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ABSTRACT

The important features of the two-dimensional incompressible
turbulent flow over a wavy surface of wavelength comparable with the-
boundary layer thickness are analyzed,

A turbulent field method using model eqguation for turbulent
shear stress similar to the scheme of Bradshaw, Ferriss and Atwell
(1967) is employed with suitable rﬁodiﬁcation to cover the viscous
sublayer, The governing differential equations are linearized based
on the small but finite amplitude to wavelength ratio. An orthogonal
wavy coordinate system, accurate to the second order in the amplitude
ratio, is adopted to avoid the severe restrictioh to the validity of
linearization due to the large mean velocity gradient near the wall.
Analytic solution up to the second order is obtained by using the method
of matched-asymptotic-expansion based on the lJarge Reynolds number
and hence the small skin friction coefficient,

In the outer part of the layer, the perturbed flow is practically
"inviscid,'" Solutions for the velocity, Reynolds stress and also the
wall pressure distributions agree well with the experimental measure-
ment. Inthe wall region where the perturbed Reynclds stress plays an
important role in the process of momentum transport, only a quali-
tative agreement is obtained. The results also show that the non-
linear second-order effect is negligible for amplitude ratio of 0.03,
The discrepancies in the detailed structure of the velocity, shear
stress, and skin friction distributions near the wall suggest modifica-

tions to the model are required to describe the present problem,
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I. (INYRCDUCTION

The present theoretical study of the response of a turbulent
boundary layer to the cyclic disturbance imposed by a wavy surface
is motivated by an interest in the mechanism of cross-hatching
ablation. The process of the formation and the growth of the wavy
suriace is believed to be a closed-loop interaction of perturbations
on the ablating surface, coupled with resulting disturbance in the
aerodynamic forces, heat and mass transfer.

A study was conducted at GALCIT by Dr. Toshi Kubota in the
last few years; the first part covered a linear analysis of small per-
turbations in incompressible turbulent boundary layer utilizing an
eddy-viscosity model,(l) and the second part was a detailed experi-
mental investigation of low-speed turbulent boundary layers over a
solid, stationary wavy wall.(z) The results of the study show that
the theoretical prediction based on the eddy-viscosity model has a
fair agreement with the experimental results in the overall distribu-
tion. In the wall region, especially for shear-stress distributions,
the disagreement is significant.

The interaction between turbulent boundary layer and a wavy
surface is a common phenomenon on the interface of the wind-water
waves, on the sandy surface of the desert, and even inside the artery
blood vessel., Over the last two decades, the phenomenon of wind
generations of waves has drawn more and more interest of study,

starting with the work of Miles (1957).(3)

Miles assumed a gnasi-
inviscid flow with a 'turbulent' distribution of mean velocity, i.e.

that the Reynolds stresses were not affected by the flow perturbations,
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’ contained the linear

A subsequent contribution b-y Benjamin {1959 (
formulation which has served as the basis of the mosi recent investi-
gations of shear flow over a wavy boundary.

It is only recently that the experimental investigation of the
structure of turbulent shear layer over waves has been made in
sufficient detail to test the various theories. Metzfeld(s) studied
flow over five different wave shapes. He found strong changes in
velocity profiles, mainly near the crest and the trough. Kendall(é)
studied the interaction between turbulent boundary layer and a moving
wavy surface, His results and the results obtained by Sigal(z) showed
a strong disturbance and an appreciable phase shift of turbulent
shear stresses. Experiments with blowing air flow over mechan-
ically generated water waves in a wind-water tunnel has been carried
out extensively by the Stanford group (Chambers, Mangarella, Street,
Hsu, Yu(—”) s also many others,

The eddy-viscosity or mixing-length model are based on
local equilibrium between production, dissipation and diffusion of
turbulent energy. Omn the other hand, these experimental findings
indicate that the problem cannot be treated as local equilibrium flow,
and therefore a more sophisticated model is required to analyze the
problem.

The state of art of the computational method was reviewed
based on the proceedings of the AFOSR-IFP-Stanford Conference on
(8)

Computation of Turbulent Boundary Layer, The scheme of
Bradshaw, Ferriss and Atwell, which has been proven to yield

satisfactory predictions in various cases, was chosen to analyze



the problem.,

The first part of the research--the linear first-order solu-
tion--was completed in December 1972, The result, however, did
not show much improvement on the simple eddy-viscosity model for
the prediction of shear-stress distribution.

During the period ofthis resear ch a few articles using linear
first-order theory on the wind-wave generation problem have been

(9)

publishedinthe Journal of Fluid Mechanics, Davis' third modifi-

cation utilized the BFA meodel with modifications to include the normal

0)

shear stresses, Townsend( applied the BFA scheme with the
inclusion of gradient vertical diffusion. Their analyses are based
on the log asymptotic behavior of the mean velocity profile near the
wall, Central attention was directed at the critical layer and the
phase shift of the pressure distribution.

Further examination in sofne parameters involved in the
experiments revealed that the pressure gradient velocity up and the
skin friction velocity u, are almost of the same order of magnitude
in the experimental data. For an appreciable pressure gradient, the
log asymptotic mean velocity profile in the viscous sublayer does not
hold any more. The linear analysis was reformulated to include the
effect of pressure gradient. In addition, the nonlinear effect is very
significant in the experimental results. A tremendous effort has

been made to construct the second order expansion, in order to draw

a "conclusive'' conclusion on the chosen scheme of analysis.
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II, FORMULATICON OF THE PROBLEM

The foliowing analysis is based on small perturbations upon
mean quantities of the undisturbed primary flow, i.e. flow over a
flat surface, In Cartesian coordinates, the linearized boundary
condition for perturbed velocity u'(x, y) is determined by the deriv-
ative of the primary mean flow velccity U(y) at the wall, which is

very large in high Reynolds number turbulent boundary layer.

U\
w0 ~ (3
ay/yzo W
2w
yw(x) = acosax, a =
U A
/ u' ) T | - 0
\o 2% ) Ot Ve RB= 5

0 y=0
where a is the amplitude and X is the wavelength of the wavy wall, and
C; is the turbulent skin friction. Therefore, for validity of linear-
ization, it is required that % R, C,<< 1.
This is not our prime interest., In order to release this
strong restriction to make the problem more realistic, we adopted

(4),

an orthogonal curvilinear coordinate system (Benjamin

-am

sinag

{x = § ~ae
Ay n+ae @ cos af

The linear solution constructed upon these coordinates, how-
ever, did not agree well with the experimental results in the wall
region, In fact, atn =0,

a cosaf

¥y

yw(x) - a%asinax + O(a%:7) .
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Expanding the velocity u in Taylor series about Y’ and applying

the non-slip condition at the wall, we see

T\
u'(x, y) = (%H/'

T
In the case of laminar boundary layer, this is of order a® as 1 = 0,

For turbulent boundary layer, the law cf the wall,

U * x _ Sply-vg)
w, T F6. o yo= —w—

gives

It follows that at n =0,

("&t)n 5 © O((%)z "Rxcf>

Thus, the first order linear solution with the non-slip condition

applied at 1 = 0 is valid only for

2

(%) wRy C oL,

A

On the other hand, the experimental data of Kendall, (6) Sigal( &)
2
and others were obtained at ( %) T R)\ C, about 1,

f
Therefore, to make the comparison physically meaningful
for small but finite a, the coordinates transformation must be such
that the deviation of y from Yy 2t M = 0 is of order at least a°. The

required second order orthogonal wavy coordinate system as shown

in Fig. 1 is given by



2 e—day

€ = x +ae %Y sinax +% a“o sin2ax
(2,1za)
-avy 1 = -2avy e ’
n = y-ae “Y cosax - T 8 e = cos2ax+tl) |,
and
- - g 1 -2 ; -
x = & =ae e} sinef + 5 aae aah sin2af
(2. 1b)
g o= Aok ae-om' cosaf —.—12—- a® .(e_zcmcos&z%—l) .
I GUZLLY, .
Fig, 1

Orthogonal Wavy Coordinates

which conforms with a sinusoidal wavy surface at 1 = 0 up to 0(a%),

for a << 1,

y = acosax+ 0(a%a®) (2. 2)

The elements of length in the direction of increasing g, N, z are

hd€, hdn, dz and



- , 2 =20m
h=1-ace™® cosaf + 5 (22)’e”™““(3cos®ag-1) (2.3)

Let u, v, w be the velocity in the direction of increasing

€, M, and z recpectively, The governing differential equations

for incompressible flow

-_

div. v = 0
e o P 1 2 e
(vxw)-grad(F +3v ) = Veurl w

are transformed into these new coordinates, The time-averaged

mean flow equations are
Continuity:

e (b) + %(h?) = 0 (2. 4a)

Momentum:

(E?.E+E£+€_?a_h_?_za_)
P\ 3T "h B2 on | 2 9%

193p 1_(3"1 BT). dh dh

“"h ot Th\3E E*BKO"?*Z )
- o e e

E,_{B 9%u %8_\._1_% 9v dh —_h-—a_h\a_hjl

+ 9E> 81’]2 hlog 8g+a§ an+(v u n_IJ

— o — —

_ 1 8p , 1(atr 99\ 1/ 3 oh
= TR an+h(s+an" 3\2732 - %57/

2 27
pla 8°v ,2[dudh L av dh —@_—gll)a_h]
+h{a§3 "o Thlon 3t T an om (“ . }



Turbulent J:uner'ry

u & ,v 9\1 —3 1I_ 8u . _(du  08v) v 1
(Bartiam)ied-gioae < (mtoe) oty
1 — 1 0 ,.
+ h‘];- -—g-aa (5 0 guTL a') Eé_(?pq v! + p'v'! )

— - e oh
+ e 150 - T + (o T + PIT I

v _,09u')dh ( du' _,9v'\dh !
{“'VU"“_'( S5 V' 355 V' 5 - W JaE
w4y [ (3°h a%) g(g@)a (ab\e‘!‘ s
T LVes o/ TmleE/ B0 &2
where
0, =-pu”
0z = - pv"™ | (2.5)
T E-pm'
O = 0,-0z = -p(u'g—v'z)
(2.6)
q° = u'2 +v® o+ w'?
2 3 2
v = '15 _8'5 +_%2_ 82 + E'é
B 88° h°® an® oz

Energy dissipation by viscosity:

To separate the viscous terms in Eq. (2.4d) into the diffusion
and dissipation terms, consider the flux of energy due to the working

of the fluid stress

-gu =-(-pL+ Du (2.7)
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The negative divergence of this gives the rate of energy change
D172 -! : T =
p[e Tz )_j = div(-pl+ Iu
_—

:-E-ap +u.div 7 + (T V)eu {ie 3)

By using the equation of motion, it follows that rate of energy dis-

sipation is

1 - -
€ = =(1V)u
o
(2. 9)
L = kg
where
¥ =37 18 ,3 18 pa
v = ie ¢ 3% +11’]h8n+kaz .
The components of the rate of-strain tensor e are
- 1 du dh
cn=2(h 3+ 58
_5(1 ov u dh
)
< (2.10)
_ =B (Z) ¢ 2(2)
@12 = e =5r\p/ toq\k/
1 ow ov
eza =esa=g—n'+a—z
_ w1 3w
L ®31 T €13 T 57 h 9%

Therefore, the time-averaged viscous dissipation due to turbulent

fluctuations is given by



{ du!
el = ¥ -1—{,--—-1—\ -r-—l-"'*“a"(r - 5 :9— h.,h u‘u'\
ihje\ Xi/ h, Bxi hth de 13334
_._I_I—( |§_..‘_.r:,t§y_'.\‘iﬂ.\di_6}l'_ :_av_'\ill
B L gl dg /ag '\V @ on / an
1 ou' oh dv' 8h 7}
¢ Hcv‘-—-; 3F + w! e -—n-—l} (2.11)

where {xi = {8, 1, =)

|
F
k=

—

h.
i

Eq. (2.4d) and (2.11) contain complicated viscous terms.
Viscous effect, however, is significant only in 1) a thin layer near
the wall; 2) the small dissipative eddies, i.e. the small-scale
structure of the turbulence. The characteristic scales of the small
eddies may be represented by the Kolmogorov microscales of length,

time and velocity defined as

” v3>z _ (V ) = oIt
T]o = (e—l- 3 tO =Neil ? Yo = (ve') {(2.12)
v 1N
which corresponds to £ = C\’)o = 1.

In turbulent shear flow at large Reynolds number, away from
the wall, production and dissipation of energy are nearly of the same
order of magnitude, though they may not exactly balance. The energy
production, on the other hand, is dictated by the deformation of the
large-~scale structure which hfa.s length scale %4 and velocity scale
u,. For turbulent boundary layer, away from the wall, £~ §, and

u, ~u, the friction velocity. Hence

*

- _;- (2.13)
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From Eq. (2.12) and (2.13), we obtain

3 - =
n wh 5 7 W =
o T N oA
T == ( \-) ) - (R‘ lU' ) (i’ |,|\
7 u = uu ‘;— e
ok ey = L Y
(u R Y ) - \RU )
T o
where ’
U & T N2
= 0 Y.
e Yr ° ( p)
These scale relations show that
4 1 T
(o iyl n Yo
i 9%,/ h ox. 5§ M i
1 J o] ('L'LT) ('nc) R uT =
IS A LA
= ()
ij Mo

Near the wall, the variations of fluid velocities with respect

to the distance from the wall, from the non-slip condition and contin-

uity, are given by

u ~ n
v ~ 1n° as n - 0.
w o~ 7

ou, \° 1 A\2
Thus, in Eq. (2,11), the leading term is (El—) ~ (g—:—) , while all
j o

other terms are at least of order m or higher. In Eq. (2.4d), we
may retain the leading term ui' v? ui' only, since all other viscous

terms vary at least as T}a.

Therefore, for large Reynolds number, we have

' 2
Vv 8“1



and hence

|

SR W 2 2 oy 7 AL} 2
.T v?. ' - -\i_ (8 - 3 \' i _—E"_ v e 9
\J(u.l ‘ui) AT I q hjz { ax_] )
52 e
*ﬁ\')a'a?z(%qe)-e'- (2.16)

In the conservation of momentum, viscous effect is important only

near the wall. By the same argument of boundary layer approxima-
- 3—
tion, we may retain only the dominant term du

an®

in € rnomentum

equation,

To use the energy equation (2, 4d) as an equation for the
stresses, Bradshaw's hypothesis that the turbulent motion is uniquely

related to the shear stress is applied to define

'R = 1TT
3 pq
L - /p)?
< o r (2.17)
o+ (B mm/Cas
| B = (ITPL'+§cf—u')/(p£)2%

where Tm is the maxdmum of 7. b, G, H are dimensionless func-
tions depending in general on the behavior of the Reynolds stress,

£ has the dimension of length, and is the most important of the four

functions.

Governing equations in dimensionless form:

By dividing the lengths by the undisturbed boundary-layer
thickness &, the velocity by U, the pressure and stresses by prz,

the equations are made dimensionless as



Continuity:
1 9 , 13 ,u 8h v oh
R "hHoen R 8% Thoam o0 (2. 18a;
Momentum:
ST, T EE (Y. ¥ m)
h 3 " &k on B an T p® 9%
S ac . o -
- 1op 1_(__1 TV,Ll(;8h _, _Bh) 11 3%u
= kg TR\eT o/ Tp\WeE e/ TR 52
(2. 18b)
8 T oh w0 o
h 38 "h an ' \2 85 12 onm
sod &2 4 L{EE 408 Lo o)
g ™ an +h 9 +‘5n—- + 5 ZTag -G% (2.18(:)
Energy
8Ty Vo Ty L[ (% 87y 8%
h ag(b”han(b)"h{}\an /) "%
1 1 1
11 8 o By 4 B o B T
+h[8§ (TmH')+8ﬂ (T2Ggn) |+ —
+-1—-.('T P HT 450 + VT2 4 (1 s +an)R
h* m 9t m S
. X & 9% T
= 535 an(g) (2. 184)
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III. SMALL PERTURBATIONS
For a wavy surface of small amplitude given by ¥ = @ cosex

with wavelength X being comparable to the boundary layer thickness,

the non-dimensional wall curvature may be approximated by

sz
K = E zw = - (aa)o cosax
* _ 2Tta o
aae = —— (3. 1)
. 21d
- A

Since @ = O(1), K is of order aa, In view of a well-known property
of boundary layer flow along curved wall (Goldstein 1938), we expect
the changes in the flow profile at different positions along the wall
are of order ac., The flow pattern may then be approximated as the
sum of the undisturbed primary flow, and disturbed flows described
by perturbations of order aa, For a small but finite disturbance, we
assume

(

e
1

UuMm) + (aa)u' + (aa)a al

V(M) + (ae)v' + (ae)® v

<
1

Py + (ac)p' + (aa)® p"

L
oI
]

(3.2)
T = T(M) + (ae)T' + (a@)® ™"
0y = 01{n) + (2a)9y' + (aa)® oy "
% Oz = 0Oz (M) + (aa)od + (a.oz)a oy "

Following the same argument, we may further assume that,

in the first approximation, the stress-energy ratio b, and the



diffusion functions G and T are universal functions cf n oinly. The

normal velocity V(1) may be negiected, since V<1, for R >> i,

The shear stress is expected to be a maximum at the edge of viscous

o

sublayer, Thus

% 3
T2 = (T_ +aaT]')?
m
1 T (5)
= T2 }ag 5 —a (3. 3)
m I
:T &
m

In the wall region, we assume that £ is proportional to the

normal distance from the wall, i.e.

n
5 S (€, M')dn'

o]

Z

h Kn + O(ae®n®) as N -0

Let I1.(n) be the corresponding dissipation parameter for the primary

undisturbed flow. Thus for simplicity, it may be assumed that

£ = h L{n) (3.4)

The governing equations (2,18 a, b, ¢, d) are then linearized

as follows:
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Linearized Equations: Of(a2)

Continuity:
1 1
%Eg- +%‘;— = iaUe™®" 1a§ (3.52)
Momentum:
.o B! ;40 8pt 7997 grty 1 P
g.Ua,-P dn+8§_ 3§+8T})R3nz
" d°ul -an ief
- {-1&( = [ e e (3. 5b)
. av' , 3p' (8’1" 802'>
N Ugz +35 - \3g t o
- P
- {aUz-a(O'+2iT)}e i (3. 5¢)
Energy:
8 ,T! au' Bv'\ dU
i L O'
s [Uafé‘b’ ] [T - T o |
5 i T "I'e' 1 i
+ ﬁ-H(TaT'-F ——"*1>+—8--G(T2T'+ e£>
2T 2 m 2 2
m m
1 2
3 T4 1 B O
¥ T T R e ()

L 2 .
_ L Ty 5 v & 4o _'1:} -an iaf
= {ieU(OHD - 2T 2 TG+ g S (DM

(3. 5d)



-
e
v
2
~
~—

Governing Equations for O

Continuity:

du!'' | ov" e - = P =
'a_g ——avn = aUe i sin2aes - ae '(u’srn g 4+ ! COSQ’E,)
{3, 6a)

Momentum:
(301“ 1 1 2 1
du"  _,dU _9p" (T 29Tty _ 1 97w"

St U +v'qn *5r "\wT tan/ R gn?

e {2T cos2¢S + T sin2at}

-y = < s
+ae ﬂ{ZT'cosa% +0'sinag - Uv'cosas }

i u'
ku _3_ L an/l

2
" u' - e
e CcCosa s ¢

1d U -2amn A
R{ — sin” of + 31’] e J
(3. 6b)
v an! atn 30’2” )
N Uzt 30 ~ (38t oy

ae-zan {Ua cos2a€ + 2T sin2af -Ocos2at )

_a & 2
+ ae N {2Uu'cosaf - Uv'sinef + 27! sinat

- 0! cosaf}

ov! ov'!
- 1 —
(“ - an) (3. 6¢)
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3 (' ¢ yn S (Ty] . fr(2 4 8) ;14U _gaw
el )+ B - T\ 5z /"' P
1 1 2
9 2 T 3 E no_ L E W A
+an(GTmT)+2£T Ranz(b)
-2am aD A E T s D E %‘ =
= ae {UTCO:ZQ’E + UO0sin2e¢€ + G Tm T cosZab}

~ae ¥ {(UT" 4+ u'T)cosef + Tv'sinaf + (U%'+u'C )sines

L
+G(G3T'+% 11 T')cosa§
m Tg e
m

1 13
+8GTeTT T‘Te 3T'2}
n i T=)tg - I
2Tn:21 STHi £ T2
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In order to solve these equalions analytically, we need ex-
plicit expressions for the mean quantities of the primary flow
which appear as coefficients and forcing functions., Not all of them
are available, In addition, there is neither first principle nor weill-
accepted empirical functions to relate the norinal Reynolds stresses
0; and Oz, and the longitudinal diffusion H to the mean velocity as for
the shear stress. There is still inherent difficulty of having more
unknowns than equations,

For large Reynolds number and hence small skin friction tur-
bulent boundary layer, a way out of the diificulty is suggested by the

asymptotic-matched method to obtain just the main feature of physical

importance. The small skin friction coefficient may be used as a

basic parameter,

Primary mean flow:

Following Coles' empirical law of the wake, we assume that

the mean flow profile has the following representation

U = ¢KFQ) + 7 wim] (3. 7)
T =e2T¥ - 52[1 - %g‘ é- S Udn' - S uldn' :] (3. 8)
T ~ g2 (3. 8a)



wF

1
h ts Gy \e
where € = i (---2—/
00
K = 0,41, Karman constant
£ = ReT, scale of viscous sublayer 3. 9)
00
B = S U(1-U)dn, dimensionless momentum thickness
]
7 = 0.55 for constant-pressure layer.

F(C) is the law-of-the-wall profile, and
) = € gs C=10
F(()~ % (n( +B), for (>> 1, B=2.05
An analytical approximation for this function obtained by Reic:l'lan'dt(1 b

is given by

F() = S dC C\
o 1+K(C - Co tanh C_/
e (3.10)
_ 1 A Y TR 1«
KQ/n(Kg+1)+B[1 e T e :I
where L = .10, B! = é—(B - 2nK)
The wake function w(n)may be approximated by
w(mn) = 1 - cos(m), - 0=1, (3.11)

At n =1, Eq. (3.7) gives the skin friction law for the flat-surface

=@nRe + B +27) = 1, (3.12)
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1

which shows, for iarge R,

M

-+ 0 and Rs 2 e, as R — o .,

Combination of Eq. (3. 7) and (3.12) gives velecity profile in the

defect form

U = 1-3 W (nRe) (3:13)

¥*

W = -KF(C)+/hRe +B+ 7l[2-w(n)] (3.14)
In the outer region where M = 0O{1),

W ~ WM = -ian+ w(2-w) (3.15)
where W is the velocity-defect profile,

In the inner region where { = O(1l), we have

U = ¢F(Q)
2 * a2 1
T = & F = [1-FN)] (3.16)
. L
L = re -
and the energy equation approximated by
*3 %
*dF T ? ac T
¥ . e & (Z | 17

For small {, the streamwise turbulent intensity u'® varies as gz.

Therefore, the stress-energy ratio may be expressed as



-
- L, -
Z

b C° + O(C*)

— T e
b(g) - 1 a3 B e -3 A
zpPg a; €° +az C7+0(C7)
@ ¥
Py = )= i r
then ac’ (%) 2a; +0(0) .

Consequently, Eq. (2.17) or the definition of L. requires

vt

¢

LY = )7 ,

=
For large {, b 2 by and L. = K, thus we assume

b(C) = bo(—;%ﬁ), B =0.03
7 (3.18)
1Ny = ke - 7?8y, y = 0,1085

where P is obtained b)lr fitting experimental data measured by
Klebanoff(,lz) Schuba.uer(13) and Laufer.(14) The value of ¥ is obtained
from Eq. (3.17) by balancing the molecular diffusion with the turbu-
lent dissipation to the zeroth order (.

The difference of the normal stress 0 appearing in the
governing equations is as important as T only in the outer region.
In isotropic turbulence, F = v_a = \F, anduv = 0. The turbulent
shear stress uv can be produced only if the main flow is not uniform.,

Thus, the non-vanishing 0 as well as T is a measure of the degree

of of anisotropy. Consequently, it is reasonable to relate

) du
g = el a5 » Q) (3.19)

where (1 is the intermittency factor. Since T itself is related to the
velocity gradient through the energy production, we may simply

assume



G = Go(m O (3. 20;
In the outer region away from the walil,
0 = -20Q(n) (3.20z)

is found to be a good approximation, The distribution of intermit-

tency could be well described by the Gaussian error function

Qm) = (1 - erfn’™)

(3. 21)
*

with N 5(n - 0, 78)

Analysis based on skin friction:

(

According to Bradshaw's =2 hypothesis, the turbulent diffu-

sion of energy is mainly affected by the large eddies, at least in the
outer part of the boundary layer. By correlating the vertical diffu-

sion to the entrainment rate, he has shown that
1

2

)
¢ = (pg‘;) c*m ~ ¢ c*m) (3. 22)

%
where G (n) » 0 very rapidly as n—~ 0. The streamwise diffusion
function H is not known, It is, however, at most of order unity by

its definition, Then in the energy equation, we have, for the outer

region,
9 T _ g
Usgg (g=) = o)
3 1 s
S 2 1 1
agH(TmT +;%— < O(e) x O(T")
1
9 % 1 ITTe = 3 !
3m G(’I’m'l‘ + i) = 0(e®) x O(T"



In the inner region, on the other hand, the streamwise variation is
negligible, Thus, the unknown longitudinal diffusion may be neglected.
Furthermore, for a solution to the accuracy of order €, € = 0, the
vertical diffusion term plays no role in the perturbed energy trans-
port processes,

At this stage, it may seem inconsistent to the derivation of
G, which is obtained by balancing advection and diffusion. I urther
experience with the present analysis may make it necessary to
describe diffusion processes well inside the boundary layer by in-

serting a gradient-diffusion term, such as

32
2

9 T '
s qzv"‘ﬂ'a—(;) .

[

n

o [¢]

Gradient-diffusion is not important, or at most the same order of
magnitude as the transport diffusion, in the ordinary boundary layer
because well inside the layer but away from the immediate neigh-
borhood of the wall the turbulent shear stress is fairly constant. On
the contrary, the presence of the wavy surface is expected to induce
an appreciable change to the turbulent stresses due to convection
and streamwise pressure gradient which make the state of local
equilibrium impossible.

The following analytical solutions are constructed by means
of asymptotic-matched expansions up to order ofé, Contribution
from terms of order €° and higher involving the transport diffusion

G, the variation of boundary layer thickness §, etc., will be neglected.
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IV, LINEAR FIRST ORDER SOLUTION

The first order linearized governiang equaticens (3, 52, b, ¢, d)

=
=

contain forcing functions proportional to eia . The boundary cendi-
tions are such that all perturbations vanish as N ~«, and at n = 0,
u' =v' = 7' = 0 by non-slip condition. It may be shown that the
homogeneous part of the differential eguations does nct constitule

an eigenvalue problem, Therefore, by the uniqueness theorem of

the linear differential equation, we expect
u! A 4 'ﬁ'(n) 3
v! i":;(ﬂ) s F
oS e
P’ p(M)

L) Fo ) ete.

e dv -
v + E:T & @lfs (4. 2a)
~, v dU ,~ ~\ df 1 d°%
1Q(Uu+3 n +p-61/—dﬂ—RdT\2
. 1 da°u7 -en 4
=| -ia( +1T)+ﬁd3 2 (4.2b)
n
- doa
d ~ L~ 2 . -a
&% -aUv - iaT —Hﬁ—- = a[U"- (O'+21T)]e i (4. 2c)
Ty,v d T _ [pd8. dU ;o dv
101[:U(b)+a dn(b)] T(dn c’zv)+'rd 1 an |
3 T
3 T2~ 1 d T
b 5= T =g =5 )
Z L R g 'D

N . I & ;T -an
= [1aU(O'+1T)+ R &Ti_z (B" )__Je (4, 2d)
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l. Cuter Layer 1 = O(1):

ation for

,_.a

Using the defect form (3.13) for U, and ths re

0 and T (3.20), i, e.

g

U=1-=W(hn

T = €2 T m) (4. 3)
5 *

= 0 T =0T (M),

it can be shown from the energy equation (4, 2d) that the perturbation
Reynolds stress T is of order €°, The normal stresses ’51 and?;;
are expected to be the same order as ’Tr Thereiore, for R >> 1,
€ = 0, to the accuracy of order €, the outer layer velocity and pres-

sure perturbations are practically "inviscid,"

au + 3:; = a(l -% w)e ™"
T +3D = %(W’E%—é—%—v ) + 0(e?) (4. 4)
g% - i = e T . %(Zae-an + av)W + O(e?)
Expanding
T o= UMt g M)+ -, ete, (4. 5)

then, by substituting Eq. (4.5) into Eq. (4.4) and collecting the

like order of €, we get



dv., _
 Gw & ek = fus:&-an, fllﬁc“ﬁ,e_arn'
1 dn i
KBy A e L1 dW ~ B
< ul + P]_ = gl 24 = O , g = Wug i '—";' V {3,061
dp. .
~ - T, BT
ﬁ?}-— - Qvi = hi; h\’.‘ = e Q’ﬂ’ hl = "Q’(Ze f‘lﬁVo}‘ﬁ'
\~
Solution to these equations which vanishes as N — o is
~__ -« € g s Ao aw ] -
" =g n {1+AO + -rc—[Al +(1+A5 Y (W -}‘41)+T E___]+ — (4, 7a)
~ _Ql’r] [ r - ] F
v =e {AO+ "E LA]_ B AoW‘f‘(l'l.‘Ao)El J+=--- f (4. 7b}
P N B .
5 ‘”bLl +Ao+— [A; - (1+A)EL ) + --- } (4. 7c)
where
B (o) = 206”1 { we M ans (4. 8)

!

In the energy balance (4.2d), the coefficient function of the
1
dissipation term T2 /L may well be approximated by U'(7) in this
region, With the velocity perturbations described by Eq. (4. 7a, b),

it follows:

= bg e—a’ﬂ {GQ +2i+ %[(Al +2W-E; )00 + Zi(Al + E;)

Hl 3

ibo
-12 (0o +2i + (=

bo )dn boaT dn

AW A1 tE; dT]

+ Aglo, + 2i +0(§—)J - «--}



2. Intermediate expansions:

Energy and momentum convection dominate the outer region,
In the inner region very close to the wall, local production, dis si-‘
pation and molecular diffusion of turbulent energy balance one
another, Somewhere in between, there must be an intermediate
region where energy convection, production and dissipation are of
the same importance.

If we let

n = 4(e)f; 4(c) 0, as € =0
(4. 9)
T = g(e)?; g(e)~0, as €~ 0

then continuity equation requires v~ #(¢). The dominant terms of

the energy equation (4, 2d) are

. wxl o
i e 1 dW , ¢ 3 T2l €2 _%xd
o g T+ 25002

b df L df
s . . *
= €7 iaU{0g+21)T {4.10)
Thérefore the intermediate scale factor is
d(c) = ¢ and n = ¢f (4.11)

If g(e) = €, convection and pressure gradient would be balanced by
Reynolds stress in the momentum equation. It will be clear, how-
ever, in the following analysis that in order to match both the outer

and inner expansions g(¢) must be e®.



Interms of 7, the primary mean flow profile is
iz ! g i

U = 1~ % W(fi;¢) (4. 12)
W =-tne-0% + 27 [1 + O(e®%7)] (4.13)
* e I3 X K » p— ]
T = e iy é—*n[l—k—(‘.,tZ)JJr----f (4. 14)
I
3l
¥y~ 1 W o 1 (4. 15)
K af kA
where
ve
* _ K _ € €
8 —68_5W(1-—KW)dn
(o]
p = £ < O(1), (see inner layer Eq. 4.28)
Re?
Thus, we let
T = d(fie)
v o= eV(fise)
(4. 16)
P = B(e)
T = 2 %(H9
Then the governing equations become
e+ - o Uyt , (4.17a)
dan
~ 2 A e
1a[Uﬁ+f;+%l’;]:e£+§£ —d,‘;-%w“(ﬁ)}oma) (4.17b)
at an ¢
4B _ oy oM + O(e?) (4.17¢)



A .d%'Jr(MU.p-——l )'?Jrir? T &L 4 ear™s
€ af dn

= 12UT (0o 4i)e “% 4 - (4.17¢)
This layer differs from the outer region by the by the partici-

. A . i 1
pation of the shear stress T in the momentum balance of order €,

Hence we may let

r-m A ~ e

u = | u-u * Wu(?];S)
{ . - B o

v = ev= Vout + ra V(T];E) (4, 18)
L P = P —'Pout

Now, the two-term outer solution of ';(4. 7b), as N = 0, expressed in

terms of the intermediate variable is

?;outN Ao [1 +%Q“€ "'%(pﬂﬁ - 27+ EL- Kaf) + ---]

+ = (A +ED + (¢ tne)2af + O(¢)]

where
0

Elo = ZaS W e-Zan dn
o

Therefore, v = O(e) requires Ay = 0 for matching., And the inter-

mediate expansions of the outer solution are

TJ‘Jout ~ k= %p’m '%(@“ﬁ - 2%+ Ep - Ay + Kafl) +--- (4.19a)
o € 0 ol A A
Vout ™~ & (A +EC +eine 20f + e[2a1ftn]

- (47 +2-E + A )of) 4 ---] +-=-] (4.19b)
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Py~ -1 + g (B’ - A + Kafl) + --- (4.19¢)

) i‘Do ~"

Tout ™ g* bg '1J=100+>1+ — (5ot 2 T——)+oe~);. (4.19¢)
ol ZKQ’T‘, .

The intermediate governing egquations are then simplified as

(
ol + é-Y- = 0
_ dn
N K T CO i > K daﬁ =3
< Uu :r—d—r-'—hﬁ—%L—-i,,- +-—%—,‘~%-{----; (4. 20)
i an am an  ie® dn o
1 di ieU , 1 \ *® 2
L -R-d—‘j+(1bo aT’r]>_—* = iaU(Co+2i) - — + O(2)
n
where Co = A; + Elo. The constant Cy would complicate the repre-

sentation of the solution to (4.20). However, it will become evident
later that in order to match the inner solution of ’;, Co rmust vanish,
For simplicity, we hence take Cy; = 0 in advance. Eq. (4.20) forms
a system of two-parameter confluent hypergeomeiric differential

equations, Neglecting terms of order ¢? and higher, the solution is

analyzed in Appendix A (pp.89-95 as

z
& _ _ 'ik'lT{ _
T = 2+C1Wk’%(z)+De Wk’%(z)g W-k,%( t)dt
o)
i
+W 1(-2) W 1(t)dt} (4.21a)
:a ’ 2
z
~ _ 1 at 7
B s &t o[ - T Ve i)

z

R (ELSCRE. o“”"]g Y

%W'ksa( = +( )" ‘(k'{'z): ( z-lgw:z dt}

(4.21b)



v = iK(T - Ca) (4.21¢c)
where W, i(z}, W 1(-z) are Whittak s functions and
1‘! 2 -kJ z
5 .
2o s & 2 A
(Z = 1—-—3 U(n;e)dn ~ i — U N
Dn 7V vbo
- /Do
{k = - FxF— ., -1<k<0 (4.22)
bO - 1
D = ‘Z‘ (GQ -+ 24'} + i

As o, iai - oc, the asymptotic expansions are

(e~ ntd /"‘i_l + KK, o —%)7

1
z }

J

Kk(1+k 1
LI o BRI e [ ¥ _(%—_l i )]

A - ib .
and T~bo|-00 + 21 + 2 (Uo+21+§——)+0(1—ﬂ
= 2Kaf o H°
1o U:
= A " Yba . -
+ T, Afe VBo (1 + 0O %—)J (4.24a)
A - —-—Uﬁ

o 1 dT l — ‘ak 1fbc 1
R esgE " e (1 +0(=)]+--- (4.24b)

Since k < 0, ﬁK -0 as A = w0, These expansions match the outer

solution., At this stage, the physical behavior of T' for large 7 is

evident,
TE, M) = T(me'®®
. 7 a
_ ia(€ - — 1) :
~e2{G, #*e Yoo +bo(0+21)e1a§+—-} (4.25)
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It represents a downstream wave with amplitude decaying as M '

and frequency changing with U(7M), superimposed in a simple stream-

wise oscillation.

3. Viscous Sublavyer:

In the region very close to the wall where
€ = Ren = 0O(1)

the primary mean flow velocity and Reynolds stress are given by

U e F(C)

T = ¢ T7(Q)

o = e® 07(C)
, and governed by

1

x *
FIt4T =0, or F'+T =1

*3 *
qg*dE ST 2 & T,
dC L sz b

The stress-energy ratio b and the dissipation parameter L are

assumed to be

b by (£5). Ao

ird
o a
L=kC(l-e")", y=0.1085

Let
(¥ = eu’(Ce)
< 7= %V*(C;E)
e @ e
~ %k
“ p = p (C;¢)
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The governing equations become

*
ok, dv_ _ o
u + Al F(1 - Re C+---) (4.272)
s % 3k
s L R I M e (Fu +F'v + O 42iT))
ﬂ ac ¢ k Re
(4. 27Db)
d > e 3 * % * 1
ac =5 (¢ F° +iaT -a(O+2iT )+O(§)] (4,27c)
k % *1 ot
% du * dF 3 T 2 _% 4° 7
T T dg“‘z* T e
, dg
42
- L (- & s -]
dc?
i * % T * d T £ dv)
sl ' = B ey & e, by s (L 7. B L
+22{ro*ur) - L) - v S (E)-o" g } (e z79)
From Eq. (4.27c), we obtain
* €
P’ = p(036) + O(F)
Define the pressure gradient and convection parameter
A = &£ (4.28)
Re®
In terms of physical variables
(4. 28a)

%
For @ = O(1), according to the skin friction law
-(T.S.T.), as R~ w; €0,

Althouc.rh the experimental results available for the evaluation of

the theory were obtained at A = 0,3 and larger, we will assume
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the magnitude of A to be small in conforming with the high

Reynolds number approximation.

Let

~ ® 2

r u = eu = e[(1-eTALYF + £f(L:e)]
~ o ES o
v = EV = I_{h

< (4,29)
oy % *
T = 8 T = 62[(1—€3A§)2T + g{Cie)]
~ %*

- p = p = p(0)

and neglecting terms which remains at most O(SZA) as { >> 1, Egs.

(4.27a, b, d) are simplified as (dropping * in T and O)

£+E = 0
2 o
< L 492 - ialp(o) + &° (F° +F9)] (4. 30)
ac® s
1
df dF T2 3 2_[2T+g
G fy +(— -% )g+———(%—):1ﬂ€ L -(O+21T)]

For { = O(l), the convection terms are O(€a) which can be neglected
in the solutions up to O(¢). The pressure gradient ilp then consti-
tutes a particular solution. As for {>> 1, ¢®°F® ~ U? = O(1), the
pressure gradient is balanced by convection up to O( %Efn €). There-

fore, for small values of A we assume the following form:

0

Hh

f T + iA
A (4. 31)

oa ¢

G |

I
0Q |

g

h="h +iAh



We then have

248 Mg %E- = @
dg®
{ )
- T\ B
T 4f +(3_F_%%)gTi(%):o (4. 32)
k dgz dgz
and
8\} ~
a’f -5-%&{ = [pio) + e3(F +Ff)]
ac® .
dr’ dF 3 T2\~ d& %, _ _z_[2T+g_ :
o +( -5 T F BT (C”m’]
(4. 33)
3.1 Solution for the constant total stress
df - -
ac t g = = (4. 34)
Let
g = so@)
Then
o
f {g -S o(t)dt
# (4. 35)
_ _ € ey
h = -s{ég -S S Cp(t)dtdy}
o Yo
where ©(() is governed by the energy equation,
xi
12
_d_. 2 |:1 - 2FY(C) + 2 _I_F_)_:lcp = F'(C) -
b L
dg?®
®(0) = 0 (4. 36)
=1, L—~w



T aF . 1
T ac KC
1 L
b ~ bO(l BE + —2_,:-8 g ---)

Therefore, as { = «w, we obtain

d2

) 1 . =
o (57 -4 -zmg)e =t (4.37)
k —
. P¥r-2 1 1 -/bg¢ i
Thus ©(C) —=—11+0(=)|+CL e [1+0(=—)1,
26C -1 [ g ] C
- —g—:%:—% 1+0(gi3):]+ (T.S.T.) (4. 38)
where b
k, = “ (2K+B)
=1 o sk meen - S - 262 401}
B 2K 2K(1-1
=~ S—K{ % +o(-g-1-5)}. as ( (4.39)
h =-2;[(zng 14d) - lf‘ng+e+0(g)} (4. 40)
where

d = in2K - 2K Sw[cp(g) -%%%{%]dc
A

3.2 Solution with pressure gradient and connection:

1 —
df [ /dF 3 T2\~ d° g, _ .2 2T+g  ~.
(-3 TN £ - o o]



Integrating the momentum egquation once,

(F°+ Ff)ac'

The contribution of the convection term to the solution up to O{e)

is important only when { >> i1, Let

=

~ ~ [ ~

£ = fO + (F‘) fj_
~ ~ < BN
g = g, t(g) &

Then for f; and s only the asymptotic solution is required

for matching with the intermediate expansion.

dt
(o]

1
Ti.{.(“d_F .3 T_a)'g + a
dg df 2 L "®» dg®
Thus, we get
¢
F, = Sordpt - § F

where Eo is governed by
£ &
dac?®

As C - o0, this reduces to

)
( ) (1 -5zzlg. ==
dg 2K{ "o

For L = Ol1),

1
-F1N2 T~ s
(=) -1z + 2 BEE T < T Ep0)e]

L - zp) [54p(0)C]

(4.42)

(4.43)

(4. 44)

(4.45)



which gives

oo BEC
o RC-1
=

[P(0) +3 + O(—5 )1+ (T.S.T) (4.46)
(0) 5 . p(0), 1 ¢t

g = P— 5. de P__. —_ ¥ 25 P | = ‘.N 8

fo= B G+ g+ ) gin@ec-1) - § (E g, )

~ B0 ¢+ (24RO Lse s d (4.47)
2K 2 K

where subscript a denotes the asymptotic value, and

[+.¢]
d = (% P-(-J)ﬁﬂzm-vcg (g, -2, )as

o] a

Contribution from the convections for { >> 1

dt, C

i = K= 2 A
ac ta K SO(F +¥1L)

(4, 48)
1
P g = b(. ~Kk2F {M-(o +2i)T }

5¢ (nC +d)

(F2+Ff) =

Kiz [(1+3) (220 +B)° + & (d-B)(4n C +B)]

Neglecting terms which remain at most O(e”), we obtain

ZKQ:T { ¢ {(“ >) [(ng+B-1)% +1]

+%(d-B)(@n g+B-1)}

+ Dy (22 C+B) + O é—)} (4. 49)
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)
) [0 4B

nj@ |

<
2K e

-2)%+2]+ %{d-s)(znrm-z)}

1 s.prl 3 poeq. S - }
— =3[ =@nC = in = C
+4K3 1(1+2)[3( C+B-1)°+#nC ]+ 2(d B)(n{+B-2)

I
o
[
-
S
(Y
+
os]
b
Iras
1
=
g_.
i}
.+.
td
V)
Ny

(4.50)

where D,

2
As C>> 1, (%) (nC)® - O(1). Therefore, by retaining terms

which may grow to O(¢) as { - Re® 7, the asymptotic solution with

pressure gradient and convection is given by
~ _ 2K(-2 )~ e, .5 s
- ﬁ‘f{s +¢{p(0)+ (5) [ +2)(4rC+B-1)° + 3(a-B)n (1}

+0(é—)} (4.51)
T =L 3

zx[( )+ () {(1+_§- (n{+B-2)° +[%(d-B)-2KDljmg+B—n}]

2 ) [P C+3(B-1)nC

d 1
+ 24 O(E) (4. 52)

P
"

3 -
. Z-K—{p(O)+(%) o Cl(1+3 )(0rC+2B-5) + 5 (d-B)-2KD, ]}

_ C!f%;%-l) { +_P_(_)_ +( 2@ g[g_(1+ )(2nC +3B-5)

— Dl
+ g7 @-B) + — ]}

Ny S Y C— (4.53)
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Intermediate-Inner matching:

Applying the skin friction law for the primary flow
[ ~
f(@nRe + B+ 2n)= 1
and ¢ = Re?§.

The asymptotic inner expansion expressed in terms of intermediate

variable f| becomes

~(1+3) 01 +%17m€ +0(%)]

u.
inner
= ﬁ{p(o-e) +(1+ 2)[1+ Sone + O(e)f}
K . 2 K

12A s+m§é—€) + 6LK (1+%)[1+%2ﬂe + ———]2}[1+%Qﬂ€+--]

> s ~ A c. 1
Vinner -6{5(071 2— )[1 + —@ne + O(E

. 2 ; &

= T [plose) + (1+ E)(l +K-@ne & =i ]

+ izé af E'§'+P(°—el +—(1+ 2)(1+ .0/ne+-- J1++ @ne+--)}
P, ~ plo;e)

inner

¥ 2 — oA~ i A s e 2
Tinner ~ ¢ {2+s tids+z @ nip+(1+ > 1+ gine +--) I (4. 54)

On the other hand, the intermediate expansion for small A

(see Appendix A) is



kD -

= € A A i 0 A
=~ - e - {E o ] ¥ A
U ter 1 -gne-g (nn -2mw+ 2E;"+ Ko 7)) +

E'A
U
v =c{C_+(S6ae)2ef + O(S)]
inter o K ' "y
~ B ypm® o g (4. 55)
= 2 2 s
Pinter 1+ K (2E, + Ka?n) +
~ - 2 " . .l
e* {-2+A(1 -a;z - kzfnz) + DLz + ---}
inter
Expanding
-S_ = go + %Qﬂ € El + %« S_E
(4. 56)
e iy € ~ £ ~
s = So +k—2ﬂ€ Sy +w Sa

then matching requires

Co- = 0, justifying the previous choice.
plose) = -1 + % 2E1°

8o = 0, s; = -4,

so = %{ , B =0

A = a+i

With these values for the constants, the three-term intermediate

. A .
expansion for small N is

. B e E {P/nﬁ + 2(@+1 ES 4 4o 2ie —D?l )
inter = K [ B A ) T T4k
inter 2 \/—tg
i@ 5, n ; 2 DT, 2
- Koy + 22 B (nf) +0 e 2+;—-———4kl-4ED)
Vo K7 .
. A . a ‘ =
o [@nn+(m§l"—+1+—l)+omﬂ} (4.57a)
(o}



=~ o E_ o e i‘— 1l i 0 . a’l
inter - {(K dr EjReY + if(2+5¢ - C2) Zﬂ’ﬂ(?»erl =B o
2ia DI 2 id L
”mJb— “E 4 PO )+ﬁ(o(ﬂ9f"7‘:)/—ji+ --} (4. 57b)
0
e Di;\
.y - ZT———n[ 2 in —+Zﬂﬂ L -
inter i % /|
11+ 0@ +O(€@ne\}
& ' ’ (4. 57c)
and the asymptotic expansion for the inner layer as { = « is
~ sﬂn elf s - ;2 N
Wsner ™ ¢~ FOE TR0 - An g = Beh
10! P ~ gg
Tn(@nn+E °-2%-2-D 1K +—)
- E° =y D
A1 s % 1 1,8 ~ B-3 ™1
+2[3K Nts,+ 5 t3g (g -2r+=5)+—
+23'o:|}+ ---  (4.582)
v {(Em s & [ 52 2 e i
inmer ~ € Uglne)2ef - (7)| = a i+ O(R?) +1A(0(f 2 7)) +--}
(4. 58b)
= Br iA A _53
Fenper ™ © 12+3K +|( [297'71 (47 +2 S 2E, ) + O(eine }
(4. 58c)

Intermediate-inner common parts
Eq. (4.57) or Eq. (4.58) is the matched common part

For simplicity, we may take the matched asymptotic inner expansion

as a common part.



Therefore, matching

overlapping
region, we obtain

- = aa i D’fl
SE = 4 (Z'IT +1 - Elo + &= + in 21‘1_ - ‘-41 )
R A/,rb*o" =~
~ 1/ o , DIy B-3Y D ~
52 = 3p (-2Bv t5 -5 ) -5 - 2

(4.59)

- ~ . = ~ ~ ~
N terms inu, vand 7

2

It may be shown that, with these values, the

a2 5 O .
and the ° terms in v match simultaneously.
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V. NONLINEAR EFFECT--SECOND ORDER EXPANSION

The linear first order solufion obtained in the previous article

is denoted as before by

(ur ) (S )
v! iv(n)

oty = { B ) & (5.1)
T T(n)

_ o' ) S

where

o' = 0,' - 0y

{'5 = % -0,

Substituting the real part of this expression into the second order
governing equations (3.6a, b, c, d), and describing sin® and cos®
in terms of the second harmonics, we obtain a system of in-
homogeneous equations with forcing functions which contain terms
proportional to ei?.o:§ and terms depending on n alone (see Appendix

B). Again, by the uniqueness theorem, we may let

u T(n) a(n)
v iv(m) v(n)

= e lr‘: elzag + ‘: n (5. 2)
pM p(n) p(n)

T F(n) T(n)
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1, Solution Involving the Second Harmonics

Neglecting terms of order ¢° and higher, the governing

equations are

0+ I -a{Ue‘z‘m S LER)T {5. 3a)
2ia (UT +§ -‘31—3 +3) g—:':- . %{— i?;
- -i-g-—{?x?+ U’x}'e'“nJrg %%

L {LEY e LT ) .
R L4 gn? 2 dn?

-J;EU- - 2aU¥ = a{UT M- U?‘e—zan} [5. 3¢)

ik ~d,T dd ., a~ ,~dU av
[ZlaU(g)'*'lVaﬁ(-b-)] [T(d11-22%+1%n—10ﬁ'-!
= s w
3 T2~ 1 & 7
i il few L 2

— {U(o +1T)e 72N - LLUEHT) + O HT)

T ~d T, ~ du e dV
-2{1(2\1(—6-)4'1‘/5(-6')-T(—T]-Q’V)ﬁ'lc':';]-
=a
L)
L2
L1 Ayt L 2, g8y, (5. 3d)
TR LUE g2b 2 an?'b X



47 -

The first-order perturbation of the normal stress difference 5‘,

appeared in the forcing function of Eq. (5.3d), is expected to be the

same order as T,

Based on the same argument discussed in Article

III, we further assume

g = g

o T (5. 4)

to complete the closure of the system.

1,1 Outer Layer n = O(1):

By using the expression (4. 3) for the primary mean flow and

the corresponding first-order cuter solution Eq. (4.60), the governing

equations for this layer are simplified as

-

~ d% [ € w2
200 + S% = ‘211- 1+ =(3W-2E, )} g efN

dn
w

<

€ ~ € A 1 € 0 ] -2an
< (1 —EW)u-E > + P = -Z{].'PEZ(W-E]_-'E]_ )}e

58y

- 2a(1 -2 W)V = %a(zw - By - B jeN (5.5)

An application of the regular limit process expansion of T etc. in

power of €,

~

€- 0, yields a solution which vanishes as 1 = .

€ 1 o] <2
a‘-{}z‘l’ E’[%W +-2—(E1 -E; ) - E2+A1]+ -—-}e ) (5.6a)

u

V= %{%(El +EY ) - Ea-A +0(%)} e™2eM (5.6b)

3 =t {E -Eatarto(§) } 72T (5.6¢)
where - I

Ez (T;) = saeteM S we 4N gq (5.7)

n
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1.2 Intermediate Expansion:

Similar to the first-order expansion, it may be shown from
the energy balance that the intermediate variable is

2 n
n =z

(5.8)

In terms of this variable, the outer expansion of v as M — 0 becomes

~ €

= 1 o, 0 A ‘
Vouter C1K (By" -Ez -Ag)-( Kgﬂ€)3an + O )} {5.9)

x'm

It will be evident in the following analysis that in order to match the

inner solution of ?, which is of order Il—{ 5

Ay = B - Bl (5.10)

are

~~ o € 3 e |3 Py o~ o 0
Youter gt (ghelg+ W{Z(gﬂn -&w) - Ey +2Es

1 A

+ — Ko } P

i)
_ y A (5.11)
\J— - (P_C- ne)3aef + ---
e ~ E o] 0 |
Pouter K {Z(EI -E2 )+ ---7



where

Es =

As discussed in the previous
the outer region by the involvement

momentum balance of order €,

o

TR <
I i

-

.

o0

4 S Wwin)e M an
o]

article,

If we let
Lflouter -%— % a(h; )} %
{%Jouter % EK_Z_ ;}(ﬁ;e)} 4 EK‘._Q
gouter f)
2 %

(5.12)

this layer differs from

of the Reynolds stress T in the

(5. 13)

-~ -~ a - ® o
where u and v are the corresponding first-order (of aa) intermediate

expansions defined in Eq. (4.18),

then by using the differential equa-

tions for 4, v and T given in Eq. (4.20), the complicated governing

equations (5.3 a, b, ¢, d) for this layer are simplified as

= = 0+0(e)
af

K € 5- }
Zia g F e e
0o(e?)

( 2iaU 1 ) 3 1a'U

+ —_— = (?
bo " okp/ T*

(5. 14a)
(5. 14b)
(5. 14c)
)+ (*-2)°
16K7
+ O(e€) (5. 144)
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From Egs. (5.13)and (5. 14c), it follows immediately

—
~z

‘U

2 =
outer hEHET) (5.15)

The method of solving the system of equations (5.14 a, b, d) is the
same as that of the previous first-order solution which is outlined

in Appendix A (p. 89). Define

«
n

A

C ~ A ~ € E: ~ ~ A~

5 umdn —{1 +E2ne +-E(Q/nn—2'n'—l)}ﬂ
+

o]

-
N

fw)
I}

M v z, = 2z (5.16)
oo

JBo
4K

%—I
1L

A -

Then neglecting terms of order € and higher, Egs. (5.14 b, d) become

where

2 1 a7
U = -5 A (5.172a)
az% 1 k2
dZ]_ + l:' -4“ * Z | - G(Z) (5- ].Sb)
1 -~ -~ k
Gz) = L{#-27-E@-2p} (5.19)

An integral basis for the confluent hypergeometric equation (5. 18b)
is again formed by a pair of Whittaker's functions
‘ Wk’%(zl) and W—k L('Zl)

) 2

with the Wronskian given by
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] ik
1(-2, }Ji’ = e

w {W‘k’ %(zl s W'—k, 1

The forcing function G(z) which characterizes the non-linear effect

contains the product of 7.
£ = To +id T (5.19)

To be consistent with the first-order expansion, we may treat A

small, and neglect A® terms. Let

G(z) = Gol(z) +ih Gy (z) + O(4®) (5.20)
then
Go(2) = ¢ {(Fo-21%0 - K (ho-2)°}
(5.20a)

() = 3+ {fo-1) - E(fo-2)} 1y

~ ~
-~ ~

The complete solution for T, G and ¥ which is finite as

~ - - .
N — e, z3—icw is given by

Z1
o= A Wk, ;(zl) + e lk“{W . é(zl) SOW_R,%(-zl' )G(z")dz
ico 1
+W—k %(-21) Wk ;(z )C}(z‘)dz' (5.21a)
) z1
b= g g B Wy o] {a
zf
z
+ ‘ﬂ“’g W 1(-2 )G(z')dz'}
2k
4k|:w-k Li-#a) = 1 W eel),0 (%) ]{

(-z1)
ico
-ik ! 1 1
o e 821 Wi a(5)Glatdz | (5.210)
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~

v = iK(T - Ca) . (5.21c)

As z 2 iow, by using the asymptotic expansion of Whittaker's
functions shown in Appendix A, and of T given by Eq. (4.24a), it can

be shown that

R (oo+21)|:1 - (oo+21)j|_l{1 +O(50 )]
= -kl 3= 1
+ Ag 7 e ? 1 +O‘Z)} (5.22)
Ba ol Eom e ol
= 4k Z1 (Zl

where Az is a constant involving Az and some constant of integration.
The asymptotic expansion of T matches the outer solution (5. 6d)

automatically, And

Tter = Touter * (5) {0 ®h }

. u
inter outer

o~
~

u
outer, as

-

(5.23)

3>
l
8

As z — 0, by using the power series representation for

Whittaker's functions, and let

Az = Ago t1ibAz;, (5.24)

T = (Rgo+idBa;) {l-ay2y -kzy Inzy + --}+([Ta0+illay)zy + ---

a;

= + O(=z onzy )}

8 =~ LEao+itZey){lnzy 41+
(5. 25)

o

st (TotibTar) [1 -k zy + --]

<

= iK {AA’EO'*'].-A Kel'CS +O(Zl anzl)}



where
' ico
; S W, 1021 )Go (2)dz
o : 1
I
o (5, 25a)
r = ) Wy 1(m)Gi(2)n
o » 2
. _Aso . _Lo kT
A20 = Tk T(1+K)
. (5. 25b)
K . An, . I, e ik
21~ T(1-k) T'(1+k)
IEO I‘ao
= I{l-k) (5. 25¢)
Ipy L,
1.3 Inner Layer:
In the viscous region, the inner variable is
€ = Ren. (5.26)
The primary mean flow velocity and Reynolds stress are
U = ¢ F(Q)
*
T = €°T (§),
and the first-order (aa) inner-layer solution is described by
a = ¢ {F + £}
o
~ *
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The second-order N momentum equation (5. 3c) for this layer becomes

dp e
L - oso(g) | (5. 27)
which yields
= &= e.&,
P = pouter( ) = () Pp=(0)
(5.28)
with Pa(o) = 2(E; - Eg)
If we let
¥ = e{-2F-Lf+u}
T = 22 _Hy il (5.29)
R A . F
T = €21

and substituting into the governing equations (5.3 a, b, d) expressed
in terms of {, then by using the relation and energy balance between
F and T*, and the differential equations describing f, g and h given
by Eq. (4.30), we obtain a system of simplified equations (dropping

%in T)

u+f = 0
deu i’[_ _ € == 2 1 (2 }
L ) :
du (al‘f-if_‘) & ry_gdf 3 g° 1

where in the iAe® convection terms, only the part which will be sig-

nificant as { >> 1 is retained.
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Now, from the first-order solution, we have

0Q
1]
[ast
+
[
>

oQ

fne)., Therefore, to be consis-

E RS

The leading term of f and g is Of

tent with the first-order expansion, terms of order ( %Qﬂ 8)2 and of

2

order 4% such as I 7, g~ etc. will be neglected in the following. Thus

( dv
u+E=O
dau+—'r—za{?—%(w2]5‘l
> Tac - g Pelo)re ko
dg
< x N (5. 31)
du (STE dF) d T
ST (2= - )T - ()
ac L 4 acz b
_1A{-d" v daf sg%’}
= = T F o ) - =
] > 18 3 g 37 .

The process of analysis will be simpler if we pre-match the ex-
Pression given in Eq, (5.29) with the intermediate expansion and

determine the outer condition for u and T.

—~
~

- _ip _1

uinner = E:{ = F 2f+u]’
= £ eF - § ¢(F+f) + € u(C) (5. 32)
-2 U@R) - L% + ¢ u(Re®%), as ¢ = Re3A

inner

On the other hand, the intermediate expansion for T as - 0is
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b4

.+..
S

S
m
e

x|

PIu)
gw
=3

1
N
Al
]

L
+
oo
L
+
S
o}
=3

u.
inter

=3UM) - 3%, +g(u-2E0+2E]) (5. 33)
where
U@ = 1+-— Ene o (Enr}- 27)
ey o € , £ a,a
uinter(m 1- wne - —(%n - 27+ ZE + Kaf) + 7 u(®)
Since the first-order u nter 20d . match each other already,
T inner

therefore the matching condition for u is simply
JECUNRS = {4 + 2 - £}, (5. 34)
n-~0

Now, similar to the method employed in the previous article,

we assume

(

u = u -é-':'LAu:L
o]
< v o= v, +iby (5. 35)
T = T_+iAT
\ o 5

The governing equations for na Y, and Ty are the same as the pre-
vious linear case. Hence, the solution must be of the same form

as given in Eq. (4.39). In view of the log asymptotic behavior of u
which grows to a lower order of € for large { according to the skin
friction law (3.12), it is evident from the matching condition (5. 34)

that u, must be of order €. Let
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For { >>, the asymptctic expansion is given by

£
S, . 1.
((Yoa = - {4 +d +O(z)]
£

S, 1 1 .
( Yoz == g [CUnC-14d) - et re+O(p)]  (5.37)

ZKC -2 * 1 -
[ Toa T Tmé—-1{50+0(_a)} el

Then the equations for iA terms describing the pressure

gradient and convection become

dVl
u3 + dg =
du, % g :
3¢ tTo=S] +2(y ){pe(o)g +€ SOFuOE dG} (5. 38)
du g 2
2 a2 ‘.if) . ol )
Td§+(2L -/ dgz(b)
¥
i o 2

The integral of the connection term SSFuOa becomes important 6nly
when { >> 1, We may therefore use tﬁe asymptotic function of F and
u,, for the integrand. To the accuraéy’ of order €, terms which are
at most O(ez) as C‘ >> 1 will be neglected.

' By using the energy equation for g and f, we obtain an

asymptotic solution as



2KC-2 [3 e (3 3 : s
T = ZKE—I XST'*‘ Z(E)LPE(O)-&—;—-(%) ouf &,]C
1 r :
tger (5% )} o+ --- (5. 39a)
= 1 @ﬂ * Lx € N l *® N2
w sx S8 t(g)P: () + (F) 7S mg}
= S*
(5 & B o) + (%) 2—°2°g}

= ;{(Eé‘n e)gl +% S—e} T + const (5. 39D)

Applying the skin friction law, then

Som¢ = fiRePR = 1 +& fne +0(e)

The unmatched inner expansion as { = « expressed in terms of 7

becomes
*

s
fo@)] = E{2 a+Eme + o))}
— o0

1A * el 1 % e
+1T{Sl _Jrf[pe(o) +-6-So(1+---):|}(1+ Ef?/ne + ---)

%
i A =~ S
% (%)%n {pg(o) +—2°— (1+ %@nx + --)}

" B w
_%{(%E/ne)sl +%sa}e ; f— (5. 40a)
S*
~ * i Al X
¥, =~ ez{%so + 22 315 (o) +—(1 + ---)]
ok
AL E) 4 v | (5. 400)

where (€ T) remains at O(¢) as shown in the first-order inner solution.
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—~
1

& % i ¢ A - -
The intermediate expansion of Yas 1 = 0 is from (5.25) as

T ~ 2{% riiormay L7 e
Tinter - {Aeo L1+0Menn)s - 1, & n{l + )
+id &, [1+0(R M AT + ---¢ (5. 412)

while the matching condition for €u from (5. 34) is

¢ {&m) +2:3- £}

n—0
_ELK (2nR) + lfi-' 1 i@ o« + 2{E° -E°
=% 5 56 'r] ---)'2"1; Eo(-Tn)‘“(EE— 1)
-A e 5 ~
+—1-2—£A21(9/f1ﬂ o) B %{' Iy * _-"-]} e =
Expanding
* * € E N S
S, = St ghreS +¢S,,
we then obtain
( * *
g B oy = 0
20 A'31 - 0
) 1 (5.42)
0 0
SO = 4(E3-E1 )'E IEQ
* _ 4 0 =0 ]l =~ 1~ 1
L S,2 = - [_3 (Ez-E;) - ok tan T Ehen )

With these values for constants, the 7 terms in the inner solution
match the O(A°) intermediate expansion simultaneously, The con-

stant Az for the intermediate expansion is then

I(l-k) -ik . ,
Az =-1=(-(1—+k—))e-1 T’[L‘,0 +ibd 1, ] (5.43)
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2. Variation to the Mean -- Function of 7 Alone:

The second order variation to the primary mean flow is purely
a non-linear effect due to small but finite disturbance, Within the
frame of large Reynolds number and hence small skin friction approx-
imation together with the neglect of the boundary-layer thickness

variation, the perturbations are described by the following equations.

%% = Re { (U+v)e om} (5.46a)
du= df 1 d°%u an
_(F]v-a__r—] "R e = /?e{ (2TH+H0-iUV)e”
n
g ~% 2 K a2 3
0% g Llgd U o p e ) (5. 46b)
2 dn R 2 " 2 J
dn dn
g8 Ee{ae'“”(UE-E’-H’F) +a'{£?r”} (5. 46¢)
dan 2
1
d ,T.= di |, dU = dv),3T2= 1 & %
d'r](b)V Tdn+dnT'Gdn +2TT'1_152(3)

& /ee{ . % e'“”[U(’?r’ +i0) + T(@-v) + iO‘E_j

~%K * ~ % ~ o~
+ 5 l:mu(-—-ﬂ) -iv d(1i'] ‘L )+ (——cxv)+1crdj:1 % —‘
1 1 d (I)e‘zaﬂ_*_i _‘i(i)e‘a'ﬂ]} (5. 46d)
R dnz b 2 dnz b

where % quantity signifies its complex conjugate,

The continuity equation (5.46a) can be written as

av  _ -omn, i dv -an
an = Re Zd'ﬂ (ve &Y - 5 (@ +ﬁ)e }

From the first-order (aa) continuity,
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Since U(n) is real, it follows immediately

<

= r?e(%?r’ e M) = 01c?) (5.47)

Using the outer solution of Wand v obtained in the previous
article and neglecting terms of order e® and higher, one simple inte-

gration of Eq. (5.46c) yields

P~ -3 -7 2E Je 2N 4 0(e?) (5. 48)

The streamwise £ momentum equation (5,46b) is ill-posed in
both the outer region 1 = O(l) and the intermediate layer n = O(1),

because

a) The outer solution for u and v is real only up to O(g).
Hence contribution fromthe real part ofthe forcing function
is O(eg). Terms oforder 22, however, involve the varia-
tionofthe boundary-layer thickness whichhas been alto-
gether neglected.

b) If we ignore the outer solution of T altogether, then in
the intermediate layer N = O(1l), the equation becomes

a7

d?

If the constant of integration of 0(62) is determined

= O(e?)

by the matching with the inner layer expansion, the
condition that T vanishes as N~ o would remain unsatisfied.
Since v is known, the differential equation for T, uncoupled from a

in the outer region, is first order. Only with a typical forcing
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function, could the solution possikly satisfy two condition Aiming

at this typical forcing function, we examine

Applying the equation of continuity to replace the derivative

of v by U and 14, and using the relation

P isa) = 0

g

Re (-ia W) = Re(iau)

we then obtain

() e (A @ o v

Substituting this expression together with the known ¥ into Eq. (5.46b),

using both the streamwise (§) and the normal (n) momentum equations

(4.2 b,c ) for the first-order perturbations to cancel all the momen-

tumwise balanced terms, we obtain

d {1 d ,~ -an 1 , d°U —Zcxn}
i = R S e .
+ R e > dn(Te ) + R a €

T
[t—‘
o}
[
=g

3
w
I

+Re {2—('5*?; +zia%[(5-'52)e'“”]} (5.49)

Now the real part of the terms inside the second brace is non-zero
only with the O(€2) expansion of E, ¥ and ’f)' which has been neglected

Therefore, it is consistent in the analysis to take

T o= Re(1TeMy,

(5.50)

valid for both outer and intermediate region.
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To conétruct a solution for 1?, we again divide the region of
interest into three layers., For each layer, the corresponding linear
first-order matched solution, together with the governing equations
if needed, will be use to simplify the energy equation (5.46d). The
processes of simplification are quite involved. In the following,

only the simplified version is presented,

2.1 Outer Region:

da _ a_-Zan{ € o 1 dw
ET_]- -Ze 1+K[W+4E1-6El-a an
02\1 d
142 oy1 dv 2 %
-3b0(1+ Z/a an + Of(e )} (5.51)

1
where T?/L has been approximated by U'(n). Integrating once, we

obtain
02 2
= € -
u =-E§{1 +E[2W+b§ (1+—§-) (W-E, )-E, +4E, -6E§’:|+ wti& 2
(5.52)
where
o0 00
E, = do” 22N Sg Wm)e 28" gnir
nn'
2am (7 2am' ~
= 20e°M S E, (mYe ol dn' (5.52a)
n
2.2 Intermediate Lavyer:
4 | {ig. b L. 1 #4% 07 (5.53)
.df df 2KR 16K
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where U and ¥ are functions of z defined in Eq, (4.18) and

z = 22 y@Hh
v b

& 2k 4t

& 2K dT

Jb—odz

Now, in terms of f, the outer expansion as 1} = 0, becomes

= b ¢
= =l & i _0( _0_)]
Youter = K.@nel:z + 4 ¥ 4
b2 o2
- %{[% + T"(l - %)]ﬁmﬁ+Aa+%KQﬁ} + --- (5.54)
where
~ b2 og
A; = %Eﬁ-Eg-n+-§(1 +T°)(Ef - 27
& (5. 54a)
B = 2| Eme My
(o]

re{ia-d+dk P NmA - ke - 4
ico
. B S (%z'-P/n 21“)ﬁﬁ*dz'}+ - (5. 55)
16K v, Vo

where only the real part is to be taken, and

3

T% s 32 =42 (1422),

~
u = .



i

2.3 Inner Layer { = Ren:

If we let
1:5. = €[ % + u+}
(5.56)
T = e?{l@T+g) + 1)
Then the governing equation for the layer is simplified as
2.+ F
au %2— = 0 +O(A)
d¢
(5. 57)
toraF s T\ 4+ &t
du (__ 3 _) T 4\ AL A2
Td§+d > LT-dgz(b)~0+O(1A,A)

The real part of the il terms is O(¢°A)., With the neglecting of the
A® terms as before, the asymptotic solution is given by

+

ut = —2%—[%§+d+0(é)]+(T.S.T.)
(5.58)
+ 2HERD & 1 .
T: = EK—g—_—l— [S +O(g—2)}+(T.S.T4)
where s+ = s: +%?ﬂze Sf +;— s: ; (5. 58a)

Intermediate-Inner Matching

As ( = w0, in terms of the intermediate variable 7, the inner
solution becomes

u. =‘1{l+—@ne+—(%’ﬂ-2v}
inner

+

+1 ( + = @nes+ a ) 1 &2 17/n€+0( )} (5.59)

= e 3 + E
— e {1 + sg + Ol tne)l
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On the other hand, the intermediate expansion, as § = 0
u(@) - 2% +4(0)

T(T]) % B+ == >

becomes

+% %@Fﬁ-l-éﬁ(())-%-la—ina?]] (5. 60)
T inter =€ (1 + 0GR 2}
where
,fb—— ico
Noa sk
I, = KRe e Q (Er;z- on Zia }u dz (5. 60a)
J

n
-
]
I
Y
w
-+
=R
[ ]
” i
b
-+
Q

T)] {5.61)

u(0) - 2(A,+ L)+

()]
0
n
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The composite solution which is valid uniformly for 0 =1 <w is

then given by
2
(]

€ 2/ Oo r
e—Zcm U+ 3 3w +bo (1 +—-4—> (W-E; )-E; wi-‘}E_,3 -0 E,

=4
P
-

+ 230 - 2( 1P P - 1fe) ) o

-

Jb_ ico
2 S (sz' -%Zl_a)ﬁ ¥ gg
Zz

4 by

- % @h) - u-:l,symp )_-IJ + ---I (5. 62a)

where u+(§) for C = O(1) is obtained by the numerical method.
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VI. RESULTS AND DISCUSSION

One of the main goals of the present study is to investigate
two basic questions: (a) Is the chosen model equation for the
turbulent shear stress applicable to this specific problem? ({b) How
much does the second order non-linear effect contribute? Ior direct
comparison with the experimental data of Sigal, the resulis of the
previous analysis are presented below in Cartesian coordinates
(see Appendix C).

1., Velocity profiles:

A comparison of velocity distributions for four stations
along the wave is shown in Figures 2-5, Over most of the layer,
except in the immediate neighborhood of the wall, the linear first-
order theory agrées well with the experiment. Profiles including
second-order solution are shown in Figures 3 and 5. A comparison
with the first-order theory shows that the non-linear effect is
insignificant for wave slope less than about 0, 2,

2. Reynolds stress profiles:

Comparisons of the detailed struct ure of the turbulent shear
stress distributions for 8 stations along the wave are shown in
Figures 6 and 7, The agreement is only qualitative. The oscillatory
behavior of the theoretical solution is the result of the model energy
equation which is hyperbolic. Near the wall, the calculated period
of oscillation is only about half of that measured.

It is worth noticing that the strong variation of CT near the

wall, as shown in the figures, is not caused by the non-linear
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effect., It is the result of the presentation in Cartesian coordinates,

since T__ = - pu! u;r contains the horizontal component of the
* -

streamwise ncrmal stress p u'®> which is large compared to p u'v'
in the wall region for high Reynolds number turbulent boundary layer,

3. Surface pressure distributions:

n

= :p
Cp Py™ %o
W 1, 2
zPUoo

- 2(a@) [1 - £2 E? + O(e®)Jcosex

- @a)? [1 + ;—(41:3:- 6 E2 ) + ---] cos 2ax

Figures 8 and 9 show a comparison of wall pressure measure-
ments with the first and second order theory. The agreement is
satisfactory except possibly for a very small phase shift, From
the governing equations, it is easy to see that only if the perturbed
shear stress T'is of order € (while the primary T = O(ez)‘) some-
where in the boundary layer, could P(n) obtain an imaginary solution
of order ¢ which would account for the possible phase shift, How-
ever, the chosen model equation for the shear stress together with
the boundary conditions do not permit T' to have order of € solution
throughout the whole layer,

Contribution from the solution of order € including the
variation of the boundary thickﬁess and the normal velocity V is

analyzed. The phase shift is found to be
2 0_ O
2e”(l + E - E )

cpa-
€ o
I-EZE1



T =

where
o0
EC = -bya [ ome M an>o0,
(o]
1 e -2
Eg = o* I (dem - 2022 - 1)W 7% an

(o}

For @ = O(1) and ¢® =0, 0015, © is indeed vanishingly small,

4, Surface shear stress distributions:

The most important part of the present study is to examine

the result of the surface shear stress,
T = H (a‘ﬁ)
N h \'an.

W n=0,

which performs a significant role in the process of cross-hatching
ablation.

Comparisons of the measured skin friction distributions
by Sigal and Kendall with the first and the second order theory
are shown in Figures 10-12, Away from the vicinity of maxdmum

slope where

Y (—gg) = 0.07,
pu

Sigal's measurements for WW1 and WW2 with Preston tube must
be reliable. Prediction of the phase shift is satisfactory. The
predicted magnitude of the perturbed skin friction is twice as
large as that measured. |

“As a reference, a qualitative comparison with Kendall's
measurement is made in Fig, 12, Disagreement is profound., In

fact, the Reynolds number of his experiment is relatively small,



T =

and the pressure gradient parameter A is quite large (= 1.75), while
the theoretical analysis is based on the large Reynclds number approx-
"imation, No definite conclusion could be drawn from this comparison.

5., Discussions:

In the outer part of the layer the perturbed flow is practically
"inviscid,!" Predictions for the velocity and Reynolds stress, as well
as the wall pressure distributions which are mainly determined by
the momentum transport in the outer layer, agree well with the
experimental measurements., In the wall region where the perturbed
Reynolds stress plays a significant role in the process of momentum
transport, only a qualitative agreement is obtained.

In his comment upon Davis' (1972) visco-elastic response
of turbulent fluid, Townsend (1972) pointed out that use of the energy
equation immediately introduces a visco-elastic response with a
relaxation time as large as is plausible. He concluded that for wave
slopes greater than 0,1, nonlinear behavior becomes significant, and
it seems unlikely that linear theory can describe the observation,

As a matter of fact for small amplitude wave, the flow tends
to follow along the wave surface. If the problem is formulated in
Cartesian coordinates instead of orthogonal wavy coordinates, we

have from the transformation (see Appendix C)

u'x uy' = u'v' - aa(u'z-v‘z)e'an sina§
and
T = T +aa T'
Xy xy Xy

T + aa(1'- O e %" sinat) .

I



-T2 =

In the wall region the difference of the primary normal stress O is
almost 10 times as large as T for high Reynolds number boundary

' layer, Therefore, for ae = 0.1, the perturbed shear stress will be
of the same order of magnitude as the primary undisturbed one if
viewed from Cartesian coordinates,

The results of the present study show that the nonlinear and
second-order effect is insignificant for amplitude to wavelength ratio
of 0,03 (wave slope aa = 0.2), The discrepancies in the detailed
structure of the velocity, shear stress, and skin friction distributions
near the wall suggest modifications to the model are required to
describe the present problem.,

Formulation of the problem in orthogonal coordinates imme-~
diately introduces a curvature effect, Use of the energy equation
already iﬁcorporates the convective response--a visco-elastic be~-

~havior., Consequently, the empirical functions which relate the tur -
bulent motion to the shear stress require a further examination,
Particular attention should be paid to the flow close to the surface,

According to the order of magnitude analysis based on the skin

friction discussed in Article III, the streamwise and the normal
turbulent diffusions are insignificant in the wall region, Figures

13 and 14 show comparisons of the surface shear stress profiles
obtained with constant and variable stress-to-energy ratio b in

the wall region. The difference is very small, The important ques -
tions we may examine are then: How is the dissipation of turbulent

energy modified in the presence of pressure gradient and convection?
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Laminarization of equilibrium turbulent boundary layers can occur
in fairly large favorable pressure gradient. What is the three~
_dimensional effect associated with flow over wavy boundaries? The
strength of streamwise counterrotating vortices in turbulent boundary
layer is expected to be amplified on the concave portion of the wave
surface because of Taylor- Gortler instability,

Further experimental and theoretical investigations are clearly
needed for better understanding of turbulent flows over wavy bound-

aries,
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APPENDIX A
SOLUTION OF THE INHOMOGENEOQOUS CONFLUENT

HYPERGEOMETRIC DIFFERENTIAL EQUATION (4. 20)

: kK df
Uu = — d—l
iz gp
A1
L& (38U L Vs o senqeotei) - - o
K dR be 2K ' @ KA

where U=1 + % Ine + % @n®y - 271-). For 7 >> 1, the homogeneous
part of Eq. (A-1) provides oscillatory solution with variable local

frequency proportional the integral of U(f;€). Thus, iet

A~

:
y = Ufe)ah = AlLs g + 5 @af - 2F - 1]
ot
B A
= (B = )1
= UA (A-2)
Define
z = o (A-3a)
~ bo
k = - ‘V4K° . ~lxk<D (A-3b)

Then we obtain a set of degenerate confluent hypergeometric equations

aA 1 dT

“ T T2k 4z bieta)
d2$ i, kya _ bQ s 2k

dz? +(""=+TZ)T = - (co+21)-7 (A-4b)



Solution of
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The homogeneous part of Eq. (A-4b) is a special case of

Whittaker's differential equation in a self-adjoint form

do

dz

with K

2

¢

|

2
4-1-%-&5-4-1:E—}'$::0
Py

2z 472

An integral basis is formed by a pair of Whittaker's functions given

o k -zfz 2
e
-k t .k -t
L 1le) = EE— S 1+l dt
: 2 o
(A-5a)
Re(l-k) >0, |argz|<m
k z/2 2
- ——-.(_:_..)_....._._.___.Stkf_i'k't
Wi, 22 = iy R gled TR
© (A-5b)
Re(l+k) > 0, |arg(-z)| <=
Both Wk 1(z) and W k 1( z) are finite but not analyticat z = 0, A
22 t]

suitable limiting process is taken to obtain their power series repre-

sentation for ]zl < oo,

(z)

[

1]

1
1_\(—_1{) {mk’%(z)-ﬁﬂ z +H

« 1)

& 1(2) E@nz~ lkﬂ :l+ Hk,%(z)}

sink

(A-6)

P(k)

a degenerate confluent hypergeometric series given



o

M 1lz) = ze /2 F (k5 252)

w (1-k) -z
= ze"z/Z 2 —— lzi <o , (A-T)
n=0 (n+l)!(nl)

and
-Z,',?. o
Hk 1(z) = ._E‘E__. {Z} L(-kin) [¥(1-k+n)
+ 2 T(1-kK)  “p=0 (n+1)!(@!)
- ¥(14n)-y(24n) 12" + L) (A-8)
where
(1-k)o =1, (1-k} = (1-K)(2-k) --- (n-k) . (A=9)
and VY(x) is Psi (digamma) function
_ T'(x) 1 2 1
= = Y=+ xD ————
V(x) (%) - anl et
(A-10)
¥ = Euler's constant 0.5772157
The Wronskian for the chosen pair of solutions is
Py _ -k
H{ Wy, 1), W aa} = (1) (A-11)

and the branch line in the z plane is the negative real axis, For

positive imaginary z defined by Eq. (A-3), we take

(-2) = (ze™; L (-1) = 7T

to assure Iarg(—z)l < w, Thus

B = SO (A-12)
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Then, as |z| =«

4k k_-z/2
z

f o~ -2+4D(1 + + -==)+Ciz e [1+O(é)]

= b [ O +2i -ijil % - § 4 )
- o] ( O+ 1) +2KCL’Y (UQ+ 1 "r‘b—o' ; -—-.-"1

1

z

- ke-z/z[l + O(

£ )] (A-15)

Series expansion around z = 0:

Applying the properties of Digamma function

vil) = -y,
(A-16)
1
Y(14k) = &+ Y(K)
The functions 7 and H are expanded near the origin as
- k 1
My, %(z) =~2{1 - >z +1—2—(k2 +14z°% + --- }
, (A-17)
Hk 1 iz) = ﬂﬁ{l—alz +a222 + =-==- }
» @ T'(1-k)
where
a; = 3 +k[y(l-k)+2y-1]
as = ':2[“ a; k - ‘2‘ ka +"é"
The pair of Whittaker's function s is
W, ali] = [flgiy 5 & GgeP t==jkana{le Sz )]
k, 2 T(1-k) 2
(A-18)
ik

1 2 Te k
W, 1(z) (1-a; z+azz +--)-kz(9nz—.—((1-—z+--)}
Ik, T'(1+k) { sinkT 2
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The series expansion for the integral terms inside the brace of

Eqgq. (A-13) is carxried out as

¥ ‘I ; -
{ f =1 W-k, %("Z) - % a1 = %{z + O(zﬁfnz)]elkw
[+ 0]
— f = S W, 1(z)dz. (A-19)
3 2
(o]

Therefore, around z = 0, we have

t~240 W al2) + DIle'ika_k’ %(-z)-gzszow;zzm z)]
or B o= <24 Alfearz ¢ Aan tes) » kaligll = 1ziz B ssmeil]
+D[I1z - 31 + T1K)z°% + 0(2° nz)] (A-20)
where
. & _Dh -ikm T, = L T(1-k).

— +
T (1-k) T(1+k)

Solution of u:

From the integral representation of W, Eq. (A-5a,b), it

is immediately seen that

d .3 k
E_ Wk, %(Z) = -é Wk, %(Z) + ;%- W(k-%), O(Z)
(A-21)
T Wi s(2) = W aea) ¢ ot k), 47
where
zk'l =22 O ok Tl
Wiiedyolsl = Fgmt— S ) E et ar (A-22a)
k+ z/Z %
Ly (zz) Ot ko Lyt %5 (a-228)
W (erd), ol ) = T(1+k) Sot (
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' 4

Branch line X

-1/2

|

: A 5 l '
The complete solution for T which is finite as |jz| — « is

T = =2+ Cl'Wk‘%(z)
( z icg
-ikwiW, 1(z) ¢ C .. ;!
+De U E N W a4 W a(-2) BZWk)_é_(t)dtj .
o
(A-13)
bo . L
where D = 7}—(00+21)+3 ‘
Asymptotic expansion for large Lzl:
N-1'(-x)_(1-k)
W 1)~ e Z/Z{l +E n n+0(—11\—J)‘}
e n!(-z) z =

(A-14)

" kZ/Z n n il

It is easy to show that

ico _
S W l(t)dt’VZZke-Z/le g BES-le) ---_l
k:E z

§ gt {§4 5 hoey g lal> Il > 1
(o]

= 2(-z)-keZ/2[1 +5(—2ﬁ + ---] + &



Therefore, we obtain

& - oL df
v = T2k dz
z
_ ’ 2k { iy -ikT O Al
Ak |:ka’ é[Z) 'Z‘g ‘iv(k_%)’o(Z)j Cl tDe \N;k’%(_t)dtj
ico
1w (emye 2R De-ikm {4 1
"4 Vi-k,%( Z)+(-Z)%_V\I(k_!_%))o(—Zi]‘tDe . S \Vk, %(t)dtj
= (A-23)
As Izl - o,
n G Xk -z/2 1 D
= o m & [1 +O(;)] + O(;—g) (A-24)
As z~-0,
& o A[Qn 1 . ] a) 2az K . ]
u > nz(l-kz +--) + ( +—k—)—(—k—+§-)z1----
- %[1”1 - (14T, k)z + O(z%tn z) ] (A-25)
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APPENDIX B
SECOND ORDER GOVERNING EQUATIONS IN COMPLEX FORM

First Order Expansions:

' ) (’E(n)\
v! iv(n)
p' > _ Re < 5(1']) $ el&g.
T! T (M)
ot / Lo (n) J
Continuit}::
Ol B e {ue TP L @R T @) T &=
Momen’cum:*

ut L dU ( Tt 00,
U ———-ag + v an + —Lag +

= {ia(O’ £ 2Ty -E—“ (G+2iT+UT)e ™" 1—;— (u"2
v du) 171d°U -2em 1 a&°% —om:l} i2ak
t===) -=| == e -5 e e
io an i d~*
1 Phs ~ - ~ u
+{—2— (5-21T-Uv)e -3 V_'n
- l—-gdgu ol g 2 &y e-om]} (B-2)
a 80”
v aPn _ (8’!’” 2 )
Use o 55t o
: 1~ oo™ 12a§
=ja [-U2+(O'+21T)]e + ol Uu - z- 0+21'r
~ 5 ~ - ~ AU
+ {a(Uu - % +1iT)e N+ aquy } (B-3)
* ~k ~ h ) e
l. uw = u_ - iu, is the complex conjugate of u,

2. Relf)Relg) = LRe(fg) + +Reltz’).
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Energy:
g A%, o8 Tl oy B, Bt dUu vt
[UaF(b) AAF TESIREIC S ERAr S E o
o 1 | 'I'.‘% 1 5% gn
tomGT ™+ 227 R o2 (%)

by I
r:.a -~ E?—J _1_ _:1. 5 NT i d i
+ T (u+v)+ G(Trn F g =] 'Te>:] 5 1ceu(b)+1v d‘n(b)
m o ~a
~ ~ T T T'T =
du ~ o~ dv d ( e e) 3 T -l
-T(5= - 6 — +— ; B ety
Tlan = 0 T N\gr 3 g7 3/ 8 2
m m
1[ 1 -2an d° ,T , @@ 7 i2ag
shl-ze®M Iy o) e
R. 4 dn2 b * dnz b ]

m T 2
) a T % d 5
1| _s> (X ~4a r,_FFdu_ S av
+2|:lau(b)+lvdn(b) T (dn av) 10dﬂ
¥¥ OTTF ~
+—Q—G(e -1l - e3e>+é-—’r—ll—-,
dn “\2T 2 gT 3 8 272 -
m m
1 1 -2em & , 7T 1 -an a°® |7
=1 N (Iy+le (D]}

(B-4)



Velocity and Revynolds Stress Profiles
y 3

Expressed in Cartesian Cocrdinates

The velocity u_ and uy in the direction of increasing x and y

respectively are given by

u_ (  Jps F?_‘) [ v \
= . (C—=1.)
(uy) -E e \ v ) l f

where the transformation matrix F is obtained from Eq. (2.1) as

F, = 1 =3 (az)® e—Zan sin® af
{ u
L Fy = (aa)e_a{rT sinag(l -ac e—cm cosat) Va2
1. Velocity:
T, = U + (el (e
+(ae) {[T(m + 2ume M2
+ [1=1(n) -2UM)] + ive *N eiaé sinag} (C-3)
2. Reynolds stress:
u}'{u;r = (FF-F3u'v' - F, F, (u_‘é—;';) (C-4)
Tey = pf{?;_ = (X -E)T+ (F, F)o

= T(m) + (ae) [F(n)el®® - G (n)e M sinat]
+ (aa)? [?(n)ezmg £7(m) - Te 24N

. ) i e e Rl |
10 + 2im)e 2B G (me " e1“°sina§] (C-5)



