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ABSTRACT

The Fokker-Planck (FP) equation is used to develop a
general method for finding the spectral density for a class of
randomly excited first order systems, This class consists of
systems %tisfying stochastic differential equations of form
x+f(x) = Z hj(X) nj (t) where f and the hj are piecewise linear
functions :(%101: necessarily continuous), and the nj are stationary
Gaussian white noise. For such systems, it is shown how the
Laplace-transformed FP equation can be solved for the trans-
formed transition probability density. By manipulation of the FP
equation and its adjoint, a formula is derived for the transformed
autocorrelation function in terms of the transformed fransition
density. From this, the spectral density is readily obtained,

The method generalizes that of Caughey and Dienes, J. Appl.
Phys., 32.11.

This method is applied to 4 subclasses: (1) m =1,
hl = const. (forcing function excitation); (2) m =1, hl =f (para-
metric excitation); (3) m = 2, hl = const., h2 = i ny and n,
correlated; (4) the same, uncorrelated. Many special cases,
especially in subclass (1), are worked through to obtain explicit
formulas for the spectral density, most of which have not been .

obtained before., Some results are graphed.
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Dealing with parametrically excited first order systems
leads to two complications. There is some controversy concern-
ing thé form of the FP equation involved (see Gray and Caughey,
J. Math. Phys., 44.3); and the conditions which apply at irregular
points, where the second order coefficient of the FP equation
vanishes, are not obvious but req.uire use of the mathematical
theory of diffusion processes developed b‘y Feller and others.
These points are discussed in the first chapter, relevant results
from various sources being summarized and applied. Also
discussed is the steady-state density (the limit of the transition

density as t — 00).
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INTRODUCTION

Summary

This thesis is concerned with systems governed by first order

stochastic differential equations of the form

m
%fc—‘i +£(x) = ) hyny(0) . (0.1)
Gl

where each nj(t) (j=1,2, ...,m) represents white noise input. Two

special cases are of J'Ll'l’lporta.nce---hj = const, (forcing function excita-

tion) and hj « f (parametric excitation). Except in Chapter I, f and
hj are assumed to be piecewise 1in¢ar,,

Chapter I summarizes theoretical material concerning (0.1)
and the corresponding Fokker-Planck (FP) equation, gathered from
various sources, and on which the rest of the thesis is based. In
Chapter II, this is applied to the general piecewise linear system,
and a formula derived for the spectral density, In the remaining
chapters this is applied to special cases --in Chapter Il to systems
with only forcing function excitation, in Chapter IV to systems with
only parametric excitation, and in Chapter V to some systems with
both parametric al;xd forcing function excitation. Some numerical
results are presented for the cases treated in Chapter III. In an
Appendix, the possibility of application of methods like these of this
thesis to second order piecewise linear systems is examined; it
appears unlikely that analytical results can be obtained even in the

simplest cases.



Physical applications

In (0.1), x(t) is to be considered as the output of a system
excited by the inputs nj (t). Stochastic inputs occur in varied fields,
The original application was by Einstein to the Brownian motion. In
electrical engineering, thermal noise in electronic circuits is very
close to pure white noise. Vibrations in mechanical systems may be
generated by a wide variety of more or less random forces; such
forces include earthquakes, turbulence in air or water, storm wawves,
and the force on a vehicle traversing rough terrain.

Unfortunately, the majority of applications require dealing
with systems of higher order than the first. In particular, few
mechanical systems can be approximated, to any useful order of
accuracy, by anything simpler than a single spring and mass--that is,
by a second order system. Thus the method developed in this thesis
has limited practical utility unless it can be extended to second
order systems.

Following the mechanical engineering analog, but sacrificing
dimensional accuracy to simplicity of expression, x(t) will henceforth

be referred to as '"displacement', f(x) as '"restoring force', etc.

Previous work

When the stochastic differential equation is linear with only
forcing function excitation, the probabilistic properties of x(t) have

long been known; this is true of systems of arbitrary order, not just



first order.}L For example, the spectral density may be obtained
either directly or by means of the FP equation. If, instead of

hj = const., the hj are linear in x (so that the excitation may be con-
sidered as a combination of forcing function and parametric), then
the transition density has been found in only the simplest cases,
However, Gray [22, 23] has shown that for linear systems of this
type the spectral density is the same as that of an ""equivalent"
system with constant hj' Wong and Thomas (see [45, 46 ]) have
worked out the transition density {(as an eigenfunction expansion) for
two first order systems of this type--in the present thesis, these
are example 1 of section 5.3 and the example of section 5.4.

The spectral density of a noniinear system has been found
explicitly in only one simple case, by Caughey and Dienes (see [4, 8]
and also Robinson [37]). This is the special case of example 2,
section 3.4, in this thesis; our method is a generalization of that
used by Caughey and Dienes. The transition density has been found
for several others. One of them (example 4, section 3.3 in this
thesis) has been known for many years.z Two others are obtained by
Wong [45] from the two linear parametric cases mentioned above, by
the substitutions v = 4n x and y = sinh x respectively. For these
systems, in which the transition density is expressed as an eigen-

function expansion, the autocorrelation and spectral density can be

1 See, for example, Wang and Uhlenbeck [40].

2'See, for example, Chandrasekhar [6] or Kac [28].



found as shown in Payne [36]. These systems are all first order,
with forcing function excitation.

Wolaver [43, 44 ] claims to have obtained the autocorrelation
and spectral density of a second order system; however, his method
of solution of the FFP equation appears to be incorrect, and his
formulas do not agree well with his own numerical solutions. See
the Appendix for further discussion of his method.

Much work has been done on approximate methods for non-

linear systems. The method of equivalent linearization approxi-

mates the system by the linear system with the same first and second
rnornents.1 Various perturbation techniques have also been used.2
Khazen [31 ] reduces the FP equation to a system of Volterra-type
integral equations to be solved by the usual method of successive

approximations.

Autocorrelation and spectral density3

Throughout this thesis, well known probabilistic concepts are
used with little or no comment. However, some discussion of spec-
tral density seems indicated, since its calculation is the main
purpose of this thesis, and since conflicting definitions exist,

differing by multiplicative constants,

For a review of this method and the results obtained by various
workers, see Caughey [3]. See also section 3.6 below.

For a review, see Crandall [7].

3 This paragraph is based on section 1.1 of Karnop [29].



If y(t) is a stationary process, its autocorrelation R(t) is

defined as the expectation of y(tl )'y(tl +H), i.e.,

R(t=E [y(tl )y(‘c1 +t)]= j j yl')rzll:‘z(yl R PR +t)dy1dy2 ; (0.2)
QQ
Here Pz(yl, t15Y5, tz) denotes the joint density of y, at time tl and Vo
at time ty -- "density', except in the term ''spectral density', will

mean ''probability density'' throughout this thesis. The sample space
2 is the range of all possible values of y., Since the ergodic
hypothesis will be assumed, one has also

T

R(t) = (y(t,)y(t;+t)) = Lim z%j y(t) )y (b, +t)dt, (0.3)
T-o _T

for almost all sample paths. In fact the symbols for ensemble
average E[ ] and time average {( ) will be used interchangeably
from here on.

The spectral density of y(t) is the Fourier transform of R(t).
Since R(t) is real and even, this can be written as a cosine transform

(the Wiener-Khinchine relations):

oo
@ (w) = %J R (t) cos wtdt ' (0.4)
0
oo
R (t) = ‘J" ®(w)cos wtdw . , (0.5)
0

Since



(0 0]
[ewaw=r(0) = (x*) , (0.6)
0

®(w)dw may be interpreted as the mean square (or power) contained
in an infinitesimal band of the sinusoids into which the process has
been resolved.

Equation (0,4) defines the one-sided spectral density, which is
defined only for w2 0. This will be used exclusively throughout this
thesis., The two-sided spectrum, which is the exponential transform
of R(t), takes values for both positive and negative w; it is an even
function and for w2 0 is half the one-sided spectrum. Of course
negative W has no physical meaning, but exponential transforms are
often mathematically more convenient,

When it is necessary to specify the particular process yv(t) to
which R(t) and ®(w) refer, the symbols -Ry(t) and <i>_y(uv) will be used.
The cross-correlation between y(t) and z(t) will be referred to as

Ryz(t)’ and the corresponding spectral density as & z(u)).

¥
Notation

The following conventions will be adhered to in Chapters II-V,
aﬁd (occasionally) iﬁ Chapter I.

(a) A Greek letter (upper or lower case) denotes a nondimen-
sionalization of the corresponding Roman letter. The only exceptions
are ® and w, which, following standard usage, denote spectral density
and frequency, and {, which denotes nondimensionalized q. Quanti-

ties not denoted by Roman letters are nondimensionalized by an



asterisk (e.g. 93*, ¢’*) --although an asterisk may also denote the
adjoint of an operator.

(b) The Laplace transform (with respect to time) of a quantity
denoted by an upper case letter (Roman or Greek) is denoted by the
corresponding lower case letter, Otherwise a bar over a symbol
denotes the transformed symbol.

Several special functions are used in Chapters III-V. The
notations used are those of Abramowitz and Stegun [1 A except for the
parabolic cylinder function, where the more familiar notation D\)(z)

is used.



CHAPTER I

PROPERTIES OF FIRST ORDER SYSTEMS AND
THEIR FOKKER-PLANCK EQUATIONS

The results quoted in this chapter are drawn from various
sources and are mostly given without proof. Such proofs and deriva-
tions are given in the references cited, often in different form or in
more generality than required here. In a few cases, results are
expressed with less than mathematical exactitude (e.g., the defini-
tions of stochastic integrals), for reasons of brevity, clarity of
exposition, or the writer's ignorance. There is disagreement
concerning some results in sections 1.1-2, but this concerns choice
of the appropriate mathematical model to represent a physical situa-

tion, not the mathematical derivation of results from this model.

1.1 WHITE NOISE AND STOCHASTIC
DIFFERENTIAL EQUATIONS

The nth order system

In this and the following section, there is no additional com-
plication if the equation (0.1), with one dependent variable x, is
replaced by a set of equations with n dependent varia‘,bles %3 o€
writing x for the n-vector {Xl} and summing over repeated suffices
(2 convention which will be used throughout sections 1.1-2),

dx.
L _ o < _
_dt—+£i(x)—h1‘](x)n](t) ) 1_1:2:--'511 ] J—l,z,...,m. (1'1)

An nth order equation in one dependent variable can be reduced to
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this form in the usual way, replacing x(lpl) by X, .
In all that follows, it will be assumed that the inputs nj (t) in
(1.1) are stationary and Gaussian., This is nearly true in many

physical cases and is the simplest possible assumption,

, . . 1
Physical occurrence of '"'white noise"

Frequently in physical applications a stochastic input has an
essentially flat spectrum, up to a frequency so high that it has prac-
tically no effect on the system--i.e., much higher than any
characteristic ffequency of the system. Electronic noise has such a
spectrum, and turbulence may approximate it over a considerable
range of frequencies. For such disturbing forces as storm waves
and strong motion earthquakes it is a very crude approximation, but
often justified for design purposes by lack of any e:-s;act data on

expected disturbances.

Properties of this noise

The drop off of the specti‘um for high frequencies is equivalent
to non-zero autocorrelation at very small time intervals. However,
over any ''macroscopic' time interval the signal can be considered
uncorrelated. It follows from this that if all the nj(t) in (1.1) are
white in this sense, then the (vector) process x(t), while not truly a
Markov process, is effectively Markovian if only "'macroscopic'

time intervals are to be considered.

} The discussion in this section is largely based on Gray and
Caughey [24 ], where a less condensed treatment is given,
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Since it is not convenient to work with processes which are
"almost' uncorrelated, ''almost'" Markovian and with spectra flat
"except for very large frequencies'!, it is desirable to find a
stochastic process which does not have these limitations, but which
leads to an output x(t) whose properties (e.g., transition density) are
limits of those obtained using ''physical" white noise. Such an
idealized white noise could not occur physically, as it would imply

infinite energy in the input.

The stochastic integral equation

Idealized white noise, being uncorrelated, is a pathological
function, and (1.1) cannot be interpreted as a set of differential equa-

tions in the usual sense. Thus it is often written as a set of integral

equations
t t
xi(t) - Xi(to) -i-j fi(x(s))ds = ‘Jn hij(x(s))nj(s) ds

t t

) o

t

= f hij(x(s))dwj(s) ; (1.2)

t

o

Here the wj(t) are Wiener processes, i.e., Wj(t) is Gaussian, has

zero mean and stationary independent (and therefore uncorrelated)
increments, and
. .
<[Wj(t2) - Wj(tl):, [wk(tz) _ wk(tl)_J> = ZDjk |1:2-t1 [ s (1.3)
Then nj(t), the formal derivative of Wj (t), has the required

properties, i.e,
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R, o (1) =2D 8(t) = 0 fort#0 (1.4)
Ik

D (UJ)—-Z-D = const 1:5
njnk T ik T e s 51)

However, since almost all sample paths of Wj(t), though con-
t
[t
to

cannot be considered as ordinary Riemann-Stieljes {(or Lebesque-

tinuous, are not of bounded variation, the integrals ij(x(s))c:lw‘].(h‘r,)

Stieljes) integrals. So-called stochastic or Ito integrals must be used.

Doob's stochastic integral

There are many possible generalized integrals. The most
commonly adapted is Doob's stochastic integral, or the forward Ito

integral, which may be defined essentially as followsl

b n-1
[s@iawter = um ) st wity ) -win | (1.6)
a ' k=0

where a:to<t < T .<tn:b and § = max (t

St ¥
1 O<k<n k+l "k

From this definition it follows that

b ' |
<fg(5)dW(s> = 0 i
a

for all g{t), which is convenient. However, the transition probability

obtained using this infterpretation of (1.1) is not in general the same

: See Doob [9], in particular pages 436-444,



<P

as the limit of that using '"physical' white noise. ) In addition such
physically unlikely results are obtained as that increasing white

noise excitation may make an unstable system sta,ble.2

The symmetric stochastic integral

Gray and Caughey [24 ] show that if, instead of Doob's

stochastic integral, one uses the '"symmetric'' stochastic integral

b n-1
g(s)dw(s) = 1611% Z %[f(tk+l)+f(tk)][w(tk+l)—w(tk)] (1.8)
a Y k=1

(where t, and 8 are as in (1 .6)), then the transition probability
obtained is the limit of that for physical white noise, and no physical
anomalies occur.

Thus it appears that an appropriate mathematical idealization
of physically occurring white noise is as a stochastic process with
flat spectrum, such that stochastic differential equations containing
it (such as (1.1)) are interpreted as integral equations where the
definition (1.8) is used for the integrals. This will be the interpre-

tation throughout this thesis.

As is shown for the special case of
g
dt

by Caughey and Dienes [5] and (using a different method)

Astrom [2]. Gray [22] proves it for the system (1.1) assum1ng
a partlcular kind of "physical' white noise.

+4x = xn(t)

- See Gray and Caughey [24] for a list of authors who have used this
method, or others yielding the same results.
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Stochastic difference equations

Another approach (see Gihman [21 ]) is to define (1.1) as the
limit of a set of stochastic difference equations. However., this leads
to the same ambiguity, since different difference equations, which
would approximate the same differential equation if Wiener processes
were well-behaved, give different results--just as, in the integral
equation approach, different definitions of stochastic integral, equi-
valent for well-behaved w(t), give different results. Thus if,
following Gihman and most other authors, one takes (1.1) as the limit

of the discrete problem

x. (t ) - x.(t,)
it k+1 itk _ )
Bepl ™% = hij(x(tk)) 0t o Yy ~Heconst., (1.9)

where ni(tk) is a one-dimensional random walk whose position at each
succeeding e changes by jumps whose magnitudes are independent,

. then the same results are obtained as using Doob's stochastic integral.
- 'But if one takes (1.1) as the limit of the more symmetrical discrete

problem

L

)
K 1
t -t T [fi(tk)”i(tkﬂ)]

= %[hij(x(tk)) +hys (et ) jnj(tk) , (1.10)

then the results obtained are the same as those obtained using the
symmetric stochastic integral (and are the limits of those occurring

in physical applications).
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1.2 THE FOKKER-PLANCK EQUATION

The solution of (1.1)

The system (1.1), interpreted in any of the ways mentioned
in the previous section, has a unique solution, x(t), which is a sta-
tionary n-dimensional Markov process, whose sample paths are
almost all continuous. The existence and uniqueness of this solution
follows as in the case of ordinary differential equations for suffi-

ciently well-behaved coefficients fi(x) and hij(x)' L

Form of the FFP equation

Since x(t) is a stationary‘Markov process, it is completely
specified by its transition density P(x,t |xo). (By definition,
P(x,t lxo)dxl o dxn is the probability that a sample path starting at
X lies in the n-dimensional element (Xi’ %+ dxi) at time t later.)
This transition density, as is well known, satisfies the FP equation

(also called the forward Kolmogorov equation), which has the form

. |
0P _ 8 9 [
B T T O, a3, ()P ] ~_3—x;i_bi(X)P]~ , S

with initial condition

. o)
P(x, t]x )= I 8(x,-x_.) . (1.12)
(o} Sa] 1

o1

. See Doob [91], pages 273-291. Although most treatments require
the coefficients to satisfy Lipschitz conditions, a finite number of
discontinuities can be allowed for by dividing the space Q up into
sections with the discontinuities on their boundaries, and assuming
x(t) continuous across these boundaries.
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Boundary conditions may also be necessary, especially if O is not
the entire n-dimensional space; appropriate conditions are dis-

cussed in section 1.4 for the one-dimensional case.

The coefficients of the FP equation

The a”‘(x) are called the diffusion coefficients of the process,

while the bi(x) are the drift coefficientsl . They are defined as

follows:

F [ Ase Ak, 050 |x]
L o ' 1.13
2AT (1.13)

as () = T
T At|0

E [Axi, At IX] '
AT 5 (1.14)

bi(x) = lim
At]0

where Efg(x), t ]X0] is the conditional expectation of g(x), i.e., the
expectation calculated using the transition (or conditional) density
Px,t lxo) as weighting function, and Axi is the change in X, in time

At along a sample path,

The controversy concerning bi(ﬂ'

Formulas (1.13, 1.14) are well established and beyond dis-
pute. However, conflicting results have been obtained in the
evaluation of (1.14). As pointed out by Gray and Caughey [24 ], the
differences stem from the various interpretations of the stochastic
differential equations (1.1) (as discussed in section 1.1 above).

All interpretations give

lSee Dynkin [10], page 4.
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ai&(x) thjh,{,/k 5 (1.15)

but the use of Doob's stochastic integral gives

bi(x) = - fi(x) . (1.16)

while the symmetric stochastic integral gives

2h
ff,k
b(X)——f(X)'i‘thlJ-é—— . (1.17)
Here Djk is as in (1.4), i.e., ZDjk 6(t2~t1) is the cross-correlation
of nj(tl) and nk(tz).

Thus the FP equation in the first interpretation becomes

%E —5—(fP)+DJkW—(h1J Lk P) , (1.18)
while in the second it is

== -§~— (fiP)+Djk—a-§—-i- by 7 (h{kP)] , (1.19)
A.lthouéh (1.19) will be used throughout this thesis, formulas obtained
using it (i.e., almost all formulas from this point on) can be trans-

formed into the corresponding formulae obtained using (1.18) by

oh
replacing f. (x) by £, (X)+D kh 8;{’;1; wherever it occurs. Note that if

each hij (x) is independent of e P then the two interpretations yield
the same results. An important particular case is the nth order

system with the differential equation

x(n)+f€(,g', % .,x(n-l) ) = hi(x,x', .- .,x(n"2)>ni(t) , (1.20)

Fd g v vop o 2XT 5
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i.e. where the excitation terms do not involve the two highest
derivatives. This includes the case of a first order system with

only forcing function excitation.,

Properties of the coefficients

The behavior of ai&(x) and bi(x) depends fairly directly on
that of fi(x) and hij (x). For example, ai, and bi are continuous when-
ever fi is continuous and hij continuously differentiable; and if fi and
hij are linear, aip is quadratic and bi linear. Thus a well-behaved
FP equation depends on well-behaved (i.e., physically reasonable)
coefficients in the stochastic differential equation.

An import'ant property is that the matrix {ai&(x)} is non-
negative (positive indefinite). This follows directly from the

definition (1.13).

The backwards equation

Pt Ixo) is also given, as a function of X and t, by the

formal adjoint of the F'P equation (1.11), namely

2
P 8" P oP
Jt a’if{;(xo) Ox .0X T bi(Xo) o . ° (1.21)
oi ot oL

with the same initial condition (1.12). This equation is called the
backwards Kolmogorov equation {(henceforth abbreviated to ""back-

wards equation'').
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1.3 THE ONE-DIMENSIONAL DIFFUSION EQUATION

From this point on, we limit ourselves to the first order
system (0.1). Then, putting agy (x)=a(x)= 0, bl (x)=b(x), and
defining the operé.tors |

2

5 (x)(-) = ax) — + b(x) 5z (1.22)
Ox
F)(+) = 3o [a(x)-1- BEI(4) ], (1.23)

the FP and backwards equations for P(x, t]xo) can be written

(for x e Q= (yl, yz) say, where V1s Vo Ay be infinite)

8P e

s F(x)P (1.24)
and

0P _

ol E(XO)P | (1.25)
respectively.

The following discussion (in sections 1.3-5) of the one-
dimensional diffusion equation (1.25) and its formal adjoint (1.24)
presents results mostly due to Feller and published by him in a series
of papers. 1 All but the last two of these make use of the theory of
semigroups, but this is avoided here. Except in [14], the
coefficients a(x) and b(x) may be rather general functions--in

particular they need not be continuous, and so the piecewise linear a

[14] through [19]1. Other authors who have done related work on
one-dimensional diffusion include Hille [25] Yosida, Ito, Dynkin,
McKean. [10] and [26] are general texts. Astrém [2 ] has applied
Feller's results to first order linear systems,
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and b of Chapter II are certainly permissible.

The domains of &, 3*

Physical reasoning can be used to determine properties which
the solution P(x, t Ixo) of (1.24) and (1.25) must have to be the transi-
tion density of a process x(t) satisfying (0.1). (We will write

PED[@x_ )], PED[F (x)].)

(a) The probability of ending in (x, x+dx) having started at x _ must
be almost the same as the probability of ending in (x, x+dx) having
started at any point near x_, unless X is an exceptional point at which
there is some soth of barrier, Thus, writing ZisZos e .for all such
exc‘e‘ptional points (where yl< zl< Z5<eqn <y2), Pt ]xo) is continuous

with respect to X in closed intervals not containing z; in their inferiors.

(b) Since P(x, t |XO) is a probability density,
jP(x,t[xO)dx =1 . (1.26)
Q

However, the space of functions of integral 1 is not linear, so the
domain of & is taken instead as the space of all integrable functions.
In addition it is assumed that there is no accumulation of probability
mass at individual points, i.e. that ‘]‘_XP(X, t ]xo)dx is continuous with
respect to x. Again we do not eliminate the possibility that there may
be exceptional points where, by the nature of the process, probability‘
must be absorbed.

Further restricti‘ons on P(x,'t ]xo) can be obtained using (1.24)

and (1.25). We define



T

x
W(x) = exp —j‘-g—g) dg |, {127
c

where c is close enough to x for the integral to converge; if there is

no such ¢, W(x) = co. Then one has

B O fur-1 8\
0 -1 @ y
& :—5—}-{-[\1\7 @;(&W-)J. (1.29)
: opP 5
(c) Integrating T - E(XO)P from x - to x + ., one obtains
x t Xt l
. ~ Plx, tix )
1 oP _ 0 o _
(x,) 5o - 5 J oW Fo=0.  (1.30)
B i ne o o o
o "o o}

since the integral disappears. Thus W &= -5——- is continuous with

respect to x . Then the continuity of W(x ) 1mp11es that -5—— is con-

tinuous wherever W(xo) is not infinite.

(d) Integrating B—— =& (X)P from x- to x+, and u51ng the continuity

off Pdx, one obtains

x+ . x+

[W"l(x) %(a(x)W(x)P)} = %JF P(x, t[xo)dxz 0. (1.31)

HKEXK - X -
Thus Q(x, t [xo) is continuous with respect to x, where

-1

Q(x, t|x0)= W 39; (aWP) = -g;[a(x)P] - b(x)P . (1.32)
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o sk
(e) Integrating '5—1;12 =¥ (x)P twice, firstly from z to x, then from

x=- to x+, one obtains

X+ X+ b’d
[a(x)W(x)P] = [ w‘l(x)jp(g, fx _)dgax=o0 . (1.33)
X=X~ b Z

Thus aWP is continuous with respect to x. Continuity of W then
implies continuity of aP, for W(x) # 0."
Thus aWP and Q are continuous with respect to x, and P and
-10
w £ 8;0 are continuous with respect to x_ . -These properties will be
used in the following chapters where the FP equation is solved

separately in various segments and these solutions connected

together.

The canonical form of the diffusion equation

From this point until section 1.5, it will be assumed that a(x)
is bounded away from zero in any interval interior to the (open)
interval €. (It is permitted that a(x)— 0 as x — ¥y or yz.) We will
speak of (yl,yz) as a regular interval. Feller [17, 18, 19] has
shown that the differential operator &, defined on C(Q), can be

written in the form
=D D where D = — (1.34)
m— s v

where the monotonic increasing functions s(x) and m(x) are the so-

called canonical scale and canonical measure., ASs shown in

[17],page 95, s is uniquely defined up to an arbitrary linear trans-

formation, and, for given s, m is determined up to an additive
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constant, If W(x) is defined as in (1.27) one may take

xX

s (x) =IW(§)d§ ' A (1.35)
x

m@x) = | a7 (g)w T (8)as . (1.36)
z

1.4 BOUNDARY CONDITIONS

Accessible and inaccessible boundaries

Consider Yj (j=1 or 2), one of the endpoints Qf the interval Q.

Then the boundary yj is defined to be accessible if there is nonzero
probability of a path from a given point in Q@ reaching yj in a finite
time. According to Feller [1 5],theorem 3, yj is accessible if and
only if all solutions of &z - Az = 0 are bounded near P » Comparing
with pages 487-88 of Feller [14], it is seen that this is the case if
a.1.1d only if W (x) fxa'l(g)w'l (E)dE is integrable in some (and there-
fore every) neighborhood of yj; that is,

Yj
|J[' m(x)ds(x)} < oo . (1.37)

Regular, exit, entrance and natural boundaries

The classification into accessible and inaccessible boundary
points can be further subdivided. According to [14],page 487, a

regular boundary yj has

sty | < oo |mly)|<oo; (1.38)
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an exit boundary has

J
lm(YJ—)|:OO 3 ’ mds {< oo ; (1.39)
an entrance boundary has
13
|s(yj)l=oo 4 ‘j sdmﬂ<oo : (1.40)
a natural boundary has
L j
II mds )= co , /I sdm}:oo. (1.41)

The monotonicity of s and m leads to the following:

e

<o =>ls|<oo (1.42)

' Ijsdm‘<oo=>]m|<oo : | 7 (1.43)

2

both ]s] : |m|<oo=>both ljmds

Isdm‘<oo . (1.44)

Thus both regular and exit boundaries are accessible, while entrance
and natural boundaries are inaccessible, and there are no other

_possibilities.

Admissible boundary conditions

Feller [14, 18] has determined the most general permissible
boundary conditions for the FP and backwards equations, given that

the backwards equation has the form (1.25) and that the process is
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stationary Markovian with continuous paths, 1 These conditions are
somewhat too general for our purposes. For example, they include
conditions which can be interpreted as the absorption of a path at a
boundary for a finite (random) time, and then its return to a random
point in Q, Also, the appropriate FP equation adjoint to (1.25) is not
(1.24), nor is it in general a differential equation,

We will restrict ourselves to the classical elastic bour_xdary
conditions, which are as follows at Yj a regular boundary (see [15],
section 11). For u(x,t) satisfying By, = & (x)u, |

coulx, t) = (<107 1im W )u_(x, ©) (1.45)
J
for v(x, t) satisfying V. = Zi*(x)v 3
Cj lim a(x)W(x)v(x, t) = (-l)j {[a(x)v(x,-t)]x -b(x)v(x, t)} . (1.46)

Here 0 < Cj < oo, If c:j = 0, the boundary is reflecting. If cj = o0, At
is absorbing. '

Appropriate boundary conditions

Suppose both boundaries are regular. Then unless both
boundaries are reflecting, P(x, t lxo) -0 as t — o0 for ¥y < %, xo< Yo
(see section 1.6). Then both autocorrelation and spectrum become

trivial, for PZ(XI’ tl’ X tz) is identically zero for yl<x1, x2< Vo e

4 Wentzell [41, 42 ] has done the same for diffusion in n dimensions.

See Dynkin [10], pages 6-7.
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According to whether paths are considered to disappear on being
absorbed at yj, or to remain constant at yj for all later times {which
means essentially that the yj are being considered as points in the
process), one gets from (0,2)

or

2 2
R(t) = Alyl + Azyz ‘ (1.48)

where Aj is the probability of reaching 'yj (so AqtA, = 1). To exclude
this case, we will consider only reflecting conditions at regular ou’r:er
boundaries.

For convenience of calculation, the process on i may be
divided up into interdependent subprocesses, each on a subinterval of

2. The boundary conditions at points of division will be given by the

-1 4dp
dx
o

with respect to X s and of Q, aWP with respect to x). Such conditions

properties of P(x, tlxo) deduced above (continuity of P and W

must be admissible by their derivation.

Conditions at irregular boundaries

If yj is not a regular boundary, the conditions (1.45, 46) may
be superfluous. As shown in [14)], page 488, if yj‘is a natural

boundary, then both u, = Fuand v, = v have only one independent

i
solution (belonging to D(J&) and D(E*) respectively), and if u, v are

these solutions, u, W ~u’, Wav, (av) -bv all approach 0 as y-—»yj.

Thus no boundary conditions are required--although it may be con-

venient to use, e.g., (av) ‘~bv - 0 to determine which solution of
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vy = F*“v belongs to D(3>':), rather than checking its integrability
directly. Similarly, no condition need be imposed at an entrance

boundary for u, = Fu--the only solution satisfies W-lu'—t 0, so the

t
boundary is automatically reflecting--or at an exit boundary for

W S F *v--the only solution satisfies aWv - 0, so the boundary is
automaticallj absorbing. This is reasonable, since no paths can
reach a natural or an entrance boundary in a finite time, while none

can arrive from a natural or an exit boundary.

Types of natural boundaries

It is seen from (1.41, 44) that there are three types of

natural boundary yJ.:

@) . |s<yj>l =o ,  |my)|[<e (1.49)
(b) Jsy)] =,  |mly)|=o (1.50)
(c) ls(yjH <o, [my)]|=o . (1.51)

Before interpreting these conditions in terms of the behavior
of sample paths, some definitions Qvill be given. Let f(x, v) be the
probability that the first passage time from x to y is finite; then the
process is recurrent if f(x,y) = f(y,x) = 1 and transient if
f(x, y)f(y,x) < 1, for all Y1<E<Yy<y,-. By problem 4.5.4, page 124
of Ito and McKean [26], every process of the type being considered
is either recurrent or transient. Suppose a reflecting boundary be
placed at x (y1 < xo<x<y2); then ¥ Will be called an attracting

boundary if a path starting at X while never reaching ¥ in finite

time, is, for arbitrarily small 8, within (y,,y,+6) with probability
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greater than 1 - § if t = some T(:T((S,xo)); similarly for the boundary
Voo (Note that this use of the term "attracting' is completely
different from that of Dynkin [10].)

According to problem 4.7.6, page 134 of [26 ], a process is
recurrent if, for j=1 and 2, either [s(yj) [ =00 --1il.€e., yj is either
entrance or natural type (aIL) or (b)--or yj is a regular reflecting
boundary. Otherwise the process is transient, Thus it is seen that
the distinguishing characteristic of a natural boundary of type (c) is
that there is a positive probability that a path, starting from any
point X s will eventually pass into any given neighborhood of the
boundary and remain there. Suéh a boundary will be called strongly
attracting.

It is possible that the set of paths from x tends to ¥ in prob-
ability, but that no individual path tends to ¥y That is, a process
may be recurrent but have one or two attracting boundaries. An
example is the process on (-co, o) governed by the stochastic differ-
ential equation %i—{- =n(t), Here ]m.(:i:oo) ] = ls(d:oo) | = 0, so the process
is natural of type (b). In fact, it is shown in section 1.6 that a
natural boundary yj is attracting if and only if im(yj) ] =co. Thus the

distinguishing characteristic of a natural boundary of type (a) is that

it is non-attracting; type (b) is attracting but not strongly attracting.

1.5 REGULAR AND IRREGULAR POINTS
In this section, the assumption that {2 is a regula.r interwval

(i.e., that a(x)# 0 for x interior to ), made above, is dropped.
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Essentially, a regular point x is one which paths can cross
continuously in either direction. Let g’ [e” ] be the probability that
the crossing time from x+ [x-] to x is zero. (According to
Blumenthal's zero-one law, it is either zero or one.) Then, accord-
ing to Ito and McKean [26], page 91, x is a regular point if both
e’ and e are z.ero. Irregula,rl points are classified as follows:

a left shunt has e+ =0, e =1; a right shunt has e+ =1, &8 = 063

a trap has e+: e =0,

Irregular points as boundaries

If the interval Q = (yl, yz) is divided at x, and subprocesses on
each of the intervals (yl,x), (x, yz) are considered, then the following
are apparent,

(a) If x is regular, it is a regular boundary for both (yl,x)
and (x, yz).
(b) If xis a 1-eft shunt, then it is either an exit boundary for

(x, yz) and an entrance boundary for (Yl’ x), or an exit

boundary for (x, yz) and a regular boundary for (yl, x), Or

a regular boundary for (x, yz) and an entrance boundary

for (x, yz). For a right shunt, interchange (x, yz) and

(yl » x) throughout the above statement.

. The term singular will be reserved for the singular points of a

differential operator. (It will be shown that real singular points
of & are irregular, and vice versa.)

= Feller [16 ] calls traps and shunts absorption and translation points
respectively, and gives different, but equivalent, definitions.
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(c) If x is a trap, then it is either an inaccessible boundary
on both sides, or an exit boundary on both sides, or an
accessible boundary on one side and a natural boundary
on the other. We will speak of an inaccessible trap,
an accessible trap, or a trap accessible from one side,

respectively.

Zeros of a and b

A shunt can be considered as a point where the second order
diffusion operator & degenerates to a first order operator, and a
trap a point where it degenerates to a zeroth order operator. From
the discussion above, together with conditions (1.37-41), specific
results can be proved to justify these statements. One can show that,
for an irregular point of any kind, it is necessary and sufficient that
a(x)— 0 on at least one side. Thus, a regular interval consists
entirely of regulé.r points. Also, if a(x) and b(x) are continuous at z,
z is a trap if a(z.)_: 0 and b(x) crosses the x axis at z, while a(z) = 0,
b(z) < 0 [>0] implies a left [right] shunt. A large number of similar
results can also be proved,. for example when a(x) and/or b(x) are
discontinuous at z and tend to zero on one side only. Pathological
cases, as when z is a limit point of zeros of a(x) or b(x), are excluded

from consideration.

An examEIe

To illustrate the method, one of the above results is proved.

Let a(z) = 0, b(z) < 0, a and b continuous at z. Then, for z '
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just greater than z,

z
m(z’)-m(z) =J a_l(x)W—l(x)dX
z
- z' z'
= exp -Jr b(x)a-l(x)dx j“aﬁl(x)exp —b(z)ja_l(g)dg dx
z' z x
= CD. (1'52‘)

z’ z' z'
j pile = f wix) | a”lEwl(g)ag ax
Z X

z

7

Z Zl ) z
2 [ax [ a7l (g)exp b(z)ja'l(man} dg
% B J

x
-0 asz -z, (1.53)

Thus z is an exit boundary from above, by (1.39). Similarly, for z’
just less than z,

zZ

s(z)-s(z’) = oo, J sdm - 0 as z' =z , (1.54)

’
zZ

so that by (1.40), z is an entrance boundary from below. Thus z is a

left shunt, as was to be proved.
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1.6 THE STEADY-STATE DENSITY

In a time-independent physical system excited by stationary
random noise, it is reasonable to expect that, as time t— oo, the
transition density P(x, t lxo) should ten.d to a value independent of t,
the so-called steady-state density Po(x), and that if P satisfies a
FP equation then P satisfies the same equation. In addition, it is
apparent that, for some systems, Po should be independent of the
initial position X,.

Justification of the above statements for one-dimensional
diffusion was provided by Maruyama and Tanaka (see [32, 39]). This
was e‘xtex}ded to n dimensions by the same authors [33 ] (see also
Yaglom [47 ] and Gray [22]) and to more general metric spaces by
Khas'minskii [30]. Despite its generality, the treatment in this

last paper is the most easily adapted to our purposes.

Some results of Khas'minskii

In the one-dimensional case, the functions of x m(x) and
Px, t [xo) can be replaced by set functions (measures) as follows.

If £ECQ, put

m(E) = | dm(x) (1.55)
E
P(E, tlx_) = | Plx, th )dx . (1.56)
E

These set functions are more general than the corresponding functions

of x. Comnsider a diffusion on an arbit'rary 0 -compact complete metric
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space Q. That is (following Khas'minskii), specify a Markov tran-
sition function P(E, t |xo) for all measurable ECQ, t= 0, and
x €0, with

o

P(Q, t]x ) = 1 | (1.57)

and satisfying certain other conditions (e.g. R

» p. 179 of [301]).
In certain circumstances a canonical measure m(E) can be defined

and it is unique (see theorems 2.1, 3.2 of [30]). The following

results are relevant.,

(a) If m(Q) < oo, then for any measurable E,
g 5
lim P(E, t|x_) = ETQ; (1.58)
t =00

(see Khas'minskii's theorem 3.4).

(b) For a non-recurrent process and compact E,
oo
f P(E, tlxo) dt < o . (1.59)
0
Hence
lim P(E, t lxo) =0 (1.60)
t-00

(see lemma 3.1 and its corollary).

(c) For a recurrent process with m(Q) = co, m(E) < oo,
It
1im & [ P(E, t]x_)at =0 (1.61)
o
t—= oo 0

(see the corollary to theorem 3.1). Khas'minskii
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hypothesizes that (1.61) may be strengthened to (1.60),
and has a proof for the one-dimensional case (see

remark 2, page 191).

Application to one-dimensional diffusion

In the type of process dealt with in previous sections, the

above results lead to the following

Theorem: Let O = (yl,yz) be a regular interval. If V1 and
y, are reflecting or non-attracting natural bound-
aries, then, for any x € Q,

lim P(x, t|x ) = P_(x) , {1.62)
t—-00 .

where Po(x) is the solution of 3*}?0 = 0 with bound-

ary conditions Qo(yl) = Qo(yz) = 0 and

[P eax=1-. (165
Q

In every other case,

lim P(x, t|x ) =0 . (1.64)
t—oo o

Here QO denotes ad; (a PO) - bPO, so QO: 0 is the steady-~state
analog of the reflecting boundary condition Q = 0, By a reflecting
boundary is meant a regular boundary with Q = 0, or an entrance
boundary. (One has Q = 0 automatically at an entrance or natural
boundary.) The restriction to a regular interval is equivalent to
°3 on page 179 of [30] . The restriction to reflecting or non-

attracting natural boundaries is equivalent to m(Q) < co. Integrating
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3*Po: 0 once and using the boundary conditions, one gets Qo(x) =10

for all x €Q. Integrating again and using (1.63) it is seen that

x
a_l(x)exp I —:—E—% dg dr
_ z _ dx
Po(x)u v " m(yg)'m(yl)' y ZESX, (1.65)
j a._l(x)exp J%—% d
Yz z

It is apparent from (1.56) that this, together with (1.62), is the same
as (1.58); note that m(x) is differentiable on account of (1.36) for
x €4,

The second result, (1.64), follows immediately from (b) and
(c). Although (1.57) does not hold if a boundary (yl say) is exit or
regular non-reflecting, it is likely that result (b) does not require
this pre-condition. In any case, it can be made to hold by adjoining

y; to the process (so Q= [yl,yz) instead of 2 = (yl,yz)).

Irregular points

If there are irregular points interior to (yl,yz), the theorem
above cannot be applied directly. In particular, the steady-state
density may depend on the initial condition X s and so will be
written Ffx 1xo). Types of irregular points are defined in section 1. 5.
The arguments used below are based on the idea of a shunt as a point
which allows passage in one direction but not the other, while a trap

is the end of every path reaching it (if any do). The term absorbing
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boundary is used below for exit and non-reflecting regular bound-
aries (i.e., accessible traps and shunts directed away from the
interval under consideration).
The following cases occur,
(a) Suppose x lies to the right [left] of X and is separated
from it by a left [right] shunt or by a trap. Then

P(x, t]xo) = 0 for all t (we will say that x is inaccessible

from x ), and P(x ]x ) E G,
—90 o o

(b) Suppose that (a) does not hold, i.e., x is accessible
from X and that an absorbing or attracting boundary
is accessible from x. Then, although P(x, t IXO) # 0 for
all finite ¢, Po(x Ixo) = 0,

(c) In all other cases, both P(x, t !xo) and Po(x ‘Xo) are

non-zZero.

Determination of Po in the general case

From the above, it is seen that two cases can occur, accord-
ing to whether or not %, lies in a regular interval bounded on both
sides by absorbing or attracting boundaries. If not (case I), all paths
from X will end in a single regular interval, or all will tend (at least
in probability) to the same trap, and PO(X ]xo) will be zero ocutside
this region. If so (case II}), all paths will eventually divide between
two such regions, one on either side of X s and neither containing e

Once a path has passed into one of these regions, it stays

there, so that the process in such a region (S say) can be treated
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independently of that on the remainder of 2, If S is an attracting
boundary, no path actually reaches S in finite time, so the above
statement must be modified somewhat, but the result as far as the
steady-state density is concerned is the same. Let PS(X) be steady-

state density for X €S5. Then, if S is a single finite point vy (i. é., an

accessible trap or an attracting boundary),
S
Po (x) = 8(x-vy) . (1.66)
If S is the point = ,

Pf(x) =g (1.67)

for all finite x, If S is a regular interwval, then Pos(x) can be found as
descyibed earlier, using (1.62, 63). Note that in every case PS(X)
is independent of X (so long as X €8), and is zero for x ét S,

If, for given X s there is only one region S (case I above),
then

Po(x lxo) = Pos(x) ' (1.68)

If there are two regions, Sl and S2 say (case II), then

) By
P _(x|x ) ZASI(XO)PO (x) +ASZ(XO)PO (x), (1.69)

where AS (xo) is the probability of a path from X reaching (or tending
1

to) S1 rather than SZ; and ASZ(XO) =1 - ASl(xo).
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Determination of AS{L (3:0)_

This is a first passage problem. Let S, = (xz,xl) and
SZ = (x4, x3), where Xp BXy FxX_>H, 2X,. In the case where at
least one of Xys Xg (say XZ) is absorbing, ASl(xO) is given by
theorem 5 of Feller [17]. It appears that this theorem is also true

for X, a strongly attracting natural boundary (i.e., satisfying (1.51)).

According to this theorem

X x
j exp |- j ?E'E‘% dE| dx
# z s(xo) - S(XS)
Asl(xo) "%, = S EE N IR (x3.%,) (1.70)
JI exp |- [ B(8) dg| dx
' J a(g)
Xy z

for X absorbing or strongly attracting, and

A.Sl(xo) =1 | {1.:7TL)

otherwise. When both s(xz) and S(XS) are infinite (both boundaries
attracting but not strongly attracting) this theorem breaks down. In
the case % = nt), S1 = o 100, SZ = - o0, it is apparent from symmetry
that AS1 (xo) = -% . In general one would expect that Asl (XO) = const.,

where the constant must be found by letting t - 0 in P(E, t Ixo), with

E = (x, xz).

Variation of P _(x |x ) with x
: o) o o

In Case I, it is apparent from (1.68) that Po(x lxo) is inde-

pendent of X provided X remains within the same regular interwval,
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together with any interval which is accessible from this interval.
However, in Case II, since AS (x ), Aq (x ) vary continuously with
] © SZ o

% (1.69) shows that (in most cases) Po(x lxo) varies continuously
as X varies in the interval concermned.

For Po to be independent of x for all x, € i, the most com-
plex pattern of irregular points possible is illustrated in the next
page. Note that any of the irregular points shown may be omitted

and Po will still be independent of X

Eo as Abelian limit of P

In the following chapters, instead of P(x, t]xo) one first finds
its Laplace transform

(00]
pix, slx ) = | P, thx e fat . (1.72)
3 |

Thus it is of interest to show that

P (x) = lim sp(x, s [x ¥ o ' (1.73)
o o
s— o0+

the Abelian limit of P(x, t[xo). The existence of p(x, s ]xo) for all s
with Re s > 0 follows immediately for a.ll. X where Po(x) <o --i.e.,
everywhere except accessible traps. In addition, p(x, s 'Xo) exists
for Re s = 0 if and only if the process is transient on the regular

interval containing x, on account of (1. 5‘9)1 . Zero belongs to the

1 That this condition is both necessary and sufficient for transience

is shown in problem 4.11.8, page 159, Ito and McKean [26 ].
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point spectrum of 3 on a regular interval (yl, yz) if and only if
m(yz) - m(yl) < . Thus for x lying in such an interwval,
lim sp(x, s [xo) is proportional to the corresponding eigenfunction, L
s—o+
and is thus equal to PO(X) when normalized. Otherwise, one must
have lim sp(x, s [x ] =0=P {x).
o o
S =0+

Suppose that there are no attracting traps interior to Q.
Then the existence of the Laplace transform for all x € £, all
Re s > 0 shows that the eigenvalues of ¥ must lie entirely in the non-

positive half plane. If there are such traps, consider the indepen-

dent processes on the various subintervals to obtain the same result.

Types of stability

This term will be used in three ways in this thesis, A
process on (yl,yz) will be called stable if neither y, nory, is an

infinite attracting boundary. It will be called stable in mean

[or in mean square ] if {x) [or (xz Y] is finite.

See Astrdm [27, section 5.
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CHAPTER II

SPECTRUM OF AN ARBITRARY PIECEWISE
LINEAR SYSTEM

2.1 SOLUTION OF THE FOKKER -
PLANCK EQUATION

Piecewise linear systems

In this chaptel; a method is derived to obtain the spectral
density and other properties of the system (0.1), where the functions
f(x), hj (x) are piecewise linear. By this is meant that they are linear
in each of a finite number (say n-1) of segments (xi+1,xi); the end-
points Xys X of the interval in which the process occurs may or may
not be finite, and f and hj need not be continuous at the points x;. In

the ith segment, (Xi+1, Xi)’ we put

f(x) =4, x +k 2.1)

oi

hi(x) = 4y x 4k (2.2

The FP equation

For the first order system (0.1), the FP equation (1.11) for

P(x, t [xo) becomes

2 TN
.g.ii’ = E_f;—z_ (a(x)P) - —8—2; (b(x)P> , (2.3)

where, substituting (2.1), (2.2) into (1.15), (1.%3%),
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for x€ (xi ’Xi)' Thus a(x), b(x) can be written

+1
a(x) = a;(x) = Aixz +2B.x + C; (2.6)
b(x) = bi(x) = Dix + Ei (2.7)

for x € (x.,,,%.), where A,, B.,, C., D., E. i=1,..., n-1) are
141771 i i 1 i i

constants, Since the matrix Djk is non-negative, (2.4) gives
2 :
A‘ici 2 Bi for every i . (2.8)
It is convenient to include all irregular points--i.e. where a(x)— 0 on
one or both sides--among the endpoints x; of intervals.

The backwards equation

This is the formal adjoint of (2.3), namely

2
OP 0" P oP
T = a(xo) - 5 + b(xo) rXO " , , (2.9)
o

Initial conditions

The initial condition {for both (2.3) and (2.9) is, from (1.12),
P(x, 0 ]xo) = 6 (x-x_) . (2.10)

Boundary conditions

At X4 and X, a reflecting boundary is assumed (see

section 1.4). Thus the appropriate boundary conditions for (2.3) are
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Q(xl,t]xo):Q(xn,tixo):O, - (2.11)
where

9
Q = 5= (aP) - bP (2.12)

and the appropriate boundary conditions for (2.9) are

-S%C}i(x,t[xl):%}l;—(x,tlxn):O. (2.13)
O (0]

Conrditions (2.11) and (2.13) are both necessary only if % and
x  are regular boundaries, If x, or x is infinite, it is a natural
boundary, and (2.11) and (2.13) are both automatically satisfied., If
Xy or X is finite but irregular, one or the other condition, or both,
will be redundant (according to whether it is an entrance, ‘exit or
natural boundary). Note that one is restricted to integrable solutions
of (2.3) and bounded solutions of (2.9).

Since the method of solution is to find the general solution in
each interval of linearity, and to piece these together, boundary con-
ditions are also needed at all points X, (i=2,...,n-1). These are
provided for (2.3) by the continuity of Q and aP with respect to x,
and for (2.9) by the continuity of P and -g}i with respect to X Again

some conditions become redundant when the x; are irregular points.

The Laplace-transformed FP equation

By applying a Laplace transform with respect to t to (2.3),
one obtains a second order ordinary differential equation for

p(x, s ]xo), the Laplace transform of P(x, t Ixo). This is (using the
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initial condition)

i_z.z (a(x)p>_ a_‘.j; (b(x)p> - sp = - blx-x_) . (2.14)

Similarly the Laplace transform of the backwards equation (2.9) is
ap dp_
a(xo) dxo +b(xo) de - sp = - 6(x—xo) ; (2.15)

The boundary conditions remain the same as in the untrans-
formed case, except that P and Q are replaced by their transforms,

namely p and q.

Singularities of the transformed FP operator

Since (for x € <Xi+l’ xi)) a(x) is a quadratic in x while b(x)

is linear, the transformed FP operator

|
|

2 ;

L d f d " / 7

&' = a(x) —5 +| 22 (x)-b(x) |5z + (x)-b.(x)-s | (.) (2.16)
alx dXZ [a. X X]dx [a x X)=8S

will have 3 regular singular points in the complex plane, at co and at

Wl

i Bii[BiZ'AiCi]
- - ) 2.17)
g ;

o4

except when 2 or 3 of these points coalesce to form an irregular
singularity. Thus 2 linearly independent solutions for the homogene-
ous equation —L’rp = 0 can be found in terms of known special functions.

The following cases occur,
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(a) Ai 0, Bi2< Aici . Then o and G, are distinct and
finite. By a linear transformation of the independent
variable which transforms cx.l to 0 ‘and o, to 1, the
equation becomes the hypergeometric equation. 1

: 2
(b) Al # 0; B,"=A.,C,. Then g and a, coalesce to form
an irregular (double) singularity. By replacing the
independent variable x by (x +Bi)_l, the equation

becomes a confluent hypergeometric equation.

(c) Ai = Bi = 0, Then o and %y both coalesce with oo,
forming an irregular (triple) singularity. The solution

can be expressed in terms of parabolic cylinder

functions.

The case A, = 0, B, # O.cannot occur, on account of (2.8). This
also shows that g and o, are not real unless they are equal, so that
the standard solutions for case (a) are complex-w}alued and must be
combined to form 2 independent real solutions (since only real solu-
tions are of interest in what follows). Except in special cases, this
leads to considerable algebraic complication. One such special case

is dealt with in section 5.4. Case (b) is dealt with in Chapter IV

. For solutions of this equation, see Abramowitz and Stegun
[1], page 563. '

2 For solutions see Erdelyi et al. [11], page 251.

3 See [1], page 686.
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(a special case) and sections 5.2-3 (a less special case), while
case (c) (forcing function excitation only) is dealt with in Chapter III.
Although the above deals only with the FP operator, it is also

true of the transformed backwards operator 8. This remark

applies also to the rest of this section, mutatis mutandis.

General solution in any sub-interval

As indicated above, it is possible to find, in terms of known
special functions, two linearly independent functions pli(x), pzi(x)
which satisfy the homogeneous equa.tion—lﬁ:p = 0 for x € (Xi+l’ xi). It
will be assumed that pli(x) and pzi(x) are real for real x. Since the
coefficients of the differential equation are real, two such real
solutions do exist; if the standard solutions are not real, two linear
combinations of them will be.

Then if X ¢ (xi, Xi+1) the general solution for x in this interwval
will be |

p(x, s lxo) = cli pli(x) + czipzi(x) " (2.18) |
_ where ¢ . and czi are constant with respect to x. If X € (xk, Xy ),

1

then for x in this interwval a ;.)a.rticular solution is

Jﬁ‘ b S (x)p, (2) - o, (x)p,(2)

ak(z)wk(z)

6(z-xo)dz

Xk+1

0 for <« =x
o

Plk(X)ka(Xo) - pzk(x)plk(xo) (2.19)

ak(xo)wk(xo)

for x =2x
o
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Here

k k
dp, (x) . dp, (x)
wy () = p (o) —o— - p, () —— (2.20)

is the Wronskian of the solutions plk’ pzk. Then (2.18) applies also

in the interval (Xk+l’ Xk)’ except that the constants clk, czk have
. k+ k+ k- k-
different values for x >x and x < X s say ¢, ¢, and C1 s S5
respectively, for which
P, (x_)
kYo' kYo
Py x,)
czk' -c2k+ = — (xl )WO(X y o (2.22)
_ kYo' kYo

When X, = X;, no difficulty is experienced; because of the
continuity of p(x, s ]xo) with respect to X s this can be considered as
the limit of either of the two cases just dealt with. Cases when %, is

an irregular point can be dealt with as they arise,.

Boundary conditions

On account of (2.11), one has at the end points x, and X

1
1. 1 1 1
¢y q; (xl) +tc,ay (xl) =0 (2.23)
n-1 n-1 n-1 n-1
c; Taq (xn) tc, Ta, (xn) =0 s (2.24)

i_ d i i ; y ; :
(Here qj = (a.i‘pj ) - bipj .) At the junction points of interwvals,

xi(iz 2,...,0n=-1), the continuity of Q and aP (and hence q and ap)

shows that
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i i i 3 i-1 i-1 i-1 i-1
Gy Hy (Xi) te, g, (Xi):C]_ q (xi)+ c; g, (Xi) (2.25)
i1 i1 _ i-1_ i-1 i-1_i-1
a#xiﬁklpl(x9+c2p2(x9]—ai_ﬂxg[;l Py (x)+e, o, (xiﬂ . (2.26)

Existence of a solution to the transformed FP equation

Equations (2.21-26) form a set of 2n linear algebraic equa-
tions for the 2n otherwise undetermined coefficients cll, czl,
clz, A Clk+, czk+, clk_, czk", Sp— cln_l, czn_1 . This nonhomo-
geneous set will have a unique nontrivial solution provided the
corresponding homogeneous set has no nontrivial solution (the
Fredholm alternative). The only nonhomogeneous terms are those on
the right of (2.21) and (2.22). Putting these equal to zero is equivalent
to omitting the term 5(x-x0) on the right of (2.14), i.e., to solving the
homogeneous differential equation (with the same boundary conditions).
This will have a nontrivial solution only if s = A, where A is an eigen-
value of the original FP operator, 3*=—ij(3,.) - Eix (b .). But this can
only occur for values of s for which p(x.,xs Ixo) does not exist, Thus
the nonhomogeneous set will have a unique nontrivial solution when-

ever p(x, s [xo) exists; which is of course to be expected. In

particular it will have a solution for all Re s >0,

The transformed transition density

Having solved (2.21-26), p(x, s IXO), the Laplace transform of
Pix; t ixo), is immediately found using (2.18). Although the inverse
transform has been found in only a few special cases (when it can

usually be found more readily without transforming in the first place),
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pix, s |x0) is of considerable use as it is.
For example, it can be verified that

lim sp(x, s lx )= P (x) =1lim P(x, t 'x ) » (2.4 T)
o o o
s—0 t—oo

where Po(x) is found as in section 1.6. See the following section and
the special cases of Chapters III - V.

As shown in section 2.3, the Laplace transform of the auto-
correlation can be explicitly formulated in terms of p and its deriva-
tives with respect to x and X This can then be used to obtain the

spectral density. This is the principal result in this thesis.

2.2 THE STEADY-STATE DENSITY

Determination of Po

The method of determination of PO(X) is described in section
1.6, If (Xn, Xl) is a regular interval with reflecting or nonattracting

natural boundaries, then, from (1.65),

C

oi
PO(X) = > exp j ( >
A.x +2B.x+C. A.x +2B.x+C.
7 i i i i 3

D.x+E.
i i

) dx| . (2.28)

The integral here can be evaluated by elementary methods. The con-
tinuity of aPo allows the determination of the constants Coi up to a
multiplicative factor, which can be found using (1.63), i.e.

X

1
f P (x)dx =1 . (2.29)

X
n
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For the evaluation of this integral, see below.

If (Xl’ xn) contains irregular points, and/or has absorbing or
attracting natural boundaries, then the situation becomes more
involved. The steady-state density may depend on %, contain delta
functions, or be identically zero. For its evaluation, see

section 1.6.

The integral of Po

In almost all cases, the determination of Po(x) requires the

calculation of the indefinite integral

1 X

D.z+E.
exp j( 21 - )dz dx . (2.30)
Az +2B.2+C." - |
i i i o

I(x) = j(A ixz +2Bix+Ci)—

In some cases, this integral can be found by elementary

methods, In general, one notes that 3*Po: 0 can be written
d dI dl _
& [0 G- vz -0 | )

which is a second order equation of the same type as the homogeneous
Laplace-transformed FP equation solved in section 2.1. One solution
to (2.31) is I = const. Pick a solution linearly independent to this and
multiply it by a constant so that its derivative is equal to the integrand
in equation (2.30). Then this is the required I(x).

Integrating the Laplace-transformed FP equation (2.14) and

letting s = 0,
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X
|| Potalxgan = 1im b, s yimeeex,) (2.32)
X

n

where H(x) is the Heaviside unit function. This is an alternative
method of finding I--but only useful if p(x, s Ixo), and hence

q({x, s lxo), has been found already.

2.3 THE LAPLACE-TRANSFORMED
AUTOCORRELATION

By the definition (0.2), for a stationary process,

!
R(t) = (XOX) =\Jﬂ j XOXPZ(XO, O;X,t)dxodx 5 (2.33)
X x
n “n

If Po(x) is identically zero, except perhaps for delta functions, the
same is true of Pz(xo, 0;%,t), and the integral (2.33) is trivial and
R(t) is constant. We assume this is not the case. Instead of R(t) we
will find its Laplace transform r(s), whence (as shown in (2.64))

®(w) can be directly obtained.

The Laplace-transformed autocorrelation

Since {x(t)} is a Markov process,

P,(x, 05x,t) = P_(x )P(x, t]x ) . (2.34)
Thus
] =]
R(t) = J % P [x) JF xP(x,t1x0)dXJ dx_ . (2.35)
X X

n n
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so that, if r(s) is the Laplace transform of R(t),

= *1 _

r(s) = | x P x))|] xples|x )ax| ax_ (2.36)
X X
n n

Determination of pr dx

The Laplace-transformed FP equation (2.14) can be written

d
= - sp = - 8(x-x) , (2.37)

where q = q(x, s lxo). Multiplying this equation by x and integrating

from X to X
X, X,
i i
- dq
sf xp dx ‘Jﬂ X a0 dX+X06ik (where X E‘ (xk+1,xk))
*it1 *i+1
X,
X, i
i
=[xa] -] aexexsy
p
i+l X1
X, X,
i i
= [Xq - a(x)p] + Jf' (Dix+Ei)p dx+xo 6i1< 5 (2.38)
i+l Fi41

from the definition of q. But, integrating (2.37) from %11 to %, ,

! O
sj pd.x=[q] + 8, . (2.39)
x x.

i+l i+l
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Eliminating jpdx from (2.38) using (2.39),

i

. E, & E.

f e R {X*? Q"ap} +(Xo+—s‘1‘>5ik - B 40)
1

14T

Adding over all intervals (X:'L+1’ xi) -

. ( Ek)f: 1 ( Ei) 2.4
4 *P - s-Dk Bt R Z s-Di el 2 (2.41)
q=1 ‘

=2
n

According to (2.36), this must be multiplied by XOPO(XO) and

integrated with respect to x . That is, it is required to find the

following quantities:

k
Ek
j <x0+—§— ) XoPo(Xo)dXo - Jk S 7 Wil
K+l
ke
a(xi) j Xop(xi, s lxo)Po(xo)dxo = 1{(xi) say, (2.43)
k41
"k
j xoq(xis Ixo)Po(xo)dxo = .?.k(xi) say , (2.44)
K+l

for k= 152; wes =1 @nd &= 1 2y s es 5 D
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Determination of rﬁk

Using Qo(x) = 0 and integrating by parts, (2.42) can be reduced

to a combination of Po and jPO(xo)dXo, which can be found either
directly (see section 2.2), or by the formulas (2.27) and (2.32).
We will perform this reduction explicitly. Integrating Qo(x):O

(itself the integral of IF*POZO), one gets
a.PO -DkIXPO(x)dx - EkJ‘Po(x)dx =) 2 (2.45)

while if Qo(x) =0 is multiplied by x and then integrated, noting that

- -4
X 3= (aPO) = (xa.PO) = aPO . (2.46)
one gets
4B o (A AD } 22D de- @28 48 ) [xp de. [P ax=0 2.47
2a P = WA g v B daee @R S0, ) | 2Bl G | Peax =0 s (%447}

Combining (2.45) and (2.47),

‘J’(X-i-?-}s)XP dx = aP {DkX—ZBk-—Ek + Ek:l
s o o} Dk(Ak+Dk) Dks
Z
+J . dX[(ZBk+Ek)Ek-CkD1< ] E, J o
o Dk(Ak+Dk) Dks
Thus
K
D.x -2B, -E E
k™o k Tk k
d.= jalx )P _(x ) +
k o’m 0o Dk(Ak_+Dk) Dks )
o k41
x Z
+I k Bl By tE IEL-CpDe By 4, 45
A oo’ o Dk(Ak+Dk) Dks

e+l
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Determination of Qk

The backwards equation (2.15) for p(x, sl;co) can be written

2
d d
(o]

Also, Po(xo) satisfies & Po: 0, or

2
'!jx—z [a(xo)Po] - _£C— [(DkX0+ Ek)PO] =0 3 (2.51)
o]

and also the integrated form of this, Qo = 0, or
d
[o]
Forming p X (2.51) - P, X (2.50) and simplifying slightly,

. S ] _
dxo[P dxo'(apo) R dx R I, HepR =R e ) »

(2.53)
Then, using (2.52),
-4 ( dp’
spP, = T aP d""o) +P_o(x-x_) . (2.54)
Thus, integrating by parts,
*k & *k
' . dp. _ dp_
SJ xoPPodXo XoaPo d.xo _ dr aPo dxo d'Xo-ir}cl::‘o(x) 6ik :
! %6 Pkt Tkt
(2.55)

(Throughout this derivation Po and p without variables indicated
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denote Po(xo) and p(x, s Ixo).) Integrating by parts again and using

(2.52),
5 *k o *k
AT J I
sj xOpPod.xo l:aPo<xO dxo p} +Dk xopPode+Ek pPdeO
K+l Fo Fk+1 kt1 K+l
+XPO(X) 6ik 3 (2. 5(?)
K
and so, integrating (2.54) to obtain j‘ pPdeo i
: *k+l
x x
ka B s esties { a0 {'/x +E15>—d~9- } ) +(:><+El—‘—\P()a
oP o o_s-Dk ol\%o™ 75 dxo'P S)OXIk.
k+1 %o k4l
% (2. 57)
Thus a(X)‘L xop(x, S [xo)Po(xo)dxo can be evaluated for any
k+l ' :
interval (xk, X1 1; In (2.43) x= Xss the endpoint of an interwval; but

a(x)p(x, s Ixo) is continuous with respect to x, so that it makes no

difference whether X, is considered to belong to the interwval (Xi, Xi-—l)

or the interval (xi ’Xi) --unless i =1 orn (i.e., x; is an endpoint).

+1

One can thus in most cases consider %, not to lie in (Xk’ so that

X1<~|~l)’
the last term in (2.57) is zero. This is also the case for i=k =1 or
n when 2 is infinite--in fact then all terms in (2.57) are zero. In the
P ; : dp 3
remaining case, note that since in general e (x, s [xo) has different

limits as XX from above or below, it can be seen from (2.43) that

one must let x — x, before letting Lt E-dX-E— is not continuous at
o
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X =X, (for any i), so the first limiting process is necessary. The

same remarks will also apply to %{CL in the formula for %((xi)
o

derived below (2.62).
Taking into consideration the above points, the formula for

Qk(xi) can be written

E =1
o (x,) =% "le a(xo)Po(xo){(xodréi)Da-[a,(xi)p(xi, s |x,) |

x

(x.)p(x., s |x )1 +(x +I::E)a(x )P (x.)6
TR PR B Ryl it s /5 o k)
%6 “k+l
(2.58)
where j = i-1 or i and
* ; : df .
D 'flx,x )= Hm lim —(x,x ) . (2.59)
PR e o om ) mElbw. ] OF
k+1° ¥k JEL
X,_’X X=X,
O i
Determination of ..?.k
Operate on (2.57) by
4 L] - . (2.60)
dx J .

The first term does not contain x explicitly and is linear and homo-

geneous in p; thus the operation (2.60) simply replaces p by q. The

second term becomes
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Ek %
a(x) Po(x) + <x+ -—S-—)Qo(x) . (2,61}

But Qo(x) = 0. Thus, as’in the case of Qik’

X

k
E

o Fk+l

talx) P )65 (2.62)

The formula for r(s)

Summarizing, the Laplace-transformed autocorrelation is
(substituting (2.41) into (2.36))

X.
1

n-1 n-1
3 E.
r(s):z s-ng’Z S_lDi <x+—sl)..2k(x)_9k(x) ., (2.63)
I gl

=1 e

where Jk, Qk’ .Zk are given by (2.49, 58, 62) respectively. Actually
the last term in (2.58,62) can always be omitted, and thus & , _2k some-
what simplified. It has been explained above how this can be done for
i=2,3,...,0-1 by suitably choosing j # k. For i=k=1, the last
E
term in (2.58) becomes s-_lDl' (X1+ —51- )a(xl )Po(xl), and the last term
in (2.62) becomes —-L—a(x )P _(x,). Substituting in (2.63) it is seen
s-D1 177 01
that the corresponding terms cancel each other out. The same

happens for i=k+l =n, the other possible exception. These slightly

revised versions of Q’k, .Qk will be used in future.
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2.4 THE SPECTRAL DENSITY

Spectral density

The Weiner-Khinchine relation (0.4) can be written

(0 0]
& (w) =¥1;Jr R (t) (eiwt+e'iwt>dt

= % Re r(iw) , (2.64)

where r(s) is the Laplace-transformed autocorrelation obtained in the
last section.

This formula (which also appliés to multidimensional systems)
was used by Caughey and Dienes [4, 8] to find the spectrum of the
system governed by the stochastic differential equation

*x+ksgnx=n(t) , -o<x<o . (2.65)
Here r(s) can be found by direct integration of (2,..36).

Variance
A formula for (xz) is easily obtained in terms of known quan-

tities. For

=Z lim 4 (2.66)
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where Jk is defined by (2.42). This formula can also be obtained by
using

6°% = RIO) = lisn exle) ., 2.67)
S =00

r(s) being given by (2.63), and noting that both 91{ and '21( remain finite

as s -0, Using the formula (2.49) for Jk’

n-1 x

2 il s
=) =Z -D—k(A—k_l_ﬁk—)- [a.(x)Po(X)(Dkx—ZBk-Ek) .
|
K
+[(sz+Ek)Ek-cknk] j P_(x)dx ) . (2.68)
kel
Mean
It is evident from (2.45) that
n-|l . Xk Xk
(X)=Z 5‘1‘; {a(X)PO(X)j}sz = Ekj PO(X)dX . (2.69)
k=l k+1 Xk+1

This could also be obtained by a limiting process on r(s), since

(x)z = R(o0) = lim sr(s) . (2.70)

s=0

However this involves finding the limits as s— 0 of Qk’ .2k.
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Translation of displacement

It is sometimes convenient to replace x by a new displace-

ment y, where
Y =X-2 (2.71)
where z is constant. For example, with asymmetrical f(x), it may

be more convenient in given circumstances to define x either so that

f(0) = 0 or so that (x) = 0. It is apparent from (2.35) that

X X

1 1 .
Ry(t)zRX(t)-kz(z-(x))»zj P(xo) j XP(X’t!Xo)(.iXJ ax_, . (2.72)
p:q X
n n
so that
v (8) = 1 (s) + 3 (2= &) - zgls) (2.73)
where
x5 %
gs)=] Pee ) || =pbe s |x )ax| ax, (2.74)
x x
n n

Evaluation of g(s)

1
The quantity Jr xpdx is given by (2.41). Thus g(s) is given by

*n
the same formula (2.63) as r(s), but with Jk’ Qk(xi), .?.k(xi) replaced

by J; . Qk’(xi), .?_k’ (x,), where
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k / E.
‘ 1
Jk - Jr o “és )Po(xo)dxo (2.75)
41
X X
afm YP () 11
: *o Tkl 4l
(using (2.45));
*k
Qi(xi)za(xi)f Pl 8 [k )P (e )dxng 2.77)
r+ |
"
= -i— [a(XO)PO(XO)DzF[a(xi)p(xi, slxo) ]} +a(xi)PO(xi)6jk
6 el
(2.78)
(obtained by integrating (2.54)); and
2%} = JF qlxy slx )P _(x )dx_ (2.79)
k4l
Kk
= ls- a(xo)Po(xo)D*q(xi, slxo) . (2.80)
o Tkl

Here D™ and j are as in (2.59)--but note that one cannot always omit

the 6ik term in (2.78), as one could in (2.58, 62).



-63-

Spectral density at w=0

From (2.70) together with the analyticity of r(s) for s >0, it
is seen that

2
r (s) = (x)

X S

+b(s) , (2.81)
where b(s) is analytic at s =0. In fact, putting z = (x) in (2.73),
b(s)zry(x)+<x)[g(s) = %—2—] (2.82)

Since rX(O) is infinite for {(x) #0, (2.64) cannot be used to obtain &20).

However, using the definition (0.4) and noting that

(o'] fo's]
r 1 i
J cos wtdt = > j' ™ o %é(w) s (2.83)
0 -
one gets
2 2 ;
@ _(w) = (x)7 6(w) +—Reb(iw) , (2.84)

where Re b{(iw) = Re rx(iw) for w > 0.
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CHAPTER III

SYSTEMS WITH WHITE FORCING
FUNCTION EXCITATION

3.1 THE GENERAL CASE--SOLUTION OF
THE FOKKER-PLANCK EQUATION

In this chapter we deal with the first order piecewise linear
system where the only excitation is a single white noise forcing
function. Excitation of this type has been the case most widely dealt
with in previous work. The linear case has long been completely
solved. The only nonlinear case for which the spectrum has been
worked out is that with a bang-bang restoring force (f(x)=k sgn x),
which has been dealt with by Caughey and Dienes [4, 8] by a method
similar to that used in this thesis.

The formulas for the general case, on an interval containing
an arbitrary number of linear segments, are worked out in this and
the following section. Special cases are worked out in the next three
sectioné, including numerical results. Approximation of more

general nonlinear forcing functions is discussed in section 3.6.

The stochastic differential equation

For the systems to be dealt with in this chapter, (0.1) reduces

to

x + f(x) = n(t) (3.1}

(i.e., m=1 and hl(x) = 1), where
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f(x) = »ﬂix+ki for x € (Xi+1’ xi) s 151,20 sy nsl (3.2)

(so that there are n-1 linear segments), and n(t) is white noise
satisfying

(n(tl)n(tz)) = ZDé(tl—tZ) 5 (n(tl)) =0 . (3.3)

For simplicity of exposition, it will be assumed throughout the
general derivations of this and the next section that »l’/i # 0 for all i.
The method when one or more {'i = 0 is indicated at the end of this

section.

Nondimensionalization

Provided {'i # 0, the following convenient dimensionless

quantities can be defined:

i {,ix—l-ki
g =m fOI?XE(X1+l,X1) (3.4)
i
o, = -fa (3.5)
i
Tri(?i, GIEO) = I%iD |%p(x, s[xo) for x € (xiﬂ’ Xi) (3.6)
1
2 H’iD[E '
Mo(8)= —— o) for x € (xy 0 ) (3.7)

. i L,
(5, 0]8,) = sgn L, ilrg-i- +Eri=q(x, 8]x ) for x€ (x;,,x,) (3.8)

k.

1 '
fp Soiseag. (3.9)
TR
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A suffix on §, w, ¥ will correspond to the same suffix on x, p, q,
respectively. Both suffixes and superfixes may be omitted when no
confusion would result. Note that 'f’i may be negative for some i;
thus to avoid imaginary quantities, |Li ]%’j is used in the nondimen-

sionalization,

FP and backwards equations

The Laplace~-transformed FP equation (2.14) in this case
becomes

dZ

dp i{ } = il '
D dxz + e (J(,ix+ki)p sp &(x xo) for x € (Xi+1’ xi) . (3.10)

or, using the dimensionless variables defined above,

2

™ d
d—§2+sgn{,{d—g(§ﬂ)- on}=-8(5-8,) . (3.11)

Similarly, the backwards equation becomes

Z
4T sgnt{g 3 S 017} = 6l8-2 ) . | (3.12)

dg

o
Since q and ap (and therefore p) are continuous with respect to x, the
transition conditions for (3.11) at §= §. (i=2,3,...,n-1) become

|2,

1=

1]'%n (8. 0]8))= |4 |"? b (85 o|8.) {3.,13)

Ve, ols) = v, c[«zO) : (3.14)
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Fundamental sets of solutions

Omitting the non-homogeneous term, (3.11) can be written

L () [k} (H0) 00 s

where
¢'= %(Sgn %i)<§i)2 . ' (3.16)

But this is the defining equation for the parabolic cylinder function

D\)(z).1 Two solutions are thus

0} -0

EHp_ (5 ., & EHp_ (-7 (3.17)

for 4 > 0; for 4 < 0 replace D_, by D . An alternative pair of

o-1

solutions are

v (8 =e MGa L, )  (3.18)
mo(8) = g M(34d0, 3, ¢) . (3.19)

where M(q, v z) is Kummer's form of the confluent hypergeometric
function.z Each of these pairs forms a fundamental set--i.e., is
linearly independent--provided 0 is not a non-positive integer. The

relationship between (3.17) and (3.18-19) is (from (8.2.4) in [11]):

lSee Abramowitz and Stegun [1], Chapter 19, or Erdélyi et al.
[12] Chapter 8.

2See [1], Chapter 15, or Erdeélyi et al. [11], Chapter 6.
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1 11
50-1 I'(50+5) - =C
w (8) = 2° —;21—2— e “°(D_(814D_ (-8)) for >0
()
‘ (3.20)
103 1
- 50-5 I(-50) -5 ,
= 2 = T(f) e “7(D, (84D _(-8)) for L <0
2 .
11 1 1
lod. ritoy -3¢
wy(5) =22 2 —Z_c 2°(D__(8)-D__(-8)) for £>0
‘ I’(—Z)
(3.21)
1 11,1
- 50-1 T'(- 50+ 5} - 5(C ,
=2 ° ——r—(z—l_—)z—e "D, (8-D__(-8)) for 1 <0 .
"2

The first and second solutions (3.17) approach zero as §- oo,
respectively, which is convenient if %, and :Qn are infinite. In addi-
tion, they remain linearly independent as 4 — 0. However, the even
and odd solutions (3.18, 19) are more convenient in other réspects,
in particular in their behawvior as 0 - 0, i.e., t = o0, and are simpler
to compute numerically. They will be used for the general deriva-
tions in sections 3,1-Z, but in the special cases dealt with in sections

3.3-5 results will be expressed in whichever formulation is most

compact.

Related guantities

Using (3.8) and the recurrence relationships for M(q, Y, z), one

has
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¥ (9 =o0ge SMm(1+10, 2, ¢) | (3.22)
U,(8) = (sgnt)e S M (S +40, 2. C ) - (3.23)

{The corresponding expressions using (3.17) are

- 3¢
Toe 2 D_U_l(ig) for £ >0
(3.24)
1
= .z_g
te D (xE) for £ <0 .)
The Wronskian of ™ and TS is, using 13.1.201in [1],
w(g) = e & . ' (3.25)

A fundamental set of solutions to the backwards equation (3.12)
is similarly found to be
1 1 ( 1 J 3 ) '
M(3o 3¢,) - tM(3+30 3 ¢,) (3.26)

The Laplace-transformed transition density

The dimensionless form of p(x, slxo) is the solution of (3.11),

which can be expressed in the form
w8, 0|5,) = v 7 (B) + y, 7, (5) (3.27)

(compare with (2.18)). Here the 'Y; are functions of §O and o,
constant with respect to § except for i = k, where X & (Xk+1’ xk);

. Tee
the y‘lj( take different values, ij+ and Yj respectively, according

as x ><Xo . According to (2.21, 22),
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k- kt+ k. (1 1 3 _k

Y1 =Y -5 M\zo%t3s 3 G )Sgn%k (3.28)
k- k+ 1 1 .k

YZ = YZ + M('Z“Uk: '2'—7 €O>sgn‘tk . (3.29)

At x = Xys Ky -eey X 4, ODE has, from (3.13, 14),

1 1
S 27 Bl Bl Hel dsd “2( i i i i
12y | (Yl T TNy g )zl}%[ (Y1“1+Y2“2> (3.30)

i gt

i=1 i=l | =l i-l i

(all v's and {'s having argument §i). Solving these equations for Yli:

i-1

Yzl in terms of Y. yzl_l, noting that

moU, -y, = (sgnt)w(§) = (sgnt)e”C (3.32)
one gets
; 1
i gt . I iﬁi&( i L i-lwi wi-l 1>
Yy T isenty LYI sqd L TR T2
L
b, 12 . o
-_ . - . _l
e (= e - ) (3.33)
i-1
; | L
. el . B 12 o 2 4w o
i i i-1 i i-1,1 i-1 1
Yo = - (sgndy)e © 1y, ()Zi—_ll vy =¥ ”1)
.
. E. 42 o v 2 e
R G T ) IR GRS

If %y and x are finite, they are regular boundaries, and, by (2.23, 24),
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Yll \lill(%'l) + yzl ¢21(§1> =0 (3 .48)
vl v e = 0 C(3.36)

If x; = 00, it is a natural boundary, and the only condition which w
must satisfy is integrability. However, the integrable solution must

satisfy y=» 0 as x— oo, and it is seen, using

T(y) e? -
Mla, v, 2) ~ F5) Vog as z- 00, (3.37)

z
that there is only one such solution. Thus the condition (3.35) is

equivalent to integrability; for %1 >0, it becomes., using (3.37),

1 1 1 (1 L
/‘Zr(—z-cl+-2-)yl + T -z—crl)yz = B, (3.38)
If X, = - 0, the condition corresponding to (3.36) is, for »{Ln >0,
1 1 n-1 1 n-1
ﬁr(‘z"gn-ﬁ"z'“) i o- F('ch-1>\’2 =B (3.39)

If {1 or {'n is negative, then similar formulas can be found. However,
then the corresponding boundary is attracting, and the system is
unstable and not of much interest (having steady-state density zero

and no spectral density).

Case %i = 0 for some i

In this case the nondimensionalization of (3.4-9) breaks down,
However, this leads to no significant difficulty; in fact the FP
equation becomes much simpler, as it has constant coefficients., Let

us consider the limits of the solutions ™ and T to (3.11) as £ = 0.
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Using Darwin's asymptotic expansions--see Abramowitz and

2
Stegun [1],19.10, case (i) --it can be shown that, provided s > - I;—D »
_ _k;E( 4SD)%}

Similarly, Do_l(ig) are asymptotic to the same expressions as 4 T8,

Here Kl and KZ are complicated functions of -% and 4—52—]3- . Thus, the
k
fundamental set of solutions
b, o (x)=ex [- —kz{l:t(1+4SD>%}:' (3.41)
1,2 P - 2D v *

k

to the FP equation with £ = 0 are, up to multiplicative constants, the -
limits of the fundamental set of solutions (3.17) to the P equation
with £ # 0. Thus formulas derived in cases where all {'i # 0 can be-
used when £s = 0, simply by substituting from (3.41), provided they
are expressed in such a way that the multiplicatiw}e constants
mentioned above cancel out., For examples, see sections -3.3-5.
Note that since one of these multiplicative constants is infinitely
larger tha.n the other--which one depends on whether k, s 2 0 --the
solutions EW given in (3.18, 19) become proportional in the limit
as £ = 0. This means that formulas must be expressed in terms of
(3.17), not (3.18, 19), before substituting from (3.41).

If both »E’,i and ki are zero in some intervai, a fundamental set

of solutions is

‘Pl,Z(x) = exp{?(%>%x} : (3.42)
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These are the limits of (3.41) as k= 0. In this case, the solutions
(3.18, 19) remain linearly independent and finite in the limit, and it

is easily seen from the power series for M(a, Y, z) that
i
e meom[(] . mp~ (L Fam[(5)]. o0

3.2 THE STEADY-STATE DENSITY
AND SPECTRAL DENSITY

Steady-state density

The interval (xn, xl) is regular (a(x)=const. # 0), If either
Xy or X is infinite and Ll or 'f’n respectively negative, then this point
is an attracting natural boundary and P.= 0. If not, boundaries are
regular reflecting (if finite) or nonattracting (otherwise). Thus,

from (2.28) and (3.7),
ni(g):fie'g for x € (x., 1, %) (3.44)

where the I‘i are constants. Then the continuity of Po gives

T Lon (e 1B a e . , :
e AT d  wiel, A=l 1—2 jtl J
T Sgn( &i) T eXP(Ci G *T&oa-Ga gJ+1 gj+1) :
(3.45)
where n-1 =21 >j> 1. Also, (2.29) gives
' i
x E n-1 & . _
1 r 1 -gl N i ‘
j Podx=J I'J{Od€=z Pij e” > dEt =1 . (3.46)
x §n i=1 gl -

i |
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Thus, eliminating Tz, S s I‘n from (3.46) by means of (3.45)

(with j = 1),
et B WY -1 - 4 g 1

N P8 LY O N W
i=1 . g

i+l

and similarly for I"z, . I"n. In particular, for ff,i >0,

%, g, el 2
f o~ F ge :,(%)2(erf /—%_ - gk ;;1) . (3.48)
&1

2
!
If some {/i < 0, (3.46) involves the integral je 5 d&. Tables are

available from which this can be obtaiined. 1

Eo as limit of P

The same Po(x) is obtained by finding the Abelian limit of

P(x, t [xo) for large time, i.e., lim sp(x, s]xo). As s—0, 'n'j(é) and
s—0
q;j(g) behave as follows:

g
Tr1~e_€ , . ﬂZNe-guregdg "
0
(3.49)
g
¥ Noj' e~Cag , ¥, ~sgn i .
. ‘

For example, Abramowitz and Stegun [1], table 7.5 gives Dawson's

XZ X 1:2
integral, e~ f e’ dt.
0
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Thus (3.28, 29, 33-36) become, to first order as s -0,

Kk
iy
- k
e e [ oCadt -0
0
k- _ _k :
Y2 :Y2++Sgn%k (3.51)
gi-1
2 4 -1 £ 4 -1 A ;
ii-1h L aa (1™ =64 A,
L e I el e> df
i-1 i-1 0
i
. |
i\ i :
4 sgn(zl- )f &S agtr (3.52)
i-17%,
; il
T £
i o ; i :
. L. ;= g.l-g.l T i-1 .
i_ i-l i i =i -0 A J" -C i-1
Y, =Yg (sgn&i) oilz—.—l e j e ®d§ -0 1 e dg
1- 0 )
& :
|
¢ e ()
i-1
g |
I A S
YlolJ e~ d& +v, sgni; =0 (3.54)

g
n :
n-1 -C n-1 n-1 _ '
Y1 Gn-lj e dg +y sgn&n_ =0 . (3.55)
0
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From (3.53-55) it is seen that the coefficients Yé are an order of
magnitude smaller than the coefficients Yll' But (3.51) shows that

y21= 0(1). Thus Yll = 0(-16_), and (3.50, 52) reduce to

Y]. = Yl ' (3.56)
L % Cl_gl—l
i i-1 3 @ i =
Yy =Y 2 \ e (3.57)
i-1
to first order. Using (3.57) on (3.53),
g g
: . NN SR € L5 SN R
Yz = -sen ty Yll"ij et agl- Yllnlci-lj "t ag” +y, sgnlg- )
o 0 Aol
(3.58)

(This is of course just (3.31) to first order.) Successive application

of this formula gives \{éﬁ- in terms of yll(i < k):

gk

koo, k-l .
vyte - sgady (V%0 [ o€ dé{ﬁz o[ e Cad
0 i=2

S -t i,k Lk
= -sgn 44 ) Yllcif i € ¢ agly Ok.Jr e Cagty e 25)
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using (3.54). Similarly,

k i
§k+1 k n-1 gi ;
_ _ s . _ .
sz = sgn%k _Ylkckj e G dgk—{—z Yllci‘J. e € d%l (3.60)
2 i
0 izk+1 gi-}-l

gives sz_ in terms of yll (i > k). Substituting (3.59) and (3.60) into

(3.51), one gets

n-1 gi D

>.. chur . elag =1 . (3.61)
i 1

e §i+1.

Thus we have n equations (3.57, 61) which on solution will give yll

for small s. Cbmparing them with (3.45, 46) for I‘i,rwe see that

T i
]_"i = lim 0. Y] s (3.62)
s=0
so that
P (x)= lim sp(x, s |x ) , {3 .63}
o s B o

as was required,

Spectral density

To obtain the Laplace transformed autocorrelation, use is

made of (2.49, 58, 62, 63), which in this ;:am_se take the form
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| 3
n-1 J n-1 P 2
D k el il 'k i =1 =
r(s) = — + }-— ' E-n.(1+0.7) )27 (§)
LkZ Ok+1 Z Ui+l [ &i ( i X )lk
k=1 i=1
L =
X.
i
2 b3
R S | |
where
%
% k -1 k
Jk = [no (€Q) (Kk(2+ok )"go)
o k+1
k
. gk
% [1 % n]: sgn 4y (1 +01;1):J f m(5,)ds "
gk
k+1
- (3.65)
sk _ 1 k - k -3 g _]
? (8)= B {ﬂo(éo){[go-uk(nok )] D" m (&, 0|8 )
| [ S
_TrJ(%, o [@J}J ’1— sgn Lk (3.66)
J
x




TG

2(8) = o;l nX )¢ [ sE-n ro ) [D*W(E, o) )
: K
- (&, 0|§0% . (3.67)
%o Tkt

Here 11,2 cusstl k=125 wowynasl; joiloer iel b=l for i=l, Fl,wees

n-1 and j=i-1for i=2,3,...,%kn 1is a suitable choice, satisfying the

requirement that j= k is not allowed except when i=1 or n); and

D¥f(E.,E )=  lim lim -‘if-id%—i) : (3.68)
e %= 8 (Xk+lxk) o € (Xj+1’ XJ) :
X""XO X =X,

Having found r(s), the spectral density ®(w) follows immediately from

(2.64).

Variance and mean

For the case treated in this chapter, (2.68) and (2.69) become,

respectively,
k
n-1 : Tk gk
b / \‘
@y=) 7}3 [&%*gk)ﬂo@} | +<l+%1fsgn*/k)fk I (5)dS
k=1 Cox=Ex
k+l il
(3.69)
k
— 2 r T z
@) =3 ]%* w osgnty | I _(8ag-|m_(8) ] : (3.70)
k=1 ' §11{<+1 R 1 |
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3.3 ONE-INTERVAL CASES

In the following 3 sec-tions, the methods developed in the pre-
ceding section are used to obtain the Laplace transform of the
transition probability, and hence the spectral density, for various

examples.

A general one-interval case

Here f(x) = £ x+tkfor all x in the interwval (xl,xz). By a
suitable translation of x, we assume k = 0.

If the dimensionless transformed transition probability
density is (from (3.27))

(5, 018 = ¥y (8) + v5 ™y (8) (3.71)

(£ depending on whether x >~’< xo) » then on account of the reflection

condition g = 0 at x = X2 %ps (3.35, 36) gives
Y1+ p(5) + yz+ ¥, (5,) =0 (3.72)
Y] ¥(5) + vy 1,(5,) =0, (3.73)

and the delta function initial condition gives, by (3.28, 29),

- + Co ‘

Y; =y - T(E ) sgnt (3.74)
- + go i

Yo =¥y T e wl(go) sgn 4 . , : (3, 75)

Solving these equations,
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¢
L+ o
YIo=Ger e T IRy e, (500,05 {ois 76}

by (5)m 1 (E) = ¥ (B m, (5

_ ¢
nom e e T R B T (BT (5) e T

qu(gz)ﬁl (50) = llil(ﬁz)wz(go)
¥ (B0, (8,0 - ¥, (B0, (%)) | (3.78)

L
Y, =-(sgnt)e °

. Co
Yo =tegndle T e ¥, (500, (5] Sl

Thus the transformed probability density is

/
¢y (8 )m; (8) - b (5 m, (9 {0y () (5,8, mtE )

w(E, 0] § )= (sgni)e

(3.80)
for x 2 X3 and for x< x _ interchange € and @O in the Tfi'S.
The steady-state density HO(X) is, from (3.47),
-1
; c rgl _
ny8=|et ) eCas -~ (3.81)
‘ ’52
2
v
- (%) £ = if1>0. (3. 82)
1
erf — - erf —=
/2 /2
It is easily verified that this is the Abelian limit of (3.80).
To obtain r(s), one proceeds as follows. From (3.65),
_ y iy ;
) e T-Be 7
5 = (3.83)

) J;_jl e~ Cag
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Also, from (3.66),

X

o 1
() = G—lg [(sgn%) r{o(go){éoD (81, 08 )-m (5, of @C)}}

Xo=X2
(3.84)
But, applying (3.32) to (3.80),
’ H_Wl(gl)wz(gz)"wz(gl)wl(‘gz)
"Gy o8 = W, G, () e BB
(sgn L)e ]
_ sgn {)e
(81 018) = TG S (3-56)
while, noting that |
E[em vebra]=clym . (3.87)
it is seen that
D*w(gl,o[gl) =sgnd , D'm(E,0]E,)=0 . (3.88)
Thus \
2 -1 -¢ . .
ey = (] le_gdg RS R ARG A CA R G
2 -
; gl} . 99
Similarly, .
S -1

- -

1 I -Gy ) -sEnm (S8 )-m 5 U ()

Py I, ag| = T, (- (50 (5) T %2
2

(3.90)
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Noting that ¥(&,, o[go) =0 (i=1,2), (3.67) gives
2%(5)) = 2%(5,) = 0 . | (3.91)

Thus (3.64) gives

g -1

-
) -6 G

()
7 GitCe

+

‘Q I 'Q
- sgntfe Hm(5)U(5,)-m,(8) ;&) [+ 2[wl<€2)¢2<§1)-v2<§2)wl(gﬂ]}(

(3.92)
Then, by (2.64),

P (42 +0%)
L 2
2 L6 iw 1 1 iw 1
+Re Liw(&-riuu)z [ = '[M<'2‘Z’?’. €1)M<‘2‘ t52070 Cz)

iw iw 3 (_1_ i 3 )7 “Cz[ iw 1 % (1 iw ]
T} ‘51’521‘4(“2&: z €1>M 2tz G2 /-0 M(ﬂ? +CoM\Z 215 €z>
iw "'i__uzz).l_z_uyi +{ w3 el o)
TR MR 206 M<2+2{,’ 2’51)>}' giM(“zvz’Ql Mg 3102 &2

- gzM(lJ“z‘i%’%'Cz)M(lZ““%‘ufx%’ 51)1}} ; | (333
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This is the required formula for the spectral density. Finally,

(3.69) gives

ce g e 2
e -E e
% 1y o 2 Z , (3.94)
L El
Jr e 5 ae
gz =
while,from (3.70),
1 “gz "Cl
‘ _ (D% e “-e ‘
J e_gdg
g2.

The derivation for this fairly simple case has been given in
considerable detail, most of which will be omitted in future cases.
Firstly, several special cases of the one-interval case will be dealt
with. The form of the restoring force f(x) in each of these cases is

illustrated on the next page.

Example (1)--the linear system

X, =0, X, = -0, Since the boundaries are infinite, 4 must be

positive for stability. As §1' - oo, §2 = - o,

3(o-1
my(8) = 7y (&) ~ 55y & F (3.96).

\/'T? £(o-1) .

T (8) = - o(5) ~ TEETE) O (3.97)

) = - (5 ~ e B (3.98)



Section 3.3, example 1 —

linear system

1)
A

3\5’?‘a

——

Example 3 — hard limiter

foy

Example 4 — another

rectifier

-85~

71
A

Example 2 — rectifier

fix)
A

=X

Special case, limit of
example 3

fix)

/\y
k

> X

Example 4 is obtained by
letting 4 — 0 in this case.
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1081 = 4(8) ~ Tty 02 - (3.99)

Therefore equation (3.80) for the transformed transition density

becomes

L

- Sl b
(8 o|g,) = (2m) %]_"(o)ez ° b _J*E)D_ (FE ) for x Zx_, (3.100)

confluent hypergeometric functions being replaced here by parabolic

cylinder functions using (3.20, 21).

In this simple case, the transition density is known to bel

1t.2

z Lx-x e )
P(x,t = = 2 3
(=, [xo) = WD(I_e'ZM) exp |- D(]_..e"z'f’t) . (3.1.01)

However, the writer has been unable to derive this directly by inverse

transformation of (3.100).

All terms except the first in (3.92) disappear. Thus (3.82,
92-94) become

b B
I {8 = (%)Ee 26 (3.102)
 wla) = &(&?rs) ,  soR(t)=Fe ™ (3.103)
2D
S(w) = —22 (3.104)
Tr(»{’,z-i-wz) .
<x2)=% ; | , (3.105)

lSee, for example, Wang and Uhlenbeck [40].
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all of which results are well known from other methods.

Example (2)--rectifier

X =0, X, = 0, £ >0. Here ri(gl), Y (gl) have the same

i

form as the previous case, while
T (8) = ¥,(5) =1, w,y(5,) = ¥;(5;,) =0 . (3.106)
Thus (3.80, 82, 92-95) reduce to

(&, OIEO) = 2%(0'1)W'%I‘(%0)e'%gD_G(§)M(%c, %, C) » xEX

C+ic (3.107)
L~ = - 2
=280 De2pgoe © T °D_ (5 )M(30, . 0) s x=x,
(8] = (%)2 %5 (3.108)
1 "% T(3o)
D ™ =0
r(s) Z? —ij I:l +-&:T l.vgo_%é)} (3.109)
4 1(3) ]
@(w):%j 21 5+ Re| —T iz ~| s w#o (3.110)
22 Lo (3 +3)]
<x2>:% (3.111)
‘ 5
(x) = f\%) 012

The graph of the spectral density in this case is given as one of the

limiting cases (&—2 = oo) in Fig. -(1) on page 117,
1 &

Example (3)--hard limiter

X = -X%, < oo. In this case, since
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T (8) =w (§)) . w,y(5) = -my(E;)
1172 1'°1 2\ 241 (3.113)

(3.80) becomes

[wz(glwl(%)w (8,9, || 0,08, (8124, (B)m (5 |
2V, (519, (%)

(8, 0|8 )= tagm e

(3.114)
for x X X s respectively. Then, from (3.81),
A ~4
2
I (5) = geq:?g f o TES dg)  for £X0, (3.115)
0
and, from (3.92-94), using (3.32),
g -1
: ! (&)
. =g g
r(s) =5 =— (1 - e °dE 0+2)E, - sgnd————=—(>(3.116)
22 O (Io ) { 1 : uz(fs'l):l
5 5.
o =22 |1 - ([ otag| ge {2
™ L2+w2 2 1 l(%zmz)z
1 i 3 ' |
1 M<E+%’Z" ‘31)
- Re 5 : - (3. 117)
. (1 iw 1
w+io® m(z+3%.7 ¢
_Cl
&y @ '
Py = 2 (1 " -lg-————) i (3.118)
I 1 e‘gdg
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In Fig. ( 2) on page 118, ®(w) is plotted to show the variation
of the shape of the spectrum as %1 varies, Variation of this dimen-
sionless parameter can be considered to represent variation of
either slope € or cutoff point x,. Note the behavior for negative él
(i.e., negative slope). Both ®and w are .nondimensionalized using
D and (xz) - (x )2; as shown in section 3.6, this means that the
""equivalent linear'' system in each case is the same. These dimen-

sionless forms of w and @ are

3 2 2
of o -G, (3.119)
@*(Uj* _ D@(UJ) (3 120)
€x2> = <X>2>2 - .

In this example, (x) = 0. HOWexlrer, the nondimensionalization
(3.119-20) will also be used when this is not the case (e.g. example

(1), section 3.4).

A special case

4 = 0. This is a system which limits the displacement at X1,
but otherwise exerts no restoring force, -In the limit as §1 =50

(i.e., as 4 = 0), one has, for | E| < By

@ ~comn [(3)5] 1 wpt ~ () e [(3)%]

S Pal2l)
108 ~ (5 Pemn[(5)Fx]  v(0~comm[(5)%]
[PeCagm s (1ophrtgby =en) G.122)
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Thus one obtains

1 A
% 3 .
1 \2 COShK%) (le)]COShL(%> (ep ) |
PG s 1xg) = (5) - (5.123)
51nh[2. %)nxl]
for x 2 x  respectively, and
1
P _(x) = B (3.124)
1
Xlz D tanh[(%) Xl]
r(s) = i) 1- = (3.125)
s o <i>.§
D/ *1
Lo
tanh[(ﬁ> x| .
@ (w) :—2% T w251 o1 M £ (3.126)
W (ﬂ)_) 2
T =
(x2> = %—XIZ . (3.127)

Example (4)--another rectifier

Xy =0, X F 0, £ =0, k> 0. Brownian motion in a constant
force-field (e.g. gravity) with a reflecting barrier also leads to this
process. Its transition density has been found by different methods by
Smoluchowski (see [6]), Kac [28], Wong [45]. Here it will be
considered as the limit as 4 - 0 of the case with the same X1 Xps k.,
but with £ > 0. In this case, §, = , £, = x = 7%3
The general one-interval case worked out above has k = 0,

The formula (3.80) for w(§, 0|E ) is, however, unchanged for k #0.
o g
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Substituting for «31 and gz, it becomes

1 1 2
_ mgEttgr  D_4(B)
m(E, 0[E)=e 5__ 100 [‘l‘z(n)wl(%O)—wl(n)wz(go)], X2X_
(3.128)
1 2
CoTTH 58
58® ) )UZ(“)1T (8- ‘l’l(m)vz(i)_{ s X =3 .
(3.129)

Evaluating J*(EZ), 6*(%2), .2*(52) as before (but with k # 0), and

substituting in (3.64),

_ 1
2 '7 D_ (%)'
D 1 % 1
r(s)—— —_— et — - — { 1+ -
4= || = J‘ Ly [ (0+1) ] (c+1)2 OD _o-1(%
% (3.130)

Now letr% - 0 as explained at the end of the section 3.1. To find the
limiting transformed transition density p(x, s IXO), it is necessary to
find the constants Ko Kyo f (3.40); otherwise p can be found only up
to a multiplicative constant., The inverse transform of p can be
found and agrees with the transition density found by Smoluchowski,

etc. The limit of (3.130) is more readily found. If P , are the

solutions in (3.41)--and q; 2 correspondingly--then, as L¥0,

1+ =

D (£8) q; ,(x) . "
> e 1,2 k 45D 3
TapDyE DGR T b o) TLI *( k2> ] (3.131)

Substituting into (3.130), the limiting autocorrelation is
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2 2 %

r(s)z%-—g-%[l-(u‘“f) ] (3.132)

s 2s k
Note that here we have used

00 _52. A

[ erCagns—(1-g2+35%...) as gm0 (3.133)
§2 2 2 e 2 < e

g2.

which follows immediately from the asymptotic expansion for the

error function. From r(s) one obtains, using (2.64, 67, 70),

. .2 . 1%
2 /D, _x* [r . (4aD1%
d(w) = = (= + 1+ ———-%}“- } (3.134)
™ UJZ 2,/2(.03 LJL (kZ ) i
2
oy = 2 | (3.135)
e ‘
(x) = -E ) (3.136)

3.4 SOME TWO-INTERVAL CASES
Only two of the simplest cases will be worked out. The form
of the restoring force f(x) in each of these cases is illustrated on the

next page.

Example (1)--continuous bilinear device

X| = 0, X, = 0, x5 = =00, k; =k, =0. For stability, 'f’l and
{,2 must be positive. Using (3.28, 29, 33, 34, 38, 39), one obtains,

forx >0,
o
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&
SQ.
N

Section 3,4, example 1
Sys

— continuous bilinear
tem

fix)

Example 2 — preloaded spring

k

(%)
A

-k

Special case (bang-bang), limit of example 2



= gi“‘(%“l*%’%’%i) St
Y21"=v21++M<%01,%—, gol) (3.138)
vy = (%)% B (3.139)
Yzz _ Yzl- (3.140)
ﬁr(%ol“L%)YlH*T(%Ul)YzH:O (55 141)
ﬁr‘(%“z*%\)ﬁz‘ r(%'02>y22: 0, (142

and similarly for Xy < 0. Solving these, one gets

¢ (i@ -ami®) (e 1maiis )

w (5 0]|E) = e S : (3.143)
1 1
where i, j=1,2 and
( 1, )% T'(z0, +%) 1, \z T(z0,+%
. 25 13 e , b =(2—) , 3.
2y Z&i T(%0,) L T(3o,) (3. 144)

‘ .
and where x = X for x < X interchange € and Eo in -rr;(- ). Then as

in the previous section, one gets

i (Wii >% 1

1rgy = 1 o .
Ho(g) = I‘ie —We 3 1—1,2 (3.14:5)

d = (%)%rk (3.146)
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Gl = (7 gy W olo) Rl

and similarly for .21;:; however, the coefficients of ,.2]::(52) in (3.64)

are zero. Thus one gets

'% -% 1 7 B
D -ff,l &2 & (/(;1+s _%2+s )
e 4o {2-%[&1 s " T,+s T . T(30,+5) e T(£0,+%)
I To) 2 TT(E9,)
] (3.149)
Y]
..—%—- _—%- /{/ 1- -‘{, 1. )Z
2D {,1 1, _% 1+1LU 2+1bU
s (736 % ) | 224 2z Rty LW 4o
B 1" 2™ 5 a7z +L%nﬂ2""3
1 iw 2 iw
L IT"?{ T(ZZ%J
(3.150)
_3 _3
2 4,84, ° |
(x"»=D —:W (3.151)
{,1 +«E,2
% L _;~
() = (%?) (’f’fﬁ“*’z—é) : (3.152)

Note that putting 4.’/1 = %2 in the above leads to the results
obtained above for the linear system, while '{’l =4, 4, = co leads to

the rectifier device dealt with above.
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In Fig. (1) on page 117, Hw) is plotted--in dimensionless

form, &* against W --for various values of -— .

T

Example (2)--pre-loaded spring

Xy = 00, x2=0, X3 = - 00, JLl :&2={'>0, kl =-k2=k. The
restoring force in this case resembles an idealized type of friction,
where the result is obtained by adding a linear term to a Coulomb
friction term.

By symmetry one has

2 1 2 1
wl(-8) =7 () , my(-8) = -m,(E)
{5,153}
2 1 2 1
VE(-8) = -4 (B) . 5 (-B) = ¥ (B)
Using this to simplify the solution of equations (3.28, 29, 33, 34, 38,

39), one obtains
w(8, 0|8 )

ﬂll(K)“z(go):Fﬁzl(”)“l(gc) ) qjll(n)rrz(go)ﬂle(vdwi(%

v 10- am (n) ¥ G0 = v, ()

¢
=F3e O (B)Famy(5)]

forxzxoé 0 (3.154)

(0B, (0 (8) U5 G () F g (e (8)

1 CO —I
=Fge "|w(E )Fam,(§) |
eIl w ) ()= amy (w) b (-2t (%)

for xozxéo (3.155)



% G

Co-Bn” |7y (E )% am,(5 ) |iw, () Famy(5)

1
|
[l -anl 60 ][ 4100 -avi00 |

=le
forx%OExo ; (3.156)
where
a=y sz 0TS (3.157)
T'(z0)
Then
w3
=)
I (8] = Te be BTL L (3.158)
o erfc 2=
T

Iy ] 2 @ﬁ‘ 2n”
S =9, = H(1+(1+07) | u"- "fT - e BM (3.159)
er C‘7“z.—
-
1N 1 1
* s 1 E(T) = 2 1‘UI (%)_aqu ()
2(8,) =2 (5,) = oo —ETL "By i L "L (3.160)
erfc 72— Ty (%)-aWZ (n)

The coefficients of all other 9;;(’;1), .2;‘(§i) in (3.64) are zero. Thus

one gets

£ 2
2 \=2 _J.-_;t 2
,r(s):_g- _1__+ﬂ_2; - ————————(F> ol 1, o L [l-x—————-—-—D_O_l(M)}
&2 B & - erfc% (CF—H)2 D—O(%)

(3.161)
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2
25, ~3H
Sial =2 1 ()7ne * 24
L T erfc—/-”i‘-_ T
D_ iy _ 1(74)
% u Re 2 5" S £ } (3.162)
1w(4 +1iw) iw ()
L
L
£ 2
2.2 -‘J—'K
' (=) ne *©
<x2>=% 1+K2'-—-T-r———;—— ‘Y - L NER
erfc ==
VoA

In Fig. (3) on page 119, & (w*) is plotted for various values of
#n, which represents, in dimensionless form, the size of the jump at

zero., The behavior as y = -00 is of some interest,

A special case

As y— o (i.e., £ = 0 with positive k) we approach the case
with bang-bang restoring force dealt with by Caughey and Dienes
[4, 8] and Robinson [37]. Letfing -0 in (3.154-6, 158, 161) and
using (3.131, 133), one gets p(x, s ]xo) -- see [4] for the form of this

function and its inverse transform--and also

_kx
P (x) =5 e O (3.164)
2
2 4 3
r(s) = 22~ - & 4+ & { - {3 4 280) } (3.165)
ks s 4s D k »

and, using (2.64, 67),
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i
. e
@Uﬂ):ég »i-+—ki7 I-F-§+r1+(i£2\zjg>) (3.166)
T V' 209D Z L 12 /
Z
Ly=22. . (3.167)
k

These results agree with [4] except for a factor of 2 in (3.166), which
is‘explained if the result in [4] is taken to be the two-sided spectral
density. (See the discussion in the Introduction of the distinction

between two- and one~sided spectra.)

3.5 THE SYMMETRIC THREE-INTERVAL CASE
The only three-~interval case which will be worked out is the

symmetric case--4, =4,>0, k.= - k,= k say, k, =0, x -
Y 1~ %3 3 v

2 g =g

- with in addition X = 00, X, = -00, (See the sketch on.the next page.)

1

Continuity of f(x) at :EXZ will not be assumed, as this produces no
significant simplification in the 1jesu1ts; those for continuous f(x) can
.'be obtained by simply replacing k by (Lz-&l )xz wherever it appears.
Such a trilinear Characteriétic can be used as a reasonable approxi-
mation to almost any continuous symmetric nonlinear characteristic -
with infinite endpoints. A method of approximation is suggested in
section 3.6. As is seen below-=~e.g. (3.192)--the formulas even for
the symmetric trilinear case are not simple, and the increased
accuracy of, say, a five-interval approximation would probably not

justify the trouble of working it out.
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%

s\-°?€

Typical restoring force for the symmetric
trilinear system of section 3. 5.
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The transition density

For the symmetric three-interval case, the set of simultan-
eous equations can be simplified slightly by noting that
1 3 1 3
Tl’l (gz) =Tl"1 ('gz) ’ T (gz) = "‘TZ ('gz) s
(3.168)
1 3 1 3
"ljl (gz) = e w]. ("gz) ’ qu (gz) = ¢2 ('gz) .

Then solving the set of simultaneous equations, the Laplace-

transformed transition density is given for various x, X, by the follow-

ing table:
Position of x, x m(§, o g,) Eqn.no.
]
C,-2Cts F(8) G(§
xzxozixz ze o F-UE 2D_O(:Izg) Fo-i- GO 3,169
1
30,1 21 F(E) , G(E)
xoéx%:l:xz e O D_Gl(:!:g ){T-l_ (Gh] 3.170
2 2
C'%C"Qz +% 2 'lTl (g ) Trz(g)
X<:l:x22xo e - D_Gl(:l:‘;) T S GOJ 3,171
ZF
=T 1 1 2. 2
4, 1% £C,~5C w, (B} =, {E)
Six Zx PRI R e TR T | I e 3,172
Eg s g =17 : ~op o’ | TF G .
Z2Fx
£
. O [T8) TIENTTAE) wi(E)
ixzzx%xo -%(sgn{z)e rel i anii el Tt Bis1 T3
2 Fx
<
s o ) ty| B B0 0+ 0 i D-oft DIDofTE )
x<:t:x2; g(sgn'ﬂz)h e . e _J 3.174
xoéqzxz
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Here for simplicity of expression we have written

L
2 1yy2 1, 2
F = ‘—fl_l D_Ol(‘iz)ﬂll (§2)+01D_01_1(§2 Y (85) (3.175)
X
l{’Z - 1. 2 1. 2
G = FLT D—ol(gzWZ(EZHGID-Ul-l(gz )'IT2 (gz) (3.176)

e
2 s
F() = v (2) {wf‘(gz)w; (2,)~ {312-\ wf(t—;z)«rj(%

z
4

2
-*w2<«z)[nf(§z)wf(§2)- 3’4&%5 wlz(az)wf(gzﬂ (3.177)

3
e

G(E) = 7, (2) Erzz(gzwzl(gz) - ’f] ¢22<§2)w21(§2%

L
. 4. B
=F1r2(§)[ﬁf(§2)¢11(§2)- Q%—ﬂ xpf(gz)nj@z)} . (3.178)

in these last two expressions the ¥ sign is taken according as x >x,

or x < -X..
2

The steady-state density

According to (3.44),

i

D8 =T;e™ @=1,23, G =Ty . (3.179)

where ]."i can be found from (3.45, 47), which give
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2
1 1 2 1 o L 2 §2
T e-gzzs n4d f’_?_._ I‘/ﬂ-gz‘éﬂ e Zj e Qldg +sgnd f-l— eQZJ‘ e-Czdgz
1 BR%2[g, |2~ TF & %2lz,
1 0
52
(3.180)
The transformed autocorrelation
By symmetry,
'IT(-g, G]‘go) =1T(€, Ulgo)
W-@: o‘"go) = _w(ga Olgo) ] (3.181)

and conversely for the derivatives of these quantities. Thus (3.65-67)

give
..gl . | R 1
3= 5f=Te & [%é-n(2+%)]+l:l +K2(1+31T)]j e &gt (3.182)
1
§2
2
2 §2
a¥ =2 2 b J 'Czd 3.183
y =ELg§~Sp & "+ ° 5 S e
0
1
ne 2
ale 3 e .
G (x5,) = - &,(F5,) =—§—1;-1— {=t[n(1+311—)- 55 |D n X5y 0 [28 )+ e, o_|=u;2%
" (3.184)
-&2 |
0:{: B 9:}: _1-‘26 zT_D::: 1 —;—D:k |~ I g _i
z(gz)“' 2('%2)— 02+1 gzL ™ (gz: Glgz) ™ (gz:o- i 2)_!

-Tfl(gz: UI§2)+1TI(§2, Ul-gz)} (3.185)
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sz(igz)mzj(fréz):———gl - {[n(n )- & DMVE,, ol (s, Uligz}

(3.186)

25 181 = 2 (- ) = o+1{ [PV (5, 018407 (5 0l-5)) ]

-¢1(§2,0|§2)+¢1(§2,0[-§2§ * (3.187)

Here, from (3.171, 172),

v T (8y) T, (E,)
w (g, 0]5,) = 1%‘ wz(gz,ciigz)=%D_cl(gzl) l: L2 2 2} (3.188)

3
'{’ 3 ES ™ (g) (g )
1[’l(gz’ o™ EJL;ID “z(gz’ Uligz):'%ch_o @2)[ 2 ZGZ}

(3.189)
2
¥ (5)  ¥,(E5)
D“ﬁl(‘gZ:U]ﬂ:gz) = _(sgnf(’, ‘ ‘ LIJ (gz, O'I_-_tgz)_ - lD (gz)[ ngz- s ZGZJ
(3.190)

k& 12(E,)
B ::: g
D \lfl(gz’ U]ﬂ:gz):(sgn{, )i.zl_ wz(gzs U]i§2)=%°1D_cl_1(§gl)[ 1F2 i%(}z} ]

{3.191)

Substituting into (3.64), the following expression is obtained

for r(s):
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D
_1_'[01 -5 2 V5 (5)
b | et 1 g e
1 D Gl(fgz) 5 (55)

(3.192)
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Spectral density

From (3.192), ®(w) is obtained using (2.64). Thus

52

_gz i
1 o 5 .2 72 &
_2p | % ot Ui & W
CID(w)n—“— e J. e 2V |-l e j e dE
1 ! 0
52
g?.
1 o - 2 22
C sl sgnd, 4.7 ¢ _ 2
X {21 5 |e ZJ" e gd§1+§21-%+ > % -Z]—'II ez‘f egdgz-‘é;
1+uu 1 szw Y2 0

e ([l 2 (2 -om i 15

~

- ()l [l 2w ()

1 2

o
2 L, %
+ (?_lh—w) [(%;—K)AH] (g% B-l)] 3 [A+(sgn&2){%; B] :
(3.193)
where
WD, _1<§21)
PR Y - (3.194)
4D 4, (5;)
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(sgn {,Z)M<E + > > 5 (;2,)

B = 2 (3.195)
- 2 iw 3 2 e )
Variance
From (3.69),
2
3 3 3
1 oo > .2 "2 =
o 1 218 £ 2 1, (2
e el Bao BRI T Ep SraPT- IS SR b N I
e nge dg (14 )+ ‘l£2 e J e dg +‘§2 2y, ['1—2 ‘32
'z ‘ 0
<X2> :-‘E:D— 2
' LN v, B 2 "2 2
QZJ‘ | 1]°. %2 -c%4e2
e e d€ + (sgn «[’,2) 7| e e dg
1 2 '
. 0
52
(3.196)

Special cases

A check of the above formulas is obtained by noting that two of
the cases dealt with in previous sections can be obtain_ed by limiting
processes on the symmetric three-interval case. The hard limiter
device (example (3), section 3.3) is obt.ained by letting {l - 00, noting
that then A - 0, The friction-type-device (example (2) of section 3,4)
is obtained by putting x, = 0.

Two other limiting cases, those with continuous characteristic
and Lo and Lqs respectively, zero, will now be worked out. The

restoring force f(x) for those cases is illustrated on the next page.
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L
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Section 3.5, example 1 — slack spring

fix)
J

k|-

e
&
&

Example 2 — soft limiter
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Example (1) -- slack spring

Put 4, = 0, k = -4)x,. Write ¢, = 4. Since k = -4x,, §, = 0
/2T (30, +%)
dA =
an I'(%0;)
(3.122)apply. Thus

. In the second interwval, (-XZ,XZ), (3.121) and

1
D 1 1 B 1 2 1
el = TRt 3 {% {1-(%) ntg m]
n=-(5)*
2 - ;
1 2 ___ 1) . /O [ZT(z043)
B Kl-ﬁ-o) 4 o(l+o) ~ 02} ) [tanh (/o) T(50) }\\
' &
(3.197)
2
2D 1y 7 1 4
d(w) = — +
»&2+w (_'_T_I')E wz(%2+u)2)
B
q
10) o 1 4
. e ( 1 >2+ 2 +_1— . T) } \/?l (—2—Z+'§i
Thw/ TIo(@nw " 2 I ETI
. anh{(&@) ") rz)

(3.198)
1 2 T E 2
wW(l+ 50 ) -(3)"(1+n")
2y =2 > Z (3.199)
. B
n - (3)

As £ - 00 (y— ~-00), these reduce to (3.125-127).. In Fig., (4)
on page 120, CID*((,U*) is plotted for various values of x. (Note that x

in this figure is equivalent to - here)
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Example (2) -- soft limiter

Put L = @ k= {ZXZ Write &2 = Ay rIfhenk = »f;xz, and, in

the interval (x,, o0), (3.131) and (3.133) hold. Thus

.
1 2 1 2
D 2 2. G 5 1 5 2 G g2
wel = Zz[l +H(z) B e erff} T+0 {(%) S0 erf—p- 2g,

2 fie T
%(2g2 12+ glz)_ :12.(1+2g§)—2g2 {;17[(1_ %)A-l]l_(l- 3)B-1 |
2

2
. %_ (Tl_%)[(l- %;)A-l](B-l)-i—(—i-i»-&) (A—l)(B—l)} + (A-B)| ,

(3.200)
where
o M3+ 4 ¢ )
“Qz[l _(1+ 2>e] , B = (3.201)
, 2 2 -1 ] 2
1
2D r B2z 62 .5 1 w22 G % 2
D(w — | 1+(5) &5 e ~erf — ——— \(5)%ES e Terf — -2
(w) == [ () & Z| | Za2 12 % Z

1 2 2 10, .. 4 .
+?(1+2g2)+2g2 e —UJ-Z_(1+1E)A_1][(1+1-%)B_1]

(3.202)

where A and B are as in (3.201), but with o replaced by }-% ; and

2
g
z+—1+(2)% e gzerf-%
&
<x2>=Z 2 c = . (3.203)
1+(HFele Zerf—%
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' As £ - 00, k remaining finite, (i.e., §22—' o), (3.200, 202,
203) reduce to (3.165-67), In Fig. (5) on page 121, &"(w*) is plotted

for various values of 522.

Computation of ®(w)

The formulas obtained in this chapter were found suitable for
computation with little modification. Confluent hypergeometric
functions and error functions can be evaluated using their rapidly
convergent power series., The gamma functions I'(ix) and T(3+ix) are
best evaluated by adding a suitai)le positive integer n to the argument,
finding the gamma function of the nev& argument by Sterling's asymp-
totic series for log I'(z), then using I'(z) = z-ll"(z—i-l) n times. Choose
n the smallest integer which gives sufficient accuracy to Sterling's
series--n = 4 gives nine figures. The results given in Figs. (1)-(5),
(8) at the end of this chapter were obtained in this manner on the

IBM 7094/7040 at California Institute of Technology.

3.6 APPROXIMATION BY EQUIVALENT
PIECEWISE LINEARIZATION

The method of equivalent linearization is a useful method of
approximating the properties of a nonlinear system. It giv’es good
results for the first and second moments, but no indication of varia-
tion in the shape of the autocorrelation and spectral density curves
for various nonlinear terms. A more accurate method ;:)f approxi_—
mation would be to replace the nonlinear system, nof by a linéar

system, but by a piecewise linear system optimized in the same way.
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The method is discussed somewhat sketchily in this section, and an
example worked out. It should be possible to extend it, for example,
to parametrically excited systems. It would be interesting to find
whether the autocorrelation or spectrum of an arbitrary nonlinear
system can be approximated arbitrarily closely (in some sense) by

that of a piecewise linear system with a sufficient number of segments.

’ : : . 1
Equivalent linearization

We consider the application of this method to the first order
nonlinear system ‘ : ;

% +f(x)=n(t) , -o<x<ow . . (3.204)

It is replaced by the linear system

}Z+%eq(x-(x))=n(t) , =~o<x< oo, (3.205)

where Leq is chosen so as to minimize

EI:{f(x) - L lx- (x))}] . (3.206)
This gives

ef(x) ) - (xH{E(x))
f = (3.207)
°4 oy - ()

- | .
S e o (3.208)
=%y - (x)* |

Thus the mean and mean square are the same for (3.204) and the

equivalent system (3.205).

1 Caughey in [3] reviews this method.
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If the range of x in (3.204) is less than (-c0, ™), (3.207) and
(3.208) are not equal. It can be shown that (3.208) gives a more

reasonable approximation. For example, if f(x) = 0, -x,<x<x.,

1 1
(the special case of example (3), section 3.3), then (3.207) gives
Leq = 0,while (3.208) gives a positive value for {’eq which is the
limit as 4 — oo of that for example (1), section 3.5.

Since the steady-state density corresponding to (3.204) usually
involves integrals which cannot be evaluated, the expectations in
(3.208) are often evaluated using the equivalent density. This intro-
duces small discrepancies between the actual and equivalent linear

mean and mean square. The equation (3.208) will involve ’E'eq on both

sides, and must usually be solved by some approximation technique.

The piecewise linear approximation

We proceed in the same manner as above. In the system

x + f(x) = n(t) ) x € (xn,xl) . (3.209)

nonlinear f(x) is to be replaced by Lix + ki* xE (xi where

+1’ Xi),
i=1,2,...,n-1, where the 3n-4 unspecified variables »{;i, ki’ X, are

to be determined by minimizing

g, B ' 2
f= E[{f,(x)- f&ix-—ki} ]: ) Fi{[f(g) - Lix-ki] } | (3.210)
i=1 ‘
where ”
k &
Fk(z)=j- zPo(x)dx £ o (3.211)
g .

k+1
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Po(x) being the steady-state density corresponding to (3.209). To
minimize I, it is necessary that

: ol ;
B “ Iy TP s 1ShBenieBl g S0 ¢ R tel B8R

4. = > - (3.213)
F(F; (") - [F;(x)]

F_(5)F . [2(x) ] - 5. 2 )F, [E=)]
k, = — = - s 12 (3.214)
FF 67 - [F )]

;=) = Ly, -k, = = [f(xi+) - &i_lxi-ki_ljl ) (3.215)

The ambiguity in (3.215)

If f(x) is continuous, the positive sign in (3.215) implies the
continuity of the equivalent restoring force 4x + k; the negative sign

implies that {4.x. + k. is as far above f(x,) as 4. .x.+k. . is below it
e T i i-1"1  Ti-l

(or vice versa). To find which sign represents a true minimum of I,

it would be necessary to examine the second derivatives of I. In some

3

>

cases it is apparent which is to be used. For example, if f(x) = x
the best two-piece approximation (which must be symmetrical) has

X, = 0, kZ = -kl >0 (i.e., the negative sign in (3;21 5)), while the best

three-piece approximation has both 4 +k, < f(xl Vs Aoz +1<2< f(xl)

151 41 2%1
(and thus the positive sign in (3.215)). For simplicity from now on,

the positive sign will be assumed, and continuous f(x), so that

(3.215) is
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x. :_%_L—l ; (3.216)

Approximating the expectations

Since PO(X) is in general not known explicitly, it will be
replaced by the steady-state density ‘cor'respondihg to the equivalent
system. Doing this, Fi(-) in (3.213, 214) be;comes C—i(' ), where

g
Gi(z)=f 2" Cae | (3.217)
*i4
gi being given by (3.16). Then G;(1), G;(), Gi(xz) can be expressed
#nalyticaliy, but G, [f(x)], Gi[xf(x)j must in general be evaluated

numerically. Exceptional cases occur when f(x) is a polynomial in x

or in e (e.g., sinh x).

Obtaining '?’i’—ki’——)-{i

Substitute for X, in (3.213, 214) using (3.216). Then the right-
hand sides of (3.213, 214) will be fairly complicated functions of
%j, kj (j=1, ixl)., Ewven with the replacement of F, by Gi’ it is not to
be expected that these equations can be solved explicitly, and a
numerical method is indicated. Since the right-hand sides appear to
vary slowly with variation of the /E’j and kj’ | iteration should converge,
The method is to choose a piecewise linear approximation to f(x) by eye,
substitute into the right-hand sides of (3.213, 214) to obtain improved

values, and repeat until no further improvement is obtained.



-116-

3
Example -- f(x) = x7, D=1 -- three piece approximation

By symmetry, 4, = s ky=-k; = -k say, k, =0, G,(x) =
__k
Tty

evaluated, the equivalent system can be treated as in section 3.5,

G, [f{(x)]= 0. By (3.216), x, Thus, once 4’1, »{’/2, k are
and the spectral density obtained by (3.193).

From Fig. (6) on page 122, it is seen that 1, =6, 4,=1, k= -5
(and so X, = 1) gives a good first approximation to x3. Substituting
into (3.213, 214) (with F. replaced by Gi) and using symmetry, higher

approximations can be obtained. Thus one gets:

Approx. &1 ff,z k X,
no. '
6.0 1.0 -5.0 1.0
5.926 s 5651 -5,457 1. 0175

B:3T12 - .59862 -5,8788 1.01840

It is seen that the iteration is converging. In Fig. (6) these successive
approximations to the forcing function are shown, together with the
corresponding stéady-state probabilities; the values corresponding to
the exact and the equivalent linear systems are shown for comparison
in Fig. (7) on page 123, In Fig. (8), page 124, the spectral density
for the best three-piece approximation is compare_d to that of the

equivalent linear system.
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CHAPTER IV

SYSTEMS WITH WHITE PARAMETRIC
EXCITATION

4,1 THE GENERAL CASE

In this chapter we consider the first order piecewise linear
system with parametric excitation consisting of a single white noise
function, and with no forcing function excitafion as in Chapter III.
Such systems lead to a FP equation whose solution does not involve
special functions, so that the formulas for spectral density, etc, are
quite simple. On the other hand, interesting combinations of irreg-
ular points can occur in these systems. Previous work on such

systems appears to have been limited to the linear (:za,s-e.1

The stochastic differential equation

For the system dealt with in this chapter, (0.1) can be -
written

% +£(x)[1 +m(t)] = 0 | o (4.1)
(i.e. m =1 and h1 (x) = -f(x)), where
f(x) = kix+f{3i for x € (Xi+l’xi) s A=D1, 2 ow,fi=d (4.2)

(so that there are n-1 linear segments), and m(t) is white noise

satisfying

A For example in Gray [22], section 2.
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(m(t1 )m(tz)) = 2D 5(t; -t,) » {m(t)) = 0 . (4.3)

It will be assumed throughout the general derivations below that no
Li =0, If some‘o{i were zero, the power type solutions of the FFP
equation found below would be replaced by exponentials in the ith
interwval; it is easily seen that these are the limits as 'f’i - 0 of the
case where 4. £ D, _ The following two dimensionless quantities will

be useful:

. = 1
i~ 24.D ‘ (4.4)
. :
o. = . ‘ (4.5)
i '.'E'iZD

Suffixes on £, A, k, 0,etc., will be omitted whenever no confusion

would result therefrom.

FP and backwards equations

The Laplace-transformed FP equation (2.14) in this case

‘becomes

5 . |
D fx—zL(Lx+k)2p]+(1-LD) L (x+x)p |- 8p = -6(x-x,) , )

while the corresponding backwards equation (2.15) is

2 . 3
2.d d
D (tx _+k) Z:’C-PZ - (1-1D)(4x_+k) &B; -sp= - 8(x-x_) . (4.7)
(6]

Thus the diffusion coefficient and the drift coefficient are
a(x) = Dx+k)% , b(x) = - (1-4D)(1x +k) , (4. 8)

respectively.
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Irregular points

These consist of all points where 4x + k- 0 on one or both
sides. From (1.27, 35, 36) one gets, neglecting constant terms
which must be added to make W, s, m continuous at X5

-1+2 )

Wi(x) = |4x+k]| (4.9)
s(x) =D sgn ({x +k) H,x+k|27‘ ' (4.10)
m(x) = - sgn ({x +k) H,x+k[fzx . (4.11)

Thus, if 4x+k -0 as x = z #t00 on one side,

Jmds = - L 1og [tx+ k| 2 e (4.12)
g s 1 ;
‘Js_dmz-zlog I{,x+kl -0 , (4.13)

so that, by (1.41), z is a natural boundary on this side. Also, by
(1.49, 51), z is attracting if and only if £ > 0. (On the other hand, if
z = £ 00, z is a natural boundary which is attracting if and only if
£<0; or4=0, k sgnx<0.)

The boundary on the other side of the irregular point z will be
regular or natural, depending on whether or not 4x +k-0 on this side
as well. If it is regular, the appropriate boundary condition here is
Q(z, tlx )=0, since Q is continuous at x = z (although aP need not be)
and Q- 0 at a natural boundary. Since all irregular points have a
natural boundary on at least one side, no path can cross from one
side to the other, and one can consider these points as dividing the

process into independent subprocesses, one on each regular interval,
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and consider each of them separately. From now on, therefore, it
will be assumed that x; and x, are the endpoints of such a regular

interwval.

A fundamental set of solutions

It is easily seen that a pair of independent real solutions to
the homogeneous form of (4.6) are, provided tf’i £ 0,

i

i e
pll(x) = 1&ix+ki| (4.14)
. B
p,(x) = |tx+k | ©, (4.15)
where
6 =140 2024+0,)E (4.16)
1.2 TR T VA y

If —E,i = 0, a fundamental set of solutions would be

Pli, 2" eXP{' Zk}i(D [1 £ +4SD)§]} : (4.17)

(However, it is assumed in what follows that this is not the case.)

The following quantities will be required:

By -l -8
4y, ) = 2 [2b)py o) |~ BmIpy gox) = (=53 ) (st [tactic | 12
(4.18)

1—4—2K

wii) = 2802 100 ® | Lotk (Lx+k) (4.19)

-- the latter being the Wronskian of Py and P
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The Laplace-transformed transition density

Putting
i i i i
p(x, s lxo) = ¢y pg (x) -l-c:z1 pé(x) 5 ; (4.20)

the coefficients cll,- (:21 are given by the set of simultaneous equations

(2.21, 22, 25, 26), which become, in this case,

-24p "
ke deb Ml btotiel (ex o thy)
c; =-Cci = = — (4.21)
o - (o JF
k "%k
-24p°
k- k+ Ak 'f’kxoﬂtkl ({’kxoﬂ{k)
g : (4.22)
g " (\Zro P
10 7% )
i g 11 ‘ o .0
g Byl ~EtPq Py "-Lidamoll) s
o= e ] Jel Bl 7oy
205 +0y) b PTG = e g
L B [k, e ) 2.1
: = x4k, - )
T I D T et
Ky g (By-20{Ay g e q)
(4.23)
L fi 241 RAB TR 8 ] R
1. HeBol 2 B =R{Bs bl = 5.1
oo gy Hymile | o 1 il T A
200y MBIy 2t )
@ Iy (%, 4k, ) a-pi=d
Py e b 2 i
+ |1 - r |4, xR, 4] il
i Pa-bitly g2t 4]
(4.24)

for i =2,...,n-1; together with the boundary conditions at X, and X,
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which take the following forms: if %, is infinite,

c, =0 ; : (4.25)

17, 1 1 1. 1 5 )
] (ﬁz-l)l%fﬁ Tk | T +cy (Bl-l)ltlx1+k1] =0;  (4.26)
if £1x1+k1 =0

¢, = o . (4.27)

=0 (4.28)
_an-1 _ﬁn—l
Cf-l(p;“kl)H'n-an-kkn-lI ' B 21.1—1(‘3;1*1 l)l*’n-l n n—ll : =0
(4.29)
cln'l = (4.30)

Steady-state probability

Assume neither boundary is an attracting natural boundary.
That is, if either X, or x_ is infinite, then {,1 or {'n respectively is
positive; if X or x is finite, either Lx+k# 0 at this point, or {'I or
{'n respectively is negative. For then m(xl) - m(xn) < co. Then,

by (2.28),

-1-2),
P_(x) = ci[/z,ix+ki| g (4.31)
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The continuity of aP then gives, for n-121 > j=1,

~

& ki TN T E R SR o T Ao,
i_ i-171 i1 IJH j+2 T4l J
i U L e el IR ooyl RO A PO

; T W AT 4 Jame
(4.32)

The Ci are thus determined up to an arbitrary constant. To determine

this, one uses (2.29), which gives

n-1 c -2, -ZX.‘I -1
Gy i 1)‘
cj_ DZ —é-—.-z&i(llﬁixiﬂ-%ki] - |&ixi+ki _j . (4.33)
i=1 J
C"i
where o is given by (4.32).
J

If either X or X is an attracting natural boundary, then Po(x)
is zero for all x interior to (xl,xn). If there is only one such bound-

ary, say xj (j=1 or n),

Po(x) = §(x-x.) for finite x.
' J J (4.34)
=0 for infinite Xj
(see 1.66-68). If both boundaries-are attracting and finite,
P (x)=P (x'x ) =w 8(x _X)_]_M &(x-x_) (4.35)
o o o s(xl)-s(xn) 1 s(xl)-s(xn) n &

(see'1.66, 69, 70); note that by (4.10, 11), s(x;) and s(x_) are finite
whenever m(xl) and m(xn) are infinite--i.e., whenever both bound-
aries are attracting. If one or both boundaries are infinite, the

corresponding terms in (4.35) vanish.
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Eo(x) as Abelian limit of P(x, t lxo)

As in Chapter III, it can be verified that .
P _(x) = lim sp(x, Slx ¥ (4.36)
s=0

Suppose, for implicity, that all {’i are positive, and that Xy, X are
both regular boundaries. Then (4.21-24, 26, 29) become, to first

order as s = 0,

23 =1 -
k-  k+ k
c -ep = - ]&kxo-i-kkl (4 x k) (4.37)
k-  k+
¢, - ¢, =sgn ({kxo+kk) (4.38)
2he~l T2 .  Axtk.
_ i i-1 -i-1 id 1 i-1
= flgagtle| e T &y ”{ " T, =k, i\"’ it gl <)
, =174 -1
(4.39)
i el b i leiks 4 BESG 5 g9
cp= Myl |71 - e | iy | SDC +sgn(&. yrur] >°2
=171 Ti-1 =171 -1
(4.40)
22 1‘ '
sDc = ]&x +k1] 3 * (4.41)
, 2%
n-1 n-1 n-1
sDe "= [4_jx k| €5 (4.42)

From (4.40-42) it is seen that the coefficients c:zi are an order of

magnitude smaller than the coefficients cll.

are at least of order unity. Therefore cl = O(%) and (4.37, 39)

But from (4.38) the cg

1

become
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k- k+ :
c; =c (4.43)
i
c; -1+27xi ‘ l-ZXi_l
o1~ gty | |4 gty 5] ; e iy
c
1 :
Successive use of (4.44) and (4.40) allows the determination of c2k+ in
terms of cll (i <k) and c‘é{- in terms of Cll (i> k). Substituting
into (4.38),
= -2, -2 ~
SDZ c; Jt,i(|»{’,ixi+l+ki| - |, | ): I 5 (4.45)
i=1 ‘
Comparing (4.44, 45) with (4.32, 33) shows that one must have
C; = lim scll , (4.46)

s—-0

so that (4.36) has been verified. Similarly this can be proved in the
more general case, with arbitrary Li and possible natural boundaries.
(An attracting boundary gives lim sp = 0 for all interior x.) This

s—0
method is the same as that used for the same purpose in section 3.2.

Spectral density

If neither X, mor x is an attracting natural boundary, the
Laplace-transformed autocorrelation is given by (2.49, 58, 62, 63),

which in this case take the form
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- ar=l 3 n-1 Kk
T k o 1 i
x(s) = ) \syrTioEDy * ) TTEED) [{X‘ = (1-4;D)} 2 ()
k k . i i
k=1 i=1
. xX.
.
- k(X)] : (4.47)
S T
Do | fe e | R (2 Ix)
de == Cp | I xRy 74 Tl k\Z. D-1"~ s
. {'k k k
xX.
< k
ot 1 B i D-l)]
%kx0+kk k k e
o k+l
(4.48)

c.o [ 12\ k ’ .
- Ik k k 7.3 !
%) = srar) | Maesetad {[Xo' 5 (- 4P) Db e, sl |

i

X

k
= a.(xi)p(xi, s]xo)} ‘ (4.49)
X0 k41
C.D 1-2) k &
k k k %
2l b = s+L,(1-1,D) {“’k"o“*kkl [?‘o"s_(l.‘{kD)_[.D alx;s slx)
e .
= q(xi: s IXO)} (4. 50)
o k+l

Here D" is given by (2.59). The spectral density is then obtained

‘using (2.64).
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If there is at least one attracting boundary, the auto-
correlation can be determined more directly, by direct substitution
into (2.33). If there is only one such boundary, say Xj (j=1 or n),

then

Pz(xos 0;x,t) = 6(X_Xj)5(xo-xj) 3 (4.51)

so that

R(t) = sz , ®w) =0 for w>0. (4.52)
Similarly, if both S and x are attracting,

s(x,)-s(x_) s(x ) -s(x_)
R(t) = ——_"js(xl) — xf o+ B e =X .  (4.53)
1 n 1 n
using (4.35), where e is the original starting point (at large negative
time). Again ®w)=0 for all w> 0. This zero spectral density is to be
‘expected, for once the system reaches the steady state, it remains

stationary, and so the only frequency occurring is w = 0. See (2.84)

for $(0).

4.2 SOME EXAMPLES

The three examples dealt with below have the same restoring
forces f(x) as three of the simpler cases dealt with in Chapter III.
However, the possible occurrence of irregular points in this chapter

often allows a smaller interval (xl, Xn) to be considered than in

Chapter III.
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Example (1)--the linear case

Assume k = 0, Then there is a trap at 0, and, if the initial

position Xy is positive, it is necessary to consider only the interval

(0, oo) = (xz,xl); X, < 0 is similar. Then if

I

+ +
Px, s [x) = ¢]'p) () + ¢) py(x)  for x 23,

= Cl—pl (x) + CZ— p,(x) for x =x_

(4.54)

where pl,Z(X) are given by (4.14, 15), then cl:t, c; satisfy (4.21, 22,

25,.30), since 0 and oo are both natural boundaries. So

148

= e 1 2 -
c;-¢y = - l&xol MAT+0)
-14p -1
- 2 2
¢y - ¢y =|L30| A(A"+0)
c; =0
Cl— = 0
Solving these, (4.54) becomes
x ‘—ﬁl
(&)
*o
P(X:SIX)— 3 T s XSXO
Lx (A\"+0)"
o
N )2
\x_/
= i, F} x ZX
tx_ (A +0)% °

The inverse Laplace transform P(x,t Ixo) can be found, using

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)



~1 3%

é 2 _|._1_ 2 (i)
., 4D ,x_\2D 4Dt - X
Plx, tx ) = (-—) 's (4.60)
(e} x
2x/TDt

It is easily verified that this result is the same as that obtained by
Gray [22],equation 2.19, by a variable change in the Langevin
equation g%z- n(t).

If £ > 0, it is seen that x = 0 is an attracting boundary, and

X = oo a nonattracting boundary. Thus in this case, by (4.34),
P ox) = 8x) . (4.61)

If £ <0, x = 0 is nonattracting while x = oo is attracting, so the pro-

cess is unstable, i.e.,

P lal =0 . (4.62)

These results can be verified by taking the Abelian limit of (4.60),

since

P x)=Umsplm el =0, x£0, (4.63)
(e} 50 o

while, for small positive §,

5 )
‘]“‘Po(x)dx = litn J sp(x, s [xo) dx =1, 4>0
0 s=00 . (4.64)

=0 L <0.
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The autocorrelation and spectral density are trivial in this
case. When 4 > 0, both are identically zero, as is to be expected

since all paths tend towards zero. When £ <0, neither exist.

Example (2)

1 interwval, X positive and finite, X, = k = 0. This restoring
force is essentially that of example (3) of section 3.3 (the hard
_1irniter), since this produces a trap at x = 0, so that the process can
be divided into two independent subprocesses, on (-xl, 0) and (0,x1).
If x> 0, the following analysis holds; if x, < 0, corresponding
results can be obtained by symmetry.

Equations (4.55, 56, 58) still hold in this case, while the

condition at the regular boundary x4 becomes (4.26), i.e.,

~Fq B,

T -p) x| Ttey-px;| ‘=0 . (4.65)

Solving these four equations and substituting in (4.54),

P
X
, (E;U) AT By (X )ﬁl‘ﬁz
(x,s|x )=—————v |1l - 74— |— y X=X
P 2 &xO(K2+G)§ Py iy "
(4.66)
_{32
X -
<X_o-> A @2-1 x Bl BZ
= > = T = 1 (_O> " XSXO
tx_(X+0) 2 Pp—d Ay
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If £ >0, x = 0 is an attracting boundary, and
P _(x) = 8(x) . (4.67)

If £<0, x = 0 is nonattracting, and by (4.31, 33),
-(14+2 e
P _(x) =—lz—’-1;£—l—D— (}i) dhae - | (4.68)
As in the previous case, these results can be verified by taking limits
of sp and j‘ sp dx.
For £ > 0, trivially r(s) = &(w) = 0. For 4 <0, by (4.48-50),

2 2

x B,-2 Ix
g [ - Pl ) =i :
12D * 1/ 7|B,-T}s+(1-ZD) ° '
, : (4.69)
£(0) = 2(x;) = 2(0) = 0
Thus, by (4.47),
=X B —2\
oA e 1 1 4 1 ,
T8} = T D) [1_2&13 * SFL(1-1D) (ﬁl-l } : (4. 70)
This can be checked by noting that
2
2 . =4
") = lim sr(s) = 1575 (4.71)
S= 00
2
Z .. _
(x)” = 1lim sr(s) = e iy o : (4.72)
s-0 ‘ (1-4D)

both results which can be easily verified directly. Using (2.64) one

has, for £ <€ 0,
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2
Lx
1 1-2D . 2 2
&(w = i £%(1-2D)(2-1D) - w
w2+t2(1-2D)% | 172D (2. p201 iD)?
| 2 2. % 2.3 =\
2/2 B,U.%D)—w ][1+M> D )-1] BH&éwJD)E 1] }
(4.73)

Example (3)

. 2 interwvals, X = 0, X, = 0, Xy = =00, &1 = {,2 =4 ky = -k1 =
-k# 0. There are four somewhat different cases in this example,
depending on the relative signs of £ and k. In no case is x =0
irregular. .When 4k is positive, there are no irregular points at all.
When 4k is negative, :I:-I% are traps, and we restrict ourselves to the
—]%), redefining x4 and x5 as ?% . (The processes

on (-% 3 oo) and (-oo, %) are essentially that of example (1).) See

rocess on (+E
P € o

the sketches on the next page for the four cases.
In cases (a) and (b), the coefficients ciJ are obtained by solving

(4.21-25, 28), which gives

-B -14p HB

A 1 x| Tl P [ rlxyf
pix, slxo) = I-El (}\24_0)%‘ (l+ = | ) 1+ — ) +1-[32 L " ) >
x2x 20 (4.74)

e | g Pz i

_ A 1 . £ x| A 2 x|

“!E 7 L —p ) 1+ +1-52(1+,k :
x €x2 0 f, Th)
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1(x) " ‘ )

k | | o~ -k
= X > X
| » B
case(a)—@>o_,k>o . Case (b) =4 <0, k <0
Ty o fix)

Q, -k ' o k :Io
X ~o A o

> X —
. : <o
k A o ‘ ki -k

Case (c)—4 >0, k<0 Gase (6] ~4 20, =0

The 4 cases of example 3, section 4.2.
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-1+5 -p
A 1 {’lxol : &IX]‘ : > <
:lisltrs; 1+ =g 1+=¢ ) : gl x50,
(4.76)

In cases (c) and (d), (4.25, 28) are replaced by (4.27, 30), but the
results obtained have the same form, except that ﬁl and BZ are inter-
changed throughout.

In case (a), | since £ oo are natural nonattracting boundaries,
(4.31-33) give |

| 1eZi
P, () = 1 (1 +-IE fx]) e (4.77)

2 |k|D
Case (d) gives the same.result, since :F% are nonattracting. In case

(b), = o0 are attracting, so Po(x) = 0. In case (c), :F% are attracting,

so, by (4. 35),

— k k
P =) —‘A(Xo)é (-7) + A -ARE)(F) (4.78)
where
2
Ix '
o Y- k
A(xo)=l—%(l+T) , Osx_<-=
(4. 79)
2\
gi ’(IX \
=§5(1-—1—(9/‘ ,%SXOSO

: r
The same results are obtained by considering limits of sp and J sp dx.
In case (a), using (4.48-50),

2 2 :
. 3@ T 3 1 1D
ok = '32*2{2 [{;D-l e ¥ 5 ¢ o i Rk } (4. 80)
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1
'Z],'k

2,(0) = 2,(0) = m[ér‘(l~LD)(l-{32) -1] (4.81)

all other #'s and 2's are either zero or cancel out in the formula

(4.47) for r(s), which leads to

() = — D 2 L
T(8) = STE(1-ID) \1-ZD){1-24D)” sD
1 ledD . &k .
" D2 STA(I-ZD) E[E(l-m)(l-ﬁz)-lj ; (4.82)

In case (d), the same result is obtained, except that f, is replaced by

ﬁl in (4.82). In both ca.sesl‘

2
Zk D

while &(w) can be obtained in an explicit (but complicated) form using

(2.64). It is seen that the denominator of (4.83) disappears for

1
2&’
so that (4.82, 83) are meaningless in this range. In case (d), 4 is

24D =1,2. In fact case (a) is unstable in mean square for D = 5

negative, so this does not arise,.
In case (b), there are attracting natural boundaries at + oo,
which means that the system is unstable, and that autocorrelation and

spectral density do not exist. In case (c), since all paths tend to

i% as t — oo,

. See discussion by Gray in [22],part 2.
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2
R(t) =_<—1E-> : (4.84)

d(w) = 0 for w> 0. (4.85)

2 P ;
2 _ ( k) 1 2 _ (k ; Tl
If B L= _»{’j) were not equal to x5 = zZ) it woul e necessary to

use (4.53) to obtain R(t), which would depend on X .
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CHAPTER V

SYSTEMS WITH BOTH PARAMETRIC AND
FORCING FUNCTION EXCITATION

5.1 PRELIMINARIES

In this chapter we deal with some piecewise 1ineér systems
excited by both the forcing function excitation dealt with in
Chapter III and the parametric excitation of Chapter IV. No work
appears to have been published concerning nonlinear systems of this
type. We deal in detail only with the two extreme cases of no corre-
lation and of perfect correlation between the two white excitation

functions.

The stochastic differential equation

We consider systéms for which (0.1) can be written

x + f(x) (1 +m(t)) = n(t) ‘ (5.1)
(i.e., m = 2, h1 = -f, h2 = I}, where
£(x) = kx4, - forx €(x;, 1. %) i=1,2,...,n-1, (5.2)

so that there are n-1 linear intervals. The white noise forcing

function, n(t), and parametric excitation, m(t), satisfy
(m(tl)m(tz)) = 2D, 5(t; -t;) | (5.3)

(n(tl)n(tz)): ZDzé(tl -tz) (5.4)
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<m(t1)n(t2)> = ZDlzé(tl-tZ) {5.5)
(m(t)) = {n(t)) =0 . (5.6)

Here D;, D, are used instead of the D D,, of Chapter II. Note

Iy* 22
that (5.6) represents no restriction, as it can always be obtained by

a suitable linear transformation of f(x), m(t) and n(t).

Special cases to be dealt with

The following cases will be worked through, as outlined in

Chapter II, and the spectral density, etc., found.

(a) DlZ = (DlDZ)%;# 0 -- i.e., perfect positive correlation
between forcing function and parametric excitation.
This case is dealt with in sections 5.2-3. Note that it
can be obtained by putting

1

== (t)} , (5.7)
D, =

N
) = \ g5 -
so that there is es'sentially only one white excitation in
this case. The case of perfect negative correlation is

no different.

(b) D12 — ) 'Dl,'DZ '-7! 0 --.i.e., no correlation between
forcing function and parametric excitation; dealt with in

section 5.4.

Two other special cases, 'Dl = 0 and D, = 0, have been dealt

with in the preceding two chapters.
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The case of partial correlation

The special cases (a) and (b) are chosen primarily for their
mathematical simplicity. In each case one can obtain fairly simple
solutions to the Laplace-transformed FP equation in terms of known
special functions, which are real for real x, X and s. In the more
general case of partial correlation between m(t) and n(t)

_ (i. e.,‘ 0 <-lD12 ] <(D1D2)J§>, the simplest solutions consist of hyper-_
geometric functions in which both argument and parameters are
complex. The results for partial correlation (i.e., transition density,
spectrum, etc.) would be expected to lie between these for the two
extreme cases. There are ﬁo irregular points in the case of partial

correlation. (It resembles (b) rather than (a) in this respect.)

Nondimensionalization

It is convenient to define the following dimensionless

quantities:
1 \
. Dl 2 i 3
1 s —
E" = ( 2) (»{’,ix-i-ki) for x € (Xi-i—l’ Xi) (5.8)
g, = - . (5. 9}
gty ,
1
i 5
T (&, 0|§,) = 4 (D D,)%p(x, s |x) for x € (x;_ . x;) (5.10)
D, ' .
: s etifag (8.11)
1 , ! |
A 7T D (e 12
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D L

1 2
ny = (-D—z) ki (5.13)
() = (g% 2oy =2l € 5.14
o, = -2p = D, or x (xi+l,xi) (5.14)

(&, o g Js dZi [c:,i(g)'n'i]+E2?\i—l)§i+p]1ri= alx, s|x,) for x € (x,,}, x.)

(5.15)
A suffix on §, w, |y will correspond to the same suffix on x, p, q,

respectively. Both suffixes and superfixes may be omitted when no

confusion would result.

The FP equation

The Laplace-transformed FP equation, (2.14), becomes for

the system (5.1),

a
de

™~

2
Dl_(&ix+ki) - ZDIZ(Lix +ki)+D2:|p

” |
P [(»ﬁix+ki)(l—{iDl)+£1D12]p _sp = -0(x-x,)
foxr 3.6 (Xi+l’ Xi) . (5.16)

or, using the dimensionless variables defined above,
2

d d JT g o '
(‘i?[“(g)“]“LEg [@A-1)E+p|m) ~om = -5(5-E ) . (5.17)

Similarly, the backwards equation is
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a8, L(zx 1)8 +p] & ow=-8(8-5,) . (5.18)

dg

The confinuity of ap and q at the points %, leads to the following when

nondimensionalized:
A o (B 0w (5 0]8 ) = Aoy (&)™ THE, o] € ) (5.19)
dfi(@i, og) = tbi"l(éi. al5,) . (5.20)

5.2 PERFECT CORRELATION--GENERAL CASE

In this section we deal with the stochastic differential equation
X+ ({/ix+ki)(1+m(t)).= n(t) - {5.21)

where m(t), n(t) satisfy (5.3-6) with

ol

D,, = (D;D,)¥

12 g 08 p=E1 . (5.22)

The dimensionless variables of (5.8-15) can be used for all
intervals where f{’/i # 0. As before, in the general derivation below it

will be assumed that no »{’,i = D

Irregular points

The FP equation is given by (5.17) with p= 1. That is
]:(g—].)ﬂ'r+'a'€ (2\- 1)%4‘1-{} -Gﬁz-é(g-go). ‘(5.2.3)

Thus it is seen that x is an irregular point only when £- 1 from one or

both sides. The corresponding limiting value of the drift coefficient
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D :
b(x) is-( ——.;') » so that the irregular point is always a left shunt
1

o/ o]

(see section 1.5). This is the case whether £ -~ 1 on both sides, so
that the point is an exit boundary for the process on the right and an
entrance boundary for that on the left, or whether £- 1 only on one

side, the point being a regular boundary on the other side, (This

occurs when 4x + k is discontinuous at the point,)

A fundamental set of solutions

The differential equation (5.23) has an irregular (double)
singular point at £ = 1, and a regular singular point at § = oo.
Kummer's confluent hypergeometric equationl has the sé,me singu-
larities, but at co and 0, respectively. Thus we ‘attempt to find

solutions in terms of confluent hypergeometric functions. Putting

2. .3
§=%+ 1, w= TRy (5.24)
the homogeneous part of (5.23 ) becomes
ay 2 % ay’ 2, %
g—-2—+{:1+2(k +0)2- g]-az_[lnﬂx 1) ]\y=o; (5.25)
ac ,

which is in Kummer'!s form. Thus a fundamental set of solutions is

g
w (8)= ||t M@, 146, C) (5.26)

. See Abramowitz and Stegun [1], Chapter 13, or Erdelyi et al.
[11], Chapter 6.
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5= ¢ LU, 14, for ¢ =2L 5 0
Tl'2 = C. Bl’ +B1"BZJ C) or Q _Eﬂ—l
(5.27)
. P1 ¢ 1 1 £ 0
= (-C) e U( -BZJ +51'ﬁ2: -_C) or Q < >
where (as in the previous chapter)
1
2 =
By z=1+r= (\40) , (5.28)

and M, U denote Kummer's confluent hypergeometric functions of the

first and second kinds, respectively. An alternative to T, is

B, |
l¢| “M@B,, 146,-8,, C) . (5.29)

iy

However, this becomes infinite when (}\2+ 0)® is a positive integer; .

(5.26, 27) remain independent and finite for all X and o .

Related quantities

Using (5.15) and equations 13.4. 11, 23, 26 in [1],

B
b = - (1-B,)E-D ¢ | ‘M@, -L 146,-B,, () (5.30)

| B :
¥, = (5-1)¢ © U(-1, 148,-B,, ¢) for (>0

(5.31)

B
o(8-1)(-¢) e U@-B,, 14B-B,, -C) for ¢ <O .

The Wronskian of ™ and w, is (using.equa.tions 13,1.22, 23 in [1])
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r(1+f31‘f32) =1 ‘31-1—@2 eg

w(g) :—m— (E-1) "¢

‘flor >0
£8,32)

r(l'l'@l'ﬁ’z) - ‘314—;32 g
:-——ITI—:E-Z)—(].H%) (-—g) e fOI‘g(O.

A fundamental set of solutions to the transformed backwards equation

is obtained similarly to the forward equation:

1-8, ¢
l¢ | e °M@ 1B -B,. C)
: (5.33)
l'ﬁl '(;

1-p
¢, e CUBp 14,-B, C :

0) or (_C’O) U(l'ﬁzx 1+Bl"|32: -Qo)

for ¢ 2 0.

The Laplace-transformed transition density

Putting
w8, 0|8 ) = yyri(B) by (E) . (5.34)

the coefficients yll ! Yg satisfy the usual conditions at regular points
%, (i=1l,...,n) (see (5.19, 20)) and X (see (2.21,22)). The con-

ditions which follow are for ¢ > 0; for ¢ <0 the appropriate changes

can be seen from the previous paragraph. The conditions are;

e g_ﬁz "o
k-  kt 1 o °© k k .k _k _
yT= U, BB, C (5435)
i 1 1_.(1_}_‘3]%(_[321() (55—1) (1 I 2 o)
-B, -¢
k 2 fe)
_ e, C e '
Bt e b 1S ) 636

T+,-p)  (o-1)
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where XOE (Xk+1’ xk) ;
3 i‘zﬂsli[ iM< L g il ok i)+ iUCBi el gh i)?
Ki(Ci) Yl Bl’ +Bl'f32: Ci YZ 1’ 'Hil‘p’z.o Ci _[

i-1
L =24BY , , ; , ;
3 i-1 1 i-1 1wl i-1 _i-=1 i=1%
G ) [Yl M@l « 148y -Bg i Ly

=Nalg

. / . . - .
#EToli 1wl el )] o

B Y S . . w s% 4
M) [raepmbin veloeh, d)-viuein 1e)os), d)]

'1+ﬁi_l
: i-1 1 i-1 i-1 i-1 i-1 -1 -1
=y gt b il pial g, pepl-lghl A0
i-1 i-1 i-1 _i-1 i-1
- vilu(pihy, weitell 4] 5.8
fori=2,..., n=-1; together with boundé.ry conditions at Xy and x_ .
At % the condition is the first or second of
1 - - '
v, = 0 (5.39)
1 1 1 1 .1 1 1 1 1 .1 1
Yl (1"'[32 )M<F3l '_ls 1+‘31 “52: ‘Ql ) = YZ U(Bl 'l: lﬁ?’l "pza Cl > )
(5.40)

depending on whether %, is infinite or finite and regular; and

similarly at X
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Conditions at irregular points

Conditions (5.37, 38, 40) must be modified if the points
concerned are not regular. If X, is an exit boundary from above,
s [_[*blx) } -
then, since W(x) = exp = a(x) dx 0 as x ‘]rx , aP need not be

continuous at X, (see section 1.3). Otherwise both aP and Q must be

continuous. If x; is an entrance boundary from below, then since

M@ v, =) ~ P ) Ul v a0 as s w0,

(5.41)
one has a(xi-)P(xi-, 'tlxo) = 0. This implies that, if X, is a regula,_r
boundary from above, a(xi+)P(Xi+’ k: Ixo) = 0. This absorption con-
dition is to be expected on the right of a left shunt,

According to section 1.4, no boundary conditions are required

for an exit boundary; however, the integrability of P requires that

'\{11 A 0, since
WL, %, 2] ol e” Ul Y, 2) ~2" % asz=00. . (5.42)
s Ye (G.) Z'Y“u: s ] Y: . -

Incidentally, this shows that a(xi+)P(xi+, t Ixo) = 0 in this case also.
The above considerations lead to the following conditions
relating the coefficients on either side of the three kinds of left shunts

which occur.

(a) Exit boundary above, entrance boundary below:
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. ra+piply | .
vit=0, At yE = v (5.43)
I‘(l~52) .

(the latter following from the continuity of ¥, using the

asymptotic formulas (5.41-42)).

(b) Exit boundary above, regular boundary below:
1 o _ i1
Yi =0 . v W ) vy (G = 2N vy (5.44)

where ‘1’1’ ¢2 are given by (5.30-31).
(c) Regular boundary above, entrance boundary beloﬁv:

151 2=l il 4-1 _

o (5.45)
T(1+8.-p)) . — N
in'_‘""lffz‘ Y1 =¥ lwf I(QQ'FYQ 1¢§ 1(51)‘
I"(l"ﬁz)

Similarly, if € =1 as x - %y (ise.y if %y is an entrance bound-

ary), (5.40) is replaced by

Yf'= o, | (5.46)

and if € -1 as x X i€, %, .an exit boundary)

Yf'lz o . (5.47)

As might be expected, if x; is irregular, Yf . Yé] (j < i) can be
completely determined independently of Ylj, .Yé] (j =1i), but not vice
versa. That is, the probability density to the left of a left shunt

depends on that to the right, but that to the right does not depend on
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that to the left. In particular, if x <X, w(x, s[xo) =0 for all x> x

Steady-state probability

All x to the right éf the least irregular point lie in a regular
intervé.l bounded below by either an exit boundary or a regular absorb-
ing boundary. Thus, according to the discussion of section 1.6, the
steady-state density Po(x) is zero except in the region to the left of
the least irregular point.

Let the least irregular point be x Then (2.28) gives, for

L
X <X
n
P 12k .
P (x) = Ci[g | e . (5.48)
The continuity of aPo throughout the interval (xn, x{) shows that, for

n-lzixjead;

2 -2A.~1 2x. 41 ' 2X, -+l 2.+l
C. AL ; i : o g AWl : j+l i
et _.L> i i-1, i-1 ( j+l 3+l) g+
C <xl I (Qi /Gy ~n e NG i ¢
AP ./ I | j )
Xexp(-— Qi+ C’i "Qi-1+"'+§j+1 & (5.49)
The Ci are thus determined up to an arbitrary constant. To determine

this, use (2.29), noting that

oY)
>

g
r / 2\

lml

dah ) .
G———-)dg zxj ger=l ~tay = zxYsz,-f¥%) ,
0
(5.50)
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Z
r g
where y(a, z) = J' £ 1e tdt is the incomplete gamma function. Thus
0
one gets, for j =24,
x| B g, _2)\e.mi : -
g =0, D, T ¥ @)% D O e L P | (5.51)
j=Whte £ TV % LYAe A == AeAs "Gyl [ 2 W
2p
¥y i
where -C—J is given by (5.49) and €; =sgn (-gi).

Exceptional cases

if X is an exit boundary, 4 = n in the above, and it is appar-
ent that all paths eventually reach % and stay there. That is, all

C. =0, and
1

PO(X) = G(X-Xn) P (5.52)
If x = -0c0 and £ < 0, then x_ is natural attracting and P (x) = 0.
n n-1 n o

Eo(x) as Abelian limit of P(x, tb:o)_

As in previous cases, it can be verified that

P (x) = lm sp (x, slx.) (5. 83)

for all X In fact, letting s - 0 in (5.35-40, 43-45) it can be shown
that

i ik i | k- k+
¥ = O(E) s Yo = o(1) , Y -~¥p = o(1) , (5. 54)

so that, to the first order,

i i 4 Ot i ioa_ 12N A
w (8 0|5 )~y €] M(L+21%, 142)° C)=vq || e® . (5.55)
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It can also be shown that
i Li %
oy e oD Do) i ' (5.56)
The method is the same as that used for the same purpose in section

3.2, and the details are easily filled in.

Spectral density

The Laplace-transformed autocorrelation is given by (2.49, 58,

62, 63), which in this case take the form

s BM @
r(s) = Dy Dzz G, F2h -1 I
k=4
n=1 2 x.
47 U ; i
i 1 i % % |
+Z o [Z)\i{g""i' E_+E—(1'2)‘i)}2k(g)'9k(g)J g
i 1 1 1 1
i=4, ; x:xi+1
(5.57)
where
I_D 3 g 4y,
_ g 4 1N fo} k 3
de =40 ‘_(55) alx )P (=) (el = e W iy
2
+‘£( 1 W |
O P = 1-2?\1(/
onxk+1
X
k
2y A, +1
27 2 % k
+ 4\ P (x )dx_|w“- 4
kJ oV e o | kT T=2X (L =2k JUE =y )
X+l 8 < 8
1 3 2
“'o_(“k" 1—_2-)1) (1-22) (5. 58)

k
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3

3
82 Dy »
B k 1
%8 = s T ('D—) CRENCRI R K™ oy
M. ' *k
k sk
g [l 20 [D*[atg (s, olg) | - alg (g, 0150%
Fo k41
1 (5.59)
) - (3_3_1\ = r 1
-zk(g ) Gk"*‘z}\ -1 Dzj a(xo) O(XO) Lgo‘?(k“ 'EI';
xX
A‘k h b3 k
g, 10w, ofs) - e, c[«zo} o
o "ktl
(5.60)

where D* is given byv(3.68), and x, is the leftmost irregular point.

The spectral density ®(w) is then given by (2.64).

Variance and mean

For the case treated in this section, (2.68) and (2.69) become,

respectively,
n-1 : e
, 4 Dia B & 4n
2, _ __l g k 3
(x )—4D1Dzz {k Dz) a(x)P (x) 1= ?\k 1= akk (1-2x){- XQ]J
=t k41
Kk |
- 2y ¥y il
2 k k

e+l



-160-

% k
A D L
(x) = Z(DIDZ)EZ 1—_-21‘7— 2 (-D—;) a(x)P_(x)

=t X1

- | Po(x)dzc[n(l—ZAk)wl] , (5.62)
*k+1

Case 'f'i = 0 for some i
In all the above it is assumed that {’i # 0, for all i; otherwise
the nondimensionalization breaks down. In an interval (xi+l’ xi) where

'f'i = 0, the FP equation takes the form

% 112 g? a
(Dak.-r)?> Dt kZ2 -sp= - 8(x-x) ., . (5.63)
13 2 2 dx o
dx
1 1N\2 ; ‘
Except that D is replaced by (Df ki_ DZE) » this equation is the same

as that of Chapter III, with {'i = 0, which has been dealt with at the end
of section 3.1.

As in this previous case, it appears possible to show, using
asymptotic expansions for M(a, v, z) and U(a, Y, z)l, that the solutions
for /Li = 0 are the limits of those as {’i'_' 0, so that all re;sults can be
obtained as limits. However, the writer has not worked through such

a proof in detail.

See Abramowitz and Stegun [1],section 13.5, or (more detailed)
Slater [38].
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i
D\
The case 4. = 0, 1 - (-—-;> k., = 0, eliminates all stochastic
1 D2 1

terms in (5.21) for x in the ith interval, which can be considered

composed entirely of left shunts.

5.3 PERFECT CORRELATION--EXAMPLES

Only two cases will be worked out in detail.

Example (1)--the linear case

D,\%
Assume 4 >0, k = 0. The only irregular point is x= %(———)
L 1
' (1 DZ) 2 >
Thus there are two 1nterva‘mls, (XZ, Xl) = (Z(nD_l' , 00 ) and

D,\% _
(x3, xz) = (-oo, -%(-I—)—;') ) . Wong [45] has found the transition density
for X € (x3,x2) in the form of an eigenfunction expansion (case F,

page 271). Since xz is an exit boundary above and an entrance

boundary below, (5.35, 36, 39, 43) give, for xé > x

2‘1
Y21+ = I ‘ ‘ (5.64)
s 2, _CO
e, ¢
1 = 1+ 1 o e 3
I T Y1 T T By 51 U, 148-B5s ) (5.65)
Py Ly
re,) ¢ : : ‘
1- 1+ . 1 Io) e
Vll_: 0 (5.67)
TO481-8) 5 .
T(-6,) ‘1~ Y2 _ (5.68)

W2 =0 . : | - (5.69)
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Solving these,

“Co P2 PBg

T@e ° ¢
(8, 0[8,) = T8, P,) BT MPye14B-Pa, QUE,, 1481-B50 ()
o
| forx>xo>x2 ' (5.70)
¢, By P |
Fig,de > € & |
= ]‘-‘(1+E31_62) go_l M(ﬂl’ 1+ﬁ1‘[32: QO)U(ﬁl’ 1+ﬁ1“32: Q)
for x> X >x%, (5.71)
i’ -p g
D) Ti-py)e ° ¢ -0 1M<;3 148,-B 5, OOM(B L, 148 1B, €
= ~ ] = 3 C, 1 ] - ) C
l:_l"(1+f51-[32)]2 §0 il 1 12 1 1 #22 Sgf
for X >xy>x . (B.72)

Forming the corrésponding set of simultaneous equations for X, <%,

and solving,

n(g,c]go) =10 | for X> X, > X _ {5.73)
-B P
Ta-B,) (-¢) -0 ' ¢-¢, |
T T By I-§, = MR liBrPyy bl TP P rRp-0)
for xz>x>_xo : (5.74)
-B p
TU-By} EJ -8 L
= I-‘(l_l'ﬁ]__ﬁz) l_go M(Bls 1+‘31"‘3'29 g)U(l"Bz: l'Hsl"Fszs = C’O)
for X, > X >X . (5,715}

The steady-state deﬁsity Po(x) is, from (5.48, 51),
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bE;
(D;D,)" % q42a
PO(X) = m(-g) eg ‘for x < Xz
, (5.76)
= ‘0 for x > Xy -

It is easily verified that, for all X s sp(x, S]Xo) tends to this same
PO(X) as s = 0.

To obtain the spectral density, note that

2
sk 4) Al 1
%2 -1 B_—l 1] | « e TS

while all Qk & "Q'k are zero. Thus

D, 1424D, %D,
T(8) = FIED s+t -0 | T-28D, 75 | 6 784
so that
1
2 ‘ |
®(u) = 2 Relr(iw)] = 20, {1-4D)(-240,)[* +2* 120 )% |} (5.79)
" D,  1+24D,
(x" Y= lim sr(s) = — {(5.80)
e - W=D i 2105 )
& Ep %
2 D _DZ ‘
<X> = lilll’l’.(l) SI(S)] = = Tlr-{'/-*ﬁ‘“—‘ o (5.81)
s~ . : 1 '

These last two results can, of course, be easily found directly
using (5.76).

Note that according to Gray [22, 23] our systém (being linear)
should have the same mean, autocorrelation and spectrum as the -

system



-164-

dy - = o B
=+ +*2(1-4D)y = a(t) - ADFDF , (5.82)

where a(t) is white noise of magnitude such that (yz) £ (:x:Z), so that,
using (5.80),

2D, 8(t, -t,)
<é(tl)a(t2)> = A-1D;)(1-2%D;) ° ' (5.83)

Since (5.82) is just the linear system treated in section 3.3 (except
that k # 0), the results of (5.78, 79, 81) are easily verified.

Note that the system is unstable in mean for Dl = %, and
runsta.ble in mean square for Dl 2 'Zl_»fj . so that‘equations (5.78, 79)

1
hold only for Dl <57 .

Example (2)

2 interwvals, Xy = 0, Xy = 0, Xy = - 00, ’f’l = '&2 = 4 >0,

k2 = --k1 = -k # 0. There are several different cases, depending on
D, % |
the value of k. For k > (-D—Z/ , there are no irregular points. TFor
r Do\% '
k = kz—)—%) , there is one left shunt at x = 0, consisting of a regular

1 D L
2
boundary below and an exit boundary above. For }kl <\ DZ > there

D
is one left shunt at x = {;_1 !L( ) - k—[ ., consisting of an entrance
l ; y

boundary below and an exit boundary above,' and the situation is quali-

s

2
tatively the same as in the previous example. For k = - ( DZ\
1
there is an additional left shunt at x = 0, consisting of an entrance
D

=
boundary below and a regular boundary above. For k< -( 5) there
17

are two shunts, both of entrance-exit type, at

e (52N ]
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D L
\E
Only one case will be worked through, that where k = (—I—)—Z-') .

The restoring force f(x) for this case is shown on the next page.

—

Since the shunt lies at Xy = 0, no new points of division need be
defined. Equations (5.35, 36, 39) give, for x_ >0, the same equa-
: I+ 1+ 1- 1- ; :

tions (5.64-67) for Y] » Y2 2 Y] + Y, asin the linear case. Thus
above the shunt the transition density is again givén by (5.70-71),

However, (5.43) is replaced by (5.44), which becomes

B ] R
(- MB -1, 148, By -y -0e T MU@-B,, 146, B WYL | =ay 4

(5.84)
for x, > 0, and similarly for x_ < 0, so that
_ G, By By
1{31 TE,) e OQ 2("@)1
(& o]8) = % - 2
Q l-,BZ F(l'l'@l'ﬁz) go = &
M(Bys 14B1-B s O M(B |, 146, -B5, ()
M(ﬁl"l: 1+{31'ﬁ2:“>\) for XO>0>X
{5.85)
-C B p
L TU-By) e %) -0
= T+6, -B,) T-%_ MBy. 148 -Bas Co)

-h U(2-B,, 14845, A)
e 2 1" Z C
1_‘32 M(ﬁl_l’ 1+E31'525')\-)M(‘Bl’1+ﬁ1-‘32, C)te U(l‘ﬁ'z: l+(31—62’_

X

£c>r0>x>x0

(5.86)

%
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_J_)g):é‘
)

The special case of example 2, section 5.3.
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¢, B, B
T(l-B,) e °(-¢) (-0 '

" T R,) T- € M, 148, -8y, )

(o}

Ue”l U(Z-ﬁz, 1+‘31"'E’2: 7\)

o 1
’ by Bl PR RPUB LB Cte By 1405 "gﬂ“

for0>x0>x.

(5.87)
The steady-state density Po(x) is, from (5.48, 51),
-5 142)
- (D;D,) B(-g) et
Po(x) = > for x <0
f 40"y (2X, A) (5.88)
=0 for x>0
Té obtain the spectral density, one finds that
4 2 2 Zh -\
* _ 8\ AT-2)+2 | 2 2 A" "e A-3 2
Y3 =Ert { =T teMU -lEnalerts ”]} e
o¥e )= AT e M1 MBI Pe N 7 (5.90)
217277 (o+2A-Dy(2X,0)| © (I-QZ)M(Bl-l, 1+Bl-52, -\) :

while 9‘7:::(%3), .2;(%2), _‘22*(%3) are all zero. Note that on account of the
discontinuity of a(x)P(x, t Ixo) at x = 0, the quantity o( §2)11'(§2, (o} l %2).‘111
(5.59) must be considered as the limit of g §O)Tr(f§, o|§o) as x, x - 0,
both from below. That is, x = 0 must be treated as though it were an
end-point, rather than a point of discontil;lﬁity. This is permissible,

since QO(O-) = 0, so the argument at the end of section 2.3 holds.

Thus, using (5.86) and (5.32),
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ZM(B]_: l+51'ﬁz: '}\)
&(gz)ﬂ-(gzs O-Igz) = (I_BZ)M(BI_I’ 1+Bl_ﬁz’ _)\) & (5' 9]‘)

Similarly,

D*[ (8, (5,, ol5,) | = 1. | (5.92)

Thus (5.90) for éfk(gz)*is obtained from (5.59). The corresponding
evaluation of .22*(§2) is straightforward, since Q(x, t\xo) is continuous
at x = 0. Substituting (5.89, 90) into (5.57),
D 1-44D +8JLZD
2 i
4(1-4D,) [s+«f',(1-{,D1)] AD | (1-24D,

(1_21L1:>1)2

D
ey

2
r{s) = ;

2}\2)\8‘)\ l-()%Dl 4

© y(2X, X)) (1-24D; + < (1-24Dy)

+

L(1-1D,) _[&  ZM(By, 14By By, - 1)
S

sreE=eny) |5 24P - M 1+sl-52,->\)} = 5 §5]

Thus the spectral density ®(w) is obtained by (2.64). Also,

B )
5 g gt
s - D1D2[1-4&D1+8JL D/ -mmlu-éml)] _—
&ZDIZ'(I-%DI)(I—Z&DI)
(D, D.)F A 22D
s - e
(x) = - 12 i‘ZAe ) 1| o
I2TD, . | YER ™ T TED]

As in the previous case, the process is unstable in mean square for

] ’ 1
Dl 227 4 and in mean for Dl Z—E
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5.4 ZERO CORRELATION CASE

In this section we deal with the stochastic differential equation

+ (r[’,ix+ki)(1+m(t)> =n(t) , x € (x,,x%,) (5.96)
where
(m(t))m(t,)) = 2D 6(t;-t,) (5.97)
(n(t;)nlt,)) = 2D, b(t; -t,) (5.98)
<m(t1)n(t2)> = (m(t)) = (n(t)) =0 . (5.99)

The dimensionless variables of (5.8-15) can be used for all
intervals for which &i # 0. In the general derivation below it will be

assumed that no {',i =

Solutions to the FP equation

The FP eqﬁation’ is given by (5.17) with p = 0. That is
gi_i_ +1)1T_I+ F(ZR l)gw-’—OTr:-B(%-go). (5.100)
§

Since g(g) = 1, there can be no irregular points; in this respect the
system resembles that of Chapter III.
By making the substitutions

-3 2 "Jz_-(l"'?\)

- i
€= &(E°+1) 5 Y& l=g") o, (5.101)

the homogeneous form of (5.100) becomes

a2y
(1~ C )——— -2¢ g+ [MAH)- ° +O]¥- 0. (5.102)
Q 1-¢
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This is Liegendre's equation of degree A and order u,l where

2 % .
u=("+0 . (5.103)
Thus two solutions are ‘
R
™ (8) = (§7+1) P H(c) (5.104)
| _3(14) ;
(8 = (€241) ©  PH(Q) , (5.105)

where Pi’k(x) denotes the associated Legendre function of the first kind
of degree A and order . These solutions are independent (form a
fundamental set) provided ju is not an integer. When this is the case,

P{L could be replaced by Q}t"' inw,.

Related quantities

Using (5.15) and equation 8.5.4 in [1 ],

B2

¥y (8 = By -L(EP+1) PR L (5.106)
The Wronskian of ™ and T is
3
-5- X
w(g) = 2 (g%+1) sin T . (5.107)

(This result can be.obtained by substituting equation 3.4.17 in [11 ] into

equation 3.4.25.7) A fundamental set of solutions of the backwards

4 See Erd‘élyi et al. [11], Chapter 3, or Abramowitz and Stegun [1],

chapter 8,  Since we are concerned with real {, -1<¢<l1, the
slightly modified Legendre functions dealt with in [11], section 3.4,
and [1], section 8.3, are required, and will be used throughout.
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equation is obtained similarly to the forward equation, giving

.
A
=
(§f+ 1) P;“(go) " (5.108)

The Laplace-transformed transition density

Putting‘
w5, 0]8) = y; W () + y,ma(E) (5.109)

the coefficients yf, yg satisfy the usual conditions at X (see (2.21, 22)) |

and X5 i=1,2,...n (see (5.19,20)). These become:

29
k- k+ T ( 2 ) M
Y1 =Ya “ZTamm el Py (6o (5.110)
LA
M - .
k- &kt T k( 2 ) M ,
Y2 T Y2 -172 sinmwy lgo—l_1 P)Lk (CO) : (5.111)
where X, € (Xk+l’ %) 3
> %'%xi
. U T AL
1 1 1.1 1 1 i
ki[(%) +1] [Yl P)Li (gi)+YzP7\i (giﬂ
il
~zhi

' #
-
:7‘1-1[‘(51'““1) H]

(5.112)



i TE e

] ‘%3‘1 F “lhs 7 s o — 0%
| [(‘511), “] [\’f\ﬁ?i'l)Pxii (Qil>+Y21<{5;1'1)PAE-11<C11)}

-%Ki—l
R - : ; =M : ; : \ L :
-1 ' -1 -1 ~1( i-1 ~1/7, -1 % -1 -1
L&Y ] e, e e e, ) )
| (5.113)
fori=2,3, ..., 0=l and
1( 1 ““1( ) 1( 1 M ( 1)_
v (B2-1)Py Al )+ vz (e ‘1>Px1-1 SPER (3.114)
N ) Nt G Hat) e G FYNINCRET
If X, or X respect.ively is infinite, (5.114) or (5.115) respectively
becomes
vy =0 | (5.116)
v s n-1 n-1
Yn'l = — T, -, ), (22117}
2

since, as z—-1,

z%u(l_z)"%u
I'(1-p) ’

P{L(z) - oIl o Lo BaFe s (5.118)
2 s -t
PH(-z) m2BH BT nya_py Bl s 0 | ‘
(5.119)

2. 1
z-zul-(_&)(l_z)ﬁu <
TI+A-p)T (- Ay * M

0

(see [11], section 3.9.2 ).
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Steady-state pr 6bability

From (2.28),

%
-3-

P_(x) = ci[<§i>2+1] g (5.126) :

Since aPo is continuous, this gives, forn-12i>j=z1,

R\ g kel 2 1ENu =\
TETA L1 ' F+0 J 27
S . 32 g, )+1 8:) 1L . KB
- f"<gl) 1] S S N2 I'(;;J Yl
C. - L\5 /i wr e R S
! (gi-l)ﬂ | (%JH) i
(5.121)

The Ci are thus determined up to an arbitrary constant. To determine

this, use (2.29), no-ting that, for § = 0,

2 =
k . AT -
[ Py Fraa =L - 7B -t lat = i (, ),
Z o 272, o2 el VB
‘ (5, 122]
e ], b=l
where Bz(a, b) = j t“7(1-t) "dt is the incomplete beta function. Thus
0 ' ' '
one gets
ifn-1 c, i ' . -1
. i = = p i - ' e,
G, *<D1D2‘> c. M [*?iB ;2 X -8 yB . olm Ki)} «  15.123)
i 3 TL G (i) ;
Ci i .
~where ol is given by (5.121) and €, = sgn %li.

J
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P (x) as Abelian limit of P(x, t|x )
—oi= o~

We verify that

Po(x) = il_rﬁ) sp(x, s Ixo)

Letting s = 0 in (5.110-117), it can be shown that

v[ = O(5) » vy =0() , v -y; =0(1) ,

so-that, to first order,

: : -A - -F-A
w8 0l8) ~ vi oy LB 1]

since (see '[1‘], 8.6 .10)

A%

wojp

v,y 270020
Pv ,(Z) - T(v+1)

It can also be shown that

. & :
U =i(D b, 15 2P Ty
Y=~ s viva i

The method is the same as that used for the same purpose in

section 3.2.

Spectral density

(5.124)

(5.125)

(5.126)

(5.127)

(B..128)

The Laplace-transformed autocorrelation is given by ‘(2. 49,

58, 62, 63), which in this case take. the form



L.

n-1 2
()= D2D,Y {—k _ g¥
Ble) =Ly Uy | Qemma—n &y
o Me

L |k
K.
n-1 4X.2 i
e s 1.
+z Ry Zk {% n+ (l Zx)Jik(-% -6 (%)] a
1=l | X Hi4
(5.129)
where
’.D % E 4 2 "k
5 3 1 o M "
8. = 4) —) alx )P (x ) 2 & )J
k k L( 2 o' oo (l—kk 1-2?\k Uk )
: FEER4
k ., 2
e 2 % 1 "
+ ZXk ‘J" Po(xo)dxo [Zﬂk- _:L—"E - —51—(—(1—2)\.1()] (6.130)
*k+1

0|

% Sk}f ’ iD]_ g %‘k sk
Qk(gi),: Wl (D_2> afx )P (x) [50- %k‘l"ca(l-zlk):‘ D 1:0.( §)m (&, o| @o%

*k

- a<€i)w(€i,ol€0)> (5.131)

X =X

o Tk+l

2 k

- w(ii,clﬁo} | ’ _ (5.132)
k

oy TN

2 1
3k 4}“ D 2 . M S E
2 (55) = ?132_;1;;_1' (Ta'l') a(xo)P(Xo){[go“”kJrB’E(l““k)} D" 4(5;, 05,)



-176-

where D is given by (3.68). The spectral density ®(w) is then given

by (2.64).

Variance and Mean

For the case treated in this section, (2.68) and (2.69) become,
respectively,

: X
"2 1\2 s A ]
Me {2 Me K"’") B ) Q-xk' T-Zh, /}

1 b

@/

[y

n—

2 _ %
(") = 2D, Dzz
E K+l

*k

i j VPO(x)dx(Zn]i - 1'1>‘k> (5;133)

k41

xX. x

. L : D ;
(x) :2(131,132)?%2 Ml T Kﬁi) a(x)Po(x)} —nj P (x)dx

k=1 | _ el Tkt

(5.134)

Case f{’,i = 0 for some i
In all the above it is assumed that s # 0, for all i. In the
exceptional case, the FP equation takes the form

2

2 d d ,
(D kS + D,Z)EX_JZQ + X EE% - sp = -8(x-x_) . (5.135)

Except that D is replaced by lei2+D this is identical to that of

2,

Chapter III, with %i'= 0; see section 3.1 for soluﬁion.
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Alternatively, it appears to be possible, as before, to treat

this case as the limit of the general case letting ft’/i-- 0. 1

Example - ~the linear case

Since there can be no irregular points in these uncorrelated
systems, any system can be handled exactly the same as the system
. with the same restoring function dealt with in Chapter III. Thus only
one example will be worked, that of the linear system (with k = 0).
Wong [45] has found the transition probability in this case in the form
oﬁ an eigenfunction expansion (case E, p. 269).

Equations (5,110, 111, 116, 117) become

Yz =0 | ' (5.136)
Rl Y - 'ZTllrl_'r-r_ﬁ (‘35“)%}\}’;&1(@0) (5.137)
Y2 - Y, +2‘g;ﬁ;}'ﬁ (82 1)%KP{“(QO) | (5.138)
Y i Y2 “silw‘@ 1"(51)1"(1-32) , (5.139)

whence

Appropriate asymptotic formulas for the Legendre function are given
on p. 658 of Jeffries and Jeffries [27].
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(§02+1 )‘?5)‘(%2“ )-%(HM' ) _
(8 0|8, = e P ¥ sin rT(B))T(-8,)P; M(c,)

i P{*(go)] for x 2x_ (5.140)

= A -5 (1+N
(gfn)a (&;2+1) * ) )
= "2 sin pyw Px H(go)[Sin Aﬂr(ﬁl)r(l-BZ)P)tu(C)

+Trp'{*(g)] for x s x, . (5.141)

The steady-state probability P olx) is, from (5.120, 123),

L i -
(D;D,)% $u mED D) FT(A-1) 5, 1y
- ‘ z
P (x) = _KB—(T__(E Ay = 21()\+%;) (87 +1)
(5.142)
Using (5.127), it easily verified that this equals lim sp(x, s !xo).
, s-0
To obtain the spectral density, note that
Sl _ i
¥ = D @-zep)) (5..143)
while all ¥, 2 are zero. Thus
B
8) = mrZTp s+ E1-2D )] (5.144)
| s
®(u) = 2 p,(1-4D)) {(1-24D )[w +£%(1-4D,) 1} (5.145)

D
Bie . 0 1 . |
== T, ¢ | 48, 1y
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Note that the system is unstable in mean square for Dl = ?17, , SO

these equations hold only for Dl < 2—%7: .
According to Gray 22, 23] this linear system should have the

same autocorrelation and spectrum as the system

d
E% + 4(1-4D; )y = aft) , (5.147)

where a(t) is white noise such that (y2> = (X2>. This is easily verified.
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APPENDIX

SOME NOTES ON SECOND ORDER SYSTEMS

The FP equatioﬁ

Consider the system with stochastic differential equation

m
b Bl ) = Zhj(x, %)n,(t) , (A1)
j=1
where the nj(t) represent white noise, This can be written as a pair

of first order equations, thus:

'}'c-- vy =0 (A2)

| m

F+E0y) = ) Byl yhage) @)
=1

Then, by (1.18), the FP equation is

m
9P _ 3 3 1. 9P, 8
’8?“2 Do By By 3 (4P | - v 53 + 55 (P) (A4)
3001
2
5 9 op
= ?Yi [a(X, Y)P} = [b(xs Y)P] o &~ | (A5)

say. In particular, if hj(x, yv), f(x,y) are piecewise linear in x, y, so

is b(x,v), and a(x,vy) is piecewise quadratic.
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" Appropriate boundary conditions

8%p

2 ?
Ox
so that, considered as a parabolic equation, (A5) is degenerate,.

The right hand side of (A5) does not contain a term in

Fichera [20] has developed, and Oleinik [34, 35] has extended, a
theoryrof boundary value problems for so-called elliptic-parabolic

equations, i.e., equations of form

.Z. a':'Lj U x, b Z biux.+ i (A6)
59 ij i i

where the matrix [aij:l is non-negative, but not necessarily positive

definite. Fichera shows that the boundary can be divided into three

Z(l ), where no boundary conditions can be imposed; Z(Z),

(3)

where the Dirichlet condition u = const. can be imposed; and 7' 7,

regions:

where either the Dirichlet condition or the Neumann condition

1 X.
J 1

viously, linear combinations of these two conditions can also be

(3).

a,;u,  nj = const. ({nj} being the unit normal) can be imposed. Ob-

imposed on I
Consider (A5) in the domain {t> O, x, <X <Xy, ¥, <y <y 14

where y; and y, are finite and a(x,y) is not zero for y = ¥y OF ¥y

Then Z(l) consists of the surfaces t = o, x = x4 for y 20, and x = %5

for vy = 0; 2(2) consists of the surfaces t = 0, x = %y for v <0, and

(3)

consists of the surfaces y = Vis Voo If is

(1)

apparent that sample paths can not enter through ¥'"’, can enter but

x:xzfory>0;and2

not exit through 2(2)’ and can do both through T (3). The permissible
(3)

boundary conditions on ¥ may be compared with the elastic bound-

ary condition (1.46) in the one-dimensional case.
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More general domains

If Y1 OT V3 is infinite, or if a(x,y)= 0 as y =Yy 0T ¥y, then

Z(l) or Z(Z)——compare with the

this part of 2(3) may degenerate to
C(;ntrast between regular and irregular boundarie;s in section 1.4. If
instead of a rectanglé in the x, y plane a more general region is

3)

chosen, will consist of all parts of its boundary where the tangent

is not perpendicular to the x axis. Simiiarly for time dependent

boundaries the same thing is true.

. Difficulties encountered

In a.ftempting to deal with éecond order systems by methods
similar to those used in Chapter II for first order systems, the
following problems 'occur..' Firstly, amalytical solutions are not known
for the FP equation (AD5) Withl.delta function initial condition, o.r its
~ Laplace traﬁsform, except in the simplest linear cases. Secondly,
the piecing tog‘ethe.r of solqtions in different linear subdomains
involves integral eq'ﬁationslrather thﬁn algebraic équations, since -
‘ ‘t1_1eir common bpundaries are-line.s‘ (or curves) in the x, y plane,
réther than poih’cs_on the x axis. Thirdl"};',- the wrj_.te‘r- h_as not been
able to generali'z._e‘ the méthqd of section 2.3, whereby the Laplace-
traﬁsfo;med autb.dox;reia,t-ion is expressed in terms c‘>.£ thé__Laplaceu
\ tra:ﬁ.sformed transit_i’oﬁ den51ty It 'é,ppea_rs unlikelf ,tha'.f all these :

difficulties c/a.nibe' eliminated. ‘
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The method of Robinson

The output (x, y) of the second order system (A2-3) forms a
two dimensional Markov process, so that the formula (0.2) for the

autocorrelation can be written

Rx_(t) = If.“. XK P(x,v,t ixo, yo) PO(XO, yo)dx dy dxo d‘y‘o : (A7)

.Thus, once P and Po have been found by solving the FP equation, four
integrations are necessary to obtain Rx(t) (unless- the third difficulty
mentioned above can be overcome). Robinson [37] has shown that

this can be reduced to two. In fact

(54

R (1) . J[x vy avay (a8)
where
vix VY, &= ‘” x Py, t|x vy )Py (x, v )dx, dy, » (A9)
so tha;t v sati—sfies the TP equation (A5) with initial cond?tion
5y, 0) = x P () - | (410)

The steady-state FP equation can be solved to obtain Po in several
important cases. However, the timne dependent equation, with ixiitié,l
condition (A10)-~or any other initial condition--has been solved in

only one (linear) case,
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The work of Wolaver

Wolaver in [43, 44] claims to have solved the FP equation
for v in the two special cases where (Al) takes the form
(a) X + cx + k sgn x = n(t) , ~oo<x <0 . O (All)

(b) ¥ +cx +4Ix + k sgn x = n(t), ~o<x<w . (A12)

However, as Professor Caughey pointed out to the writer, the solutions
Wolaver obtains do not satisfy the boundary conditions he assumes,
which are themselves incorrect,

Wolaver's method is to solve the FP equation by Fourier trans-
form methods in each of the regions x 2 0, and to match up the
solutions. Ile assumes--see his equation (II-7)--that v(o,vy,t) = 0.
This is not so, and in fact it is seen from the discussion above of
appropria;ce boundary conditions that when solving in the re‘gion x > 0,
one can specify v(o, v, t) for y <0, but notv for y = 0; and conversely
when solﬁng in the region'x < 0, Thus it is to be expected that any.
"solutions' obtained by Wolaver to his ill-posed problems will be
incorrect, since there is no reason to believe that any solutions

exist.

Correction to Wolaver

Case (a) above--bang-bang restoring forcef—is.workea through
here, without making the invaiid assumption v(o,y,t) = 0. The treat-
ment is incomplete, since it leads to an integral equation for v{o, y, t)
which the writer has not been able to solve. Case (b) can be treated

in the same way.,
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Statement of the problem

"For x > 0, the FP equation (A4) becomes

2

0%~ 0 ov SV O~
D ogtegp M tkgy -y -5p =0, LSl
¥
and the initial condition (A10) is
-
, L J= 8 14 . £ Lot |
v(x,y,0) = i (ZD) exp[ D(kx+2'y' )]_ 5 (Al4)

According to the discussion above, for a well-posed problem one can
specify v(o, y,t) for y > 0, and upon solution one will obtain v(o, v, t)

for y < 0. However, by symmetry one has
v(o, y, t)=-v(o, -y, t) , (A15)

so that an obvious method is to solve the problem for arbitrary
v(o,v,t), vy > 0, find the corresponding value of v(o, -y, t), and then
substitute into (A15), which should lead to an equation for v{o, v, t),

v > 0, with a unique solution.

Partial solution

Following Wolaver, Appendix II, one performs on (Al3, 14) a
two-sided Fourier transform with respect to y and a one-sided Fourier .
transform with 'respect to x, so that, if

o

Vi (%, M t) = j v e_lnydy = 3y_(v) ‘ (A16)
‘ - Q0
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Qo
vyEnt) = [ we T ax =7 (v)) , (A17)
g _
one gets
Ov avz > 2 ,
“gp T EN-Bl g = Ank-Da N 4e(n.t) ' (A18)
_ Qﬁ
v, (B, n,o)——%( +1i §} = : (A19)
where
g{nt) = - 3Y[YV(0: i 1 [ (A20)

Solving (Al18-19) by the method of subsidiary equations (or by Laplace

transformation with respect to t) one obtains

v (5t = 558 4 s8] empl B [P aten-a- A2 (1 o)
C , 5

. ; |

+C§(§- ick) |} jg[(cﬂ E)e -c(t-8) HE, SJeXPJL“ _ML {en-E) ( -2c(t-s)>
0 :

¥ (Cn‘g)(g' %Iixl'e_c(é-s))* es(s - lc:k)(‘c—s)_uL & . (a2

Carrying out the inverse transform with résPect to x,
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. [es)
vy (%, » t) = vo(x, ™)+ 'Zi-n: J\ & §el ng g[(cn- E)e” -c(t- S)+ £, s |
- Q0 0

X eXP{";%[%(Cﬂ—’é)Z< e 28]} 4 (em-g)! é-mk/( omelt-5))

le\(‘c sﬂ Fds- (A22)

+e5(s-

where

1 { c[kt-c_l(k-inD)@-e_c,t)-cx]z

Yot Y 3[‘2'%1_‘ <Ct B +e-Ct>]§éXP D (Ct—l + e"ctv>

- ({i—D)%[kt‘-%(k-i-inD)(l-e_Ct) cx exp[ -:Ql—{-\l e )7

(kt e (k+1"ﬂD)< t)-cxj .

X erfc (%) (Ct_ e Ct)% (A23)

But, from (Al5),
vi(0;mpt) = v (0, -myt)= O~ | _ | (A24)
g(n,t) = g(-n.t) . . (a25)

Thus, substituting (A22) into (A24) and using (A2 5),
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f0's) t

%f déjg[(cn— B OB, g S:‘cos[ ﬁ% (Cﬂ-§)<l‘eﬁC(t%S))"Pchg(t's)]

-0 0

X exp{ - :%[%(Cﬂ-é)2+§(cn-€)(l-e'c(t's))+c§2(t-s)} ds

= "VO(O: "'T]J t) = VO(O: n: t) o s . (A26)

It is now necessary to solve this integral equation for g, substitute
into (A22), and then invert with respect to y to obtain v (x,y,t). This

the writer has not been able to do.

A problem of Wang and Uhlenbeck

On page 338 of [40] the problem is stated of Brownian motion
in a cons;cant field of force {gravity) above a reflecting surface. The
FP equa,tién involve-d is identical to (A13), and PO,- and therefore
v(x,y, 0), is the same except for a factor of 2 (since only the region
x>0 is coﬁsidered); The reflecting coﬁdition at x= 0 leads to |
v(0,v,t) = v(0, -y, t) instead of (Al5), It is ea‘siiy seen that this prob-
lem leads to the samé intergral equation (A26), with a Somewhat '

different term on the right hand side.

. Conclusions

The writer is not hopeful that useful results for second order
systems can be obtained by the method of Robinson, or by any
similar method related to those used in the body of this thesis for I

first order systems. It is unlikely that exact solutions can be
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obtained for the integral equation (A26)_, or any integral equations

. similarly obtained for more complicated systems. It is possible that:
approximate solutions lca..n be obtained,_ but these would have to be

- simple enough to ‘pe twice integi;é;ble to obta.iﬁ Rx(t) by (A8). * A
numerical method of solut_:ion 'mighf Be’ adopted, vbut the multiple
numerical quadra.tu’r(-as necessary would require a large amount of

computation.
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