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ABSTRACT

Suppose that AG is a solvable group with normal
subgroup G where (]A|, |G]) = 1. Assume that A is a
class two odd p group all of whose irreducible representa=-
tions are isomorphic to subgroups of extra special p
groups, 1f pc # rd + 1 for any ¢ = 1,2 and any prime

r where r2d+1

divides |G| and if Cy(A) = 1 then the
Fitting length of G is bounded by the power of p divid-
ing |al,

The theorem is proved by applying a fixed point
theorem to a reduction of the Fitting series of G. The
fixed point theorem is proved by reducing a minimal
counter example, If R is an extra special r subgroup
of G fixed by A;, a subgroup of A, where Al centralizes
D(R), then all irreducible characters of AR which are

nontrivial on Z(R) are computed, All nonlinear characters

of a class two p group are computed,
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INTRODUCTION

Suppose that AG is a group with normal subgroup G
where (|A]l, |G]) = 1. Assume that A is fixed point free
on G, that is, CG(A) = 1, Suppose that |A| is divisible
by d primes, counting multiplicities., There is a
conjecture that, not only is G solvable, but the Fitting
length of G is bounded by d. The solvability half of
the conjecture seems difficult and Thompson (10) made
the first step by showing that for A of prime order G is
nilpotent, Under the assumption that G is solvable more
progress has been made, Without the requirement that
CG(A) = 1 Thompson has given a large bound depending
upon the Fitting length of CG(A) (9). The cases where
A is of order 4 have been handled (1, 4). The case where
. A = 85 has also been treated (7). A large class of
abelian groups for A have been handled by E. Shult in
his thesis (8)., The exceptions to his result relate to
numbers like Fermat and Mersenne primes, but his
exceptions add in certain composite numbers. These
exceptions arise because of certain "bad" representations
on extra special groups, As we allow A to become a
nonabelian p group these same exceptions arise., However,
in the cases treated here, except for one, these "bad"

cases only arise from abelian representations of A,
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(See (V. 8)). Thus it appears that, as far as exceptions
to the conjecture go, if they exist at all, they probably
exist for abelian groups.

The main result of this thesis is contained in
section VI, The proof proceeds by reducing a minimal
counterexample, Several comments should be made heare,

The method of proof seems to be very general, Many of the
reduction steps can be made without any hypothesis upon A,
Cthers require the relative primeness and solvability of
A. The real restrictions start at (VI, 10). Here a
devious route is taken which depends upon 1) a remarkable
property of class two group characters (II, 2), and II)

an even more fortunate coincidence of inequalities (II1. 7).
Section II then gets us past (VI, 10), All is fairly
well until the very end, In (VI, 15) we are forced to
invoke the property (*). It is at this point that the
exceptions enter, And it is (*) which requires the
development of sectioms I, III, IV, (The results of
section I are known, This is a simplification of the
proof.)

It is highly possible that the results of these
sections hold for almost all choices of nonabelian A, It
is this route which will be followed in further investiga=-
tions, In fact, the case when A is an odd class two p

group seems to be well within reach and requires only an
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extension of the argument in section IV, This is now
under investigation,
The theorem proven here then is,

Theorem: If A is a class < 2 odd p group all of whose

representations occur as subgroups of extra special p

groups and pc # rd + 1 for e =1, 2 and, for prime r,
r2d+l

dividing IGI then the number of primes dividing

|a| bounds the Fitting length of G provided G is solvable.

This includes all class two groups of exponent p
(with exceptions on primes, of course), Originally,
the result was attempted for A extra special. This choice
was made first, because it seemed the next natural step
above the abelian case and second, because of the
important role played by these groups. Now, all special
groups are included,

As a sidelight, section VII contains a reduction of
the Fitting series of a solvable group. A sequence of
useful prime power factor groups is found on which the
Fitting length depends., The complexity of the definition
prompts the word edifice. But the situation is much less
intricate than the words. This reduction in conjunction
with the fixed point theorem of section VI is used to

prove the theorem.



I. EXTENSIONS OF GROUP CHARACTERS

Suppose that AG is a group with normal subgroup G and
solvable subgroup A where (]A]|,|G|) = 1. Let Q be the
field of rational numbers and & a primitive [AGIth root of
unity over Q. Let k = Q(&8) be the field over Q generated
by &, In this section all characters will be k characters.
For the remainder of this section we assume A is a fixed
irreducible character of G which is stabilized by A, that
is, A(x) = A(K) for all x ¢ G, y ¢ A,

We start by defining a function which maps characters
into characters, Suppose that N is any group for which X
is a splitting field, and £ any character of N. Then there
is a representation by linear transformations A(x) over the
field k such that

tr A(x) = o(x) | for all x e N
where tr A(x) denotes the trace of A(x). The representatim
A by linear transformations is uniquely determined up to
similarity by o. In fact, if o' # o is another character
of N then an assocliated representation A' is not similar
to A, Thus we may set

fy () = det A.

This function is well defined since A is uniquely determined
up to similarity. It is clear that ¢N.(dD is a linear

character on N, Hence éw is a function mapping characters



of N onto linear characters of N,
The object of this section is to determine, by use of
¢, all possible characters on AG which contain A when

restricted to G,

(I. 1) There exists a unigue character © of AG satisfying:
' i) GIG = A and
i1) $,(8l,) = 1,.

We proceed by induction on IAI Choose Ao & A of
prime index p, and let A be a faithful linear character on
AG/AOG. By induction there is a unique character ¢* of
AOG such that

1) o*|g= A and
ii) éAO(e*lAO) =1, -
The character ©% is fixed by A, TFor let v ¢ A, Then

6, @}, Y=g, %], YW =1, Y =1, . Also, g*'|_ =
Ao AO AO Ao Ao Ao » G
(9*|G)y =2 =2 so by the uniqueness of 0% we find that
g%y = g%,

Hence, g*|4C = T O, is a sum of p irreducible

characters and eileG = elleG =0% for i =1, ... , P.
Now gSA(SllA) is a linear character of A with A in its
kernel since ¢, (6,], ) = ¢, (0*], ) = 1, . And then

Ao L Ao A.o Ao Ao
¢A(91|A) =J for some j. There is a unique character Oﬂf

f61(1)+j _

such that & 1,. We set © =a%8 . Clearly then
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6lg =, and 4,001 = g,(Laferl ] = a®1 g 0,1 =
d?el(l)dg =1,. Since 8§, = d?(l)el for some j(i), Ois

unique,

(1. 2) Theorem: Suppose ﬁ is any irreducible character

of AG such that P'G contains A. Suppose 6 is the unique

character of AG given in (I. 1). Then there is a unigue

character ¥ of AG/G such that
B = £86

Further, if ¥ is any irreducible character of AG/G then

66 is a uniquely determined irreducible character of AG,

Hipst, let ﬁ% be any irreducible character of AG
which is nontrivial on G, Then by the Clifford Theorems
F%IG = n(hl+,..+kt) where A, ..., A_ are all distinct
nontrivial conjugate irreducible characters of G, So we
have (lG, ﬁ%lG)G = 0,

Second, let ¥ be any irreducible character of AG/G.
We want to compute (3’57%)AG' If it is greater than zero
thenb’ﬁo == aa + veoe or (UPO)IG = K(l)ﬁOiG = aﬁ(l)lG T sae
and (1,, B lg)g?0. But, as above, all X; # 1, so
{8y BB Jym = O,

Third, consider ©. Now 1 = (8,8) ;. = (lAG’Sé)AG so
e8= l,g * & where (1,., A)AG = 0. So A is a sum of
characters like @ above. Hence, (¥, §4),, = 0. And we

get 1 = (S’K)AG = (5,5(1AG + A))AG = (K’Beé)AG -
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(6,50) Age S° §© is irreducible,

Fourth, §6 is uniquely determined. For suppose § .
is an irreducible character of AG/G such that §'9 = (0.
If § # ¥ then (§0,8'0),, = (§,8°08),, = (8,8" + 0'a),. =
(§,8%48),o = 0. This last is zero since, by the second part,
to be nonzero, (1., (H'A)IG)G>O; but it isn't, Therefore,
§ = §' and §0 is uniquely determined.

Finally, §(1) = (¥(1)x, W), = ((88) |5, A )g =
(88, n |46) .o, Further, T, §LIUAI) = (Z XL A ()
= [A|NL) = RIAG(I). So we get

A =T ¥ ¥e
where ranges over irreducible characters of AG/G. Since
(ﬁ, KIAG)AG = ({3|G, X)G # 0 we get the result that there
is a unique ¥ such that
g = 56

(I. 3) Suppose that M < Stab (Aut(AG),A\), the stabilizer

in Aut(AG) of A, or M < Stab (G(k/Q), ), the stabilizer

of N in the Galois group of k/Q. Then © of (I. 1) is

stabilized by M.

Suppose X ¢ M, Then é)le =2* = A, And ¢A(6xlA) =
¢(9]A)x = II.Ax L, = ¢A(6|A). So by (1.1) the result
follows, since A% is conjugate to A in AG,

(1. 4) Suppose that @ is any irreducible character of AG

-

and ﬁlG contains the irreducible character Tvof G

——

Suppose that A = Stab (A, ™) ={x e A|v* =%} is the
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stabilizer of vt in A, Then there is an irreducible

character § on A_G/G such that B= (§8) |AC where @ is
given in (I. 1).

First we show that Stab (AG, yr) = AOG. Clearly A G
stabilizes T, Suppose X € AG stabilizes M, Then x = zy
where y ¢ A, z ¢ G. And T' = ¥ = 7% = v, Hence y € A
stabilizes W, So y € Ao' Therefore, z-y ¢ AOG.

Next by (I. 2) we find ¥ on AOG/G so that 8@ is
irreducible on A _G. Consider (3e) |AG. This character is
irreducible. Further E,8(1) (i6) |4G = |AC yhere ¥ runs
over the irreducible characters of AOG/G. So for some

choice of ¥, (¥6) |AG = ﬁ '



II. CLASS TWO p GROUPS

In this section we compute the nonlinear irreducitble
characters of a class two p group, We then use this result
to prove a fixed point theorem for a class two odd p group
irreducible on a module over a prime Galois field. For
the remainder of this section suppose that P is a class two
p group, Q is the rational field, § is a primitive |p|™®

root of unity, and k = Q (8§).

(1II. 1) Suppose that P has a faithful irreducible

character B. Then p(x) =0 for all x ¢ P - Z(P).

Let x ¢ P - Z(P). By the Clifford theorems gJ IZ(P) =
mda, a multiple of a single linear faithful character of
Z(P). Choose y so that [x,yl= x" 1y # 1, Then B(x) =
B(x") = B(x[x,y]) = B(x) & ([x,y]) since [x, y] ¢ 2(P).

But o is faithful on Z(P) so &([x, y]) # 1. Hence B(x) =0,

(11, 2) Theorem: Suppose A is a faithful irreducible
character of P. Then

p {pdo&jdgaithful linear on Z(P)
0 ; outside Z(P)
2
and |P| = p“d|z(p)].
Clearly PlZ(P) = pd0\ for some linear A faithful on
Z(P) and p® dividing |P|. Now



¥
= (B, P) T—I' xeP B (x)p(x
TET PZd wii(ry 20 = gy 2%z,

This completes the proof.

(i1, 3) Suggosaiﬂ is a faithful irreducible character of

P. Assume that A is a subgroup with AN zZ(P) = 1. Then

pl, = p"P, where p™ = p4/]a| and P, is the regular
character of A.

This is immediate from (II. 2).

‘ pd on 1
P A~ 0 on A#

Hence plA = nfk, But (3(1)

¢ = nf,(1) = nlal.

(II1. 4) Suppose P has a faithful irreducible character of

degree p?, Let s(P) be the number of subgroups A < P of

order p such that AN Z(P) = 1, Then

s(P) < (2__:L) P

p-1
Consider P/Z(P). By (I1. 2) this group has order
pZd. The largest number of subgroups of order p that P/Z(P)

can contain is EEEZL- This occurs preciselyiwhen P/Z(F)

is of exponent p?-lLet B/Z(P) be a subgroup cyclic of order
P. Then B is an abelian group of rank two or one., If it
is of rank one then B > Z(P) and B is cyclic, 1If it is of
rank two then B = AXZ(P) where A has order p. Further, B

contains pz-l = p +* 1 subgroups of order p. One of these

p-1
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is <x|er(P), xP = 1>, Hence B contains at most p cyclic

subgroups A of order p such that A M Z(P) = 1. Hence the
24

largest s(P) can be is (Es:il) o

d
Remark: The only time s(P) = (%}f}%—) p occurs when P/Z(P)

is of exponent p and B = AXZ(P), where A is of order p.
This case is of special importance because P is the central
product of cyclic group Z(P) and an extra special group of

order p2d+l.

(11, 5) Suppose that p is an odd prime and r is a prime

not p. Suppose d > 2, Then

= d-1
P2d+l <P (p-1)

unless p = 3, r = 2 and d = 2, In the latter case

p2d+l & r2pd'l(p-l).

pd"1(p-1)
Clearly r increases more rapidly in d than

p2d+l. The extreme case of the inequality for d > 2 occurs

at d = 3, =2 and p = 3, But here

Log, 3 27 x A8 = 3.36 5 5.4 =18 x .30 <

loglo 23 x 2

Hence we may’assume d = 2., Then we have the table below.
It is clear that for fixed p extremal cases occur for small
r, If the inequality holds for fixed p and r then it still
holds if we enlarge p, Hence the inequality holds as the

table shows,



d =2

P - 3 3 5

log p2dt+l < 2,40 2.40 3.50

r 2 5 2
d-1

Log P T(p-1) > 1.80 3.00 6.00

d=1
log r 2p (p-1) > 3.60

(I1. 6) Suppose p is an odd prime and r is a prime not p.

Assume d > 1. Then 3

(Eii;ﬂ)p < ESETT%l'

o~k rtP -
for all t > 1, except when p =3, r = 2 and d = 1,2, In
the latter case the inequality holds for t > 2,
3
2d -1 - L g
We have .E_"‘_l.)p< ??‘d*l and rtP ¢ D<TFI—”
P—-1 ) eyl

So for d > 2 the result follows from (II, 5). Hence, we

may assume d = 1, That is, we want to prove

2 t
?P-1 = (p+1) (£ r\)—-]_‘
—F = P —
The right hand side is obviously increasing in t,
Again we can note that for fixed p the extremal cases
occur for small r, Further, if the inequality holds for

fixed p and r, it remains valid if we increase p. Hence

the table shows that (II, 6) holds if d = 1,
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P 3 3 5
p(p+1) 12 12 30
L 2 5 &
rP-1/r-1 7 31 31
P12 21

(11, 7) Theorem: Suppose that p is an odd prime and

r # p, r a2 prime, Assume that V is an irreducible GF(r)[P]

module faithful on P, Then there exists a vector v e V#

which is fixed by no element of

We proceed by contradiction,

Since r # p, ordinary character theory holds, Hence,
we apply (I1II. 2) several times, Now |P]| = pZdIZ(P)[ so the
Brauer character of V is a sum of t algebraic conjugates of
the character of (1I, 2),. Thé number t = 1 if and only if
V is absolutely irreducible. Hence

dim V = tp%,

d

So there are rtp = 1 wvectors in V#. We know that Z(P) is

elementwise fixed point free on V, Hence, if v ¢ V# and
Cp(v) # 1 then Cp(v)N Z(P) = 1. Further, Cp(v) contains
a cyclic subgroup of order p, So the largest number of

#

vectors in VY which can be fixed by subgroups of order p

will be s(P) times the maximum number of vectors in V#
which can be fixed by a single subgroup of order p.

Now by (II. 2) and (I11. 3) we have dim CV(A) = tpd'l

where A is cyclic of order p and AN Z(P) = 1., So the
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d-1
latter number is rtP - 1, Hence, we must have

1 d

s(P) [rtpd- - i}g e A 1,

Using (II., 4) and (11, 6) we see we must have p = 3, © = 2
and d = 1,2 and t = 1, But now VIZ(P) is a multiple of a
single linear Z(P) module since t = 1 implies V is

absolutely irreducible, But this means 2 = 1 (mod |[z(P)|)
which is ridiculous for p = 3, Hence, (II. 7) holds,

Remarks: (II. 7) holds for p = 2 except possibly when P
is the central product of d dihedral groups of order 8
a | 1] 2|3

when “ T3 [T3 | 3. Weend=1,p=2,F=3andP

is dihedral then this is a real exception to (II, 7).

However, all this requires proof,
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I1I. EXTENSIONS OF EXTRA SPECIAL GROUPS

In this section we investigate representations on
symplectic spaces. We then combine this with results irom
section 1 to obtain all characters which are extensions
over an extra special group.

We assume that V is a nonsingular symplectic space
over a field K = GF(r), r a prime, with pairing ( , ):

VXV ——> K+. Suppose that A is a group represented upon V
fixing the form ( , ). That is,
(vl, v2)x = (xv, xvy) = (V{,vy) or

(xvl, v2) = (vl, <~

vz) for all x e Gj Vis Vo € v.
Further, we assume that ([A]|, r) = 1.

This done, we fix O: A ——> A as that unique
antiautomorphism of A which sends x —> x~L for all x ¢ A.
Then O extends linearly to an antiautomorphism of K[A].
Assume that e ¢ K[A) is an idempotent. Then e® is also an
idempotent., Further, e is primitive if and only if ™ is
primitive. And e is central if and only if e® is central.
If e is central then eV is a left K[A]l module. Let

K, = ker LA —> Aut ev].

(III. 1) Suppose that 1 = e, * ... + e_ is a decomposition

of 1 into primitive central orthogonal idempotents of K[A].

- o _
then, except possibly when e, = ej, ve have
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(eiV, ejV) = O,

Choose any v;, v, ¢ V. Suppose e:( # ej. Then
A = = o =
ey ey 0., So, (eivl, ejvz) (vl, e ejvz) 0.

The symplectic space V is nonsingular., So if
e,V # (0) then eid‘ Vv # (0). Further, e,V = (0) implies
eid V = (0). By choosing complementary bases we see that
. e dl ey s ;
d:x.mK eiV d:r_mK e, V. PFurther, eiV e V is a nonsingular
subspace of V, Since x ¢ K, implies =L ¢ K, we also
i i

have K, = K_o&. So, (ILI. 1) has the following corollary:

i i

(111, 2) In the notation of (ILI, 1) we have, for all i,

a) Ke. = Ke.d‘
i 3

b) dim, e,V = dim, e*V, and

c) e,V + eio‘V is a nonsingular subspace of V

For each primitive central idempotent e, eK[A] is a
left K[A] module. Let SA be the collection of all subgroups

H of A such that:
There exists a primitive central idempotent e e K{A]
with eV # (0) and H = ker LA —> Aut e K{a]].
For H e SA let EH be the set of all primitive central
idempotents e ¢ K[A] such that
i) H = ker [A —> Aut e KI[A]] and

ii) eV # (0).
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So, S, is the collection of kernels of irreducible
K[{A] submodules of V. And E; # ¢ is the collection of
idempotents associated with irreducible K[A] submodules of

V having kernel H, We then set

o z:e € EH R

From (III., 2) ¢) we conclude that VH = eHV is a nonsingular

g

subspace of V and EHa = EH‘
And so we have V = E:H g SA + VH'
Next we define some numbers,

(1I11. 3) 2m(x)
n(x)

dimKCv(x), X € A

the number of nontrivial irreducible
K [<x>] modules in a complete
decomposition of V,

Note that if B < A is a subgroup of A then all the
preceding discussion holds for B also., Further, the
numbers in (III. 3) may also be defined for spaces other
than V, In particular, we may consider nonsingular
subspaces of V. In these situations notation gets a bit

‘messy. Distinguishing notation is added in these cases,

We have set up the apparatus needed from symplectic
spaces, We proceed now to develop apparatus for extra
special groups expressed as cenfral products,

Suppose AR is a group with normal extra special r

subgroup R of order r2m+l. Assume that A centralizes D(R).
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Consider the K vector space R/D(R) = V. 1If Vis Vp e V =
R/D(R) choose x ¢ v, ® xD(R) and y e T = yD(R). Then set
(vy, v5) = [x,5] ¢ D(R) = cr(r)T = x¥. Using the
identification of D(R) with GF(r)+ = K+, ( , ) becomes a
nonsingular symplectic pairing on V = R/D(R) into K., For
X e R, y ¢ A we set
- -1

y(xD(R)) = (yxy ")D(R) = x D(R).
With this conjugation as action V becomes a left K{A)
module, Further, A centralizes D(R) so A fixes the pairing
( % ). We now may apply all the notation and machinery
developed in the first part of this section.

We define RH for H e SA to be the inverse image in R
of Vige That is, RH is "the part of R" with kernel H, If
Cx(A) = D(R) then G (H) 2 Ry precisely. Because Vy is

nonsingular, RH is an extra special group.

(III. 4) R is the central product of the R, H e S

H, A
Since each Ry = D(R), [ Ry = M > D(R).
HeSA

Further, M/D(R) = L. + V, = V = R/D(R). Hence M = R,

HeSA

- s -r* 0
Next, if H, H ¢ S, then [Ry, R¥] = 1.
This is immediate since (III1. 1) applies to show that Vy

is orthogonal and disjoint to Vy*. That is, (VH, VH*) =0

or equivalently [RH, RH#] =1,

Therefore, R is the central product of the RF'
4
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We now reintroduce the field of section 1. Suppose
that Q is the rational field and § is a primitive [AR|TR
root of unity over Q, We let k = Q(§). This field is
distinet from K = GF(r). In what follows we will be
discussing k characters,

For the following lemma, the construction of the

central product is important, Let Ro = TT XRH. Also, set
HeS
A

M equal to the subgroup of all TtxyH e Ro suchh that the
product in R ’l'l'yH = 1, This subgroup is normal in Ro and

is in [| X D(Ry). Further, R = R_/M in a natural way.
HeS
A

Since V= L + Vy for y e R, yD(R) = y vy uniquely. Choose
Zy € Vg SO that the product in R T 24 = y. Then setting
o(y) = ‘ﬁszM gives the desired isomovrphism. In fact,

this is an A isomorphism as is easily verified.

(11I. 5) Suppose that @y is an irredueible character of

R’H which is nontrivial on D(R) = D(RH). Suppose that for

every H e S A® eHlD(RH) contains the fixed linear character

X of D(R) = D(RH). Assume that X, is an irreducible

character of ARy and XHIRH = Oy. Ihen the direct product

character

o - %

is irreducible on AR = A" R_/M where A" is the diagonal

subgroup of TT X A,

He:SA
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It is sufficient to note that pIR = J] GH is an
(o] HGSA

irreducible character of R_ with M in its kernel., Hence,

B, considered as a character on AR, is irreducible,

6 = | >w tha
(111, 6) Suppose that A CA(R). We know t CA(RH)

= H, Further, assume that G is a character of AR

constructed as in (III, 5). Suppose that (XHzAR i) >0

for every irreducible character ¥ of A/H, Then
(Blys 02y >0

for gvery irreducible character ¢ of A/A.

First let us prove the following statement: A/A° is

isomorphic to a subgroup of B = || X A/H.

HeS A

We know that A = N H. So consider the following

map of A into B, For ¥ ¢ A let
$(v) = T[*(y&) e B.

Clearly ¢ is a homomorphism of A, Assume then that ¢(y)
= 1, Since y ¢ H for every H e SA’ v € Ao = N\ H,
Conversely, x ¢ ker ¢ if x ¢ Al Therefore, ¢g(A) =~ A/Ab’

Second, we prove thatlif YH is the character of A
which is the sum of every character of A/H, and TTYH is
considered as a character of AA then TTYH contains every
character of A/Ao.

Now YH is a character of A/H. Further, A/AO is a
Wsubgroup” of ||X A/H. Suppose § is any irreducible
character of B = TTX A/H., Then
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] = 1T ¥

where KH is an irreducible character of A/H, But Yy =

EH * EH" Hence, TTYH = TT(HH % 6'H) = (TTEH) + §' =
§ + §', Therefore, TT YH contains every character of B,
Finally, assume that ¢ is an arbitrary irreducible

character of A/A_ . Then s|B = Ei ...+ 3: where 51 is

s
-~

irreducible. Also, XlIA/Ao =0+ ,.. . But Ol appears

in [] Y, on B so & appears in TT ¥, restricted to A/AQ.
The result is immediate since YH is contalined in

XHIA by hypothesis.

Character Values

From (III, 5) and (III. 6) it is evident that, in
order to compute the character wvalues on AR, we need only
consider the spaces VH' In other words, we need only
consider submodules of V which are faithful on A/H,

The next few lemmas are technical in nature and are
used to compute actual character values,

Look again at A represented on the nonsingular
symplectic space V fixing the form ( , ). Let W be an
irreducible K[A] submodule of V. Let W, be the sum of all
irreducible K[A] submodules of V which are isomorphic to W,
Thathlg, for some HeS, and some e ¢ Egs Wy, = eV, By
(111. 2) we know that WO“ = e/ is complementary to W, and

wo + Wé* is a nonmsingular symplectic space.
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First consider the case that e” # e, Then (Wo’wo)
= 0, Since rad W in W_ + W: is K[Al invariant, we may,
by choosing appropriate complementary bases, split Wo + Wg
as (W + Wk) + W' = W, + W: where
W + W* and W' are nonsingular symplectic spaces and also
K[A] modules, In particular, if W, = W; + L., W, is a
sum of t copies of W then W: = Wy* P W, * may be

written as the sum of t copies of W¥ satisfying: W, - W, *
is a nomsingular symplectic space.

Second, we consider the case that e = e, This case
is a bit more complex, Here qu = W,, 80 W, is a
nonsingular symplectic space, Two cases can arise for W,
1t may be nonsingular, In which case W, = W + W' where W,
W' are nonsingular and K[A] invariant. In the other case
W is isotropic since W/ rad W # (0) is a K[A] submodule
of W, As above then we may choose K[A] invariant
submodules so that W = (W + W*) + W' where W + W* and W!
are nonsingular, In any case

W= DR W twgR) T+ Wy where all

We, W;% are irreducible K[A] modules isomorphic to W, the
wi have symplectic complement Wi*, and the Wj are nonsingular

Notice then what the situation is, If W is an
irreducible K[A] module of dimension g then V contains an

irreducible K[A] module isomorphic to W which is

nonsingular, or WO + W: is a sum of complementary paired
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K[A] modules isomorphic to W or Wo‘. If V contains
nonsingular W of dimension g then we say situation (i)
arises, If WO is a sum of paired modules as described we

say situation (ii) arises,

(1I11. 7) Suppose A is cyclic. Assume that H ¢ S, and

consider V. Suppose that W is an irreducible KfA]

submodule of V,; of dimension g, In situation
(1) £8/2 = =1 (mod [A:H]) where g is even,

(i1) B =1 (mod [A:H])

Further, every irreducible K(A] submodule of V.. has
dimension g. S9 if dim Vy = hg then

(1i1) he&/2 = (-1)® (mod [a:H) ).

1f [A:H] = 1 the result is trivial, If [A:H] = 2
then ([A:H], r) = 1 by hypothesis so r is odd and
P =1 :—'_(-l)i (mod 2) for all i,j. So we may assume
fa:H] > 2,

Let t be the smallest positive integer such that

rt =1 (mod [A:H] ). Consider the collection E. of all

-~ H
primitive idempotents of K[A] such that eVy # (0), 1If we
take e e Ey then eKlA] is an extension field of K = GF(r)
since A is cyclic. As a left K[A) module, eK[A] is
faithful on A/H, so eK[A] = GF(rt). In particular,

dimK eK[A]= dimK GF(rt) = t. This holds for every e ¢ EH.

Therefore, t = g is the dimension of every irreducible

K[A] submodule of Vy,
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In situation (i), there is an irreducible submodule

W of VH which is nonsingular and hence of even dimension

g. Now r® = 1 (mod [A:H] ) and [A:H] > 2 so <8/2

-1 (mod [A:H] ). 1In situation (ii) we obviously have

H

& = 1 (mod [A:H]).
For (iii) we consider situation (i) first. Here
we just raise the congruence of (i) to the h power, Second
we consider situation (ii). Here‘VH is a sum of pairs of
modules s0 h is even, That is, (-l)h = 1 or
he/2 =1= (-1 (moa [a:H]) ).
This completes the proof of (I1l. 7).
We now build.a character. Assume that H e SA and
consider RH’ the inverse image in the extra special group |

R of VH. Suppose that dim VH = hg where g is the

dimension of an irreducible K[A) submodule and A is cyclic,

(111. 8) Suppose that A is cyclic and \ is a nontrivial

linear character of D(RH). Then
rhg/zx(z); Xx=yz, y €cH, z¢ D(RH)
X,(x) = ¢ (-L)PN(=2); x~yz, ¥ e A-H, z ¢ D(Ry)
0 elsewhere

is an irreducible character of AR.

"By (11, 2)
hg/2
T  (x) x ¢ D(R.,)
ﬁ)\(x) = { .

0 elsewhere

is an irreducible character of Ry, The character 3,
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extends to HXRH so that Px? is trivial on H, Set

[A:H]rhg/zk(z); X = yz,
e ARH
Ny(x) = B0 (=) = yeH, zeD(Ry)
0 elsewhere
The character )\ extends to a linear character 7? of

AXD(RH) which is trivial on A, Set

rhgx(z); x=yz, yeH, zeD(RH)

AR .
M)Sx) = )?I H(x) = A(z); =~ yz, yea-H, zeD(RH)
0 ‘ elsewhere
By (I1I. 7) 1-(-l)hrhg/2 is an integer. KHence,
[AzH)

- h_hg/2
o [t - oo

is a generalized character of ARH.

X, (1) = he/2 5 o,

ARy | Gty %) g = R8T () ¥ + L 22 8(zh)
YeHXD(RH) yrvzeCA-H]XD(RH)

= &1 ju| + r |a - H]| CIrgl/icg WD),
But CR (A) = D(RH) so
. = P81 |y| + BEYL |y g
= |aR,].

Therefore (111, 8) holds,
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(111, 9) Assume the conditions of (I1II. 8). 1f [A:H]

# rhg/2 - (-1)h or (-1)h = 1 then XllA contains every

character of A/H.

rhg/Z X e H

X =
ala ) (-1)® x ¢ A-H

- hg/2_ L 18
ES R,

where PA /u is the regular character of A/H.

We still consider A to be c¢yclic, but now we want

to find a character on all of R rather than just RH'

(I1I. 10) Assume that A is cyclic., Suppose that A is a

nontrivial linear character of D(R). For x ¢ A we

consider m(x) and n(x) as defined in (III. 3). Then

) ()R (2) s g ~vxz, x e A,
iyl = : z e D(R)
0 elsevhere

is an irreducible character of AR,

We apply (I1I., 5) and (111, 8). From (III. 8) for
each H ¢ SA we get hH and 8y dependent upon H, From
(111, 5) we form the product character. It is not
difficult to see that

EYCONNE - B -
ercSA

And in the same fashion
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n(x) = E hy (mod 2).

% éHeSA
So that (IIl. 5) yields, using the character of (1I1I. 8),

the values given for Y¥,.

h

(I1I. 11) Assume the conditions of (III, 10)., I

Ao = ker [A —_—> Aut R/D(R)] then YRIA contains every

character of A/A  provided that

h.g../2
[A:H) # ¢ HSh/ - (-l)hH or (~-1) = 1

for every H ¢ SA'

Here we apply (III. 9) and (11I. 6) in much the same

manner as in (III, 10) above,
The inequality hypothesis of this lemma may be

improved under certain restricted hypotheses,

(111, 12) Assume that A is cyclic end A* is g subgroup.

Suppose that PA is the regular character of

A
5 ¥ = .
PA —PA-IA____and PA/A* - PA/A-.’:"IA- ..1...—..‘3 48 any
.
linear character of A and & = PA#@\./A*’# hen

[a:ad] -1 =1,
(F,p, = fazad] -2 P# 1, plus =

' We treat the three cases separately.

|
o]

A
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(la]l -1) ([a:ax] - 1) x=1
¥ (x) = 1 - [a:ad x ¢ axt
i 2 elsewhere.

We treat ¥° = J - 1,. Then lal(y°, (N

Laal - 1) (fa:ag-1-1+ (-[a:a¥]) (Jax| - 1)

ja] ([A:A¥] - 2). Suppose P# Lisw Plase = 1,%. Then
1al(¥°, ), = [Clal -1) (fa:ad - 1) -1] +

(-fazax]) (la*] - 1) = |A] ([A:A*] - 2). Finally take
Flax # Lyx. Then [A] (H'°,p)A= [Clal - 1) (fa:ad- 1) - 3
+ (= fAa:A%]) (] ker @IA-J:I - 1) + | ker,ﬁla_k{ [Aaza¥]

= |A] ([A:A*¥] - 1). 1If in each case we note the value of

o
(lA,X ), then the proof is complete.

(III. 13) Suppose that A is a cyclic p group for odd p.

Assume the hypotheses of (III, 10). Let A = C,(R). Then

Y.l 5 contains every character of AfA exceplt when [A:Ao'}

=\/[R:CR(A)] + 1 and R/Cy(4) is an irreducible K{Almodule.

Note that Ao € SA since A is a cyclic p group, The
subgroups of A form a chain, So suppose there is an
A% ¢ S, such that A < A% < A, The character Y, is
constructed from (III, 6) and (I11I. 9). But since both
A% Ao e SA from (111, 12) we get Y«A]A containing every
character of A/Ao. Therefore, only A and A  can be in S,.
Since R/CR(A) x, VAo the result follows directly from

(111. 11). For if A_ = A the result is trivial. 1If
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A, 7 A then an exception can only occur if [A:Aé] =zf +1
where [R:CR(AJ] = er and R/CR(A) is an irreducible A
module,

We are now in a positiocn to prove the main theorem
of this section, The previous results apply for cyclic A,
We remove this restriction now., We apply the previous
results to cyclic subgroups of A,

Before the main theorem we prove a simple lemma

concerning the.Galois group of k/Q.

(Z11. 14) Assume that a,b are positive integers and

(a,b) = 1, Suppose that § is a2 primitive ab root of unity

over Q, the rational field. Then there is x e G¥, the

Galois group of Q(§)/Q which fixes sb and takes §°

into g 2.

The automorphisms of k/Q are given by § > 8%

where (n,ab) = 1., So we need only find n so that

n=1(mod a) and n = -1 (mod b), But a’b = 1 (mod a)

and b'a = 1 (mod b) are solvable for a' and b! so

n = a'b - b'a works since (m,ab) = 1,

(111. 15) Theorem: Assume that AR is a sclvable group

- > -4 3 +
with normal extra special subgroup R of oxrdexr er L ang

(la]l,r) =1. Suppose that A centralizes D(R). Assume

that A\ is 2 nontrivial linear character on D(R). Then




30

rm(x) (_l)n(x) ] (x)N(z); y ~ xz, xeA,
®,(y) = zeD(R)
0 elsewhere,
irreducible character of AR. Further ¥(x) = 1 whenever

|<x>| is odd.

Let A\ - be the irreducible character of R lying over
A. Then o is fixed by A, By (1.1), (I, 3) we may choose
an extension of A on AR, ©, such that

i) 9|R=7\° and

the subgroup of G* fixing all =™ roots

ii) G *,
. of unity of the field k = Q(8§) where O

is a primitive |AR| root of unity over

Q, fixes 8, 8 of (1I,1) is a good choice,
This choice of © is unique, Further, if A*¥ < A is a
subgroup then O] A*R is the corresponding unique character
of (I, 1) on A*R also satisfying i) and ii).

Let x ¢ A, By (I1I, 10) and (I, 2)
Bl sr = Ya P |

for some linear character  of <x>R/R. But 3 is an r'
character, By (111, 14) GO* contains an element taking
p—>p~L. But both © and Y, are fixed by G_*. So f is
a character of <x>R/<x2>R. That is, P maps x into {1,-1}.

Therefore O = #, has the values of (III. 15).
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2

Remark: If x ¢ A and x° = y and [<x>:<y>] = 2 then

§(y) = 1. This follows by looking at #, | ore
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IV. EXTRA SPECIAL EXTENSIONS

Following (I1I., 10) we proved (III. 1l1) which
concerns itself with which characters appear in YAIA.
Ideally, we would like an analogous result to follow
(I11.15). For purposes of the main theorem it would be
sufficient to have such a result for A a class two odd p
group. For such a case, the computations here are
incomplete. So we settle for the case where A is the
central product of a cyclic group of order p or p2 and an
extra special group., We carry the argument as far as
possible for the class two group.

Assume that p; r are distinct primes and p is odd,
Suppose that P is a class two p group of order pZdiZ(P)l
where |Z(P)| = p®. Assume that PR is a group with normal
extra special r subgroup R of order r2m#1. Suppose that
every irreducible P submodule of R/D(R) = V is faithful,
and P centralizes D(R). Let K = GF(r) and k = Q(8§) where
Q is fhe rational field and § is a primitive |PRIth root, of
unity. All characters are k characters unless otherwise
specified,

Recall that V is a symplectic space. The Brauer
character of P on V (p# r) is a sum of t characters as in
(1. 2). Hence, dimK vV = tpd. We must find out what t is.

Let m, be the smallest positive integer such that
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= 1 (mod pb).

H
il

m

Then for b =1, r b

1 (mod p).

(Iv., 1) Suppose ¢ is the larpgest positive integer such

m :

that r T = 1 (mod p%). Then my =m if b < c and
be

m, =m pC if b>c,

If b < ¢ the result 1s obvious, Suppose b > c,

and n = m; pb'c, and r™ =1 (mod pb) but r" # 1
b+l)

(mod p Clearly m ., = np. The question then is,

-
Pb 2)?

what about r'P = 1 (mod That is, what about

rnp - 1
rn - 1

Now (£8P - 1) = (£ - 1)(@(P-1) 4 2(p-2) o = . .1,

= 1 (mod pz)?

and rn(P'J) = 1 (mod pb) exactly. wTherefore,

(n(P-1) 4 o

ee * 1) =p (mod p

If b > 1 then we are done, So we may assume that

b=c¢=1. Hence, n= m; . Now rnj = 1 (mod p) exactly

for j=0,1, ... , P~1. So b
jfp + fjpz. Therefore

Uin ™ zprto D503 =p« 2570 =

= 1 + fp and I = 1+

p (mod pz) since p is odd. Hence the result,

: m
(Iv. 2) GF(r ®) is the splitting field for P on V where
lz¢p) | = p?.
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The character of an absolutely irreducible P module

over an extension of GF(r) is given by (1I. 2) and takes
By 24
its values in GF(r ?) exactly. If |P| = p |z(P) | then

m

an irreducible GF(r ®)[F] module has dimension pd over
some finite division algebra by the Wedderburn Structure
Theorems, So by the Wedderburn theorem on finite division

m
algebras, GF(r 2) is the splitting field for P,

(1v. 3) 1f |z(P)] = p® then t = m.n where n is the
number of irreducible GF(r)[P] modules in a decomposition
of V.

The dimension over GF(r) of V is tpd. By (1v. 1)

and (IV, 2) every irreducible GF(r) [Pl submodule must have

dimension mapd. There are n of them so tpd

d
= manp .
Hence the result.,

Next we compute information concerning m(x) and n(x).

(1v. 5) a) n(1) 0 (mod 2)
m(l) = m

b) If xe P and <x>(\Z(P) # 1 then
n(x) =n (mod 2)
m(x) =0

¢) If xeP, <xN2Z(P) =1, and |<x>| =p

3

then n(x) = 0 (mod 2)

m(x) = m/pt.
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The K dimension of V is 2m., Hence (I11.3) shows
immediately that m(l) = m, Further, n(l) = 2m so
n(l) = 0 (mod 2), Next, Z(P) is fixed point free
elementwise on V., So if x e P and <x>() Z(P) # 1 then

<x> 1s fixed point free elementwise on V, Therefore,

f

m(x) = 0. If |<x>| = p* then an irreducible K[<x>)

submodule is faithful of dimension me. Hence

a=c c
P

n(x) = 2 m/mg = t/m; = m; n/mlpf- =n (mod 2) since

p is odd, Finally, for x ¢ P, <x>(1 2(P) = 1, and

|<x>| = pf we find from (II. 3) that <x> acts as epd-f

regular representations on V, Therefore, m(x) = tpd'f/2
= m/pf. Now [V,<x>] has dimension 2m - (Zm/pf)

= (2m/pf) (pf -1l). In other words, if P is the regular

representation of <x> then <x> is represented upon

[V,<x>] as 2m/pf times P- 1. We notice that for an
appropriate extension field f’contains pg e pg'-1
absolutely irreducible representations with kernel precisely
of order p =8, Hence [V,<x>] contains (2m/pfmg)(p3-pg'l)
irreducible submodules with kernel precisely of order

pf'g. But n(x) is the sum of these numbers as g runs
from 1 to f - 1, Fix g. Then g<f < d < a since

d and | [<x>,P] | = p®. Therefore, (2m/pfmg)pg'l
d+g-f=-1

|<x>| < p
= (ma/mg)np isan integer; so n(x) is even since p -1

is even, This completes (IV, 5).

(1v. 6) a) r@(P-1)1/p dra-1,

=1 (mod p
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b) £ - (-1)P - Pcfm/p _ (_l)n] = sp2d+2&-l > 0
for 8 >0 unless d=a=n=1, m=p =3, and

r=t=2,

To do this we require (111, 7). We examine the
representation of Z(P) on V., Since an irreducible
faithful Z(P) module over K always has dimension m_
and since VIZ(P) is a sum of such modules, VIZ(P) must

contain tpd/ma = npd

irreducible Z(P) modules, In our
case p is odd. If n is even then a) follows by a

simple computation., If n is odd we are in situation i)

of (111, 7) and r:m's"/2 = =1 (mod p%). We raise this
expression to the npd"l(p-l) power to get a) since
fmn(p-1)1/p = (m_/2)(np?"*(p-1)).

For b) we rewrite r™ - (=1)0 - p[?mlp - (=1)™)
= rm/p(r[m(p-l)]/p_p) + (p-l)(-l)n. Using a), for some
q this becomes /Py + apdtaLlop) + (p-1)(-1)®. We
assume this number is less than or equal to zero, Hehce,
rm/P(l + qu+a-l - p) < (p-l)(-l)n+l. But the left hand
side is positive so n + 1 is even, Further, the left hand

side is greater than p-1 unless Q@ =1 and d + a - L = 1,

This forces d = a = 1, And [m(p-1)]/p becomes t(p-~1l)/2.
So rt(P'l)/z =1l+p. So r=2, Now t = mn and

m

rl=1+% fp for some f, But m < t(p~1)/2 s0 £ =1

and m; = mln(p-l)/Z = t(p~1)/2. Therefore, n = 1 and
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p =3, Fromhere we get d=a=n=1, 1 = m, = mn
=t =2, and p = tpd/2 =m= 3,

We argue on congruences for the rest. As above, when

m_n/2
n is evem, r ° = (=1)® (mod p*). And when n 4is odd
m_n/2
- = (=1)® (mod p®). In particular, /P =

(-1)2 (mod pd+a—l). Therefore, rm/p = (-1)" + fpd+a-1.

D = [(-1f + £p9T8 1P = (21)P & £p978 &
L2, () (epd*e 13 (c1)™(P-3) | and finally
P o (-1)® - p [FVP . (-1)7] =
Z: jgz(g)(fpd+a-l)j (_1)n(p-J) =0 (mod P2d+2a-l).
From this, and the above argument, b) follows,
We now put strong hypotheses upon P, We assume that
P is the central product of an extra special group of order

pZd+l and a cyclic group of order pa where a = 1,2,

(1v. 7) 1f |z(P)| = p then P contains

a) p2d+l -1 elements of order p or
b) pZd - 1 elements of order p and pzd(p-l)

elements of order p2.

1f !Z(P)I = p2 then P contains pZd+1 - 1 elements of

order p and p2d+1(p-l) elements of order pz.

Here P' is of order p so x —> xF is a homcmorphism
of P whose kermel contains all elements of oxder p plus 1,
the identity. In case a) P is of exponent p and in the

remaining cases P is of exponent pz. Using the order of
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P equal to pZdIZ(P)I, the result follows easily,

(1V. 8) Assume that P is the central product of Z(P) with

an extra special p group. Ihe character ., of (III, 15)

on PR has the property that (*>JP,M)P > 0 for all .

irreducible on P except when |P| = 27 and IR| = 27 and

R/D(R) is a faithful irreducible KIF]module.

We compute the inner product directly.

First suppose that MIP, # 1P" Then MIZ(P) = Péu

o
for a faithful linear character M, of Z(P). IPI(*}IP,A)
= rmpd“' PaE# (-l)n(x)uo(x. -l)- By (Iv. 5) b)

xeZ(P)

n(x) =n (mod 2) so
= % - (-1)%p% # 0
Therefore (*ZJP'“)P » 0,

Second, suppose that MIP, = lP"

=
[BlGea o) = 2% ¢ T, 0N RE G,

For our group P, %P ¢ Z(P) for every x ¢ P.

2

So for every element X of order p~, <x>N\Z(P) # 1L and so

m(x) =0 and n(x) =n (mod 2), For the elements of

order p, <x>N2Z(P) = 1 unless x ¢ Z(P). 1If %x¥ =1 and
x # Z(P) then n(x)

H

0 (mod 2) and m(x) = m/p.

A) Suppose that P is of exponent p., Here a = 1,

i) Assume that M = lP.

= 2P o («1)P + p(-1)P + /P (29T .y 5 o,
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ii) Assume that M # l,. In this case ker KX is of
order pZd. So P#n kerih contains p2d - p elements not in
Z(P) and p = 1 elements in Z(P)#. There are then

p2d+l - p2d elements on which M is nontrivial. Thus

22 o (1) + p(-1)® + pr™P(p2d-L | 1)
o/p,pld - p2d-1
= PR

=P o (e1)® - p [P o (-1)?] >0

except when r = 2, m = p = 3, and n = 1,

B) Suppose P is of exponent p2. Here a = 1, 2, Also, P
2

o p2d+a - p2d+a--l

2d+a=-1
pdra

elements of order p~ and
-~ 1 elements of order p,

i) Assume that M = lp.

= 2P o (aD)P + p(-1)P + rm/p(p2d+a-l

- p)

- (-1)® - p[E™P - (-1)P]
- pzd+a-1(rm/p - (-1)D) + (_l)np2d+a
" Sp2d+2a-1 ” p2d+a-l(rm/p - (=1 (_l)np26+a % 0
since 2a - 1 > a,
ii) Suppose that m # lp.
a) Assume kermM has exponent p, Then (kerﬁ&)#

is precisely the set of all elements of order p.

o rm - (_1)n e P(-l)n + rm/p(PZd'i'a-l - p)

2d+a _ P2d+a-1

- (-1)(P )

p -1
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=™ - (-1)® - p [P - (-1)P]
" P2d+a-l [rm/p - (-1)®] > o.

b) Assume that ker \ contains an element of order

Pp°. Then it contains

and pz‘ili"a_2 - p noncentral elements of order p, Outside

elements of oxder p

2d+a=1 _ p2d+a'2)(p-1) elements of

of ker M. there are (p

2 2d+a-

order p“ and p 2(p-i) of order p.

- (_l)n " p(-l)n 5 im/pp?.d-ﬁ-z-i ,
(-1)P(pAdtart . pidva-2,

+ (-2)(p"aTemL | pRotasdy
=™ o (-1 - p[F/P - (-1)P] > 0
except for the noted cases,
It is always true that P - keriAl contains an element
of order pz, Suppose x ¢ kerjy and |<x>| = pz.

Suppose y € P = ker ), and yP = 1, Then

(& _

(xy)P = =PyPx,y]“ = xP # 1.
But M (xy) = M(y) # 1, Hence Xy ¢ P - kerj{ . So we have

treated all possible cases and

(IVv. 9) Suppose that P is an extra special odd p group.

Assume also that P; <P, and P, 4 P;, and PI/PO has

a faithful irreducible k[P,/P)module. TIhen P,/P_ is

cyclic of exponent p or pz, or P,/P, is the central
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5
product of an extra special group with Z(P,/P ) and is

of exponent p oL pz.

If x ¢ P then xFeD(P) = 2(?) and |Z2(P)! = p;
so the exponent is p or p2. Set 2 = Pllpo' Suppose
P is nonabelian. Then D(PR) = D(P)PO/PO. Hence, Z(2)
> D(RP). But Z(R) is cyclic. The result follows easily
since P/Z(P) must be of exponent p and be a nonsingular

symplectic space,

(1V. 10) Suppese P is a subgroup of an extra special

odd p group, Assume that PR is a group with normal

e

extra special r subgroup R (r # p). Suppose that P

centralizes D(R). Suppose Po = CP(R). Assume that
o2l

p¢#rd +1 for any r9r® where |R] =

and
¢ =1,2, Then

Gy lp,m )p > 0
for every characterrof P/P, and (ﬁllP'LL)P =0 for
allu #1 of P .s.»_qszxsk.}_a.sulpo%l, if %, is the

character of PR given in (III, 15).

As in section 1II, let S, be the collection of all
subgroups of P which appear as kermels of irreducible
K[P] submodules of V = R/D(R), For H ¢ Sp let Ey be the
collection of all primitive central idempotents of K[P]
where eV # (0) and ker(:P —_— Aut eK[EH= H, Let Vy

be the corresponding subspace of V and RH the inverse
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image in R of V. Note that (P/H)RH is a group just as

was considered in this section. That is, V., is a sum of

H
faithful irreducible K[P/H} modules, By (IV. 9) the
character ﬁ}.of (111, 15) on PRH is either that considered
in (IV, 8) or that in (II1. 13). Applying these two

results with (III, 6) gives the conclusion,

(Iv., 11) Assume that P is a subgroup of an extra special

odd p group, Assume that PR is a group with normal

extra special r subgroup R (r # p) of order r2m+l.

Suppose CP(R) = 1, Assume that P centralizes D(R).

Assume that p° # 4+ 1 for c= 1,2 or d <m, Suppose

e —— | Mt e e e TS | Powr B an e e e s e At

(XIP,IP)P > 0,
For § irreducible on P, (J7, l1p)p > 0.
By (I. 2) and (III. 15) X =J%,, But by (IV, 10) J is in

x*® Hence the result.

}.
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V. REDUCTION LEMMAS

Suppose that AG is a solvable group with normal
subgroup G where (IA[, le]) = 1, Suppose that |G| =
qmqo where (q, qo) =1, m>0, and ¢q is a prime.
Suppose that Q = GF(q) or the rational field and§ is a
primitive qOIAI, (a, |A]) = 1, root of unity and k = Q(§).

Suppose that V is a k[AG] module,

(V, 1) Suppose A' < &% < A and A, £ A. Suppose that J

is an irreducible kfA,) module. Suppose that

(n}

L = ker [4;, —> aut J} > A;N &%, Le

1
1=2¢ A(A*). Then
g

ker [A —> Aut 1]

i

LA¥,
First suppose C (A%) = J ' has kernel LA*, Set
AlA* AlA*
J, = La*, J| 7. Then J| =J + J, as a k[A,A%)
3 o i 1
module, Let J' be an irreducible component of Jl.
Then (A%, J'] = J'. Hence, [A%, J'|%] = 0v]% so 1

. A A
must be contained wholly in Jol . But JOI ILA*

= WEIA@ WBI | ane Now A%, LA* A A so wlI |,

is both a trivial LA* and A* module. Hence, JOIA = I,

So we may assume that ALA* = A and prove the lemma

in that case.



A% M Al
AlA""
~ i
g ALY N Lax
: *
= .:F!Al/\I_“&*,.fli“ﬁ‘vc = .J‘ILILA since

AlLA* = AlA* and L < Alh LA¥ < L(Alﬁ A%) = L, But L is

AlA*

trivial on J|  so J| lae  Spax (dim ) 1LILA*

where lL is the trivial L module of dimension 1. Next

- LA* — . v { =
dim Homkcm,g(lm*, 1Ll ) = dim ﬂomkm\lm*IL, ) = 1.

So dim C_ , A*(LA.*) = dim J, Clearly C , A*(LA*) is
Jl*L 1
J|

contained in I, But

. * 2 3 LA* LAY
% Bk Homk[L]uA*!LA“IL, 1) = 1. And, in addition,

AL A%

I 2 LA " _

J| lLA”-‘lA* =y (dim J) lL! {A*' Therefore dim I =

dim J = dim CJIAIA*(LA*). Hence C {La*) = 1, So

J |81

LA¥* is in the kernel of I,

Suppose B > LA*. Then since A;B = A A%, (:AIB: Bj

[A;: A|nE] and AN B > L we must have A;N\B > L. Now
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¥

J| -

s <5 JleAl . Bk

s B =
dim Hom rqy (1, JIBnAl[ ) = dim Homy [ /\a,] 6 N JIB,\Al)

= 0 since Al/A*n Ay is abelian so Al/L is cyclic and JanA

is a sum of faithful irreducible submodules, So the kernel

L
of 1 is LA*,

(V. 2) Suppose A' < A* < A and A; < A, Suppose U is a
. AG
kalG] module and V =, . U|*¥., Then

1) G (A*) = (0) if and only if Cy(A,na¥) = (0).
1f G (A%) # (0) then
ii) CACV(A*) = A*CA CU(AlﬂA*).
L

AG
We know that VIA* = Ul lA* &
%
L. o wau| T
AdenA, G (4,770 A%

*

The 7's may be chosen in A, Hence nﬁUI(A G)“'ln A,,,]A is
1

i 4

- *
conjugate by T to UlA GnA*lA since A* 4 A and Te A,
1

But then CU’ IA* (A¥) "N'A* lA* (A%),

c
A GNAX wau | (4,6)" “ln ax

. *%x
Now dim HokaA*J(lA*’ U]Aln A*[A ) =
dim H°“‘1<EAln A¥] (lA*lAlr\ A% UlAlr\ A -

Hence CU(Alr\ A*) = (0) if and only if CV(A*) = (0),.
Remark: With A* = A this says, CU(Al) = (0) if and only if
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CV(A) = (0).
To get ii) we apply i) and (V, 1).

(V. 3) Suppose that H is a group with pormal subgproup N

of index n, Suppose that U is an H module over a field K

characteristic zero or prime to n. Assume that UIN

I 15
1} Hh

completely reducible, Then U is completely reducible,

Let 1L = T, ..., T be coset representatives of

i . TN, .\n. o "
N in G, Then i T @3J)nlj where n e N

] i
Let J be an irreducible submodule of U._Thei UIN =
Jlgy+ 1 where I is an N module., We may find I since
UIN is completely reducible, Let w e U, Thenw=y + 2
uniquely where y ¢ J and z ¢ I. Let ¢ : w —> y be the
usual projective K[N]homomorphism of U onto J. Set

¢ = n~t Z:i LY ﬂi'l.
Note that n~' exists in K. This is clearly a K{H]
homomorphism of U into U since ¢ is a K[ﬁ]homomorphism.

1

For w e¢ U we have uniquely T&'lw = ‘ﬂi' yi' o+

-]. [ -l (] -l ' s
‘Ki z;' where ﬂi yy' e J and ﬂi z;' e I, Now J is
an H module so y.' ¢ J. Hence,

_ =1 -1 _ _ _=1 -1
§Gw) =0} MET e =T L KT,y
-1 = =L -1 = =Ly
T2 ) =T L TG W Tyt = eyt e J
In other words, if w ¢ J then @(w) = w. Hence, d is

idempotent. So the kernel of ¢ is a K[H]module
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complementary to J in U, Therefore, U is completely

reducible,

(V. 4) Suppose that V is a completely reducible k{AG]

module, Assume M < G is normal in AG. Suppose A, < A.

Then V|AM is completely reducible.
1

By Clifford's Theorems VIM is completely reducible,

Hence (V. 3) applies to VIA Me
1

(V. 5) Suppose that H is a group with normal subgroup N

of index n, Assume that U is a completely reducible N

module over a field K of characteristic 0 or prime to n.

Then U|H]N is completely reducible so U|® is completely

reducible,

Let “1 =1, +e. 5 W, be coset representatives of
N in H. Then UIHIN = W& ® T,EU 6 ... ® WEU. Suppose
U= U1 L., T US where the Ui are irreducible N modules.

Then ﬂiﬁU = viﬁul T Lae T “iKUs

where the
ﬂiﬁuj are irreducible N modules since N A G, So
U|H|N is completely reducible, So by (V. 3) UIH is

completely reducible,

(V. 6) Suppose V is an irreducible K[AG]module and

VIA ¢ is not homogeneous for AG & AG, Assume that A is
(o]

" . %* i
nilpotent, Then there is a subgroup A, £ A% & A of prime

index n such that
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axg S Up ¥ .o * Uy

where the Ui are irreducible A*G modules and V QAG Ul

v|
!AG.

We know that AOG is nmormal in AG since A is nilpotent,

So by Clifford's Theorems VIA G is completely reducible,
()
So V]AOG =V, *+ ... + V_ where the V; are homogeneous

components. Let A, = Stab (A,Vl). Since A G & AG,

AlG = Stab(AG,Vl). So Vl is an irreducible AlG module

and Vl(AlG)lAG a,qV. But A is nilpotent so there is

A; < A% b A maximal of prime index n so that V|,
= Ul + ...t Un where the Ui are irreducible A*G modules

. o A%*G AG
with Uy 2, V,(4,6)] and so Ull V.

¥AG

(V. 7) Suppose that Y 4 X < G are A invariant subgroups

in AG, If A fixes the coset XY for x ¢ X then A fixes

an element xy e XY, Further CX/Y(A) = Cy(A)Y/Y.

Suppose that A fixes the coset xY, Let AY act upon

XY by ay: h ¢ xY ——> ayha'l

where a ¢ A and y ¢ Y.

Since A fixes XY and Y 4 X we see that AY fixes xY
permuting the elements, Further, Y acts transitively as
the regular representation of ¥, The subgroup of AY
fixing h ¢ XY is thean of order [AY: Y] = |A|. Therefore,
it is a Hall |A| subgroup of AY and is conjugate in AY to

A, Therefore A fixes an element of xY. The rest is

obvious,
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(V. 8) Suppose M < G is normal in AG. Assume we G,

Then we may choose w' enM so that

c (m) = an(a™ = anan®,

— 0 L
Let A = ANn{(AM) . Now ™™ e CG/M(A0)° So we may
choose w! ¢ wM so that =w' ¢ CG(AO). Then

Cplnt) = AnaO™ = an(an)® = Ag.

(V. 9) Suppose p | |G|. Then A fixes P, some p Sylow

subgroup of G,

Choose Po & p Sylow subgroup of G, Let N = NAG(PO)‘
Then NG = AG., Suppose X ¢ AG, Now Pox is a p Sylow

.« SO

subgroup of G so there is y ¢ G with Poxy = Po

Xy ¢e Nor x e Ny'l < NG. Hence AG < NG.
Next (]G], |A]) = 1 so |A| divides |N|. 1In other

words, N contains a Hall IAI subgroup, Ao. There then is

A

o We get A <

z ¢ G so that Aoz = A, By putting P =P

(v. 10) If H < CG(A) and N = NG(H) then
N = CN(A)CN(H).

We apply the Three Subgroup Lemma here which says
that for subgroups H,J,L of a group [H,J,L] = 1 and
[7,L,E] = 1 implies [L,H,J] = 1.

Clearly [A,H] = 1 and [#,N] < H. Therefore
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(a,u,8] = [B,N,A] = 1. 4nd so [N,A,H} =1 or [N,a]
< CG(H). So by (V. 7) N = CN(A)CG(H). But obviously
CoH) = Cy(H).
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Vi. THE MAIN LEMMA

In this section we prove the major result of this
thesis, It is the lemma which makes everything work, The
familiar technique of reducing a minimal counter example
is used, The pattern was set in E, Shult's work (8). The
object is to reduce the minimal counterexample so that the
character lemmas of sections 111 and IV may be applied.

The result is carried out for a general class two odd p
group, Only section 1V prevents us from getting the strong
result,

In the beginning reduction steps are fairly complete,
As arguments are repeated often they become shorter with
use,

Suppose that A 1s a group and (lAl, r) = 1 for a
prime r, Assume that p is a prime and (|Al|, p) = 1, p#r.
Suppose that AR is a group with extra special normal
subgroup R, We assume that A is irreducible on R/D(R) and
trivial on D(R) with &, = CA(R). Suppose that Q is GF(p)
or the rational field and &8 is a primitive lAthh root of
unity and k = Q(8). Assume that V is an irreducible k{AR]
module which is nontrivial on D(R) and CV(AO) = V. We also
suppose that for any n | exp A, n # £° + 1 for any ¢ if
r2c+1 | IRr].

(*) Ay is called a (*) group if VlA contains the
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trivial A module for any R, V, and A < Al satisfying the
above conditions,

By (I1I, 11) abelian groups are (*) groups, By
(IV. 11) an odd p group P is a (*) group if all of its
irreducible representations are cyclic or the central
product of an extra special p group with a cyclic group of
exponent p or pz. That is, all irreducible representations
are subgroups of extra special groups, Note that subgroups
and factor groups of (*) groups are (*) groups. In
particular, all class two groups of exponent p are (%)
groups, We do not know if all those of exponent p2 are (*)
groups since there is a class two group P of oxrder p6 of
exponent p2 where P/Z(P) is of rank two and exponent pz
and P has a faithful irreducible character. This group is

not covered in section 1IV.

The lemma is stated on the next page.
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(VI. 1) Theorem: Suppose that A is a p group of class

< 2 for odd p. Suppose A is a (¥) group. Assume that AG

is a solvable group with normal subgroup G where (lAl, IGI)

= 1, Suppose that |G| = qmqo for a prime q # p (m > 0)

and (q,qo) = 1, Assume k = Q(§) where Q = GF(q) or the

rational field and § is a primitive IAlqo root of unity.

Suppose V is a k[AG] module faithful on G. Assume that

i) V is a sum of equivalent irreducible k{AG|modules

a

ii) if exp A = p~ then pb # r% 1 for 1 <b<a

2c+ll lel.

and any prime r such that r
Then
1) Cy(A) # (0) oz
2) cy(at) = (0) o
3) CV(A') # (0) implies there is cyclic D < A with

a) CV(A'D) = (0) and
b) C,(A'D) > C(A%).

The proof begins on the next page.
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We assume that (VI, 1) is false and choose a
counterexample (A, G, V) minimizing |A]| + |G| + dim V. So
we have the following:
113 CV(A) = (0) and
21) Cy(A') # (0)  and
3') for any cyclic D < A
at) CV(A'D) £ (0) oxr
b')  Cg(A'D) £ Cylat).

(VI, 2) V is an irreducible k[AG] module.

Here V=V, + ... + V_ is a sum of equivalent

irreducible k[AG] modules. Hence, (A,G,Vl) is a counter-

example if and only if (A,G,V) is also, So t = 1.

(Vvi. 3) V|, is a multiple of a single irreducible A_G
A

module for every A, 4 A, In particular, VIG is homogenecus,

Suppose not, By (V. 6) there is A, S A b A of prime

index p so that

where the U; are irreducible 4G modules and V =, . U, |4€,
Let G, = ker[G —> Aut U,], G, = &/q;.

Clearly (Al,gl,Ul) satisfies the hypotheses of
(VI, 1). Hence, (VI. 1) holds in this case by inductic,
IA

Now VfA N UlIAG|A "

&, Upl,

1) So by (V. 2) cUl(Al) = (0) if and only if cy(a) = (0).
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2) Also by (V. 2) we have, since A; 2 A' > A,
(0) # ¢y (4,NA") = ¢y (A1) < Cy (a,").
1 1 1
Hence we find

3) there is D < A; cyclic so that

a%) CUl(Al'D) = (0) and

b3 @, (A 'B) & G, (&%),
=1 =1,
Using the fact that A, 2 A' > A;%, from ar)

we get

a;) Gy (A'D) = Cy (4,'D) = (0).

§ ] ]
And C. (D) > Ce (Al D) > Cq (Al ) > Cq (a%) 50
=L =1 =1 -1
[} L ]
bl) Cq (A'D) > Cq (a').
=L =1
Choo;e 1= ﬂl’ eee 3 ﬂ§ as coset representatives
of Al in A, We may arrange the 'g% so that Ui = “iUl'
Further, x ¢ A; acts upon U; as X o= “i'lxﬂi acts upon
s
Ul, and upon gi as x - acts upon gl with the isomorphism
'R- s A
S i 1 3 ' '
yGl >y G1 of gl onto G.. Since A' < &l and A' L A,
A'D & A we get
]
ai) CUi(A D) = (0) and

b.) ¢C. (A'D) Cc. (A%).
e <] =g

So finally
a) CV(A'D) = (0) and
b) Co{A'D) = C.(A') by (V. 7).

Therefore, le G is homogeneous.
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(V1. 4) For every A < A we have CV(AD) # (0).

Suppose A < A and CV(AO) = (0). Hence we may choose

A, £ Ay b Aand A; < A since A is nilpotent, and Cy(A;)
= ] -4

(0). Clearly Al' < A', So CV(AO ) > CV(A') # (0). So
by (VI, 3), VlAlG is homogeneous, Hence, using induction,
we may apply (VI. 1) to (Al, G, V). From the foregoing,
it is clear that we have
3) a') Cy(a;'p) = (0) and

] ] ]
b') Ci(a;'D) > C(Ay")

for a cyclic D < A So

1°
a) Cy(a'D) < Cy(a,'D) = (0) and
CalD) 2 Co(A;'D) 2 Co(ag?) = C(af)  or
b} Cg(a'D) = G (at).

Hence the conclusion,
(VI. 5) A is faithful on V,

Suppose not. Let A = ker [A —> Aut V] . Since G
is faithful and V is an irreducible AG module we must have
EAO, GJ = 1, Hence (VI, 1) applies to (A/Ao, G, V).

Let A = A/A and A, = A'A_/A_. Then 4, = A' so clearly
Cv(é) = CV(A) = (0) and Cv(é') = CV(A') # (0). So there is
D < A cyclic with

a") Cy(a'p) = (0) and

b")  Co(A'D) 2 Colaf).

Let D < A be cyclic such that DA /A = D. Then since
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A'A [a, = A',
a) Cy(A'D) = (0).
And CG(D) > CG(A'D) P CG(A') 80
b) CL(Aa'D) 2 C(Aart).
Therefore A is faithful on V,

Choose M < G as a maximal AG invariant subgroup of G.
The group G/M is an irreducible A module, where the action,

for x ¢ A and t™™ ¢ G/M, is

-1
x(nM) = #* M = (xnx"

Lym,

From each A orbit on G/M choose a representative n,M, So

that T\'lM, w5y ﬁmM form a complete set of A orbit

representatives, By (V. 8) we may choose W, i=1,

=1 _ w=1 _
m so that CA(‘I\'i) = ANA L AN (AM) i"" = A;. By

choosing A conjugates of 1\'1 =1, oo 5 T, We get a

complete set of coset representatives of M in Gj; ﬂ'l =1,

-1
eee 5 Ws ses s T Where L% Rl
Y "'m? * e CA(Wj) = ANA
-.1
AN (aM) J = Aj, 3 =1, ..., e. Further, A permutes the
T(j if we specify for x ¢ A that,
X('NjM) = -'".J(X)M'

Now V|G is homogeneous. Therefore, VIM =Vt .. vV

with homogeneous components Vi. Further, G is transitive

on the V,'s and M fixes each one. That is, f divides
la/m].
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(VI. 6) 1f £f# 1 then f = e = |G/M| and the Vi may be
numbered so that A fixes Vl’ ™V, = Vi’ and A permutes the
Vi exactly as it permutes the T .

Consider the permutation representation ¢ of AG on
the V;'s, Now M is in the kernel of $¢. Further GNker ¢
is a proper AG invariant subgroup of G containing M, so it
must be M, Since G/M is abelian, GNker ¢ is the
subgroup of G fixing every Vi' And now £ = e = IG/MI.

But § is a transitive representation of A(G/M) given
on the cosets of some subgroup B of order |A(G/M)|/e =
|A]. So B and A are Hall |A| subgroups of A(G/M). Hence
they are conjugate in A(G/M). 1In other words, the
representation is given on the cosets of A. Therefore A
fixes, say, V,. Setting V, = T.V,, for X ¢ A we get

il
- = -1 x ‘
XV = x(ﬂivl) (xnix )Vl =T V1 = i(x)vl = vi(x)'

So this step is complete,

(VI. 7) If £ # 1 then for the (A,AM) coset representa-

tives ﬂi =1, «.. , T We have

s m A
Vie ® 2im® Vila 15

AG

Since AM stabilizes V, and IStab(AG,Vl)I = |AG|/e

= |AM| we have AM = Stab(AG,V;). Now M & AG so V B s
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AG
v, (aM) "

By the Mackey Decomposition we get
AG A
Vg 2 vian ™, &, Bile my | BT
a0 N oa
m A
R T VllAil
-1
TG
since (AM)* N A = CA(“i) = A;.
Remark: If YJA contains the trivial Aj module then
J
VIIA |A contains the trivial A module by (V. 2). So
J
CV(A) = (0) implies that CV (Aj) = (0) for each j =1, ...
1
, m., (Hence also for j =1, ... , €.)

Let A, = ker[o —> aAut G/M] .

(vi. 8) If Vv,| Ay does not gcontain the trivial Ay,

submodule then £ = 1, (i.e. VIM is homogeneous,)

Suppose VllAM does not contain the trivial A,

submodule. Now A M & AG since [A,,G] < M and A, & A, So
VllAMM is a homogeneous A M module by (vi. 3) and (VI. 1)

applies to (AM'M/MI’VI) where
Ml = ker[M —_> Aut Vi]

by induction.

By assumption CV (AM) = (0).

i

Next AM < Aj for every j. So AM' < Ajr\A' for every

j. If C, (A,') = (0) then (A:NA') = (0) for every j.
v, A b
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Hence by (V. 2) Cy I IA (A') = (0) for every j. Hence
1'A.
J

CV(A') = (0). So we must have Cy (AM') # (0).
1

This means that when we apply (VI. 1) to

(A, M/, V)
we have
3) a") Cvl(AM'D) = (0) and
b") CM/MI(AM'D) 2 CM/Ml(AM')'
Set M; = ker[M —> Aut V,], M, = M/M,. Now

AM'D < Ay 8O AM'D is centralized by every T.,. Hence
conjugation of A,'D by N;l fixes A 'D elementwise,
Therefore,
1

Cﬁi(AM D) > CMi(AM')’
So by (V. 8)

Calay'D) = Colayt).
That is,

Co(D) = GL(A,'D) = Co(AL') = C(AY).,
And
[}
b) CG(A D) > CG(A').
Again, since every T. centralizes Ay

Cyla D) = (0).

That is,

a) Cy(A'D) < Cylay'D) = (0).

Hence £ = 1.
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(vi, 9) 1f A/AM is abelian then £ = 1,

If £ # 1 then A is cyclic and irreducible on G/M. If
= i X i
ﬂi # “1 1 then the orbit {“i | x ¢ A} is faithful on
A/AM’ Hence it is the regular representation of A/AM.
That is, A; = Ay. By the remark preceding (Vi. 8) and

(V1. 8) we are done,

(vi, 10) If A/AM = A is nonabelian then f = 1,

Now G/M is an r group for a prime r. But A is a
class two p group which is faithful and irreducible on the
GF(r) module G/M. So we apply (II, 7) to get a T, M which
i#

is fixed by no element of A", In other words, CA(“i) =1
or CA(“i) = A; = Ay. So again by (VI, 8) and the remark

preceding it we get £ = 1,

Under the hypothesis of (VI, 1) this means VIM is
homogeneous and £ = 1,

Now G/M is an r section, So by (V, 9) we may
choose an r Sylow subgroup R, of G fixed by A, Next let
R be chosen in Ro minimal such that

i) R is A invariant, and

ii) RM = G,
We eventually show that R is extra special,
Next consider VIAM =V, * ... * V. where the V; are

homogeneous components, Since VIM is homogeneous, each
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Vi is faithful and is a multiple of a single fixed
irreducible M module, Since CV(A') # (0) we may choose

V, so that Cy (A') # (0), Clearly CV(A) = (0) implies
1

CV.(A) = (0), i=1, ... , t. So we apply (VI, 1) to
i

(A, M, Vl) and obtain D < A cyclic so that
(0) and

a") Cvl(A'D)
b") Gy (A'D) > C(A').

A% # 1,

(Vi . 11) If A is abelian then CA(M)

In this case, A' = 1 so Cy(A'D) = C (D) x Cy(a') = M,
(0) so

Hence D < CA(M). But Cvl(A'D) = cvl(D)
1 # D < A%,

(Vi . 12) CA(M) = A% # 1,

We may assume that A is nonabellian, Let U be a
homogeneous component of VllA'DM' Since VIM is
homogeneous, U is faithful on M, Now (A'D)' = 1 since A

is class two, A' < Z(A), and D is cyclic., Since Cy (A'D)

1
= (0), cy(a'd) = (0). Further, Cy[(a'D)'] = U. so inm
applying (VI, 1) to (A'D, M, U) we get 3) and Dl < A'D

cyclic so that

b*) C,[(a'D)'D,)
Also since

a*) ¢yl(a™)'D,] = cy(py) = (0),
we have Dl # 1, Hence D, = CA(M) = A%,

Cy(Dy) 2 ¢ L(aD) '] = M.
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(vi. 13) A*F\AM = 1 and CG(A*) = M.,

Suppose A*NA, = A # 1. DNow A, b A so we may take
Ay = Z(A)F\Ao # L since A is nilpotent. We know that A*
centralizes M and AM centralizes G/M., Hence by (V. 7) Al

centralizes A and G. So A, < Z(AG). But V is irreducitle

)
s0O Al is cyclic and acts as scalar multiplication on V by
(Vi. 5). Hence CV(Al) = (0). By (VI, 4) A; = A, But
then A is cyclic and

a) CV(A'A) = CV(A) = (0) and

b) CG(A) =G > CG(A') = @G,

Hence A*F\AM = 1, But then A*AM/AM A A/AM 50
A*AM/AMFIZ(A/AM) # 1 and CG/M(A*) =1,

Hence CG(A*) = M.,

(VI., 14) We can choose R so that R < CG(M), R is extra

special, and R 4 AG. Further, D(R) < M, D(R) g C (aqG).

Now G = NG(M). But M = CG(A*) so by (V. 10) G =
CG(M)CG(A*) = CG(M)M. Now CG(M) is A invariant so R may
be chosen so that R < C,(M).

Let R; = Z(R). Now R; < Cg(¥) so Ry < Z(G), since

L 1
RM = G, Further VIG is homogeneous and faithful so R, is

cyclic and acts as scalar multiplication on V, In

particular, because AG is faithful, R, < Z2(AG), So R, <

L 1

M and R; < C-(AG).

By the minimal choice of R we must have MNR = D(R)
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as the unique maximal A invariant normal subgroup of R.
Let Ro be any characteristic abelian subgroup of R, Now
R/D(R) A G/M so if R, <R then R < D(R). But CR(A*) <
D(R) and so Z(R) = Rl < R. Hence Ro < D(R). But then
R, < M. We already know that R, < Co(M)AM = Z(¥) and vy
is homogeneous, So R_ < Z(R) = R, and R is cyclic. So R
is the central product of a cyclic r group and an extra
special r group, By the minimality of R, this means R is
extra special,

Finally, R < CG(M) normalizes itself and is

normalized by A, Hence R 4 AG,

(¥i. 15) VIR is homogeneous; CV(AM) = (0).

Here VIG is homogeneous., So, since R 4 G, VIR
is completely reducible and the homogeneous components are
permuted transitively by M since MR = G, But M centralizes
R so V]R is homogeneous,

Suppose next that CV(AM) # (0)., Now Ay centralizes
G/M =, R/D(R), so it centralizes R, Further, A 4 A,
Hence CV(AM) is a k[AR] submodule of V., Let ¥y & CV(AM)
be an irreducible k[AR] submodule. Since Z(R) = D(R)
< Z(AG) it acts as scalar multiplication (nontrivially)
on V hence also on Vo’ Further, on Vo, A is represented
as A/AM. Now A, < A since CV(A) = (0). Therefore V, is a

k[(a/8)R] irreducible module. Also A/A, is faithful and
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r2c+1 I

jrreducible on R/D(R). Now |R| = la|. Further,

by hypothesis, pb # r® + 1 for any e < ¢ and any pb <
exp A, Hence we may apply the fact that A is a (*) group
to find that (0) # Gy (A) < Cy(a). But Cy(a) = (0).

Hence CV(AM) = (0).
{VI. 16) (V. 1) holds,

By (VI. 12) A* # 1. And by (VI. 13) a*n A, = 1.
Hence 4, < A. So by (VI., 4) CV(AM> # (0). This
contradicts (VI, 15), Therefore (VI., 1) holds,

We now curtail the hypotheses on k.

V1. 17) Corollary: In (VI, 1) we may assume that k is

any subfield of Q(8). In particular, we may take
k = GF(q).

Suppose U is a homogeneous K[AQ]module satisfying
all of (VI. 1) except that K < Q(§) is a subfield of Q(S§).
Let K(8) = k = Q(S§). Then k is a finite extension of K,
Let U = k& U. Let V be any irreducible k[AG] submodule
of U, Then V is a K[AG] module isomorphic to m copies of
U for some integer dividing the degree of the extension

[k: K]. We apply the theorem to (A,G,V). Suppose

N

m
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1t is clear that

Cy (L) = C (L) © ... & C.(L)
v KfAG] (U ) Uy

m
for any L < A, Also G is faithful on V since it is on U,

The two isomorphisms give (VI. 17).

(VI. 18) Corollary: Suppose that in (VI. 17)

conclusion 2) arises. That is,
2) ¢y an) = (0).

Then there is 1 # D < A' with

a) CyD) = (0)  end
b) CG(D)

]

G.

Now VIA'G =V, * ... * V_where the V, are (in the
case of (VI, 1)) homogeneous components, Let
G; = ker[G —> Aut vi] » G; = &/G.

Then we apply (VI., 1) to (A',gl,Vl). Since A" = 1, and
Cv (A') = (0) we get by (VI, 1) a cyclic D < A' so that
1

at) Cy (D) = (0) and
i
b') C. (D) = G,.
§l =1

Now D < A' < Z(A). So
a) CV(D) = (0)  and
b) CG(D) = G,
Remark: Again it is no trouble to extend this by the

argument of (VI, 17) to the field K < k.
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VIii, THE FITTING STRUCTURE

Suppose AG is a group with normal solvable subgroup G,
and (|al,]c]|) = 1., Consider an AG invariant series
1= SO < Sl < sae < St < G
satistying, for J = 1, 2, +ss 5 T
1) a) $; > 8,
1

* =
b) 8,

c) Sllsl* is a nontrivial s(1) group
d) S, > Sl° Z 8;%, Slo is AG invariant and unique

maximal containing Sl*

e) 8; =5./8;° is an irreducible AG module,

2) a) 82 > S1

* = s—

b) S, ker [S, > Aut S,]

c) 82/82* is a nontrivial s(2) group

d) s, > 320 2 S,%, Szo is unique maximal AG
invariaant containing Sz*

e) S, = 32/52o is a irreducible AG module,

j) a) s, > Sj-l

J
o= —
b) 8% = ker [, > Aut _s_j_l]
c) Sj/Sj* is a nontrivial s(j) group

d) Sj > SJ.o > Sj*, Sjo is unique maximal AG

invariant containing Sj*



68

e) gj = Sj/Sjo is an irreducible AG module,
and s{i), 1 =1, 2, ... , £ are primes,
Such a series is called a t-zdifice in G,
(VII, 1) Hypothesis., Suppose AG is a group with normal
solvable subgroup G and (IAI, IGI) = 1, Suppose that

o £ s 2
E = {Si, Si*, S;7» 24 | 3 52 By wna g t} is a t-edifice for

i

G. Suppose 1 = Fy < Fi < eee < : G is the Fitting

series of G,

(ViI. 2) Assume (VII. 1). Suppose that

is a normal series of G and Gi+l/Gi’ 120, cos , ¥=1 is

nilpotent, Then

FjZGj;j=‘0, Ly, ee0 5 0.

il
O
rt

We proceed by induction on j. For j h
trivial. Suppose Fj-l > Gj-l' Then Gj/(Fj_lf\G.) is a
homomorphic image of Gj/Gj-l since Fj_lf\Gj > Gj-l’ and
hence is nilpotent., But Gj/(Fj_lf\Gj) . G'Fj-l/F‘-l A

G/F Therefore

j=1°
G.F. ./F. . <F_[F,
5F5-1/F3-1 S F5/F 3

o G, < G,F. < F..

= - Rl o - R

(Vii, 3) Suppose H < G has Fitting length m, Suppose G

has Fitting length n, Then m < n,
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Suppose 1L = Fy = F; £ ... 2 F,. =G is the Fitting
series of G, We apply (VII, 2) to the normal series of H
given by

1l = FO(\H =Gy < FINHE=G < ... sFNH=G, = H.

(ViI. 4) Suppose (VII. 1). Then F; <K, =

i
ker {¢ —> Auc 5,1, i =1, 2, ... , t. Hence t g n.

We proceed by induction on i, First comsider i = 1,

Since Sl A G and is an s(l) group, we know that Sl < Fl'

Suppose p = s(1). Now OP,(Fl) centralizes S; and hence S,.

But then OP(Fl)KllKl is a normal p subgroup of G/Kl' On

81 G/K1 is completely reducible since G A AG and

therefore OP(Fl) = Kl' So Fl = OP,(Fl) X Op(Fl) < K;.
Suppose that Fj-l < Kj-l' We notice that

. .. = FL/(F.NK, F.AE. - > F,
FRs /Ry = F/(FsNK ;) and FNK, ; 2 F, ;) so

FjKj-l/Kj-l is nilpotent and normal in AG/Kj_l. So

F K 1K < F(AG/X,

-L"7j-1 = J= l)

Further S hJ 1/1{3 1 =2 S /(s nKJ l) and S. rnc = S %,

=1 - 73
And so S KJ 1/K3 1 is normal and nilpotent in AG/K

J
Therefore S K /K.

/K5y < FQAG/R, ).

Finally AG is irreduczble on Sj’ a section of S KJ 1/KJ 15

hence, as in j = 1, F FJ 1/KJ 1 centralizes S:j And

therefore, Fj FJ&J 1 < k;.

(VII. 5) Suppose that HP is a group with normal p subsroup

P, Assume P has an HP section X/Y on which HP is
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irreducible and Hl A H is nontrivial, Then P contains an

HP invariant subgroup P where P, > Py = D(P_); P, is HP

o
invariant and

i) Po/Pl zHP X/Y¥ is an irreducible HP module,

ii) Po/D(Po) is an indecomposable HP module,

iii) P, is 2 unique maximel HP invariant subgroup

5

Po’

and Po is minimal satisfying i), ii), and iii).

Let J be the class of all subgroups 92 < P
satisfying 1) P, is HP invariant
2) P2 contains an HP invariant subgroup FZ*

Pasd
~Hp
Clearly X ¢ J so J # §. We choose P_ ¢ J of minimal oxder,

. . = AL r
Since Po ¢ J there is Pl > D(Po) so0 that PO/Pl = b ' 4
So Po satisfies 1i).

Since X/Y is HP irreducible, P, is a maximal HP
invariant subgroup of P_. Suppose Pl* > D(Po) is aiso a
maximal HP invariant subgroup oi Po. Then as an HP module

B % %) 5 %* *

;ol(PlnPl ) Pl/(Plﬂ Py ) + P,*/(P,NPy¥*) ,
where now

P.%/(P N P*) oo, P.P.%/P, = P [P, £, X/Y,

o

So Pl* e J. This contradicts the minimality of Po e J.
Hence iii) holds,
Suppose that as an HP module

PO/D(PO)== PO*ID(PO) + Po"/D(Po) is decomposable.
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Choose Pl* maximal HP invariant in Po* and Pl“ maximal HP
3 3 & n P 1] ] +*% s -
invariant in PO . Then Pl Po and P1 Po are distinct
maximal HP invariant subgroups of P, contradicting 111).
Hence ii) holds,

Clearly Po is minimal satisfying i), ii), and iii),

(VII. 6) Suppose that AG is a group with normal solvable

subgroup G and (IA!,IGI) = 1. Suppose that F is the

Fitting subgroup of G. Suppose that S < G and S/F is a

normal p subgroup of AG/F. Then there is a prime r # p

and g section of O.(F) on which AG is irreducible and S is

nontrivial,

Consider an r Sylow subgroup R of F. Suppose r # p.
Let P be a p Sylow subgroup of S, Suppose that{R, P|=1
for each such r, Then S = P X Op.(F) A GsoS < F. This
means there is some r for which([R, B)J# 1. In particular,
P is nontrivial on R/D(R). Now let

D(R)/D(R) = Ry/D(R) < R;/D(R) < ... < R /D(R) = R/D(R)

be an AG composition series of R/D(R). Then Ri+1/Ri is an
irreducible AG module, Since p f r, P is nontrivial for

some i, say i = j, Then X =R Y = Rj is the desired

i
section,

(VII. 7) Assume (VII. 1), Let K = ker {6 —> aut 8] ,

= = = °= o
G = G/K, Ty = 8;K/K, T;% = S, 1*K/K, T,° =5, ,°K/K, and
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I, = Ti/'r.l" for i =1, 2, ... , t=l, Then
= *
E= {Tp Ty% Ty

edifice for G.

° T li=1, ..., t-1) is a t-1

We just verify the definition, We do just 1). Of
course, TO = 1, Then since Kr\S2 = Sz* < SZ’ Tl > Ty
* * = % *
Further S,% < K so T, 1., Now TI/Tl & 82/32

proving the rest,

(VIL., 8) Suppose AG is a group with normal solvable

subgroup G and (|a], |G|) = 1. Suppose that the Fitting

length of G is n. Then G has an n edifice.

Proof is by induction on n., For m = 1 we take a
minimal AG invariant subgroup of G for Sl'

So suppose n > L, Hence G/F satisfies (VII. 8) by
induction. So we get an n~-l edifice for G/F.

E= {1, /F, T,%/F, T,°/F, I, | 1 =1, ..., n-1}.

We apply (VII, 5) and (VII, 6) to obtain S Then

1.
i % = % - ©
with T, = Si-l’ Ti Si-l 5 Ti Si-l we get the

desired n edifice,.

(Vii, 9) Assume (VII, 1), Set K. = ker |G —> Aut S,

GO

i
and G, = G/Ki. Then for all j > i, K; 2 K; and §_j

AG isomorphic to a section of

We first prove that Kj > Ki for j > 1, We proceed

by induction on j - i and save the %first case" of
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j=-31i=1 for last, So assume the result holds for aill
numbers less than j - 1 and j - 1 > 1, Then choose
j>f>14i, By induction Kj Z K 2 K;. Hence we need
only prove the result for j - i = 1,

Since K. > Sio for all f > i, we may assume Sio = 1
by considering G/Sio, and Kf/Sio, f > i, But in this case
i=1, j= 2, simplifying the notation. We want to prove .
that K2 > Kl' Suppose X ¢ Kl has order prime to s(2)
and x 1is nontrivial on §2. Then x 1is nontrivial on
82/ So* = SZ/K]_{\ 8,. Therefore, since x is of order
prime to s(2), x is nontrivial on S, = S;. This
contradiction forces Klele to be a normal s(2) subgroup
of AG/KZ which is faithful and irreducible on the GF(s(2))
module gz. Therefore, K1 < Kle = Ko completing the proof
of: Kj > Ki for all j > i,

Th st is since S.NK. = § . %,
e re is easy since J(\&J_l 3

(VII. 10) Assume (VII. 1), Suppose Ky = ker{b — Autgé

and G. = G/K;. Assume that A is a class two p group.

i) 1f D <A' and C, (D) = @G, then {D,8.] = (0)
=5 e, eessmem S Gl
for all 3 > i,

ii) 1f D< A, and CG}(A'D) > Cg}(A') then for everv

=i i
j > i such that Cg (A') = (0) we have [D,CS (A'X} = (0).
=J -3

Consider i) first., By (VII, 9), §j for 4§ > 1%
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is a section of G.. Therefore, D centralizes this

section,

Next consider ii). The condition that Cs (A*'D) >
2
C. (A') says that D centralizes every section of (<Y
which admits A'D and is centralized by A'. But Cq (aY)
-
is just such a section, by (VIL. 9) so []_D,CS (A')] = (0).
=3
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VIIi, THE MAIN THEOREM

We are now in a position to prove the final theorem

of the thesis,

(VIII. 1) Theorem: We assume that A is an odd p group

of class < 2., Further, A must be a (¥) group as defined

in section VI, Assume that AG solvable with normal

is
subgroup G where (|A|, ,GI) = 1. Suppose that exzpA = pa

and for everv prime tr and everv integer ¢ such that
2c%
=€ 1

divides |G|, and every 1 < b £ a we have pb # S+ 1,

Suppose IAI = pd and G has Fitting length n., Assume that

A is fixed point free on G (by this we mean only that
CG(A) = 1). Then

d > n,

Let E= {s,, s,° s;%, 8.]1=1,,.., ﬁ} be an
n edifice of G, Let K, = ker ‘:G —> Aut éi] and
g = G/Ki. We apply (VI., 17), (VI. 18), and (VII. 10)
to obtain descending chains of subgroups in A,

Set Ano = ker EA' —> Aut S _].

=n

1If G (A') = (0) set A% = A, 1If Cg (a') # (0)
-1 -1 g

set A * = ker [A —> Aut Cg (a")].
=n
Continuing inductively we set Ajo = ker [ A —-—-—>Aut§_a

1£ Céj(A') = (0) set Aj* = Ag;l. 1£ ng(A') # (0)
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set Ak = ker [ Ajz—> Aut ng(A')]
o

- % e
Now either Aj+1 > Aj or Aj 1 > AJ . Suppose not,

Then by (VII. 10) we get A = AJ and A"fx* = A.%, So

j+l J
we must investigate the representation of Agj on §j
Suppose first that Cq (A') # (0). Them by (VI. 17)

=

applied to (A&, G §.) there is a D < A so that

J,
Gg (4D) = (0) but Gg (A'D) 2 Gg (A'). 1f for some

J
i>3, G (AY') $# (0) then we may choose i > j minimal

25
so that Cg (AY) # (0), Fix this i. Then A, _.%* = Ai* by

J¥L
21
- _ ! . .
definition, Now D < Aj+l* = A% but D g Aj*. Therefore,
Aj+l* > Aj*. So we may assume that C., (A') = (0) for all

- 4
i > j. But then Aj+l* =A% =A>D and again Aj*

*
< Aj+1 .

Hence we assume that Cg (A%) = (0). Now by (Vi. 18)

applied to (A, G j) we get 1 <D < A' with

J’
ng(D) = (0) and ng(D) = G;. In particular, D < Ajo

(o] o o
but D < Agq® S0 A5,° > Al

Therefore we get a chain (Aio, Ai*) where

o o :
* * 5 N
Ai < Ai+l or Ai < Ai+l . It is easy to see that the

d

length of this chain is bounded by d where IAI = p
The length is obviously n, Therefore

d > n.
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