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Abstract

A locally integrable function is said to be of vanishing mean oscillation (V MO)
if its mean oscillation over cubes in R? converges to zero with the volume of the
cubes. We establish necessary and sufficient conditions for a locally integrable func-
tion defined on a bounded measurable set of positive measure to be the restriction
to that set of a VMO function.

We consider the similar extension problem pertaining to BMO(p) functions;
that is, those VMO functions whose mean oscillation over any cube is O(p(£(Q)))
where £(Q) is the length of @ and p is a positive, non-decreasing function with
p(0") =o0.

We apply these results to obtain sufficient conditions for a Blaschke sequence

to be the zeros of an analytic BMO(p) function on the unit disc.



Contents

Page

Aokt COBETIEIEE «smms e ssomns amm s wmeinesm s ee s us G EuY 6N AOEE AR BEN S (i)
BATIRAAEE i o o v 0 309 3 0 B 06 8 B 000 0 809 R B (iii)
1. ITErGEUEEION vu:s cunewmns iomisnanimni aMara By FARNIABRA EWSE CHSRERATF §HH 8 1
2. Preliminary fesulls s cmnscnms cmmeemsnt s mssenm st s s mm s me s s aims s issms 5
3. Proolof theorein [ (. opisnssinsimuninss insnsmesnsaannsamssamessnmnssusss 13
4. Extension to BMO[p] . cciinnscsusciunsnsrinssssnsssnssannranmnssnssds 28
5. The zeros of analytic BMO(p) functions ............ccoiiiiiiii.... 35

RICIETONEES = ot 0 @ SIS ShTDE Eew S s e 1 i ionEseta: e 1o tlebetssivelbstet o et o et ot et ot e S 44



1. Introduction

Let F be a locally integrable function on R? and let Q be a cube in R?® with sides
parallel to the axes. (We denote the set of all such cubes in R? by 3’.) We denote
the Lebesgue measure of Q by |Q| and the length of Q by £(Q). We denote the
average of F on Q by Fg ; that is Fg = ﬁ fQ F dt. We say F is of bounded mean

oscillation (abbreviated BMO(R?) or simply BMO) if

1
sup —/ |F— Fg| < oe. (1.1)
ees @l Jg
We denote this supremum by [|[F||, . || ||, defines a norm on BMO and BMO

is a Banach space with respect to this norm. (We identify functions which differ
by a constant.) If in (1.1) we restrict the cubes to be dyadic we obtain the space
dyadic-BMO. (By a dyadic cube we mean a cube of the form Q@ = {k; < z, <
(kj +1)27";1 < 5 < d} where n and k;,1 < j < d, are integers .) The function
space BMO was introduced in 1961 by John and Nirenberg [7] who proved the
following fundamental theorem:

Theorem 1.1

Let F be a locally integrable function on R? | and for each n € Z define:

1 1
B (F)=inf<~: sup inf —] 2 <9
( ) { A 0(Q)<2— " aER ‘QI Q

Then,
(1) F € BMO if and only if,

(2) sup 1, (F) < oo.
ncZz
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The implication (2):>(1) is straightforward while (1)=>(2) is obtained by means
of a Calderon-Zygmund stopping time argument. (This result and other basic re-
sults on BMO can be found in [4] and [12].)
A closed subspace of BMO that we will be mainly concerned with, is the space
of functions of vanishing mean oscillation (V M O) which was introduced by Sarason

n [11] and is defined as:

VMO = {F € BMO : hm sup |Q|/ |F — Fgl) =0}

959",
Equivalently, by the theorem of John and Nirenberg, FF € VMO if and only if
F € BMO and lim,_,c i, (F) = 0.
A bounded function p : Rt — R™ is called a growth function if p is non-

decreasing and satisfies p(0") = 0. Furthermore, we will always assume p(2t) <

2p(t).We define

BMO(p) ={F € VMO : sup
QES’ !QIP

/yF Fol <o)

We define p(t) = tft p(e df and say p is regular if 3C > 0 such that p(t) < Cp(t).

If E is a Lebesgue measurable subset of R? of positive measure (throughout
we will always assume F has positive measure unless stated otherwise), we can ask
for necessary and sufficient conditions for a locally integrable function defined on
E to be the restriction to E of a function in BMO(R?). This characterization was
given by Wolff [14] and is based upon a technique due to Rubio de Francia [10]
which generalizes Jones’ factorization theorem for A, -weights [8]. The main result
of this dissertation is to obtain a similar characterization for VMO functions and

this is the content of the following theorem:



Theorem I
Let E be a bounded measurable subset of R and let f be a locally integrable

function defined on E. For each n € Z define:

inf 1 inf Alf=al
n(f)=inf¢ —: sup inf — e <2
) { (Q)<2-ne€R Q] QNE

Then the following are equivalent:

(1) f is the restriction of a VMO function on R? to E
(2) sup,ez un(f) < 0o and limp oo un(f) =0

The proof of this theorem consists of two parts. In the first part we obtain
an extension to a function F which is a VMO function relative to a certain net of
cubes (in particular, F will be in dyadic VMO(R?)). We then obtain an extension
for each translation of this net of cubes and the second part of the proof consists of

averaging these extensions to obtain an extension to VMO(Rd).

We also obtain a similar characterization for functions in BMO(p):
Theorem 1I

Let E be a bounded measurable subset of R®. Let f be a locally integrable
function defined on E and define p,(f) as in Theorem I. If p is a growth function

satisfying :
(1) ua(f) < Cp2™), VnezZ
(2) infis0p(t)]logt]| > 0

(3) 3X > 1 such that for all m € Z and for all cubes Q,4(Q) < 2™ with



0<|QNE|<|Q|/X we have

lenm]
0g —————

ni;lg1 p(2 ™) |logl{z€ QNE: sup e o

zeq @' NE|

(Qlyge—n

>Aﬂ1zpw~m)

then f is the restriction to FE of a function in BMO(p). In particular, if p is

regular then f is the restriction to E of a function in BMO(p).

Finally we examine some uniqueness properties of these extensions and consider
various applications of the above results to Blaschke sequences and the zero sets of
analytic BMO(p) functions on the unit disc.

Throughout C will denote a positive constant which will be independent of
the variables in the equation in which it occurs but which may be different at each

occurrence.



2. Preliminary Results

Let E be a measurable subset of R% and let & be a collection of cubes in R¢ with
U{Q:Qes}=R?.

Definition:

(1) If F is a locally integrable function on R?, we define the maximal function

of F relative to & by

1
(Mg F)(z) = sup —|/ Fdt for all z € R?
TEQ Q
Qe

If & = ', this is the usual Hardy-Littlewood maximal function.

(2) If f is a locally integrable function on E, we define the maximal function

of f relative to & by

(maf)(z) = sup lla

fdt for all z € E.

Definition:

(1) Let w be a positive locally integrable function on E and let 1 < p < co. We

say w is an A, (FE)-weight relative to & if

1 p—1
1 1 1) 71
- dt — — dt :
4 (IQ! /W“’ ) (!Ql /w <w> ) = (2-1)

and we denote the collection of all such weights by A,(E,S). If E = R? and § = &’

we abbreviate A,(E, ) by A, and say w is an Ap-weight.

(2) We say a positive locally integrable function w is an A (FE)-weight relative

to & if

| / 1
sup o w dt) esssup, ——} < oo.
QeS { ( @Rl JonE €% w(z)
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We denote the collection of all such weights by A;(E,<).
We record some properties of A,(E, ¥)-weights in the following proposition
Proposition 2.1
() If we Ay(E,S) then w € A,(E,S) forall r>pand (£)77 €A o .
(i) If wi, w2 € A1(E,S) then wiws'™ P € A,(E,S) forall 1 <p < oo.

(iii) If w € A, then F = logw € BMO. By the theorem of John and Nirenberg

(Theorem 1.1), if F € BMO there exists é > 0 such that eF € A,,.

(iv) We mention here the following result of Coifmann and Rochberg (3] :

If F e L°(R?%) and Mf(z) < oo a.e., then foreach 0 < 6§ <1, (Mf)® € A;.

(We prove a similar result in lemma 2.1 below ).
Definition:

Let 1 < p < oo and let w € A,(E,S). We say w satisfies a reverse Holder

inequality if there exists € > 0 such that w!™c € A,(E,S).

Remark : If w € A, then w satisfies a reverse Holder inequality with € depending on
p and the supremum in (2.1). This fact may be deduced from (2.1) by a repeated

application of a Calderon-Zygmund stopping time argument. See [1], [9].

The next theorem is a variation of a theorem of Muckenhoupt [9]. The proof

is the same and so will be omitted.
Theorem 2.1

Let 1 < p < oo and let w € A,(E,S). If w satisfies a reverse Hélder inequality then
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there exists a constant C > 0 such that

[ matny was<c [ |1pws (2.2)

[ tms 0y (%)%dx <cf 1f|‘I($)%wdz (2.3)

and

Whereq:L
p—1

By a theorem of Rubio de Francia [10],(2.2) and (2.3) imply that there exist w;, w2 €
A1(E,S) such that w = wyw, . We summarize what we need from the above in
the following corollary
Corollary 2.1
If we Ay(E, ) and w satisfies a reverse Hélder inequality then there exist wy,wy €
A2(E,S) such that w = L1

We are now in a position to give the BMO extension theorem of Wolff [14].
Theorem 2.2
If f is measurable on E, then the following are equivalent:

(1) fis the restriction of a BMO function on R? to E

(2) 3X > 0 such that

sup == SV Jons Il < o
qes Q| JonE
(3) 93X > 0 such that
1
sup inf —— Ml <o

Qeg! aER Q| QNE
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We give the proof as it provides one of the basic steps needed in proving

theorem 1.

Proof The equivalence of (2) and (3) are straightforward and the implication

(1)= (3) is similar to the proof of (1)=> (2) in theorem I which we give in §3.

(2)= (1): (2) implies that w = e € A2(F, o) and satisfies a reverse Holder

inequality. Hence by corollary 2.1, there exist wy,w; € Ay (F, o) such that w =

AL
ez — %:‘j Define W; = Mg (XE wi)

=

, © =1,2. By Proposition 2.1 (iv), W;,W, €
Ay, fe. 3C > 0 such that Wi < Mes(W;) < CW; ,i = 1,2. Since Ma (x, wi) =
mes (w;), ae. on E, (i =1,2) , it follows that 3 g € Loo(R%),g > 0 such that
wi\?  wy
o(w) -

= €

g

S

W

a.e. on K.

Define F = % {log g + 2log (W1/W3)}. Then F = f a.e on E and by Proposi-
tion 2.1 (ii) and (iii), ¥ € BMO(R?). .

Finally we prove 2 lemmas which are needed in the next section. The first is
a variation of the theorem of Coifmann and Rochberg mentioned above while the

second is based on lemma 2.2 in [5].

For each k € Z we define
Dy = {Q € &' : Q dyadic , £(Q) = 27*}.

Lemma 2.1

Let m,n € N with m > n and let

- {Q :Q =, _p @iandif {(Q) <27" then QC Qn € Dn}



Then

(1) Given Q € $,3C > 0 and Q1 € & such that Q C Q1,|Q:| < C|Q| and
whenever Q, € & satisfies |Q2 N Q| > 0 and Q2N QS| > O there exist Qs € ¥
such that Q,Q2 C Q3 and |Qs| < C|Q2|. (The constant C depends only on the

dimension.)

(2) V6, 0 < 6 < 1,3 Cs > 0, depending only on é, such that
Mg ((Msg)®) () < Cs (Ms9)° ()

Proof (1) If £(Q) > 27" then we take @Q; to be that cube with the same center
as @ and of length 3£(Q).

If £(Q) < 27" then 3Q, € D, with Q C Q,. If dist(Q,8Q,) > £(Q) we can
again take @), as above. In the remaining case it is not hard to see that there exists
cubes {Qi} in & satisfying |Q N Q;| > 0 and %K(Q) < 2(Q;) < 4¢(Q) and such that
if we take @, to be the completion of the Q; to a cube in & then Q; satisfies (1).

(2) To prove (2) it suffices to show IC > 0 such that VQ € S,
L/ (Mag)® dt < Cs inf (Mag)® .

Fix Q € & and let Q1 be as in (1) and let g; = 9Xg, » 92 = (1- XQl)g so that
g =4g1+tg2.

. § . 5 .
Claim : IQ%I fQ (Mgg:)” dt < Csinfeq (Msg)®, 1 =1,2.
Proof : 1+ = 1: The weak-type estimate for the Hardy-Littlewood maximal function
implies

Ao

i{$ € Qs (Ms}gl)é = /\}l < C|Q| <7>%
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' 5
where C depends only on the dimension and Ag = (ﬁ le g1 dt) . This implies

3 oo
/ (Mag1)® dt < 2ol@1| + CA Q1] [ A~Hdx
1 Ao

1 6
< es (“‘— g1 dt)
Q1 Jo,
< e (Mag1)’ (z) VzeQ
< ¢s (Mgg)’ (z) Vze@Q
1 =2:Fixz € int(Q).Then (1) of the lemma implies that whenever Q2 € & contains

z and [supp(g2) N Q2| > 0, 3Q3 € ¥ satisfying Q1,Q2 C Q3 and |Qs| < C Q2.

This implies
(Mgg2) (z) < C inf (Mggs) (v)

yeQ
< C inf (M.
= yng( s9) (v)
1 § . §
% o= § {hE dt < C inf (M.
lQ\/Q( ag2)  dt < yng( s9)" (v)

and this proves the claim in the case ¢ = 2. (2) of the lemma now follows from the

claim and the fact
(Msg)® < Cs ((Msz‘gl)(S + (M9g2)6> 3 =

Lemma 2.2
Let E be a measurable subset of the unit cube Qo with 0 < |E| < 1. Then if
0<p<logl/|E|, 3H € VMO(Qo), ||H||, < Co such that :
(1) 0<H < B,supp(H) CQ,H=p onE
(2) suPq.e@)>1 g7 Jo H dt < Co.
Proof W.l.o.g we may assume |E| < 274 (otherwise we may take H to be con-

stant ). Let {Q;} be the maximal subcubes of @ for which |Q; N E| > {|Q;|. For
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each 7 > 1 choose n; so that

[log ) |Qil| > 2 [log |U @i

i>n;

and define G’ = {Qi:nj <i<nji1} so that ZQeG(f’ Q| < 4_ﬁjd‘Q0| where

B; =27Bo , Bo= [513|log |U Qil H and [ | denotes the greatest integer function.

. . 5 ﬁ
For each 7 we now construct a sequence of generations {GiJ } " as follows:
1=1
(7) (7)
(1) G =G

(2) Suppose G(ij) has been defined. For each Q € Gi-j) let Q(F) denote that

dyadic cube of length 2’“6(@) containing ). Choose k£ minimal so that
(4) N
> {lei:@iec, @i c@®} <27%QW)

5 ' . , .
We define Gi-;l to be the maximal cubes in {Q(rk) 3 4 o = G’;J) } We note that

) {|Q| Qe G‘ﬁi’*iml} <y {IQI Qe G;;)A;}

<274y {lQl:eqc,  ,}

: . )
Now fix 7, 1 <1 < ;. Let Gi] = {Q;,;}k]\]:1 and we assume these cubes are

indexed so that |Q,| > |Qs| whenever r < s. Let ri ; € C* satisfy
(i) 0<res <1,

(i) rx,i = 1 on Qk,supp(rk,) C ék where @k denotes that cube with the same

center as Qx and of length 3£(Qy).

Ork ;
< C/e VvV 1<4¢<d.
L < C/YQu), Y 1S1S

(iii) |



s T s

Now define A;; =11,
Arsg=Ap 15+ Phi~ThiAp-14 25 k%5 N,
and define by ; = ry;
bri=rps{l—Apqs) 2ZXkZN.
. N N
It is clear that Ay = > ;_, bk, and Ay =1 on UJ,_,Qx

Define a; = Zz~1 ZQ C(J) bx,; and note that a; = f; on | J{Qx : Qk € Gm}

We now define H = min(z 5;- 5 ,60). .
7>1

Remark : Let min{£(Q;) : Q; € Gm} = 27" and let @ be a cube with £(Q) = 27™.

Then for all m > n,

o1 L lei — @l <c 277

Proof : For any zo € Q,

B
1
T ACRUEOED DD DIy N USEWIES]
] L 2 el
QkEG;
b i ) s
Now l Bk (Qr) —this follows from the definition of the bx ; and the fact
z
OAk,i
' . - ’ < C/4(Qy) which can be established by induction. Furthermore there are

at most a fixed number of cubes in any Gi which intersect Q. If Q, is any such

cube and Qg, is a generation cube containing Qk, then for all z € Q N Qp,

UQr) Q)

|bk,i(z) — bk,i(z0)| < C 0Qx,) €(Qk,)

and hence

Y. 2. lQl/lb’” bi,i(mo)| < C 27,
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3. Proof of Theorem 1
Theorem I

Let E be a bounded measurable subset of R% and let f be a locally integrable

function defined on E. For each n € Z define:

ik 1
palf) = mf 4 — sup mf — Mf—al 29

Then the following are equivalent:

(1) f is the restriction of a VMO function on R? to E

(2) sup,cz fa(f) < 00 and limy, o0 pn(f) =0

Proof Without loss of generality we will assume E is contained in the unit cube
in RY.

(1) = (2): Let F' € VMO with Fx, = f and for each n € Z define

1
B, (F)=inf{ ~: sup inf — [ &F7e <2
A e(Q) 2—n a€eR

1
P, LF)=1nf4 —3: sup / ME-Fa| =9
(F) {/\ (@)<a-» Q]

F = F—F
1Pl =, 52 oy [ 1P~ Fal

Since F' € BMO, 3C > 0 such that Vn >0, [|[F||, , < C and limp—.o || F|], ,, = 0.

By Theorem (1.1), 3C; > 0 such that whenever 0 < A < C,/||F]|, ,, we have
sup

1
/e/\|F—FQ| e
w@)<2— 1@ Jg

Hence @, " (F) < ||F|l,,,/C1. Since i, (F) < 7," (F) and pn(f) < 7o (F), it follows

that p,(f) < C for n = 0,1,2,... and lim,—,00 pn(f) = 0 and this proves (1) =

(2).
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Proof of (2) = (1):
Part (i): Extension to dyadic-VMO.

Let p be a bounded growth function satisfying p(2t) < 2p(t), V¢t > 0 and
pn(f) < p(277"), Vn > 0. Then (2) implies there exists a sequence {An},,

0 < Ap T oo such that

1 1
— L ¢ (2* ) , Vn>0 and sup e)‘nff—fcenﬂ < 2
An w@y<2— 1Rl Jone

Define a sequence ny C N by the condition p(27 ") < 2=k if and only if n > nk. To

simplify the notation we will write Ax for A,,. Now define

={@:@=J{Qi: @i e Do}
and for each k£ > 1,

- {Q :Q=|J{Q:: Qi€ Dy, }andif £(Q) < 27™

then 3Qx € D, s.t. Q C Qk}

For each n = 0,1,2, ... we define f,, = ZQeDn fonEe Xong
Lemma 3.1

There exists C > 0, depending only on the dimension, such that for all k > 0,

(1) Sup (i\/ e)\k(f"k+1_fnk)) (L/ eAk(f“k‘fl_f"k)) < C
Qs \Q| JonEe Q| Jone -

1 1
(2) sup <—/ e’\“f“> (—/ e_A“f“> % @
QRESo IQ| QNE |Q| QNE

Proof Fix j&€ N



— 15—

Claim : 9C-> 0 such that for all A < A; and for all Q,£(Q) > 27"

i eA(f_fn]') L e_)‘(f_fnj) SC (3.1)
IQI QNE ,Q| QNE

Proof : Given Q,£(Q) > 27", JQ; € Dy, such that @ C |JQ; and }_ |Q;] < 2¢|Q].

This implies

1 AMi—fusl _ N 1@ (1/ /\Iffr)
Q| JonE Z |Q| Qil Jo.nE

< 1 / >‘|f fQ nD|>
IQ\ Qi Jong

This implies (3.1) since

1 1 1 2
A Af—fag) 1 e AI=Tn) < (V/ e>\1f~fnjl>
@l JonE Q| Jone Q| Jone

Now VA < A; and V@, £(Q) <27™, Q C Q; € Dy, we are given

1 e (f—fenk) L e~ Mf—fenE) £ @

Q] QNE Q| JonE

(84t Giour) e

Note that if j = 0, (3.2) holds for all @ and for all A < Ao. Now (3.2) implies

and hence

that for all @ C Q; € Dy, and for all A < A;

1 Mi—fa) L e M) < ¢ (3-3)
Q| Jonk 1Rl Jone

Since

.L/ e/\(fr'vk+1_fﬂk) = <L/ 62)\(ffu.k)>
Q| JonE ~“\|Q| JonE

W=
W)=

(L/ e—u(f—f,,Hl))
1Rl JgnE
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1
( and similarly for — e Mk _f"k)) we see that (1) follows from (3.1) and

1Ql Jone
(3.3).

Now (3.1) and (3.2) imply that VA < Ao, VQ with £(Q) > 1,

(S ) L)
< (01 fons ™™ )01 s ™™ )01 s ™ )01 S ™)

<C.

and this gives (2) which completes the proof of the lemma.

To simplify the notation we set My (g9) = Mg, (9) and mg(g) = mg,(g). Corollary

2.1 implies the following :

For each k£ = 0,1,2 ... there exist functions wug, vk such that
N U0 Ao
0 2= e (2h0)
. Uk Ak—l
(i) — =-exp (Fre — frney) ) VE=1,2, ...
Vg 2

(iii) mk(uk)§Cuk andmk(vk)g()’vk Yk =0,1,2, «..

Now for each kK = 0,1,2, ... and for each z € R? we define
Uk(z) = Mk(x gur)(z)

Vi(z) = Mi(x gvk)(z)

Ak— U
Then  exp (%(fnk e fnk,1)> = V—:wk, ke 162 5
A U
and exp <7ofo) = —V%U)Q

where wk(x)zﬂM Vk>0,Vz € E
ve mi(ug)(z) -



Hence,

frw = faoy =

NN
<)
o
P e
] ¢
=
S
(S
AL
)
0Q
g
e

1
4 Ug\?
and fo= —log <—O) + — log wo a.e. on K.

U\ 2
and so by Proposition 2.1 (ii), (‘—/ﬁ) € A (E, ).
k

Then, as in Proposition 2.1 (iii), we conclude that

(%) (=(2) <o

In particular since Uy, Vi are constant on dyadic cubes of length 27+ we have

),
sup —
QES IQI Q

log (Ux /Vi) €dyadic-V MO.

Claim : For each k > 0 wyg is the restriction to E of a function Wy where log W €
dyadic-VMO.

Proof :For each z € E let Qr(z) denote the dyadic cube of length 27" containing

z. If |Qr(z) N E| > 0, then

wr(z) < e i) o
and
(o) < G () (o)
and hence
|Q ()]
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Now lemma 2.2 implies 3Hj (z) € VMO(Qk(z)) satisfying
(i) |logwk(z) — Hy(z)| < C

1 ~
(ii) sup —/ Hi(z)dt < Cy
d@>e@n 1@ Jo

He if |Qulz) N E| 0

We now define Hy(#)] = {
0 otherwise.

It is easy to check Hy € dyadic—V MO with ||Hg||, < Co and | log wi(z) — Hi(z)| <
C, Yz € E. This implies 3Ri(z) € Loo(R%) with ||Rk||,, < Co and which is
constant on dyadic cubes of length 27" and satisfies Ri(z) = logwi(z) — Hi(z)
a.e. on E. In particular, Ry € dyadic — VMO with ||Rg||, < Co, Vk. Since Hy is
supported on finitely many cubes in D,, the function Wi = exp(Ry + Hi) satisfies
log Wi € dyadic — VMO, || logWg||, < Cy and WX p = wk a.e. and the claim now

follows.

Now define

. .
F = E (Gx + Rk + Hg) (3.4)
o Al

where G = 2log (U;C/Vk)% and by A_; we mean \g. Since Gk—f—Rk—}-Hk € dyadic—
VMO with |Gk + R + Hi||, < Co and since Zk>o,\i.1_—l < o0, it follows that
F € dyadic — VMO and || F||, < Co

Furthermore

o 2
Z L (Gx + Rr + Hg) Xg = Z (fnk+1 _fnk) 4= fis
k=0 k>0

=f a.e. onk.

Hence F is a dyadic-V MO extension of f.



Part (ii): Extension to non-dyadic VMO.

Let Qo denote the unit cube in R%. If & € Qo and Q is any cube we define

(u)

Q(a):{aﬂ—a:xEQ} —{Q : Q€ S}y

()

D" ={Q" :QeD,}, DV =D,
The proof of part (i) above applied to each net of dyadic cubes D' establishes

the following :

Vk >0, Va € Qqo, I functions G’;:) _ H,(cu) such that

1) G(,:) (z — «) as a function of z belongs to dyadic-VMO , ||G;:) |, < Co and

(o), (@) ) .
G is constant on cubes Q = € D;k . (We can assume that the bounded functions

(o) . . ()
R, are included in the G .)

2) On each @, € DY ,|Q, NE|>0,

() “

(o) . a]',]c ()
H, = min E o o] where ],k— E E b;; and,

j=>1 i=1 Giw o)

1 lQ(u)|
(o) oo () (o)
8" =28", 57 < [ﬁlog+

Qr N E|
3) It |Q, N E|=0then H,” =0 and in this case we set a, = '~ = 0.
4) If we define

(23 1 «@ (23
F(): <G;)+H;c))
Ak—1
k>0

then F(")(Jz—a) € dyadic — VMO and F(L’)XE =f a.e.on E.

We now define V& > 0, 5 > 1

(o)

G = [ Gl @da, ) = [ i) da
ac Qo x 0
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a as
B; :/ B, do, and Hy=min |y 2 g
: aEQo 2

j>1

Lemma 3.2

For all k>0, Hxe VMO, | Hg|, < Co and

Hk(z):/ . H;C")(x) da ae.on E.
acQo

Proof The last statement in the lemma follows from the fact that Vo € Qo,

(o)
() () a.
H, (z) = B, gZ;—;k a.e.on F
)21

and so

()

/ H,‘C'”(z)da:/ B da =g < > Uk
, 23
aE€EQo axEQo i>1

To show Hy(z) € VMO, it suffices to show each a;x € VMO, |a;k||, < Co.

. : (o) .
Fix K > 0,7 > 1 and let € > 0. For each a € Qo, ajk(z: — a), as a function of

z, belongs to dyadic-VMO with ||a;;l (z — a) < Co and furthermore on

*,dyadic

() ()

oy a;y € VMO(Q(,;)). Hence dn, € N such that whenever

each cube @, € D

ng

Q@ C Q(,;) and £(Q) < 27", we have

= lajn — (el <
Qf Jg "ok T Haklal =
Choose N; € N so that the set

(o)

1 o @
Spi= {a e Qo ¢ @ /Q |a;’}l - (aj,k)Q| < € whenever Q C Q(nk) and £(Q) < Z*Nl}

has measure > (1 — €).
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Choose N5 so that No2(me—N2)d « ¢ and let N > max(Ny, N2). Let @ be any

cube with 27 (V1) < ¢(Q) < 27V and write
(x)
Z b1
¢ anf.(ce)

Then

(uz () 1
- <Co and |a.,(z)|<log— <C.N, VzeR°
\Ql/' ° 95,1 (=) (Q)

Let S = {a € Qo : QN QL

VQM = an }  and note that  |S;| <

C|Q|2™<. Hence

[ (7 [ 15k~ gl da < Isii(e n -+ co

< o |gjpmed 2 o N, gV egned

< G'e.

Now

1 L) (o)
/Q \(SoUS) (@/Q \aj,k N (aj,k)th> da <
0 0 1
. o w (o)
<o us><@/cg‘af"’"“f”° IQi/ o~ @)l ) da

S 34 !QO\(SO U Sl)| S Ce.

Also

1 (o) (o)
1., Gar [y i~ isglac) do s csle < o
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and hence

ﬁ/ lag,ke — (aj,k)Q| < Ce whenever £(Q) <27V
Q

and it follows then that a;x € VMO, |la;k|, < Co and this completes the the

proof of the lemma.

Lemma 3.3
Given n let QQ be a cube of length < 27" and let k be such that ny <n < ngy;.
Then for all z,y € Q
(1) |Gi(z) — Gily)| € lz—y|2™, YO< i<k
1
2) 157 | [Gran = (Grrdgl £ € (= n) 2™~ 4.
Q

: 1
(@W>k+L|a[gQ—KMdSG

We first note that lemma 3.3 implies that the function Z
7>0 Jil
Indeed, given @ as in the statement of the lemma, we have from (3) that

e BMO(}).

vcz\/[gk; X1 (f; AG_> IS 2. !QI/ = S il



s O

(1) and (2) imply,

IG |Grt+1 — (Gret1) g
Z|Q|/ ]—1 |Q| / Ak _

<C|x—y|z ~Mi-1) 2% 4+ C(n — ny)2(m™) p(27™) + Cp(27™)

g o™ Zp Th-1) (2% — 2™ ) 4 C2™ M (n—ng)p (277) + Cp (277)

— Mg t2 2—m t

k 27 "j—1 1 9= ng p(t)
gcz*"Zp(z—"H)/ = dt + 2(m—m) —=dt+Cp(27™)
=0 =

k 2—11]'_1 2_")‘:
- p(t) p(t) —8
<02 E /2_ ~iz—dt+/_1 —t;dt +Cp(27")
]:O E ) 0

L
g p(t —n
< C2 / -%dt-%c,()(? )

Proof of Lemma 3.3

(1) Fix z,y € Q and for 0 < 5 < k, let

a) @) . o
Ay = {a € Qo : EQ( € D;j with z,y € Q( )} and note that

45 < C 2% |z —yl.

. c (o) (o)
Claim : If « € Aj_1NA;_, then |G, (z) -G,

5 (y)| < Cyp

MJ‘(XEU"]')
M]'(XE”J') ’
whenever € ¥ contains z, 3Q" € &; containing z and y with |Q'| < C |Q|. This

Proof : Without loss of generality take o = 0. Recall G;(z) = log and
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implies
M]'(XE’U,]')(:E) < CMj(XEuj)(y) and hence |G;(z) — G;(y)| < Co.

(a)

Claim : If o € A;—1 then |GJ. -

(z) - G\ (9)] < Clny —ny_1)
Proof : Again we can assume a = 0. Since |z —y| < 27™ whenever Q € $; contains

z, 3Q" € ¥, containing both z and y and which satisfies
Q) < £(Q) + 27 < £(Q)(1+ C2m )
From this it follows that
M; (x guj)(z) < (1+ C2M77 1 ) M; (x pus) (v)
and hence
log M (XEu]-)(x) < C(n]' — nj—l) + log M; (XEuj)(y)
Similarly
log M; (XEUJ')(QJ) < C(n; —nj-1) + log MJ'(XEUJ')(y)

and hence |Gj(z) — G,(y)| < C(n; —n;_1).

Now fix 7, 0 < 7 <k, and fix z,y € Q. If 1 > ;7 and o € A; then |G’;u) (z) —

This implies
(o)

65 -Gl < [ @ -6 Wl [ 16 @) -6 W)

c
a€EA;NA; €A,

IA

c {44
C(”J‘ - "J'*1)|A]‘-1| + CiAj NA;j_1]
< Clz —yl(n; —n;j—1)2""" + Clz —y|2™

< C|z—y|2™ and this proves (1).



B

Proof of (2): Let By _—_ {a€eQo: Q" e Di:c) with @ C Q(u)} and note that
|B,| < C2(nx—m)

Clasm : If a € By then — ‘Ql / ‘G’k+1 (Gk+1) ‘ L 0.

Proof : 3Q' € Jk+1 containing @ and such that |Q’| < C|Q|. Furthermore there

exists agr € R? such that

1 (a)
@71 J, 6 —eal <0

This implies

|Q‘ / IGk+1 G'Q' ‘Qlt/ IG;&:})—I_ C

and the claim now follows.

Clatm : If a € B; then

(x)
] / kaH k+1)Qy < C(n—ng) + Cy.

Proof : Without loss of generality we may assume a = 0.

Recall,
5 % 5 5
Mk+1(Uky+1>(z) < CU,q(z) where Up,, = Mk+1(XEUl€+1>(x)
Now if Q' € %:11 is that cube of length 27 ™ containing @, then

IQI/ 1 "Ilgi|<!5'1/ Uk'“dt)

< 02(n—nk’)de+1 (Uk+1)(27),

Wl

c2(n=mdyl (1), Vze Q'

IN
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This implies

1 3 : 3
@/;g(log Uyy) dt < ggg(l(’g Ug1(2))C (n — nk) + 1

dz < C(n—ng) + ey

‘Ql / ’}Q| / IOgU"“ —log Uk+1( z)

and similarly for log Vk+1 and this establishes the claim.

Now

(a) o
/GQ IQ| / ‘Gk+1 k+1)Q‘ _/eB 1Q| / ;Gk+1‘ k+1)Q’do‘
(e 0 & k
o™
# [ e ar LG~ (Gl gl e

< C|Bx| + C By (1 + (n — n))

< C + C 2 (n — ny)

and this proves (2) .

Proof of (3) :
Fix j > k + 1,0 € Qo. Then 3Q; € S, and ag, € R* such that

1
Q1]

This implies

()
|G, —ag,|<C and QC Qi @ <CIQ

1 / (a)
— G, —aqg,|<C
Q| Q’ i e

and hence (3) follows.

This completes the proof of lemma 3.3 and theorem I.

A consequence of theorem I which has useful applications is the following corol-

lary:
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Corollary 3.1
Let E., E, be measurable subsets of the unit cube in R® and suppose there exists

an increasing sequence of positive numbers {\,}.. , with X, — oo such that for

each n € N and for each cube Q with £(Q) < 2~ ™ we have

min |Q@ N E,| lQﬂEzl) g
( @ el )7

Then there exists F € VMO, ||F||, < Cy, with F=0o0n E; and F=1on E,.

Proof Set £ = F; U E, in theorem I and define

0 ifIIJEE‘l
1 ifze B,

and

; Q
iy = { 1 if log QnE] = Allog 1/£(Q)]+1

0 otherwise.
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4. Extension to BMO(p).
4.1 Proof of Theorem II

The first part of the proof of (2)=-(1) in theorem I establishes the existence of

a dyadic-V MO extension F of f which can be written in the following form :

0 1 (4] 0
F":ZA <G;€)+H,(c))
=0 k-1

1 0 o o
where = < Cp(2™™) and G, , H, ¢ dyadic— VMO. The functions Gy are
k

. (0) .
constant on dyadic cubes of length 27" | The functions Hko were obtained from

1 0
lemma 2.2 from which it is clear that for each k, sup —/ ’H,(CO) — (H,(C )> ‘
e@)<t|Ql Jg =

as a function of ¢, depends only on the geometry of the set .. The hypothesis

(3) in theorem II below provides a sufficient condition for the function Z ;) &
k—1
k>0
constructed in the proof of theorem I to be in BMO(p) for some specified growth

function p.
Theorem 11

Let E be a bounded measurable subset of R%. Let f be a locally integrable
function defined on E and define p,(f) as in Theorem I. If p is a growth function
satisfying :

(1) un(f) <Cp(27™), VnEZ

(2) infiso0 p(t)|logt| >0

(3) 3\ > 1 such that for all m € Z and for all cubes Q,£(Q) < 2™ with

0<|QNE|<|Q|/X we have

QN E|

o8 o]

_ Q']
inf p(27")|logl{z€e Q@NE: sup ———
n>mp( ) gl{ _’EGQI ‘QI mE‘

Hh)yge—n

>AH]Zp@*M)
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then f is the restriction to E of a function in BMO(p). In particular, if p is

regular then f is the restriction to E of a function in BMO(p).

Proof Without loss of generality we will assume F is contained in the unit cube
Qo in RZ. It follows from theorem 1.1 that (1) is a necessary condition for f to be

the restriction to F of a function in BMO(p). We also note that (1) is a sufficient

Gk

condition for the function G = Z X
T

k>0

to belong to BMO(p).

Fix a € Qo,k € N and let Q4 € D, . If |Qx N E| > |Qx|/A then H,  will
satisfy HH,(C) |, < C log XA on Qk. We assume then that 0 < |Qx N E| < |Qk|/A and

for each n > m we define

Q|
(z) Sup OnE| an {z€E (z) > A}
HQI<2—n

Let {Q;} be the maximal dyadic subcubes of Qx with respect to the property
|Q: N E| > |Q:|/A and note that if £ € Q; N E for some ¢, then z € E; for all

nkg <7 < (log1/£(Q;)) — 1. This implies

Yoo ld<x > QinE|

Q)2 2(Qi)<2—n

< AlE,|

1Qel = (24 10w 2l
T QN E|

o ez 12kl
p Cd( ~(a=7) L8 |anE|)

and hence

Z{‘Qz‘ . 2—n_.]-+k+1 S Z(Q1) & 2_nj+k} S 4~cd(2j log &%—m)
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: (@) : "
As in the proof of lemma 2.2 , we can find C*° functions {a]-,k } which can be written

(«)
B;
()

as a;, = Z Z bi; where each b;; is adapted to cubes of length > 27 "k+i+1,

1=1 G(..i-d)

We then deﬁnel

(4.1)

(a) ()
If [Qx N E| = 0 then we define Hy  =a;, =0.If |Qx N E| > [Qk|/A, then we may
choose the a;vu)l to be constant and bounded and so that H](cu) is given by (4.1) .
We note then that in all cases there exists a constant C), depending only on

(o) .
A, such that |a; | < Cx (nk4541 — nk) . As in the proof of theorem I, we set

B0l = / y 1" (2) da

and

H(z) =) Akl_lHk(x)’ (A1 = o)

It remains to show H € BMO(p). Let Q be any cube with 27"V+1 < ¢(Q) < 27"V

and let
N o, Nok-1oo . o
Hy = Z Z (L) where a; :/ ajuk do
k=0 Kt 7=1 2 aEQo
and define Hy = H — H;. Lemma 2.2 (2) implies
1 C
—— | Hodt < —/——
|Q|/Q 2% = 9N+1
<Cp(27")
<ci() (4.2)

and so H, € BMO(p).

If S:{aéQongQkED;ﬂk)}
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then by the remark after lemma 2.2,
e 10,(-”) — (a(-a)) ‘ dt < C2™+i+17™  forallae S
Q| Q 7k 5,k/Q =

If « ¢S, then

(o)
sup a7y (z) — a;y (4)] < Ca(nkrjpr — i)
z,yeQ

Hence,
L 6 — (@) | dt < © 2N 4 Oy (g — n)|S]
|Q| o 7,k k7@ = ANk +5+1 k
&5 O QT+ — NN + C)\(nk+3-+1 - nk)2nk_nN

& Oy 2R+ L Ty

This implies

/‘H H \dt<ciiN i( /1a‘” ot ‘dt>
Q) 1 1 £ g ~ ¥ Q|
N 1 N—k—1 1
< C)\ z = _](2"k+3+1—nN)
k=0 2 ]:1 2
N, N-k-1
SC)\ Z—k' _k(p (z_n])_p(2—n3+1)>2ﬂk+1+1—nN
k:O 2 j:] 2
N g—nn N—k-—1
< Gy Z s p (2‘"1’) (2nk+j+1 _ 2nk+i')
k=0 2 j=1
N _ N—k—1 2 kg
Ll (t)
-4 dt
> U kz_:o 2k ( e /2_,k+1.+1 t2
N 5 27"k
e p(t)
£, ;O 5 (/z_w 5 dt>
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Combined with (4.2) we obtain

1 / A
— H—-(H), dt<CptQ)).
‘Ql Q‘ Q’
The theorem now follows from the proof of theorem I. "

4.2 Uniqueness of the BMO(p) extension

Corollary 2.1 implies that the VMO extension is never unique. For BMO(p) we

have the following:
Theorem 4.1

Let E be a measurable subset of R® and p a growth function satisfying

. @\ _
11|r5'1|i11c)p <p (¢(Q)) log on E\) == {) (4.3)

Then whenever f € BMO(p) satisfies fxgp =0 we have f =0 a.e.

Proof : Without loss of generality we may assume f > 0. Suppose there exists
€ > 0 such that the set £y = {z € Q : f > ¢} has positive measure. For each § > 0,

(4.3) implies there exists ns such that,

QNE _ —n
% > 9790 D) v, K@) <27 n > ns

For any such @, theorem 1.1 implies

{z € Q:|f — fq| > A} < Co|Q[2™er}/P(4@)

and hence |fa]l < Coé (4.4)
NnE 1
For any n, 3Q, £(Q) < 27" such that ‘Qm—” > 5 and for any such @, we have

|fol > % and this contradicts (4.4) for sufficiently small 6.
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Remark :

1) Whenever E and p satisfy (4.2), the extension to a BMO(p) function will
be linear. However we do not know if the BMO extension in theorem 2.2 or the
V MO extension are linear.

2) Given p, it is not difficult to find a set E satisfying (4.2). In the example
below we obtain E as the complement of a Cantor set which is constructed using a
variable ratio of dissection.

Ezample :
Tt suffices to construct E on the unit interval J'" = [0,1] in R. Fix N € N.

We can find subintervals {I](-l)} of J'' which are of equal length and satisfy

L B —{

0 1 1 1 2
2) 7' )\{UI;- : } is the union of intervals {];c ) } satisfying p(]J;c ’ .) < (Nir?)) .

We proceed by induction
(n) (n) 4 (n )
Assume {Jk } have been defined. On each J;  we remove intervals Ly " of equal

length and satisfying

(n+1)

1) 2

2) J;c") \{ U I](-RH)} is the union of intervals in {J,(cnﬂ) } satisfying

(n)

| = 2= (Nnt2)| g,

p(17,7 ) < 1/(N 4 n +3)?

We define £ = Uj k I](.k) . Let I be an interval and suppose

(40}

(n)
e I <H[< [T |

|J}i:n+l) A E\
(n+1)\ l ‘

Then |INE|>
2 |J,



=

= log

p(|1]) log
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1]
<N 3
Trp SVt

Fhg <A D (V- t9)

<___—__
“ N+n+3

—0 as n — oo
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5. The zeros of analytic BMO(p) functions.
The following definitions and notation will be used in the sequel:

H* (D) = bounded analytic functions on the unit disc D = {z: |2| < 1}.
H® = boundary values of functions in H*°(D).

oo
A sequence {zj}?.;l C D is called a Blaschke sequence if Z (1= |2]) < o0

J=1
and the corresponding analytic function

ﬁ z2— 2z
i 1 —2g&
is called a Blaschke product.

For each z € D we define
: 1
I ={e?:|0 —argz| < 5(1 —|2)}

—{wziw}>|z| EI}

A positive measure u on D is called a Carleson measure if for each z € D,

122 (Qz) S C’O ’Iz|

A Blaschke sequence {z;} is called an interpolating sequence if for all
{Aj} € loo IF € H*°(D) with F(z;) = A;. Carleson’s interpolation theorem (see

| 4] Chapter 7 ) states that {z;} is an interpolating sequence if and only if

1) inf 5 Ek S0

JFk

1— 252

(2) >_(1 — |24])é2; is a Carleson measure where 6, denotes the Dirac measure

at z.
We will also need the following characterization of BMO(p) on the unit circle,
T ={z:|z| =1} (see [11])

f € BMO(p) if and only if



1) sup ’ |f — £(2)|* dP.(6) : < Cp(5) (5.1)
| o

z|>1-6
where
11—z
dP,(0) = - o0 _ z|2 dé
and
f(z) = f(e?)dP.(0)

or equivalently

2) 3C > 0 such that Vzo € D

/ VI )i dy < C 1o (5.2)
Q 20

The purpose of this section is to establish sufficient conditions for a Blaschke se-
quence {z;} to be the zeros of a function in H° (D) with boundary values in
BMO(p). Wolff [13] has shown that every Blaschke sequence are the zeros of a
function in H° (D) with boundary values in VMO N Ly, and every subset of the
unit circle is the zero set of a function in VMO . We note that this result follows
directly from corollary 2.1 .

The theorem that we will prove is the following :
Theorem 5.1

Let {zx} be an interpolating sequence in D and suppose p is a growth function

with p? regular . If 3Co > 0 such that

52
. T |
i Togales 2. (-lmD]=Co (5.3)
p(1—|z;|)<6

then 3f € BMO (p) N H® with f(zx) = 0 for all z.
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We note that if B is a Blaschke product, f € Li(T) and f(z) = [, f(0) dP.(6)

then
/T FB — [(:)B(2)|* dP.(0)

:/T;f—f(z)|2sz(9) + (1— \B(z)|2) £ (2)|?

Hence if f € BMO(p) and if 3C > 0 such that |z| > 1 — § implies
(1= 1BE)P) 17(2))* < € 2%(6)

then Bf € BMO(p). The proof of theorem 5.3 consists of obtaining a BMO(p)
function f satisfying

|f(26)| < Cp% (1 — |2k)) (5.4)

and so that the Blaschke product with zeros zj is sufficiently near to 1 when |f(2)]

is large.
Proof of Theorem 5.1

We first show that if {zx} is a Blaschke sequence satisfying (5.3), then there
exists f € BMO(p) N H satisfying (5.4). Define a sequence {nx} C N by the

condition p(27™) < 27%p(1) if and only if n > nk. Then (5.3) implies
Dol 2 < Iy | < 27 ) < 4Tt

Lemma 2.2 implies there exists gr € C° satisfying

gr = Ck2* on | J{I; 27 < || £ 27}

and || fxll., I /xll, < Co

gk
22k
k>0

Set g¢g=



38 —
By the remark after lemma 2.2, g € BMO(p?) (see also the proof of theorem II )

and,

g(t) > Ck on U $dp 53R 2 L I £ g™ ]
Define

f(2) = exp (— (g +19))

where g is the conjugate function of g. (5.2) implies f € BMO(p?) and |f(z;)] <
C 27F whenever |z;| > 1 — 27" and this establishes (5.4).

We note that f € BMO(o) where

1
o(6) = sup —/ \f — fo| satisfies
(<5 1@l Jg

o(t) < p*(t), o(2t) < 20(t), Vt >0
It will be convenient to work in the upper half plane Ri though we shall retain the
same notation for f and B and note that BMO(p) is conformally invariant.

If Q is a cube in R% of the form Q@ = {(z,y) :0 <y < a}, we define the

horizontal projection of @ to be the set

Q" =0Qn{(z,0):z€R}
and the top-half of Q to be the set
T(Q)={(z,y)eQ:y> %E(Q)}
If z € Ri we set
Q- = {(Qi,y) :lz —Rez| < Er—nzi, y < Imz}

and I, =Q,
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Claim : If |Z—2L| < = then |f(2)] < Co (1 — |2|).
z— By 6
Proof : It is clear we must have |:z; - a:j| < 2y; and y < 2y;. Furthermore if

e — @y %yj then y > %yj . This implies

1

5 1| < | L] <2 L]
which implies

1£(2)| < 1f(2) —

< Co(1—|2)) + |fr, = fr. |+ |f1.,|
<C(o(1—|z]) +o(1—|z])

<Co(l-|)
Hence in this case we have

(1 ~BE) ) 1) < Co (1 2.

— S

1
2 =
— 6

Now suppose inf
J

In this case, the estimate |logt| < (1 + 2|logal) (1 —¢) valid for a? <t < 1 implies

(1—|B )<CZ b

z—zk\

Z—ZJ

Let A, = {2z : |z — 2z;| > 2"y}, n € Z and choose N so that 27V < o (1 — |z]).
Then,

YYk Y Yk
I SR T S o

w1z — 2kl seas, 27 REN+1 k€A \An |2 — Zk|

=81 + 8,3, say



e )

Now Sz S Z Z 2gny:];2

n2N+1 Zf GAnwl\An

277,
<C Z (22—n> 2 since {zx} is interpolating
n>N+1
<Co(1l-z))

Hence it remains to show S;|f(2)|> < Co (1 — |2|).

Let R = {(u,v): |u—z| <2P|I]|,0 <v < 2PT|I|} where I = I, and where
p is sufficiently large so that A;\, C R. Subdivide R into dyadic cubes and from
the collection with one side along the z-axis, we select those that are maximal
with respect to the property of containing some z; in their top half.We denote this
collection of cubes by {Q,}. From each Q;, select a point z; contained in 7(Q;). To
distinguish these points we will denote them by {w;}. Since {z;} is an interpolating

sequence, we have for each Q;,

Z Y% o y Im wg

e 2 = .
ZrEQ; |Z_2k] |vak|

Let Dn = {(U,O) :277,—2 lI| S "U, - xl < 2n—1 II‘} and Jn = Uogksn+1 Dk~
Let ny be the smallest value of n for which there exists a w; with Imw; > y and

|z — Rew;| < 2™'|I|. Then,

1f(2)| < Co(1—|2)) + |f1 = fu.,|
b ey, — Fo, | 18, |
Furthermore

ng—1

1= fa., 1 <C D o = fas]
k=0



= ¢ i o (|Jk41l)
k=0
<c (Z ‘J[}ﬁ“) o (1)
k=0
<clmloqn
Similarly
1o, = Il < 0 Eloqiny
while
., < 0 5oy < 0 Bmlo )
and hence
lJnl[

@l < ekl
Now there exists {nx} C N and C > 0 such that for all wg, Imwy > y,

|Imwk| < C (‘Jnk.H’ - IJ"kD

Hence
1 Jn 1 J — |Jn
7 Y T < g 0 o Tl $ L (s ]
Iuﬁkeg ‘Z_wkl }C>O 1Jnk+l‘
wwy 2y
< Co(1—|z|), since f is bounded
We now prove
y Im wyg
f ¥, 5 £ Cal -2} (5.5)
wy ER |Z o wk|
Tw wy <y

Let S = {w;: |lu;| < I|, |[Tw, 1| > % |5 | }

and @y = {mwy: Lo | < 1],

1
< 5 ‘ij|}

iy



= 4D =

Claim : If &1 # 0, then

log

[f1l < Ca(|I]) (

Z;TLJ 2 1) . (5.6)

Proof : For each w; € Sy, |f1wji < 0(|1w,|). Theorem 1.1 implies
|f(t)] < C.maxg, 0(|1w,;|) on a subset of U{ij} of measure > %ZQIWJ.L (5.6)

now follows from theorem 1.1.

The claim implies

Imw;
@ Y

wjeg‘l |Z - w]i

M
ZS‘I llwll

log

< CU(III)(

) Z K HIw]

<co(lI).

Finally we consider the contribution from points in .
Let m; = min{n : Jw; € §3 with |Iy; N Dy| > +|1w,|} and let {m;} C N be that

sequence of points with the property |Dy; N Iy, | > 3|1w,| for some wi €

Claim :
3o | # [ By 1 B, | 2 5 1 an 2
}f})SC’O(]ﬂ){’log oy | = 1o | > 51w, |} +| |
1] 1]
Proof : Without loss of generality we may assume D} 0 Iy;| > %llwﬂ —

D} = Dy, n{(z,0): z > 0} Then the proof of the claim above implies

, 5 {1 ;] ¢ 1wy O D, | 2 21 [}

|fpz. | < Co (i) Jlo

1]

Therefore,

- f-]m,l l + |fD'+"1 - fJ”'l j

< |1pg, |+ ¢ Ezdo ()
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which establishes the claim. Hence

1P Y LY < (o (1) + 15 Y (Z t'_m_l)

— 2 3
w; € |2 — @] E>1 2 — |

where the second sum is taken over those w; for which |Dy,, N I, | > %|ij|

<c @)+ 1) = [ pys 2

7] et o]
12
<C (o () + 111 77—
<Co(|I]). (5.7)

Now (5.6) and (5.7) imply (5.5) and this completes the proof of the theorem.
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