf { _!__: sup inf __!_ r e.\lf - al < 2} 
,\ f(Q)9 - n aER IQI J QnE 

Then the following are equivalent: 

( 1) f is the restriction of a V M 0 function on Rd to E 

(2) supnEZ µn(f) < 00 and limn__, 00 µn(f) = 0 

Proof Without loss of generality we will assume E is contained in the unit cube 

(1) =? (2): Let F E V MO with FxE = J and for each n E Z define 

Tin(F) = inf { _!__ : sup inf -
1- ( e.\IF -al < 2} 

A f(Q)::; 2-n aER IQI }Q 

< 2} 

llFl l*,n = sup -1

1
1 r IF- Fq l 

f(Q)::;2-" Q J Q 

Since FE EMO, :JC > 0 such that \In ~ 0, ll Fll *,n::; C and limn__,oo ll Fl l* ,n = 0. 

By Theorem (1.1), 3C1 > 0 such that whenever 0 < >.. < Ci/ llFl l,, ,n we have 

sup _1_ r e.\ IF - Fq I < 2 
e(Q):s: 2- .. IQ I }q 

Hence Tin* (F) ::; llF ll *,n/ C1. Since Tin (F) ::; Tin * (F) and µn (!) ::; Tin (F), it follows 

that µn (!) ::; C for n = 0, 1, 2,... and limn __, 00 µn (!) = 0 and this proves (1) =? 

(2). 
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Proof of (2) ==> (1): 

Part (i): Extension to dyadic-VMO. 

Let p be a bounded growth function satisfying p(2t) :S 2p(t), \::It > 0 and 

µn(f) :S p(2-n), \::In 2". 0. Then (2) implies there exists a sequence p,n}n>O' 

0 < >-n I oo such that 

and sup _l_ r e.A ,,l f - /qnE I < 2 
l(Q):=;2 - n IQI JQ n E 

Define a sequence nk ~ N by the condition p(z - n) :S 2 - k if and only if n 2". nk. To 

simplify the notation we will write Ak for Ank. Now define 

S'o = { Q : Q = LJ{ Qi : Qi E Do}} 

and for each k 2". 1 , 

S'k = { Q: Q = LJ{Qi: Qi E Dnk+i} and if £(Q) :S 2 -n, 

then 3Qk E Dnk s.t . Q ~ Qk} 

For each n = 0, 1, 2, ... we define f n = LQE D n f QnE XQ nE . 

Lemma 3.1 

There exists C > 0, depending only on the dimension, such that for all k 2". 0, 

(1) SUP ( -
1
- r eAk(fnk+l - j ,,k) ) (~ r e - Ak(j,.k+ I - j,.k) ) < c 

Q E"h+ 1 IQ \ JQnE \Q I J Qn E 

Proof Fix j E N 
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Claim: JC ·> 0 such that for all .A ::::; Af and for all Q, l'.(Q) 2: 2- ni, 

1 1 >.(!-Jn . ) 1 1 ->.(!-Jn . ) < C - e 1 - e 1 

IQI QnE IQI QnE -
(3.1) 

This implies 

This implies (3.1) since 

Now V.A S Af and VQ, l'.(Q) S 2 - n-;, Q ~ QJ E Dn, we are given 

_1_ r eA(f-fqnE) _l_ r e - A(f-fQnE) < C 
IQI J QnE IQI JQ nE -

and hence 

- e - e- < C 
( 1 1 >.j) ( 1 1 >.j) 

IQI Q n E IQI QnE -
(3.2) 

Note that if;' = 0, (3.2) holds for all Q and for all .A ::::; .A o. Now (3.2) implies 

that for all Q ~ Qi E Dn1 and for all >.. :S Af 

1 1 >. (! - fn .) 1 1 - >. (! - j,,.) < C - e 1 - e ' 
IQI QnE IQI Q n E 

(3.3) 

Since 
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(and similarly for -I 1 I { e - >..Unk + 1 - ink)) we see that (1) follows from (3 .1) and 
Q lQnE 

(3.3). 

Now (3.1) and (3.2) imply that V>..:::; >..o, \IQ with t(Q) ~ 1, 

_ e>..fo _ e->..fa < ( 11 )(11 ) IQI Q n E IQI QnE -

< _ e>..U-fo) _ e->..(f - fo) _ e>..f _ e->..f 
( 1 1 )( 1 1 )( 1 1 )( 1 1 ) - IQI Q n E IQI QnE IQI Q n E IQI Q n E 

< C. 

and this gives (2) which completes the proof of the lemma. 

To simplify the notation we set Mk(g) = M'<!k (g) and mk (g) = m '<! k (g) . Corollary 

2.1 implies the following : 

For each k = 0, 1, 2 ... there exist functions Uk, Vk such that 

(i) uo = exp (>..of o) 
Vo 2 

Now for each k = 0, 1, 2, ... and for each x E R d we define 

Uk(x) = Mk(XEUk)(x) 

and 
Uo = - wo 
Vo 

where 
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Hence, 

2 
+-- log wk 

).k - 1 

2 
and 4 ( Uo) ~ Jo = -log -

Ao Vo 
+ Ao log wo a.e. on E. 

Now lemma 2.1 (2) implies ::JC > 0 such that 

and so by Proposition 2.1 (ii),(~~)~ E A2(E,8''). 

Then, as in Proposition 2.1 (iii), we conclude that 

In particular since Uk, Vk are constant on dyadic cubes of length 2 - nk, we have 

log (Uk/Vk) Edyadic-V MO. 

Claim : For each k 2:: 0 Wk is the restriction to E of a function wk where log wk E 

dyadic-V MO. 

Proof :For each x EE let Qk(x) denote the dyadic cube of length 2 - nk containing 

x. If IQk(x) n El > 0, then 

and 

and hence 

IQk(x)I 
I log wk(x)I ::; log C + log JQk(x) n El 
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Now lemma 2.2 implies 3Hk(x) E VMO(Qk(x)) satisfying 

(i) llogwk(x) - Hk(x)I :::; C 

(ii) sup IQl I. r Jh(x) dt:::; Co 
£(Q)?_£(Qk) JQ 

We now define 
otherwise. 

It is easy to check Hk E dyadic- V MO with llHk II * :::; Co and I log Wk (x) - Hk(x) I :::; 

C, \Ix E E. This implies 3Rk(x) E L 00 (Rd) with llRk ll
00 

:::; Co and which is 

constant on dyadic cubes of length 2 - nk and satisfies Rk(x) = logwk(x) - Hk(x) 

a.e. on E. In particular, Rk E dyadic - V MO with ll Rkll * :::; Co, Vk . Since Hk is 

supported on finitely many cubes in Dnk the function Wk = exp(Rk + Hk) satisfies 

log Wk E dyadic - V MO, II log Wk ll* :::; Co and WkXE =wk a.e. and the claim now 

follows. 

Now define 

(3.4) 

I 

where Gk = 2log (Uk /Vk)2 and by >- -1 we mean Ao. Since Gk+Rk+Hk E dyadic -

V MO with II Gk+ Rk + Hk II* :::; Co and since Lk?_O Ak~i < oo, it follows that 

FE dyadic - V MO and llF ll *:::; Co 

Furthermore 

= f a.e. on E. 

Hence F is a dyadic-V M 0 extension of f. 
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Part (ii): Extension to non-dyadic V MO. 

Let Q0 denote the unit cube in R d. If a E Qo and Q is any cube we define 

(a) 

Q ={x+a:xEQ} 
( a) (a) 

S'n ={Q :QES'n}, 

( •xJ ( a) 

Dn = { Q : Q E Dn}, 

The proof of part (i) above applied to each net of dyadic cubes D!"J establishes 

the following : 

Vk :?: 0, Va E Qo, 
( <>) (o) 

3 functions Gk , H k such that 

( ,, ) ( 0) 

1) Gk (x - a) as a function of x belongs to dyadic-VMO, II Gk II. ::; Co and 

(a)• (.x) (") ( 
Gk 1s constant on cubes Q E Dnk. We can assume that the bounded functions 

( .. ) (•.•) 

Rk are included in the Gk . ) 

( ,, ) ( ,, ) (.,) 

2)0neachQk E Dnk ,IQk n El>O, 

a.k 
= min ' _ J_,_. 

( 

(·>J 

L 2J ' 
j ?'. l 

where 

(<>) . (o) (<>) [ 1 IQk(u) I l 
(3). = 2J (3 ) (3 < 1 

- 2d og I Q~") n E l 

and, 

) I (·» I (<> ) o d · h. (a) fJ(·» 3 If Qk n E = OthenHk = an mt 1scasewesetaj,k = = 0. 

4) If we define 

(<>) _ ' 1 ( ( a) (a)) F _L_.A_ Gk +Hk 
k ?'. O k- 1 

then F«•) (x - a) E dyadic - V MO and F(u) XE = f a.e. on E. 

We now define Vk :?: 0, J:?: 1 

1 (o) 

aj,k(x) = aj ,k (x) da , 
Cl'.EQo 
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J 
(a) 

/3j = /3j da.' 
. 0tEQo 

and Hk = min (La~·/ , f3k) 
J ~ l 

Lemma 3.2 

J 
( <>) 

Hk(x) = Hk (x) da. a.e. on E. 
0tEQo 

Proof The last statement in the lemma follows from the fact that Va. E Q0 , 

and so 

(<>) 

«•l < ~ aj,_k 
/3k - L 2J 

J ?'. 1 

a.e. on E 

To show Hk(x) E V MO, it suffices to show each aJ,k E V MO, ll aj,kll* ~ Co. 

(<') 

Fix k 2: 0, j 2: 1 and let E > 0. For each a. E Qo, aJ,k (x - a.), as a function of 

(<>) 

x, belongs to dyadic-V MO with ll aj,k (x - a.) II ~ ,dyadic ~ Co and furthermore on 

( ") (<>) ( ") ( ") 

each cube Qnk E Dnk , aj,k E V MO(Qnk ). Hence ::Jn°' E N such that whenever 

Q C Q (<>) d 0 (Q) h _ nk an {, < 2- n.,, we ave 

Choose N 1 E N so that the set 

has measure 2: (1 - E). 
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·., 

cube with 2 - (N+l )::::; f (Q) < 2-N and write 

( <> ) 
{3j 

a~.~~ = L L bz,i 

Then 

1 r (a ) (<>. ) 

IQ I J Q laj,k - a j ,k I ::::; Co and 

i = l G(J' , a ) 
i 

l(Q1)~l(Q) 

(a) 1 
la1 ,k (x)I ::::; log £(Q) ::::; C.N , 

Let S1 = {a E Qo : IQ n Q~:) I < IQI, VQ~:) E D~:)} and note that IS1 \ ::::; 

C \Q\2nkd. Hence 

::::; C E. 

Now 

!. ( 1 !. (•>) (n) ) - \a k - (a J k ) I dt 
Qo\(So USi) IQI Q 

1
' ' Q 

::::; CIQo\ (SoU Si) I::::; C E. 

Also 

da ::::; C I So I E ~ C E 
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and hence 

and it follows then that aj,k E VMO, llaj,kll * < Co and this completes the the 

proof of the lemma. 

Lemma 3.3 

Given n let Q be a cube of length ::; 2 - n and let k be such that nk ::; n < nk+l · 

Then for all x, y E Q 

( 1) I G j ( x) - G j (y) I ::; Ix - y 12n,;, V 0 ::; j ::; k. 

(2) l~ I I Q IGk+l - (Gk +dQI ::; c (n - nk) 2(nk - n) + c 

(3) Vj > k + 1, l~ I IQ IGj - (Gj)Q I ::; C. 

We first note that lemma 3.3 implies that the function L _!!_j_ E BMO(P). 
j ?_ O Aj-l 

Indeed, given Q as in the statement of the lemma, we have from (3) that 

_1 j I L _S_ - ( L _!!_j_) I ::; L _l j IGj - (Gj) QI 
/Q/ Q ·>k+1 >-i - 1 »k+1 >-i - 1 >k+1 /Q I Q >-1 - 1 

J _ J _ Q J _ 
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(1) and (2) imply, 

k 

:S: Clx - YI LP (2- ni-i) 2ni + C(n - nk)2(nk-n) p (2- nk) + C p (2 - nk) 
j=O 

k 

::::; c2-n LP (2- nj- l) (2nj - 2nj- l) + c 2nk- n(n - nk)P (2 - n) + Gp (2-n) 
j=O 

Proof of Lemma 3.3 

(1) Fix x, y E Q and for 0 ::=:; j ::=:; k, let 

I ,,) } 
withx,y E Q and note that 

C ( u ) (a) 
Claim: If O'. E Aj - 1 n Aj-1 then IGj (x) - Gj (Y) I::::; Co 

M (x u) 
Proof: Without loss of generality take a = 0. Recall G1 (x) = Jog J E 

1
), and 

Mj(XEVj 

whenever Q E CS1 contains x, 3Q' E C:Sj containing x and y with IQ'I ::::; C IQI. This 
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implies 

c 
Claim : If a E Aj- t then 

Proof: Again we can assume a = 0. Since [x - y[ < 2 - n1 whenever Q E S'j contains 

x, 3Q' E S'j containing both x and y and which satisfies 

From this it follows that 

and hence 

Similarly 

and hence 

Now fix j, 0 ~ j ~ k, and fix x, y E Q. If £ 2': j and a E Ai then [ G~"'l (x) -

( u) 

Gi (y) [= O 

This implies 

[Gj(x) - Gj(Y) [ ~ 1 c [ G~<> ) (x) - G~.'» (y) [ + J c [G~ 0 ) (x ) - G~.'» (y)[ 
°'EA1 n A_; - 1 °'EA_,._, 

~ C [x - y[2n7 and t his proves (1). 
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Proof of (2): Let Bk = {a E Qo : 3Q<"'> E D~:> with Q ~ Q< •» } and note that 

Claim: 
1 f I (<>) ( ( <> ) ) I If a E Bk then IQI Q Gk+l - Gk+l Q ~ C. 

Proof: 3Q' E 8'~
0

~ 1 containing Q and such that JQ'I ~ CIQI. Furthermore there 

exists aQ' E Rd such that 

This implies 

and the claim now follows. 

c 
Claim: If a E Bk then 

Proof : Without loss of generality we may assume a= 0. 

Recall, 

1 1 1 1 

Mk+1 (U : + 1) (x) ~ CU :+1 (x) where U :+1 = Mk+1 (xE U :+ J (x) 

Now if Q' E CS ~
0

~ 1 is that cu be of length 2 - nk containing Q, then 

I 

< C 2(n-nk)d Mk (U2 ) (x) - +1 k+l ' 

I 

< C 2(n - nk )d U 2 (x) V x E Q' 
k+I ' 
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This implies 

1 

and similarly for log Vk
2+1 and this establishes the claim. 

Now 

J 1 f 1 ( a ) ( (o) ) I J 1 f 1 (a) ( ( o ) ) I 

IQI G k + 1 - G k+1 Q da :S IQI G k+1 - G k + l Q da 
a:EQo Q o:EBk Q 

J i f 1 ( a ) ( (<x) ) I + o:E B~ IQI Q G k + 1 - G k + 1 Q da 

and this proves (2) . 

Proof of (3) : 

(o) d 
Fix j > k + 1, a E Qo. Then :3Q1 E ';Sj and aQ 1 E R such that 

This implies 

and hence (3) follows. 

This completes the proof of lemma 3.3 and theorem I. 

A consequence of theorem I which has useful applications is the following corol-

lary : 
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Corollary 3.1 

Let E 1, E 2 be measurable subsets of the unit cube in Rd and suppose there exists 

an increasing sequence of positive numbers {An} ~=O with An -----+ oo such that for 

each n EN and for each cube Q with £(Q) ~ 2- n we have 

Then there exists F E V MO, JJ F JJ* ~ C;.. 0 with F = 0 on Ei and F = 1 on E2. 

Proof Set E = E 1 U E 2 in theorem I and define 

if x E Ei 

and 

if log 1d~k1 2: A[tog 1/t (Q) ]+ 1 

otherwise. 
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4. Extension to BMO(p). 

4 .1 Proof of Theorem II 

The first part of the proof of ( 2)::::;:.. ( 1) in theorem I establishes the existence of 

a dyadic-V MO extension F of f which can be written in the following form : 

1 (0) (0 ) (0) 

where>.k ::;C p(2 - nk) andGk ,Hk E dyadic-VMO.ThefunctionsGk are 

(0) 

constant on dyadic cubes of length 2 - nk . The functions Hk were obtained from 

1 f I (0) (0) lemma 2.2 from which it is clear that for each k, sup -
1 

-

1 

Hk - (Hk )Q I 
€(Q):S;t Q Q 

as a function of t, depends only on the geometry of the set E. The hypothesis 

(3) in theorem II below provides a sufficient condition for the function L H k 

k ?_ O Ak - 1 

constructed in the proof of theorem I to be in BMO(P) for some specified growth 

function p. 

Theorem II 

Let E be a bounded measurable subset of Rd. Let f be a locally integrable 

function denned on E and define µn (!) as in Theorem I. If p is a growth function 

satisfying : 

(2) inft >o P(t) J logt J > 0 

(3) 3). > 1 such that for all m E Z and for all cubes Q, £( Q) < 2 - m with 

0 <IQ n El< IQI/>. we have 

inf p ( 2 - n) I log I { x E Q n E : 
n > m 

sup 
x EQ ' 

l(Q 1 ) ~2-n 

IQ'I > >.} 1\ > p(2 - m) llog IQ n El I 
IQ' n El - IQI 
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then f is the restriction to E of a function in BMO(P). In particular, if p 1s 

regular then f is the restriction to E of a function in BM 0 (p). 

Proof Without loss of generality we will assume E is contained in the unit cube 

Q 0 in Rd. It follows from theorem 1.1 that (1) is a necessary condition for f to be 

the restriction to E of a function in BMO(p). We also note that (1) is a sufficient 

condition for the function G = L >..Gk to belong to BMO(P). 
k ?_O k - l 

(<>) 

satisfy ll Hk II * S C log>.. on Qk. We assume then that 0 < IQk n El < IQkl / >..and 

for each n > m we define 

sup 
" EQ 

~(Q)~2 - n 

IQ n EI 
and En = {x EE: 8n(x) > >..} 

Let {Qi} be the maximal dyadic subcubes of Qk with respect to the property 

I Qi n E l > I Qi I/ >.. and note that if x E Qi n E for some i, then x E EJ for all 

nk S J S (log l / f(Q i )) - 1. This implies 

and hence 
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As in the proof of lemma 2.2, we can find C 00 functions {a~~~} which can be written 
(a) 

/3j 

as a<."'k> = ' ' bz i where each bz i is adapted to cubes of length 2:: 2-nk+i+ 1
• 1 , L L , , 

i = l c'..i ,a ) 
We then define 

( <>) 

H<"l = 'aj,k 
k L 2i 

j ~ l 

(4 .1) 

(a ) (<>) 

If IQk n El= 0 then we define Hk = aj ,k = 0. If IQk n El > IQkl / ..\, then we may 

( .,. ) (.>) 

choose the a . k to b e constant and bounded and so that Hk is given by (4.1) . 
J , 

We note then that in all cases there exists a constant C >.., depending only on 

(a) 

..\,such that laj ,k I ~ C ;... (nk+J· +1 - nk). As in the proof of theorem I , we set 

and 

I 
H(x) = L -..\ - Hk( x ), (..\ - 1 = ..\o) 

k>O k- 1 

It remains to show H E BMO(P) . Let Q b e any cube with 2 - n N+ 1 ~ l (Q) < 2 - nN 

and let 

N N - k-1 
1 (a · k) H1 = - - _J_,_ L Ak - 1 L 2J. 

k=O J = l 

where 

and define H 2 = H - H 1 . Lemma 2.2 (2) implies 

(4.2) 

and so H2 E BMO(P). 

If S = {a E Q o : Q ~ Qk E D~~> } 
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then by the remark after lemma 2.2, 

- 1-f. ia(.") - (a(.o)) I dt < c2nk+j+i-nN for all a E s IQI Q J,k J,k Q -

If a €/:. S, then 

Hence, 

1 !. I (o) ( o ) I n n - a . - (a . ) dt < C 2 k+ 1+ 1 
- N + C >.. (n k + ·+ 1 - n k) IS I IQI Q J,k J,k Q - J 

This implies 
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Combined with (4.2) we obtain 

The theorem now follows from the proof of theorem I. • 

4.2 Uniqueness of the BMO(p) extension 

Corollary 2.1 implies that the V MO extension is never unique. For BMO(p) we 

have the following : 

Theorem 4.1 

Let E be a measurable subset of Rd and p a growth function satisfying 

limsup(p(£(Q))logl IQI 
1

)=0 
IQ l--.o Q n E 

(4.3) 

Then whenever f E BMO(p) satisfies fxE = 0 we have f = 0 a.e. 

Proof : Without loss of generality we may assume f 2: 0. Suppose there exists 

E > 0 such that the set E 1 = { x E Q : f > E} has positive measure. For each /5 > 0, 

( 4.3) implies there exists n 0 such that, 

For any such Q, theorem 1.1 implies 

l{x E Q: If - /QI > ,\}I < Co IQl2 -c,>. /p(l!(Q)) 

and hence l!Q l::::; Co/5 ( 4.4) 

IQ n E1I 1 
For any n, 3 Q, £(Q) ::::; 2 - n such that IQ I > "2 and for any such Q, we have 

Jf QI > ~and this contradicts (4.4) for sufficiently small 15. 
2 
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Remark: 

1) Whenever E and p satisfy (4.2), the extension to a BMO(p) function will 

be linear. However we do not know if the EMO extension in theorem 2.2 or the 

V M 0 extension are linear. 

2) Given p, it is not difficult to find a set E satisfying ( 4.2). In the example 

below we obtain E as the complement of a Cantor set which is constructed using a 

variable ratio of dissection. 

Example : 

• • (0) 
It suffices to construct Eon the umt mterval J = [O, 1] in R. Fix NE N. 

We can find subintervals { 1; iJ} of J(o) which are of equal length and satisfy 

1) L 11;1) I= 2 - (N+l) 

2) J(") \ { i 1)}. h . f" 1 {J(l)} . f. (li 1)I) ( 1 )
2 

U J is t e umon o mterva s k sat1s ymg p k < N+ 3 . 

We proceed by induction 

{ 

(n)} ( n ) (n + l) 
Assume Jk have been defined. On each Jk we remove intervals 1) of equal 

length and satisfying 

(n) { (n+l)} { (n+l)} 
2) Jk \ U lJ is the union of intervals in Jk satisfying 

(k) 

We define E = LJJ,k lJ . Let 1 be an interval and suppose 

Then 
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=> log I II I I < N + n + 3 I n E -

=> P (III) log II ~IE I ::::; P( I J~n ) I) (N + n + 3) 

1 
< --
- N+n+3 

--t 0 as n --t oo 
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5. The zeros of analytic BMO(p) functions. 

The following definitions and notation will be used in the sequel: 

H 00 (D) = bounded analytic functions on the unit disc D = {z: lzl < l}. 

H 00 =boundary values of functions in H 00 (D). 
00 

A sequence { Zj} ;': 1 ~ D is called a Blaschke sequence if L ( 1 - I Zj I) < oo 

j = l 

and the corresponding analytic function 

B(z) = rroo bJ ( z - ~i ) 
z· 1-z·z 

j = l J . J 

is called a Blaschke product . 

For each z E D we define 

·a 1 
fz = {ei : IO - arg zl < -(1- lz l)} 

2 

Qz = {w: lw l;:::: lzl, 
1

:

1 

E Iz} 

A positive measure µ on D is called a Carleson measure if for each z E D, 

A Blaschke sequence { Zj} is called an interpolating sequence if for all 

{>..j} E l00 3F E H 00 (D) with F(zj) = Aj. Carleson's interpolation theorem (see 

[ 4] Chapter 7 ) states that { zJ} is an interpolating sequence if and only if 

(1) inf I Zj -=- Zk I > 0 
rfk 1 - ZjZk 

(2) _L(l - lzi l)ozi is a Carleson measure where Oz denotes the Dirac measure 

at z. 

We will also need the following characterization of BMO(p) on the unit circle, 

T = {z: izl = l} (see [11]) 

f E BMO(p) if and only if 
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1 

1) sup (!7r If - f(z) l2 dPz (o)) 
2 

::; C p(b) 
lzl > l - 8 -7r (5.1) 

where 

dP (0) = ~ 1 - lzl2 dO 
z 27f leie - zl2 

and 

or equivalently 

2) 3C > 0 such that Vzo E D 

(5.2) 

The purpose of this section is to establish sufficient conditions for a Blaschke se-

quence { zJ} to be the zeros of a function in H 00 (D) with boundary values in 

BMO(p) . Wolff [13] has shown that every Blaschke sequence are the zeros of a 

function in H 00 (D) with boundary values in V MO n L 00 and every subset of the 

unit circle is the zero set of a function in V MO . We note that this result follows 

directly from corollary 2.1 . 

The theorem that we will prove is the following : 

Theorem 5.1 

Let { zk} be an interpolating sequence in D and suppose p is a growth function 

with p 2 regular . If 3Co > 0 such that 

(5.3) 

then 3f E EMO (p) n H 00 with f( zk ) = 0 for all Zk. 
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We note that if Bis a Blaschke product, f E L1{T) and f(z) =fr f(O) dPz(O) 

then 

JT If B - f(z)B(z)l
2 

dPz (O) 

= l If- f{z)l
2 

dPz(O) + (1 - IB(z)l
2

) lf(z)l
2 

Hence if f E BMO(p) and if ::J C > 0 such that lzl > 1 - /5 implies 

then Bf E BMO(p). The proof of theorem 5.3 consists of obtaining a BMO(p) 

function f satisfying 

(5.4) 

and so that the Blaschke product with zeros Z k is sufficiently near to 1 when lf(z) / 

is large. 

Proof of Theorem 5.1 

We first show that if { zk} is a Blaschke sequence satisfying ( 5 .3), then there 

exists f E BMO(p) n H 00 satisfying (5.4) . Define a sequence {nk} ~ N by the 

condition p(2 - n) ~ 2-kp(l) if and only if n ~ nk. Then (5.3) implies 

Lemma 2.2 implies there exists 9k E C 00 satisfying 

and 

Set ~ 9k 
g = L..,, 22k 

k>O 
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By the remark after lemma 2.2, g E BMO(p2
) (see also the proof of theorem II ) 

and, 

Define 

f(z) = exp (- (g + ig)) 

where g is the conjugate function of g. (5.2) implies f E BMO(p 2
) and !f(zJ) I ~ 

C 2-k whenever lzJ I > 1 - 2-nk and this establishes (5.4). 

We note that f E BMO(a) where 

a(8) = sup \Q
1 I f I! - fq I satisfies 

f(Q)~8 J Q 

a(t) ~ p2 (t), a(2t) ~ 2a(t), Vt~ 0 

It will be convenient to work in the upper half plane Ri though we shall retain the 

same notation for f and B and note that BMO(p) is conformally invariant. 

If Q is a cube in Ri of the form Q = {(x,y): 0 < y < a}, we define the 

horizontal projection of Q to be the set 

Q* = Q n {(x,O): x ER} 

and the top-half of Q to be the set 

If z E Ri we set 

1 
T(Q) = {(x,y) E Q: y > -f(Q)}. 

2 

Imz } 
Q z = { ( x, y) : Ix - Re z I ~ -

2
- , y ~ Im z 

and Iz = Q: 
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Claim: If I z - ~j I < ~then lf(z) I::; Ca (l - lzl). 
Z - Zj 6 

Proof : It is clear we must have Ix - Xj I < 2yj and y < 2yj . Furthermore if 

Ix - Xj I < kYj then y 2: tYi . This implies 

which implies 

If (z) I ::; If (z) - h z I + lhz I 

::; c a ( 1 - I z I) + I h . - h z j I + I h 'i I 

::; C (a (1 - lzl) + a (l - lzi l)) 

::; Ca (l - lzl ) 

Hence in this case we have 

( 1 - IB(z)l 2
) lf(z)l 2

::; Ca (l - lzl). 

Now suppose inf I z - Zj I > ~
j z - Z j - 6 

In this case, the estimate I log ti ::; (1 + 21 log al) (1 - t) valid for a 2 < t < 1 implies 

Let A n = { zj : Ix - Zj l > 2n y}, n E Z and choose N so that 2 - N < a (l - lzl). 

Then, 

2= y y~ 2 = 2= y y~ 2 + 2= 2= y y~ 2 

k lz - z kl c lz-zkl > N+1 EA \ A lz -zkl 
Z k E AN n _ Zk n - 1 n 
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Now 

since { zk} is interpolating 

::; Co- (1 - lzl) 

Hence it remains to show 51 lf(z) I2 ::; Co- (1 - lzl). 

Let R = {(u,v): lu - xi::; 2PII l,O < v < 2P+1III} where I= Iz and where 

p is sufficiently large so that A~ <;;: R. Subdivide R into dyadic cubes and from 

the collection with one side a long the x-axis, we select those that are maximal 

with respect to the property of containing some Zj in their top half. We denote this 

collection of cubes by {Qi}. From each Qi, select a point Zj contained in T( Qi). To 

distinguish these points we will denote them by {wJ·}. Since {zj} is an interpolating 

sequence, we have for each Qi, 

Let Dn = { ( u, 0) : 2n-2 III ::; lu - x i < 2n-l III} and Jn = Uo::;k::;n+l Dk. 

Let n 1 be the smallest value of n for which there exists a Wj with Im Wj 2:: y and 

Furthermore 

n 1 - l 

lh - 1 J,., I ::; c I: It J k - hk+ l I 
k = O 
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n1 - l 

~ c I: a (IJk+1 I) 
k=O 

~ c 1~;1 I a (III) 

Similarly 

while 

If I < C II w1 I a (III) < C I Jn, I a (III) 1
"'.i - III - III 

and hence 

lf(z) I ~ C I ~;; I a (1 - lz l) 

Now there exists { nk} ~ N and C > 0 such that for all Wk, Im Wk 2:: y, 

Hence 

If (z) I 2 

~ Ca (1 - lzl), since f is bounded 

We now prove 

2 ~ y Im wk 
lf( z)I L 2 ~ Ca(l - lzl ) 

'"kEn lz - Wkl 

(5.5) 

l1u wk :"S; y 

1 
Let 8'1 = {w) : II w.J I <III' IIwj n I i::::: 2 IIwj i} 

1 
and 8'2 = {wJ: II w_;I <III, II w; nII < 2 IIw3i } 
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Cla£m : If S'1 i= 0, then 

(5.6) 

Proof : For each Wf E S'1, lh'" . I :::; a(IIwi I). Theorem 1.1 implies 
J 

now follows from theorem 1.1. 

The claim implies 

< 

:::; ca (III). 

Finally we consider the contribution from points in 8'2. 

sequence of points with the property IDm_; n I wk J > ~ J lwk J for some Wk E 8'2 

Cla£m 

Proof : Without loss of generality we may assume ID;.t:.
1 

n I wi I > ~Jlwi I where 

D;.t:,, = Dm, n { (x, 0) : x 2: O} Then the proof of the claim above implies 

Therefore, 

!h i:::; If v;t;, I+ lh - fJ,, , 1 I+ If v;;,
1 

- fJ,,, 1 I 



- 43 -

which establishes the claim. Hence 

where the second sum is taken over those Wj for which IDmk n Iw3 I > ~ 1Iw3 I 

~ c (a (II I)+ lh l) 
1112 2 

IJm,I 

~ Ca(III). 

Now (5.6) and (5. 7) imply (5.5) and this completes the proof of the theorem. 

(5.7) 
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