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Abstract

As gravitational wave astronomy prepares for the first detections of gravitational

waves from compact-object binary inspirals, theoretical work is required on the study

of (i) gravitational-wave sources, (ii) the signals emitted by those sources, and (iii)

the searches for those signals in detector data. This thesis describes work on all three

fronts. (i) We discuss intermediate-mass-ratio inspirals (IMRIs) of black holes or neu-

tron stars into intermediate-mass black holes (IMBHs) that could be detected with

Advanced LIGO. We analyze different mechanisms of IMRI formation and compute

IMRI event rates of up to tens of events per year for Advanced LIGO. We study

the spin evolution of IMBHs that grow through a series of minor mergers. We ex-

plore how a deviation of an IMRI’s central body from a Kerr black hole influences

geodesics, including the possibility of chaotic orbital dynamics. We also address the

scientific consequences of extreme-mass-ratio inspiral (EMRI) detections by LISA for

astrophysics and general relativity, and the difficulties associated with detecting and

analyzing EMRI signals. (ii) We study the periodic standing-wave approximation

(PSWA), which can potentially provide accurate waveforms in the last inspiral cycles

of a comparable-mass black-hole binary. Using a simple model, we find that the so-

lution to Einstein’s equations for inspiraling black holes can be recovered to a high

accuracy by the addition a perturbative radiation-reaction field to the standing-wave,

noninspiraling solution. (iii) We demonstrate the utility of searching for and analyz-

ing tracks in time-frequency spectrograms of a gravitational-wave signal as a means

of estimating the parameters of a massive black-hole binary inspiral, as observed by

LISA.
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Chapter 1

Introduction

The gravitational-wave community is poised on the threshold of exciting discoveries.

First-generation ground-based interferometers, such as LIGO [1] and VIRGO [2], are

actively searching for gravitational waves, with peak sensitivities at a few hundred

hertz. Advanced LIGO [3], a future upgrade, will have both a greater range for

detections and an increased sensitive band. A planned space-based mission, LISA [4],

will operate at peak sensitivities around a millihertz. Of particular interest for LIGO

and LISA are the gravitational waves emitted during the inspirals of compact-object

binaries [5]. These include, for LIGO, stellar-mass binaries composed of black holes

(BHs) or neutron stars (NSs); and for LISA, massive black hole (MBH) binaries with

components in the 105 M⊙ – 107 M⊙ range, extreme-mass-ratio inspirals (EMRIs)

of stellar-mass compact objects into MBHs, and galactic white dwarf (WD) binaries.

These inspirals might also include intermediate-mass-ratio inspirals (IMRIs) of either

stellar-mass compact objects into intermediate mass black holes (IMBHs) detectable

with Advanced LIGO, or IMRIs of IMBHs into MBHs detectable with LISA.

Astrophysical estimates of the abundances of various source classes suggest that

the first gravitational-wave detections are likely to be made within the next decade [6,

7, 8]. Once detected, gravitational waves will provide a unique way to explore the

universe — to observe in detail a variety of astrophysical and relativistic phenomena.

However, the detection and analysis of gravitational waves pose a number of theo-

retical challenges. These can be broadly divided into three categories: (i) sources:

the exploration of the possible astrophysical sources of gravitational waves and of the
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scientific consequences of gravitational-wave detection — the investigation of gen-

eral relativity in the strong field regime and applications to astrophysics; (ii) signals:

the accurate modeling of signals from various sources (an essential foundation for

gravitational-wave data analysis); and (iii) searches: gravitational-wave data analysis

— the perfection of methods for signal detection and parameter extraction. In this

thesis, we describe some advances in all three areas of Gravitational Wave Astronomy:

Sources, Signals, and Searches.

1.1 Sources: Extreme- and Intermediate- Mass-

Ratio Inspirals

Observations of extreme- or intermediate- mass-ratio inspirals of compact objects

into intermediate-mass or massive black holes will offer an exceptional opportunity to

explore strong-field general relativity, and to glean important information about the

astrophysical history of the universe. Observed EMRI or IMRI waves should contain

a complete map of the spacetime of the central black hole or, equivalently, the values

of all the hole’s multipole moments [9] and should also contain details of tidal coupling

between the central hole and the inspiraling object [10, 11]. An EMRI or IMRI signal

can reveal whether the central body is indeed a black hole or is something else, e.g.,

an exotic massive object such as a boson star [12, 13]. This can be determined by

extracting from the signal the central body’s lowest few multipole moments; if they

have a specific pattern dictated by the measured mass and spin, the body is a Kerr

hole; otherwise, it must be something else [9, 14].

1.1.1 Intermediate-Mass-Ratio Inspirals

1.1.1.1 IMRI Overview—Chapter 2

Advanced LIGO may be able to detect intermediate-mass-ratio inspirals of stellar-

mass black holes or neutron stars into ∼ 50 to ∼ 300 solar-mass IMBHs. A single

detection would be significant in itself, since it could provide the first unambiguous
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proof of the existence of IMBHs, for which only indirect evidence exists so far [15].

Advanced LIGO IMRIs will allow us to probe the strong-field regime with modest

accuracy well before LISA flies. In particular, it will be possible to measure the

quadrupole moment Q of the central body to an accuracy ∆Q/M3 ∼< 1, which would

be enough to distinguish whether the IMBH is a Kerr black hole or a boson star [16].

Chapter 2 of this thesis is a paper by Duncan A. Brown, Jeandrew Brink, Hua

Fang, Jonathan R. Gair, Chao Li, Geoffrey Lovelace, Ilya Mandel, and Kip S. Thorne [16]

on the prospects for the detection of gravitational waves from IMRIs with Advanced

LIGO, and related issues. This paper provides an overview of recent results on IMRIs

obtained by members of Kip Thorne’s group at Caltech and their collaborators.

If there is an IMBH in each globular cluster that grows from ∼ 50 to ∼ 350 solar

masses via mergers with compact objects in the age of the universe [17], Advanced

LIGO could achieve tens of IMRI detections per year. (A more detailed rates estimate

is discussed in the next paragraph and in Chapter 3). IMRI waveforms fall between

the ranges of validity of post-Newtonian waveforms (inapplicable because of the large

number of cycles that IMRIs spend at small radii) and EMRI waveforms based on

solutions of the Teukolsky equation (suspect because the IMRI mass ratio is not

sufficiently extreme). We estimate that Teukolsky waveforms may be sufficient for

detection, perhaps leading to a loss of ∼< 10% in signal-to-noise ratio (SNR), but better

waveforms will be necessary for parameter extraction. Chapter 2 also introduces

orbital motion in a non-Kerr spacetime and discusses the possibility of the loss of

the full set of integrals of motion (in Kerr, these are energy, angular momentum,

and the Carter constant) in a stationary, axisymmetric, reflection symmetric and

asymptotically flat (SARSAF) spacetime with an anomalous non-Kerr value of the

mass quadrupole moment; more details are presented in Sec. 1.1.2 and Chapter 5.

I contributed to this paper a calculation of event rates for IMRIs, an independent

computation of the accuracy of Teukolsky waveforms, and some of the analysis of

geodesic motion in non-Kerr spacetimes. I was responsible for writing the “Event

Rates for IMRIs” section and contributed some prose to other sections.
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1.1.1.2 IMRI Rates—Chapter 3

A more careful computation of the IMRI event rates detectable by Advanced LIGO

requires the analysis of specific IMRI formation mechanisms. We present this analysis

in Chapter 3, which is identical to the text of a paper by Ilya Mandel, Duncan

A. Brown, Jonathan R. Gair, and M. Coleman Miller [18].

In Chapter 3, we consider four mechanisms of IMRI formation: (i) The hard-

ening of a NS-IMBH binary or BH-IMBH binary can proceed through three-body

interactions with other stars in the cluster, followed by an inspiral driven by gravita-

tional radiation reaction; we believe this to be the most important IMRI formation

mechanism for IMBHs in the Advanced-LIGO mass range. (ii) Hardening via the

Kozai resonance can drive up the eccentricity of the inner binary in a hierarchical

triple system and can be important if binary–binary encounters are common. (iii)

A direct capture of a BH or NS by an IMBH is unlikely to be important because

the direct capture cross-section grows as M12/7 and is relatively small for the light

IMBHs that can be detected by Advanced LIGO. (The detectable IMBH mass is

limited from above by the requirement that the gravitational wave frequency exceed

the Advanced-LIGO low-frequency cutoff of ∼ 10 Hz.) (iv) The inspiral of a compact

remnant from a tidally captured main sequence star will not be a significant source

for Advanced LIGO.

We estimate that Advanced LIGO may detect one neutron star IMRI every three

years or ten black hole IMRIs per year, and more if the interferometer is optimized for

detections at low frequencies. These rates are extremely uncertain, however, due to

our lack of knowledge about the distribution and mass function of IMBHs (or, in fact,

whether they exist at all). We also consider the circularization of inspirals due to the

emission of gravitational waves. We find that, although the degree of circularization

varies depending on the IMRI formation mechanism, even direct-capture inspirals

(which are the most likely to display significant eccentricities) in ∼ 90% of all cases

will have eccentricity ∼< 0.1 when the gravitational wave frequency reaches 10 Hz.

This implies that circular templates can be used while searching for IMRI signals in
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Advanced-LIGO data.

For this paper, I computed the eccentricities resulting from various capture sce-

narios (except for tidal effects), the expected Advanced-LIGO detection rates for

inspirals, and the expected rates for ringdowns. I was the primary author of Sections

3.1, 3.2.1–3.2.3, 3.3, 3.5, and 3.7, and coordinated the research and writing for the

whole paper.

1.1.1.3 IMRIs and IMBH Spin—Chapter 4

Minor mergers with compact objects that follow intermediate-mass-ratio inspirals will

contribute both mass and angular momentum to the IMBH, leading to the evolution

of the IMBH spin [19, 20]. In Chapter 4, which is based fully on my own work (in

preparation for publication), we compute the probability distribution for the spin of

an IMBH following a series of minor mergers with isotropically-distributed inspiraling

compact objects. This computation is carried out by a combination of two approaches:

(i) analytical fits to the Fokker-Planck equation governing the stochastic process

of spin evolution, and (ii) numerical Monte-Carlo simulations of spin evolution in

situations when the Fokker-Planck analysis is not applicable. We find, for example,

that an IMBH that grows from 70 M⊙ to 140 M⊙ through the capture of 1.4 M⊙

neutron stars will have dimensionless spin parameter χ ≡ S1/M
2 ∼ 0.2 ± 0.08.

Prograde inspirals into rapidly spinning black holes have lower last-stable-orbit

(LSO) radii and higher LSO frequencies than inspirals into non-spinning black holes,

and will therefore typically radiate into a frequency band where Advanced LIGO is

more sensitive. After averaging over all orbital inclinations, we find that Advanced

LIGO will be able to detect IMRIs in a larger volume of space if all IMBHs were to

have the same non-zero spin χ than if all IMBHs were non-spinning. For plausible

values of IMBH mass and spin, the ratio of the two volumes may reach ∼ 1.4. We

carry out a similar analysis for LISA EMRIs, and find that LISA will detect EMRIs

into ∼ 107 M⊙ MBHs to an inclination-averaged range that is ∼ 8 times greater if

the MBHs are maximally spinning than if they are non-spinning. This creates a bias

in favor of detecting EMRIs into rapidly spinning MBHs. This bias will be significant
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for the extraction of the MBH spin distribution from LISA EMRI statistics.

I am responsible for all of the research and prose in this chapter.

1.1.2 Geodesics in Bumpy Spacetimes—Chapter 5

As noted above, it should be possible, in principle, to extract the multipole structure

of a massive body from its imprint on the gravitational waves emitted in the course

of an EMRI or IMRI [9, 21]. If the massive body is a Kerr black hole, the “no-hair”

theorem predicts that all of its multipole moments are determined by its mass and

spin. Therefore, measuring the multipole structure will make it possible to explore

whether the body is a Kerr black hole or something else, such as a boson star or a

naked singularity [9, 14]. This exploration will require constructing waveforms from

inspirals in non-Kerr, “bumpy” spacetimes [22] and using them in the data analysis,

in order to determine, from the observed waves, the source’s multipole moments and

(if they are near the Kerr values) to constrain their deviations from Kerr.

In Chapter 5 we consider the first step toward the generation and analysis of

inspiral waveforms in bumpy spacetimes by considering the effect of an anomalous

mass quadrupole moment Q on test-particle orbital dynamics. In that chapter, which

is based on the joint work of Jonathan R. Gair and Ilya Mandel (in preparation for a

future publication), we use the Manko-Novikov metric as a model of a “bumpy” (non-

Kerr) spacetime. We find strong evidence that, while geodesic motion in Kerr has the

full set of isolating integrals, one of these integrals, the Carter constant, disappears

in prolate Manko-Novikov spacetimes. This leads to chaotic motion in some regions

of these spacetimes, as exhibited by space-filling Poincaré maps. We give evidence,

however, that these chaotic regions are not accessible in the course of an astrophysical

inspiral, however, and that geodesic motion in the accessible regions is tri-periodic

to a high precision. We compute the precession of the periapsis and of the orbital

plane due to the presence of an anomalous Q. The shifts in precession frequencies

from their Kerr values are significant in the strong-field regime, which may aid in the

detection of the central body’s bumpiness.
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The results in this chapter were obtained either jointly or independently by Jonathan

Gair and myself. I wrote most of the prose in Sections 5.1, 5.2, 5.3, and 5.6, but

Jonathan Gair also contributed to those sections while I contributed to the prose in

Section 5.5, for which he was the primary author.

1.1.3 LISA EMRIs—Chapter 6

There is a great deal of astrophysical information that could be gained from the detec-

tion of EMRIs in addition to the probes of general relativity described above. LISA

EMRIs data can be analyzed to answer some of the following astrophysical questions:

What is the mass function of massive black holes? What are their mechanisms of

formation? (High spin suggests growth by accretion, while low spin is indicative

of growth through random mergers.) What is the distribution of various types of

compact objects in the vicinity of massive black holes? Which capture mechanism

is suggested by an observed EMRI eccentricity distribution? Are compact objects

formed externally or in the disk (as indicated by EMRI inclinations)?

In Chapter 6, we consider these possible benefits of EMRI detections, as well as the

use of EMRIs as tests of general relativity. The status of EMRI waveform modeling

and EMRI data analysis are also reviewed. We particularly focus on outstanding

issues in the field of EMRI science. This chapter is based on a review article by Pau

Amaro-Seoane, Jonathan R. Gair, Marc Freitag, M. Coleman Miller, Ilya Mandel,

Curt J. Cutler, and Stanislav Babak [23]. A review of the astrophysics of EMRI

sources is omitted since I did not make significant contributions to that section.

My primary contributions to this chapter were to the discussion of IMRI waveform

accuracy and the review of testing general relativity with EMRIs and IMRIs.



8

1.2 Signals: the Periodic Standing-Wave Approximation—

Chapter 7

For comparable-mass binary black holes, accurately computing gravitational waves

from the last stages of inspiral, where the signal is strongest, is crucial to success-

ful data analysis. However, such computations are extremely challenging, as post-

Newtonian approximations fail for the last ∼ 25 cycles of the inspiral waves [24]. Full

3 + 1 numerical relativity has recently made great progress in computing the gravi-

tational waves from the last ∼ 30 cycles of the inspiral; however, numerical relativity

codes may be too slow to be useful for placing templates. An alternative approach is

the periodic standing wave approximation (PSWA), suggested by Detweiler [25] and

actively pursued by Price and collaborators [26, 27]. In the PSWA, the energy and

angular momentum of the binary are conserved by the imposition of standing gravi-

tational waves, so the spacetime exhibits a “helical” symmetry that greatly simplifies

numerical simulations. In the absence of tidal locking, the standing waves of the

PSWA destroy black-hole horizons, leaving naked singularities in place of Kerr black

holes [28]. To confirm the validity of the PSWA, it is necessary to determine the ac-

curacy with which the physical spacetime with true black holes can be reconstructed

from the standing-wave spacetime with naked singularities by adding a perturbative

radiation-reaction field, as suggested by Thorne [29].

In Chapter 7, which is identical to the text of a paper by Ilya Mandel [28], we

consider a simple model problem consisting of a single spherically symmetric black

hole that is converted into a naked singularity by spherical standing waves of a scalar

field. The spacetime remains nearly Schwarzschild outside the Schwarzschild horizon

but deviates strongly from Schwarzschild at r ∼ 2M and below. We show that by

adding a perturbative radiation-reaction field to the standing-wave solution, a physical

(downgoing) solution to the scalar-wave equation can be recovered with sufficient

accuracy to offer optimism that PSWA will give accurate gravitational waveforms for

the final stages of binary-black-hole inspiral.

The research and prose in this paper are my work, with considerable advice from
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Kip Thorne.

1.3 Searches: Mock LISA Data Challenge—Chapter 8

Among other potential discoveries, LISA will make the first observations of gravita-

tional waves from the coalescences of massive-black-hole (MBH) binaries. Astrophys-

ical estimates suggest that LISA may detect several such coalescences per year [7],

with a signal-to-noise ratio reaching as high as several thousand [30]. The detection

of MBH inspirals is one of the priorities of the Mock LISA Data Challenges [31].

In Chapter 8, we demonstrate that massive-black-hole-binary-inspiral waveforms

can be accurately extracted from LISA data in the presence of noise. The text of

Chapter 8 is identical to a paper by Duncan A. Brown, Jeff Crowder, Curt Cutler,

Ilya Mandel and Michele Vallisneri, which reports on the success of our three-stage

approach consisting of (i) a time-frequency spectrogram analysis, (ii) a grid-based

matched-filtering search, and (iii) a Markov Chain Monte Carlo search, in determining

the parameters of a MBH binary present in the signal from the first round of the Mock

LISA Data Challenge [32].

My contribution to this research is in the analysis of time-frequency maps. Gravitational-

wave signals from MBH binary inspirals will be easily visible as tracks on time-

frequency plots due to their high SNR. We find that the chirp mass of non-spinning

MBHs on a circular orbit can be estimated to better than one percent from a time-

frequency search at an SNR of a few hundred. This estimate allows a significant

reduction in the number of templates necessary in the second-stage matched-filtering

search, by restricting the region of parameter space which must be covered with tem-

plates. (Matched filtering followed by Markov Chain Monte Carlo is probably the best

method for accurate parameter determination.) I am involved in ongoing efforts to

make parameter estimation from time-frequency plots robust in low SNR conditions,

to detect multiple MBH inspiral tracks simultaneously, and to detect MBH inspiral

tracks in the presence of other signals, including a confusion noise background.

I carried out the research reflected in Section 8.2 and wrote most of the prose in
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that section.
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Chapter 2

Prospects for Detection of
Gravitational Waves from
Intermediate-Mass-Ratio Inspirals

We explore the prospects for Advanced LIGO to detect gravitational waves

from neutron stars and stellar mass black holes spiraling into intermediate-

mass black holes (M ∼ 50M⊙ to 350M⊙). We estimate an event rate for

such intermediate-mass-ratio inspirals of up to ∼ 10–30 yr−1. Our nu-

merical simulations show that if the central body is not a black hole but

its metric is stationary, axisymmetric, reflection symmetric and asymp-

totically flat then the waves will likely be tri-periodic, as for a black hole.

We report generalizations of a theorem due to Ryan (1995) which suggest

that the evolutions of the waves’ three fundamental frequencies and of the

complex amplitudes of their spectral components encode (in principle) a

full map of the central body’s metric, full details of the energy and angu-

lar momentum exchange between the central body and the orbit, and the

time-evolving orbital elements. We estimate that Advanced LIGO can

measure or constrain deviations of the central body from a Kerr black

hole with modest but interesting accuracy.

Accepted for publication in Physical Review Letters: Duncan A. Brown,

Jeandrew Brink, Hua Fang, Jonathan R. Gair, Chao Li, Geoffrey Lovelace,
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Ilya Mandel, Kip S. Thorne (2007). A preprint is available online at

http://arxiv.org/abs/gr-qc/0612060.

First-generation interferometric gravitational-wave (GW) detectors, such as LIGO [1]

and VIRGO [2], are now searching for GWs at or near their design sensitivities. In

the next decade, Advanced LIGO (AdvLIGO) [3] and its international partners will

increase the volume of the universe searched a thousand-fold or more. The most

promising sources of GWs for this network are the inspiral and coalescence of black

hole (BH) and/or neutron star (NS) binaries. Current inspiral searches target sources

with total mass M ∼< 40M⊙: NS binaries with masses 1–3M⊙, BH binaries with

masses 3–40M⊙, and NS-BH binaries with components in these mass ranges [4, 5].

Ultra-luminous X-ray observations and simulations of globular cluster dynamics

suggest the existence of intermediate mass black holes (IMBHs) with masses M ∼
102–104M⊙ [6]. The GWs from the inspiral of a NS or stellar-mass BH into an

IMBH with mass M ∼ 50–350M⊙ will lie in the frequency band of AdvLIGO. These

intermediate-mass-ratio inspirals (IMRIs) are analogous to the extreme-mass-ratio

inspirals (EMRIs) of stellar-mass objects spiraling into ∼ 106M⊙ BHs, targeted by

the planned space-based LISA observatory [7]. We consider NSs and BHs, as less

compact objects (e.g. white dwarfs) are tidally disrupted at frequencies too low to

be detectable in AdvLIGO.

If we consider the possibility that the central body of an IMRI (or EMRI) is

not a black hole, but some other general relativistic object (e.g. a boson star or

a naked singularity [8]), then we can quantify the accuracy with which it has the

properties predicted for a black hole: (i) that it obeys the black-hole no-hair theorem

(its spacetime geometry is the Kerr metric, fully determined by its mass and spin),

and (ii) that its tidal coupling (tide-induced transfer of energy and angular momentum

between orbit and body) agrees with black-hole predictions. Searching for other types

of objects may yield an unexpected discovery.

This letter reports on our initial explorations of the prospects for AdvLIGO to

detect the GWs from IMRIs and to probe the properties of the IMRIs’ central bodies.
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We report on: (i) IMRI event rate estimates in AdvLIGO, (ii) estimates of the efficacy

of GW template families for IMRI searches, (iii) explorations of the character of the

IMRI (EMRI) waves if the central body is not a black hole, (iv) generalizations of

Ryan’s theorem concerning the information about the central body carried by IMRI

and EMRI waves, and (v) estimates of the accuracies with which information can be

extracted by AdvLIGO from IMRIs.

Event Rates for IMRIs with an IMBH central body. We (Mandel, Brown,

Gair & Miller [12]) estimate that for low IMBH spins χ = spin angular momentum/M2 ∼<
0.3, the distance (range) R in Mpc to which a network of three 4 km AdvLIGO de-

tectors could see IMRIs at a network signal-to-noise ratio (SNR) of 8 is

R ≈
[

1 + (χ2/2)(M/100M⊙)1.5
]
√

m/M⊙ ×
[

800 − 540(M/100M⊙) + 107(M/100M⊙)2
]

.

(For IMBHs grown by mergers, typical spins will be χ ∼
√

m/M ∼ 0.2, with few if

any above ∼ 0.4.)

Core-collapsed globular clusters are the most likely locations for IMRIs; they may

contain an IMBH and a high density of stellar mass BHs and NSs [6]. Simulations

show that it is possible to grow IMBHs with masses up to Mmax ∼ 350 M⊙ through

a series of mergers in the core of a cluster [9]. Phinney [10] suggests estimating an

upper limit on the IMRI rate in globular clusters as follows: assume each cluster has

a black hole that grows from ∼ 50M⊙ to ∼ 350M⊙ by capturing objects of mass m

in 1010 years. Core-collapsed clusters have a space density of 0.7 Mpc−3, which gives

an estimated IMRI rate of ∼ 0.7 × (300M⊙/m) × 10−10 Mpc−3yr−1. This leads to a

limit of ∼ 10 IMRI detections per year in AdvLIGO.

A kick velocity Vkick > 50 km/s will eject the merged black hole from the cluster,

placing an upper limit on m of m/M ∼< 0.08 (Vkick depends on the symmetric mass

ratio η = mM/(m + M)2 as Vkick ≈ 12000η2
√

1 − 4η(1 − 0.93η) km/s [11]). Black

holes with masses m ∼> 10M⊙ will likely merge with the IMBH or be ejected from

the core in under 1010 years. An estimate based on the dynamics of binary hardening
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via 3-body interactions yields a rate of one detection per three years for NS–IMBH

inspirals or ten detections per year for BH–IMBH inspirals [12]. Optimizing the

AdvLIGO sensitivity at low frequencies could improve these rates by a factor of ∼ 3.

For Initial LIGO [1], however, rates are much lower due to lower sensitivity across

the noise curve and a lack of sensitivity below 40 Hz, reducing Mmax to ∼< 100M⊙.

We estimate an IMRI rate in current detectors of < 1/1000 yr−1.

Search Templates for IMRI Waves with an IMBH central body. Matched

filter searches for IMRIs require templates of sufficient accuracy that the mismatch

between template and signal does not cause a large loss in event rate. The most

accurate IMRI templates currently available come from black-hole perturbation the-

ory via numerical solution of the Teukolsky equation [13]. Post-Newtonian (PN)

templates [14, 15] and PN approximations to Teukolsky waveforms [16] are inade-

quate becuase IMRIs enter the detector frequency band when the binary separation

is r ∼< 15M and the PN expansion is poor.

Inspiral waveforms from black-hole perturbation theory are known only to first

order in η plus O(η2) in radiation reaction. It is important to determine the effect

of conservative finite-mass-ratio corrections O(η2), but tools to study these are not

yet in hand. We (Brown [17]) estimate these effects by computing the mismatch (for

AdvLIGO) between restricted PN stationary-phase templates containing all known η

terms, and the same templates linearized in η plus O(η2) radiation reaction (cut off

at the IMRI’s innermost stable circular orbit); this is the fractional SNR loss due to

using templates linearized in η. Mismatches are computed at each PN order between

1.0 and 3.5 inclusive. For a 1.4M⊙ NS–100M⊙ IMBH IMRI, the mismatch is ∼< 30%

for χ < 0.8, and ∼< 15% for χ < 0.3. For IMRIs with a larger IMBH mass, the

mismatch decreases, as expected. By allowing the linearized PN waveforms to have

mass parameters different from those of the nonlinear PN waveforms, and minimizing

the mismatch over these parameters, mismatch falls to less than 10% in all except

the most rapidly spinning cases [17]. Therefore, it is reasonable to expect that the

Teukolsky waveforms will lose no more than 10% of the SNR due to linearization in η

(hence no more than a 30% loss of event rate). For detection, it will be worthwhile, but
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not essential, to improve Teukolsky waveforms by incorporating nonlinear corrections,

but accurate parameter measurement will require improvements.

IMRI and EMRI Orbits and Waves; Tri-periodic vs. Ergodic. Here

we entertain the possibility that the central body is not a black hole. We assume

its external spacetime geometry is stationary, axially and reflection symmetric and

asymptoticaly flat (SARSAF) with metric in the form ds2 = −α2dt2 + ̟2(dφ −
ωdt)2 + gθθdθ

2 + grrdr
2 and all coefficients independent of the Killing time t and axial

angle φ. If the spacetime initially is not axisymmetric, rotation will make it non-

stationary; then presumably GW emission drives it to stationarity and axisymmetry

on astrophysically small time-scales. Almost all stationary, axially symmetric, self-

gravitating objects studied observationally or theoretically are reflection symmetric.

A SARSAF solution to the vacuum Einstein equations is determined uniquely

by two families of scalar multipole moments: mass moments M0 ≡ M , M2 (mass

quadrupole moment), M4, . . . ; and current moments S1 (spin angular momentum),

S3, S5, . . . [18]. For the Kerr metric (describing astrophysical black holes), the mo-

ments are fully determined by the mass M and dimensionless angular momentum

χ ≡ S1/M
2 via Mℓ + iSℓ = M l+1(iχ)ℓ; this is the no-hair theorem. We hope to use

LISA to measure as many moments as possible, via EMRI waves, and determine the

accuracy with which each moment satisfies this Kerr formula; AdvLIGO can do the

same for IMRIs.

For EMRIs and IMRIs, the orbiting object moves along an orbit that is nearly a

geodesic of the background metric; gravitational radiation reaction drives it slowly

from one geodesic to another. If the central body is a Kerr black hole, then: (i)

each geodesic has three isolating integrals of the motion: energy E, axial angular

momentum Lz, and Carter constant Q (and a fourth, “trivial” integral, the length

of the orbit’s tangent vector); (ii) the emitted gravitational waves are tri-periodic

with hµν = ℜ∑Pkmn h
µν
Pkmne

i(kΩθ+mΩφ+nΩr)t (for integer values of k,m, n) [19]. Here

P = +,× is the polarization, and the three principal frequencies Ωθ, Ωφ, Ωr, in

a precise but subtle sense, are associated with the orbital motion in the polar (θ),

azimuthal (φ) and radial (r) directions. The fundamental frequencies and complex
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amplitudes evolve with time as radiation reaction drives the orbit through a sequence

of geodesics.

If the third integral (the Carter constant) is lost in SARSAF spacetimes, motion

may be ergodic rather than tri-periodic, which would make detection of the gravita-

tional waves difficult. Guéron and Letelier [20] have used Poincaré maps to search

for ergodic geodesics in the static (Sℓ = 0) Erez-Rosen metric and we (Gair, Li,

Lovelace, Mandel & Fang [21]) have carried out similar studies for a variant of the

stationary (Sℓ 6= 0) Manko-Novikov metric [22]. Both of these metrics have arbi-

trary mass quadrupole moment M2, and higher order moments fixed by M2, S1 and

M . The Poincaré maps in these spacetimes reveal no sign of ergodic geodesics when

M2 < 0 (oblate spacetimes). In some prolate spacetimes (M2 > 0) both with spin

(Manko-Novikov) and without (Erez-Rosen), there are geodesics at very small radii

r ∼ few M that appear ergodic, but none at large radii. Gravitational radiation

reaction drives the evolution of energy and angular momentum in a way which makes

it unlikely that the apparently ergodic geodesics could be encountered in the course

of an inspiral [21]. For the apparently non-ergodic (integrable) geodesics, the spatial

coordinates are multi-periodic functions of Killing time t to a numerical accuracy of

10−7, and a general argument [23] based on the structure of the gravitational prop-

agator shows that their gravitational waves will have the same kind of tri-periodic

form as for Kerr black holes.

There are three possible explanations for the presence of large-radius orbits that

appear integrable and small-radius orbits that appear ergodic in the same spacetime:

(i) The orbits are actually integrable and actually ergodic, respectively. (ii) All the

orbits are ergodic, but at large radii they appear integrable to numerical accuracy

because of the KAM theorem [24]. (iii) All the orbits are integrable, but at small

radii they are made to appear chaotic by some ill-understood numerical instability.

For the theory of dynamical systems, it is important to learn which is the case, but

for EMRI and IMRI wave observations, apparent integrability (or ergodicity) has the

same observational implications as actual integrability (or ergodicity).

Information Carried by IMRI and EMRI Waves; Generalizing Ryan’s
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Theorem. What information about the central body is encoded in the waveforms?

We shall assume the waveforms to be tri-periodic. In principle, a large amount of

information can be encoded in the time evolution of the waves’ three fundamental

frequencies Ωθ(t), Ωφ(t), Ωr(t) and their complex amplitudes hPkmn(t). It has been

speculated that these encode, fully and separably, the values of all the central body’s

multipole moments {Mℓ, Sℓ} and hence its metric [25], the rates at which the orbiting

object’s tidal pull deposits energy and angular momentum into the central body, Ėbody

and L̇body (tidal coupling) [26], and the orbit’s semi-latus rectum p(t), eccentricity

e(t) and inclination angle ι(t) (which carry the same information as the isolating

integrals) [27]. That this might be so is suggested by a special case that Ryan [25] has

studied. A trivial extension of Ryan’s theorem [27] leads to the following algorithm

for extracting information from the waves. Observe the time-evolving modulation

frequencies as functions of the time-evolving fundamental frequency f = Ωφ/π. From

these, deduce the functions ΩA(Ωφ) and thence ΩA(v) for A = θ, r; expand in powers

of v ≡ (MΩφ)
1/3 ≃ (orbital velocity); and read out the moments (redundantly)

from the two expansions. Then, knowing the moments and thence the metric, use

the geodesic equation to deduce p(t) from Ωφ(t) and use wave-generation theory to

deduce e(t) and ι(t) from particular modulation amplitudes, hPkmn(t).

We have generalized Ryan’s theorem to strongly elliptical but nearly equatorial

orbits (Li [23]), to include tidal coupling (Li and Lovelace [27]), and are working on

further generalizations. For strongly elliptical but nearly equatorial orbits the three

fundamental frequencies are independent of ι at first order. We expand these frequen-

cies ΩA(Mℓ, Sℓ, e, p) (with A = θ, φ, r) in powers of 1/p, with coefficients that depend

on e and the moments. Suppose we observe a series of 2N + 1 values of (Ωθ,Ωφ,Ωr)

(for any integer N) during the course of an inspiral. This gives us 6N + 3 numbers,

from which we can read off (via an algorithm based on our expansions of the fun-

damental frequencies [23]): (i) the time evolution of e(t) and p(t) (2N + 1 values of

each), (ii) the lowest N + 1 mass moments, and (iii) the lowest N current moments.

By observing the evolving amplitudes of the orbital-precession-induced modulations

encoded in hPkmn, we can recover the time evolution of ι. Hence, in principle, we
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have a full description of the spacetime. In practice the methods of extracting the

information are likely to be quite different from these algorithms. Development of

practical methods is a topic of our current research.

In the absence of tidal coupling Ryan demonstrated that, for a nearly circular,

nearly equatorial orbit, the central body’s moments are encoded not only in the

waves’ modulations, but also in the phase evolution of the waves’ dominant harmonic

f = Ωφ/π. We have extended this analysis to deduce the power being deposited in

the central body by tidal coupling, Ėbody [27]. We assume the moments and metric

have been deduced from the precessional modulations and then use deviations from

the Ryan-theorem phase evolution to deduce Ėbody. Following Ryan, we quantify

the waves’ phase evolution by ∆N(t) ≡ f 2/ḟ = d(number of wave cycles)/d ln f .

From this definition of ∆N , we infer the rate of change of orbital energy: Ėorb =

(dEorb/dΩφ)(Ω
2
φ/π∆N). All (time-evolving) quantities on the right side can be de-

duced from observation plus the geodesic equation (for dEorb/dΩφ). From the deduced

metric and the frequency f(t) we can compute the power radiated to infinity Ė∞; and

thence by energy conservation we can deduce the power being deposited in the central

body Ėbody = −Ėorb − Ė∞ [27]. We can also infer the angular momentum transferred

tidally to the central body, L̇body, via L̇body = Ėbody/Ωφ (valid for nearly circular,

nearly equatorial orbits).

The above argument assumes that we can compute Ė∞ without knowing the

boundary conditions of the inspiral-induced metric perturbation at the central body,

since we do not know the nature of the central body a priori. For highly compact

central bodies (those deep inside the perturbing field’s “effective potential”) this is

true to high but not complete accuracy. The effect of boundary conditions at the

central body on the inspiral phase evolution is communicated outward to infinity

mainly at low frequencies (the orbital frequency and its low-order harmonics), and

these perturbations have great difficulty penetrating through the effective potential. If

the spacetime metric is Kerr, we have shown that the influence of the inner boundary

condition on the energy radiated to infinity is δĖ∞ ∼ v10Ė∞ [27]—five orders smaller

in the linear velocity v than the tidal coupling Ėbody ∼ v5Ė∞ [28]. Thus, to high
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accuracy we can deduce Ė∞ and thence Ėbody from observations, without knowing

the body’s precise nature.

Measurement Accuracies for AdvLIGO. We have estimated how accurately

AdvLIGO, via IMRI waves, can constrain deviations of the central body’s quadrupole

moment M2 (Brown [17]) and tidal coupling Ėbody (Fang [29]) from those of a Kerr

black hole. In the absence of accurate waveforms, we used PN waveforms as both

signals and templates. This may introduce systematic error, but we believe our results

are indicative of the accuracies AdvLIGO can achieve. Our source is the circular

inspiral of a neutron star into a 100M⊙ IMBH (under the assumption that radiation

reaction has circularized the orbit [12]). The orbit is inclined to the hole’s equatorial

plane, to produce a modulation that is crucial for breaking degeneracy between the

IMBH spin χ and M2 and Ėbody.

To investigate M2, we began with templates accurate to 3.5PN order in phase

evolution [15] and 1.5PN in spin-orbit coupling [14], added the effects of quadrupole-

monopole interaction [30] to both the phase and the precessional modulation and

numerically mapped the ambiguity function of these waveforms. For a NS–IMBH

IMRI (M2 = −χ2M3) with spin χ = 0.8 and SNR ∼ 10, we found AdvLIGO mea-

surement errors ∆ lnM ∼ 0.006,∆ lnχ ∼ 0.02, and ∆ lnM2 ∼ 0.6. If the IMBH spin

is χ = 0.3, the error increases to ∆ lnM ∼ 0.01,∆ lnχ ∼ 0.3, and ∆ lnM2 ∼ 2. The

accuracy of measurement depends strongly on binary orientation; larger precessional

modulation reduces the errors [17].

We can model tidal coupling as Ėbody ≡ ǫ ĖBH, where ĖBH is the energy flow

into a Kerr black hole [28] and seek to measure deviations parameterized by ǫ. We

constructed precessing waveforms [31], with orbital inspiral phase given by the 3.5

PN approximation of the Teukolsky waveforms [16], and modulation linearized in

inclination angle [32]. We restricted inclination angles to ι < π/4, fixed the direction

to the source and the central body’s spin orientation, and used the Fisher matrix to

estimate parameter measurement accuracies. For a black-hole central body with spin

χ = 0.8 and SNR= 10, we could measure ǫ to ∆ ln ǫ ∼ 1 to 2, increasing to ∆ ln ǫ ∼ 30

at χ = 0.3.
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While these errors are larger than hoped, (i) the quadrupole moment |M2| of a

boson star with χ = 0.3 is expected to be in the range 15 to 100χ2M3 [8], so AdvLIGO

could readily identify such a central body, (ii) for small spins ĖBH ≃ −1
4
χv5Ė∞, and

hence for χ = 0.3, the accuracy of measuring tidal coupling is ∆Ėbody ∼ 30×0.001 Ė∞,

i.e. 3% of the power radiated to infinity, an interesting accuracy for central bodies with

anomalously large Ėbody, and (iii) observing an IMRI in each of the three AdvLIGO

detectors increases the accuracy of parameter estimation quoted by a factor of
√

3;

including additional detectors, e.g. Advanced VIRGO, could improve this further.

In practice, parameter estimation will be pursued using Markov Chain Monte Carlo

techniques [33, 17].

Our results suggest that AdvLIGO will be able to verify with interesting accuracy

that an IMRI’s central body is a black hole, and perform interesting searches for

non-Kerr central bodies. AdvLIGO’s accuracies for probing the central body are far

worse than LISA’s (as expected, due to the thousand-fold fewer wave cycles), but

AdvLIGO is likely to be operational some years before LISA. Its studies of central

bodies will be a valuable precursor to LISA’s EMRI science, and might possibly yield

a big surprise.
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Chapter 3

Rates and Characteristics of
Intermediate-Mass-Ratio Inspirals
Detectable by Advanced LIGO

Gravitational waves (GWs) from the inspiral of a neutron star (NS) or

stellar-mass black hole (BH) into an intermediate-mass black hole (IMBH)

with mass M ∼ 50M⊙ to 350M⊙ may be detectable by the planned

advanced generation of ground-based gravitational-wave interferometers.

Such intermediate-mass-ratio inspirals (IMRIs) are most likely to be found

in globular clusters. We analyze four possible IMRI formation mecha-

nisms: (i) hardening of a NS–IMBH or BH–IMBH binary via three body

interactions, (ii) hardening via Kozai resonance in a hierarchical triple

system, (iii) direct capture, and (iv) inspiral of a CO from a tidally cap-

tured main-sequence star; we also discuss tidal effects when the inspiraling

object is a NS. For each mechanism we predict the typical eccentricities

of the resulting IMRIs. We find that IMRIs will have largely circularized

by the time they enter the sensitivity band of ground-based detectors.

Hardening of a binary via three-body interactions, which is likely to be

the dominant mechanism for IMRI formation, yields eccentricities under

10−4 when the GW frequency reaches 10 Hz. Even among IMRIs formed

via direct captures, which can have the highest eccentricities, around 90%

will circularize to eccentricities under 0.1 before the GW frequency reaches
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10 Hz. We estimate the rate of IMRI coalescences in globular clusters and

the sensitivity of a network of three Advanced LIGO detectors to the re-

sulting GWs. We show that this detector network may see up to tens of

IMRIs per year, though rates of one—few per year may be more plau-

sible. We also estimate the loss in signal-to-noise ratio that will result

from using circular IMRI templates for data analysis and find that, for

the eccentricities we expect, this loss is negligible.

Submitted to the Astrophysical Journal by Ilya Mandel, Duncan A. Brown,

Jonathan R. Gair and M. Coleman Miller (2007). Preprint available online

at http://arxiv.org/abs/0705.0285 .

3.1 Introduction

Observational evidence from cluster dynamics and from ultra-luminous X-ray sources

suggests that there may exist a population of intermediate-mass black holes (IMBHs)

with masses in the M ∼ 102−4M⊙ range [61, 88]. Numerical simulations of globular

clusters suggest that IMBHs could merge with numerous lower-mass compact objects

(COs) during the lifetime of the cluster [86, 62, 63, 64, 65, 39, 40, 67, 66], through

a combination of emission of gravitational radiation, binary exchange processes, and

secular evolution of hierarchical triple systems. Gravitational waves (GWs) will be

generated during the intermediate-mass-ratio inspiral (IMRI) of a stellar-mass object

(black hole (BH) or neutron star (NS), since a white dwarf or a main-sequence star

would be tidally disrupted) into an IMBH. For IMBH mass ∼< 350M⊙, these waves

are potentially detectable with the planned advanced generation of ground-based GW

interferometers: Advanced LIGO and its international partners [10, 34].

IMRIs will be important as probes of strong gravity and cluster dynamics due to

their mass range and dynamical histories. For example, from Advanced LIGO IMRI

data it may be possible to measure the quadrupole moment, Q, of an IMBH to an

accuracy of ∆Q ∼ QKerr, where QKerr is the quadrupole moment of a Kerr BH [14].
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This is sufficient to distinguish a BH from a Boson Star, for which the quadrupole

moment can be many times the Kerr value. In addition, since the formation of IMBHs

in clusters seems to require short mass segregation timescales (see § 3.2), detection of

IMBH mergers and their associated masses will yield information about young dense

clusters and their evolution.

In this paper we discuss the astrophysical and data analysis aspects of IMRIs.

In § 3.2, we provide the astrophysical setting for IMRIs and describe the formation

mechanisms. We estimate the typical eccentricities resulting from different capture

mechanisms and find that inspirals will largely circularize by the time the GW fre-

quency reaches the Advanced LIGO band (fGW ∼> 10 Hz). We show, in particular,

that three-body hardening, which is likely to be the dominant IMRI formation mech-

anism, will result in binary eccentricities e < 10−4 in the Advanced LIGO band. Even

direct capture, which is the most likely mechanism to yield high eccentricities, leads

to ∼ 90% of IMRIs with e < 0.1 in the Advanced LIGO band. In § 3.3, we estimate

an upper limit on the rate of IMRIs detectable by Advanced LIGO of up to ten events

per year. A more sophisticated, but model-dependent, rate estimate ranges from one

event per three years for NS IMRIs to ten events per year for ten-solar-mass BH

IMRIs. The event rate can be enhanced by a factor of ∼ 3.5 by optimizing Advanced

LIGO for detections at low frequencies.1 Searches for IMRIs in Advanced LIGO data

will likely use matched filtering techniques, for which accurate waveform templates

are required. In § 3.4, we estimate that there will be a negligible loss in signal-to-noise

ratio if circular templates are used to search for IMRIs with the expected eccentricities

in Advanced LIGO data.

1We used the Advanced LIGO Bench code to perform this optimization:
http://www.ligo.mit.edu/bench/bench.html
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3.2 Astrophysical Setting, Capture Mechanisms,

and Typical Eccentricities

An IMBH cannot result from the evolution of a solitary star in the current universe,

because even a star of initial mass ∼ 102M⊙ will be reduced well below this mass

by winds and pulsational instabilities driven by metal-line opacities (cf. [35], Fig. 7

and associated discussion). Some IMBHs might be formed from the first, metal-free,

stars [57], but these IMBHs are unlikely to participate in multiple mergers with COs.

Instead, we focus on the proposal that IMBHs can be produced in the current universe

via runaway stellar collisions in dense young stellar clusters. If the most massive stars

segregate to the center in less than their ∼ 2× 106 yr lifetimes [19, 75, 73, 42, 41, 32,

31, 29], then stellar mergers can overcome mass losses and the collision product can

reach hundreds to thousands of solar masses, presumably evolving into an IMBH.

When supernovae start to occur, the resulting mass loss leads to an expansion of

the cluster, which thus transitions into a more collisionless stage of existence. From

this point on, COs can be captured by the IMBH and generate observable GWs as

they inspiral under radiation reaction and eventually merge with the IMBH.

Early in the history of the globular cluster the inspiraling objects in IMRIs are

likely to be m ∼ 10 M⊙ BHs, which may form a dense subcluster composed purely

of BHs around the IMBH [67, 66]. Late in the cluster’s history, once the BH cen-

tral subcluster has largely evaporated, NSs will likely replace the larger BHs as the

inspiraling objects.

There are several ways in which stellar-mass COs can be captured by an IMBH.

Most mechanisms of capture involve binaries, because the cross section of a binary is

orders of magnitude larger than that of a single CO.

Extensive numerical studies of binary-single interactions demonstrate that hard

binaries (defined, e.g., so that the total energy of the binary-single system is negative)

tend to be tightened by three-body interactions [43]. These studies also show that

massive objects such as stellar-mass BHs and IMBHs tend to swap into binaries. The

most likely capture mechanism involves the formation of a CO–IMBH binary, which
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is subsequently hardened by repeated three-body interactions until radiation reaction

becomes significant and the binary coalesces.

Hardening can also occur via binary-binary interactions; unlike binary-single in-

teractions, these can result in a stable hierarchical triple. Some fraction of these end

up in orientations favorable for the secular Kozai resonance [55], in which the inner

binary (which contains the IMBH) periodically increases and decreases its eccentric-

ity while keeping its semimajor axis constant. The periapsis distance can therefore

be quite low in parts of the cycle, and can lead to coalescence without Newtonian

recoil [63, 93], although recoil from gravitational radiation will still occur (see § 3.3.2).

The importance of the Kozai resonance depends on the frequency of binary-binary

interactions, which is unknown at present.

In addition to these mechanisms, which usually require multiple interactions to

lead to merger, a hyperbolic encounter at a close enough periapsis can produce direct

capture via emission of gravitational radiation. Assuming the IMBH does not have a

significant radius of influence, the effective cross section for radiative capture of the

CO by an IMBH is proportional to M12/7, where M is the mass of the IMBH [79].

For two-body encounters this process is likely to be important only for masses high

enough (∼> 103M⊙) that the frequency of the GWs throughout the subsequent inspiral

will be below the sensitivity range of ground-based detectors. However, direct capture

during a three-body interaction could be significant [40].

Finally, an IMBH could tidally capture a main-sequence star. If the captured star

evolves to a CO while in orbit around the IMBH, the remnant could remain bound

to the IMBH and ultimately spiral in via GW emission. This scenario has been

suggested as a possible explanation for the observed population of ultraluminous X-

ray sources [50, 49].

Additionally, orbital energy may couple to vibrational normal modes of the inspi-

raling object in the case when the inspiraling object is a NS. In principle, the energy

loss to tidal heating of a NS could change the inspiral trajectory, or even disrupt the

NS.
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The IMRI enters the Advanced LIGO band when

fGW =
ωorb(rp)

π
=

1

π

√

M

r3
p
∼> 10 Hz, (3.1)

i.e., when the periapsis is rp ≈ 16GM/c2 = 1600GM⊙/c
2 for M = 100M⊙. The

frequency of the dominant quadrupolar (k = 2) harmonic in the GWs emitted at the

innermost stable circular orbit is

fGW, ISCO ≈ 44.0
M

100 M⊙

Hz (3.2)

for inspirals into non-spinning BHs.

Below, we discuss the eccentricity of an IMRI at the time its GW frequency enters

the Advanced LIGO band for each of the mechanisms mentioned above: (i) forma-

tion of a CO–IMBH binary and subsequent hardening via three-body interactions; (ii)

Kozai resonance of a hierarchical triple system; (iii) direct capture when a solitary

CO passes close to the IMBH; (iv) tidal capture of a main-sequence star which sub-

sequently evolves to leave a CO. We also consider the impact of (v) tidal interactions

with an inspiraling NS.

3.2.1 Hardening of a CO–IMBH Binary via Three-Body In-

teractions

This mechanism proceeds as follows. The IMBH rapidly swaps into a binary because

it is far more massive than any other object in the globular cluster. Advanced LIGO

can detect IMRIs at redshifts z ∼< 0.2 (§ 3.3.1), so it will predominantly observe

globular clusters late in their history. On a timescale that is short relative to the

merger time, a NS or a BH will encounter the binary containing the IMBH and will

exchange for the companion in this binary, since stellar remnants are the most massive

objects in the late cluster other than the IMBH itself. From that point on, stars of

all types (although biased towards the heavy ones that segregate towards the center)

engage in three-body interactions. Numerical simulations show that interactions tend
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to tighten a binary if it is hard. This can be understood heuristically for three equal-

mass objects by noting that ejection will tend to occur at roughly the binary orbital

speed, hence if this is greater than the initial encounter speed at infinity the binary

loses energy. Binary tightening proceeds until the binary can merge through radiation

reaction from the emission of GWs.

For the unequal mass binaries we consider here, simulations by Quinlan [78] show

that a single interaction of a field star of massm∗ with a binary of total massM will on

average change the binary energy by a fractional amount ∆E/E = O(m∗/M), roughly

independent of the component masses of the binary. More precisely, approximately

(2π/22)M/m∗ interactions are required to reduce the semimajor axis of a hard binary

by one e-folding [78].

The rate at which objects interact with the IMBH binary is

Ṅ = nςv, (3.3)

where n is the number density, v is the relative speed, and ς is the gravitationally

focused cross section ς = πa(2GM/v2) for an interloper to approach within the bi-

nary’s semimajor axis a of the binary. Since this rate is proportional to a, the total

time for the binary to harden until the semimajor axis equals a is dominated by the

last e-folding time:

Tharden ≈ 2π

22

M

m∗

1

Ṅ
≈ 2 × 108

(

1013 cm

a

)

yr, (3.4)

where we set m∗ = 0.5 M⊙, v = 106 cm s−1, and n = 105.5 pc−3 (the number density

of all stars in a core-collapsed globular cluster; Pryor & Meylan 77).

For a sufficiently massive BH, a cusp is formed and the interactions are no longer

described by individual binary-single encounters. We can estimate roughly the mass

above which this occurs. Consider a core of number density ncore and velocity dis-

persion σ. For an IMBH of mass M , the radius of influence (inside of which the

IMBH dominates the potential) is rinfl = GM/σ2. For a true cusp, [6] showed that
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the number density would go as n(r) = ncore(r/rinfl)
−7/4. The total number of objects

inside rinfl is then

N(r < rinfl) =

∫ rinfl

0

4πr2ncore(r/rinfl)
−7/4dr = (16π/5)r3

inflncore . (3.5)

Scaling to canonical values, this gives

N(r < rinfl) ≈ 0.3(M/100M⊙)3(σ/10 km s−1)−6(ncore/105.5 pc−3) (3.6)

Therefore, in the mass range most relevant to Advanced LIGO, it is unlikely that there

will be a significant cusp, hence our treatment of isolated binary-single interactions

is reasonable. For more massive BHs a cusp might form, although we note that for

M < 1000M⊙ the typical distance wandered by the IMBH in the core is larger than

the radius of influence, hence cusp formation could be made more difficult. This is,

however, worth further study.

The gravitational radiation merger timescale for an intermediate-mass-ratio binary

of semimajor axis a, eccentricity e, reduced mass µ ≈ m, and total mass approxi-

mately equal to the IMBH mass M , is [69]

Tmerge ≈ 1017 M3
⊙

M2m

( a

1013 cm

)4

(1 − e2)7/2 yr. (3.7)

Simulations and phase space arguments show that three-body interactions cause

the eccentricity of the binary to sample a thermal distribution P (e)de = 2ede [43],

in the Newtonian realm where gravitational radiation is not significant. If an inter-

action leaves the binary with a high eccentricity, however, it is more likely to merge.

Gültekin, Miller, & Hamilton [40] examined the eccentricity of the binary after its

final three-body encounter, and found a typical value of e ≈ 0.98 due to this bias.

Taking this as the typical value for eccentricity, we find

Tmerge ≈ 108

(

M⊙

m

)(

100 M⊙

M

)2
( a

1013 cm

)4

yr. (3.8)
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In fact, there is a distribution of eccentricities after the last encounter, rather than

a single eccentricity value of 0.98. However, Monte Carlo simulations, which are de-

scribed below, confirm the typical merger times and final eccentricities computed here

analytically by assuming the final-encounter eccentricity of 0.98. Moreover, simula-

tions indicate that the fraction of direct plunges from highly radial orbits must be

extremely small, because they would require improbably small periapsis separations.

The IMRI rate will be maximized when the total merger time, T = Tharden+Tmerge,

is minimized. Minimizing T with respect to a, we find that the total merger time is

T ≈ 3 × 108 yr for the inspiral of a m = 1.4 M⊙ NS into a M = 100 M⊙ IMBH,

yielding an IMRI rate per globular cluster of ∼ 3×10−9 yr−1. If the inspiraling object

is a m = 10 M⊙ BH, and the IMBH mass is again M = 100 M⊙, then the total merger

time is T ≈ 2 × 108 yr, and the IMRI rate per globular cluster is ∼ 5 × 10−9 yr−1.

These numbers are close to the answers obtained with Monte Carlo simulations

using the same procedure as in Gültekin, Miller, & Hamilton (2006). We find from

these simulations that the total time to merger averages 5 × 108 yr for 1.4 M⊙ NSs,

and 3 × 108 yr for 10M⊙ BHs, interacting with field stars of mass 0.5 M⊙ and an

IMBH of mass 100 M⊙. We also find that, as we assumed, once a CO is in a binary

with an IMBH it stays there; only a fraction ≈ 6 × 10−4 of encounters swapped out

a NS, and only 1 of the 5 × 104 encounters swapped out a BH. Therefore, as we

indicated, the object that eventually merges with the IMBH is highly likely to be a

CO.

This mechanism requires the cluster to be in a core-collapsed state, and for this

state to persist for a time ≫ 2 × 108yr. Core collapse is expected to persist in the

absence of significant heating, as will be the case for clusters with IMBHs in the mass

range of interest, so 2 × 108yr should be easily achievable. About 20% of clusters

currently are in a state of core collapse, so this state can indeed be sustained for

times of order a Hubble time, or much longer than 2× 108yr. We consider only these

core-collapsed systems as likely hosts of IMRIs when computing event rates below.

Radiation reaction from GW emission dominates the evolution once the GW

merger timescale Tmerge [Eq. (3.8)] is shorter than the average time between three-
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body encounters, 1/Ṅ , defined by Eq. 3.3. For the NS–IMBH system (m = 1.4 M⊙,

M = 100 M⊙), this occurs when the semimajor axis takes the value a ≈ 5× 1012 cm.

As discussed earlier, the eccentricity at this time is e ≈ 0.98, and hence the peri-

apsis is rp ≈ 1011 cm ≈ 7000 GM/c2. For the BH–IMBH system (m = 10 M⊙,

M = 100 M⊙), radiation reaction dominates for a ∼< 8 × 1012 cm, corresponding to a

periapsis of rp ≈ 1.6 × 1011 cm ≈ 10000 GM/c2.

Keplerian orbits evolving under radiation reaction satisfy [cf. Eq. (5.11) of [69]]

rpe
−12/19(1 + e)

[

1 + (121/304)e2
]−870/2299

= constant, (3.9)

from which we can obtain the eccentricity at a particular frequency, given the initial

values of periapsis and eccentricity. We find that for this capture mechanism, the

eccentricity when the source enters the Advanced LIGO band (fGW = 10 Hz) is

very small: e ∼< 3 × 10−5 for the NS–IMBH system and e ∼< 2 × 10−5 for the BH–

IMBH system. The orbit will thus have circularized by the time the IMRI is in the

Advanced LIGO band. This is consistent with the results of [40], who also found that

IMRI binaries formed through this channel would circularize before they entered the

Advanced LIGO band.

3.2.2 Kozai Resonance

A stable hierarchical triple system could experience Kozai resonance that would drive

the eccentricity of the inner binary to a value close to unity [55], leading to a small

periapsis separation and binary tightening and eventual merger through gravitational

radiation reaction [63, 93]. Some simulations (e.g., those of O’Leary et al. [67])

suggest that the four-body (binary-binary) interactions that are required to place the

binary on the Kozai merger track constitute only a small fraction of the total number

of merger events in the cluster. If so, four-body interactions play a minor role in

IMRI formation. These simulations may not consider all possibilities, however. In

particular, in the [67] model, binaries are only destroyed (through mergers, or by

being kicked out of the subcluster). Therefore, the binary fraction decreases with
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time, meaning that binary-binary interactions are uncommon late in the cluster’s

history. There may be a way to replenish the number of BHs in binaries, however.

Approximately 5-20% of normal stars in globulars are in binaries [83, 12] (this fraction

is closer to 50-70% in the field, but in globulars the wide binaries are disrupted). If

such a binary goes through the BH subcluster, a BH could swap in, so that even if

no BHs were originally in binaries, the binary fraction could increase.

Although computing the relative contribution of Kozai resonance mergers to the

total number of IMRIs requires more detailed modeling of the cluster dynamics, it

is possible to estimate the largest eccentricity that could result from this mechanism

(see [93] for a more detailed discussion in the context of stellar-mass BHs). For this

calculation, we will assume that the Kozai resonance drives the binary to a sufficiently

high eccentricity to allow merger via radiation reaction within one Kozai cycle. In

reality, the semimajor axis and eccentricity would evolve gradually over multiple Kozai

cycles, leading to larger typical periapses and smaller eccentricities, so our assumption

will overestimate the typical eccentricities of IMRIs in the Advanced LIGO band.

We assume that the eccentricity is near its maximum for a fraction 0.01 of the

total Kozai cycle (based on Fig. 1 of [53]), and compare this time with the radiation

reaction timescale. If the radiation reaction merger time is much longer than the time

near maximum eccentricity, we assume that gravitational radiation is insignificant. If

instead the timescale for Kozai resonance to drive the eccentricity to some value e ≈ 1

is much larger than the timescale for radiation reaction to circularize the orbit down

from e, then the eccentricity will never reach e in practice, even though e may be

less than the maximum possible eccentricity for the given configuration (see below).

Therefore, the maximum eccentricity reachable when including gravitational radiation

is given approximately by the condition that the radiation reaction timescale is equal

to the time near that high eccentricity.

The time scale for the Kozai cycle is given by, e.g., Eq. (4) of [63]:

τKozai ≈ few×
(

M1b
3
2

m2a3
1

)1/2(
b32
Gm2

)1/2

≈ 3×
(

M1

100 M⊙

)1/2(
M⊙

m2

)(

b2
a1

)3
( a1

1013 cm

)3/2

yr,

(3.10)
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where, in the notation of [63], M1 is the total mass (approximately equal to the mass

of the IMBH), m1 is the mass of the inner companion, m2 is the mass of the outer

companion, a1 is the semimajor axis of the inner binary and b2 is the semiminor axis

of the outer binary. Setting the time scale for merger by gravitational radiation, given

in Eq. (3.7), equal to τGR = 0.01 τKozai, yields

( a1

1013 cm

)5/2

ǫ7/2 ≈ 3 × 10−15

(

M1

100 M⊙

)5/2 (
m1

m2

) (

b2
a1

)3

(3.11)

where ǫ ≡ 1 − e2.

Relativistic precession constrains the maximal eccentricity, or minimal ǫ, that can

be achieved in a Kozai cycle. That minimal ǫ is given by Eqs. (6) and (8) of [63] as:

ǫ ≈ 1

9

(

8
b32GM

2
1

m2a
4
1c

2

)2

≈ 1.6 × 10−7

(

m2

M⊙

)−2(
M1

100 M⊙

)4
( a1

1013 cm

)−2
(

b2
a1

)6

.

(3.12)

In order to compute the maximal plausible eccentricity at fGW = 10 Hz, we

need to estimate the minimal periapsis radius at the peak of the Kozai cycle, when

radiation reaction becomes dominant, since eccentricity will be close to unity there

[cf. Eq. (3.9)]. That is, we must minimize rp = a1(1 − e) ≈ a1ǫ/2. This minimum

value is found by solving Eqs. (3.11) and (3.12). We find

a1ǫ

1013 cm ∼> 1.8 × 10−5

(

m2

M⊙

)−4/9(
M1

100 M⊙

)13/9(
b2
a1

)2(
m1

m2

)2/9

. (3.13)

Stability requires that the semiminor axis of the outer binary is at least a few times

greater than the semimajor axis of the inner binary, so we set b2/a1 = 5. We again

assume M1 = 100 M⊙, m1 = 1.4 M⊙, and m2 = M⊙ (although this choice violates

the restricted three-body assumption under which Eq. (8) of [63] was derived). These

parameter values predict a minimal rp ∼> 170GM/c2 at the time when radiation

reaction takes over; hence, according to Eq. (3.9), the maximal eccentricity of IMRIs

formed via the Kozai resonance mechanism in the Advanced LIGO band is e ≈ 0.01.
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3.2.3 Direct Captures

If we assume that the IMBH is wandering in the stellar cluster, the effective cross

section for direct captures via two-body relaxation (GW emission) is proportional to

the (12/7) power of the total mass [79], so an IMBH has a relatively small capture

cross section, making this capture mechanism relatively unlikely. If we instead assume

that the M − σ relation holds for globular clusters, which is equivalent to saying

that the IMBH dominates the dynamics in the center of the cluster, the capture

rate would increase towards smaller IMBH masses, like M−1/4 [48], and this channel

would contribute significantly to the total rate. However, as discussed in Section

3.2.1, the IMBHs of interest for Advanced LIGO, with M ∼ 100M⊙, have a very

small radius of influence and so they will not have a significant influence on the

dynamics in the cluster center. The direct capture mechanism, in any case, can yield

higher eccentricities than scenarios involving binaries.

The critical periapsis separation rp for the direct capture of a CO of mass m,

moving at infinity with velocity v, by an IMBH of mass M ≫ m is [cf. Eq. (11)

of [80]]:
rmax
p c2

GM
≈ 950

(m

M

)2/7 ( v

106 cm s−1

)−4/7

. (3.14)

If M = 100 M⊙, m = 1.4 M⊙, and v = 106 cm s−1, direct capture is possible at a

maximum periapsis of rmax
p c2/(GM) ≈ 280; if m = 10 M⊙ and M and v are the same

as above, the maximum periapsis is rmax
p c2/(GM) ≈ 500. For such small periapses,

gravitational focusing implies rp ∝ b2, where b is the impact parameter. Hence,

the probability distribution P (b) ∝ b in impact parameter corresponds to a uniform

distribution in periapsis at capture, P (rp) = constant.

In Figure 3.1, we plot the eccentricity of an IMRI at the frequency at which it

enters the Advanced LIGO band as a function of the initial periapsis at capture,

following Eq. (3.9). The initial eccentricity at capture can be computed from the

energy lost during the first pass; however, the exact value does not significantly affect

the eccentricity at fGW = 10 Hz, so we set the eccentricity at capture to be e = 1.

The initial periapsis is uniformly distributed between rmin
p = 4GM/c2 (orbits with



39

Figure 3.1: The eccentricity at fGW = 10 Hz is plotted as a function of the periapsis
at capture. for a CO inspiraling into an IMBH of mass M = 100M⊙. The eccentricity
at capture is set to 1, and the eccentricity at rp ≈ 16 GM/c2, where fGW = 10 Hz,
follows from Eq. (3.9).
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periapsis under 4GM/c2 will plunge rather than inspiral) and rmax
p . Therefore, to

determine the total fraction of directly captured IMRIs that circularize to a given

level e ≤ ecutoff by the time they are in the detector band, it is sufficient to find the

fraction of the interval [rmin
p , rmax

p ] for which the curve in Fig. 3.1 stays below ecutoff .

Thus, for the chosen IMBH mass of M = 100 M⊙, if the CO is a m = 1.4 M⊙

NS, 86% of all directly captured IMRIs will be circularized to e ≤ 0.1 by the time

they are in the Advanced LIGO band. If the CO is a m = 10 M⊙ BH, 92% of all

directly captured IMRIs will be circularized to e ≤ 0.1 and 67% will be circularized

to e ≤ 0.01 by the time they are in the detector band.

3.2.4 Tidal Capture of a Main-Sequence Star

It has been suggested that Ultraluminous X-ray (ULX) sources are systems in which a

main-sequence star that has been tidally captured is transferring mass to an IMBH via

Roche lobe overflow [50]. In such a system, after the star reaches the end of its main-

sequence lifetime and undergoes a supernova, it may leave a CO on an orbit about

the IMBH [49] and this object may then spiral into the IMBH via GW emission.

Although work on this problem has focused on sources that might be detected by

LISA, results have also been presented for the ∼ 100M⊙ IMBHs that we consider

here. For M ∼ 100M⊙, only 1–2% of systems leave a CO that inspirals into the

IMBH within a Hubble time, and these remnants are always NSs [49]. Following

[49] we can estimate the rate of these events by assuming that there is ∼ 1 ULX in

each galaxy. The ULX phase lasts approximately the main-sequence lifetime of the

captured star, which is ∼ 107 years, so we estimate that the capture rate is 10−7 per

year. Multiplying by the fraction of events that successfully inspiral, we estimate a

rate of 1–2 × 10−9 IMRIs per galaxy per year. There are typically ∼ 100 globular

clusters per galaxy, so the rate per globular cluster is ∼ 10−11 per year, which is

considerably smaller than the binary hardening rate. Thus, while this channel could

lead to some IMRIs detectable by Advanced LIGO, the rate is likely to be significantly

lower than the binary hardening channel.
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A NS captured via this mechanism would begin to inspiral into the IMBH with

eccentricity e ∼< 0.9 [49] and periapsis approximately equal to the tidal radius,

(M/M∗)
1/3R∗, where M∗ ∼> 10M⊙ and R∗ are respectively the mass and radius of

the main sequence star. Assuming, conservatively, R∗ ∼> 105km, this capture periap-

sis is typically ∼> 500(GM/c2). For an M = 100M⊙ IMBH, equation (3.9) predicts

e ≈ 0.002 when the source enters the Advanced LIGO band. In practice, the eccen-

tricity is likely to be even smaller. It is thus quite clear that this capture mechanism

also produces sources that are essentially circular when they enter the Advanced

LIGO band.

3.2.5 Tidal Effects

If the inspiraling object is a NS, tides may be significantly excited as it passes the

central IMBH. If sufficient energy goes into tidal heating, the NS could be disrupted.

Prior to disruption the orbital inspiral will be modified as orbital energy and angular

momentum are lost into tidal heating. Tidal interactions are not important for the

IMRI events we are considering, however, as we demonstrate below.

3.2.5.1 Tidal Disruption

A star will be tidally disrupted by a BH when the gravitational tidal force acting over

the star due to the BH exceeds the self gravity of the star. Assuming a Newtonian

potential, this leads to the usual tidal disruption radius

Rtd = R∗

(

M

m

)
1

3

= 41.5km

(

R∗

10km

)(

M/100M⊙

m/1.4M⊙

)
1

3

, (3.15)

in which Rtd is the radius at which tidal disruption occurs, m and R∗ are the mass

and radius of the star, and M is the mass of the BH. The gravitational field outside

a Kerr BH is not Newtonian, but (3.15) still provides a reasonable estimate of the

tidal disruption radius. Comparing this to the Schwarzschild radius of a 100M⊙ BH,

RS = 2GM/c2 = 300km, suggests that, even when relativistic effects and BH spin are
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included, tidal disruption could only occur very close to the central BH. Earlier in

this section we showed that the orbits of IMRI objects are effectively circular by the

time the CO gets close to the IMBH. The tidal effects for stars on circular orbits are

most extreme for prograde equatorial orbits, since these come closest to the central

body. Thus, we shall use results for prograde, equatorial circular orbits for a more

accurate calculation of tidal disruption.

Vallisneri [91] analyzed NS disruption using the correct tidal field for objects in

prograde, circular, equatorial orbits around a Kerr BH, and found that the GW

frequency at which tidal disruption occurred, ftd, satisfied the relationship

R∗ =







3.25km (m/1.4M⊙)
1

3 (M/50M⊙)
2

3 (GMftd/c
3)

−0.71
GMftd/c

3 ≤ 0.045

1.55km (m/1.4M⊙)
1

3 (M/50M⊙)
2

3 (GMftd/c
3)

−0.95
GMftd/c

3 ≥ 0.045

(3.16)

An inspiraling object plunges into the BH when it reaches the innermost stable pro-

grade circular orbit (ISCO). This has radius [9]:

c2Risco

GM
= 3 +

√

3χ2 + Z2 −
√

(3 − Z)(3 + Z + 2
√

3χ2 + Z2),

where Z = 1 +
[

(1 + χ)
1

3 + (1 − χ)
1

3

]

(

1 − χ2
)

1

3 , (3.17)

where χ = S1/M
2 is the dimensionless spin parameter of the BH.

The condition that the star is not disrupted before plunge sets a maximum radius

for the NS. If we require the tidal disruption frequency to be greater than the fre-

quency of a prograde circular orbit at the ISCO,GMfisco/c
3 = {π[χ+(c2Risco/GM)3/2]}−1

[9], then Eqs. (3.16)–(3.17) imply that the NS escapes disruption provided

R∗ <







7.33km (m/1.4M⊙)
1

3 (M/50M⊙)
2

3

{

χ + [c2Risco/(GM)]
3

2

}0.71

χ ≤ 0.6894

4.59km (m/1.4M⊙)
1

3 (M/50M⊙)
2

3

{

χ + [c2Risco/(GM)]
3

2

}0.95

χ ≥ 0.6894

(3.18)

Reasonable NS models have a maximum radius of ∼ 16 km or less, so this criterion will

be satisfied for a 50M⊙ IMBH if the spin χ < 0.95. For a 100M⊙ IMBH, the condition

is satisfied for all spins up to 0.998. As discussed later, we expect IMBHs that grow
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through minor mergers to have only moderate spin χ ∼< 0.3, so tidal disruption should

not occur for such IMBHs.

Although the NS cannot be directly tidally disrupted, tidal oscillations will be

excited every time the star passes through periapsis. If sufficient energy is deposited

into such tides, the star could eventually be disrupted through this tidal heating [30].

To assess whether this effect could be important, we consider the orbital energy lost

to leave the star on an orbit with periapsis rp and eccentricity e divided by the binding

energy of the star, Eorb/Ebind. If the inspiral was entirely driven by tidal dissipation,

and the tidal energy was not efficiently radiated, this would be the ratio of the energy

in tidal oscillations to the stellar binding energy. Under these assumptions, if this

ratio was of the order of 1 or more, then tidal heating could disrupt the star. In

practice, however, most of the orbital energy is lost to gravitational radiation, since,

as we shall see below, tidal oscillations can only be excited during the late stages of

inspiral. Thus most of the energy does not go into tidal heating and therefore this

ratio would have to be significantly greater than 1 for tidal disruption to occur.

Assuming a Keplerian orbit, this ratio is equal to [30]

Eorb

Ebind

= 4.8(1 − e)
GM

c2rp

(

R∗

10km

)(

m

1.4M⊙

)−1

, (3.19)

where we have assumed the star has zero kinetic energy at infinity. (Assuming that

the stellar velocity is 10 km s−1 at infinity changes this result by only 2.3 × 10−9

for a 1.4M⊙ NS of radius 10km.) For an inspiral into a Schwarzschild BH, plunge

occurs when c2rp(1 + e) = 2(3 + e)GM ; therefore for any eccentricity we have (1 −
e)GM/(c2rp) < 1/6 at plunge. This means that the energy ratio defined in (3.19)

can only be greater than one for R∗ > 12.5 km. Tidal disruption due to heating is

very unlikely to occur. This conclusion also applies to BHs of moderate spin. For an

orbit that is circular at plunge into a BH with spin χ = 0.35, the ratio Eorb/Ebind is

approximately equal to one at ISCO for R∗ = 10km.

If systems existed in which a NS was on a prograde inspiral orbit into a rapidly

spinning BH, the periapsis at plunge would be much closer to the central body and
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the energy ratio would exceed unity at plunge. However, the energy ratio would

still be small. The radius of the innermost stable circular orbit for a BH of spin

χ = 0.9 is at c2rp = 2.32GM , at which radius Eorb/Ebind ∼ 2 for R∗ = 10km. The

disruption criterion that Eorb/Ebind ∼ 1 assumes that the orbital energy is dissipated

entirely by tidal interactions. In practice, the inspiral will mainly be driven by GW

emission, since most of the orbital energy is lost in the regime where GW emissions

are quite significant. Tidal dissipation would have to occur on a very short timescale

to dominate over gravitational radiation reaction effects, and this will not happen in

practice. We can thus conclude that disruption of the NS due to tidal heating will

not occur. This is in contrast to main sequence stars which, being less compact, will

be disrupted before reaching the ISCO [30]. We note that this conclusion does not

change when the relativistic orbital energy is used in place of the Keplerian expression.

3.2.5.2 Tidal Capture

Although tidal interactions should not shorten the inspiral by causing disruption of

the NS, if orbital energy and angular momentum of the binary are lost into normal

modes of the star, the inspiral trajectory will be modified. In principle, this could

modify the capture rate and the typical eccentricities expected at plunge. Significant

oscillations are only likely to be excited by tidal interactions if the orbital frequency is

comparable to the frequency of normal modes in the NS. We can estimate the latter

from the frequency associated with the free fall time in the NS:

ωosc ≈
√

2

π

√

Gm

R3
∗

= 5.9kHz

(

m

1.4M⊙

)
1

2

(

R∗

10km

)− 3

2

. (3.20)

This is just an approximation, but it gives the correct order of magnitude for the

normal mode frequency. Press & Teukolsky [76] computed normal modes using a

polytropic stellar model with index n = 3. They found an f -mode frequency that

agrees with Eq. (3.20), but with a prefactor of 6.2 kHz instead of 5.9 kHz.

Other stellar modes, in particular g-modes, can have significantly lower frequency,

and thus will be excited earlier in the inspiral. Press and Teukolsky tabulate frequen-
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cies for g-modes up to g14, which has a frequency a factor of 0.15 smaller than the

f -mode. An n = 3 polytrope is not a good model for a NS, but it still provides a

reasonable estimate of the frequency range for thermal g-modes. NSs also support

crustal g-modes that arise from chemical stratification, and core g-modes that arise

from stratification in the number densities of charged particles. Finn [22] computed

frequencies of crustal g-modes in zero-temperature NSs, using a range of stellar mod-

els. He found that the longest period modes had periods of ∼ 20ms. Reisenegger &

Goldreich [82] computed the frequencies of core g-modes, and found that these have

similar frequencies to the crustal modes. Taking ∼ 50ms as a reasonable maximum

for the g-mode period gives a frequency of 20Hz.

Inertial (r-)modes in rotating NSs typically have frequencies of the order of the

spin frequency of the NS (f ∼ 10 − 100Hz). [47] examined the excitement of r-

modes by Newtonian tidal driving and found that this was fairly weak. However, [28]

computed the effect of post-Newtonian gravitomagnetic driving and found that this

was significantly greater. For rapidly rotating NSs, the inertial-frame frequency can

be much smaller than the corotating-frame frequency, which allows f and p modes to

be excited [47]. This requires very rapid NS rotation, frot ∼ 500Hz. [47] examined

such modes in the context of comparable mass binaries, but concluded that such NS

spins were unlikely to be found in binary systems. In the IMRI case, where a free

NS is captured, the NS spin could be much higher in principle, making these modes

potentially interesting. [47] and [28] considered only modes in the LIGO frequency

range, 10Hz < f < 1000Hz, but the mode spectrum extends to lower frequencies.

However, the frequency at which each resonance occurs is a single-valued function of

the spin of the NS.

We compare these frequencies to the orbital frequency of a prograde circular orbit

at radius r

ωorb = 0.65kHz

[

(

c2r

GM

)
3

2

+ χ

]−1
(

M

50M⊙

)−1

(3.21)

Any NS that comes within a distance ≈ 280GM/c2 from an M = 100 M⊙ IMBH

will be directly captured as a result of GW emission. The additional energy lost
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in tidal interactions could increase this capture cross section. However, for r =

300GM/c2 (cf. Sec. 3.2.3), ωorb = 0.13Hz which is much less than the frequency of

oscillations of the star. The g-mode frequency is two orders of magnitude higher

than the orbital frequency at that radius and so it is unlikely to be significantly

excited. The g-mode frequencies become comparable to the orbital frequency for a

Schwarzschild BH when c2r ∼< 10GM . Thus, g-modes are likely to be excited in

the late stages of inspiral, but not earlier. As mentioned above, the spectrum of

NS r-modes and the f and p mode resonances of rapidly rotating NSs extend to low

frequencies [47, 28]. However, the resonant frequencies are determined by the NS spin,

so it would require extreme fine tuning for a given NS to be captured at precisely the

periapsis that allows excitement of those modes. The capture rate is unlikely to be

increased by this mechanism either, although these modes could also be excited later

in the inspiral.

Press & Teukolsky [76] provide an expression for the energy dissipated in tides in

an object of mass m and radius R∗ that passes a point mass of mass M on a Keplerian

orbit with periapsis Rmin:

∆Etidal =

(

Gm2

R∗

)(

M

m

)2(
R∗

Rmin

)6

T2

(

√

m

M

[

Rmin

R∗

]
3

2

)

(3.22)

This expression is integrated over all thermal normal modes, including g-modes up

to g14. Once again, this result is based on an n = 3 polytropic stellar model, which

is not a good model of a NS. However, it should provide an order of magnitude

estimate for the energy lost in thermal modes. In Eq. (3.22) we include only the l = 2

modes, since other modes are suppressed by (R∗/Rmin)
2 ≪ 1 relative to these modes.

We also take the extreme mass ratio limit M ≫ m. The function T2(η) behaves as

T2(η) ∼ 0.65η−2.34 at large η (we have derived this “by eye” from Figure 1 in [76]). We

can thus compute the ratio of the energy dissipated in tides to the energy dissipated

in GW emission, ∆EGW = [85πm2/(12
√

2Mc5)] (GM/Rmin)
7/2, for an object on a
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parabolic Keplerian orbit with periapsis Rmin

∆Etidal

∆EGW

≈ 0.05

(

GM

c2Rmin

)6.01(
R∗

20km

)8.51(
M

50M⊙

)−5.34(
m

1.4M⊙

)−3.17

(3.23)

It is clear that, under these model assumptions, the tidal perturbation to the orbit

at capture is always much weaker than the perturbation induced by GW emission.

For comparison, since ∆EGW ∝ r
−7/2
p , a 10% increase in the energy lost in a single

pass by the central BH increases the minimum periapsis required for direct capture

by only a factor of 1.12/7 ≈ 1.03 or ∼ 3%.

The above arguments indicate that the excitement of NS modes will not increase

the capture rate nor lead to NS disruption during an IMRI. However, orbital energy

lost into oscillations could modify the inspiral trajectory by either causing a cumula-

tive phase shift in the emitted GWs or by changing the eccentricity of the orbit in the

LIGO band. [28] calculated the phase difference in the GWs that arises from the ex-

citement of r-modes, finding ∆Φ ∼ 3.4R4
10f

2/3
s100M

−1
1.4m

−2
1.4(M1.4+m1.4)

−1/3, where R10 is

the NS radius in units of 10km, M1.4/m1.4 are the masses of the primary/secondary in

units of 1.4M⊙ and fs100 is the spin frequency (or r-mode frequency) in units of 100Hz.

For an IMRI with M = 50M⊙, this gives ∆Φ ∼ 0.003 if we set R10 = fs100 = m1.4 = 1.

Typically we require a phase shift of ∆Φ ∼ 1 for an effect to be observable, so the

excitement of r-modes will not leave an imprint on the inspiral. The phase shift

induced by the resonant excitement of f and p modes in rapidly rotating NSs can

be significantly higher. [47] quote ∆Φ ∼ 234m−4.5
1.4 R3.5

10 m
2
1.4/(M1.4(m1.4 +M1.4))f

−1
gw100

for the most extreme case of the (22, 2) f -mode resonance (with the same notation

as before but now denoting the GW frequency in units of 100Hz by fgw100). For an

M = 50M⊙ IMRI, this gives ∆Φ ∼ 0.2f−1
gw100. This could be a measurable shift if

the resonance is excited near 10Hz. However, the phase shift is only this large for

IMBHs at the low mass end of the IMRI range, and provided the NS spin is tuned to

ensure that the resonance is excited near 10Hz. More work will be needed to quantify

how large a phase shift would be measurable with Advanced LIGO, accounting for

correlations between the waveform parameters.
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We can estimate qualitatively what effect tidal dissipation would have on the

orbital eccentricity and periapsis. The phase space trajectory that an inspiral follows

is determined entirely by the ratio dE/dLz . Assuming a Keplerian orbit, we have

drp
de

=
rp

(

2
√

(1 + e)GM − r
3

2
p dE/dLz

)

(1 + e) r
3

2
p dE/dLz − 2(1 − e)

√

(1 + e)GM
. (3.24)

We now suppose that the inspiral was driven entirely by tidal dissipation. Typically

the dominant excited mode would be an m = 2 mode, for which ∆Lz = 2∆E/ω00,

where ω00 is the frequency of the mode (this assumes that the stellar oscillations can

be modeled as a linear Lagrangian system; Friedman & Schutz 33). We write

ω00 =

√

GM

r3
c

, (3.25)

where rc is the radius of the circular (Keplerian) orbit that would have the same

frequency as the m = 2 mode. With this substitution, equation (3.24) defines the

evolution of rp/rc over the inspiral. Equations (3.20) and (3.21) indicate that the

capture periapsis, r0
p, will typically be much greater than rc. Solutions with r0

p > 25/3rc

are all qualitatively the same, and we show a typical example in Figure 3.2, for capture

periapsis of 1000 rc and a capture eccentricity of 1. For a 100M⊙ IMBH, taking ω00 = 6

kHz yields c2 rc ≈ 0.5GM , so this figure represents a capture at rp ≈ 500 GM/c2,

the upper end of the allowed direct capture range for a m = 10 M⊙ BH. The figure

shows the inspiral in eccentricity-periapsis space. Under this simple model of tidal

interactions, the periapsis increases while the eccentricity decreases. In practice, the

inspiral will be driven by a combination of GW emission and any tidal dissipation that

occurs. These results suggest that tidal effects would tend to make the eccentricities

at plunge smaller than they would be for inspirals driven by radiation reaction alone.

Equations (3.20)–(3.23) indicate that normal modes are unlikely to be excited

during an inspiral into an IMBH, although high order g-modes, r-modes and f -modes

in rapidly rotating NSs might be excited during the very late stages of inspiral. Thus,
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Figure 3.2: Tidal-dissipation-driven inspiral in phase space for an inspiraling star
with initial eccentricity of e = 1 and initial periapsis rp = 1000 rc. The plot shows
eccentricity on the horizontal axis and the ratio rp/rc on the vertical axis. The radius
rc characterizes the frequency of normal modes in the star as defined by Eq. (3.25).
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we can safely ignore the effect of tides on the capture rates. Tidal effects could modify

the inspiral, although the above calculation indicates that this should not modify our

conclusions about the typical eccentricities at plunge. The excitement of f -modes

might leave a measurable imprint on the GW signal. However, the induced phase

shift is only marginally detectable and this mechanism requires the NS to be rapidly

rotating.

3.3 Event Rates

In this section, we estimate the rate of IMRIs in globular clusters detectable by Ad-

vanced LIGO. To do this, we must consider three elements: (i) the distance sensitivity

of the detectors to GWs from IMRIs (and hence the volume of the universe the detec-

tors can see), (ii) the number density of globular clusters, and (iii) the rate of IMRIs

per globular cluster.

3.3.1 Advanced LIGO IMRI Sensitivity

For GW sources with known waveforms (or at least waveforms well approximated by

analytic or numerical techniques), matched filtering is used to search for signals in

GW detector data [92, 2]. The signal-to-noise ratio (SNR) ρ of a template h(t) in

data s(t) collected by a detector which has one-sided noise power spectral density

Sn(|f |) is given by

ρ =
4

σ

∫ ∞

0

|s̃(f)h̃∗(f)|
Sn(|f |)

df, (3.26)

where s̃(f) is the Fourier transform of the signal s(t), h̃(f) is the Fourier transform

of the inspiral template h(t), ∗ denotes complex conjugation, and σ is defined by

σ2 = 4

∫ ∞

0

|h̃(f)|2
Sn(|f |)

df. (3.27)

This definition of SNR follows the normalization of [17] and [2]. We place the template

h(t) at a canonical source distance of 1 Mpc and choose the optimal orientation of
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the detector to maximize the SNR, and so the maximum distance to which a single

detector matched filter search is sensitive at a given SNR ρ is given by D = σ/ρ Mpc.

(This is the same quantity as the “inspiral horizon distance” used by the LIGO and

Virgo Collaborations [1].)

To compute the sensitivity of a single Advanced LIGO detector to IMRIs, we need

to compute the quantity σ2 defined in Eq. (3.27) using a particular waveform model.

We have done this with waveforms based on BH perturbation theory [24], which are

valid in the limitm/M ≪ 1. The waveforms, which include non-quadrupolar harmon-

ics of the orbital frequency in addition to the dominant quadrupolar harmonic, are

described in Appendix 3.6, where we also discuss the relative SNR contributed by the

four lowest harmonics. The noise power spectral density Sn(|f |) was taken from [34].

GW detectors have an orientation-dependent response. The relation between the

range R (defined as the radius of a sphere whose volume is equal to the volume of

the universe in which inspiral sources could be detected with an SNR threshold of ρ)

and maximum distance D at a fixed SNR is given by R = D/2.26 [23].

We assume a value of ρ = 8 for the threshold SNR required for a detection,

since this is the value typically used to compute Initial LIGO detection ranges for

comparable-mass black hole binaries [1]. This is a reasonable approximation, as a bi-

nary black hole inspiral with a total mass of 6M⊙ has approximately 500 gravitational-

wave cycles between the 40 Hz low-frequency cutoff of Initial LIGO and coalescence

— roughly the same number of gravitational-wave cycles that an IMRI signal in Ad-

vanced LIGO will have between the Advanced LIGO low-frequency cutoff of 10 Hz

and coalescence. The threshold will be computed more accurately when an IMRI

search is implemented and the amount of non-stationarity of the Advanced LIGO

data is known. If the ρ = 8 threshold cannot be achieved in practice (or if it can be

improved), then the detection rates derived below can be scaled appropriately.

Advanced LIGO will consist of a network of three 4-km detectors. Demanding

that GWs are found coincident in all three detectors increases the network range by a

factor of
√

3 relative to the range of a single detector at a given SNR (due to the lower

false alarm rate of the network). Fig. 3.3 shows the range R of a network of three
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Advanced LIGO detectors for circular-equatorial-orbit IMRIs of m = 1.4M⊙ objects

into a Kerr IMBH of mass M , assuming that the network SNR required for a confident

detection was ρ = 8. This is equivalent to the range of a single detector with SNR of

ρ = 8/
√

3. The χ = 0 (non-spinning IMBH) curve in Fig. 3.3 is well-approximated

by a quadratic fit:

R ≈
√

m/M⊙ ×
[

800 − 540

(

M

100 M⊙

)

+ 107

(

M

100 M⊙

)2
]

Mpc. (3.28)

The scaling of the range in Eq. (3.28) as
√
m does not follow from the fit, but

rather from the following reasoning. The amplitude of GWs from IMRIs will scale

linearly with the mass of the smaller object m, but the number of cycles in the LIGO

band will also drop by roughly a factor of m. Hence, the total signal-to-noise ratio

(SNR) will grow as
√
m, so inspirals of more massive COs will be seen a factor of

√
m

further away.

The combination of the spin of the central object and the inclination of the orbital

plane of the inspiraling particle will have a significant effect on the signal from an

IMRI. The frequency of the ISCO is much higher for prograde inspirals into rapidly

spinning BHs than for inspirals into non-spinning holes; the SNR can be strongly

enhanced for such orbits. Conversely, retrograde inspirals will have lower SNR. Aver-

aging over random inclination angles, Mandel [58] computed the ratio between (i) the

detection range for Advanced LIGO in a universe uniformly populated by IMBHs of a

given mass and spin and (ii) the detection range in a universe with an equal density of

Schwarzschild IMBHs with the same mass. He found that the detection range can be

enhanced by a factor of 1.7 (3.8) for maximally spinning Kerr BHs with M = 100M⊙

(M = 200M⊙); the increase in the volume of observable space and, hence, the event

rates, is the cube of these numbers.

If IMBHs grow mainly by random mergers, they will not be rapidly spinning as

the contributions of subsequent mergers to the hole’s spin largely cancel out. The

angular momentum imparted to the IMBH by a CO is Lobj ∝ mM , since the radius

at ISCO is rISCO ∝ M . This causes the dimensionless spin parameter of the hole
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Figure 3.3: Range of a network of three Advanced LIGO detectors for the circular-
equatorial-orbit inspiral of a 1.4M⊙ object into an IMBH, as a function of IMBH
mass M . The three curves show IMRI spins of χ = 0.2 (dashed), 0 (solid), and −0.2
(dot-dashed). Positive χ means prograde orbit; negative χ means retrograde. The
quadratic fit given in Eq. (3.28) is a fit to the χ = 0 curve.
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χ = S1/M
2 to change by ∼ Lobj/M

2 ∝ m/M . After ∼M/m such mergers, necessary

for the hole to grow to mass M , the typical spin of the hole will be χ ∼
√

m/M .

More precise calculations [51, 60, 58] show that the spin of IMBHs involved in LIGO

IMRIs will rarely exceed χ = 0.3 for IMBHs that gained a significant fraction of their

mass via minor mergers. For small values of χ, Eq. (24) of [58] yields a correction to

the range presented in Eq. (3.28) due to the inclusion of the IMBH spin; the detection

range in Mpc as a function of M , m, and χ is

R

Mpc
≈
[

1 + 0.6 χ2

(

M

100 M⊙

)]
√

m

M⊙

[

800 − 540

(

M

100 M⊙

)

+ 107

(

M

100 M⊙

)2
]

.

(3.29)

This range estimate does not include the cosmological redshift. The redshift due to

the expansion of the universe decreases the frequency of the GWs. For M ∼ 100 M⊙

IMRIs, the redshifted GWs will lie in a less sensitive part of the LIGO noise curve,

thereby reducing the range. For IMRIs detectable with Advanced LIGO, redshifts are

typically ∼< 0.2; for example, the inspiral of a 1.4M⊙ NS into a non-spinning 100M⊙

IMBH is visible to a redshift of 0.09. We estimate that for typical sources, properly

including the redshift reduces the Advanced LIGO event rate by ∼ 10%.

Advanced LIGO will have several parameters which may be tuned during the

operation of the detector to optimize the noise power spectral density (PSD) in order

to search for specific sources. These tunable parameters include the laser power

and the detuning phase of the signal recycling mirror. If a noise PSD optimized

for detections of CO–IMBH binaries is used instead of the default PSD assumed in

Fig. 3.3, the range for such sources is increased by a factor of ∼ 1.5, corresponding

to an event rate increase by a factor of ∼ 3.5.

3.3.2 Number Density of Globulars with a Suitable IMBH

The second element in the rate calculation is the number density of globular clus-

ters that have an IMBH in the relevant mass range. This is highly uncertain. To

contribute significantly, a cluster must have had a sufficiently small initial relaxation
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time to allow the formation of an IMBH through some mild runaway process when

the cluster was young, yet not have formed an IMBH with M > 350M⊙ (since this

would put IMRIs beyond the Advanced LIGO frequency range). Recent theoretical

arguments by Trenti and colleagues [44, 89, 90, 88] suggest that dynamically old

globulars with large core to half-mass radius ratios have been heated by a ∼ 1000M⊙

IMBH, so these clusters would not contribute to the Advanced LIGO IMRI rate.

Note, though, that [52] has shown that current observations of the core to half-light

ratios in globulars do not require 1000M⊙ BHs in most clusters. Core-collapsed glob-

ular clusters, which constitute ∼20% of all globular clusters [71], may contain IMBHs

of the right mass. We will parametrize the unknown fraction of relevant globular

clusters by some fraction f . Globular clusters have a space density of 8.4 h3 Mpc−3

[74], which for h = 0.7 yields 2.9 Mpc−3. Therefore, we will use the number density

∼ 0.3 (f/0.1) Mpc−3. This factor f depends on both the number of clusters with an

IMRI in the right mass range, and the number of clusters that have been in a state of

core-collapse long enough for the binary hardening mechanism to occur. These factors

are degenerate, however, since clusters with heavier IMBHs will not be in a state of

core collapse, as described above. The fraction f also depends on what proportion of

the objects merging with the IMBH are COs as opposed to main-sequence stars. Our

Monte Carlo simulations, which were discussed earlier, indicate that this proportion

is close to 1.

The fraction f of globular clusters containing IMBHs may be further lowered

by ejections of IMBHs from their clusters by recoil kicks imparted to the IMBHs

by dynamical processes and by gravitational radiation emission. If the kick exceeds

≈ 50 km s−1, which is the escape velocity from a massive globular cluster, the IMBH

will escape from the cluster, thereby becoming unavailable for future events. Kicks

can arise from the process of hardening via three-body encounters [56, 84, 39, 40].

Gültekin, Miller and Hamilton (2006) show (cf. their Fig. 12) that when the seed

mass is 100M⊙, only about 50% of all BHs grow to 300M⊙ without being ejected,

and this fraction drops to 10% for a seed mass of 50M⊙.

Kicks also arise from GW emission. During the last stages of the merger of
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unequal mass BHs, a net flux of angular momentum will be carried away by the GWs,

imparting a kick to the resulting BH [68, 11, 25, 26, 81, 94, 21, 13, 18, 45, 8, 37, 85].

The most recent results on merger velocity kicks, based on numerical relativity, show

that the kick velocity for a non-spinning central object depends on the symmetric

mass ratio η = mM/(m + M)2 as Vkick ≈ 12000η2
√

1 − 4η(1 − 0.93η) km s−1 [37].

The requirement Vkick < 50 km s−1 places an upper limit on m of q = m/M ∼< 0.08.

If the IMBH is rapidly spinning, recent numerical relativity results suggest the

kick can be a lot higher [7, 15, 16, 38, 46, 54]. [7] and [15] provide a fit to numerical

relativity results that gives the kick as a function of the various orbital parameters.

This formula indicates that if the IMBH has moderate spin χ ∼< 0.5 and the secondary

is non-spinning, then we require q ∼< 0.05 to ensure the IMBH has a high probability

of remaining in the globular cluster today after undergoing multiple mergers. This

constraint can be relaxed to q ∼< 0.067 if χ ∼< 0.3. If the objects merging with the

IMBH are BHs with a mass of 10M⊙, this constrains the initial IMBH mass to be

M ∼> 150M⊙. If the merging objects are 1.4M⊙ NSs, even IMBHs with a seed mass

of 50M⊙ are safe from ejection.

As argued earlier, mergers with BHs are likely to be important early in the IMBH

evolution, when its mass is smaller, with NS mergers becoming dominant later. This

could mean that a significant number of IMBHs were ejected from globular clusters

early in their evolution. However, without firm knowledge of the initial seed masses

of IMBHs nor the relative number of mergers with BHs and NSs that each IMBH

undergoes, it is impossible to draw definitive conclusions. We normalize f to 10% in

the rates calculations that follow, but emphasize that this quantity is highly uncertain

at present.

3.3.3 IMRI Rate per Globular Cluster and Event Rate

The final contribution to the rate estimate is the merger rate per globular cluster.

Existing numerical simulations of globular clusters suggest that mergers in the sub-

cluster of ∼ 10M⊙ BHs at the center of the globular cluster can lead to the creation
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of IMBHs with masses up to ∼ 350M⊙ in ∼ 1010 years [67]. However, the results of

such simulations are very sensitive to the choice of cluster models and to assumptions

about kick velocities, the interaction between the BH subcluster and the rest of the

cluster, etc. Therefore, we present two methods for computing the rate per globular:

(i) an upper limit independent of cluster model; and (ii) an estimate based on a more

realistic model for cluster dynamics.

We estimate a theoretical upper limit on the IMRI event rate in a globular cluster

using the following method, originally suggested by Phinney [72]. We assume that

each globular cluster has a BH that grows from M ∼ 50M⊙ to M ∼ 350M⊙ by

capturing a sequence of COs of identical mass m over the age of the cluster. Then

300M⊙/m captures will happen in each globular cluster in ∼ 1010 years. This leads

to a rate of (300 M⊙)/m× (1010 yr)−1 per cluster.

Although this rate is plausible, it may be a significant over-estimate for several

reasons. Firstly, it assumes that all the mass that the IMBH acquires in growing from

M ∼ 50M⊙ to M ∼ 350M⊙ comes from mergers with COs. In practice, the IMBH

will also acquire mass via gas accretion, and by captures of main-sequence stars and

white dwarfs, which will be tidally disrupted before becoming significant GW sources

but will still add mass to the IMBH. Secondly, this estimate does not include the

likelihood that the merger product will be kicked out of the cluster through recoil,

as discussed in the previous section. Thirdly, this estimate assumes that the rate

at which the IMBH grows via IMRIs from 50 M⊙ to 350 M⊙ is constant in time.

However, Advanced LIGO can only detect mergers that occurred at distances ∼< 1

Gpc, i.e., relatively recently, so the relevant rate is the rate late in the history of the

globular cluster, which is likely to be much lower. For example, [67] found in their

numerical simulations that the rate dropped from ∼ 10−7/yr to ∼ 3× 10−10/yr after

1010 years for some plausible cluster models.

For the theoretical upper limit, the total rate is given by αV (M,m, χ), where

α ∼ 0.3 (f/0.1) Mpc−3 (300 M⊙)/m (1010 yr)−1 is the IMRI rate in the universe,

V (M,m, χ) = (4/3)πR3 is the volume in which Advanced LIGO can see an event,

and on overbar, V , denotes the average over mass M in the range between 50M⊙ and
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350M⊙. If we take f = 0.1, χ = 0.2 as the typical IMBH spin and all inspiraling

objects are 1.4M⊙ NSs, the rate is ≈ 3 events per year; if f = 0.1, χ = 0.2 and

inspiraling objects are 10M⊙ BHs, the event rate is ≈ 10 per year. These values are

based on the range fit in Eq. (3.29), so they assume that orbital frequency harmonics

through m = 4 are included in the data analysis, but cosmological redshift and

Advanced LIGO optimization are not included. When all of these considerations are

taken into account, an theoretical upper-limit estimate suggests that Advanced LIGO

may detect up to thirty IMRIs per year. A similar estimate for Initial LIGO shows

that because of lower overall sensitivity and a higher low-frequency cutoff (40 Hz for

Initial vs. 10 Hz for Advanced LIGO), the upper limit on the Initial LIGO IMRI rate

is only about 1/1000 events per year.

A more realistic estimate is based on the assumption that the hardening of a

CO–IMBH binary via three-body interactions represents the primary capture mech-

anism leading to IMRIs. The rate for IMRIs created by this scenario is ≈ 3 ×
10−9 yr−1 per globular cluster for NS–IMBH IMRIs and ≈ 5 × 10−9 yr−1 for BH–

IMBH IMRIs [see § 3.2.1]. Hence, the NS–IMBH IMRI rate in the local universe

is α ≈ 10−9 (f/0.1) Mpc−3 yr−1, while the BH–IMBH IMRI rate is α ≈ 1.5 ×
10−9 (f/0.1) Mpc−3 yr−1. If we assume that all IMBHs have a mass ∼ 100M⊙ and

f = 0.1, this yields an Advanced LIGO rate of one IMRI per three years if the typical

CO is a NS or ten IMRIs per year if the typical CO is a m = 10 M⊙ BH. If the

interferometer is optimized for the detection of IMRIs, the NS–IMBH and BH–IMBH

rates are increased to one event per year and thirty events per year, respectively.

In addition to detections of inspirals, Advanced LIGO could also detect the ring-

down of an IMBH following a merger. This possibility is discussed in Appendix 3.7.

3.4 Effect of Eccentricity on Matched Filter Searches

As discussed in § 3.3.1, matched filtering is used to search for GWs with known

waveforms in detector noise. In order to be an optimal search technique, the matched

filter requires accurate templates that correctly model the signals being sought [92].
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Since source parameters (e.g., the masses and the IMBH spin) can vary, the matched

filter is constructed for a “bank” of templates: a set of waveform models which depend

on the parameters that characterize the source. The accuracy of a template bank is

characterized by the fitting factor (FF) [4], which measures the overlap between the

GW signal and the nearest template. A fitting factor close to unity indicates that the

templates are accurate for detection of the desired signals. A fitting factor less than

unity will mean that we are unable to detect a fraction (1−FF3) of the theoretically

detectable events. (The quantity 1 − FF is often referred to as the mismatch.) To

search for signals, template banks are constructed so that the mismatch between any

desired signal and the nearest template does not cause an unacceptable loss in SNR

(typically FF ≈ 0.97 for LIGO).

In this section, we examine the effect of eccentricity on searching for IMRI signals

in Advanced LIGO detectors. The effect of eccentricity on the fitting factor was

previously examined by [59] and it was found that the fitting factor between a circular

and eccentric waveform template was high provided e ∼< 0.2. However, their results

do not apply directly to IMRIs since they computed fitting factors only for binaries

with mass ratios close to one, and used the first generation LIGO noise curve.

We consider a matched-filter search for IMRIs and determine the loss in SNR (and

hence range) if eccentricity is not included in the template bank, i.e., circular tem-

plates are used to search for potentially eccentric waveforms. We compute the fitting

factor as follows. The template h(t) appearing in the expression for the matched fil-

ter SNR ρ [Eq. (3.26)] depends on a number of parameters characterizing the source,

such as the masses of the binary and the time of arrival of the signal. We denote

these parameters ~λ and define the ambiguity function A(~λ) by

A(~λ) =
〈s|h(~λ)〉

√

〈s|s〉〈h(~λ)|h(~λ)〉
, (3.30)
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where 〈a|b〉 is the matched filter inner product given by

〈a|b〉 = 4

∫ ∞

0

ã(f)b̃∗(f)

Sn(|f |)
df. (3.31)

We separate the parameters ~λ into ~λ = (t0, φ0, ~θ), where t0 and φ0 the time

of arrival and phase of the binary, respectively. In the case of circular equatorial

binaries, it is trivial to maximize over the parameters t0 and φ0 analytically (the

phase by projecting the signal onto two orthogonal basis vectors and the time by

a Fourier transform) and so these are called extrinsic parameters. The remaining

template parameters ~θ, which include the binary masses, eccentricity and IMBH

spin, determine the shape of the waveform and are known as intrinsic parameters.

For circular inspiral templates, the ambiguity function A reduces to the overlap O,

given by

O(~θ) = max
t0,φ0

〈s|h(~θ)〉
√

〈s|s〉〈h(~θ)|h(~θ)〉
, (3.32)

The fitting factor is given by the maximum of the overlap function over the remaining

parameters

FF = max
~θ

O(~θ). (3.33)

For the signal s(t) and template h(t) we use numerical kludge waveforms. This is

a family of waveforms that were constructed as models for extreme mass ratio inspiral

systems, in which m/M ≪ 1. The waveform family is constructed by first computing

an accurate phase-space trajectory by integrating prescriptions for the evolution of

the orbital elements (the orbital energy, angular momentum and Carter constant or

equivalently the orbital radius, eccentricity and inclination) [36]. The orbit of the

small body is then calculated by integration of the Kerr geodesic equations along

the sequence of geodesics defined by the phase space trajectory. Finally, a kludge

waveform is generated from the orbit by applying weak-field emission formulae [5].

This waveform family predicts the inspiral rates for nearly-circular orbits very well [36]

and has been shown to be extremely faithful (overlaps in excess of ∼ 95% over much

of the parameter space) to more accurate perturbative waveforms [5]. Although the
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mass ratio of an IMRI system is probably too high to make these waveforms accurate

as search templates, they should provide reliable predictions of the fitting factor.

For these calculations we used M = 100 M⊙ for the IMBH mass, m = 1.4 M⊙

for the companion mass and considered two spin values χ = 0 and χ = 0.2. We

used the Advanced LIGO power spectral density Sn(|f |) given by [34]. As discussed

above, to compute the fitting factor one must maximize over the parameters ~θ of

the template. However, we find that even without maximizing over the intrinsic

parameters, the overlap (and hence the fitting factor) between circular and eccentric

templates is greater than 0.99 for eccentricities e < 0.01, i.e., for more than two

thirds of IMRIs formed by direct capture (the mechanism likely to give the largest

eccentricities). Since we expect that most of the IMRI systems will have eccentricities

significantly less than e = 0.01 by the time they have entered the Advanced LIGO

band, eccentricity will be negligible for data analysis and circular templates may be

used to search for these systems.

Fig. 3.4 shows the overlap between eccentric signals and circular templates for

prograde equatorial inspirals and eccentricities greater than 0.01. Analysis of in-

clined inspirals demonstrates that the overlaps between eccentric signals and circular

templates remain greater than 0.99 for eccentricities e < 0.01, and greater than 0.93

for eccentricities e < 0.05. Although the overlap decreases for eccentricities greater

than 0.01, we anticipate higher values of the fitting factor when we maximize over

the other intrinsic parameters. An interesting question will be to determine whether

eccentricities greater than 0.01 can be measured (and thus be used to investigate the

relative prevalence of the various capture mechanisms) or if eccentricity is degenerate

with masses and the other intrinsic parameters.

3.5 Summary

In this paper, we have discussed a potential source of GWs for ground based interfer-

ometers — the intermediate-mass-ratio inspiral of a stellar mass CO (a NS or BH)

into an IMBH in the center of a globular cluster. For IMBHs with masses in the
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Figure 3.4: The overlaps O between a circular template h(t) and signals s(t) with

varying eccentricities, e. For both signal and template, the intrinsic parameters ~θ =
(M = 100M⊙, m = 1.4M⊙, χ, e) are kept constant, with maximization performed
only over time of arrival and phase. The overlaps for two values of χ are shown.
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range 50 − 350M⊙, the GWs emitted will be at frequencies in the Advanced LIGO

band. We have shown that Advanced LIGO should be able to detect the inspiral of

a 1.4M⊙ NS into an IMBH at distances up to 700 Mpc, depending on the mass and

spin of the IMBH. Assuming all IMBHs were grown by CO–IMBH mergers gives an

upper limit on the Advanced LIGO event rate of ∼ 10 per year. We have shown that

if the inspiraling CO is a NS, a more likely estimate of the rate is one event per three

years, while the rate for BH–IMBH IMRIs could reach the upper limit. If Advanced

LIGO is optimized for detections at low frequencies, the event rate estimates would

increase by a factor of ∼ 3.5.

We have also discussed four mechanisms by which such IMRI systems could form:

i) binary hardening via 3-body interactions; ii) hardening via Kozai resonance; iii)

direct capture; and iv) tidal capture of a main-sequence star. In all four cases, we

find that the residual eccentricity when the inspiral enters the LIGO sensitivity band

will be small. Finally, we have estimated the sensitivity of Advanced LIGO to the

eccentricity of IMRI systems. We have found that the eccentricities we expect are

negligible for data analysis, and therefore circular-orbit templates may be used to

search for IMRI binaries in Advanced LIGO.

IMRIs are a somewhat speculative source of GWs, since evidence for the existence

of IMBHs is not yet conclusive. The body of evidence is steadily growing, however.

Since little is known about the abundance of IMBHs in the universe, the event rates

presented here are naturally somewhat uncertain. However, our results are sufficiently

promising to make IMRIs a source worth searching for in Advanced LIGO data. If

IMRI events are detected with Advanced LIGO, these will provide irrefutable evi-

dence for the existence of BHs with intermediate mass, and will provide information

on the mass and spin of IMBHs, plus the eccentricities of the inspiraling objects.

This information will be very useful for constraining models of IMBH formation and

growth, and for exploring stellar dynamics in the centers of globular clusters.
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3.6 Appendix A. Waveforms and Signal-to-Noise

Ratio Calculation

To compute the range to which a source can be seen, as presented in § 3.3.1, we must

evaluate the SNRs of typical sources. To do this requires a model of the waveform. In

the weak field, waveforms may be well approximated by post-Newtonian results. The

leading order post-Newtonian result takes the system to be a Keplerian binary and

estimates the gravitational radiation from the leading-order quadrupole formula [70,

69]. This predicts h̃(f) ∝ f−7/6Θ(f − fISCO), where the step function Θ is included

to ensure the radiation cuts off at fISCO, the GW frequency at the innermost stable

circular orbit of the binary. The post-Newtonian results are a weak field expansion

and are only valid where velocities are much less than the speed of light. As a

consequence, the leading order post-Newtonian waveforms over-predict the SNR of

an IMRI source, since they effectively spend too many cycles at each frequency as

the ISCO is approached.

An alternative GW model can be obtained from perturbation theory, by expanding

in terms of the mass ratio, m/M , assumed to be small. The IMRI systems considered

in this paper lie somewhere between these two extremes — the mass ratio is not quite

small enough to use perturbative techniques, but the source spends a long time in

the regime where post-Newtonian results are not valid. Waveform models have not

yet been developed specifically for IMRI systems. However, by the time Advanced

LIGO comes online, it is likely that models will have been constructed by combining

post-Newtonian and perturbative techniques. This is discussed in more detail by [3].

If accurate waveforms are not available, we will require sources to have higher SNRs

to be detected, thus reducing the ranges from the values that we quote. However,

the loss in SNR from using an inaccurate template is likely to be only a few tens of

percent [3], which is considerably smaller than the uncertainties in the astrophysical

mechanisms that govern the event rates we are computing.

Out of the set of currently available waveform families, we believe the most ac-

curate SNRs will come from the perturbative waveforms. Although the perturbative
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waveform will not be a precise model of the true waveform, the total energy content of

the GWs will be roughly correct since the perturbative methods use a reliable model

of the spacetime close to the central BH. To generate the range estimates quoted in

this paper, we therefore computed the SNR via a perturbative model, as described

below.

Finn & Thorne [24] used perturbation theory to compute the SNR contributed by

the lowest four harmonics of the orbital frequency for circular, equatorial inspirals into

Kerr BHs. Their calculation is accurate in the sense that it is based on perturbation

theory, but it relies on three assumptions: i) the orbit is in the extreme mass ratio

limit, i.e., m/M ≪ 1; ii) the orbit of the small body is circular; and iii) the orbit of the

small body is equatorial. Assumption (ii) is valid for our case and assumption (i) is

probably sufficiently accurate (the mass ratio here is intermediate while not extreme).

Assumption (iii) is not necessarily valid, but we can derive results for both prograde

and retrograde equatorial orbits from the Finn & Thorne [24] waveforms and then

average over possible orbital inclinations of the inspiraling object by assuming the

effect of averaging is the same as it is for the leading-order post-Newtonian model [58].

It is conventional to use m to denote harmonic number when discussing harmonics

of the azimuthal frequency. However, in this paper we will use k to avoid confusion

with the mass of the CO. The SNR contributed by the kth harmonic of the orbital

frequency, fk = kωorb/(2π), is given by [24]:

ρ2
k =

∫

[hc,k(fk)]
2

fkSn(fk)
d ln fk, (3.34)

where Sn(f) is the one-sided power spectral density of the detector noise, and hc,k(fk)

is the characteristic amplitude of the kth harmonic when it passes through fre-

quency fk. This reduces to the earlier expression (3.27) via the substitution 2h̃(f) =
∑

k hc,k(f)/f . The characteristic amplitude is related to the energy radiated to infin-
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ity in each harmonic and is given by

hc,1 =
5√

672π

√
mM

ro
Ω̃1/6Hc,1, (3.35)

hc,k =

√

5(k + 1)(k + 2)(2k + 1)!k2k

12π(k − 1)[2kk!(2k + 1)!!]2
×

√
mM

ro
Ω̃(2m−5)/6Hc,m for m ≥ 2.(3.36)

Here Ω̃ = GMωorb/c
3 is the dimensionless orbital angular frequency and r0 is the

distance to the source. The relativistic correction, Hc,k, can be written as

Hc,k =

√

NĖ∞k. (3.37)

In this expression, N is the relativistic correction to the number of cycles spent near

a particular frequency, and Ė∞k is the relativistic correction to the rate of energy lost

to infinity in harmonic m. These corrections can be computed via integration of the

Teukolsky-Sasaki-Nakamura equations and are tabulated in [24]. We note that the

various corrections are defined relative to their Newtonian values.

Using the results of Finn & Thorne [24], we can compute the total SNR ρtot

contributed by the lowest 4 harmonics of the orbital frequency from the time the

source enters the detector band (when f4 = 10Hz) until plunge, for various spins and

masses of the central BH:

ρtot =

√

√

√

√

4
∑

k=1

ρ2
k. (3.38)

This SNR was used to derive the range formulae presented in § 3.3.1. We can also

compute the leading-order post-Newtonian SNR by including only the quadrupolar

k = 2 mode, and setting the correction Hc,2 = 1. We find that for χ ∼< 0.5 and

50M⊙ < M < 250M⊙, the post-Newtonian SNR is typically an overestimate by a

factor of ∼ 1.4. We note that the data in [24] does not extend to the full range of

radii needed for these calculations. Where necessary, we extrapolated their results

to larger radius using appropriate power laws. We have verified that the results are

insensitive to the exact form of this extrapolation.

The simplest template to use to detect a circular inspiral would include only the
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dominant, quadrupolar, component of the orbital frequency. It is useful to estimate

how much SNR we would lose by ignoring higher harmonics. For circular inspirals in

the equatorial plane of a Kerr BH, the fraction of the total energy radiated during an

inspiral from infinity that is radiated between a certain Boyer-Lindquist radius ri and

plunge, effectively depends only on the ratio of the initial radius ri to the radius of the

innermost stable circular orbit, ri/risco(χ) and is otherwise independent of χ. Here χ

is the central BH spin as usual, and risco is the radius of the innermost stable circular

orbit, as given in Eq. (3.17). The energy radiated in higher harmonics of the orbital

frequency is suppressed relative to that in the dominant k = 2 harmonic by powers

of M/r. As the BH spin increases risco/M → 1 for prograde orbits, and so a larger

fraction of the energy is radiated in the regime where r ∼ M . We would therefore

expect higher harmonics to contribute most significantly to the total energy flux for

prograde inspirals into BHs with large spins. We computed the fraction of the total

energy radiated into each harmonic as a function of the BH spin, while the particle

inspirals from r = 10 risco to r = risco. This is the range of radii for which Finn &

Thorne [24] tabulate data and in this range ∼ 85% of the total energy is radiated in

any circular equatorial inspiral. The energy fractions are shown in Figure 3.5. We

see that for |χ| ∼< 0.3, which is the expected IMBH spin range if the IMBH grows

via minor mergers, ∼ 8% of the energy is radiated into harmonics other than the

dominant k = 2 harmonic, and most of this energy goes into the k = 3 harmonic.

The contribution of a harmonic to the signal-to-noise ratio of a source depends not

only on the energy that goes into that harmonic, but also on the shape of the noise

curve — higher harmonics enter the detector band earlier, contribute their signal at

frequencies where the noise power spectral density is lower, and therefore have an

enhanced contribution to the SNR. Figure 3.6 shows the relative SNR contributed

by each harmonic, defined as ρk/ρtot, as a function of IMBH mass, for various IMBH

spins. Note that this result does not depend on the mass of the inspiraling CO, since

we are working in the extreme mass ratio limit. We see that for prograde inspirals, we

can lose ∼ 10− 25% of the SNR by using templates containing the k = 2 mode only,

but this is mostly recovered by including the k = 3 mode in the search templates. (We
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Figure 3.5: Fraction of the total energy radiated into each harmonic of the orbital
frequency as the particle inspirals in a circular equatorial orbit from 10 risco to risco.
This energy fraction is shown as a function of BH spin.
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can lose up to ∼ 50% of the SNR by using simple templates for retrograde inspirals

into high mass IMBHs, but the SNRs for such events are very small, making their

detection unlikely.)

The SNRs computed from these perturbative waveforms are not totally accurate

for the reasons given earlier. Corrections will include finite-mass effects, contributions

from the spin of the small BH and the effect of k > 4 harmonics of the orbital

frequency. It is clear from Figure 3.5 that for larger spins, a significant amount of

energy goes into harmonics with k > 4. These harmonics spend even longer in band

and so their inclusion would increase the SNR. However, we cannot compute their

contribution to the SNR since [24] do not tabulate these contributions separately.

Overall, the SNRs computed here should be accurate to ∼ 10% and will be more

accurate than those computed from the leading order post-Newtonian waveforms.

3.7 Appendix B. Ringdowns

Following the coalescence of an IMBH with a CO, the BH enters the ringdown phase,

characterized by oscillations of its quasinormal modes, particularly the dominant

l = m = 2 mode. For IMRIs, the total energy emitted in GWs during the ringdown is

∼ 0.5m2/M [27], which is a factor of O(m/M) smaller than the total energy emitted

over the inspiral. However, the ringdown GW frequency [20],

f ≈ 1

2πM

[

1 − 0.63(1 − χ)0.3
]

, (3.39)

is higher than the ISCO frequency, and is therefore closer to the minimum of the Ad-

vanced LIGO noise power spectral density for the typical masses under consideration.

For this reason, ringdowns may be detectable by Advanced LIGO despite their lower

energy content. This is particularly true if m ∼> 10M⊙ BHs, rather than NSs, are

common as inspiraling companions, since the range for ringdowns scales as m2 at low

redshifts. Moreover, ringdowns will be the only way to detect CO coalescences with

slowly-spinning IMBHs with masses above 350M⊙, since inspirals into such massive
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Figure 3.6: SNR contributed by the lowest four harmonics of the orbital frequency,
as a function of the central BH mass, for circular equatorial orbits. The harmonics
are indicated by different line styles — k = 1 (dashed), k = 2 (solid), k = 3 (dotted)
and k = 4 (dot-dash). Curves are shown for three different BH spins, χ = 0, χ = 0.5
and χ = −0.5 (i.e., retrograde inspirals into a χ = 0.5 BH), indicated by different
symbols - crosses, circles and pluses respectively.
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IMBHs will produce GWs at frequencies below the detector low-frequency limit.

The typical Advanced LIGO ringdown-wave ranges (in terms of luminosity dis-

tance) as a function of IMBH mass are plotted in Fig. 3.7 for several choices of

inspiraling object mass and IMBH spin. Because some ranges reach out to significant

redshifts (up to z ∼ 0.5), the effect of redshifting is already included in these ranges,

unlike in Fig. 3.3. Redshifting also explains why the range does not scale strictly as

m2, as high redshifts bring the GW frequency at the detector down into the region

where the interferometer is less sensitive.

The astrophysical rate of ringdowns per cluster is greater than or equal to the rate

of IMRIs, since every IMRI culminates in a merger and ringdown (but ringdowns could

follow coalescences without observable inspirals, i.e., those with direct plunges). The

distance sensitivity to ringdowns following inspirals of 1.4M⊙ NSs is probably too low

to make them detectable by Advanced LIGO: the total detectable event rate for NS–

IMBH ringdowns is ∼ 20 times lower than the event rate for NS–IMBH inspirals if the

IMBH mass is M = 100M⊙ and spin is χ = 0.3. However, Advanced LIGO will be

considerably more sensitive to ringdowns than to inspirals in other mass ranges. For

example, ringdowns from 10 M⊙+300 M⊙ coalescences could be detected in a volume

∼ 200 times greater than the detection volume for inspirals from these coalescences; if

all IMBHs had mass M = 300M⊙, and all COs were m = 10M⊙ BHs with coalescence

rate equal to ≈ 5 × 10−9 per year per cluster as in § 3.2.1, then the total detectable

IMRI ringdown event rate would reach ∼ 50 per year. Thus, if our expectations

about the likely masses involved in IMRIs are incorrect, and coalescences of COs

with higher masses with more massive IMBHs are common, searches for ringdown

waves can provide a useful back-up to IMRI searches.
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Figure 3.7: Range of a network of three Advanced LIGO detectors for the ringdown
of an IMBH following a merger with a CO. The luminosity-distance range in Mpc is
plotted as a function of IMBH mass M ; cosmological redshift is included. Dashed
lines denote m = 1.4M⊙ inspiraling NSs, with pluses corresponding to IMBH spin
χ = 0.3 and crosses to χ = 1. Solid lines denote m = 10M⊙ inspiraling BHs, with
circles, squares, and triangles corresponding to spins χ = 0, χ = 0.3, and χ = 1,
respectively. Dotted line with stars denotes m = 20M⊙ BHs spiraling into an IMBH
with spin χ = 0.3.



73

Bibliography

[1] Abbott, B., et al. (LIGO Scientific Collaboration). 2005, arXiv:0704.3368

[2] Allen, B., Anderson, W. G., Brady, P. R., Brown, D. A., & Creighton, J. D. E.

2005, arXiv:gr-qc/0509116

[3] Amaro-Seoane, P., Gair, J. R., Freitag, M., Miller, M. C., Mandel, I., Cutler, C. J.

& Babak, S. 2007, Class. Quant. Grav., 24, R113

[4] Apostolatos, T. A. 1996, Phys. Rev. D, 52, 605

[5] Babak, S. V., Fang, H., Gair, J. R., Glampedakis, K., & Hughes, S. A. 2007,

Phys. Rev. D, 75, 024005

[6] Bahcall, J. N., & Wolf, R. A. 1976, ApJ, 209, 214

[7] Baker, J. G., Boggs, W. D., Centrella, J., Kelly, B. J., McWilliams, S. T., Miller,

M. C., & van Meter, J. 2007, ApJ, submitted (arXiv:astro-ph/0702390)

[8] Baker, J. G., Centrella, J., Choi, D.-I., Koppitz, M., van Meter, J. R., & Miller,

M. C. 2006, ApJ, 653, L93

[9] Bardeen, J. M., Press, W. H., & Teukolsky, S. A. 1972, ApJ, 178, 347

[10] Barish, B. C., & Weiss, R. 1999, Phys. Today, 52, 44

[11] Bekenstein, J. D. 1973, ApJ, 183, 657

[12] Bellazzini, M., Fusi Pecii, F., Montegriffo, P., Messineo, M., Monaco, L. & Rood,

R. T. 2002, Astron. J., 123, 1509



74

[13] Blanchet, L., Qusailah, M. S. S., & Will, C. M. 2005, ApJ, 635, 508

[14] Brown, D. A., Brink, J., Fang, H., Gair, J. R., Li, C., Lovelace, G., Mandel, I.,

& Thorne, K. S. 2007, Phys. Rev. Lett, 99, 201102

[15] Campanelli, M., Lousto, C. O., Zlochower, Y., & Merritt, D. 2007a, ApJ, 659,

L5

[16] Campanelli, M., Lousto, C. O., Zlochower, Y., & Merritt, D. 2007b,

Phys. Rev. Lett, 98, 231102

[17] Cutler, C., & Flanagan, E. E. 1994, Phys. Rev. D, 49, 2658

[18] Damour, T., & Gopakumar, A. 2006, Phys. Rev. D, 73, 124006

[19] Ebisuzaki, T., et al. 2001, ApJ, 562, L19

[20] Echeverria, F. 1988, Phys. Rev. D, 40, 3194

[21] Favata, M., Hughes, S. A., & Holz, D. E. 2004, ApJ, 607, L5

[22] Finn, L. S. 1987, MNRAS, 227, 265

[23] Finn, L. S., & Chernoff, D. F. 1993, Phys. Rev. D, 47, 2198

[24] Finn, L. S., & Thorne, K. S. 2000, Phys. Rev. D, 62, 124021

[25] Fitchett, M. J. 1983, MNRAS, 203, 1049

[26] Fitchett, M. J., & Detweiler, S. 1984, MNRAS, 211, 933

[27] Flanagan, E. E., & Hughes, S. A. 1998, Phys. Rev. D, 57, 4535

[28] Flanagan, E. E., & Racine, E. 2007, Phys. Rev. D, 75, 044001

[29] Fregeau, J. M., Larson, S. L., Miller, M. C., O’Shaughnessy, R., & Rasio, F. A.

2006, ApJ, 646, L135

[30] Freitag, M., 2003, ApJ, 583, L21



75

[31] Freitag, M., Gürkan, M. A., & Rasio, F. A. 2006, MNRAS, 368, 141

[32] Freitag, M., Rasio, F. A., & Baumgardt, H. 2006, MNRAS, 368, 121

[33] Friedman, J. L., & Schutz, B. F. 1978, ApJ, 221, 937

[34] Fritschel, P. 2003, arXiv:gr-qc/0308090

[35] Fryer, C. L., & Kalogera, V. 2001, ApJ, 554, 548

[36] Gair, J. R., & Glampedakis, K. 2006, Phys. Rev. D, 73, 064037

[37] Gonzalez, J. A., Sperhake, U., Bruegmann, B., Hannam, M., & Husa, S. 2007a,

Phys. Rev. Lett, 98, 091101

[38] Gonzalez, J. A., Hannam, M. D., Sperhake, U., Brügmann, B., & Husa, S. 2007b,

Phys. Rev. Lett, 98, 231101

[39] Gültekin, K., Miller, M. C., & Hamilton, D. P. 2004, ApJ, 616, 221

[40] Gültekin, K., Miller, M. C., & Hamilton, D. P. 2006, ApJ, 640, 156

[41] Gürkan, M. A., Fregeau, J. M., & Rasio, F. A. 2006, ApJ, 640, L39

[42] Gürkan, M. A., Freitag, M., & Rasio, F. A. 2004, ApJ, 604, 632

[43] Heggie, D. C. 1975, MNRAS, 173, 729

[44] Heggie, D. C., Trenti, M., & Hut, P. 2006, MNRAS, 368, 677

[45] Herrmann, F., Hinder, I., Shoemaker, D., & Laguna, P. 2007a,

Class. Quant. Grav., 24, 33

[46] Herrmann, F., Hinder, I., Shoemaker, D., Laguna, P., & Matzner, R. A. 2007b,

ApJ, 661, 430

[47] Ho, W. C. G. & Lai, D. 1999, MNRAS, 308, 153

[48] Hopman, C., & Alexander, T. 2005, ApJ, 629, 362



76

[49] Hopman, C., & Portegies Zwart, S. F. 2005, MNRAS Lett., 363, L56

[50] Hopman, C., Portegies Zwart, S. F., & Alexander, T. 2004, ApJ, 604, L101

[51] Hughes, S. A., & Blandford, R. D. 2003, ApJ, 585, L101

[52] Hurley, J. R. 2007, MNRAS, 379, 93

[53] Innanen, K. A., Zheng, J. Q., Mikkola, S., & Valtonen, M. J. 1997. AJ, 113 (5),

1915

[54] Koppitz, M., Pollney, D., Reisswig, C., Rezzolla, L., Thornburg, J., Diener, P.,

& Schnetter, E. 2007, arXiv:gr-qc/0701163

[55] Kozai, Y. 1962, AJ, 67, 591

[56] Kulkarni, S. R., Hut, P., & McMillan, S. L. W. 1993, Nature, 364, 421

[57] Madau, P., & Rees, M. J. 2001, ApJ, 551, L27

[58] Mandel, I. 2007, ApJ, submitted, arXiv:0707.0711

[59] Martel, K., & Poisson, E. 1999, Phys. Rev. D, 60, 124008

[60] Miller, M. C. 2002, ApJ, 581, 438

[61] Miller, M. C., & Colbert, E. J. M. 2004, IJMPD, 13, 1

[62] Miller, M. C., & Hamilton, D. P. 2002a, MNRAS, 330, 232

[63] Miller, M. C., & Hamilton, D. P. 2002b, ApJ, 576, 894

[64] Mouri, H., & Taniguchi, Y. 2002a, ApJ, 566, L17

[65] Mouri, H., & Taniguchi, Y. 2002b, ApJ, 580, 844

[66] O’Leary, R., O’Shaughnessy, R., & Rasio, F. A. 2007, PRL, submitted

(arXiv:astro-ph/0701887)



77

[67] O’Leary, R. M., Rasio, F. A., Fregeau, J. M., Ivanova, N., & O’Shaughnessy, R.

2006, ApJ, 637, 937

[68] Peres, A. 1962, Phys. Rev., 128, 2471

[69] Peters, P. C. 1964, Phys. Rev. B, 136, 1224

[70] Peters, P. C., & Mathews, J. 1963, Phys. Rev., 131, 435

[71] Phinney, E. S. 1991, ApJ, 380, L17

[72] Phinney, E. S. 2005, private communication

[73] Portegies Zwart, S., Baumgardt, H., Hut, P., Makino, J., & McMillan, S. L. W.

2004, Nature, 428, 724

[74] Portegies Zwart, S., & McMillan, S. L. W. 2000, ApJ, 528, L17

[75] Portegies Zwart, S., & McMillan, S. L. W. 2002, ApJ, 576, 899

[76] Press, W. H., & Teukolsky, S. A. 1977, ApJ, 213, 183

[77] Pryor, C., & Meylan, G. 1993, in Structure and Dynamics of Globular Clusters.,

eds. Djorgovski S. G., Meylan G. (San Francisco: ASP), vol. 50, p. 357

[78] Quinlan, G. D. 1996, New Astronomy 1, 35

[79] Quinlan, G. D., & Shapiro, S. L. 1987, ApJ, 321, 199

[80] Quinlan, G. D., & Shapiro, S. L. 1989, ApJ, 343, 725

[81] Redmount, I. H., & Rees, M. J. 1989, Commun. Astrophys., 14, 165

[82] Reisenegger, A., & Goldreich, P. 1992, ApJ, 395, 240

[83] Rubenstein, E. P., & Bailyn, C. D. 1997, ApJ, 474, 701

[84] Sigurdsson, S., & Hernquist L. 1993, Nature, 364, 423

[85] Sopuerta, C. F., Yunes, N., & Laguna, P. 2007, ApJ, 656, L9



78

[86] Taniguchi, Y., Shioya, Y., Tsuru, T. G., & Ikeuchi, S. 2000, PASJ, 52, 533

[87] Thorne, K. S., in Three hundred years of gravitation, edited by S. W. Hawking

and W. Israel (Cambridge University Press, Cambridge, 1987), chap. 9, pp. 330–458

[88] Trenti, M. 2006, arXiv:astro-ph/0612040

[89] Trenti, M., Ardi, E., Mineshige, S., & Hut,P. 2007, MNRAS, 374, 857

[90] Trenti, M., Heggie, D. C., & Hut, P. 2007, MNRAS, 374, 344

[91] Vallisneri, M. 2000, Phys. Rev. Lett, 84, 3519

[92] Wainstein, L. A., & Zubakov, V. D. 1962, ”Extraction of signals from noise”,

Prentice-Hall, Englewood Cliffs, NJ

[93] Wen, L. 2002, ApJ, 598, 419

[94] Wiseman, A. G. 1992, Phys. Rev. D, 46, 1517



79

Chapter 4

Spin Distribution Following Minor
Mergers and the Effect of Spin on
the Detection Range for
Low-Mass-Ratio Inspirals

We compute the probability distribution for the spin of a black hole follow-

ing a series of minor mergers with isotropically distributed, non-spinning,

inspiraling compact objects. By solving the Fokker-Planck equation gov-

erning this stochastic process, we obtain accurate analytical fits for the

evolution of the mean and standard deviation of the spin distribution

in several parameter regimes. We complement these analytical fits with

numerical Monte-Carlo simulations in situations when the Fokker-Planck

analysis is not applicable. We find that a ∼ 150 M⊙ intermediate-mass

black hole that gained half of its mass through minor mergers with neu-

tron stars will have dimensionless spin parameter χ = a/M ∼ 0.2 ± 0.08.

We estimate the effect of the spin of the central black hole on the detection

range for intermediate-mass-ratio inspiral (IMRI) detections by Advanced

LIGO and extreme-mass-ratio inspiral (EMRI) detections by LISA. We

find that for realistic black hole spins, the inclination-averaged Advanced-

LIGO IMRI detection range may be increased by up to 10% relative to

the range for IMRIs into non-spinning intermediate-mass black holes. For

LISA, we find that the detection range for EMRIs into 105 M⊙ massive
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black holes (MBHs) is not significantly affected by MBH spin, the range

for EMRIs into 106 M⊙ MBHs is affected at the ∼< 10% level, and EMRIs

into maximally spinning 107 M⊙ MBHs are detectable to a distance ∼ 25

times greater than EMRIs into non-spinning black holes. The resulting

bias in favor of detecting EMRIs into rapidly spinning MBHs will play a

role when extracting the MBH spin distribution from EMRI statistics.

4.1 Introduction

A growing body of evidence from observations, numerical simulations, and com-

parisons between the two, suggests the existence of a population of intermediate-

mass black holes with masses in the M ∼ 102 − 104M⊙ range (e.g., Miller & Col-

bert [9] and references therein). These intermediate-mass black holes may capture

compact objects (stellar-mass black holes or neutrons stars) and merge with them

[17, 10, 11, 13, 14, 3, 4, 15, 7]. In addition to adding to the black-hole mass, the

merging compact objects will also contribute their orbital angular momentum to the

spin angular momentum of the central black hole, leading to the evolution of the

black-hole spin through a sequence of such minor mergers.

We might expect the typical spin of a black hole to be low if a significant fraction

of its mass has been added via minor mergers with compact objects whose angular

momentum at plunge is distributed isotropically. The angular momentum imparted

to the black hole of mass M by a compact object of mass m is Lobj ∝ mM . (We

include only the orbital angular momentum, not the spin angular momentum of the

compact object, since the latter is lower than the former by a factor of order m/M ,

which we assume to be small for minor mergers.) This causes the dimensionless spin

parameter of the hole χ ≡ S1/M
2 = a/M to change by ∼ Lobj/M

2 ∝ m/M . After

N ∼ M/m such mergers, necessary for the hole to grow to mass M , the typical

dimensionless spin parameter of the hole will be χ ∝ (m/M)
√
N ∼

√

m/M .

As discussed by Miller [8] and Hughes & Blandford [6], the angular momenta of

black holes that grow through minor mergers undergo a damped random walk. The
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damping comes about because retrograde orbits, which subtract angular momentum

from a black hole, plunge from a last stable orbit (LSO) at a higher radius than pro-

grade orbits, so more angular momentum is subtracted following retrograde inspirals

than is added following prograde ones.

In this chapter, we make an analytical approximation to the spin change induced

by a minor merger and solve the Fokker-Planck equation to obtain the evolution of

the spin probability distribution [6]. (We use a simpler one-dimensional version of the

Fokker-Planck equation than Hughes & Blandford [6], since we are interested only

in the evolution of the magnitude of the spin, not its direction.) We find that for

black holes with χ ≫
√

m/M , the spin χ evolves proportionally to M−2.63 as the

mass grows via minor mergers (rather than M−2, which would be the case without

damping). We determine the asymptotic values of the expected mean of the spin

distribution and its standard deviation in the limit of infinitely many minor mergers:

χ̄ →
√

1.5m/M and σ →
√

0.7m/M . We also describe the evolution of the spin

distribution in other parameter regimes, e.g., when
√

m/M ≫ χ≫ m/M .

Our Fokker-Planck analysis fails when the mass ratio m/M is not sufficiently low,

so for those cases we resort to Monte-Carlo numerical simulations. We find that if

the mass of the central black hole grows from M = 5m to M = 10m by capturing

five objects of equal mass m, the mean spin of the resulting black hole is χ̄ ≈ 0.5,

nearly independent of its initial spin (Miller obtained similar results [8]). However,

if the central black hole grows from M = 50m to M = 100m (e.g., a M = 70 M⊙

black hole growing to M = 140 M⊙ by capturing fifty m = 1.4 M⊙ neutron stars),

its resulting spin is rather low, χ ∼ 0.2 ± 0.08.

The combination of the spin of the central black hole and the inclination of the

inspiraling object’s orbit can have a significant effect on the gravitational-wave sig-

nal from a low-mass-ratio inspiral. We compute the increase in the Advanced-LIGO

detection range for intermediate-mass-ratio inspirals (IMRIs) due to the spin of the

central black hole. We find that the detection range, averaged over orbital inclina-

tions, may increase by ∼ 3− 10% relative to the range for inspirals into non-spinning

black holes for the expected values of black hole mass and spin. We provide an
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approximate expression for the dependence of the Advanced-LIGO IMRI detection

range on spin [see Eq. (4.24)]. We also compute the change in the LISA extreme-

mass-ratio-inspiral (EMRI) detection range due to the spin of the massive black hole.

We find that the range for inspirals into M = 105 M⊙ black holes is nearly indepen-

dent of their spin, because the frequency at the last stable orbit (LSO) is away from

the minimum of the LISA noise curve. On the other hand, the inclination-averaged

detection range for IMRIs into rapidly spinning M = 107 M⊙ black holes is ∼ 25

times greater than into non-spinning ones. The detection volumes are proportional

to the cube of the range. This will create a bias in favor of detecting inspirals into

rapidly spinning black holes, which in turn will have consequences for the extraction

of massive-black-hole spin function from LISA EMRI statistics.

This chapter is organized as follows. In Sec. 4.2, we provide the background for

our calculation of the spin evolution via minor mergers. In Sec. 4.3, we describe

analytical solutions of the Fokker-Planck equation for spin evolution. (In Appendix

4.6, for reference we show a quick informal derivation of the Fokker-Planck equation.)

In Sec. 4.4, we describe Markov-Chain numerical simulations of spin evolution. In

Sec. 4.5, we evaluate the dependence of the detection ranges for low-mass-ratio inspi-

rals averaged over orbital inclination angles on the spin of the massive body, in the

context of both Advanced LIGO and LISA.

4.2 Spin Evolution

We assume that the distribution of the orbital inclination angle ι relative to the

central black hole’s spin is isotropic at capture. Here ι is defined via

cos ι =
Lz

√

L2
z +Q

, (4.1)

Lz is the object’s orbital angular momentum in the direction of the black hole’s spin,

and Q is the Carter constant. We further assume that the inclination angle ι remains

approximately constant over the inspiral [5], so the distribution of inclinations at the
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LSO is also isotropic, Pr(cos ι) = 1/2.

In the low-mass-ratio limit, the amount of angular momentum radiated in gravi-

tational waves during the plunge and ringdown is smaller by a factor of ∼ m/M than

the angular momentum at the LSO. Therefore, we assume that the merging object

contributes its orbital angular momentum at the LSO to the angular momentum of

the black hole. The spin of the black hole after a minor merger, χ′, is related to the

original spin χ via

χ′ ≈ 1

(M +m)2

√

(χM2 + Lz)2 +Q, (4.2)

where m is the mass of the small object, M is the mass of the hole, and we assume

m≪M .

The constants of motion Lz and Q at the LSO can be obtained as a function of ι

by demanding that the potential R and its first and second derivatives in r are zero

at the LSO (see Chapter 33 of [12]):

R =
[

E(r2 + χ2M2) − LzχM
]2 − (r2 − 2Mr + χ2M2)

[

m2r2 + (Lz − χME)2 +Q
]

,

R = 0,
dR

dr
= 0,

d2R

dr2
= 0 at LSO. (4.3)

It is possible to make analytic approximations to the values of Lz andQ at the LSO

based on appropriately averaging the analytically known constants of motion at the

LSO for prograde and retrograde equatorial orbits (cf. Eq. (9) of [6]). In particular,

for χ ≪ 1, the plunging object’s dimensionless “total angular momentum” is given

by

L̂ =

√

L2
z +Q

Mm
≈ Mm

√
12

[

1 − 1

2

(

2

3

)3/2

χ cos ι

]

, (4.4)

where we correct a mistake in Eq. (4) of [8]. Then Lz and Q follow from Eq. (4.1):

Lz = cos ι
√

L2
z +Q; Q = sin ι

√

L2
z +Q. (4.5)
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4.3 Fokker-Planck Equation for Spin Evolution

The black-hole spin evolution is a stochastic process. The probability distribution

function of a stochastic process, however, can be described by a deterministic equa-

tion, the Fokker-Planck equation (see Appendix 4.6 for a quick derivation):

∂

∂t
f(x, t) = − ∂

∂x
[µ(x, t)f(x, t)] +

1

2

∂2

∂x2

[

σ2(x, t)f(x, t)
]

, (4.6)

where µ = 〈dx〉/dt is the mean drift and σ2 = 〈(dx)2〉/dt is the stochastic variance. In

this Section, we derive approximate analytical solutions to the Fokker-Planck equation

in several interesting parameter regimes.

For simplicity, assume that all merging objects have the same mass m. We

parametrize the mass of the black hole by a dimensionless “time” parameter t = M/m.

The change in the spin χ after a merger follows from Eq. (4.2):

dχ =
1

(t+ 1)2

√

χ2t4 + L̂2t2 + 2χL̂t3 cos ι− χ. (4.7)

We can compute L̂ at plunge as a function of χ and cos ι by solving Eqs. (4.3),

then substituting the result into Eq. (4.7) to obtain dχ as a function of t, χ, and cos ι.

Although this process is simple in principle, such a numerical computation makes it

impossible to obtain analytic expressions for 〈dχ〉 and 〈(dχ)2〉, which are necessary if

we wish to solve the Fokker-Planck equation. (Here, brackets denote averaging over

cos ι.)

We could, of course, try to obtain empirical analytic fits to the numerical solu-

tions for 〈dχ〉 and 〈(dχ)2〉, but it turns out that there is a simpler approach. The

approximate formula for L̂ given in Eq. (4.4) is valid only when χ≪ 1; when χ ∼ 1,

Eq. (4.4) overestimates L̂ by as much as 40%. Remarkably, however, using this in-

correct approximation for L̂ in Eq. (4.7) generally yields very accurate expressions

for 〈dχ〉 for a wide range of χ. So long as χt ≫ 1 (i.e., χ ≫ m/M), an expansion of

Eq. (4.7) to the first order in 1/(χt) yields the following simple analytic expression



85

for the mean drift in χ:

µ(χ, t) =
〈dχ〉
dt

=
χ

t

(

−2 − 4
√

2

9

)

+
4

χt2
. (4.8)

This expression is accurate to about 1% for all values of χ so long as χt ∼> 10.

Similarly, the analytic expression for the stochastic variance of the spin is

σ2(χ, t) =
〈(dχ)2〉
dt

=
4

t2

(

1 +
4
√

2χ2

9
− χ2

)

. (4.9)

This expression underestimates the variance by ∼> 10% for very high spins, but is

generally accurate to a few percent for lower spins which are expected as a consequence

of minor mergers in the Advanced LIGO setting.

We can now substitute Eqs. (4.8) and (4.9) into the Fokker-Planck equation for

the probability evolution (4.6) to obtain

∂

∂t
f(χ, t) = − ∂

∂χ

[

χ

t

(

−2 − 4
√

2

9
+

4

χ2t

)

f(χ, t)

]

(4.10)

+
1

2

∂2

∂χ2

[

4

t2

(

1 +
4
√

2χ2

9
− χ2

)

f(χ, t)

]

.

This is a one-dimensional equation unlike the three-dimensional equation derived in

[6], since we choose to focus on the evolution of the magnitude of the spin, not its

direction. Still, this is a rather complicated equation that does not easily separate.

Fortunately, for many applications it is not necessary to solve the complete equation.

Equation (4.10) was derived under the assumption χt ≫ 1. If we further assume

that χ2t≫ 1 (i.e., χ≫
√

m/M , then the mean spin evolution is dominated by

dχ̄

dt
≈ a

χ̄

t
, (4.11)

where a ≡ −2 − 4
√

2/9 ≈ −2.63. (This result can also be obtained directly from
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Eq. (4.8).) Thus, the mean spin evolves according to

χ̄ ≈ χ̄0

(

t

t0

)a

≈ χ̄0

(

M0

M

)2.63

(4.12)

(compare with Eq. (26) of [6], where the exponent is approximated by 2.4).

If the assumption χ2t≫ 1 is not satisfied, and instead χ2t≪ 1, but χt≫ 1 so that

Eq. (4.10) still holds, the evolution of the probability function may be approximated

as
∂f(t, χ)

∂t
= − ∂

∂χ

(

4f(t, χ)

χt2

)

+
1

2

∂2

∂χ2

(

4f(t, χ)

t2

)

. (4.13)

This equation can be solved by separation of variables: f(t, χ) = T (t)X(χ), where

the solution for T is T (t) = exp(−k/t), X is the solution to

2χ2X ′′ − 4χX + 4X − kχ2X = 0, (4.14)

and k is a constant. The mean spin grows roughly as

χ̄ ∼
√

2

t0
− 2

t
, (4.15)

so after t ∼> 2t0 (i.e., after the black hole captures half its mass via minor mergers),

χ2t ∼> 1.

The spin growth and spin decay terms in Eq. (4.10) cancel when the spin is

approximately equal to

χ̄→
√

4

−at ≈
√

1.5

t
. (4.16)

(Compare with Miller [8], who estimated the mean spin to be
√

2
√

(m/M) =
√

2/t

based on numerical simulations.)

We can estimate the second moment of the probability distribution by approxi-

mating the solution to Eq. (4.10) by a Gaussian (as suggested by Miller [8]):

f(χ, t) =
1√
2πσ

exp

[

−(χ− χ̄(t))2

2σ2(t)

]

. (4.17)
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(A Gaussian turns out to be a good approximation except at small χ̄, when the tails

at χ > χ̄ are larger than those at χ < χ̄.) Substituting this Gaussian into Eq. (4.10),

keeping only the lowest-order terms in tχ, and setting χ = χ̄, we obtain

−1

σ

dσ

dt
= −a

t
− 2

t2σ2
(1 + bχ̄2), (4.18)

where b ≡ 4
√

2/9−1. If σ2t≫ 1, then σ evolves in the same way as χ̄ when χ2t≫ 1:

σ ≈ σ0

(

t

t0

)a

≈ σ0

(

M0

M

)2.63

. (4.19)

What if σ2t ≪ 1? This might be the case of interest if, say, the initial spin of

a black hole created during some process is known precisely, and we wish to esti-

mate future spin evolution through minor mergers. In this case, the second term on

the right-hand side of Eq. (4.18) dominates, and if χ̄ is small or does not change

significantly, σ grows according to

σ ≈
√

4 (1 + bχ̄2)

(

1

t0
− 1

t

)

+ σ2
0 . (4.20)

In either case, σ asymptotes to the solution

σ →
√

2(1 + bχ̄2)

−at . (4.21)

For large t, σ ∼
√

2/(−at) ≈
√

0.7/t; Miller [8] estimated σ to be
√

(m/M)/
√

2 =
√

1/(2t) based on numerical simulations.

Lastly, consider the case when χt ∼< 1. In this case the orbital angular momentum

of the plunging object is comparable to the spin angular momentum of the black

hole, and Eq. (4.10) is incorrect, since it was derived under the assumption χt ≫ 1.

If the black hole is initially non-spinning or has spin χ ∼< 1/t, however, a single minor

merger will bring its spin to χ ∼
√

12/t according to Eq. (4.7). This case can be

treated with a Monte-Carlo numerical simulation as described in the next section.
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4.4 Spin Evolution via Monte Carlo Simulations

We have carried out Monte Carlo simulations of spin evolution through minor mergers

in order to confirm the analytical estimates presented above, based on the approx-

imate Fokker-Planck equation. Our simulations also allow us to access the small-t

regime where the Fokker-Planck approach is not valid, but where our physical approxi-

mations for low-mass-ratio inspirals still hold. Since these simulations were performed

numerically, there was no need to make analytical approximations to dχ following a

merger; instead, we solved Eqs. (4.3) directly and obtained dχ via Eq. (4.7).

In Figure 4.1 we plot the spin distribution of a black hole of mass t = M/m = 10

that started out with either spin χ = 0.1 or χ = 0.9 at t = M/m = 5 before growing

via minor mergers. This corresponds, for example, to an intermediate-mass black hole

that grows from M = 50 M⊙ to M = 100 M⊙ by capturing m = 10 M⊙ black holes.

The distributions for both values of initial spin are roughly Gaussian, although with

shorter-than-Gaussian tails (we plot the actual Monte-Carlo histogram for the χ = 0.9

case for comparison with a fitted Gaussian). We see that for these small values of t,

the initial value of the spin is largely forgotten after the black hole captures half of

its mass through minor mergers. The means of the spin at t = 10 are χ̄ = 0.49 for

the initially slowly-spinning hole and χ̄ = 0.51 for the initially rapidly-spinning hole.

The standard deviations at t = 10 are σ = 0.17 for initial spin χ = 0.1 and σ = 0.18

for initial spin χ = 0.9 (the initial standard deviations are zero in both cases, i.e.,

the initial spins are presumed to be precisely determined). These results agree with

Fig. 1 of [8]. Because the values of t involved are so small, the Fokker-Planck equation

(4.10) does not apply: at t = 5, the angular momentum of the inspiraling object at

the LSO is comparable to or larger than the spin angular momentum of the black

hole even for large initial black hole spins.

In Figure 4.2 we plot the spin distribution for a black hole of mass t = M/m = 100

that started out at t = M/m = 50 at either spin χ = 0.1 or χ = 0.9 before growing

via minor mergers. This corresponds, for example, to an intermediate-mass black hole

that grows from 70 M⊙ to 140 M⊙ by capturing M = 1.4 M⊙ neutron stars. The
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Figure 4.1: Monte-Carlo predictions for the black-hole spin distribution following
black-hole growth via minor mergers from t = M/m = 5 to t = M/m = 10. The
histogram shows the spin distribution at t = 10 for a black hole with initial spin
χ = 0.9, and the solid curve is a Gaussian fit to that distribution. The dashed curve
is a Gaussian fit to the spin distribution at t = 10 for a black hole that has initial
spin χ = 0.1 at t = 5.
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means of the spin at t = 100 are χ̄ = 0.162 for the initially slowly-spinning hole and

χ̄ = 0.233 for the initially rapidly-spinning hole. The final spin in the initially rapidly-

spinning case decreases as χ̄ ∼ χ0(t/t0)
−2, rather than χ̄ ∼ χ0(t/t0)

−2.63 as predicted

by Eq. (4.12). That is because the spin begins to approach the asymptotic value of

χ̄ ≈
√

1.5/t ≈ 0.12 as predicted by Eq. (4.16), and the rate of spin evolution decreases

because χ2t is no longer much greater than one. The initially slowly-spinning case

does not quite satisfy χt ≫ 1, so the Fokker-Planck analysis is suspect; however,

Eq. (4.15), relevant since χ2t < 1 in this case, provides a roughly accurate estimate

of spin growth. The standard deviations at t = 100 are σ = 0.066 for initial spin

χ = 0.1 and σ = 0.084 for initial spin χ = 0.9; the predicted asymptotic value

of the standard deviation according to Eq. (4.21) is σ = 0.087. The mass ratios

considered in this paragraph may be plausible for intermediate-mass-ratio inspirals

into intermediate-mass black holes that would be detectable with Advanced LIGO

[7].

Finally, we perform a Monte-Carlo simulation of the evolution of a spin distribu-

tion from t = 1100 to t = 1200 where the starting mean spin is χ̄ = 0.72 and the

starting standard deviation is σ = 0.016. In this case, χ2t ≫ 1 holds throughout

the evolution, so this example can be viewed as a test of our Fokker-Planck analysis.

Based on Eq. (4.12), we expect the spin at t = 1200 to decrease to χ̄ = 0.57; in fact,

we find χ̄(t = 1200) = 0.58. Since σ2t≪ 1, we expect the standard deviation to grow

via Eq. (4.20) to σ = 0.022 at t = 1200; in fact, σ(t = 1200) = 0.021.

The Fokker-Planck analysis should give excellent results in the regime of very large

t, such as those corresponding to minor mergers of stellar-mass compact objects with

∼ 106 M⊙ massive black holes in galactic centers. (The extreme-mass-ratio inspirals

preceding such minor mergers are an interesting class of potential LISA sources [16].)

On the other hand, if a large range of t must be covered, Monte-Carlo simulations

become expensive. Thus, the Monte-Carlo numerical methods and Fokker-Planck

analysis can be viewed as complementary techniques.
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Figure 4.2: Monte-Carlo black-hole spin distribution following black hole growth via
minor mergers from t = M/m = 50 to t = M/m = 100. The spin distribution for a
black hole with initial spin χ = 0.9 is shown with a solid curve, and one for initial
spin χ = 0.1 is shown with a dashed curve.
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4.5 Effect of Black-Hole Spin on Detection Ranges

for Low-Mass-Ratio Inspirals

The frequency of the last stable orbit before plunge is strongly influenced by the

black-hole spin and the orbital inclination. Prograde inspirals into rapidly spinning

black holes will have much higher LSO frequencies than inspirals into non-spinning

black holes or polar inspirals into spinning black holes of the same mass, while ret-

rograde inspirals into rapidly spinning black holes will have lower LSO frequencies.

For example, for a maximally spinning Kerr black hole, the frequency of the LSO of

a retrograde equatorial inspiral is twice lower than for a polar orbit, while the LSO

frequency of a prograde equatorial inspiral is six times higher than for a polar orbit.

Even for a more moderately spinning black hole with χ = 0.4, there is almost a factor

of two difference between LSO frequencies for prograde and retrograde inspirals.

The signal-to-noise ratio (SNR) for the detection of gravitational waves from in-

spirals depends on where the LSO frequency falls on the noise power spectral density

curve of the detector. Although some inclination angles will increase SNR and others

will decrease it, we might generally expect that average detection range for inspirals

into spinning black holes will be higher than into non-spinning ones. (“Average”

refers to averaging over the isotropically distributed orbital inclination angles of the

inspiraling object.) This is because of the cubic dependence of the detection volume

on detection range, which is proportional to SNR: if, say, 10% of all inspirals have

their SNR boosted by a factor of three, these will be seen three times further and

the detection volume for these kinds of inspirals will go up by a factor of 27, so the

average volume in which detections can be made will increase by a factor of ∼ 3, and

the average detection range will grow by the cube root of 3.

Conversely, this average detection range increase can manifest itself as a bias

in favor of detecting inspirals into rapidly spinning black holes rather than slowly

spinning ones. Thus, a numerical estimate of the detection range increase due to

black hole spin is useful for determining whether a high fraction of rapidly spinning

black holes among detected inspirals is an indication of the prevalence of such black
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holes in the universe, or whether this is merely a selection effect.

We use the simple scaling

|h̃(f)2| ∝ f−7/3 (4.22)

for the frequency-domain gravitational wave. The square of the signal-to-noise ratio

ρ2 is proportional to

ρ2 ∝
∫ fmax

fmin

|h̃(f)2|
Sn(f)

df ∝
∫ fmax

fmin

f−7/3

Sn(f)
df. (4.23)

Here, Sn(f) is the noise power spectral density of the detector, fmax is the frequency

of gravitational waves from the last stable orbit, and fmin is the low-frequency cutoff

for the detector for Advanced LIGO, where fmin = 10 Hz, or the frequency of gravita-

tional waves one year before plunge for LISA. We set fmax equal to twice the orbital

frequency at the LSO, which we obtain numerically as a function of the black-hole

mass M and spin χ and of the orbital inclination angle cos ι by solving Eq. (4.3).

The distance to which an event can be seen is proportional to SNR, ρ, so the

detection volume is proportional to ρ3. Therefore, we average ρ3, computed via

Eq. (4.23), over the different inclinations cos ι (uniformly distributed through the

range [−1, 1]) in order to compute the expected increase in the detection volume

for a given values of χ, and then take the cube root to compute the increase in the

average detection range.

We have computed detection ranges for Advanced LIGO using this method with

the noise power spectral density Sn(|f |) taken from [2]. Fig. 4.3 shows our computed

ratio between (i) the average Advanced-LIGO detection range for intermediate-mass-

ratio inspirals into black holes of a given mass and spin and (ii) the detection range

for IMRIs into Schwarzschild black holes with the same mass. For low spins χ ∼< 0.4,

which are typical for intermediate-mass black holes of sim100−200 solar masses that

gained a significant fraction of their mass via minor mergers, we can approximate the
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Figure 4.3: The ratio between the inclination-averaged Advanced-LIGO detection
range for intermediate-mass-ratio inspirals into Kerr black holes of a given spin and
the detection range for IMRIs into non-spinning black holes. The solid curve repre-
sents black holes with mass M = 100 M⊙; the dashed curve, mass M = 200 M⊙.
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detection range increase due to the inclusion of central black hole spin as

Rangespin

Rangeno−spin

∼ 1 + 0.6χ2

(

M

100 M⊙

)

. (4.24)

This is the ratio of detection ranges; the ratio of detection volumes is a cube of this

ratio.

The effects of cosmological redshift are not significant for Advanced-LIGO IMRIs

when the black-hole spin is small. Even prograde equatorial inspirals of neutron stars

into M = 100 M⊙ black holes spinning at χ = 0.9 are only detectable to z ≈ 0.2 at

an SNR threshold of 8. The cosmological redshift has the same effect as increasing

the black-hole mass, so including redshift increases the ratio of detection volumes at

higher spins. For the purposes of including redshift in Fig. 4.3, the inspiraling object

mass was set to m = 1.4 M⊙ and a detection threshold of SNR = 8 was assumed.

The results described here do not include higher-order (m 6= 2) harmonics of

the orbital frequency. Higher harmonics are not significant when black-hole spins

are small, since in that case they affect both the spinning and the non-spinning

rates roughly equally, and so the ratio does not change. However, for high values of

spin, the ratios would probably drop somewhat relative to those given in Fig. 4.3,

since including higher-frequency harmonics would contribute more to increasing the

detection range for inspirals into non-spinning holes than into rapidly holes with

prograde orbits (cf. Fig. 6 of [7]).

We also compute the dependence of the LISA EMRI detection range on the mas-

sive black hole spin. We consider EMRIs of m = 10 M⊙ objects into M = 105 M⊙,

M = 106 M⊙, and M = 107 M⊙ massive black holes. We assume that a detection is

possible at an SNR threshold of 30. (Setting the threshold to 15 changes the results

at the 10−20% level.) Cosmological redshift must be included for LISA EMRIs since

they can be seen to z ∼ 1 − 2. This means we must specify the inspiraling object

mass and the SNR detection threshold, since these are necessary to determine the

cosmological redshift of the most distant detectable source.

LISA EMRIs only sweep through a fraction of the frequency band during the
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Figure 4.4: The ratio between LISA detection ranges (at SNR= 30) for extreme-
mass-ratio inspirals of m = 10 M⊙ compact objects into Kerr black holes of mass
M = 106 M⊙ and a given spin vs. non-spinning black holes.

observation time. Therefore, fmin for LISA is set not by the detector threshold, but

by the frequency of the gravitational waves emitted one year before plunge. We

compute fmin by evolving the gravitational-wave frequency back in time from plunge

for one year using the prescription of Barack & Cutler (Eqs. (28) and (29) of [1]).

For M = 105 M⊙, the spin of the black hole is almost irrelevant: once we average

over orbital inclinations, the spin affects the detection range at a level of at most a

few percent. This is because at these low masses, most of the SNR comes from the

portion of the inspiral at much higher radii than the LSO, so the exact frequency of

the LSO does not play a very significant role (cf. Fig. 8 and associated discussion in

[16]).

Figure 4.4 shows the dependence of the average EMRI detection range on the
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Figure 4.5: The ratio between LISA detection ranges (at SNR= 30) for extreme-
mass-ratio inspirals of m = 10 M⊙ compact objects into Kerr black holes of mass
M = 107 M⊙ and a given spin vs. non-spinning black holes.
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massive-black-hole spin for M = 106 M⊙. The average detection range for EMRIs

into rapidly spinning black holes of mass M = 106 M⊙ is ∼ 13% larger than for

EMRIs into non-spinning black holes. For M = 107 M⊙, the detection range for

EMRIs into rapidly spinning black holes is increased by a factor of ∼ 25 over those

into non-spinning black holes, as shown in Fig. 4.5. This greater sensitivity to black

hole spin is expected, since for these massive black holes most of the SNR comes from

the cycles near the LSO. However, this should not be taken to mean that inspirals

into rapidly spinning M = 107 M⊙ black holes are likely to dominate LISA EMRI

observations. Figures 4.4 and 4.5 show detection range ratios only; the inclination-

averaged detection range for an EMRI into a maximally spinning M = 107 M⊙

black hole is actually less than the detection range for an EMRI into a non-spinning

M = 106 M⊙ black hole. On the other hand, this large ratio does mean that there is

a strong detection bias in favor of rapidly spinning black holes, which must be taken

into account when statistics of EMRI observations are inverted to gather information

about the massive-black-hole spin distribution.

4.6 Appendix A. Fokker-Planck equation

Suppose a one-dimensional random process Xt is described by the stochastic differ-

ential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt, (4.25)

where Wt is a Wiener process, and µ and σ are the mean and standard deviation of

dXt in time dt: the Itō rules for the expectation values are

E[dXt] = µ(Xt, t)dt; E[dX2
t ] = σ2(Xt, t)dt. (4.26)

Let g(Xt) be any function; then

d

dt
E[g(Xt)] =

d

dt

[
∫ ∞

−∞

g(x)f(x, t)dx

]

=

∫ ∞

−∞

g(x)
∂

∂t
f(x, t)dx, (4.27)
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where x is the real value to which the map Xt : Ω → R maps, and f(x, t) is the

probability function.

On the other hand,

dE[g(Xt)] = E[g(Xt+dt) − g(Xt)] ≈ E

[

∂g(Xt)

∂Xt

dXt +
1

2

∂2g(Xt)

∂X2
t

dX2
t

]

(4.28)

=

∫ ∞

−∞

[

∂g(x)

∂x
µ(x, t)dt+

1

2

∂2g(x)

∂x2
σ2(x, t)dt

]

f(x, t)dx,

where the last equality follows from applying the Itō rules. Performing the integration

by parts and recalling that f(x, t) and ∂f(x, t)/∂x must go to zero as x → ±∞ in

order for f to be normalizable, and dividing the result by dt, we find:

d

dt
E[g(Xt)] =

∫ ∞

−∞

g(x)

{

− ∂

∂x
[µ(x, t)f(x, t)] +

1

2

∂2

∂x2

[

σ2(x, t)f(x, t)
]

}

dx. (4.29)

We can now equate the results of Eq. (4.27) and (4.29). Since the integrals must

be equal for any g(x), it follows that the integrands are equal, i.e.,

∂

∂t
f(x, t) = − ∂

∂x
[µ(x, t)f(x, t)] +

1

2

∂2

∂x2

[

σ2(x, t)f(x, t)
]

. (4.30)

This is the Fokker-Planck equation.
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Chapter 5

Observable Properties of Orbits in
Exact Bumpy Spacetimes

We explore the properties of test-particle orbits in “bumpy” spacetimes

— stationary, reflection-symmetric, asymptotically flat solutions of Ein-

stein equations that have a non-Kerr (anomalous) higher-order multipole-

moment structure but can be tuned arbitrarily close to the Kerr metric.

Future detectors should observe gravitational waves generated during in-

spirals of compact objects into supermassive central bodies. If the central

body deviates from the Kerr metric, this will manifest itself in the emitted

waves. Here, we explore some of the features of orbits in non-Kerr space-

times that might lead to observable signatures. As a basis for this analysis,

we use a family of exact solutions proposed by Manko & Novikov which

deviate from the Kerr metric in the quadrupole and higher moments, but

we also compare our results to other work in the literature. We examine

isolating integrals of the orbits and find that the majority of geodesic or-

bits have an approximate fourth constant of the motion (in addition to

the energy, angular momentum and rest mass) and the resulting orbits

are tri-periodic to high precision. We also find that this fourth integral

can be lost for certain orbits in some oblately deformed Manko-Novikov

spacetimes, leading to ergodic motion. However, compact objects will

probably not end up on these chaotic orbits in nature. We compute the



103

location of the innermost stable circular orbit (ISCO) and find that the

behavior of an orbit in the approach to the ISCO can be qualitatively

different depending on whether the location of the ISCO is determined by

the onset of an instability in the radial or vertical direction. Finally, we

compute periapsis and orbital-plane precessions for nearly circular and

nearly equatorial orbits in both the strong and weak field, and discuss

weak-field precessions for eccentric equatorial orbits.

Originally published as Jonathan R. Gair, Chao Li, and Ilya Mandel, 2008.

Phys. Rev. D 77 024035. Preprint available online at http://arxiv.org/abs/0708.0628.

5.1 Introduction

The space-based gravitational-wave detector LISA is expected to detect gravitational

waves generated during the inspirals of stellar-mass compact objects (white dwarfs,

neutron stars or black holes) into supermassive bodies in the centres of galaxies —

extreme-mass-ratio inspirals (EMRIs). LISA could detect gravitational waves from

these systems for several years prior to the plunge of the compact object into the

central body and hence observe several hundred thousand waveform cycles. Such

observations will provide an exquisite probe of the strong gravity region close to

supermassive central bodies (see [1] for a review). In principle, the emitted gravita-

tional waveform encodes the multipole structure of the spacetime outside the central

object [2]. One of the hopes for LISA EMRI observations is to extract this spacetime

structure from the data and use it to test whether the central objects are indeed

Kerr black holes, as we suppose, or something else [2, 3]. (Intermediate-mass-ratio

inspirals detectable by Advanced LIGO may reveal the spacetime structure outside

intermediate-mass central bodies with more modest precision [4].)

For a Kerr black hole, the spacetime is uniquely determined by the mass and

angular momentum of the hole and all higher multipole moments depend on these in



104

a simple way

Ml + iSl = M(iχM)l. (5.1)

Here Ml and Sl are the l’th mass and current multipole moments of the gravitational

field, M is the mass of the black hole and χ is its dimensionless spin parameter,

χ ≡ S1/M
2 ≡ a/M . As a consequence of relation (5.1), if the quadrupole or higher

multipole moments of a supermassive body are measured from an EMRI observation

and these are inconsistent with the values predicted by its mass and spin, the body

cannot be a Kerr black hole with a vacuum exterior. The “no-hair” theorem states

that, in pure gravity, any quasi-stationary, vaccuum and asymtotically flat spacetime

containing an event horizon and with no closed timelike curves exterior to the horizon

must be described by the Kerr metric [5, 6]. If the Cosmic Censorship Conjecture is

correct, all astrophysical singularities will be enclosed by a horizon. It is therefore

most likely that the supermassive central bodies which are observed to inhabit the

nuclei of most galaxies are indeed Kerr black holes. However, LISA should be able

to test this assumption. Alternatives to Kerr black holes include “dirty” Kerr black

holes with external masses (e.g., an accretion disk), exotic supermassive stars such as

boson stars [7], and naked singularities. “Hairy” black hole solutions are also allowed

when gravity is coupled to other fields, e.g., a Yang-Mills field (these solutions have

been shown to be unstable to perturbations [8]) or a Skyrme field [9] (stability to

generic perturbations is an open question). Sufficiently accurate measurements may

allow us to distinguish between these possibilities.

In order to prepare us to interpret LISA observations of EMRIs, to identify any

deviations from Kerr that are manifest in the waveforms and even to facilitate detec-

tion of inspirals into highly non-Kerr spacetimes, we need to understand how these

deviations influence the emitted gravitational waveforms. In an extreme-mass-ratio

inspiral, the timescale for the orbital inspiral due to radiation of energy and angular

momentum is generally much longer than the orbital timescale. We can therefore

approximate the inspiral as quasi-static, by assuming the inspiraling object is always

nearly on a geodesic orbit of the spacetime, and evolving the parameters determining
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this geodesic slowly over the inspiral (this is usually referred to as the “adiabatic

approximation” in the literature [10] since the fluxes of energy and angular momen-

tum used to evolve the sequence of geodesics are computed by assuming the object

is on an exact geodesic of the spacetime). In this slow-inspiral limit, the emitted

waveforms depend sensitively on the properties of the geodesic orbits in the space-

time — the dominant frequency components in the gravitational waveform at any

moment are harmonics of the orbital frequencies of the underlying geodesic. We can

thus understand some of the main consequences of deviations from the Kerr metric

by examining the effect of such deviations on test particle orbits in the spacetime.

By considering a spacetime with an arbitrary set of multipole moments, Ryan [2]

demonstrated that, for nearly circular and nearly equatorial orbits, the periapsis and

orbital-plane precessions encoded all of the multipole moments at different orders in

a weak field expansion.

A multipole moment decomposition is not very practical, however, since an infinite

number of multipoles are required to characterize the Kerr spacetime. For this reason,

Collins & Hughes [11] and Glampedakis & Babak [12] took a different approach and

explored test particle dynamics in “bumpy” spacetimes, which were constructed as

first-order perturbations of the Schwarzschild and Kerr spacetimes respectively and

therefore could be made arbitrarily close to Schwarzschild/Kerr by dialing a parameter

to zero. Collins & Hughes coined the phrase “bumpy” black hole to describe these

spacetimes. In their case, the presence of stresses exterior to the black hole meant

that the horizon could be preserved in the presence of the black hole deformation

without violating the no-hair theorem. In the present case, this name is not strictly

applicable since the spacetimes we consider are not black holes at all, but rather

naked singularities not enclosed by an event horizon. However, the term “bumpy”

black hole is still a good one to describe how the spacetime appears to an observer

away from the central object.

One drawback of the perturbative approach is that the perturbation is not neces-

sarily small close to the central body, and so the first-order perturbation theory used

to construct the spacetime breaks down. As a result, the perturbative solutions may
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only be used relatively far from the central object. In this work, we therefore take an

alternative approach and consider the properties of orbits and inspirals in a family

of spacetimes that are exact solutions of the vacuum field equations of relativity and

which include the Kerr and Schwarzschild spacetimes in a certain limit. We use a

family of spacetimes that were derived by Manko & Novikov [13]. As exact solutions,

the spacetimes are valid everywhere and can thus be used to probe the orbital dynam-

ics in the strong-field as well as the weak-field. The family has many free parameters,

which can be chosen to make the multipole moments of the spacetime match those

of the Kerr spacetime up to a certain order, and then deviate at higher order. In this

paper, we choose to make the multipole moments deviate at the mass quadrupole

order and higher, by varying a single parameter, although the formalism generalizes

to other types of deviation. We use this family of spacetimes as a test-bed for an

exploration of various observable consequences of deviations from the Kerr metric,

but we compare to previous work in the literature as we proceed.

The main new results of the current work are as follows. By studying the proper-

ties of orbits in the strong field of the spacetime, we find that most geodesics in the

spacetime appear to have a fourth isolating integral of the motion, in addition to the

energy, angular momentum and rest mass that are guaranteed by the stationarity and

axisymmetry of the metric. The corresponding orbits are triperiodic to high accuracy.

This was not guaranteed, since the separability of the geodesic equations in Kerr and

corresponding existence of a fourth integral (the Carter constant) was unusual. Ad-

ditionally, we find that for some oblate perturbations of the Kerr spacetime, there are

regions of the spacetime in which there appears to be no fourth integral, leading to

ergodic motion. If observed, ergodicity would be a clear ‘smoking-gun’ for a deviation

from Kerr. Ergodic motion has been found in other exact relativistic spacetimes by

other authors, although these investigations were not carried out in the context of

their observable consequences for EMRI detections. Sota, Suzuki and Maeda [14] de-

scribed chaotic motion in the Zipoy-Voorhees-Weyl and Curzon spacetimes; Letelier

& Viera [15] found chaotic motion around a Schwarzschild black hole perturbed by

gravitational waves; Guéron & Letelier observed chaotic motion in a black hole space-
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time with a dipolar halo [16] and in prolate Erez-Rosen bumpy spacetimes [17]; and

Dubeibe, Pachon, and Sanabria-Gomez found that some oblate spacetimes which are

deformed generalizations of the Tomimatsu-Sato spacetime could also exhibit chaotic

motion [18]. The new features of our current results are the presence of potentially

ergodic regions for a wider range of magnitudes of the perturbation, and an exam-

ination of whether the ergodic regions are astrophysically relevant. We find that,

in the context of an EMRI, the ergodic regions exist only very close to the central

body and these regions are probably not astrophysically accessible, at least in the

Manko-Novikov spacetime family.

We also look at the properties of the last stable orbit for circular equatorial inspi-

rals. The frequency of this orbit will be a gravitational-wave observable, and depends

significantly on the magnitude of any deviations from Kerr. For certain choices of the

quadrupole perturbation, we find that the last stable orbit is defined by the onset of a

vertical instability, rather than the radial instability which characterizes the last sta-

ble orbit in Kerr. This is a qualitative observable that could be another ‘smoking-gun’

for a deviation from Kerr.

Finally, we look at the periapsis and orbital-plane precession frequencies. We

do this primarily for nearly circular and nearly equatorial orbits, since these can be

characterized in a gauge invariant way in terms of the orbital frequency measured

by an observer at infinity. Although such precessions were computed by Ryan [2],

his results only apply in the weak-field. We find results that are consistent with

Ryan’s in the weak-field, but also explore the properties of precessions in the strong-

field and find they depend significantly on the nature and location of the last stable

orbit. Collins & Hughes [11] and Glampedakis & Babak [12] did explore strong-

field precessions, but they did so as a function of spacetime coordinates, rather than

observable quantities as we use here. The perturbative spacetimes are also not totally

applicable in the vicinity of the last stable orbit, so our results are more generally

applicable. We also briefly discuss precessions for eccentric equatorial orbits in the

weak-field and how this is relevant for LISA observations.

The paper is organized as follows. In Sec. 5.2, we introduce our chosen family
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of spacetimes, describe some properties of these solutions and discuss our approach

to computing geodesics in the spacetimes. In Sec. 5.3 we analyze geodesics in these

bumpy spacetimes and use Poincaré maps to identify the presence of an effective

fourth integral of the motion. We show that most orbits are regular and triperi-

odic, but also demonstrart the onset of ergodic motion in certain oblately deformed

spacetimes. In Sec. 5.4 we find the last stable orbit for circular equatorial orbits and

discuss its properties. In Sec. 5.5 we report our results on the periapsis precession

and orbital-plane precession in these spacetimes. Finally, in Sec. 5.6 we summarize

our results and discuss further extensions to this work. This paper also includes

two appendices, in which we present results demonstrating ergodic motion in New-

tonian gravity (Section 5.7) and an expansion of the precessions in the weak-field

(Section 5.8). Throughout this paper we will use units such that c = G = 1.

5.2 Bumpy Black Hole Spacetimes

In this section, we briefly summarize the Manko-Novikov metric [13]. This is the

test metric for which we will explore the dynamics of orbits in Sections 5.3–5.5. The

Manko-Novikov metric is an exact stationary, axisymmetric solution of the vacuum

Einstein equations that allows for deviations away from the Kerr spacetime by a

suitable choice of parameters characterizing the higher-order multipole moments. The

presence of these deviations destroys the horizon, so this is no longer a black-hole

spacetime. However, its geometry is very similar to that of a Kerr black hole with

additional anomalous multipole moments until close to the expected horizon location.

We choose a subclass of the Manko-Novikov metric, parametrized by a parameter β.

For β = 0, the metric corresponds to the usual Kerr metric. (In the notation of [13],

our parametrization corresponds to setting α2 = β and αn = 0 for all n 6= 2).

This subclass of the Manko-Novikov metric can be described by a Weyl-Papapetrou

line element in prolate spheroidal coordinates as (cf. Eq. (1) of [13]):

ds2 = −f(dt−ωdφ)2+k2f−1e2γ(x2−y2)

(

dx2

x2 − 1
+

dy2

1 − y2

)

+k2f−1(x2−1)(1−y2)dφ2,

(5.2)
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where (cf. Eqs. (9, 10, 12, 13 of [13]):

f = e2ψA/B, (5.3a)

ω = 2ke−2ψCA−1 − 4kα(1 − α2)−1, (5.3b)

e2γ = exp
(

2γ
′

)

A(x2 − 1)−1(1 − α2)−2, (5.3c)

A = (x2 − 1)(1 + ab)2 − (1 − y2)(b− a)2, (5.3d)

B = [x+ 1 + (x− 1)ab]2 + [(1 + y)a+ (1 − y)b]2, (5.3e)

C = (x2 − 1)(1 + ab)[b − a− y(a+ b)] + (1 − y2)(b− a)[1 + ab+ x(1 − ab)],(5.3f)

ψ = βR−3P2, (5.3g)

γ
′

=
1

2
ln

x2 − 1

x2 − y2
+

9α2
2

6R6
(P3P3 − P2P2) (5.3h)

+ β

2
∑

ℓ=0

(

x− y + (−1)2−ℓ(x+ y)

Rℓ+1
Pℓ − 2

)

,

a(x, y) = −α exp

(

−2β

(

−1 +

2
∑

ℓ=0

(x− y)Pℓ
Rℓ+1

))

, (5.3i)

b(x, y) = α exp

(

2β

(

1 +

2
∑

ℓ=0

(−1)3−ℓ(x+ y)Pℓ
Rℓ+1

))

, (5.3j)

R ≡ (x2 + y2 − 1)1/2, (5.3k)

Pn ≡ Pn(xy/R) where Pn(x) =
1

2nn!

(

d

dx

)n

(x2 − 1)n. (5.3l)

Here k, α, and β are free parameters which determine the multipole moments of this

spacetime. The first few multipole moments have the following values (we correct a

typo in Eq. (14) of [13] following [19]):

M0 = k(1 + α2)/(1 − α2) S0 = 0

M1 = 0 S1 = −2αk2(1 + α2)/(1 − α2)2

M2 = −k3[β + 4α2(1 + α2)(1 − α2)−3] S2 = 0

M3 = 0 S3 = 4αk4[β + 2α2(1 + α2)(1 − α2)−3]/(1 − α2).

(5.4)

Therefore, for a given choice of mass M ≡ M0, spin χ ≡ S1/M
2 and anomalous

(additional to Kerr) quadrupole moment q ≡ −(M2 −MKerr
2 )/M3, the three metric
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parameters are:

α =
−1 +

√

1 − χ2

χ
, k = M

1 − α2

1 + α2
, β = q

M3

k3
. (5.5)

A given choice of M , χ and q uniquely defines the metric. With this definition of

q, a choice q > 0 represents an oblate perturbation of the Kerr metric, while q < 0

represents a prolate perturbation. A spacetime is oblate if it has M2 < 0, e.g., for

Kerr M2 = −χ2. When we say a prolate/oblate perturbation we mean a perturbation

that makes the spacetime more prolate/oblate relative to Kerr. In particular, for

−χ2 < q < 0 the spacetime is still oblate, although it has a prolate perturbation

relative to the Kerr metric. We note that taking q 6= 0 changes all higher moments

from their Kerr values, so these solutions deviate not only in the mass quadrupole

moment but also in the current octupole moment, the mass hexadecapole moment

etc.

To present our results, we find it useful to display them in terms of cylindrical

coordinates ρ, z and φ. These are related to the prolate spheroidal coordinates x, y

by [19]

ρ = k(x2 − 1)1/2(1 − y2)1/2, z = kxy, (5.6)

and the line element in cylindrical coordinates is

ds2 = −f(dt− ωdφ)2 + f−1
[

e2γ(dz2 + dρ2) + ρ2dφ2
]

. (5.7)

5.2.1 Spacetime Properties

The Manko-Novikov spacetimes are vacuum and have the multipolar structure given

in Eq. (5.4). As a consequence of the no-hair theorem, the spacetimes must therefore

either lack an event horizon or contain closed timelike curves exterior to a horizon.

In fact, both of these statements are true. The central singularity is enclosed by a

partial horizon at coordinates ρ = 0, |z| ≤ 1. However, this horizon is broken in

the equatorial plane by a circular line singularity at x = 1, y = 0 (ρ = z = 0) [20].

For χ = 0 the spacetime is otherwise regular, but for χ 6= 0, the spacetimes contain
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both an ergosphere and a region where closed timelike curves exist. The structure

of the spacetimes is quite similar to that of the δ = 2 Tomimatsu-Sato spacetime,

as described in [21]. The boundary of the ergosphere is determined by the condition

gtt = 0. Inside this region, timelike observers cannot be at rest. Such a region is

entirely physical, and also exists in the Kerr spacetime, where it is of interest since

it allows energy extraction via the Penrose process. We show the location of the

ergosphere for χ = 0.9 and various choices of q in the top panel of Figure 5.1. The

shape of the ergosphere is more complicated when q 6= 0, having a multiple lobed

structure. This structure is also qualitatively different depending on the sign of q —

for q > 0 there are three separate ergoregions, one of which intersects the equatorial

plane, one which is entirely above the equatorial plane and one which is entirely below;

for q < 0 there are only two regions, one of which is entirely above the equatorial

plane and one of which is entirely below.

For a metric of this type, the region where closed timelike curves (CTCs) exist

is determined by the condition gφφ < 0. In the bottom panel of Figure 5.1 we show

points where gφφ changes sign for the same choices of q and χ = 0.9. Particles orbiting

inside the CTC region are moving backward in time. This is not inconsistent with

relativity, but CTC zones are sometimes regarded as unphysical. A spacetime with

no CTC zone can be constructed by adding an inner boundary in the spacetime, and

just using the portion of the Manko-Novikov solution exterior to that boundary.

The CTC zone again has a multiple lobed structure and is different depending on

the sign of q. We note in particular that for q < 0 the ergosphere does not intersect the

equatorial plane, although the CTC region does. For q > 0 both regions intersect the

equatorial plane, and the outermost edge of the CTC region is inside the ergoregion.

5.2.2 Geodesic Motion

Geodesic motion in an arbitrary spacetime is described by the second order equations

d2xα

dτ 2
= −Γαβγ

dxβ

dτ

dxγ

dτ
. (5.8)
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Figure 5.1: Spacetime structure for χ = 0.9. The upper row shows zeros of gtt for
q = −1 (left column), q = 0 (middle column) and q = 1 (right column). This defines
the boundary of the ergoregion of the spacetime. The region with gtt > 0 is shaded.
The bottom row shows points where gφφ changes sign for the same values of q, and
the region where gφφ < 0 is shaded. This defines the region where closed timelike
curves exist. The middle bottom panel is empty since there is no such region in the
Kerr spacetime. The shape of the two boundaries is qualitatively the same for other
values of q with the same sign, although both regions grow as |q| is increased.
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where the connection coefficients Γαβγ are given by

Γαβγ =
1

2
gαµ (gµβ,γ + gµγ,β − gβγ,µ) . (5.9)

The spacetimes we are interested in are axisymmetric and time-independent and the

metric correspondingly has two ignorable coordinates — t and φ. There are therefore

two constants of geodesic motion: the energy E and the z-component of angular

momentum Lz, which are given by

E = −gttṫ− gtφφ̇, Lz = gtφṫ+ gφφφ̇, (5.10)

where a dot ˙ denotes the derivative with respect to proper time τ . Another first

integral of the motion can be obtained from conservation of the rest mass of the

orbiting particle:

−1 = gαβẋαẋβ . (5.11)

In practice, we numerically integrate the second-order geodesic equations (5.8)

rather than use these first integrals, and we use the constancy of E, Lz and gαβẋ
αẋβ

as cross-checks to verify the quality of our numerical results. The results reported

below typically show the conservation of these quantities to a few parts in 1010 over the

time of integration; see Fig. 5.2. We compute the connection coefficients analytically

from expressions for the metric functions f , ω and γ defined in Eqs. (5.3). The only

difficulty arises at points where a metric component gµν vanishes and its inverse gµν

diverges. When this occurs, we analytically factor out the terms that tend to zero

to avoid issues in numerical integration. To perform the numerical integration we

write the coupled system of four second-order ordinary differential equations (5.8) in

first-order form and integrate numerically in C++ via the Bulirsch-Stoer method.

Some general properties of geodesic motion can be understood by using the first in-

tegrals (5.10)–(5.11). The energy and angular momentum conservation equations (5.10)

can be used to write ṫ and φ̇ in terms of E, Lz, ρ and z:

ṫ =
Egφφ + Lzgtφ
g2
tφ − gttgφφ

; φ̇ =
−Egtφ − Lzgtt
g2
tφ − gttgφφ

. (5.12)
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Figure 5.2: The fractional errors in energy E (solid line), angular momentum Lz
(dashed line), and the quantity gαβ ẋ

αẋβ (dotted line) accumulated over 1700 orbits
of a geodesic with E = 0.92 and Lz = 2.5M in a spacetime with spin χ = 0.9 and
anomalous quadrupole moment q = 0.95.

These expressions can be substituted into Eq. (5.11) to give

e2 γ(ρ,z)

f(ρ, z)

(

ρ̇2 + ż2
)

=
E2

f(ρ, z)
− f(ρ, z)

ρ2
[Lz − ω(ρ, z)E]2 − 1 ≡ Veff(E,Lz, ρ, z). (5.13)

The motion in ρ and z may thus be thought of as motion in the effective potential

Veff . In particular, since the left hand side of Eq. (5.13) is strictly positive or zero,

motion can only exist in regions where Veff ≥ 0. Finding the zeros of the effective

potential therefore allows us to find allowed regions of the motion. As an illustration,

we show the zeros of the effective potential in Figure 5.3 for the simple case of the

Kerr metric with spin parameter χ = 0.9, energy E = 0.95 and angular momentum

Lz = 3M . There are two regions of allowed motion — one region at larger radius that

corresponds to bound orbits, and another region at very small radii that corresponds

to rising and plunging orbits.

We now turn our attention to the Manko-Novikov spacetime with q 6= 0. For
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spacetimes with χ = 0, and for spacetimes with χ 6= 0 and q < 0 (prolate per-

turbation of the Kerr metric at large radii), the addition of the perturbation does

not fundamentally change the nature of the effective potential – there are still two

bounded regions, one attached to the origin corresponding to rising and plunging

orbits and one at larger radii corresponding to bound orbits. The shapes of these

regions change as |q| is increased and if |q| is increased sufficiently at fixed E and

Lz the two regions merge, so that all allowed orbits can reach the origin. Even after

this has occurred, there appear to be two types of orbit in the single allowed region –

those that rise and plunge and those that undergo many periods of radial oscillation.

We don’t know if the latter remain non-plunging forever in principle. In practice,

perturbations due to external material or radiation reaction may cause bound orbits

to diffuse onto plunging orbits over time. For fixed q < 0, the two allowed regions

also change shape as the energy and angular momentum are varied. In particular, the

plunging region connected to the singularity at ρ = 0, |z| ≤ 1 develops a multi-lobed

structure. For sufficiently large |q| and sufficiently low E and Lz, two of these lobes

can touch in the equatorial plane. This leads to the existence of circular, equatorial

orbits that are unstable to vertical perturbations, which we will encounter again in

Section 5.4.

For χ 6= 0 and q > 0 (oblate perturbation of the Kerr metric at large radii), the

behavior is qualitatively different. For any arbitrarily small |q|, an additional allowed

region appears in the effective potential, which is bounded away from ρ = 0 and

therefore corresponds to bound orbits. For small |q| this new region is very close to

ρ = 0. The other two allowed regions still exist, and merely change shape as the value

of |q| is increased. The additional bound region is always outside the region where

closed timelike curves (CTCs) exist, and is therefore in the portion of the spacetime

that can be regarded as physical. However, in the plane z = 0 the outermost edge

of the CTC region touches the innermost edge of the region of bound motion. This

additional region also extends inside the spacetime ergosphere.

We consider as an example the case with χ = 0.9 and q = 0.95. The zeros of the

effective potential Veff are plotted in Figure 5.4 for geodesics with energy E = 0.95 and
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angular momentum Lz = 3M . In this figure there are three distinct allowed regions as

described above: (i) a foliated “plunging” region connected to ρ = 0, where all orbits

rapidly plunge through the horizon (this region also intersects the CTC region); (ii)

an inner bound region, which is located between ρ/M ≈ 0.72 and ρ/M ≈ 2.12 for the

chosen values of E and Lz; and (iii) an outer bound region between ρ/M ≈ 2.39 and

ρ/M ≈ 13.6. We show the trajectory of a typical orbit in the outer region. This has

a regular pattern or intersections throughout the (ρ, z) plane, which is characteristic

of an orbit with an approximate fourth integral.

If |q| is increased from the value shown in Figure 5.4, the two regions of bound

motion eventually merge. When this first occurs, the “neck” joining the regions

is extremely narrow. Geodesics exist which can pass through the neck, but this

requires extreme fine tuning. As |q| is further increased, the neck gradually widens

and eventually disappears. At that stage, the single allowed region for bound orbits

has a similar shape to the outer region of Figure 5.4.

These general properties of the effective potential seem to be common to all space-

times with q > 0 and χ 6= 0. More relevant for the EMRI problem is to fix q and χ and

to vary E and Lz . For E = 1 and sufficiently large Lz, there are two regions of allowed

motion bounded away from the origin, in addition to the plunging zone connected

to the singularity at ρ = 0, |z| ≤ 1. The outermost of the allowed regions stretches

to infinity and contains parabolic orbits. The inner region of bounded motion is the

analogue of the inner bound region described above and lies very close to the central

object. If the angular momentum is decreased, while keeping E = 1, the two non-

plunging regions get closer together and eventually merge to leave one allowed region

that stretches to infinity. For fixed E < 1 the behavior is qualitatively the same,

except that for Lz ≫M there is no outer region (there is a maximum allowed angu-

lar momentum for bound orbits of a given energy, as in the Kerr spacetime). As Lz

is decreased, the outer region for bound motion appears and then eventually merges

with the inner region. Decreasing Lz further eventually causes the bound region to

merge with the plunging region. At fixed Lz , if there are two distinct non-plunging

allowed regions for E = 1, these regions do not merge as E is decreased, but the outer
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region eventually disappears (there is a minimum allowed energy for orbits of a given

angular momentum, as in the Kerr spacetime). If there is only one non-plunging re-

gion for E = 1, then as E is decreased, this region eventually splits into two allowed

regions, and the outer region eventually disappears as E is decreased further. The

properties are similar for all χ 6= 0, but decreasing χ with the other parameters fixed

tends to bring the two allowed regions of motion closer to merger with one another.

5.3 Isolating Integrals

The isolating integrals given by the conservation equations (5.10)–(5.11) do not com-

pletely describe the motion, since the motions in ρ and z are coupled. Thus, solution

of the geodesic equations requires use of the second order form of those equations (5.8).

However, it was demonstrated by Carter [22] that in the Kerr spacetime there is a

fourth isolating integral for geodesic motion, the Carter constant, which arises as a

constant of separability of the Hamilton-Jacobi equation and was later shown to be

associated with a Killing tensor in the spacetime. Carter found the form of all met-

rics that were both Schrödinger and Hamilton-Jacobi separable. Imposing the further

requirement that the metric be a solution of the vacuum Einstein-Maxwell equations

leads to the Kerr metric as the only spacetime of this form that does not include a

gravomagnetic monopole. Thus, the separability of the equations in Kerr is some-

what fortuitous and we would not expect that the fourth integral would be preserved

when we add an anomalous quadrupole moment as we do here. As a consequence,

the properties of geodesics might be expected to be somewhat different, and might

even be ergodic. As mentioned in the introduction, ergodic geodesic motion has been

found in other relativistic spacetimes by several other authors [14, 15, 16, 17, 18].

A fourth integral of the motion essentially gives another relationship between ρ̇2

and ż2. Combining this with the effective potential equation (5.13) allows us to

eliminate ż2 for instance and hence obtain an expression for ρ̇2 as a function of ρ and

z only. Similarly we can obtain an expression for ż2 as a function of ρ and z.

A standard way to examine equations of motion and look for ergodicity is to plot
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a Poincaré map. This involves integrating the equations of motion and recording

the value of ρ and ρ̇ every time the orbit crosses a plane z = constant. From the

preceding arguments, if a fourth integral exists, the value of ρ̇ will be a function only

of ρ and z (the function could be multi-valued, depending on the order at which the

velocities appear in the constants of motion). Therefore such a map must show a

closed curve. Similarly, if the Poincaré map of an orbit shows a closed curve for every

value of z, then this defines a relationship between ρ̇, ρ and z which is then an effective

fourth integral of the motion. The Poincaré analysis thus provides a means to identify

whether an effective fourth integral exists or the motion is apparently “chaotic”. In

the latter case, the absence of the integral would be manifested on the Poincaré maps

as space-filling trajectories rather than closed curves.

The absence of a full set of isolating integrals does not necessarily mean that all

orbits will exhibit full-blown chaos. For some initial conditions, orbits may show

obvious signs of ergodicity, while for other initial conditions in the same spacetime,

orbits may appear to behave in an integrable fashion, suggesting that an approximate

additional invariant exists. Although this behavior may appear surprising at first

glance, it is consistent with the predictions of the KAM theorem and with many

known examples of chaotic behavior. (The KAM theorem, due to Kolmogorov, Arnold

and Moser, states that if the Hamiltonian of a system with a full set of integrals of

motion is analytically weakly perturbed, then phase-space motion in the perturbed

system will be confined to the neighborhoods of invariant tori in phase space, except

when angle-variable frequencies of the unperturbed system are nearly commensurate,

in which case motion will be chaotic [23].)

As an illustration, we show in Figure 5.5 the Poincaré map for geodesic motion

along orbits with three different initial conditions in the Kerr spacetime with the

same E, Lz and χ as Figure 5.3. The Poincaré maps are all closed curves, consistent

with the existence of the fourth isolating integral, the Carter constant. In Section 5.7

we present results for motion under gravity in a Newtonian quadrupole-octupole

potential and demonstrate the existence of both regular and ergodic orbits. This

example serves to put the relativistic results described here in a Newtonian context.
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5.3.0.1 Poincaré Maps for the Manko-Novikov spacetimes

The regularity properties of geodesics appear to be highly correlated with the nature

of the effective potential as described in the previous section. For spacetimes with

χ = 0 and those with χ 6= 0 but q < 0, all orbits appear to be regular, i.e., they show

closed Poincaré maps similar to those in Figure 5.5. These are the spacetimes in the

Manko-Novikov family that have effective potentials which are qualitatively the same

as the Kerr case.

For q > 0, the effective potential can have two allowed regions for bound motion.

What is striking is that, whereas orbits in the outer allowed bound region (which

corresponds to the allowed region in the q = 0 limit) appear to be regular, with

closed Poincaré maps, those in the inner allowed region appear chaotic. In Figures

5.6 and 5.7 we show Poincaré maps for one orbit in each of the outer and inner regions

of the effective potential illustrated in Figure 5.4 (q = 0.95, E = 0.95, Lz = 3M).

Orbits in the outer region show closed Poincaré maps, suggesting that the motion

is regular or very nearly so and has an approximate fourth invariant of the motion.

This is reinforced by the projection of the orbit onto the ρ-z plane, which was shown

in Fig. 5.4. The geodesic shows a regular grid pattern, with four possible velocities

at each point, corresponding to ±|ρ̇| and ±|ż|. If these orbits do not have a true

invariant, the regularity of the Poincaré map suggests that it may still be possible to

find an algebraic expression for an approximate constant of the motion.

Orbits in the inner region, by contrast, seem to fill up all possible points in a

subdomain of the allowed parameter space (with Veff > 0) and are therefore apparently

ergodic in this subdomain. It seems likely, in view of the KAM theorem, that all orbits

in the spacetime are strictly speaking chaotic, and no true isolating integral exists,

but in the outer region there is a quantity that is nearly invariant along the orbits [4].

Either the thickness of the region mapped out by the chaotic motion is small, or

the time over which ergodicity manifests itself is very long. From an observational

standpoint, whether the motion is actually regular or whether only an approximate

invariant exists is irrelevant, since the timescale over which ergodicity would manifest
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itself in the waveform would be much longer than the time during which the orbiting

object moves on an approximate geodesic.

It is unusal, given that chaotic and nearly regular regions are generally interspersed

in most KAM theorem applications [23], that we find the family of geodesics is divided

into two distinct regions such that geodesics in one region are ergodic while those in

the other exhibit nearly regular orbital dynamics. We have been unable to find any

strongly ergodic geodesics in the outer region, or any non-ergodic geodesics in the

inner region. As described in the previous section, adjusting the orbital parameters

can cause the two allowed regions to merge. When this first occurs, the two regions

are connected by a very narrow neck. The narrowness of the neck means that extreme

fine tuning is required to get a geodesic to pass through the neck. By choosing initial

conditions in the neck, and integrating forwards and backwards in time, we obtained

orbits that traversed the neck once and found that the motion was apparently ergodic

while in the inner region, but apparently regular in the outer region. This behavior is

consistent with the predictions of the KAM theorem, but observationally the fact that

the orbits in the outer region are technically ergodic does not matter as long as they

appear regular on long timescales. We were unable to find an orbit that traversed the

neck more than once. Further adjustment of the orbital parameters causes the neck

to widen and eventually disappear. At that stage, most of the orbits appear to be

regular, but orbits that pass very close to the inner edge of the merged region (i.e.,

close to the CTC zone) have not been fully investigated.

An alternative explanation of these results [24] is that the geodesic equations are

numerically unstable in the inner region, and therefore small numerical round-off

errors in the integration routines are driving the orbits away from their true values.

Once again, this distinction is not relevant observationally. An astrophysical system

harboring an EMRI will not be isolated. The gravitational perturbations from distant

stars etc. will serve the same role in perturbing the orbits as numerical errors might

on a computer. The end result — that the orbit is apparently ergodic — is the same.
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5.3.0.2 Frequency Component Analysis

The above conclusions are supported by a frequency-domain analysis of the ρ and

z motion in the two regions. The absolute values of Fourier transforms of ρ(t) and

z(t) are plotted in Figures 5.8 and 5.9. Fig. 5.9 shows an absence of clearly iden-

tifiable frequency peaks for geodesics in the inner region, a result consistent with

full-blown chaos. By contrast, Fig. 5.8 shows discrete frequency peaks in the outer

region. Generally such frequency peaks, corresponding to harmonics of a few funda-

mental frequencies, occur in problems with a full set of isolating integrals. We find

that the frequency components measured for the ρ and z motion in the outer region

can be represented as low order harmonics of two fundamental frequencies at a high

level of precision (1 part in 107 for the first ∼ 10 harmonics). This multi-periodicity

of the geodesics implies that the gravitational waveforms will also be multi-periodic.

Indeed, we find that an approximate gravitational waveform, constructed using a

semi-relativistic approximation for the gravitational-wave emission (as used to con-

struct Kerr EMRI waveforms in [25]), is also tri-periodic (the third frequency arises

from the φ motion since the observer is at a fixed sky location). The absolute value

of the Fourier transform of the h+(t) component of this gravitational waveform is

also plotted in Fig. 5.8 and is clearly multi-periodic. This periodicity has important

consequences for data analysis and parameter extraction.

5.3.0.3 Comparison to Other Results

Our results are consistent with previous work by other authors who have found chaotic

geodesic motion in various spacetimes. Generally, chaotic motion only occurs in the

strong-field region close to the central object, and for a limited range of geodesic

parameters. As an example, Guéron and Letelier [17] found chaos in a prolate Erez-

Rosen spacetime, which represented a deformation of a Schwarzschild black hole.

They demonstrated that, for a particular value of the energy and angular momentum,

when the deformation parameter had a value k2 = −5, there was a single allowed

region of bounded motion, but for k2 = −5.02 the region split into two separate

regions. After the split, orbits in the inner region appeared chaotic while those
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in the outer region appeared regular. For the merged region, orbits that passed

into the inner part also appeared ergodic while those that were purely in the outer

part looked regular. This is qualitatively very similar to what we have found in

the Manko-Novikov spacetime, although we find chaotic motion only when χ 6= 0,

while Guéron and Letelier presented examples for both a perturbed non-spinning

black hole and a spinning black hole. As a test of our codes, we repeated Guéron

and Letelier’s calculation and found consistent results. As well as providing another

example of chaos for relativistic geodesics, the results here show some new features.

In particular, the inner allowed region appears for any q > 0 and as far as we have

been able to ascertain the motion is always ergodic in that region. This contrasts

to the spacetime considered by Guéron and Letelier, in which chaotic motion exists

only for a small range of k2 (by the time k2 has increased to k2 = −5.1, the motion is

no longer apparently ergodic). Previous authors have also not considered the issue of

accessibility of the ergodic region to stars, and we discuss that in the next sub-section.

Sota et al. [14] discussed what might cause chaos in relativistic geodesic motion,

and suggested that it might arise either due to a change in the signs of the eigenvalues

of the Weyl tensor, which would lead to “local instability” or due to the presence

of homoclinic orbits. The Manko-Novikov spacetimes do contain homoclinic orbits,

but Sota et al. [14] found that this only led to chaos in non-reflection symmetric

spacetimes, so this explanation probably does not apply here. We have not explored

the properties of the eigenspace of the Weyl tensor for these spacetimes, but “local

instability” could be a plausible explanation for our results. The CTC region of the

Manko-Novikov spacetime might also be causing the ergodicity. The region where

ergodic motion occurs touches the CTC region at a single point, so the singular

behavior of the metric as the CTC region is approached might explain the observed

behavior, either by causing a region of “local instability” or through some other

mechanism.

We note that in the regime where chaos occurs, the perturbation to the Kerr metric

cannot be regarded as purely quadrupolar, but the deviations in the higher multipole

moments are also significant. This is similar to the Newtonian result described in
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Section 5.7 since we find chaos in the Newtonian quadrupole-octupole potential but

not a pure quadrupole potential. The relativistic results are somehwat different,

however, since we find chaos only for χ 6= 0, so for these spacetimes we also need a

non-zero current dipole moment to observe chaotic behavior.

5.3.0.4 Accessibility of the Ergodic Domain

While the existence of ergodic motion is mathematically interesting, an important

question for EMRIs that has not been addressed so far is whether ergodicity could

ever be observed in nature. In other words, is it possible, during the course of an

inspiral, for a captured object to find itself on an ergodic geodesic?

In typical astrophysical scenarios, the inspiraling compact object will start out far

away from the central body with energy close to 1 [1]. Unless the angular momentum

is very small (which in the Kerr spacetime would represent an object on a plunging

orbit), this will correspond to an orbit in the outer region of allowed motion if two

regions exist, so the orbit will initially be regular. As the star inspirals, the energy

and angular momentum will gradually change and this causes the separation between

the outermost point of the inner region of bound motion and the innermost point of

the outer region, ∆ρ, to change. For example, when E = 0.99 and Lz = 4.33M in

a Manko-Novikov spacetime with χ = 0.9, and q = 0.95, we find that ∆ρ/M ≈ 6.4.

When E = 0.95 and Lz = 3M in the same spacetime, the separation between regions

is only ∆ρ ≈ 0.27M . For sufficiently small choices of energy and angular momentum

(e.g., E = 0.92 and Lz = 2.5M) only a single region remains. This suggests that the

two regions will come closer together as energy and angular momentum are radiated

away during an inspiral, until they eventually merge. We conjecture that d(∆ρ)/dt is

always negative; that is, the two regions are always merging rather than separating.

To test this conjecture, we must explore the behavior of ∆ρ along an extreme-mass-

ratio inspiral characterized by slowly evolving E and Lz.

To do this, we use an approximate scheme to evolve the energy and angular mo-

mentum during an inspiral. Our scheme is based on combining exact relativistic

expressions for the evolution of orbital elements with approximate post-Newtonian
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formulae for energy and angular-momentum fluxes. This scheme was previously de-

vised to describe EMRIs into Kerr black holes [27] and has been shown to give reli-

able results in that context. For the current calculation, we must augment the fluxes

with an additional post-Newtonian term to represent the effect of the anomalous

quadrupole moment q on the evolution of energy and angular momentum. A Kerr

black hole has quadrupole moment M2/M
3 = −χ2. It is the quadrupole moment that

leads to the lowest order terms in χ2 in the expressions for the energy and angular

momentum radiated during an inspiral. Therefore, to include the excess quadrupole

moment, we just change the χ2 terms in the flux expressions to χ2 + q, while leaving

the lower order terms unchanged (this approach was also used in [26]). We then

numerically find the roots of the effective potential Veff = 0 in the equatorial plane at

various times and compute the evolution of ∆ρ along the inspiral.

The result of one such computation of ∆ρ is plotted in Fig. 5.10. That figure

corresponds to an inspiral in a spacetime with χ = 0.9, and q = 0.95. The inspiral

starts out at ρ = 100M with an orbital inclination of 60 degrees and initial eccentricity

e = 0.8 (these orbital parameters correspond to E ≈ 0.9982 and Lz ≈ 5.0852M)

and proceeds until plunge. The separation between the inner and outer bounded

regions gradually shrinks, until the two regions merge (on the plot, this is shown as

∆ρ = 0). Afterward, the bounded regions remain joined until eventually merging

with the plunging region.

We have found the same qualitative behavior described above for a wide range

of parameter choices. Therefore, in all these cases, our conjecture is true — the

inspiraling object can never find itself in the isolated inner region where all orbits

appear to be ergodic. We should point out, however, that we have carried out this

numerical investigation only for a range of specific choices of χ, q, and initial orbital

parameters, and have used an approximation to the energy and angular momentum

radiated during an inspiral. This is therefore not a definitive proof that chaotic motion

can never be observed in the course of an inspiral in the Manko-Novikov spacetime.

Assuming this evolution really is typical, there are two important consequences.

Firstly, an inspiraling object can never end up in the inner of two allowed regions of
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bound motion, where ergodic motion is prevalent. Secondly, inspirals always start

out in a phase where the motion is regular. This is very important, since it will allow

the systems to be detected in this early inspiral stage by gravitational-wave detectors

using matched filtering or a time-frequency analysis. The inspiraling object will even-

tually end up in the merged region formed after the two regions of bounded motion

converge. Both ergodic and regular geodesics exist in that region, so in principle the

particle could find itself on an ergodic orbit. However, most orbits in the merged

region appear to be regular so it would require fine tuning to put the object onto

such a geodesic (e.g., the “neck traversing” geodesics discussed earlier). It thus seems

unlikely that this would occur in practice.

Although these results apply only to the Manko-Novikov family of spacetimes,

the conclusions are consistent with other examples of chaotic geodesics in relativity.

For instance, in the prolate Erez-Rosen spacetime considered in [17], if an object

had arrived in the region where ergodic motion is observed during the course of an

inspiral, its orbital energy and angular momentum would have been larger earlier

in the inspiral. However, if either the energy or angular momentum is increased

from the values that give ergodic motion, the effective potential changes so that it

has only one allowed region, which includes “escape zones” connected to the central

singularity. All geodesics in such a zone plunge into the central object in a short time

so an astrophysical inspiral could not persist through that zone. We deduce that for

that spacetime as well the ergodic region is inaccessible to objects captured at large

distances.

If there was some other mechanism that could put an inspiraling object onto

an ergodic geodesic, there is the question of how the ergodicity could be identified

in practice. Detection of EMRIs will rely on matched filtering or possibly time-

frequency techniques [1]. In either case, it will probably not be possible to identify the

gravitational radiation as being emitted from an ergodic orbit, but only that radiation

from a regular orbit has ceased. It is clear from Figure 5.9 that during an ergodic

phase, the emitted power is spread among many harmonics, which will consequently

not be individually resolvable. This radiation will increase the broadband power in
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our detector, whereas if the orbit had plunged the radiated power would rapidly die

away. However, the energy released during a typical EMRI is comparatively low, so

it is unlikely that we could identify the presence of such broadband power over the

instrumental noise. Therefore, the chances are that we will not be able to distinguish

observationally between an inspiral that “ends” at a transition into an ergodic phase

and one which ends by plunging into a black hole.

One potentially observable signature of ergodicity would be an inspiral that turned

“off” and “on” as it progressed through ergodic phases interspersed with regular

phases. This would occur if the object could move into and out of the inner ergodic

region during an inspiral, but the preceding analysis indicates that this shouldn’t

happen. An object on a “neck-traversing” geodesic would also show this behavior.

However, the periods where the orbit is ergodic serve to randomise the phase of the

orbit in the regular periods. A signal of this type would only be observable if each

apparently regular phase could be individually resolved with enough signal-to-noise

ratio. This would require a very narrow “neck” in order to trap the orbit for many

cycles in the regular zone. However, fine tuning of the energy and angular momentum

is necessary to make the neck very narrow, so if an object was on such an orbit, the

neck would be widening rapidly as energy and angular momentum were radiated away.

In practice, it is doubtful that sufficient signal-to-noise would accumulate to allow a

detection to be made before the neck widened too much.

We conclude that, for astrophysically relevant inspirals in the Manko-Novikov

spacetime family, an object would probably not end up on an ergodic geodesic. If

some other mechanism conspired to put an object on such an orbit, it is unlikely

that we would be able to identify this in gravitational-wave observations. If these

findings carry over to a more generic class of spacetimes, then chaotic motion is

merely a mathematical curiosity which is unlikely to manifest itself practically or be

important for gravitational-wave data analysis considerations.
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5.4 Last Stable Orbit

During an inspiral into a Kerr black hole, an EMRI will evolve quasi-statically through

a sequence of near-geodesic orbits as orbital energy and angular momentum are radi-

ated away. There is a minimum energy (which is dependent on angular momentum)

for which bound orbits exist. When the inspiral reaches that separatrix, the object

will rapidly plunge into the central body. The gravitational radiation emission un-

dergoes a transition at this point, and so the frequency of this last stable orbit is in

principle another quantity that is observable from the detected gravitational waves.

For a Kerr inspiral, the ‘transition’ is a rapid die-off in the gravitational-wave emission

as the particle plunges into the black hole. If the central object is not a black-hole, the

radiation may persist for longer after the last stable orbit is passed [7], but there will

still be a significant qualitative change in the emitted radiation as the orbit changes

suddenly at that point. We focus on the innermost stable circular equatorial orbit in

this analysis, since this is well defined in these spacetimes.

5.4.1 Circular Equatorial Orbits

The geodesic equations for an arbitrary spacetime (5.8) may be written in the alter-

native form
d

dτ

(

gµα
dxα

dτ

)

=
1

2
∂µgνσ

dxν

dτ

dxσ

dτ
. (5.14)

For a circular-equatorial orbit in an axi- and reflection-symmetric spacetime of the

form (5.7), dρ/dτ = dz/dτ = d2ρ/dτ 2 = 0; hence the ρ-component of the geodesic

equation (5.14) gives

∂ρgφφφ̇
2 + 2∂ρgtφṫφ̇+ ∂ρgttṫ

2 = 0 (5.15)

in which a dot denotes d/dτ as before. We can thus express the azimuthal frequency

as observed at infinity Ωφ = φ̇/ṫ in the form

Ωφ =
−∂ρgtφ ±

√

(∂ρgtφ)2 − ∂ρgtt∂ρgφφ
∂ρgφφ

, (5.16)
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where the +/− signs are for prograde and retrograde orbits respectively. In the

equatorial plane, the right-hand side is a function of the spacetime parameters and

ρ only, so given a particular choice of azimuthal frequency Ωφ, Eq. (5.16) can be

inverted to determine the value of ρ such that a circular orbit at that ρ has frequency

Ωφ.

Equation (5.10) provides another relation between ṫ and φ̇, from which we can

deduce

ṫ =
(

−gtt − 2Ωφgtφ − Ω2
φ gφφ

)− 1

2 (5.17)

and then the energy and angular momentum equations (5.10) give us E and Lz as a

function of ρ for circular equatorial orbits.

5.4.2 Innermost Stable Circular Orbit

The location of the innermost stable circular orbit (ISCO) in the equatorial plane can

be found using the effective potential (5.13). Circular equatorial orbits are located at

simultaneous zeros and turning points of Veff , where Veff = ∂Veff/∂ρ = ∂Veff/∂z = 0.

As we will see in Section 5.5 the second derivatives of Veff determine the frequencies of

small oscillations about the circular orbit. For the circular orbit to be stable, we need

the orbit to sit at a local maximum of Veff , i.e., we require ∂2Veff/∂ρ
2 and ∂2Veff/∂z

2

to be negative. In the following we will use Ṽρρ(ρ) (Ṽzz(ρ)) to denote the value of

∂2Veff/∂ρ
2 (∂2Veff/∂z

2) evaluated for the circular equatorial orbit at radius ρ. For the

Kerr spacetime, Ṽzz(ρ) < 0 at all radii, but Ṽρρ(ρ) has a single root at a critical radius

ρISCO. This tells us that the orbit becomes radially unstable at that point, which

defines the ISCO. For χ = 0, ρISCO ≈ 4.90M , while for χ = 0.9, ρISCO ≈ 1.25M for

prograde orbits and ρISCO ≈ 7.705M for retrograde orbits. Note that ρ is a cylindrical

Weyl coordinate, which is why these results differ from the familiar black-hole ISCO

radii, which are normally quoted in Boyer-Lindquist coordinates.

For the Manko-Novikov solutions with χ = 0, the shape of the functions Ṽρρ(ρ)

and Ṽzz(ρ) does not change significantly as q is increased with q > 0 — Ṽzz(ρ) < 0

everywhere and Ṽρρ(ρ) = 0 has a single solution that defines the ISCO. However,
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as |q| is increased with q < 0, there is a transition in behavior at q ≈ −0.163. For

larger values of |q| with q < 0, the function Ṽρρ(ρ) has two zero-crossings. Thus, in

addition to the radially-stable circular orbits at large radii, we find additional such

orbits exist very close to the central singularity. If |q| is increased still further, the

two roots converge at q ≈ −0.654 and for q < −0.654 radially stable orbits exist at

all values of ρ. However, at the point where the second branch of the radial roots

appears, there is also a transition in the shape of Ṽzz(ρ), so that there are now orbits

which are vertically unstable. For q < −0.163, the ISCO is defined by this vertical

instability, rather than the radial instability characteristic of the Kerr spacetime, and

Manko-Novikov spacetimes with q > 0. In the range −0.654 < q < −0.163, there are

two regimes where stable circular orbits exist — an outer zone with ρ > ρISCO, and

an inner zone with ρ̃ISCO < ρ < ρOSCO (we use “OSCO” to indicate “outermost stable

circular orbit” and ρ̃ISCO to denote the ISCO for the inner set of circular orbits).

The energy and angular momentum of an orbit at the “OSCO” are greater than

the energy and angular momentum at the ISCO of the outer zone, ρISCO. Thus, an

object inspiraling from large distances on a circular equatorial orbit will reach ρISCO

and plunge into the central body, rather than finding itself in the inner range of

circular orbits. Compact objects could only find themselves in the inner range if they

came in on an eccentric/inclined orbit and then radiated away energy and angular

momentum in exactly the right proportions. It is therefore unlikely that this inner

zone would be populated in practice. However, any object on a circular equatorial

orbit in this inner zone would reach ρ̃ISCO and then plunge into the central body.

In Figure 5.11 we show the location of the ISCO as a function of q for spacetimes

with χ = 0. We also show the orbital frequency at the ISCO as a function of q,

computed using Eq. (5.16). For spacetimes with spin, the behavior is qualitatively

similar, but there are now two ISCO radii, corresponding to prograde and retrograde

orbits respectively. We show results for a spin of χ = 0.9 in Figure 5.12. We note

that the ISCO radius is always outside the boundary of the causality-violating region

of the spacetime. For χ 6= 0 and q > 0, the ISCO radius is determined by the point at

which the outer allowed region for bound motion (which is a single point for a circular
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equatorial orbit) merges with the inner allowed region. In that case when the object

reached the ISCO it would undergo a transition onto an eccentric/inclined geodesic.

The value of the ISCO frequency depends not only on q but also M and χ.

However, as we shall discuss in the next section, it is possible to measure these other

parameters using precessions measured when the orbit is in the weak-field. Thus, the

ISCO frequency is a powerful probe of the nature of the spacetime since it can be

very different even for comparatively small deviations from Kerr.

5.5 Periapsis and Orbital-Plane Precessions

In Section 5.3 we saw that astrophysically relevant orbits in the Manko-Novikov

spacetime are multi-periodic to high precision. In such cases, there is no smoking-

gun signature that indicates the presence of “bumpiness” in the spacetime. Instead,

the imprint of the spacetime bumpiness will be observationally apparent in the loca-

tion of the last stable orbit, as discussed in the previous section, and in the following

ways: (1) in the three fundamental frequencies of the gravitational waves generated

while the inspiraling object is on an instantaneous geodesic orbit; (2) in the harmonic

structure of the gravitational-wave emission, i.e., the relative amplitudes and phases

of the various harmonics of the fundamental frequencies; and (3) in the evolution of

these frequencies and amplitudes with time as the object inspirals. A full analysis of

the accuracies that could be achieved in observations would involve computing grav-

itational waveforms in the bumpy spacetimes, performing a Fisher-Matrix analysis

to account for parameter correlations, and comparing to a similar analysis for Kerr.

That is beyond the scope of this paper. However, we can examine the first of these

observational consequences by comparing the fundamental frequencies between the

bumpy and Kerr spacetimes.

The complication in such an analysis is to identify orbits between different space-

times. Identifying orbits by the ρ and z coordinates is not gauge-invariant, since the

meaning of these coordinates depends on the spacetime structure. Identifying orbits

via the energy and angular momentum is gauge-invariant, but these quantities are
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not directly measurable observationally. However, circular orbits in the equatorial

plane of the spacetime are characterized by a single observable — the azimuthal fre-

quency of the orbit. We can use this frequency to identify circular equatorial orbits

in different spacetimes.

Precession frequencies are absent in exactly circular equatorial orbits. However, if

the circular orbit is perturbed radially, it will undergo small oscillations at the radial

epicyclic frequency, which is characteristic of the periapsis precession frequency at

that radius. Likewise, if the orbit is perturbed vertically it will undergo small oscil-

lations at the vertical epicyclic frequency, which is characteristic of the orbital-plane

precession frequency at that radius. We thus compare these epicyclic frequencies, as a

function of the circular orbital frequency, between Kerr and bumpy spacetimes. This

comparison was employed by Ryan, who used it to derive his theorem stating that

all spacetime multipole moments are encoded in the gravitational waves generated by

nearly-circular, nearly-equatorial EMRIs [2].

An eccentric equatorial orbit can be characterized by two observables — the orbital

frequency and the periapsis precession frequency. These two frequencies can therefore

be used to identify orbits in different spacetimes (provided there is an orbit with

corresponding frequencies in the Kerr metric). Likewise, the orbital-plane precession

frequency can be used to identify inclined orbits between spacetimes1. With such an

identification, differences in the multipole structure of the spacetime will show up only

in the relative amplitudes of the harmonics and in the evolution of the fundamental

frequencies over the inspiral. We will discuss this some more at the end of this

section, but a full analysis requires treatment of inspiral in an arbitrary spacetime

and is beyond the scope of the current paper.

1The ‘orbital-plane’ is not well defined in the strong field. However, we know the gravitational
waves should be triperiodic and, in the weak-field, the three periods correspond to the orbital period
and the two precessions. When we refer to ‘orbital-plane precession frequency’ we really mean the
frequency component of the orbit that corresponds to orbital-plane precession in the weak-field.
This will be the frequency of the vertical motion, averaged over many orbits.
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5.5.1 Epicyclic Frequencies

The frequency of epicyclic motion can be derived by perturbing a circular, equato-

rial orbit in either the radial or vertical direction. The second order geodesic equa-

tions (5.8) for z and ρ take the form

d

dτ

(

2 gXX
dX

dτ

)

= ∂Xgtt

(

dt

dτ

)2

+ 2∂Xgtφ

(

dt

dτ

)(

dφ

dτ

)

+ ∂Xgφφ

(

dφ

dτ

)2

+∂Xgρρ

(

dρ

dτ

)2

+ ∂Xgzz

(

dz

dτ

)2

. (5.18)

Here X denotes either ρ or z. The dependence on dt/dτ and dφ/dτ can be eliminated

by using the energy and angular momentum conservation equations to express these

in terms of E, Lz, ρ and z, as in Eq. (5.12). Using this form of the equations we can

take a circular, equatorial orbit, ρ = ρ0, z = 0, and perturb it either in the radial

direction, ρ = ρ0 + δρ, z = 0, or in the vertical direction, ρ = ρ0, z = δz. Considering

the equations of motion at leading order in the small orbital perturbation, it is easy

to see that the frequencies of these small epicyclic oscillations are given by

(

gφφE − gtφLz
gttgφφ − g2

tφ

)2

Ω2
X =

1

2gXX

∂

∂X

(

∂Xgtt (gφφE − gtφLz)
2 + 2∂Xgtφ (gφφE − gtφLz) (gttLz − gtφE)

(gttgφφ − g2
tφ)

2

)

+
1

2gXX

∂

∂X

(

∂Xgφφ (gttLz − gtφE)2

(gttgφφ − g2
tφ)

2

)

(5.19)

As before, X denotes either ρ (for the radial epicyclic frequency Ωρ) or z (for the verti-

cal epicyclic frequency Ωz). The same result can be derived starting from the effective

potential equation (5.13): the frequencies are given by Ω2
X = −(1/2)∂2Veff/∂X

2 eval-

uated at the circular orbit.

5.5.2 Precessions

We are interested in precessions rather than the epicyclic frequency. We define the

periapsis precession as the number of cycles by which the periapsis advances per



133

radial period (i.e., over one complete epicyclic oscillation). Likewise, the orbital-

plane precession is defined as the number of cycles by which the azimuthal angle

to the highest point of the orbit advances during one vertical oscillation. These

precessions, which we denote by pX , are related to the epicyclic frequencies, ΩX , by

pX =
Ωφ

ΩX
− 1. (5.20)

The behavior of the precessions can be understood in terms of what happens in

the weak-field, far from the black hole, and in the strong-field, close to the ISCO. In

the weak-field it is possible to derive expressions for the precessions as functions of the

orbital frequency. This was originally done for nearly circular, nearly equatorial orbits

by Ryan [2], who demonstrated that the various spacetime multipole moments enter

the precession rate expansion at different orders of (MΩφ)
α. This was the basis for a

theorem that, in principle, the weak-field precessions can be used to extract the lowest

order spacetime multipole moments. The weak-field expansion of the precessions is

summarised in Section 5.8.

In the strong-field, we find that one or the other precession diverges at a certain

frequency. This frequency corresponds to the frequency of the ISCO. To understand

what is happening, we use the effective potential (5.13) and consider radial oscilla-

tions. For the energy and angular momentum corresponding to the circular equatorial

orbit at radius ρ = ρc, the effective potential in the equatorial plane takes the form

Veff(ρ, z = 0) = −Ṽ (ρ)(ρ− ρ−)(ρ− ρc)
2. Here Ṽ (ρ) is a function that is strictly posi-

tive for ρ > ρ−. The radius ρ− is the other solution to Veff(ρ, z = 0) = 0, and ρ− < ρc.

As the ISCO is approached, the effective potential develops a point of inflection at the

location of the turning point rather than a maximum since ρ− → ρc. The epicyclic

frequency for radial oscillations is Ω2
ρ = Ṽ (ρc)(ρc − ρ−), which thus tends to zero

as the ISCO is approached. The corresponding periapsis precession diverges. The

radius ρ− corresponds to an unstable circular orbit, and associated with any unstable

circular orbit is a bound, eccentric orbit that has an infinite period — the object

comes in from larger radii, and asymptotically approaches the radius of the circular
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orbit. This is referred to as a “homoclinic” orbit, or as a “zoom-whirl” orbit in the

EMRI literature. As the ISCO is approached, a small perturbation from the location

of the circular orbit will put the object onto an orbit that is close to the homoclinic

orbit associated with the unstable circular orbit. Hence, it takes a very long time for

the object to complete a radial oscillation, but it is moving rapidly in the azimuthal

direction the whole time, building up a large periapsis precession.

This understanding leads us to expect the precession to diverge at the location of

the ISCO, and this divergence should be like (ρc − ρISCO)−1/2, or (Ωφ,ISCO − Ωφ)
−1/2.

The above argument applies to an ISCO defined by a radial instability (as in the Kerr

metric). As we saw in Section 5.4, the ISCO in the Manko-Novikov spacetimes can

be determined by the onset of a vertical instability. In that case, the above argument

still applies, but it is now the orbital-plane precession that will diverge as the ISCO is

approached. This provides another potential ‘smoking-gun’ for a deviation from the

Kerr metric. The divergence in the precession at the ISCO arises as a result of one of

the two epicyclic frequencies going to zero. It is these frequencies that will in principle

be observable in the gravitational waves. If an inspiral is observed starting in the

weak-field and up until the last stable orbit (LSO), the different frequency components

could be tracked, and one frequency will tend to zero as the LSO is approached. This

is in principle an observable, and if it is the orbital-plane precession that goes to

zero the central body cannot be a Kerr black hole. A more careful treatment of the

gravitational-wave emission will be required to understand how practical it will be to

make such observations.

In Figures 5.13–5.16 we show the precessions as a function of MΩφ for a variety

of values of q. In Figures 5.17–5.19 we present the same results, but now we show the

differences between precessions in a bumpy spacetime with a given q and precessions

in the Kerr spacetime with the same spin parameter χ: ∆pX = pX − pKerr
X . The

variable ∆pX represents the number of cycles of difference, so for instance a value of

∆pρ = 0.1 means that the orbits in the two spacetimes, although having the same

azimuthal frequency, would drift an entire cycle out of phase in the epicyclic radial

oscillation within ten radial orbits. We do not show results for the difference in the
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orbital-plane precession for χ = 0, since there is no orbital-plane precession in the

Schwarzschild spacetime and hence that plot would be identical to Figure 5.15.

Figures 5.13 and 5.17 show the periapsis precession rρ(Ωφ) for χ = 0 while Fig-

ures 5.14 and 5.18 show the periapsis precession for χ = 0.9. We see that as the

value of q decreases from zero, the periapsis precession decreases relative to the cor-

responding value in the Kerr/Schwarzschild spacetime. By contrast, if q is increased

from zero, the periapsis precession increases. In spacetimes with non-zero spin, the

difference is more extreme for prograde orbits than for retrograde orbits. This is

presumably because retrograde orbits do not get as close to the central object, and

so do not “feel” the strong-field deviations in the bumpy metric.

For q ≥ −0.5, the radial epicyclic frequency Ωρ(Ωφ) approaches zero as the ISCO

is approached and the periapsis precession rρ goes to infinity for the reasons described

above. This is not true of the q < −0.5 spacetimes shown, since for those the ISCO

is defined by a vertical instability. Figure 5.15 shows the orbital-plane precession

rz(Ωφ) for χ = 0 and Figures 5.16 and 5.19 show the orbital-plane precession for χ =

0.9. As for the case of the periapsis precession, the orbital-plane precession behaves

qualitatively differently depending on the sign of q. The orbital-plane precession is

greater for q < 0 and smaller for q > 0 compared to the non-bumpy value. As

expected, the orbital-plane precession tends to a constant at the ISCO for q > −0.5,

while it diverges for q < −0.5, since the ISCO for the latter spacetimes is defined by

a vertical instability as discussed earlier.

Previous authors have looked at precessions in “bumpy” spacetimes. As men-

tioned above, Ryan [2] derived a weak-field expansion for the precessions. Collins

& Hughes [11] looked at precessions for eccentric equatorial orbits in a perturbed

Schwarzschild spacetime, and Glampedakis & Babak [12] did the same for a per-

turbed Kerr black hole. However, both pairs of authors did this by comparing orbits

with the same coordinates, which is rather unphysical. Our results are consistent with

this previous work in the weak-field, as it should be, but our calculation is the first

that can be applied in the strong field, since Ryan’s work used a weak-field expansion,

and the other work used perturbative spacetimes that break down close to the central
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body. The behavior in the approach to the ISCO is thus a new result.

It is possible to fit the precessions as a sum of a weak-field expansion (as given

in Section 5.8) plus a term A/
√

Ωφ,ISCO − Ωφ. However, only a comparatively few

weak-field terms are required to give a good fit, implying that the divergence at the

ISCO limits the number of multipole moments that can be recovered from such an

expansion. To quantify this statement properly, we must do a full analysis, that in-

cludes the effect of inspiral, uses an instrumental noise curve to restrict the observable

bandwidth and accounts for parameter correlations via the Fisher Matrix. We can do

this by constructing semi-relativistic inspiral waveforms for bumpy spacetimes in the

same way that has been used for Kerr inspirals [27, 25]. This is beyond the scope of

the present paper. However, there are several things that we can take away from the

current results — the location of the ISCO has a strong influence on precessions that

could be observable, in particular the nature of the instability that defines the ISCO

could be a clear indicator of a non-Kerr system; precessions can be very different in

the strong field in the presence of a deviation; circular orbits with frequencies very

different from the Kerr value exist in some bumpy spacetimes, so another observable

signature would be that an inspiral persists at frequencies inside the Kerr ISCO.

5.5.3 Effect of Eccentricity

As discussed above, the measurement of the precessions as a function of orbital fre-

quency for nearly circular, nearly equatorial orbits would in principle allow measure-

ment of the spacetime multipole moments [2]. In practice, however, the precessions

will only be manifest in the observed gravitational waves if the orbit is not circular

and equatorial, so we need to understand how the dependence of the precessions on

azimuthal frequency differs when we relax the assumption of near-circularity. In the

following, we shall focus on the periapsis precession of eccentric but equatorial orbits.

The eccentricity of an orbit modifies two things — 1) the frequency associated

with the periapsis precession as a function of the orbital frequency; 2) the relative

amplitudes of different harmonics of these two frequencies in the observed GWs. To

accurately compute the dependence of the harmonic structure on eccentricity for a
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generic orbit, we need to know details of GW generation in a spacetime with arbitrary

multipole moments. This is a difficult problem, so we focus on the effect of eccentricity

on the periapsis precession frequency itself. We consider an eccentric equatorial orbit

in the Kerr spacetime, and use Ωφ to denote the average azimuthal frequency (i.e., the

total advance in φ over one radial period, divided by the period of the radial motion).

We define an orbital eccentricity, e, such that the ratio of the Boyer-Lindquist radii

of the periapse, rp, and apapse, ra, of the radial motion is rp/ra = (1 − e)/(1 + e).

With these definitions, the periapsis precession as defined above can be found to be

pρ = 3

(

MΩφ

(1 − e2)
3

2

) 2

3

− 4χ

(

MΩφ

(1 − e2)
3

2

)

+
3(18 − 7e2 + 2χ2)

4

(

MΩφ

(1 − e2)
3

2

) 4

3

−(34 − 18e2)χ

(

MΩφ

(1 − e2)
3

2

)
5

3

+ · · · (5.21)

where we are expanding in the weak field, MΩφ ≪ 1. The corresponding result

for a spacetime with an excess quadrupole moment can be found at lowest order by

replacing the term in χ2 with χ2 + q, since the quadrupole moment of a Kerr black

hole is χ2 as discussed earlier.

In the circular limit, e = 0, the expansion (5.21) allows us to extract M from

the coefficient of Ω
2/3
φ , χ from the coefficient of Ωφ, q from the coefficient of Ω

4/3
φ etc.

However, if we expand to lowest order in the eccentricity, e, it is clear that the effect

of a small excess oblate quadrupole moment q > 0 could be mimicked, at leading

order, by an eccentricity evolving as e2 = 2(MΩφ)
−2/3q. The two possibilities are

then distinguished by knowing how the eccentricity should evolve with MΩφ.

The expansion (5.21) contains redundancy, since the coefficient of MΩ
5/3
φ also

depends only on the lowest current moment, χ. If the eccentricity of the orbit did not

evolve with time the first four terms in the expansion would determine M , χ, q and the

eccentricity e, and higher terms would determine the remaining multipole moments

as in the circular case. However, the eccentricity does evolve with time. In practice,

we will only observe EMRIs as they evolve through a finite range of frequencies

(determined by the detector sensitivity). During that period, the evolution will be
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driven entirely by gravitational-wave emission. This means that we can quantify the

eccentricity of the orbit by a single number — the periapse at which the eccentricity

was equal to 1 if we integrated the inspiral backwards in time, assuming a purely GW

driven inspiral. Specifying this parameter and the multipole structure of the spacetime

determines the eccentricity as a function of MΩφ. Determining this relationship,

however, requires knowing the details of GW emission in an arbitrary spacetime.

A complication arises because the ratio MΩφ/(1−e2)3/2 tends to a constant at the

point where e = 1. Assuming that this occurred in the weak-field, MΩφ/(1−e2)3/2 ≪
1, this can be seen by considering the leading order term in de/dΩφ in the weak-field

(see for instance [27])

de

d(MΩφ)
=

−(304 + 121e2)(1 − e2)e

3(MΩφ)(96 + 292e2 + 37e4)
. (5.22)

Denoting X = 1 − e2 and expanding in the limit MΩφ → 0, X → 1, we find

dX

d(MΩφ)
≈ 2

3

X

MΩφ

⇒ X = X0(MΩφ)
2

3 +O(Ω
4

3

φ ) (5.23)

in which X0 is a constant that is related to the periapse at “capture” when X = 0. If

the capture occurs in the strong field, the ratio MΩφ/(1 − e2)3/2 would still tend to

a constant if we integrated backward until e → 1. Although the inspiral would not

be observed as e→ 1, that section of the inspiral does affect the portion that we can

observe.

We now substitute the asymptotic behavior (5.23) into Eq. (5.21), to obtain an

expansion of the periapsis precession as a function of the angular frequency in the

form pρ = a0 + a2(MΩφ)
2/3 + a3(MΩφ) + · · · , where a0, a2, a3 etc. are constants. In

contrast to the circular case, each of these coefficients depends on all the spacetime

multipole moments, so multipole extraction from the periapsis precession expansion is

no longer straightforward. The reason for this qualitative difference between circular

and eccentric orbits is that it is only possible to observe an eccentric inspiral over

a finite range of periapse, since the orbit is captured with a certain finite periapse,

while a circular orbit could inspiral from infinity. The various multipole moments
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have different radial dependencies, thus if one can observe the precession frequency

at any radius it makes sense that all the moments can be separately extracted, while

this is more difficult if only a finite section of the spacetime is explored.

In practice, this difficulty also arises when observing a circular inspiral, since the

radiation can only be detected in a certain frequency range. One can parameterize

an observation by the frequency at the start of the observation, Ω0 = Ωφ(t = 0). A

Taylor series expansion of the precession (see Eq. (5.41) in the Appendix) then gives

pρ =

(

3 (MΩ0)
2

3 − 4χ (MΩ0) +
3

2

(

9 + χ2 + q
)

(MΩ0)
4

3 + · · ·
)

+
(

2 (MΩ0)
2

3 − 4χ (MΩ0) + 2
(

9 + χ2 + q
)

(MΩ0)
4

3 + · · ·
) Ωφ − Ω0

Ω0

+

(

−1

3
(MΩ0)

2

3 +
1

3

(

9 + χ2 + q
)

(MΩ0)
4

3 + · · ·
)(

Ωφ − Ω0

Ω0

)2

+ · · ·

= b0 + b1
Ωφ − Ω0

Ω0
+ b2

(

Ωφ − Ω0

Ω0

)2

+ · · · (5.24)

In this kind of expansion the multipole moments again contribute at all orders. How-

ever, provided the initial frequency MΩ0 ≪ 1, the dominant piece of the constant

term, b0, is (MΩ0)
2

3 , so this term can be used to estimate M . Similarly, the dominant

piece of 2b0 − 3b1 is 4χ (MΩ0), so this can be used to estimate χ, and that estimate

of χ can be used to improve the estimate of M from b0. The dominant piece of

b0 − b1 + 3b2 is (9 + χ2 + q) /2 (MΩ0)
4

3 , so this can be used to estimate the excess

quadrupole moment q and so on. In the same way, if an eccentric inspiral is observed

in a regime where the initial frequency is small (and hence the frequency at capture

was also small), we can use the same type of expansion and use combinations of the

coefficients to successively extract each multipole moment and the initial eccentricity.

To do this requires an expansion of e2 − e20 as a function of Ωφ/Ω0 − 1. The neces-

sary derivatives de2/d(MΩφ) are known in the weak-field, and to lowest order in the

multipoles (see, for example, reference [27]). However, this calculation is somewhat

involved and beyond the scope of this paper.

The above discussion indicates that the periapsis precession rate can be used on

its own to measure the multipole moments from an eccentric equatorial inspiral, al-
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though this is more difficult than for the circular equatorial case. However, the value

of the precession is not the only observable. As mentioned earlier, the relative am-

plitude of the various harmonics of the orbital frequencies is a powerful probe of the

orbital eccentricity. To exploit this harmonic structure we also need to know how

the amplitudes of the harmonics depend on the spacetime multipole moments. How-

ever, if the deviations from the Kerr metric multipole structure are small, we could

imagine using the Kerr harmonic amplitude relation to estimate the eccentricity (and

inclination) of the orbit, and then use the precessions to extract the multipole struc-

ture. Proper insight can be gained using the approximate semi-relativistic waveforms

described earlier or post-Newtonian expansions of the gravitational waveforms. Such

an investigation will be an important extension of the current work.

5.6 Summary

In this paper we have discussed various observational signatures that could leave an

imprint on an EMRI gravitational waveform if the spacetime in which the EMRI was

occurring deviated from the Kerr metric. We have seen that some orbits in “bumpy”

spacetimes lack a fourth integral of the motion, and appear ergodic. Geodesics in the

Kerr spacetime have a complete set of integrals, so if an apparently ergodic orbit was

observed it would be a clear signature of a non-Kerr central object. However, regions

of ergodic motion only appear very close to the central object, in a regime which is

probably inaccessible to a star inspiraling from large distances. Most astrophysically

relevant orbits are regular and appear to possess an approximate fourth integral of the

motion, and the orbits are tri-periodic to high accuracy. The deviations of the central

body from Kerr then manifest themselves only in the changes in the three fundamental

frequencies of the motion and the relative amplitude of the different harmonics of these

frequencies present in the gravitational waves. For nearly circular, nearly equatorial

orbits, the dependence of the precession frequencies on the orbital frequency is well

fit by a combination of a weak field expansion that encodes the multipole moments

at different orders, plus a term that diverges as the innermost stable circular orbit
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is approached. The frequency of the ISCO and its nature (whether it is defined by

a radial or vertical instability) is another observable signature of a non-Kerr central

object.

To derive these results, we have focussed on a particular family of spacetimes due

to Manko and Novikov [13]. However, we expect the generic features of the results

in the weak field and as the ISCO is approached to be true for a wide range of

spacetimes. Chaos has been found for geodesic motion in several different metrics

by various authors [14, 15, 16, 17, 18]. In all cases, however, the onset of chaos

was qualitatively similar to what we found here — it occurred only very close to the

central object, and for a very limited range of orbital parameters. The conclusion that

gravitational waves from ergodic EMRIs are unlikely to be observed is thus probably

quite robust.

Precessions for spacetimes that deviate from the Kerr metric have also been con-

sidered by several authors [2, 11, 12]. Our results agree with this previous work in

the weak-field as it should. However, the results in the present paper are the first

that are valid in the strong-field since previous work was either based on a weak-field

expansion [2] or a perturbative spacetime [11, 12]. The main feature of the preces-

sions in the strong-field — the divergence of one of the precessions as the ISCO is

approached — is expected from spacetime-independent considerations and therefore

should be a general feature of inspirals in any spacetime. The present work, and

earlier research [11, 12], has also considered only solutions that first differ from the

Kerr metric in the mass quadrupole moment. The Manko-Novikov solutions [13] in-

clude spacetimes that first differ at higher orders. While we have not considered such

solutions, we expect the generic features to be similar. The precessions will be closer

to the Kerr values for a greater fraction of the inspiral, and the ISCO will be at a

different frequency, but the qualitative behavior in the approach to ISCO should be

the same.

The next step in understanding how gravitational-wave detectors might identify

non-Kerr central objects from EMRI observations is to consider the gravitational

waveforms produced during an inspiral. Any analysis should account for both param-
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eter correlations and the finite bandwidth and observation time of gravitational-wave

detectors by using a Fisher Matrix analysis. Glampedakis and Babak [12] constructed

approximate gravitational waveforms generated by orbits in a perturbed Kerr space-

time, but they considered only waveforms from geodesics (i.e., not inspirals) and

compared waveforms with the same orbital parameters. These are not observable

quantities (unlike the frequency of the orbit which we used as a basis for comparison

here) and such a calculation does not account for parameter correlations. Barack and

Cutler [26] did a full Fisher Matrix analysis of this problem, and estimated that a

LISA observation of an EMRI could measure the quadrupole moment of a body to

an accuracy of 10−3 while simultaneously measuring the mass and spin to 10−4. That

calculation was based on an approximate waveform model devised to describe Kerr

inspirals. The expressions governing the inspiral were modified by adding the leading

order effect of a quadrupole moment to the energy and angular momentum fluxes. The

waveform generation part of the algorithm was left unchanged. Although this result

is a good guide, the calculation contained a number of inconsistencies. For Kerr inspi-

rals, semi-relativistic “kludge” waveforms based on combining exact geodesic motion

with approximate gravitational-wave emission formulae have proven to give accurate

results [27, 25]. The same method could be used to produce waveforms for inspiral in

the Manko-Novikov spacetimes, by changing the geodesic equations and augmenting

the inspiral fluxes appropriately. Such an approach will not generate totally accurate

gravitational waveforms, but it will reproduce the main features of the orbit — the

precession frequencies, the orbital shape and the frequency of the ISCO. A study of

gravitational waveforms generated in “bumpy” spacetimes will provide useful guid-

ance for future detectors such as to what precision an observation could determine

that an inspiral is an inspiral into a Kerr black hole and how well observations can

distinguish different types of deviation from Kerr, e.g., an exotic central object from

a naked singularity from a Kerr black hole with external matter.
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5.7 Appendix A. Chaotic Motion in Newtonian

Gravity

The classic example from astrophysics of a system that exhibits chaos in classi-

cal (Newtonian) gravity is the two dimensional Hénon-Heiles potential V (r, θ) =

r2/2+ r3 sin 3θ/3 (see [28] for example). Guéron and Letelier [16] also found chaos in

the Paczyńki-Witta potential (Φ = M/(r− rS), where rS = 2M is the Schwarzschild

radius) with a dipolar perturbation. Neither of these spacetimes is reflection sym-

metric, so for a better analogy to the relativistic spacetimes considered in this paper,

we examine the Newtonian quadrupole-octupole potential

Φ(ρ, z) = −M
r

− M2

2 r3

(

1 − 3
z2

r2

)

+
M4

8 r5

(

35
z4

r4
− 30

z2

r2
+ 3

)

. (5.25)

Here, M , M2 andM4 denote the monopole (mass), quadrupole and octupole multipole

moments of the potential. Stationarity and axisymmetry ensure that energy E and

angular momentum Lz = r2dφ/dt are conserved as usual, which leads us to the

Newtonian analogue of the effective potential equation (5.13)

1

2

(

(

dr

dt

)2

+

(

dz

dt

)2
)

= Veff(E,Lz, ρ, z) =
1

2

(

E2 − 1
)

− L2
z

2ρ2
− Φ(ρ, z) (5.26)

where we have replaced the standard Newtonian energy by the relativistic expression

(E2−1)/2 for consistency with (5.13). The equation of motion in this potential takes

the usual form d2r/dt2 = −∇Φ. If we take the multipole moments to have the values

M2 = 2M3 and M4 = 10M5, and choose the angular momentum to be Lz = 1.7M , we

find that for a range of values of the energy E, bound orbits occur quite close to the

origin. For sufficiently large values of E, there is a single allowed region for motion

(defined by Veff ≥ 0). Orbits in that regime appear to be regular, and show closed

Poincaré maps. If the energy is reduced, the allowed region eventually splits into two

separate regions, one bounded away from r = 0, and one connected to r = 0. Orbits

in the outermost region after this transition exhibit ergodic behavior. In Figure 5.20

we show four plots. Two of these plots are for an orbit with E = 0.82, which exhibit
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regular behavior. The other two are for E = 0.81 and exhibit ergodic behavior. We

choose the initial conditions of both orbits to be ρ̇ = 0 = z and ρ = 3M , with ż

determined from the assigned energy (5.26). The upper panels in the figure show the

orbit in the (ρ, z) plane, and the boundary of the allowed region of motion (defined

by Veff = 0). The lower panels show Poincaré maps for the two orbits. The ergodicity

of the orbit with E = 0.81 is quite evident from the Poincaré map. We also find that

this orbit fills up the entire allowed range of ρ and z. By contrast, the regular orbit

with E = 0.82 explores only a narrow torus in space.

A thorough examination of when ergodicity appears in this potential, as a function

of energy, angular momentum and the multipole moments M2 and M4 is peripheral

to the focus of this paper. However, the results presented here provide a Newtonian

example to which we can compare the relativistic results of Section 5.3.

5.8 Appendix B. Weak Field Precessions

5.8.1 Relativistic Precession

In Boyer-Lindquist coordinates, the energy, angular momentum and rest-mass con-

servation equations (5.10)–(5.11) for geodesic motion in the Kerr metric can be used

to derive the equation of motion in the form (see for instance [29])

1

2

(

(

dr

dt

)2

+ ∆

(

dθ

dt

)2
)

=

(E(r2 + a2) − aLz)
2 − ∆ (r2 + (Lz − aE)2 + L2

z cos2 θ + a2 cos2 θ(1 −E2))

2
(

E((r2 + a2)2/∆ − a2 sin2 θ) − 2MaLzr/∆
)2 (5.27)

where ∆ = r2 − 2Mr + a2, and a = Mχ. The prograde equatorial circular orbit at

radius r has energy and angular momentum

E =
1 − 2v2 + av3/M
√

1 − 3v2 + 2av3/M
(5.28)

Lz = rv
1 − 2av3/M + a2v4/M2

√

1 − 3v2 + 2av3/M
(5.29)
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where v2 = M/r. The frequency of a prograde circular orbit is given by

Ωφ =
dφ

dt
=

√
M

r3/2 + a
√
M
. (5.30)

The epicyclic frequencies for radial and vertical perturbations of the orbit are given by

the second derivatives of the right hand side of equation (5.27) with respect to r and

θ (the right hand side of Eq. (5.27) is the effective potential for the Kerr spacetime).

To obtain the form of these frequencies in the weak field, we wish to expand in 1/r.

With some manipulation and keeping terms up to r−5 only, we obtain the expansion

Ω2
ρ =

M

r3
− 6

M2

r4
+ 6χ

M5/2

r9/2
− 3χ2M

3

r5
+ · · · (5.31)

Ω2
z =

M

r3
− 6χ

M5/2

r9/2
+ 3χ2M

3

r5
+ · · · (5.32)

where we use Ωρ, Ωz to denote the radial and vertical epicyclic frequencies to be con-

sistent with the results earlier in the paper. With further manipulation, expressions

for the precessions, pX , as a function of the orbital frequency, Ωφ, may be derived

pρ = 3 (MΩφ)
2

3 − 4χ (MΩφ) +
3

2

(

9 + χ2
)

(MΩφ)
4

3 − 34χ (MΩφ)
5

3

+
1

2

(

135 + 67χ2
)

(MΩφ)
2 + · · · (5.33)

pz = 2χ (MΩφ) −
3

2
χ2 (MΩφ)

4

3 + 8χ2 (MΩφ)
2 + · · · (5.34)

Results for retrograde orbits may be obtained by the substitutions χ → −χ, Ωφ →
−Ωφ and Lz → −Lz in the above expressions (NB Ωφ < 0 for retrograde orbits, so

−Ωφ is equivalent to |Ωφ|).

5.8.2 Precession due to a Quadrupole Moment

The precession induced by a quadrupole moment can be derived using the Newtonian

quadrupole potential

Φ = −M
r

− 1

2

Q

r3

(

1 − 3
z2

r2

)

. (5.35)

Here r =
√

x2 + y2 + z2 is the distance from the origin, z is the vertical coordinate

and we will use ρ =
√

x2 + y2 to denote the cylindrical polar radial coordinate. The
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radial equation of motion in this potential takes the form

1

2

(

dρ

dt

)2

= E − L2
z

2ρ2
+
M

r
+

1

2

Q

r3

(

1 − 3
z2

r2

)

(5.36)

and the energy, angular momentum and orbital frequency of a circular, equatorial

orbit with radius ρ are

E =
Q

4ρ3
− M

2ρ

Lz =

√

Mρ +
3

2

Q

ρ

Ωφ =

√

M

ρ3
+

3

2

Q

ρ5
(5.37)

Differentiating Eq. (5.36) twice with respect to ρ and z, we find the epicyclic frequen-

cies take the form

Ω2
ρ =

M

ρ3
− 3

2
Q
M

r5
+ · · · (5.38)

Ω2
z =

M

ρ3
+

3

2
Q
M

r5
+ · · · . (5.39)

Hence we derive the precession frequencies

pρ = −3

2

Q

M3
(MΩφ)

4

3 + · · ·

pz =
3

2

Q

M3
(MΩφ)

4

3 + · · · . (5.40)

The lowest order form of these expressions was also given in Collins and Hughes [11],

although they expressed the precession in terms of a radial coordinate, rather than the

observable Ωφ. We also use a slightly different definition for the quadrupole moment

Q so that it is consistent with Q = χ2M3 for the Kerr metric. As we would expect,

the leading-order terms in these expressions agree with the leading order terms in χ2

in the Kerr expressions.

Combining this result with Eq. (5.34), we obtain the weak-field precessions for the
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Manko-Novikov solution with spin parameter χ and excess quadrupole moment q

pρ = 3 (MΩφ)
2

3 − 4χ (MΩφ) +
3

2

(

9 + χ2 + q
)

(MΩφ)
4

3 − 34χ (MΩφ)
5

3

+
1

2

(

135 + 67χ2 + 39q
)

(MΩφ)
2 + · · ·

pz = 2χ (MΩφ) −
3

2

(

χ2 + q
)

(MΩφ)
4

3 +
(

8χ2 − 3q
)

(MΩφ)
2 + · · · . (5.41)

In the above, the lowest order term that is omitted is the order at which the ex-

cess current quadrupole moment would first contribute. This result is also given in

Ryan [2], although he quotes an expression for Ω̃ρ/Ωφ, where Ω̃ρ is equal to Ωφ −Ωρ.

Our result is consistent with his once this is taken into account. We note that some

of the terms in expression (5.41) come from relativistic corrections to the effect of the

quadrupole moment. These cannot be derived using only the results quoted in this

appendix, but are given in Ryan’s paper [2].
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Figure 5.3: Effective potential for geodesic motion around a Kerr black hole, with
E = 0.95, Lz = 3M and χ = 0.9. The curves indicate zeros of the effective potential.
Allowed orbits are found in the small region around ρ = 0, z = 0 (rising and plunging
orbits) or in the region containing ρ = 10, z = 0 (bound orbits).



149

0 2 4 6 8 10 12 14
−5

−4

−3

−2

−1

0

1

2

3

4

5

ρ

z

Figure 5.4: Effective potential for geodesic motion around a bumpy black hole with
χ = 0.9, q = 0.95, E = 0.95, and Lz = 3M . The thick dotted curves indicate zeros
of the effective potential. The trajectory of a typical geodesic in the outer region
is shown by a thin curve. The regular pattern of self-intersections of the geodesic
projection onto the ρ− z plane indicates (nearly) regular dynamics.
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Figure 5.7: Poincare map for a geodesic in the inner region of Fig. 5.4.
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Figure 5.8: Absolute values of the Fourier transforms of ρ(t) (solid line), z(t) (dashed
line), and the gravitational wave component h+(t) (dotted line) in the frequency
domain for an orbit in the outer region of Fig. 5.4. The frequency is displayed in
units of 1/M ; the amplitude scaling is arbitrary.
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Figure 5.9: Absolute values of the Fourier transforms of ρ(t) (solid line), z(t) (dashed
line), and the gravitational wave component h+(t) (dotted line) in the frequency
domain for an orbit in the inner region of Fig. 5.4. The frequency is displayed in
units of 1/M ; the amplitude scaling is arbitrary.
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χ = 0.9 and q = 0.95. ∆ρ = 0 means that the two regions have merged and there is
a single bounded region.
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Figure 5.11: Properties of the equatorial ISCO in spacetimes with χ = 0, as a function
of q. We show the ρ coordinate of the ISCO (left panel) and the dimensionless
frequency of the orbit at the ISCO (right panel). As described in the text, the ISCO
radius has three branches, depending on whether it is determined by one of the two
branches of radial instability or the branch of vertical instability. These branches
are indicated separately in the diagram. For values of q where all three branches are
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discussed in the text. Allowed orbits lie above the curve in the left panel, and below
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Figure 5.13: Periapsis precession pρ versus azimuthal frequency Ωφ for χ = 0 and
various values of q.
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Figure 5.14: Periapsis precession pρ versus azimuthal frequency Ωφ for χ = 0.9 and
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Figure 5.15: Orbital-plane precession pz versus azimuthal frequency Ωφ for χ = 0 and
various values of q. We do not show the case q = 0 here, since there is no orbital-plane
precession in Schwarzschild.
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Figure 5.16: Orbital-plane precession pz versus azimuthal frequency Ωφ for χ = 0.9
and various values of q.



156

-4

-2

 0

 2

 4

-0.06 -0.04 -0.02  0  0.02  0.04  0.06

∆ 
r ρ

Ωφ

q = 0.5
q = 1

q = 5
q = -0.5

q = -1
q = -5
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Figure 5.20: Example of onset of chaos in the Newtonian quadrupole-octupole po-
tential (5.25). All plots are for orbits which start with ρ̇ = 0 = z, ρ/M = 3 and
have specific angular momentum Lz = 1.7M . The left hand panels are for energy
E = 0.82, while the right hand panels have energy E = 0.81. The top two plots show
zeros of the effective potential, Veff = 0, as defined by equation (5.26), and the paths
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for crossings of the z = 0 plane in each case.
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Chapter 6

Detection and Science Applications
of Intermediate- and Extreme
Mass-Ratio Inspirals into Massive
Black Holes

Black hole binaries with extreme (∼> 104 : 1) or intermediate (∼ 102−104 :

1) mass ratios are among the most interesting gravitational wave sources

that are expected to be detected by the proposed Laser Interferometer

Space Antenna. These sources have the potential to tell us much about

astrophysics, but are also of unique importance for testing aspects of the

general theory of relativity in the strong field regime. Here we discuss

these sources from the perspectives of astrophysics, data analysis, and

applications to testing general relativity, providing both a description of

the current state of knowledge and an outline of some of the outstanding

questions that still need to be addressed.

This chapter contains excerpts from a review that was published by Pau

Amaro-Seoane, Jonathan R. Gair, Marc Freitag, M. Coleman Miller, Ilya

Mandel, Curt J. Cutler, and Stanislav Babak in Classical and Quantum

Gravity 24 (2007). A preprint of the full paper is available online at

http://arxiv.org/abs/astro-ph/0703495.
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6.1 Background

Our understanding of the central regions of galaxies has advanced rapidly during the

past few years, not least due to major advances in high angular resolution instru-

mentation at a variety of wavelengths. Observations carried out with space-borne

telescopes, such as the Hubble Space Telescope (HST), and from the ground, using

adaptive optics, have allowed the study of the kinematics of stars or gas in regions

reaching down to milli-pc for the Milky Way and to sub-pc scales for more distant

galaxies. One remarkable conclusion is that dark compact objects, most probably

massive black holes (MBHs), with a mass M• ≃ 106 − 109M⊙, are present at the

centre of most of the galaxies for which such observations can be made. A deep

link exists between the central MBH and the host galaxy. This is exemplified by

the discovery of correlations between M• and global properties of the spheroid, the

tightest correlation being with its velocity dispersion, the so-called M• − σ relation

[103]. The central part of a galaxy, its nucleus, consists of a cluster of a few 107 to

a few 108 stars surrounding the MBH, with a size of a few pc. The nucleus is un-

derstandably expected to play a major role in the interaction between the MBH and

the host galaxy. In the nucleus, one finds stellar densities in excess of 106 pc−3 and

relative velocities of order a few 100 km s−1 to a few 1000 km s−1. In these exceptional

conditions and unlike anywhere else in the bulk of the galaxy, collisional effects come

into play. These include 2-body relaxation, i.e., mutual gravitational deflections, and

genuine contact collisions.

The stars and the MBH interact in two primary ways. Firstly, stars can produce

gas to be accreted on to the MBH, through normal stellar evolution, collisions or

disruptions of stars by the strong central tidal field. These processes may contribute

significantly to the mass of the MBH [78, 37]. Tidal disruptions trigger phases of

bright accretion that may reveal the presence of a MBH in an otherwise quiescent,

possibly very distant, galaxy [53, 46]. Secondly, stars can be swallowed whole if they

are kicked directly through the horizon (referred to as direct plunges) or inspiral grad-

ually due to the emission of gravitational waves (GWs). The latter process, known
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as an “Extreme Mass Ratio Inspiral” (EMRI) is one of the main sources expected

for the future space-borne GW detector LISA (Laser Interferometer Space Antenna)

[30, 101]. For the last stages of an EMRI to produce GWs in the frequency domain to

which LISA will be most sensitive, i.e., 0.1mHz–100 mHz [67], the mass of the MBH

must be between ∼ 104M⊙ and ∼ 107M⊙. Only compact stars, i.e., white dwarfs,

neutron stars, stellar mass black holes or, possibly, the Helium cores of giant stars can

produce EMRI signals detectable at extra-galactic distances. Main-sequence stars are

either not compact enough to withstand the tidal forces in the vicinity of the MBH

or not massive enough to produce waves of large enough amplitude. Predictions for

the expected number of EMRI detections that LISA will make are rather uncertain

but lie in the range of a few to a few thousand.

On the other hand, numerical simulations of young dense clusters show that

runaway collisions due to mass segregation can produce central stars with masses

∼ 102−4M⊙ [86, 50, 87, 38]. Such a star might undergo collapse and form a so-called

intermediate-mass black hole (IMBH) with M ∼ 102−4M⊙. It has also been proposed

that globular clusters can capture the compact remnant of a zero-metallicity popu-

lation III star [1]. A cluster harbouring an IMBH which starts relatively close to the

central MBH of the host galaxy will sink to the centre in a few million years, and will

eventually release its central IMBH due to tidal stripping of the cluster [33]. A first-

order estimate of the event rate of this process leads to a few detectable coalescences

of IMBHs with MBHs per year in the universe [76] but even if only one of these events

occurs during the LISA mission, the signal-to-noise ratio by the end of the inspiral

would be so high [57, 29, 49] that it would be visible in a time-frequency spectrogram

of the LISA data, without having to resort to matched filtering [76]. The mass ratio

of such a merger would typically be 103−4 : 1 –we shall refer to it as an “Intermediate

Mass Ratio Inspiral” (IMRI) for obvious reasons.

The LISA mission is scheduled to fly in about 10 yrs and critical design choices

which will affect the ability to detect E/IMRIs will be made soon. It is important

to produce robust estimates for the rates and typical orbital parameters of these

events as input for the development of search algorithms. Such search algorithms
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must have the capability to extract science information out of the complex LISA

data stream, which will contain many thousands of overlapping resolvable signals,

plus astrophysical backgrounds from millions of more distant sources.. The readiness

of data analysis for the LISA mission will be assessed on an equal footing with the

hardware so it is essential that data analysis strategies are finalised in the near future.

Detection of EMRIs with LISA is difficult (in discussions of data analysis, we will

generally use the term EMRIs to refer to both EMRIs and IMRIs since most of the

discussion applies to both types of inspirals, except for those obvious cases when we

discuss differences between the two). A typical signal will be very weak, lying buried

in instrumental noise and in the gravitational wave foreground created by nearby

Galactic white dwarf binaries. The signals are long-lived, typically being observable

for several years prior to plunge, which in principle allows the EMRIs to be detected

by matched filtering. Matched filtering employs a bank of templates that describes

signals with all possible parameters within the expected range. Unfortunately, the

large parameter space of possible EMRIs makes the number of templates required for

such a search computationally prohibitive. Over the past few years, several alterna-

tive algorithms have been developed — a semi-coherent matched filtering algorithm,

time-frequency search algorithms and Markov Chain Monte Carlo techniques. The

results are promising, but more work needs to be done before we will have an optimal

algorithm for EMRI detection. The correspondingly higher signal-to-noise ratios of

IMRIs make detection of those events somewhat easier, but it is still a challenging

task.

In Section 6.2.1 we describe the existing algorithms and outstanding challenges for

EMRI/IMRI detection. The search algorithms require models of EMRI waveforms.

In principle, the extreme mass ratio means that the waveforms can be computed using

black hole perturbation theory. However, this formalism is not fully developed and

will be computationally expensive once it is. Various alternative waveform models are

currently being developed and used for scoping out EMRI detection. We will describe

these various models and necessary future developments of them in Section 6.2.2.

If we do detect many EMRI/IMRI events, we will be able to do some very inter-
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esting science. EMRI observations will provide measurements of the masses and spins

of black holes to an accuracy which is not accessible by other astronomical observa-

tions. This will tell us about the properties and growth of black holes in the nearby

universe. EMRIs also provide a means to probe general relativity in the strong-field

regime close to astrophysical black holes. The extreme mass ratio ensures that over

many orbits the inspiralling object acts essentially like a test-body moving in the

space-time of the central body. The emitted gravitational waves encode a map of

the space-time. If we can decode that map, then we will be able to test the belief

that massive compact objects in the centres of galaxies are indeed Kerr black holes.

Carrying out this mapping is difficult, but is the focus of much current research. We

summarise current results in Section 6.3 and discuss some outstanding questions in

this area.

In Section 6.4 we discuss the scientific benefits of LISA observations of EMRI/IMRI

events. This section takes the form of answers to five broad questions that were the

focus of discussions at the LISA EMRI workshop hosted by the Albert Einstein In-

stitute in Golm, Germany in September, 2006. Finally, in Section 6.5 we provide a

summary of the main topics in the paper.

6.2 EMRI detection

6.2.1 Data analysis algorithms

A typical EMRI signal will have an instantaneous amplitude an order of magnitude

below the LISA’s instrumental noise and (at low frequencies) as many as several

orders of magnitude below the gravitational wave foreground from Galactic compact

binaries. This makes detection a rather difficult problem. However, the signals are

very long lived, and will be observed over more than 105 cycles, which in principle

allows the signal-to-noise-ratio (SNR) to be built up over time using matched filtering.

Estimates of the number of important parameters in EMRI evolution range from 7

to 15. Even taking a number at the lower end of this range, the naive expectation

is that N ∼ 1035 templates would be needed to carry out a fully coherent matched
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filtering search [43]. This is far more than can reasonably be searched with realistic

computing resources. Several alternative approaches to EMRI detection that will be

computationally feasible have been investigated. These will be able to detect signals

with matched filtering SNR ∼> 20. By comparison, in a fully coherent search, the

SNR required for detection is 12 − 14, to ensure a reasonable false alarm rate when

searching such a huge number of templates.

LISA data analysis is further complicated by the richness of the LISA data

stream. The motion of LISA in its orbit creates amplitude and phase modulation

of the signals and we have to employ time-delay interferometry techniques [3, 102]

in order to remove the laser frequency noise. Time-delay algorithms applied to the

Doppler readouts lead to a rather complicated response function which depends on

the frequency and sky position of the source under investigation. It is expected that

the detection rates for EMRIs will fall somewhere between a few tens and a few

thousands [10, 43, 56]. Additionally, the LISA data will be very strongly coloured

by gravitational wave signals from the foreground of white dwarf binaries in our

galaxy (∼ 107 sources which create confusion noise at frequencies below a few mil-

lihertz [54, 16, 80, 35]) and signals from a handful of merging supermassive black

hole binaries which might have SNR as high as a few thousand [112, 34, 97]. All

these signals will overlap in time and frequency. To illustrate this complexity we have

simulated a LISA frequency Doppler shift measurement with ∼ 27 million Galactic

binaries, 1 EMRI and 1 inspiralling MBH binaries. The power spectral density of

each separate source and the total envelope is presented in Figure 6.1. This Figure

is primarily illustrative, but it appears that the EMRI signals will be overwhelmed

by the signals from the MBH mergers. However, it should be possible to identify

and remove the high signal-to-noise ratio MBH merger signals from the data stream

before searching for the EMRI signals, so the situation is not as bad as it may at first

appear.

6.2.1.1 Current status

To date, three algorithms for detection of EMRIs in LISA data have been considered.



168

Figure 6.1: Power spectral density of one of the unequal arm Michelson TDI channel.
It contains 1 MBH inspirals at luminosity distances of 3.3 Gpc and 1 EMRI at lumi-
nosity distances of 2.3 Gpc. The duration of the EMRI was taken to be one and a
half years. The galactic binary realisation used here was drawn from the distribution
described in [80].
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The first is a semi-coherent algorithm, which uses a first coherent matched filter-

ing stage to search for ∼ 3-week sections of EMRIs, followed by a second stage where

the power is summed incoherently along trajectories through these sections that cor-

respond to inspirals. This algorithm could detect EMRIs at redshift z ∼ 1, which

translates to tens to hundreds of LISA events, depending on the intrinsic astrophysi-

cal rate [43]. The preliminary analysis of this algorithm made only limited efforts to

optimise its performance. It is likely that optimisation, such as the addition of extra

stages in the hierarchy, will be able to further improve the reach of search, but this

has not yet been explored.

A second approach is to use time-frequency methods, i.e., divide the data stream

into segments of a few weeks in length, perform a Fourier transform on each and

then analyse the resulting spectrogram. A simple method that looks for unusually

bright pixels in binned versions of this spectrogram could detect typical EMRI signals

at about half the distance of the semi-coherent search, but at a tiny fraction of

the computational cost [109, 42]. An improved method that considers clustering of

bright pixels in the binned spectrograms (the Hierarchical Algorithm for Clusters and

Ridges), has slightly further reach, and also more potential for parameter extraction

[41]. While more work needs to be done, template-free techniques could detect as

many as one tenth of the EMRI sources in the data stream. A typical spectrogram

for an EMRI signal is presented in Fig. 6.2 for which the amplitude of the signal at

plunge was normalised to one.

The third approach that has been explored is to use Markov Chain Monte Carlo

(MCMC) techniques. The MCMC approach essentially carries out fully coherent

matched filtering, but does so in an intelligent way, reducing the number of waveform

templates that have to be considered. MCMC methods are being explored extensively

for application to all aspects of LISA data analysis [27, 105, 110]. In the context of

the EMRI search, the MCMC approach has been found to work well when searching

for a simple model EMRI signal in a short stretch of LISA data [98]. The exact reach

of the MCMC search has not yet been properly assessed. Given infinite computing

resources, the MCMC would eventually return the posterior probability function for
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Figure 6.2: Spectrogram of the signal from an EMRI on an inclined and eccentric
orbit. One can see several harmonics modulated by orbital precession and LISA’s
orbital motion.

the source parameters. The ability to correctly identify sources then depends on the

shape of this posterior, which depends on both the signal-to-noise ratios of the sources

and the structure of the waveform template space. These are the same properties

that determine the detection limit of a fully-coherent matched filtering search, so it is

plausible that an MCMC search with infinite computing power could achieve the same

range as the fully coherent matched filtering approach. However, the MCMC suffers

from the same computational constraints as the fully coherent search, and these will

limit the ability of an MCMC search to sample the posterior. Peaks in the posterior

will have to be larger to be detected, and sources will have to be correspondingly

closer. For these reasons, it is not possible to say how the performance of the MCMC

and the semi-coherent method will compare in practice, although this should become

clear over the next several years.
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6.2.1.2 Outstanding challenges

The results quoted above for the various search algorithms were obtained using a

vastly simplified model of LISA — searching for a single EMRI event in coloured

Gaussian noise. However, as already mentioned, the LISA data stream will actually

be source-dominated and in order to detect EMRIs we might first need to clear

the data of signals from MBH binaries and from resolvable Galactic binaries. As

many as 104 Galactic binaries with frequencies above a few mHz will be individually

resolvable [35] and hopefully removed. Estimates suggest there could be tens of

coalescing MBH binaries observed each year during the mission lifetime [97]. LISA

could also see as many as several hundred individually resolvable EMRI events [43]

plus a confusion background generated by distant EMRI signals [10]. In the work

on EMRI searches, the confusion background from unresolvable compact binaries has

been included in an approximate way, but no account has been made of the effect of

interference from the thousands of resolvable sources that will be present in the data.

Research on the problem of resolving individual sources in the rather complex LISA

data is under way within the Mock LISA Data Challenge effort [4, 5].

Some of the questions that need to be addressed are as follows:

◦ How do the three existing algorithms perform when applied to data streams

containing two, ten or a hundred EMRI events? How does the performance

degrade when there are other sources, e.g., a MBH merger signal, in the data

stream? The semi-coherent and MCMC algorithms are likely to be better at

handling confusion than the time-frequency approach, since the former methods

use matched filtering. Time-frequency analyses will not be readily able to cope

with many sources of comparable brightness that intersect in the time-frequency

plane. Work needs to be done to quantify these statements.

◦ If existing algorithms for the extraction of compact binaries and supermassive

black hole mergers from the data stream are used on a data stream including

one or more EMRI signals, how is the EMRI signal affected? Can the process of

“cleaning” other sources be modelled merely as an alteration in the noise prop-
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erties of the data stream? This will answer the important question of whether

it is necessary to fit simultaneously for all the sources in the data, or whether

the parameters of the different source types can be estimated sequentially, be-

fore following up with a global fit and refinement of the parameters. Another

concern here is how well we can model MBH merger signals — the mismatch

between the true signal and the theoretical model could result in rather high

residuals.

◦ Markov Chain Monte Carlo (MCMC) techniques in principle can search for

multiple types of source in the data stream, but how well do they perform when

searching for compact binaries, supermassive black hole mergers and EMRIs in

the same data set? How quickly does the chain converge? How complex is the

likelihood function with many different source types in the data stream? It has

recently been shown that MCMC based methods can detect MBH inspirals in

the presence of a Galactic WD binary foreground to a very high accuracy [28],

which gives reason to hope that this problem will be surmountable.

◦ What are the computational costs of the various approaches? Which of them

are computationally feasible? As mentioned earlier, fully coherent matched fil-

tering is impossible due to the large number of templates required to tile the

whole parameter space. The semi-coherent algorithm was designed to make

maximum use of expected computational resources, and 3 weeks was estimated

to be the longest possible “snippet” length under that assumption. Markov

Chain Monte Carlo techniques provide a more computationally efficient way

to search high-dimensional parameter spaces. The MCMC search for a sim-

plified EMRI in 1 month of data described in [98] required the evaluation of

∼ 107 chain states in order to determine the parameters of a source which had

SNR ∼ 10. This is fairly typical of the number of states required to accurately

recover the posterior in searches for small numbers of sources [28]. However,

the exact number of states required will depend on the number of sources in

the data (typically a linear scaling), the complexity of the waveform space and
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the SNRs of the various sources. This will likely increase the requirement by

several orders of magnitude, although the MCMC should be able to obtain rea-

sonable estimates of the parameters of the loudest sources using many fewer

than the ∼ 1035 templates required to cover the whole parameter space in a

fully coherent matched filtering search [43]. However, the template at each one

of these Markov chain states still needs to be evaluated as the chain runs. The

templates thus either need to be generated “on-the-fly” or a bank of templates

needs to be generated in advance. For the former, we would need quick meth-

ods to generate EMRI waveforms, such as the kludge models. For the latter,

we are back to the necessity that the entire parameter space be covered with

EMRI templates. This is unlikely to be computationally practical, and even if

it were, the overhead associated with accessing such a huge database would be

prohibitively high. Thus, computational costs will have to be considered very

carefully when devising the final EMRI search.

The final EMRI search will most likely include a combination of the three ap-

proaches described above, and perhaps some new techniques. The search is likely to

be hierarchical, using inaccurate but quick techniques to get estimates of the source

parameters before refining with more computationally intensive methods. It is likely

that the searches for different types of LISA source will be somewhat integrated with

one another, although one possible approach might be to estimate the parameters for

each source type separately, before unifying everything in a final global fit.

There are various “non-standard” channels for EMRI formation that may produce

comparable numbers of inspirals as the standard picture. A binary tidal separation

or the capture of the core of a giant star would tend to lead to an EMRI on a circular

orbit. The formation of stars in a disc would tend to lead to an EMRI on a circular

and equatorial orbit. These special types of orbit have less free parameters than a

generic EMRI. It might therefore be worthwhile having three EMRI data analysis

pipelines, focused on circular-equatorial, circular-inclined and eccentric-inclined or-

bits respectively. The reduction in the parameter space in the restricted cases will

probably not be sufficient to allow fully coherent matched filtering to be carried out,
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but it will allow considerably longer segments to be used in the first stage of a semi-

coherent search. Moreover, the threshold SNR required for detection of a source will

be reduced (since there are far fewer templates in which a false alarm could be found),

increasing the range of the search. It will be important to find out to what distance a

well-tuned search algorithm targeting circular or circular-equatorial EMRIs can make

a detection, but this has not yet been explored thoroughly.

No algorithms have been examined explicitly in the context of IMRI detection,

although the above algorithms for EMRI detection can all be applied. For the matched

filtering algorithms, the complication is the need for waveform models, which will be

discussed in more detail below. The time-frequency algorithms can see IMRI events

further away, since they are intrinsically brighter, so this might be a good method

to use, but it will depend on the distance to the nearest likely event. As search

techniques for EMRIs and MBH mergers are further developed in the future, they

can be expanded to encompass a search for IMRIs.

6.2.2 Source modelling

Most of the data analysis algorithms outlined above require models of the source

waveforms. Waveform templates will also be essential for parameter estimation once

sources have been detected. Templates for EMRIs could be constructed in several

ways which we discuss here.

6.2.2.1 Current status

Post-Newtonian expansion The post-Newtonian expansion in powers of velocity

v/c converges poorly when v/c ∼> 0.3 [19]. Unlike comparable-mass inspirals, which

only spend a few cycles in the regime where the post-Newtonian approximation breaks

down, IMRIs and EMRIs may spend thousands to millions of cycles in this regime.

Therefore, this expansion is not useful for EMRI or IMRI waveform modelling.

Numerical relativity Solving Einstein’s equations numerically on a computer has

proven to be a very difficult task, but significant progress has been made in the
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past year. Several groups have now successfully modelled the last orbit, merger and

ring-down of a comparable mass binary system [90, 7, 22, 21]. Numerical techniques

are essential for modelling the highly non-linear dynamics during the last few orbits

and merger of a comparable mass system. However, numerical techniques are not

fast enough to evolve the large number of cycles necessary for EMRI waveforms. In

addition there are technical problems which make numerical methods unreliable as

one goes to higher mass ratios. Fortunately, in EMRI systems the extreme mass ratio

makes it possible to produce templates accurate over many cycles by perturbative

methods expanding in the mass ratio, so numerical relativity is not needed in this

context.

Self-force waveforms The extreme mass ratio in an EMRI system allows the

waveform to be obtained by perturbation theory. The inspiralling object can be

regarded as a small perturbation on the background space-time of the central black

hole, except very close to the small object. In the vicinity of the small object, the

space-time can be regarded as a point mass moving under the influence of an external

tidal field due to the central body. Matching these two regimes allows one to obtain

an expression for the self-force acting on the small body as a result of its motion in the

space-time. This self-force can be thought of as arising from gravitational radiation

being generated by the small object, reflecting off the curvature of the background

space-time and then subsequently acting on the small body. The mathematical theory

of this self-force interaction has been developed over the past ten years (see the review

[85] and references therein). In principle, the self-force formalism will provide accurate

EMRI waveforms that can be used for source characterisation. However, evaluation

of the self-force is computationally difficult. Recently, a new scheme was proposed

[12] which has produced results for the self-force acting on circular orbits in the

Schwarzschild space-time [13]. However, it is computationally expensive to generate

the self-force acting even at a single point in an orbit. A generic inspiral trajectory

and waveform from a particle evolving as a result of the self-force is still some way in

the future.
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Adiabatic inspiral waveforms Evaluation of the self-force acting at every point

on the orbit is necessary to include the ‘conservative’ piece of the self-force, i.e., the

piece that modifies the orbit, but does not dissipate energy, E, angular momentum,

Lz, or Carter constant, Q, (a generalised angular momentum squared which is the

third integral of the motion for orbits in the Kerr space-time). However, the radiative

piece of the self-force can be determined more easily, by solving the perturbation

equations for the background space-time, with a source that represents a particle

moving on a geodesic of this background. This reduces to integrating the Teukolsky

equation [99, 100]. Solutions of the Teukolsky equation encapsulate radiation at

infinity in a single equation for the Weyl scalar ψ4:

ψ4 =
1

2
(ḧ+ − iḧ×). (6.1)

The Teukolsky solution also determines the orbital averaged rates of change of

the orbital constants — 〈dE/dt〉 , 〈dLz/dt〉 , 〈dQ/dt〉 — from which the value of these

constants a short period of time later can be determined. This allows the construction

of ‘adiabatic waveforms’ [62] — a sequence of geodesics can be found that represent an

inspiral, by solving the Teukolsky equation for a given geodesic, then computing the

energy, angular momentum and Carter constant loss rate for that geodesic, neglecting

oscillatory terms which average to zero over the orbital period. These are then used

to determine the next geodesic in the sequence. The corresponding gravitational

waveforms generated on each geodesic orbit can then be stitched together to give an

adiabatic inspiral waveform. This procedure works provided the timescale over which

the orbit is changing is long compared to the orbital period, i.e., the evolution is

adiabatic. For special classes of orbits — eccentric equatorial and circular inclined

— the rate of change of the orbital constants is determined by energy and angular

momentum balance. It is possible to extract from ψ4 (6.1) the gravitational waveform

near the horizon and near infinity, and hence the amount of energy and angular

momentum being carried by the waves down the horizon and out to infinity. Equating

the loss of energy and angular momentum of the orbit to the sum of the energy and
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angular momentum fluxes near the horizon and near infinity determines the orbital

evolution. This simplification meant that adiabatic inspirals were determined several

years ago for both of these special classes of orbit [48, 58], although the stitching

together of waveforms has only been done for circular inclined orbits [59]. Recently,

‘snapshot’ waveforms and energy/angular momentum fluxes have also been generated

for generic geodesics in the Kerr space-time [31]. Generic geodesics in Kerr have the

third integral of the motion, the Carter constant, in addition to the energy and the

polar component of the orbital angular momentum. It was originally thought that

evaluation of the self-force would be required to correctly evolve the Carter constant.

However, it was recently shown that the evolution of the Carter constant can also be

determined from the same Teukolsky coefficients that are needed for computing the

energy and angular momentum fluxes [77, 95, 96].

This should allow the construction of generic adiabatic waveform templates in

the near future. Adiabatic waveforms are accurate except for the omission of the

conservative piece of the self-force. There is some debate in the literature about

how important this omission will be [32, 88]. However, the adiabatic waveforms may

be accurate enough over a timescale of a few weeks that they can be used for source

detection via the semi-coherent algorithm. They may also perhaps find a role in source

characterisations and are somewhat less computationally expensive to generate than

full self-force waveforms.

“Kludge” waveforms The adiabatic waveforms, although accurate, are still com-

putationally intensive to compute. For the purposes of scoping out data analysis

algorithms for the detection of EMRIs with LISA, it is necessary to generate wave-

forms in large numbers, e.g., to count the number of templates needed to cover the

whole parameter space with sufficiently high overlap. Perturbative waveforms did

not fit this requirement, which led to the development of two families of approximate,

“kludge” waveforms, that capture the main features of true EMRI waveforms but are

much quicker and easier to generate.

The first family of kludge waveforms use an “analytic kludge” (AK). They are
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based on waveforms representing emission from a particle on a Keplerian orbit, as

given by Peters and Mathews [83, 82]. The waveform is augmented by imposing

relativistic precession of the orbital periapsis and orbital plane, plus inspiral (in an

analogous way to how the adiabatic waveforms include inspiral). The precession and

inspiral rates are taken from post-Newtonian results. These waveforms are described

in [9]. The AK approach is “analytic” since analytic expressions are known for the

Peters and Mathews waveforms. This makes the AK waveforms very quick to evaluate.

However, they are not particularly accurate in the latter stages of inspiral, since a

Keplerian orbit with precessions is not a good approximation to a true Kerr geodesic

close to the central black hole.

The second family of kludge waveforms attempts to address this failing by using

a true geodesic orbit for the inspiralling particle. The geodesic equations have to be

integrated numerically, so the second family is labelled the “numerical kludge” (NK).

The procedure to compute a numerical kludge waveform has two stages. Firstly, a

phase-space inspiral trajectory is constructed, i.e., the sequence of geodesics that an

inspiral passes through, by integrating prescriptions for the evolution of the three con-

stants of the motion — energy, angular momentum and Carter constant. An initial

prescription for this evolution based on post-Newtonian expansions of the Teukolsky

function [49] was found to exhibit pathologies in certain regimes. By imposing con-

sistency corrections and augmenting the evolution with higher order post-Newtonian

terms and fits to solutions of the Teukolsky equation, a considerably improved pre-

scription for the inspiral has now been obtained [40]. This current inspiral prescription

is accurate until very close to the end of the inspiral for circular orbits. It is less ac-

curate for eccentric orbits, but it should be possible to improve this in the future now

that Teukolsky data for generic orbits is available. Once a phase space trajectory has

been obtained, the Kerr geodesic equations can be numerically integrated, with the

time-dependent constants of the motion inserted. The trajectory of the inspiralling

particle through the Kerr background is then obtained. The second stage of the NK

construction is to construct a waveform based on this trajectory. This is done by

identifying the Boyer-Lindquist coordinates of the particle trajectory with spherical
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polar coordinates in flat space, and applying a weak field gravitational wave emission

formula to the pseudo-flat space trajectory. NK waveforms have been constructed

using the standard flat space quadrupole radiation formula, the quadrupole-octupole

formula [15] and the Press formula [89], which is derived for fast-motion but weak

field sources. All three prescriptions perform well when compared to more accurate,

adiabatic waveforms, but there is little gain from using the Press formula in preference

to the quadrupole-octupole expression [6].

AK waveforms are not particularly “faithful” as EMRI templates, i.e., an AK

waveform with a given set of parameters does not have high overlap (noise weighted

inner product) with a more accurately computed waveform with the same set of

parameters. However, they do capture the main features of EMRI waveforms, which

has made them a useful tool for scoping out the semi-coherent algorithm [43] and

other studies. They may also be quite “effectual” templates, i.e., for any real EMRI

waveform, there may be an AK waveform with different parameters that has a high

overlap with that waveform. The AK family of waveforms may thus play some role

in the final analysis of LISA data. The NK waveforms are not only effectual but very

faithful, because they are built around true Kerr geodesics. For orbits with periapsis

greater than ∼ 5M (in geometrical units, where M is the mass of the central black

hole), the NK waveforms have overlaps in excess of 95% with waveforms computed

via solution of the Teukolsky equation. With further improvements (outlined below),

the NK waveforms are likely to be very useful tools in LISA data analysis, not only

for source detection but also for approximate source identification before subsequent

follow-up with more accurate templates. In Figure 6.3 we show a snapshot of NK

EMRI waveform. This figure serves as an illustration of the structure of the signal.

6.2.2.2 Outstanding challenges

None of these approaches to source modelling is as yet fully developed. In the case of

the self-force formalism, recent progress has been significant, and the self-force acting

on particles in circular orbits in the Schwarzschild space-time has been computed [13].

However, this is only for a small selection of circular orbits. The work must then be
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Figure 6.3: The two polarisations of an NK EMRI waveform with a mass ratio of
10−7. The GW amplitude is measured in units of the mass of the compact object
over distance (µ/D) and time is measured in units of MBH mass M . The eccentricity
is ∼ 0.3, the semi-latus rectum p ∼ 12M , the inclination of the plane to the MBH
spin axis is 140 degrees and the detector (observer) is 30 degrees above the azimuthal
plane.
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extended to eccentric orbits in the Schwarzschild space-time, then to circular equato-

rial orbits in the Kerr space-time before finally moving onto eccentric-equatorial and

ultimately eccentric-inclined orbits in Kerr. Although this is a non-trivial progres-

sion, it should be achieved within the next five to ten years. By the time LISA flies,

it is likely that codes will exist to compute self-force based waveform templates for

arbitrary orbits. However, these are likely to be computationally expensive, which is

why it is necessary to pursue the alternative models.

Adiabatic waveforms are at a more advanced stage of completion. All that remains

is to compute the evolution of the Carter constant for generic orbits, using the results

of [77], and to “stitch together” waveforms for generic inspiral orbits. There are no

technical challenges remaining, although computational cost is an issue. Generic adi-

abatic inspiral waveforms should be available within one to two years. Understanding

their range of validity may take longer, without self-force templates to compare them

against. However, the consideration of conservative corrections outlined below will

be important for developing this understanding.

The NK waveforms can also be improved. One of the reasons that the perfor-

mance degrades for small periapsis is that the kludge waveforms do not include tail

contributions, i.e., back-scattering of the radiation from the background geometry.

It should be possible to include this in an approximate way, which is likely to im-

prove the NK performance for orbits close to the central black hole. Additionally,

the inspiral prescription can be improved by fitting functions to Teukolsky data for

generic orbits. The current inspiral prescription [40] includes fits to Teukolsky data

for circular inclined orbits, and the resulting inspiral trajectories agree very well for

that class of orbit. It is likely that similar accuracy can be obtained for generic or-

bits in a similar way. Finally, the NK waveforms can be augmented by inclusion of

conservative corrections. The conservative correction to the phase evolution of an

EMRI is already known in post-Newtonian theory to 3.5 PN order. By considering

asymptotic observables, namely the rate of change of the orbital, periapsis precession

and orbital plane precession frequencies as functions of those three frequencies, it is

in principle possible to compute the necessary conservative corrections for inclusion
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in the NK model. This was demonstrated for the simple case of circular equatorial

orbits in Schwarzschild in [6]. Although the conservative effects could be included

this way only up to a certain PN order, it is quite plausible that this will suffice,

since conservative effects contribute most significantly to the phase evolution in the

weak field [88], where the PN expansion is valid.

This last improvement of the NK model is potentially important, since an issue

that needs to be understood before LISA flies is how much conservative effects can

influence the emitted waveform. If conservative effects are not significant, then a

combination of kludge and adiabatic waveforms will be able to identify the parameters

of EMRI sources in the LISA data stream with quite high accuracy. If conservative

effects are important, the degree to which these waveform families can constrain the

parameter space will be significantly reduced. Although self-force calculations are

now at the point of computing conservative corrections, this has only been done

to date for circular orbits in Schwarzschild. It is unlikely that generic conservative

corrections from self-force calculations will be available in the near future. The PN
fitting procedure outlined above will provide approximate results on a much shorter

timescale. This should allow the contribution to the phasing of each PN order

in the conservative correction to be assessed, which will give some insight into the

importance of including conservative effects. Moreover, the procedure for including

the PN conservative corrections in the NK model can also be used to include these

effects in the adiabatic waveforms.

As these developments and improvements to each family of waveforms proceed,

we will be able to address three primary groups of questions of great importance:

◦ What is the computational cost of evaluating waveforms of each type (self-force,

adiabatic, kludge)? How many self-force templates could be generated in a rea-

sonable time for a follow-up analysis? How accurately would kludge/adiabatic

templates therefore have to constrain the source parameters prior to the self-

force analysis?

◦ What is the overlap of kludge, adiabatic and self-force templates with one an-
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other? How accurately, therefore, can kludge and adiabatic templates determine

the source parameters, assuming we consider “faithful” searches only? Can we

compute sufficiently many self-force waveforms to determine parameter map-

pings between the families, i.e., can we allow the search to be only effectual?

◦ What is the most computationally efficient way to detect and identify a source,

assuming we are using a multi-stage search employing kludge, adiabatic and

self-force templates at different stages of this search? What limit on parame-

ter extraction accuracy is set by computational constraints on our search? Is

this limit much worse than the theoretically achievable parameter measurement

accuracy?

The answers to the first and second itemised points may be incompatible, i.e.,

we may not be able to determine the parameters of the source sufficiently accurately

using kludge or adiabatic templates to allow a self-force follow-up with reasonable

computational cost. In this case, we would have to live with a potentially larger error

in our source parameters, as mentioned in the third item.

In the above, we have focused on the modelling of waveforms from EMRIs. How-

ever, another outstanding challenge is to develop models for IMRI waveforms. To

date, no models have been developed explicitly for IMRIs, although existing models

for other systems can be easily applied. An IMRI (mass ratio ∼ 1 : 1000) lies some-

where between the inspiral of two comparable mass black holes (a CMRI, mass ratio

∼ 1 : 1) and an EMRI system (mass ratio ∼ 1 : 106). For a comparable mass system,

the masses and spins of both components are important, but the system spends very

few cycles in the regime where the velocity of the components is close to the speed

of light. The waveforms can thus be accurately computed from post-Newtonian ex-

pansions. In an EMRI system, the number of cycles spent in the high-velocity regime

(scaling as one over the mass ratio) is 106 times higher, so the post-Newtonian ex-

pansion is not reliable, but the extreme mass ratio allows construction of accurate

waveforms from perturbation theory. An IMRI is somewhere in between, spending

1000 times longer than a CMRI in the high-velocity regime, but 1000 times less than
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an EMRI. Post-Newtonian results will not be fully reliable for an IMRI, since they

spend so many cycles with v ∼ c. However, perturbative results are not fully reliable

either, since they are linearised in the mass ratio and thus omit terms at higher order

in m/M (where m is the mass of the inspiraling object and M is the mass of the cen-

tral body). In addition, at present we do not have PN waveforms that include both

spins of the two bodies and orbital eccentricity, both of which could be non-negligible

for IMRIs.

How quickly do higher-order mass-ratio corrections become important? For sim-

plicity, we consider circular equatorial orbits, but the following arguments apply gen-

erally. Higher order mass ratio corrections fall into two categories: (i) corrections to

the frequency for an orbit at fixed radius (these corrections arise from the conservative

piece of the self-force and from spin-orbit interactions due to the spin of the smaller

body) and (ii) corrections to the inspiral rate. Corrections to the frequency enter at

O(m/M), e.g., the spin of the small object is of order m2 and leads to a spin-orbit

coupling force at this order, with resulting acceleration at order m [81]. However, ob-

servationally, we cannot measure the radius of the orbit, only the orbital frequency, so

to lay out accurate templates we in fact need the rate of change of orbital frequency as

a function of the observable orbital frequency (half the frequency of the fundamental

gravitational wave harmonic). Higher-order mass-ratio corrections just modify the

rate of change of orbital frequency as a function of orbital frequency (as discussed

for conservative self-force corrections in [6]). These corrections occur at order m/M

above leading order (which itself is O(m/M) since inspiral arises from radiation reac-

tion). A change ∆ḟ in the inspiral rate d(Mf)/d(t/M) leads to a ∆N ∼ ∆ḟ(T/M)2

change in the number of cycles over a dimensionless observation time T/M . If the

observation time was fixed, this increases like O((m/M)2), and therefore is much big-

ger for IMRIs than EMRIs. However, LISA has a fixed frequency bandwidth, and so

above a certain mass ratio, inspirals will be observed over a fixed range of frequency.

In that limit, the effective observation time is proportional to the number of cycles

in a fixed frequency range, T/M ∼ M/m, which suggests higher order corrections

to ḟ lead to a phase shift ∆N ∼ (m/M)2(T/M)2 ∼ 1, independent of mass ratio.
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This argument indicates that perturbative waveform templates will become worse as

the mass ratio increases, but at some point the errors will stabilise. Of course, the

argument above sweeps many things under the carpet. The orbital frequency is not

the only observable, and we have ignored the changes to the GW energy spectrum in

the above argument. We have also not considered the size (or post-Newtonian order)

of the various corrections to the rate of change of frequency. This argument can be

quantified somewhat by using post-Newtonian models. It is possible to compute the

overlap of a PN waveform, linearised in mass ratio, with the full PN waveform. This

calculation will indicate the relative importance of including higher-order mass ratio

terms in perturbative models, even though the PN models are not reliable as EMRI

templates. Using a leading order PN model, describing the last three years of inspiral

of two non-spinning bodies, with central MBH mass of 106M⊙, the mismatch between

the linearised and full waveforms increases from 0.001% (when m = 0.5M⊙) to 0.01%

(m = 1.4M⊙) to 1% (m = 10M⊙) to 15% (m = 100M⊙) to 18% (m = 1000M⊙). This

is consistent with the above argument. For lower mass central black holes, the mis-

matches are likely to be higher since the plunge frequency is correspondingly higher.

There is also likely to be a significant increase in the mismatch when spin is included.

In summary, perturbative templates without higher order mass ratio corrections or

spin-orbit coupling corrections will probably not be good enough as IMRI templates.

However, it might be possible to construct “Kludge” IMRI templates by including

post-Newtonian spin-orbit and other corrections in the current kludge EMRI models

(in the same way that conservative corrections are currently being included). This

needs further investigation.

6.3 Testing relativity theory

One of the potentially exciting payoffs from EMRI and IMRI observations made by

LISA is the ability to test aspects of relativity theory. The high mass ratio ensures

the small object acts like a test particle moving in the background space-time of the

central black hole. The emitted gravitational waves trace out the orbit of the particle,
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which in turn encodes a map of the space-time [92]. EMRI events are comparatively

“clean” systems, and we know what this map should look like if the inspiral is an

inspiral into a Kerr black hole. Decoding the map then allows us to measure the

parameters of the system to high precision. However, if the inspiral deviates from

what we expect — an inspiral, described by General Relativity, of a compact object

falling in vacuum into a Kerr black hole — we should be able to see this deviation in

the emitted gravitational waves.

6.3.1 Current status

Conceptually, tests of a theory fall into two general categories: comparisons of rival

theories (which theory is best supported by the data?) and tests of consistency (are

the data consistent with a given theory?).

6.3.1.1 Comparisons of rival theories

Currently there are no really plausible rivals to general relativity; rival theories have

either been ruled out, or, like Brans-Dicke, can be dialled arbitrarily close to general

relativity by adjustment of extra parameters (and so could never be ruled out even

if GR were completely correct). Moreover, to test an alternative theory, we need to

be able to compute gravitational waveforms for EMRIs in that alternative theory to

compare against EMRI gravitational waves from Relativity. This is a very challenging

problem both theoretically and computationally.

Constraining the parameter space that rival theories can occupy can be a useful

exercise, since it is a measure of how close to General Relativity the true theory must

lie. It is possible to compute the leading-order correction to the gravitational wave

phasing for inspiralling objects in Brans-Dicke theory. Work on this has suggested

that LISA observations of neutron stars inspiralling into ∼ 102–104M⊙ black holes

could put meaningful constraints on the Brans-Dicke parameter and on the mass of

the graviton [111, 17]. The theoretical waveforms used for this work were rather

simple and ignored important effects such as orbital plane precession due to spin-

orbit coupling. It is known that parameter estimation accuracies for MBH binaries
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improve significantly when spin-orbit coupling is included [107, 66], so the current

results are probably conservative. However, it is unclear whether the astrophysical

rate is sufficiently high that LISA will be likely to see any of the “optimal” events for

such an analysis (1.4M⊙ + 103M⊙). Moreover, developing highly accurate waveforms

under alternative theories is difficult, and the constraints that I/EMRI observations

will be able to impose on the parameter space will probably not be significantly tighter

than existing results. For these reasons, most research to date has focussed on the

second type of test — tests of consistency.

6.3.1.2 Tests of consistency within General Relativity

A simple example of a consistency test would be to divide an observed EMRI signal

into several consecutive pieces, and show that the best-fit parameters from each piece

were consistent with each other, within the error bars. This would already be a

very strong test of the theory. The complication in regarding EMRI observations

as consistency tests is that taking GR to be the correct theory of gravity is not

the only assumption that goes into generating the waveform. We assume also that

the system is vacuum and that the central body is described by the Kerr metric.

Without requiring an alternative theory, we can regard EMRI observations as testing

the premise that massive compact objects in our universe are Kerr black holes, rather

than some other exotic object (e.g., a boson star or naked singularity) that is still

consistent with Relativity. Any axisymmetric, vacuum space-time in Relativity can

be decomposed into mass (Ml) and current (Sl) multipole moments [45, 52] and it was

demonstrated by Ryan [92] that these multipole moments are redundantly encoded in

gravitational wave observables, namely the periapsis precession frequency, the orbital

plane precession frequency and the gravitational wave energy spectrum for nearly

circular, nearly equatorial orbits. If an object is enclosed by a horizon and there are

no time-like curves exterior to the horizon, then the object must be a Kerr black hole

(this is the “no-hair” theorem), and all of its multipole moments are determined by
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the mass and spin of the black hole [52]

Ml + iSl = M (ia)l, (6.2)

where M is a black hole’s mass and a is the reduced spin of the black hole a = S1/M .

If three moments of the space-time are extracted from the gravitational wave emis-

sion, these can be checked for consistency with (6.2). A boson star with large self-

interaction (one viable alternative to an MBH) is uniquely characterised by three

multipole moments [93], so if four moments are extracted from the gravitational wave

emission, the boson star model could also be ruled out. This idea of measuring

multipole moments is sometimes referred to as “testing the no-hair property” (one

sometimes hears the variation “testing the no-hair theorem”, but this is obviously

sloppy wording, since a true mathematical theorem cannot be invalidated by any ex-

perimental test). Objects with non-Kerr values of higher multipole moments within

general relativity would have to be exotic stars or naked singularities. The no-hair

theorem applies only in Relativity, thus non-Kerr values of the higher multipole mo-

ments could also arise if the object is a black hole, but Relativity is the wrong theory

of gravity. If, for example, the quadrupole moment of the massive object was found to

differ from that of a Kerr black hole, this could, therefore, have several explanations.

We will discuss this in more detail later.

A significant amount of work has been done on quantifying how well LISA could

measure multipole moments and carry out these sorts of tests. Ryan [94] considered a

general axisymmetric space-time, decomposed into multipole moments and found that

a LISA observation of a nearly circular, nearly equatorial EMRI could measure the

mass quadrupole moment to an accuracy of ∆M2/M
3 ∼ 0.0015 – 0.015, depending

on the source parameters. Ryan’s approach is somewhat unwieldy, however, since

an infinite number of multipole moments are present in the Kerr space-time. The

multipole expansion is essentially an expansion in 1/r, where r is the distance from

the black hole. LISA will mostly observe EMRIs that are deep in the strong field

region, very close to the black hole and in that regime all the multipole moments
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will be important. Extracting multipole moments one at a time is therefore a rather

inefficient way to characterise a Kerr black hole. Collins and Hughes [26] were the first

to suggest an alternative approach to LISA observations — regarding the observation

as a null-hypothesis test of the assumption that the EMRI is a Kerr EMRI. By

constructing space-times that are close to Kerr, which Collins and Hughes called

“bumpy black holes”, it is possible to quantify how large a deviation from the Kerr

space-time could be present while leaving the signal observationally consistent with

a Kerr inspiral [60]. This approach is preferable, since the Kerr space-time can then

be recovered exactly by dialing a small parameter to zero, so we do not lose much

sensitivity to the events that we expect to see by using detection templates with an

additional bumpy parameter. Collins and Hughes constructed a static space-time that

deviates from the Schwarzschild space-time by a small amount. They did this by using

the Weyl metric and adding a perturbation that represents a pure mass quadrupole

asymptotically. They found that the azimuthal frequency of equatorial orbits with

the “same parameters” differed by 0.01% (for an orbital periapsis of ∼ 50M) – 10%

(for periapsis of ∼ 6M) when a quadrupole moment perturbation Q = 0.01M3 was

added.

Babak and Glampedakis [47] carried out a similar calculation for stationary space-

times that deviated from Kerr by a small amount, which they constructed using

the Hartle-Thorne approach. They not only considered orbital frequencies, but also

constructed kludge waveforms and found that in the presence of a ∼ 10% deviation

in the quadrupole moment of the space-time, the overlap could degrade by 25% over

the radiation reaction timescale for typical LISA events. In both these analyses, the

results were not directly relevant to observations, since they took no account of the

fact that some of the differences in the waveforms could be mimicked by changing

the orbital parameters (Babak and Glampedakis did comment on this fact in their

paper, however). Recently, Barack and Cutler [11] have done an analysis accounting

for parameter correlations, using a waveform model constructed by including a term

representing a non-Kerr value of the quadrupole moment of the central black hole

into their analytic kludge [9]. They find that LISA could measure the quadrupole
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moment, Q = −S2/M , of the central black hole to an accuracy ∆Q/M3 ∼ 10−3,

while simultaneously measuring the mass and spin to an accuracy of ∼ 10−4. We

note that spinning boson stars typically have quadrupole moments ten to a hundred

times larger than Kerr black holes of the same mass and spin [93]. This provides an

indication of the accuracies required to do meaningful tests.

The research described above concerns extracting information about the spacetime

multipole structure from the inspiral part of the waveform. If a ringdown was also

detected, the ringdown frequencies can also be used to measure the multipole structure

of the ringing object [18]. EMRI-induced ringdowns are unlikely to be detected with

sufficient signal-to-noise ratio, but IMRI-induced ringdowns could plausibly be used

for such a test. However, more work needs to be done to quantify this, in particular

to compute ringdown frequencies for non-Kerr supermassive objects. Moreover, in

general the constraints on the multipole moments obtained from the inspiral will be

tighter than those obtained from the ringdown due to the large number of wave cycles

that can be observed over the inspiral.

There is an analogous source to EMRIs that might be detected by ground-based

gravitational wave detectors, namely the inspiral of a stellar mass neutron star or black

hole into a ∼ 100M⊙ IMBH (a “LIGO IMRI”). The event rate for such inspirals is

somewhat uncertain (see [55, 84, 71] for discussion and further references). However,

if they are detected, these sources have the potential to probe the strong-field regime

with more modest accuracy than LISA’s EMRIs, and would be observed by Advanced

LIGO, i.e., a few years before LISA EMRI events are observed. A significant amount

of work has gone into studying these sources [20], and this work also applies to

LISA EMRI/IMRI events. Some of the applicable results include the generalisation

of Ryan’s results [92] to more generic cases. Ryan considered only nearly circular,

nearly equatorial orbits and ignored the effect of tidal coupling. The generalisation to

eccentric but nearly equatorial orbits is straightforward, although the generalisation

to arbitrary orbits is difficult [20, 68]. An extension of Ryan’s theorem to tidal

coupling tells us that this coupling is also encoded in (and could be extracted from) the

gravitational wave observables [20, 69]. The inspiralling object distorts the horizon
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surrounding the central object and orbital energy is lost to gravitational radaition

flowing into the horizon as well as out to infinity. These interactions with the horizon

can be modelled as a tidal interaction, and characterised in terms of energy being lost

to the central body through tidal dissipation. In broad terms, the multipole moments

of the space-time can be extracted from observations of the periapsis and orbital plane

precession rates, and from these the rate at which energy is being radiated to infinity

can be determined. The rate at which energy is being lost from the orbit can also be

measured, by observing the change of the orbital frequency with time. The difference

between these two energy fluxes gives the flux of energy going into the central body,

which is a measure of the strength of the tidal interaction, and tells us about the

structure of the central object [20].

In another aspect of this effort to study EMRIs, Gair et al.[44] have studied

the properties of geodesics in other classes of “bumpy” space-times. This work has

considered two types of nearly Kerr space-times — exact solutions in the family

of Manko and Novikov [72] that deviate from Kerr in the quadrupole and higher

moments, and perturbative solutions constructed via solving the Teukolsky equation

and then applying the Chrzanowski-Ori procedure to recover the metric [25]. As

mentioned before, the geodesics in the Kerr space-time possess three integrals of the

motion, because the Kerr space-time is one of a special class of GR solutions for

which the Hamilton-Jacobi equation is separable [23] and Q arises as the separation

constant. Space-times that deviate from Kerr, even by a small amount, may not be of

separable form, and therefore there is no guarantee that the geodesics will possess a

full set of integrals. However, it turns out that the majority of geodesics in most of the

space-times considered in [44] have an approximate third invariant, and the geodesics

are tri-periodic to high accuracy: the waveform phase evolution can be decomposed in

terms of harmonics of three fundamental frequencies to an accuracy of one part in 107

or better. This means that Ryan’s theorem can be applied, and deviations from Kerr

show up only in the differences in precession and inspiral rates. However, in a small

subset of cases, the geodesics show apparently ergodic motion, with no well defined

frequency structure. Although this makes the sources difficult to detect, observations
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of ergodic dynamics would be a clear signature that the space-time was not simply

Kerr. This is unlikely in practice since the ergodic motion only appears for orbits

that are very close to the central object, and this is a regime that is probably not

accessible in an inspiral that begins with the capture of a star on a highly eccentric

orbit some distance from the central object.

6.3.2 Outstanding challenges

There are several questions that still need to be addressed before LISA will be able

to carry out tests of General Relativity. These include:

◦ What are the imprints of deviations from Kerr on the waveforms generated by

EMRIs on generic orbits? As described above, we have a partial answer to

this question already. However, the only work so far that includes the effect

of radiation reaction on generic orbits is [11], which uses a very simple model.

With further research, it should be possible to make general statements about

how deviations from Kerr manifest themselves in the EMRI signal, and how

the deviations correlate with other parameters. We want to understand how

adding greater complexity in the family of deviations from Kerr causes the

determination of other parameters to degrade, e.g., whether a Kerr EMRI could

also be well described by a “bumpy” Kerr EMRI with different parameters. In

[94], Ryan found that by adding arbitrary multipole moments (up to M10),

the accuracy with which the mass of the large body could be determined in

an observation degraded from one part in 106 to one part in 3, although most

of this degradation was due to the inclusion of moments up to S5. This is a

known problem in data analysis: introducing more parameters (especially if

they are small) causes effective “noise” in the parameter space. This would also

apply if we wanted to use EMRI observations to also test alternative theories of

gravity. Testing everything simultaneously would yield very poor constraints,

since there would likely be correlations between, for example, a non-zero Brans-

Dicke parameter and an anomalous quadrupole moment. Thus, it might be
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necessary to decide a priori which deviations from Relativity we most want to

constrain in order to produce useful statements.

◦ Are there any “smoking gun” signatures for deviations from Kerr? For instance,

ergodicity in the orbits — which “nearly Kerr” space-times admit ergodic orbits,

and can a star end up on these orbits in practice? What are the observational

signatures?

◦ Can matter external to the massive object (e.g., an accretion disc, or other

stars) perturb the EMRI orbit sufficiently to leave a measurable imprint on

the emitted gravitational waves? How would we detect or recognise such a

system? Some work has already been done to estimate the effects of an accretion

disc [24, 79, 14], which suggests that these effects are unlikely to be measurable

unless the accretion disc is very massive. Such massive discs might be found

around MBHs accreting at or near their Eddington limit, i.e., in active galactic

nuclei. Star formation in the disc of such systems might lead to EMRI events.

In a normal nucleus, accretion could happen if a lot of material was recently

dumped in the vicinity of the MBH by, for example, the disruption of a star

or a gas cloud. However, such events occur very infrequently [108]. If a very

tight binary, consisting of a main sequence star and a compact object, were

to inspiral into a 106M⊙ MBH, the MS star would be disrupted at a distance

of ∼ 2 × 10−6 pc from the MBH. Most of the bound stellar material would

be accreted within a few years [104, 74] but it would take 100 − 104 years

for the compact object to complete its inspiral. Therefore it seems unlikely

that the material of the disrupted companion can either perturb the EMRI or

create a clear-cut electromagnetic precursor to it. Nonetheless, if there is a small

possibility that such a system could in principle be observed, it is important that

we know how to detect it and recognise it, not least because an EMRI interacting

with a massive accretion disc might lead to an electromagnetic counterpart. An

EMRI with a counterpart is a powerful cosmological probe, so it is valuable to

maximise our chances of seeing such events.
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Finally, we note that if two EMRIs were occurring simultaneously, this would

almost certainly leave a measurable imprint on the emitted gravitational waves.

However, this is very unlikely as well. A compact binary of mass mbin tight

enough to survive tidal separation down to a distance R of the MBH, would

have to have a timescale for (self-)merger by GW emission, τmerge, smaller than

τmerge < τinsp(M•/mbin)
2/3, where τinsp is the timescale for inspiral into the

MBH on a circular orbit of radius R. Therefore there cannot be any significant

number of binaries tight enough to survive until the last ∼ 100 years of inspiral.

If the binary disrupts earlier it is likely that both stars will find themselves on

orbits with vastly different inspiral times and when the faster-inspiralling one

becomes detectable the other will still be too dim. However, the distant EMRI

might cause a detectable orbital perturbation on its ex-companion and this has

to be assessed.

◦ How do we interpret deviations from Kerr if they are observed? There could

be several explanations — there could be material external to the black hole;

alternatively, the massive object could be some exotic star with a non-singular

distribution of matter (e.g., a boson star); yet another possibility is that the

massive object is a naked singularity, which would disprove the cosmic censor-

ship conjecture, but would not contradict the no-hair theorem. How could we

distinguish these possibilities in an observation? Over a long (∼year) observa-

tion, it should be relatively straightforward to distinguish the effect of material

outside the black hole (an “external” quadrupole perturbation) from a change

in structure of the central object (an “internal” quadrupole perturbation), since

the effect would accumulate differently over the course of an inspiral. The exis-

tence/location of a horizon might be determined from gravitational wave obser-

vations. While an inspiral into a Kerr black hole would undergo a rapid plunge

from the innermost stable circular orbit followed by a ring-down, an inspiral

into a boson star may continue to produce inspiral-like waves after the compact

object crosses the stellar surface. The signal-to-noise ratio generated during the
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plunge and ringdown for an EMRI will be small, so this will almost certainly

not be observed. However, if a signal persisted after the “plunge”, this might

be detected by building up the signal-to-noise over several waveform cycles.

Thus, we might be able to say whether a signal is still “present” or “absent”,

although the resolution of the time at which the signal became absent would not

be very high. A horizon could be inferred by comparing the approximate time

of plunge with the plunge time predicted based on parameters measured in the

early part of the inspiral. If a horizon is found to be absent, the object might

be an extended mass distribution (e.g., a boson star) or a naked singularity.

If emission after the object’s path started to intersect the boson star material

was observed with sufficiently high signal-to-noise, the features of this emission

might allow us to distinguish between these two possibilities [63]. Only if the

massive object were found to have a non-Kerr quadrupole moment that was

not due to the presence of exterior matter and a horizon would there be firm

evidence that the system did not have the no-hair property; however, proving

that any horizon completely surrounds the body and that no closed time-like

curves exist in the exterior may be impractical. While these ideas give us some

hope that interpretation will be possible, further research is needed on all of

these topics.

◦ How do we detect deviations from GR in practice? The need to use matched

filtering for EMRI detection makes it difficult to detect signals that look very

different from our template models. It also makes it hard to detect small devi-

ations in the model. The simplest thing we can do is to look only for inspirals

into Kerr black holes. If our observations are consistent with this model, then

we have tested the theory to high precision. The existing research programme

then allows us to make statements such as “this observation is consistent with a

Kerr inspiral, with agreement in the quadrupole moment to x%”. To do this in

practice we would perform Monte Carlo simulations to find the maximum “x”

such that the gravitational waveform emitted during an inspiral into a non-Kerr
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object with a quadrupole moment that differed by x from the Kerr value still

had sufficiently high overlap (for a suitable definition of “high”) with a waveform

emitted during an inspiral into a Kerr black hole with some (not necessarily the

same) parameters. A more sophisticated analysis could look at segments of the

inspiral separately, and check for consistency in the parameters estimated for

each segment. We could also look for characteristic signatures of a deviation

from Kerr, for instance a transition from regular to ergodic motion in the orbits

or the existence/location of the horizon inferred by the plunge time. This might

be done by dividing the end of the inspiral into short segments, in which the

signal should have SNR large enough so that we can say with high confidence

whether the signal is present or absent. The resolution of the plunge time is

thus likely to be poor. If the EMRI is close enough to be loud (SNR ∼> 50), it

might be possible to detect the signal in a time-frequency analysis. This would

not only make it easier to measure things like the plunge point, but would al-

low us to detect signals that deviate significantly from Kerr inspirals. Finally, it

might be possible to do a more generic analysis using templates parametrised by

space-time multipole moments, e.g., the family employed by Ryan [94]. Such a

technique would not be particularly sensitive to Kerr inspirals, but if it was used

in conjunction with a matched filtering search for Kerr EMRIs it might be a

useful diagnostic. As EMRI data analysis techniques are developed, techniques

for space-time mapping will need to be properly explored.

6.4 EMRI science

It is clear from the discussion of EMRI detection above that, while much is already

known, there is still some work to be done before LISA flies. However, the scientific

payoffs if we detect and characterise a large number of EMRI events could be very

significant. From a single EMRI observation, we can measure the parameters of the

system to very high precision [9]. The mass and spin of the central black hole, the mass

of the inspiralling object, and the orbit’s eccentricity (at some fiducial instant) can
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all be determined to a part in 104, typically, while the cosine of the orbit’s inclination

angle (roughly, the angle between the MBH’s spin vector and the orbital angular

momentum of the CO) can typically be determined to ∼ 10−3–10−2. The luminosity

distance to the source can be measured to an accuracy of ∼ 5%, and the sky position

to a resolution of 10−3sr (a few square degrees). The accuracies achievable with

LISA IMRI observations should be significantly better. In addition, for each of these

observed systems we will be able to test the black hole hypothesis to high accuracy

(e.g., constrain the mass quadrupole moment to a fraction of a percent), as described

in Section 6.3.

LISA may detect as many as several hundred EMRIs out to a redshift of z ∼ 1−2

[8, 43]. The first estimates of signal-to-noise ratios for EMRIs were done by Finn and

Thorne [36]. They considered circular equatorial inspirals only, and found that at a

distance of 1Gpc, one year before plunge, the inspiral of a 10M⊙ object into a rapidly

spinning 106M⊙ black hole would have signal-to-noise ratio of ∼ 100 in a gravitational

wave frequency bandwidth equal to the frequency. To obtain EMRI rate estimates,

updated signal-to-noise ratios were computed for inclined and eccentric orbits, using

kludged waveforms [40, 6] and including a more accurate model of the LISA response

provided by the Synthetic LISA simulator [106]. Table 6.1 shows the results of those

calculations — the signal to noise ratio of a variety of systems at a fiducial distance

of 1Gpc [8, 43]. These signal to noise ratios assume that the LISA mission lasts five

years and that the satellite is fully functional for the whole time, so that the optimal

combination of TDI data streams can be used. These results are consistent with Finn

and Thorne [36] when one accounts for the gravitational wave bandwidth remaining

one year from plunge, the fact that Finn and Thorne compute the SNR in one LISA

Michelson channel only and the fact that these orbits are eccentric.

To translate these SNRs into a maximum detectable distance, we first need to

specify a detection threshold. The estimated detection threshold for the semi-coherent

algorithm described earlier is ∼ 30, although optimisation of this method may be able

to reduce this threshold somewhat. A GW source at a redshift z with masses M and

m looks like the same type of gravitational wave source at a Euclidean distance equal
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M/M⊙ m/M⊙ SNR at 1Gpc zmax Mi/M⊙(zmax) mi/M⊙(zmax)

0.6 18 0.13 2.7 × 105 0.53
3 × 105 10 73 0.44 2.1 × 105 6.9

100 620 2.5 8.5 × 104 29
0.6 30 0.21 8.3 × 105 0.50

1 × 106 10 210 1.0 4.9 × 105 4.9
100 920 3.5 2.2 × 105 22
0.6 25 0.17 2.6 × 106 0.51

3 × 106 10 270 1.3 1.3 × 106 4.4
100 1500 5.2 4.8 × 105 16

Table 6.1: This table shows the signal-to-noise ratio (SNR) at a distance of 1Gpc for
systems with a variety of observed masses M and m. Also shown is the maximum
redshift at which such a source could be detected, zmax, and the intrinsic masses of
the system, Mi = M/(1+zmax) and mi = m/(1+zmax), that a source at redshift zmax
would need to have in order to have apparent red-shifted masses M and m. The SNRs
were computed assuming the optimal TDI combination of LISA data streams could be
constructed for five years of observation. All sources have MBH spin of S/M2 = 0.8,
inclination of 45o and eccentricity at plunge of 0.25. The waveforms were computed
using the numerical kludge model [40, 6] and the LISA response was included using
the Synthetic LISA simulator [106]. These results were used for computing event rate
estimates using the semi-coherent search [43].

to the luminosity distance to redshift z, DL(z), but with red-shifted masses (1+ z)M

and (1 + z)m. Table 6.1 also shows the redshift at which the source would have SNR

of 30 (computed by setting SNR(1Gpc)/30 = DL(z)/1Gpc) and the intrinsic masses

Mi and mi that a source at that redshift would have to have in order to give the

appropriate observed masses. This Table serves to illustrate the typical distances to

which sources can be detected.

The mass red-shifting makes the process of computing the range for a given source

a more complicated procedure than a simple linear distance scaling. Figures 6.4

and 6.5 show preliminary results of a more careful calculation [39]. The plots show

contours of constant “detectable lifetime” for circular-equatorial EMRI sources as a

function of the mass of the central black hole. The figures plot the intrinsic mass of

the MBH on the x-axis, and redshift on the y-axis. The lines on the plot are contours

of equal observable lifetime, τ . A source will be detectable only if the signal-to-noise

ratio accumulated over the LISA mission exceeds the necessary threshold (assumed
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to be 30 for this plot). This requirement will only be satisfied if the source is in a

certain range of phases of the inspiral at the moment that LISA starts taking data.

The observable lifetime is the length of that acceptable range of phases, as measured

at the source. If EMRIs of this type start once every T years in any galaxy, the

expected observed number of events would be τ/T per galaxy. For Figure 6.4, we

consider only prograde inspirals into a central black hole with spin a = 0.99 and plot

contours for various values of τ . In Figure 6.5 we show τ = 1yr contours for various

black hole spins (NB a negative spin indicates a retrograde inspiral into a black hole

with spin of the same magnitude). In both plots we have assumed a constant mass for

the compact object of 10M⊙, and are considering circular-equatorial inspirals only.

These results were computed using the flux data tabulated in Finn and Thorne [36],

assuming a five-year LISA observation that uses both Michelson channels, averaging

over the sky position and orientation of the source, and taking the LISA noise spectral

density as given in [9], with the assumption that the white-dwarf background has

been subtracted using five years of LISA data. It is clear from this figure that we

can see EMRI events out to fairly large distances, but that this distance is very

spin dependent. There is also a significant spin-dependence of the mass to which

LISA has maximal reach. The fraction of the total energy radiated that is radiated

in a circular-equatorial inspiral between a Boyer-Lindquist radius r and plunge at

the innermost stable circular orbit, risco, effectively depends on spin only through the

ratio r/risco. The ISCO radius decreases as the black hole spin increases, and the total

energy radiated increases. This means that inspirals into rapidly spinning black holes

radiate more energy, having, therefore, higher total signal-to-noise ratios, and this

radiation is emitted at higher frequencies for a given central black hole mass. LISA

will be most sensitive to systems that radiate most of their energy in the detector’s

optimal sensitivity range of ∼ 3–10mHz. The frequency of the radiation decreases

as the black hole mass increases, but increases as the spin increases. The mass that

ensures radiation at ∼ 5mHz will, therefore, be larger for higher black hole spins, as

illustrated in the figure. It is also clear from Figure 6.5 that the sensitivity to low

mass central black hole systems is effectively independent of spin. For these systems,
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LISA will observe the middle part of the inspiral, while the final plunge occurs at

higher frequencies that are out of band. LISA will, therefore, observe a phase of the

inspiral where the radius is large, at which distances the orbit does not “feel” the

effect of the black hole spin.

These results illustrate the LISA range to typical EMRIs, but are only for circular-

equatorial orbits, and assume a simplifed model of the LISA response. Eccentric orbits

in general will lose more energy in the LISA band, and hence should have larger

signal-to-noise ratio. Treating the LISA data stream more carefully, using a TDI

analysis (e.g., by using Synthetic LISA to include the response function [106]), will

also tend to increase the signal-to-noise, especially for sources that generate significant

radiation at high frequencies. These general expectations are supported by the results

in Table 6.1 and by further calculations using numerical kludge waveforms [40, 6] for

eccentric-inclined orbits.

For all of the systems that LISA can see, we will obtain accurate parameter esti-

mates. LISA will thus provide data on a large sample of black holes in the relevant

mass and redshift range, which can be used for astrophysics. For the discussion ses-

sions at the meeting that inspired this review, we divided the scientific questions on

the astrophysical benefits and consequences of LISA EMRI and IMRI observations

into five categories. We summarise these in the following sections, along with an

outline of the answers that LISA might give us.

6.4.1 What can we learn from the characterisations of EMRI/IMRI

dynamics, i.e., the observed eccentricities etc. of the

orbits?

The observed eccentricities will carry information about the capture mechanism: sig-

nificant eccentricities are indicative of the direct capture scenario via two-body re-

laxation, while negligible eccentricities suggest capture via binary tidal disruption or,

possibly, tidal stripping of giants (such captures occur at a higher periapsis and have

time to circularise before entering the LISA band). The orbital inclination is also

informative: random inclinations are expected in the standard scenario with a spher-
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Figure 6.4: Contours of constant “detectable lifetime” (as defined in the text) for the
circular-equatorial inspiral of a 10M⊙ black hole into an MBH with spin a = 0.99, as
a function of MBH mass M and redshift z.
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Figure 6.5: As for Figure 6.4, this figure shows contours of constant “detectable
lifetime”, τ , for the circular-equatorial inspiral of a 10M⊙ black hole into an MBH.
Here we show τ = 1 year contours for several different spins of the central black hole,
as labelled in the key. Negative spins indicate retrograde circular-equatorial inspirals
into black holes of the same spin magnitude.
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ical cluster, while formation in the disc would be manifested by a significant fraction

of EMRIs having near-zero inclinations (although this could be made more compli-

cated by disc warpage). The event rates themselves would be interesting, although it

may be very difficult to deconvolve the various uncertain parameters that influence

event rates (e.g., the MBH density and mass function, the density and distribution

of compact objects near the MBH, etc.).

6.4.2 What can we learn about the inspiralling compact ob-

jects from EMRIs/IMRIs?

We will learn the CO mass to fractional accuracy ∼ 10−4. From the distribution

of masses we will obtain information about the relative numbers of the WD, NS,

and BH populations close to the MBH (within ∼ 0.01 pc). Although it is difficult

to deconvolve mass segregation from the initial mass function or from the mass-

dependence in capture rates, unexpected results such as the under-representation

of more massive COs could be very intriguing. If BHs with masses in the range

20 − 1000M⊙ are found, this is already an important discovery, since such objects

are not yet firmly known to exist (and, if 1000M⊙ IMBHs do exist, it is not clear

how well they can sink to the centre). Even the precise measurement of the mass of

a few stellar BHs (in the range 3 − 20M⊙) would be of great interest to constrain

models of stellar evolution and collapse. CO spins will probably not be measurable

for EMRIs, but we guess they might be measurable to ∼< 10% for IMRIs. This would

tell us about the formation mechanism for IMRIs (has mass been accumulated mostly

via accretion, or via mergers?), just as for the MBH spin.

6.4.3 What can we learn about the MBHs from EMRIs/IMRIs?

From

EMRIs/IMRIs, we will learn the masses and spins of MBHs to fractional accuracy

∼ 10−4. Rapid spins will imply that much of the MBH mass was built up by gas

accretion from a disc (unless the gas arrives in randomly oriented events [64, 65,

91]), moderate spins will imply the MBH was built as a result of a major merger
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of comparable-mass black holes [61, 75], while low spins will imply the MBH was

mostly built from a sequence of minor mergers with smaller objects coming in from

random directions (since then the spin angular momentum increases only in a random-

walk fashion). The boundaries that separate these three spin regimes are somewhat

uncertain. Spins S/M2 > 0.9 are undoubtedly “high”, but lower spins might also arise

from accretion. The spins resulting from major mergers depend on the magnitude and

direction of the spins of the two components prior to merger and could be anywhere

in the range 0.4 ∼< S/M2 ∼< 0.9. Spins S/M2 < 0.2 are undoubtedly “low”, but the

boundary between this regime and the major merger regime is unknown. Once again,

decoding the spin observations must be done carefully. The prograde inspiral of a

black hole into a rapidly spinning MBH has much greater SNR at a given distance

than a retrograde inspiral or an inspiral into a MBH of lower spin. Our observations

will therefore be weighted towards more rapidly spinning black holes. Since we can

compute the relative SNR of systems with different spins, it will not be too difficult to

account for bias when interpreting the observations, but this must be done carefully.

6.4.4 What can we learn about cosmology and early struc-

ture formation from EMRIs/IMRIs?

An EMRI or IMRI observation will give a very accurate measure of the luminosity

distance to a source, but not an independent value for the redshift at which the source

is located. However, it is possible that an electromagnetic counterpart to an EMRI

event will be observed (the sky position accuracy of a few square degrees, although

poor, is not beyond the reach of survey telescopes). The EMRI will be observed for

sufficiently long before plunge that the plunge time can be accurately estimated, and

advance warning of the moment of coalescence supplied to other telescopes. However,

it is not entirely clear what mechanisms could give rise to an electromagnetic signature

at coalescence that would be sufficiently bright to be seen at cosmological distances.

If we were lucky, and a single EMRI event was observed with an electromagnetic

counterpart, it would provide an estimate of the Hubble constant that is not tied

to the local distance scale. We could thus measure the Hubble constant to ∼ 2%,



205

compared to the current systematic error from the Hubble Key Project of ∼ 10%.

With N observations, the error decreases like 1/
√
N .

The inspiral of a 10M⊙ object into a 105 − 106M⊙ MBH should be detectable

to a redshift of about 2, corresponding to a time when the Universe was less than

4Gyr old. Although MBH-MBH mergers are visible to much larger redshift, offering

the potential to probe the whole early history of MBH formation and growth, there

are considerable uncertainties about their predicted detection rate [51, 73, 112, 97].

Also the merger rate for LISA-detectable systems probably peaks at z > 2. EMRIs

therefore offer an alternative and complementary way to probe the relatively late

evolution of MBHs with masses below a few 106M⊙.

6.4.5 How can EMRIs/IMRIs be used to test GR, or (as-

suming GR is correct) that the central massive object

is a Kerr BH?

As discussed above, what we can perform are consistency checks (i.e., is the signal

consistent with GR predictions?) or compare the Kerr null hypothesis to straw man

alternatives. In the simplest case, if we find that the observed EMRI waveforms agree

with the models predicted by GR, for reasonable physical parameters, this would be

an impressive verification of the theory. Matching strong-field EMRI waveforms to

one cycle in 105 will be compelling evidence in support of GR. Beyond this, one can

further check consistency in the EMRI by checking, for example, that different pieces

of the waveform yield the same consistent estimates for the physical parameters of

the system. This amounts to verifying the consistency of relativity in the strong

field region in the immediate vicinity of MBHs, a regime in which it has not been

verified to date (though one hopes this regime will be probed by LIGO before LISA

flies, albeit with less accuracy). These consistency checks are not testing the theory

against an alternative; however, this is familiar from other areas of physics. For

instance, in particle physics, tests of the standard model are not based on comparison

with serious rivals: one measures that the W mass or top quark mass is roughly where

it is predicted, and this is trumpeted as a substantial validation of the theory. Also,
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the idea of embedding GR/Kerr predictions in a somewhat larger, phenomenological

theory (e.g., with non-zero graviton mass, or non-standard quadrupole moment for

the BH), is similar to the current status of GR tests with binary pulsars, in which the

orbital motion is first fit to a phenomenological set of Keplerian and post-Keplerian

parameters, and radio astronomers then show that the fitted values are consistent

with the predictions of GR (twenty years ago binary pulsar measurements killed a

host of alternatives to GR, but now that they are dead, radio astronomers are also

stuck with demonstrating consistency with GR).

One important issue is whether, if systems that differ from the Kerr hypothesis

exist, we will actually be able to detect them, given that our data analysis will rely

on matched filtering. As mentioned above, if the deviations are small, this will not

be a problem, since the source will remain consistent with our templates for long

enough to be detected. The point at which deviations start to appear will then be a

probe of the nature of the deviations present (e.g., the existence/location of a horizon

as determined by the frequency of plunge, if any). If the deviations are large, then

matched filtering might fail entirely, and we would have to rely on a source being close

enough to show up in a time-frequency analysis or other template-free technique.

If we see a single event that differs from the Kerr model, this will be very weak

evidence against the black hole hypothesis (no doubt many possible explanations

would appear in the literature over time). If every observation differed, then the

evidence would be difficult to refute. Explaining the observations would be a difficult,

but extremely interesting task.

6.5 Conclusions

Black hole binaries with large mass ratios are uniquely important sources for planned

space-based gravitational wave detectors such as LISA. These EMRIs or IMRIs will

provide information about the stellar dynamics of galactic nuclei that will be difficult,

if not impossible, to obtain any other way. Single events will yield precise measure-

ments of the masses and spins of supermassive black holes in a mass range extremely
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difficult to observe electromagnetically. In addition, the high mass ratios mean that

inspiral events will map the space-time around black holes and test predictions of

general relativity in the strong field. These enticing prospects have led to a recent

surge in interest in the astrophysical, general relativistic, and data analysis aspects

of EMRIs and IMRIs, and we have given here an overview the state of the art in

these three areas. Although much analytical and numerical work remains, the level

of progress in the last few years suggests that when LISA flies in roughly a decade,

the community will be ready to maximise the scientific return from observations of

these events.

Currently, the most discussed mechanism for the production of EMRIs involves

the gradual evolution of the orbits of stellar-mass black holes and other compact ob-

jects via two-body relaxation. The estimated rates for a galaxy such as the Milky

Way are in the range of ∼ 10−8 − 10−6 yr−1. The further technical development of

N−body codes will be essential to reducing the uncertainty of these rates, as well as

to proper inclusion of effects such as mass segregation and resonant relaxation. There

are additional qualitatively different mechanisms that have been proposed recently,

including tidal separation of binary stellar-mass black holes, and formation or capture

of black holes in accretion discs around the MBH, that could lead to an increase in

the estimated EMRI rate. In addition, whereas standard EMRIs are likely to have

high eccentricity and random inclination in the LISA frequency range, tidal separa-

tions would lead to circularised orbits with random inclination, and disc processes to

circularised orbits in the spin plane of the MBH. The distinct waveforms from these

different mechanisms suggest that they will be distinguishable in data, and hence will

carry important information about different properties in galactic nuclei.

Detection of EMRI and IMRI signals in the LISA data stream is a difficult task. In

Section 6.2.1 we described three existing algorithms for EMRI detection and discussed

some of the outstanding issues in EMRI data analysis. The current algorithms might

be able to detect as many as several hundred EMRIs in the LISA data stream —

the reach of the best searches (semi-coherent and Markov Chain Monte Carlo) is

out to z ∼ 1 − 2. However, the performance of each of these algorithms has so far
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been analysed only for the detection of a single EMRI in noisy data. The LISA data

stream will be source-dominated, and the need to simultaneously identify and extract

all these signals puts severe demands on data analysis algorithms. Understanding

how to extract EMRIs in the presence of source confusion is the key data analysis

issue that must be addressed in the future.

Several of the proposed data analysis algorithms employ some variant of matched

filtering, for which models of the signals present in the data must be known. The ex-

treme mass ratio means that accurate EMRI waveform templates can be constructed

using black hole perturbation theory. However, this is computationally intensive.

Various approximate EMRI waveform models have been developed, and these were

described in Section 6.2.2. Comparison to perturbative results suggests that these

models might be good enough for LISA data analysis, but more work needs to be

done. A key uncertainty is in the computational costs. A plausible data analysis

strategy would use an approximate waveform model to get estimates for the source

parameters, before carrying out a follow up search with more accurate waveforms.

This hierarchical approach is subject to constraints on computing power. It may turn

out that it is not possible to constrain the source parameters with sufficient accuracy

in the first stage of the search to perform the follow-up search in a reasonable time. If

that is the case, we will end up with larger errors on observed source parameters, but

this needs to be quantified as waveform models are further developed in the future.

Modelling of IMRI waveforms has not yet been considered in detail. While EMRI or

comparable mass binary models or a combination of the two might be applied, this

needs further investigation.

One of the key science goals of EMRI observations is to test general relativity

theory in the strong field. The extreme mass ratio means that the inspiralling object

effectively acts like a test-body in the space-time of the central object. The emitted

gravitational waves encode a map of the space-time of the central object. If we

can decode that map, we will be able to tell to high precision if the central body

is indeed a Kerr black hole, or some other object. Understanding how LISA will

be able to test relativity in practice is a subject of much current research, which we
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summarised in Section 6.3. The main outstanding issues include producing waveforms

for generic inspirals in bumpy (modified Kerr) space-times to test detection and data

analysis strategies; finding efficient ways to search for deviations from a Kerr black

hole; and interpreting such deviations to determine their origin (e.g., an accretion disc

around a Kerr black hole, a boson star, a naked singularity with non-Kerr higher-order

multipole moments).

If we do manage to detect many EMRI and IMRI events with LISA, we stand

to learn a lot about astrophysics, and we summaries some of this discovery space

in Section 6.4. The EMRI eccentricity distribution can tell us about the capture

mechanisms, while the distribution of inclinations can shed light on whether compact

objects are formed in a disc around the central black hole. The distribution of com-

pact object masses could provide information on their populations, and any IMRI

detection would be exciting in demonstrating that intermediate-mass black holes ex-

ist. Spin measurements of massive black holes will enlighten our understanding of

their formation history. If any electromagnetic counterparts to EMRIs are observed,

it could yield an improved measurement of the Hubble constant. EMRIs could also

be used to confirm whether massive objects are indeed Kerr black holes, as generally

assumed, and to test strong-field general relativity.
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[21] Brügmann B, Gonzalez J A, Hannam M, Husa S, Spehake U, Tichy W, 2006,

gr-qc/0610128

[22] Campanelli M, Lousto C O, Marronetti P and Zlochower Y 2006 Phys. Rev. Lett.

96 111101

[23] Carter B 1968 Comm. Math. Phys. 10 280

[24] Chakrabarti, S. K. (1996).Phys. Rev. D 53:2901

[25] Chrzanowski P L 1975 Phys. Rev. D 11 2042

[26] Collins N A and Hughes S A 2004 Phys. Rev. D 69 124022.

[27] Cornish N J and Crowder J 2005 Phys. Rev. D 72 043005.



212

[28] Cornish N J and Porter E K 2006 preprint gr-qc/0612091.

[29] Cutler C., Thorne K. S., 2002, preprint gr-qc/0204090.

[30] Danzman K et al, LISA – Laser Interferometer Space Antenna, Pre-Phase A

Report, Max-Planck-Institute für Quantenoptic, Report MPQ 233 (1998)

[31] Drasco S and Hughes S A 2006 Phys. Rev. D 73 024027

[32] Drasco S, Flanagan E E and Hughes S A 2005 Class. Quantum Grav.22 S801

[33] Ebisuzaki, T., Makino, J., Tsuru, T. G., Funato, Y., Portegies Zwart, S., Hut, P.,

McMillan, S., Matsushita, S., Matsumoto, H., and Kawabe, R. (2001).ApJ Lett.,

562:L19–L22.

[34] Enoki, M., Inoue, K. T., Nagashima, M. and Sugiyama, N. (2004).ApJ 615:19

[35] Farmer A J and Phinney E S, 2003, Mon. Not. Roy. Astron. Soc. 346 1197

[36] Finn, L. S., and Thorne, K. S. (2000).Phys. Rev. D 62:124021.

[37] Freitag, M. and Benz, W. (2002).A&A, 394:345–374.

[38] Freitag M., Gürkan M. A., Rasio F. A., 2006, MNRAS, 368, 141

[39] Gair, J. R., 2007, in preparation

[40] Gair J R and Glampedakis K 2006 Phys. Rev. D 73 064037

[41] Gair, J. R. and Jones, G. J. (2007).Class. Quantum Grav., 27:1145

[42] Gair J R and Wen L, Class. Quantum Grav.22 S1359 (2005)

[43] Gair J R, Barack L, Creighton T, Cutler C, Larson S L, Phinney E S and

Vallisneri M 2004 Class. Quantum Grav.21 S1595

[44] Gair J R, Li C, Mandel I 2008 Phys. Rev. D77 024305

[45] Geroch R 1970 J. Math. Phys. 11 2580



213

[46] Gezari, S., Halpern, J. P., Komossa, S., Grupe, D., and Leighly, K. M. (2003).

ApJ, 592:42–51.

[47] Glampedakis K and Babak S 2006 Class. Quantum Grav.23 4167

[48] Glampedakis K and Kennefick D 2002 Phys. Rev. D 66 044002

[49] Glampedakis K, Hughes S A and Kennefick D 2002 Phys. Rev.D 66 064005

[50] Gürkan, M. A., Freitag, M., and Rasio, F. A. (2004).ApJ, 604.

[51] Haehnelt, M. G. (1994). MNRAS, 269:199.

[52] Hansen R O 1974 J. Math. Phys. 15 46

[53] Hills, J. G. (1975).Nature, 254:295–298.

[54] Hils, D., Bender, P. L. and Webbink, R. F. (1990).ApJ 360:75

[55] Hopman, C. and Alexander, T. (2005).ApJ, 629:362–372.

[56] Hopman, C. and Alexander, T. (2006b).ApJ Lett., 645:L133–L136.

[57] Hughes, S. A. (2001).Phys. Rev. D, 64:4004.

[58] Hughes S A 2000 Phys. Rev. D 61 084004

[59] Hughes S A 2001 Phys. Rev. D 64 064004

[60] Hughes S A 2005 in the Proceedings of the Sixth International LISA Symposium,

gr-qc/0608140

[61] Hughes S A and Blandford R D 2003 Astrophys. J. 585 L101-L104

[62] Hughes S A, Drasco S, Flanagan E E and Franklin J 2005 Phys. Rev. Lett. 94

221101

[63] Kesden M, Gair J R and Kamionkowski M 2005 Phys. Rev. D 71 044015

[64] King, A. R. and Pringle, J. E. (2006). MNRAS, 373:L90–L92.



214

[65] King, A. R. and Pringle, J. E. (2007). preprint, astro-ph/0701679.

[66] Lang, R. N., and Hughes, S. A., 2006, Phys. Rev. D 74:122001

[67] Larson, S. L., Hiscock, W. A., and Hellings, R. W. (2000). Physical Review D,

62:062001.

[68] Li C 2007 in preparation

[69] Li C, and Lovelace G, 2007, gr-qc/ 0702146.

[70] Mandel I 2007 arXiv:0707.0711

[71] Mandel, I., Brown, D. A., Gair, J. R. and Miller, M. C. (2007). arXiv:0705.0285

[72] Manko V S and Novikov I D 1992 Class. Quantum Grav.9 2477

[73] Menou, K., Haiman, Z., and Narayanan, V. K. (2001). ApJ, 558:535–542.

[74] Menou, K. and Quataert, E. (2001). ApJ Lett., 562:L137–L140.

[75] Miller, M. C. (2002). ApJ, 581:438–450.

[76] Miller, M. C. (2005).ApJ, 618:426–431.

[77] Mino Y 2003 Phys. Rev. D 67 084027

[78] Murphy, B. W., Cohn, H. N., and Durisen, R. H. (1991).ApJ, 370:60–77.

[79] Narayan, R. (2000).ApJ, 536:663.

[80] Nelemans G, Yungelson L R, Portegies Zwart S F and Verbunt F 2001 A&A bf

365 491.

[81] Papapetrou A 1951 Proc. R. Soc. A 209 248

[82] Peters P C 1964 Phys. Rev. 136 B1224

[83] Peters P C and Mathews J 1963 Phys. Rev. 131 435



215

[84] Pfahl, E. 2005, ApJ, 626, 849

[85] Poisson, E., Living Rev. Relativity 7, (2004), 6.[Online article]: cited on

7/11/2006, http://www.livingreviews.org/lrr-2004-6

[86] Portegies Zwart S. F., McMillan S. L. W., 2000, ApJ Lett., 528, L17

[87] Portegies Zwart S. F., Baumgardt H., Hut P., Makino J., McMillan S. L. W.,

2004, Nat, 428, 724

[88] Pound A, Poisson E and Nickel B G 2005 Phys. Rev. D 72 124001

[89] Press W H 1977 Phys. Rev. D 15 965

[90] Pretorius F 2005 Phys. Rev. Lett. 95 121101

[91] Rees, M. J. and Volonteri, M. (2007). to appear in Proc. IAU Symp. 238, ”Black

Holes: from stars to galaxies - across the range of masses”, astro-ph/0701512.

[92] Ryan F D 1995 Phys. Rev. D 52 5707

[93] Ryan F D 1997 Phys. Rev. D 55 6081

[94] Ryan F D 1997 Phys. Rev. D 56 1845

[95] Sago N, Tanaka T, Hikida W and Nakano H 2005 Prog. Theor. Phys. 114 509

[96] Sago N, Tanaka T, Hikida W, Ganz K and Nakano H 2005 Prog. Theor. Phys.

115 873

[97] Sesana A, Haardt F, Madau P and Volonteri M 2005 Astrophys. J. 623 23

[98] Stroeer A, Gair J R and Vecchio A. 2006. Proceedings of 6th LISA Symposium.

gr-qc/0605227

[99] Teukolsky S A 1973 Astophys. J. 185 635

[100] Teukolsky S A and Press W H 1974 Astophys. J. 193 443



216

[101] Thorne, K. S. (1998).In Wald, R. M., editor, Black Holes and Relativistic Stars,

page 41.

[102] Tinto, M. and Dhurandhar, S. (2005),Living Rev. Relativity 8, 4. [Online arti-

cle]: cited on 7/11/2006, http://relativity.livingreviews.org/Articles/lrr-2005-4/

[103] Tremaine, S., Gebhardt, K., Bender, R., Bower, G., Dressler, A., Faber, S. M.,

Filippenko, A. V., Green, R., Grillmair, C., Ho, L. C., Kormendy, J., Lauer, T. R.,

Magorrian, J., Pinkney, J., and Richstone, D. (2002).ApJ, 574:740–753.

[104] Ulmer, A. (1999). ApJ, 514:180–187.

[105] Umstätter R, Christensen N, Hendry M, Meyer R, Simha V, Veitch J, Vigeland

S and Woan G 2005 Phys. Rev. D 72 022001

[106] Vallisneri, M. (2005).Phys. Rev. D 71:022001

[107] Vecchio, A., 2004, Phys. Rev. D 70:042001

[108] Wang, J. and Merritt, D. (2004).ApJ, 600:149–161.

[109] Wen L and Gair J R, Class. Quantum Grav.22 S445 (2005)

[110] Wickham E D L, Stroeer A and Vecchio A. 2006. gr-qc/0605071

[111] Will, C. M., and Yunes, N., 2004, Class. Quantum Grav. 21:4367

[112] Wyithe, J. S. B. and Loeb, A. (2003).ApJ, 590:691



217

Chapter 7

The Geometry of a Naked
Singularity Created by Standing
Waves Near a Schwarzschild
Horizon, and its Application to the
Binary Black Hole Problem

The most promising way to compute the gravitational waves emitted by bi-

nary black holes (BBHs) in their last dozen orbits, where post-Newtonian

techniques fail, is a quasistationary approximation introduced by Detweiler

and being pursued by Price and others. In this approximation the outgo-

ing gravitational waves at infinity and downgoing gravitational waves at

the holes’ horizons are replaced by standing waves so as to guarantee that

the spacetime has a helical Killing vector field. Because the horizon gen-

erators will not, in general, be tidally locked to the holes’ orbital motion,

the standing waves will destroy the horizons, converting the black holes

into naked singularities that resemble black holes down to near the hori-

zon radius. This paper uses a spherically symmetric, scalar-field model

problem to explore in detail the following BBH issues: (i) The destruc-

tion of a horizon by the standing waves. (ii) The accuracy with which the

resulting naked singularity resembles a black hole. (iii) The conversion

of the standing-wave spacetime (with a destroyed horizon) into a space-



218

time with downgoing waves by the addition of a “radiation-reaction field”.

(iv) The accuracy with which the resulting downgoing waves agree with

the downgoing waves of a true black-hole spacetime (with horizon). The

model problem used to study these issues consists of a Schwarzschild black

hole endowed with spherical standing waves of a scalar field, whose wave

frequency and near-horizon energy density are chosen to match those of

the standing gravitational waves of the BBH quasistationary approxima-

tion. It is found that the spacetime metric of the singular, standing-wave

spacetime, and its radiation-reaction-field-constructed downgoing waves

are quite close to those for a Schwarzschild black hole with downgoing

waves — sufficiently close to make the BBH quasistationary approxima-

tion look promising for non-tidally-locked black holes.

Originally published as Ilya Mandel, 2005. Phys. Rev. D 72, 084025.

Preprint available online at http://arxiv.org/abs/gr-qc/0505149.

7.1 Introduction and Summary

It is very important, in gravitational astronomy, to have accurate computations of the

gravitational waves from the inspiral of a black hole binary [1]. However, computing

these waves is extremely challenging: for the last ≈ 25 cycles of inspiral waves, post-

Newtonian approximations fail [2], and numerical relativity can not yet evolve the

full dynamical equations in this regime1. It appears that the best hope for accurately

computing the BBH inspiral waves is by a quasi-stationary approximation [3, 4]. In

this approximation, the energy and angular momentum of the binary are conserved

by the imposition of standing gravitational waves, and the spacetime has a helical

Killing vector field. The standing-wave radiation required to keep the orbit stationary

is computed by demanding that the energy contents of the gravitational waves (GW)

be minimized [4].

1Numerical relativity has made great progress since this research was published, so this statement
is no longer accurate.
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Standing-wave radiation consists of a sum of ingoing and outgoing radiation at

infinity, and downgoing and upgoing radiation at the black-hole horizons. The phys-

ical spacetime, with purely outgoing waves at infinity and downgoing waves at the

horizons, can be recovered from the standing-wave spacetime by adding a perturba-

tive radiation-reaction field [5]. The solution for the BBH inspiral consists of a series

of quasi-stationary solutions that evolve from one to another via energy and angular

momentum loss triggered by the radiation-reaction field. The waves measured at a

detector can be deduced from this sequence of quasistationary solutions.

The black holes comprising the binary are tidally locked if their horizon generators

are static in the frame co-rotating with the orbit. In the tidally locked case, the metric

perturbations necessary to keep the black holes on a stationary orbit are static in the

co-rotating frame, and the black holes can be regarded as having bifurcate Killing

horizons (both a past horizon and a future horizon).

In reality, the black holes are not tidally locked. Their mutual tidal forces are not

strong enough to maintain locking during the inspiral. In the absence of tidal lock-

ing, the standing waves of the standing-wave approximation destroy the black-hole

horizons: the downgoing waves destroy the past horizon by building up an infinite

energy density at the past horizon, and the upgoing waves destroy the future hori-

zon. Therefore, we expect that forcing the orbit to be stationary via the addition

of standing gravitational waves will strip the Kerr black holes of their horizons and

leave naked singularities in their place [6].

Despite this radical change in the character of the orbiting bodies, it is reasonable

to expect that the standing-wave solution will give a quite accurate approximation

to the true physical black-hole spacetimes everywhere except very near the black-

hole horizons. In order to verify or refute this expectation, it is necessary to explore

the nature of the singularities created by the standing gravitational waves and to

test how well the physical solution with true black holes can be extracted from the

standing-wave solution with naked singularities.

As a first step in such an exploration, we consider in this paper a simple model

problem designed to give insight into the nature of the singularities generated by
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the standing gravitational waves, and the accuracy with which the physical, BBH

spacetime can be recovered from the standing-wave, singularity-endowed spacetime.

Our model problem is a single, spherically symmetric black hole that is converted

into a naked singularity by spherical standing waves of a scalar field.

We begin our analysis in Sec. 7.2 by describing the mapping between the BBH

problem, into which we seek insight, and our spherical, scalar-field model problem.

In particular, we deduce what should be the range of scalar-field amplitudes and

frequencies in order to mock up the gravitational waves of the BBH problem.

Then in Sec. 7.3, we construct and explore the standing-wave spacetime for our

spherical model problem. We initially treat the standing-wave scalar field as residing

in the unperturbed Schwarzschild spacetime of the black hole, and we use Regge-

Wheeler first-order perturbation theory to compute the scalar-energy-induced devia-

tions of the hole’s metric from Schwarzschild. The metric perturbations consist of a

static component and a component varying in time at twice the scalar-field frequency

(see Fig. 7.2 below). The oscillatory component is smaller than the static one and

higher-order harmonics of both the field and the metric are strongly suppressed.

The static metric perturbation grows divergently as one approaches the Schwarzschild

horizon — an obvious indication of the horizon’s destruction by the standing-wave

stress-energy. To explore the structure of the resulting naked singularity, in Sec. 7.3.2

we abandon perturbation theory and switch to the fully nonlinear, coupled Einstein

equations and scalar-field equations. To simplify the analysis, we focus solely on

the static part of the singularity’s metric; we do this by time averaging the scalar

stress-energy tensor before inserting it into the fully nonlinear Einstein equations.

We solve the resulting equations numerically to obtain the spacetime geometry out-

side the singularity. The geometry’s embedding diagram (Fig. 7.3 below) and the

redshift seen by a distant observer (Fig. 7.4 below) show that the spacetime remains

nearly Schwarzschild outside the Schwarzschild horizon, but deviates strongly from

Schwarzschild at r ≈ 2M and below. (Here M is the mass of the hole-like singularity

and we use geometrized units c = G = 1 everywhere in this paper.) Above r = 2M ,

the standing-wave spacetime is very nearly identical to the Schwarzschild spacetime
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down to radii that are well inside the inner edge of the effective potential (Fig. 7.5).

Below r = 2M , radial distance changes far more slowly than areal radius; i.e., grr

tends to 0 as r → 0. The redshift seen by an external observer rises rapidly when the

emitter falls inside r = 2M . However, a signal from the singularity at r = 0 may be

infinitely redshifted or infinitely blueshifted, depending on the choice of scalar field

parameters.

In Sec. 7.4 we turn to the model spherical spacetime that mocks up our desired

BBH solution: the spacetime of a Schwarzschild black hole with downgoing scalar

waves. Not surprisingly, the metric perturbations induced by the downgoing scalar-

wave energy are those of the Vaidya solution of Einstein’s equations — a slowly

growing black hole with a smooth, non-singular future horizon. This spacetime is well

approximated, for short time intervals, by the Schwarzschild solution with (constant)

Schwarzschild mass equal to the instantaneous Vaidya mass.

Finally, in Sec. 7.5 we demonstrate that by adding a perturbative radiation-

reaction field to the standing-wave solution, a downgoing solution to the scalar-wave

equation can be recovered. We explore the level of agreement between these down-

going waves that live in the singularity-endowed standing-wave spacetime and the

downgoing waves in the Schwarzschild approximation to the Vaidya spacetime. The

agreement (for details see Sec. 7.5 and Fig. 7.6 below) is rather good for scalar-wave

amplitudes and frequencies that mock up the BBH problem — sufficiently good to

give optimism that the standing-wave approximation will give accurate gravitational

waveforms for the final stages of binary-black-hole inspiral.

7.2 The Mapping Between the BBH Problem and

our Model Scalar-Field Problem

In our exploration of the quasistationary, standing-wave approximation for black-hole

binaries we shall study several spherically symmetric spacetimes, each endowed with

a standing-wave scalar field. In Sec. 7.3.1 the spacetime will be Schwarzschild, or

Schwarzschild with first-order gravitational perturbations generated by the scalar-
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field stress-energy tensor. In Sec. 7.3.2 the spacetime will be that of a naked singu-

larity generated by the coupled, time-averaged Einstein-scalar-field equations. In this

section we shall identify the parameter regime relevant to gaining insight from these

spacetimes into the binary black hole problem.

In each of these spherical spacetimes, the scalar field must be a solution to the

wave equation:

�Φ =
1√−g (

√−ggαβΦ,α),β = 0 , (7.1)

where gαβ is the spacetime metric with the interval

ds2 = f(r, t)dt2 + g(r, t)dr2 + r2(dθ2 + sin2 θdφ2). (7.2)

We assume that the scalar field is monochromatic with frequency ω, and we write it

in the form

Φ = ℜ
(

Ψ(r)e−iωt

r

)

, (7.3)

where ℜ() denotes the real part and the phase was set by the choice of the zero of

time t.

The scalar field Φ serves as the source of curvature in the Einstein equations,

Gαβ = 8πTαβ , (7.4)

where the stress-energy tensor depends on the scalar field according to

Tαβ =
1

4π
Φ,αΦ,β −

1

8π
gαβΦ,µΦ

,µ (7.5)

(cf. Eq. (20.66) of [7] or Eq. (A.11) of [8]).

We can re-write equations (7.4) and (7.5) in a simpler form via the Ricci tensor:

Rαβ = 2Φ,αΦ,β . (7.6)

Relevant ranges for the scalar-field frequency and amplitude are determined by

the binary black hole problem we are modeling. Suppose that the black holes in

the binary have equal mass M , and let a be their radial separation. Since we are
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interested in the late inspiral, where the post-Newtonian methods fail, the desired

range of parameters should correspond to 6 ∼< a/M ∼< 15 [2].

The Keplerian orbital frequency of the black holes is

Ω =
1

M

√

2

(a/M)3
. (7.7)

The gravitational wave frequency is twice the Keplerian frequency, and we set our

scalar-field frequency equal to the GW frequency:

ω = 2Ω =
2

M

√

2

(a/M)3
. (7.8)

The power going down a black hole due to the orbital motion of its companion is

approximately

PGW =
32

5
M4µ2Ω6, (7.9)

where µ is the mass of the companion [9, 10]. Although the calculations in Refs. [9,

10] underlying Eq. (7.9) were carried out under the assumption µ ≪ M , we will

use Eq. (7.9) to approximate the power for equal mass black holes, µ = M . This

approximation is not too worrisome because we are interested in the general features

of the scalar-field model, which roughly corresponds to the interesting range of BBH

separations, rather than in the quantitative results for this model. We select the

scalar-field amplitude by demanding that its energy density near the horizon equal

the GW energy density there:

dE

dV
≈ PGW

4π(2M)2
. (7.10)

(In the spirit of this approximate analysis we here ignore the gravitational blueshift

of the energy.) By equating this energy density to the value of T00 at the horizon,

computed by inserting Eq. (7.3) into Eq. (7.5), we obtain the scalar-field amplitude

inside the peak of the effective potential:

Ψin =

√

64

5

[

1

(a/M)

]3

M . (7.11)
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Using equations (7.8) and (7.11), we can compute the desired scalar-field frequency

and amplitude for the boundaries of the region of interest:

a = 6M ⇒ ω ≈ 0.19/M, Ψin ≈ 0.017M ; (7.12a)

a = 15M ⇒ ω ≈ 0.049/M, Ψin ≈ 0.0011M. (7.12b)

7.3 Standing-Wave Scalar Field

We now turn to the standing-wave scalar-field spacetime that mocks up the spacetimes

of the BBH standing-wave approximation. The metric of this spacetime has the form

of Eq. (7.2) and the standing-wave scalar field follows from Eq. (7.3):

Φ =
Ψ(r) cosωt

r
, (7.13)

where Ψ(r) is now real.

We shall treat the standing-wave scalar field twice via two different simplifying

assumptions. First, in Sec. 7.3.1, we will consider the scalar field perturbatively; its

wave equation will be that of the Schwarzschild spacetime, and its stress-energy will

generate first-order perturbations of the metric away from Schwarzschild. Then in

Sec. 7.3.2, we will consider the fully nonlinear Einstein-scalar-field spacetime but with

the scalar stress-energy averaged over time to make the metric static.

7.3.1 Perturbative standing-wave solution

7.3.1.1 Perturbative formalism for the standing-wave spacetime

In our first approach, the lowest-order solution for the scalar field is computed by

solving the wave equation (7.1) in the Schwarzschild background with the metric

ds2 = gBαβdx
αdxβ (7.14)

= −(1 − 2/r)dt2 +
1

1 − 2/r
dr2 + r2dΩ2 ,
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where we rescale so thatM = 1. The wave equation simplifies as follows (cf. Eq. (32.27b)

of [7]):
d2Ψ

dr∗2 =

[

−ω2 + (1 − 2/r)
2

r3

]

Ψ , (7.15)

where r∗ is the Regge-Wheeler tortoise coordinate [11],

r∗ = r + 2 ln (r/2 − 1) . (7.16)

Because ω2 dominates the right hand side of Eq. (7.15) both far from the horizon

(r ≫ 2) and very near the horizon, the scalar field will oscillate with a nearly constant

frequency ω in those regions. In between, where the effective potential

V (r∗) = (1 − 2/r)(2/r3), (7.17)

is significant, there is an intermediate transitional region (see Fig. 7.1). (In this paper

we mention several times “the inner edge of the peak of the effective potential”; we

define this inner edge to be the radius at which the effective potential drops to one

percent of its maximum value at the peak.)

Since we are approaching the problem perturbatively, we are interested in some

small metric perturbation hαβ on top of the background metric gBαβ of Eq. (7.14) that

would yield the curvature corresponding to the stress-energy tensor of the scalar field:

gαβ = gBαβ + hαβ . (7.18)

Linearizing in hαβ , this metric gives the Ricci tensor

Rαβ = RB
αβ +

1

2

(

h
µ

µα|β + h
µ

µβ|α − h
µ

αβ|µ − h|αβ

)

, (7.19)

where h = h µ
µ and | represents the covariant derivative in the background metric gBαβ.

For the Schwarzschild background metric, RB
αβ = 0.

We are interested only in spherically symmetric perturbations. A gauge transfor-

mation brings additional simplification, so hαβ can be written in the following simple
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Figure 7.1: The standing-wave scalar field in a Schwarzschild background (solid curve)
and the effective potential (dashed curve) for angular frequency ω = 0.049.

Regge-Wheeler form:

hαβ =

















(1 − 2/r)H0(t, r) 0 0 0

0 H2(t,r)
1−2/r

0 0

0 0 0 0

0 0 0 0

















. (7.20)

(Compare with Eq. (13) of [11] for the case L = 0.)

We can now substitute hαβ given by Eq. (7.20) into Eq. (7.19) to compute the
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perturbed Ricci tensor:

Rtt = −1

2

∂2

∂t2
H2 (7.21a)

−r − 2

2r3

[

(2r − 1)
∂

∂r
H0 +

∂

∂r
H2 + r(r − 2)

∂2

∂r2
H0

]

;

Rtr =
1

r

∂

∂t
H2 ; (7.21b)

Rrr =
r2

2(r − 2)2

∂2

∂t2
H2 +

1

2r(r − 2)
(7.21c)

×
[

3
∂

∂r
H0 + (2r − 3)

∂

∂r
H2 + r(r − 2)

∂2

∂r2
H0

]

;

Rθθ = H2 +
r − 2

2

∂

∂r
H0 +

r − 2

2

∂

∂r
H2 . (7.21d)

Inserting expressions (7.21) for Rαβ into the Einstein equations (7.6), one obtains

a set of rather complicated PDE’s containing both spatial and time derivatives to

the second order. However, we expect that the equations can be further simplified

because of additional consistency conditions imposed on Φ by the wave equation

(7.15). Indeed, after adding the Rtt and Rrr equations with appropriate coefficients

to remove the second derivatives in both t and r, and using Rθθ = 0 to relate H0 to

H2, we obtain the following set of first-order ODE’s for H0 and H2:

∂H2

∂r
= − H2

r − 2
+

r3

(r − 2)2
Φ,tΦ,t + rΦ,rΦ,r ; (7.22a)

∂H0

∂r
= −∂H2

∂r
− 2

r − 2
H2 . (7.22b)

These far simpler equations can be shown to produce no spurious solutions; in fact,

together with the wave equation (7.15), they are equivalent to the second-order PDE

system (7.21) & (7.6).

7.3.1.2 First-order metric perturbations due to the standing-wave scalar

field

In the scalar-field ansatz (7.13) we assumed Φ ∝ cosωt. Therefore, the driving

term on the right hand side of Eq. (7.22a) will have static components as well as

components oscillating in time at the frequency 2ω. Because there is no mixing of
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terms with distinct time signatures in equations (7.22), these terms may be treated

separately:

H2(t, r) = Hstat
2 (r) +Hcos

2 (r) cos 2ωt ; (7.23a)

H0(t, r) = Hstat
0 (r) +Hcos

0 (r) cos 2ωt . (7.23b)

(There is no sin 2ωt term with our particular choice of the scalar-field phase.)

For r ≫ 2 analytical approximations for H0 and H2 are easy to obtain because

the scalar field is particularly simple there:

Φ ≈ (Ψ0/r) cos (ωr∗) cos (ωt), (7.24a)

where Ψ0 is the scalar-field amplitude as r → ∞. Inserting this into Eqs. (7.22), we

readily compute, at large r:

Hstat
2 (r) ≈ 1

2
ω2Ψ2

0 −
Ψ2

0

4r2
− Ψ2

0 cos 2ωr∗

4r2
; (7.24b)

Hcos
2 (r) ≈ −Ψ2

0

4r2
− Ψ2

0 cos 2ωr∗

4r2
(7.24c)

−Ψ2
0ω sin 2ωr∗

4r
;

Hstat
0 (r) ≈ −ω2Ψ2

0 ln r +
Ψ2

0 cos 2ωr∗

4r2
; (7.24d)

Hcos
0 (r) ≈ Ψ2

0 cos 2ωr∗

4r2
+

Ψ2
0ω sin 2ωr∗

4r
. (7.24e)

The static components of H2 and H0 are non-vanishing at infinity, and Hstat
0 actually

diverges. This indicates that, due to the energy contained in the scalar field, the

spacetime is not asymptotically flat. However, this bad behavior at infinity is an

artifact of our model problem and is irrelevant to the issues we are studying in this

paper.

A more significant issue for the binary black hole problem is the contribution

of the additional energy stored in standing gravitational waves inside the orbit of

a companion to the effective mass seen by the companion and the resulting change

in the companion’s angular velocity. Translating this issue into the language of our



229

model problem, we ask for the energy stored in standing waves of the scalar field

inside the radius a and the value of the metric perturbation H0 there. For scalar

field amplitude and frequency corresponding to the inner boundary of the region of

interest a = 6M [Eq. (7.12a)], the energy stored in the standing waves of the scalar

field between r = 2.01M and r = 6M (obtained by integrating R00) is E ≈ 10−4M

and H0(r = 6M) ≈ 10−5 [cf. Eqs. (7.24)]. For scalar field parameters corresponding

to the outer boundary of the region of interest a = 15M [Eq. (7.12b)], the energy

stored in the scalar waves between r = 2.01M and r = 15M is E ≈ 10−8M and

H0(r = 15M) ≈ 10−8. This suggests that the presence of standing waves should

not significantly affect the determination of the angular velocity of the binary or the

gravitational wave frequency.

We can read off from Eqs. (7.24) the ratios of the oscillatory and static components

of the metric perturbations at large r. They are

∣

∣

∣

∣

Hcos
2

Hstat
2

∣

∣

∣

∣

≈ 1

2ωr
(7.25a)

and
∣

∣

∣

∣

Hcos
0

Hstat
0

∣

∣

∣

∣

≈ 1

4ωr ln r
; (7.25b)

thus, the static components dominate far from the horizon.

Equations (7.24) can be used to set initial conditions for the metric perturbations

at some large r, allowing for a numerical solution to Eqs. (7.22) from there down to

the horizon, r = 2. The resulting solution, plotted in Fig. 7.2, indicates that static

components continue to dominate near the horizon.

Near the horizon (inside the effective-potential peak), the scalar field has the form

Φ ≈ (Ψin/2) cosωr∗ cosωt, (7.26a)

where Ψin is the scalar-field amplitude as r → 2. Inserting this approximation into

Eq. (7.22a) and averaging the right-hand side leads to the following rough estimate
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Figure 7.2: Metric perturbations for a standing-wave scalar field in a Schwarzschild
background with angular frequency ω = 0.19 and amplitude Ψ0 = 0.015 far from the
black hole, corresponding to a binary separation a ≈ 6M , [Eq. (7.12a)].

of the magnitude of the perturbation near the horizon:

Hstat
2 ≈ 2ω2Ψ2

in ln (r − 2)

r − 2
. (7.26b)

Inverting this formula can give a useful estimate of the distance from the horizon where

the perturbation reaches a particular value; the estimate turns out to be accurate to

within a factor of two.

Although it appears that the metric perturbation diverges at the expected location

of the horizon, our perturbative solution is not trustworthy in this regime for sev-

eral reasons in addition to the obvious one of violating the perturbative assumption

H0, H2 ≪ 1:

1. We ignored the back reaction, i.e., the feedback of the metric perturbation into
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the wave equation. Using the Schwarzschild metric in place of the more accurate

perturbed metric in the wave equation, that is, using the approximate Eq. (7.15) in

place of the exact Eq. (7.1), is equivalent to an error in the scalar-field frequency

∆ω/ω ≈ O(H), which produces phase offsets in the scalar field when the wave equa-

tion is integrated numerically.

2. We linearized the Ricci tensor in the perturbations, neglecting higher-order

O(H2) effects. In contrast to the linearized equations (7.22) for H2 and H0, the

nonlinear perturbative equations are:

∂H2

∂r
= −H2(1 +H2)

r − 2
(7.27a)

+
r3

(r − 2)2

(1 +H2)
2

1 −H0
(Φ,t)

2 + r(1 +H2)(Φ,r)
2 ;

∂H0

∂r
= (1 −H0)

[

− 1

1 +H2

∂H2

∂r
− 2H2

r − 2

]

. (7.27b)

Linearization introduces local errors of order H into the Einstein equations. However,

the errors can build up globally when the equations are integrated to obtain a nu-

merical solution. The errors produced by linearizing the Ricci tensor (the differences

between solutions to the linearized and nonlinear Einstein equations without back

reaction in the wave equation) have the same order of magnitude in the parameter

range of interest as the errors produced by neglecting back reaction (the differences

between solutions to the nonlinear Einstein equations depending on whether wave

equation (7.15) or (7.1) is used).

3. We ignored higher harmonics of the scalar field and of the metric perturbations

that would arise from the back reaction. However, these higher harmonics are sup-

pressed by additional factors of H ∝ Ψ2: whereas the static and cos 2ωt components

of H are quadratic in Ψ, higher-order harmonics of frequency 2nω are proportional

to Ψ2n for n > 1.

7.3.2 Time-averaged fully nonlinear standing-wave solution

To explore the behavior of the standing-wave spherical scalar field and the spheri-

cal metric near and inside the expected location of the horizon, we solve the fully
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nonlinear coupled Einstein-scalar-field equations including full back reaction in the

wave equation. To simplify our solution, we average the stress-energy tensor in time

to remove oscillations of the scalar-field energy, so that the metric is static. This is

justified by the perturbative analysis above, which demonstrates that metric com-

ponents oscillating in time are smaller than static metric components and largely

decouple from them.

7.3.2.1 Formalism for nonlinear solution with back reaction

We write the static spherically symmetric metric in the form

ds2 = −eβ(r)+α(r)dt2 + eβ(r)−α(r)dr2 + r2dΩ2, (7.28)

and we compute the Einstein tensor from this metric in the standard way. The Ein-

stein tensor is diagonal and its angular components Gθ̂θ̂ and Gφ̂φ̂ are not particularly

interesting because of spherical symmetry (the angular components of the Einstein

equations will merely repeat the time and radial components by virtue of the con-

tracted Bianchi identities). The careted subscripts µ̂ denote the orthonormal basis

associated with the (t, r, θ, φ) coordinate system. The relevant non-vanishing terms

of the Einstein tensor in the orthonormal basis are:

Gt̂t̂ = eα−β(β ′ − α′)/r + (1 − eα−β)/r2, (7.29a)

Gr̂r̂ = eα−β(β ′ + α′)/r − (1 − eα−β)/r2, (7.29b)

where ′ denotes a derivative with respect to r, not r∗.

Substituting the Einstein tensor (7.29) and the stress-energy tensor (7.5) into the

Einstein equations (7.4), we obtain:

α′ =
1

r
(eβ−α − 1) , (7.30a)

β ′ = re−2α(Φ,t)
2 + r(Φ,r)

2 . (7.30b)

We can now insert the standing-wave scalar-field ansatz (7.13) and time average

the right hand side of Eq. (7.30b) over a complete period. For numerical analysis
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it will be useful to switch to a logarithmic coordinate that changes more gradually

than r in the vicinity of the Schwarzschild horizon. The following generalization of

the Regge-Wheeler tortoise coordinate r∗ proves convenient:

dr

dr∗
= eα . (7.31a)

In terms of this coordinate, the wave equation (7.1) simplifies to

d2Ψ

dr∗2
= −ω2Ψ +

eα

r

dα

dr∗
Ψ (7.31b)

and the Einstein equations (7.30) with time-averaged (Φ,t)
2 and (Φ,r)

2 become

dα

dr∗
=
eβ − eα

r
, (7.31c)

dβ

dr∗
=
e−α

2r

[

Ψ2ω2 +

(

dΨ

dr∗

)2
]

+
Ψ2eα

2r3
− Ψ

r2

dΨ

dr∗
. (7.31d)

7.3.2.2 Singular standing-wave spacetime

We have solved the coupled equations (7.31) numerically to high accuracy for values

of the scalar-field amplitude and frequency in the range relevant to the BBH prob-

lem [Eqs. (7.12)]. Our numerical solutions are very well approximated by analytic

formulae that rely on dividing space 0 < r < ∞ into three regions. Region I is

“perturbed Schwarzschild”, i.e., the region where the perturbative solution is valid

(r > 2, H ∼< 0.1). Region III describes the space very close to r = 0 where the 1/r

terms diverge. Finally, the intermediate region II extends from the inner boundary

of region I to the outer boundary of region III.

For sufficiently small amplitudes of the scalar field, the contributions from the

back reaction (by which we mean the impact of the deviation of the spacetime from

Schwarzschild on the solution to the wave equation) and from nonlinearity remain

small until very close to r = 2, so that the metric can be well approximated by

perturbations on top of the Schwarzschild metric. In other words, the perturbative

solution developed in Sec. 7.3.1 is valid throughout region I. Indeed, for scalar-field
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amplitudes and frequencies in the range of interest, the metric perturbationsHstat
0 and

Hstat
2 derived in the previous subsection match the values of H0 and H2 corresponding

to the complete nonlinear solution with back reaction to within 3% for H ∼< 0.01.

We begin the analysis in region III, where r ≪ 1, by assuming eβ−α ≪ 1 as

r → 0, which corresponds to grr → 0 at r = 0. (This assumption, which can be

deduced from the behavior of dβ/dr∗ in the transition region, will be shown to be

self-consistent; more importantly, it is supported by our numerical solutions.) Then,

from Eq. (7.31c), α′ ≡ dα/dr → −1/r, so α is given by

α = − ln r + α0 . (7.32a)

Here α0 is a constant whose value depends on the amplitude and the frequency of the

scalar waves; it can be roughly approximated by

α0 ∼ ln
(

Ψ2
inω

2
)

. (7.32b)

The wave equation (7.31b) becomes

Ψ′′ = −Ψω2e−2α − α′(Ψ′ − Ψ/r) (7.32c)

= −Ψω2e−2α0r2 + 1/r(Ψ′ − Ψ/r) .

Since we are interested in the region r → 0, the last term dominates, so that the

approximate solution to Eq. (7.32c) is

Ψ = nr + kr ln r , (7.32d)

where n, k are constants.

Substituting Ψ and α into Eq. (7.31d) and selecting non-vanishing terms with the

highest order in 1/r, we find that β ′ → k2/(2r), so

β =
k2

2
ln r + β0 , (7.32e)

where β0 is a constant. Thus, we see that our assumption, eβ−α ≪ 1 as r → 0, is
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self-consistent:

β − α =

(

k2

2
+ 1

)

ln r + β0 − α0 → −∞ as r → 0, (7.32f)

since the coefficient of ln r is always positive.

Our numerical solution in region III agrees well with the asymptotic analytical

solution (7.32). For instance, the value of k obtained from matching Ψ to the form

of Eq. (7.32d) agrees with the value of k obtained from matching β to Eq. (7.32e) to

one part in ten thousand. Of particular interest are the metric components and the

Ricci scalar, whose asymptotics for r → 0 are:

gtt = −eβ+α = −eβ0+α0rk
2/2−1 , (7.32g)

grr = eβ−α = eβ0−α0rk
2/2+1 , (7.32h)

and

R = Rγ
γ = 2Φ,γΦ

,γ = k2eα0−β0r−3−k2/2 . (7.32i)

The exponent of r in Eq. (7.32i) is always negative, so the Ricci curvature scalar

tends to infinity as r → 0, i.e., the radius of curvature vanishes at the singularity at

r = 0, as expected. The exponent of r in Eq. (7.32h) is always positive, so grr tends

to zero as r → 0 according to a power law. However, the sign of the exponent of r

in Eq. (7.32g) depends on the value of k, which in turn is a complicated function of

the scalar-field frequency and amplitude. For some scalar field parameter values in

the range relevant to the BBH problem [Sec. 7.2] k2/2 > 1 and gtt vanishes at the

singularity; for others, gtt is infinite at r = 0.

The nature of region II, which represents the transition from the Schwarzschild-

like region I to the singularity of region III, depends strongly on the values of Ψ0 and

ω. In Schwarzschild, α = ln (1 − 2/r) tends to −∞ as r → 2, and this is the behavior

of α in the nearly Schwarzschild region I; meanwhile, in region II, as in region III, α

is well approximated by

α = − ln r + α0 . (7.33a)
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The outer boundary of region II is located at the transition between these two be-

haviors of α, i.e., at the minimum of α.

Substituting the approximation (7.33a) for α into the wave equation (7.31b), we

obtain:
d2Ψ

dr∗2
= Ψ

(

−ω2 − e2α0

r4

)

. (7.33b)

Thus, the condition for the scalar field to exhibit spatial oscillations at an approxi-

mately constant amplitude is e2α0/r4 ≪ ω2. The location where this condition begins

to be violated forms the inner boundary of region II. Thus, region II can be said to be

defined by the variation of α according to Eq. (7.33a) as in region III, and by rapid

spatial oscillations of the scalar field dΨ/dr∗ = ω as in region I.

Since α0 will be more negative for smaller amplitudes of the scalar field, we see

that region II is going to be significant for small Ψ0, including those in the relevant

range of the BBH problem. For larger values of Ψ0, the metric and scalar field will

proceed directly from region I to region III.

When region II does exist, the amplitude and phase of the scalar field [solution of

Eq. (7.33b)]

Ψ(r) = A(r) cosφ(r) (7.33c)

will be given by

A = A0(1 − e2α0

4r4ω2
+ ...) , (7.33d)

φ̇ = ω(1 +
e2α0

2r4ω2
+ ...) , (7.33e)

to first order in e2α0/(r4ω2).

Substituting expressions (7.33) for α and Ψ into the differential equation for β,

Eq. (7.31d), we find that the dominant term is the first one, dβ/dr∗ → (1/2)e−α0A2ω2,

so in region II β is approximately

β =
1

2
e−α0A2ω2r∗ + const

=
1

4
e−2α0r2A2ω2 + const , (7.33f)

where the last equality comes from the integral of equation (7.31a), r∗ = e−α0r2/2 +
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const.

Embedding diagrams and redshifts may provide the best pictorial insight into our

full time-averaged standing-wave scalar-field solution, including all of regions I, II and

III.

Figure 7.3 shows an embedding diagram for the standing-wave spacetime:

dz

dr
=
√

|grr − 1| (7.34)

The 2-surface obtained by rotating around the vertical axis r = 0 has the same 2-

geometry as the surface (t = const, θ = π/2) in the standing-wave spacetime. At

radii r > 2 the embedding is very nearly the same as for a Schwarzschild black hole

(cf. Fig. 31.5 of [7]). For r < 2, the radial distance changes far more slowly than

the areal radius (0 < grr ≪ 1), so the embedding is performed in Minkowski space

rather than Euclidean space: the metric is ds2 = −dz2 + dr2 + r2dφ2 rather than

ds2 = +dz2 + dr2 + r2dφ2. The embedded surface asymptotes to the light cone as

r → 0.

Figure 7.4 depicts the redshift of light emitted at one radius and received at

another, greater one, as a function of the emitting radius:

z =

√

grectt

gemtt
− 1 (7.35)

Figure 7.4(a) shows that, while the redshift becomes very large as r → 2, it never

becomes infinite there as it would for a Schwarzschild black hole. As expected, the

horizon is destroyed by the standing-wave scalar field, so an observer at infinity can

receive signals from any source at r > 0, albeit with a very large redshift for sources

close to or inside the location (r = 2) of the Schwarzschild horizon. A blown-up view

of the region r ≪ 1 [Figure 7.4(b)] shows that the signal emitted near the singularity

may be infinitely redshifted or blueshifted depending on the asymptotics of the scalar

field as r → 0 according to

z =
√

grectt e
(α0−β0)/2r−k

2/4+1/2 − 1 . (7.36)
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Figure 7.3: Embedding diagram for the spacetime with time-averaged standing-wave
scalar field of angular frequency ω = 0.19 and amplitude Ψ0 = 0.015 at large radii [cor-
responding to the binary black hole separation a ≈ 6M ; Eq. (7.12a)]. The solid line
represents embedding in Euclidean space; the dashed line, embedding in Minkowski
space. Regions I, II and III are labeled on plot.

7.3.2.3 Comparison of standing-wave and Schwarzschild spacetimes

It is important to understand how the complete standing-wave spacetime with back

reaction (we shall call this spacetime S) compares with the Schwarzschild spacetime

(which we shall call spacetime D). We might first try to compare the metric compo-

nents in the two spacetimes as functions of the radial coordinate r. Indeed, the metric

components gθθ = r2 and gφφ = r2 sin2 θ are precisely equal in the two spacetimes

when evaluated at the same location in (t, r, θ, φ) coordinates. Furthermore, outside

the effective-potential region, the perturbation due to the scalar field is so small that

the fractional difference δgαβ/gαβ ≡ (gSαβ − gDαβ)/g
D
αβ in metric components gtt and grr

does not exceed 0.01% for scalar-field parameters in the range of interest. However,
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Figure 7.4: (a) Redshift z = δλ/λ of light emitted from radius r and received by an
observer at r = 10. (b) Redshift for an observer at r = 0.0001. A distant observer
would see light emitted from r = 0.0001 redshifted by ln(z + 1) ≈ 105. These curves
are drawn for the spacetime with time-averaged standing-wave scalar field that has
angular frequency ω = 0.19 and amplitude Ψ0 = 0.015 at large radii [corresponding
to the binary black hole separation a ≈ 6M ; Eq. (7.12a)].

the metric components gtt and grr in S and D can differ by orders of magnitude near

r = 2, inside the effective potential peak.

The apparent mismatch between the metric components of the two spacetimes

near r = 2 turns out to be a consequence of a poor choice of the radial coordinate

r for comparison. A much better choice is r∗: when the coordinates (t, r∗, θ, φ) are

used for mapping between the two spacetimes S and D, the metric components agree

extremely well near r = 2.

The fractional differences δg/g between the gtt and gθθ components in S and D

are plotted in Fig. 7.5 for scalar field parameters corresponding to binary black hole

separations at the boundaries of the range of interest. Using r∗ rather than r as the

coordinate for comparison means that the gθθ components no longer match perfectly;

however, the fractional difference introduced remains small as r → 2 and does not

exceed 0.6% in the range of interest. The fractional differences in gφφ are identical to

those in gθθ and are not plotted separately. The Regge-Wheeler tortoise coordinate

r∗ [Eq. (7.16)] and its generalization [Eq. (7.31a)] were defined so that gr∗r∗ ≡ −gtt
in both spacetimes S and D; therefore, the fractional differences in the values of gr∗r∗

in S and D are the same as the fractional differences in gtt.
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As Fig. 7.5 shows, the fractional differences in the metrics are ∼< 0.02 down to

values of r∗ ∼ −1000, a location so deep inside the peak of the effective potential

that it contains at least 20 near-horizon oscillations of the scalar field for frequencies

and amplitudes in the BBH separation range of interest. Perhaps a more impressive

way to state this is that in the (t, r∗, θ, φ) coordinate system, metric components of

gS and gD match to an accuracy of 2% for all relevant scalar-field parameters down

to the Schwarzschild radius rD − 2 < 10−100.

The fractional differences between the coefficients of the metrics gS and gD con-

tinue to grow approximately linearly in r∗ deep inside the effective potential and reach

10% at the Schwarzschild radius rD − 2 ∼ 10−3000, or approximately 500 scalar-field

oscillations inside the effective-potential peak for scalar field parameters correspond-

ing to BBH separation a ≈ 6M .
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Figure 7.5: (a)Fractional differences of the metric components gtt = −gr∗r∗ (solid
curve) and gθθ (dashed curve) between Schwarzschild spacetime D and standing-
wave scalar field spacetime S with scalar-wave amplitude and frequency chosen to
model BBH separation a ≈ 6M [Eq. (7.12a)]. (b)Same quantities plotted for scalar
field parameters chosen to model BBH separation a ≈ 15M [Eq. (7.12b)].

7.4 Downgoing Scalar Field

Having discussed, in Sec. 7.3, the standing-wave scalar-field spacetime that modeled

the stationary BBH approximation, we now turn to a scalar-field spacetime that serves

as a model for the physical BBH spacetime with downgoing gravitational waves at
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the black-hole horizons: a nearly Schwarzschild spacetime with spherically symmetric

scalar waves that are purely downgoing at r = 2.

For a perturbative analysis of downgoing scalar waves in Schwarzschild, the ingo-

ing, null Eddington-Finkelstein time coordinate v = t+ r∗ is more appropriate than

the standard Schwarzschild time coordinate. Let us suppose that by the time v = 0

a total mass-energy M0 = m(v = 0) is located within the horizon r = 2. We are

not particularly interested in how this mass accumulated there or how the scalar field

behaved in the past; we are only interested in the times immediately following v = 0,

and we let the scalar waves be purely downgoing and monochromatic at the horizon

for v > 0. Then for v > 0 radiation is falling into the black hole at a nearly constant

rate, corresponding to the energy density in the scalar field dm/dv ≈ Ψ2
0ω

2/2, with

some small oscillations on top of the linear increase in mass. This is very similar

to the Vaidya solution and, indeed, the Vaidya metric will be seen to describe the

spacetime of the downgoing scalar-field solution:

ds2 = −
[

1 − 2m(v)

r

]

dv2 + 2dvdr + r2dΩ2 . (7.37)

Near the horizon, Φ = (1/r) cosωv is a purely downgoing solution to the wave

equation (7.1). The only non-zero term of the Ricci tensor in Vaidya coordinates is

Rvv = (2/r2)m′(v), where ′ denotes the derivative with respect to v. The Einstein

equations (7.6) at r = 2 say:

Rvv =
2m′(v)

4
= 2Φ,vΦ,v =

2Ψ2
0ω

2 sin2 ωv

4
. (7.38)

Equation (7.38) is trivially integrated to obtain:

m(v) = M0 +
Ψ2

0ω
2

2
v − Ψ2

0ω sin 2ωv

4
. (7.39)

The black-hole mass grows linearly in v at the rate Ψ2
0ω

2/2 with a tiny superimposed

oscillatory component. The black hole retains a smooth, non-singular future horizon.

The scalar field is purely downgoing at the horizon and approximately downgoing

everywhere inside the Schwarzschild effective-potential peak. Outside the effective-
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potential peak there is both a downgoing scalar field and an upgoing one, reflected

off the potential. Since for small v the metric is nearly Schwarzschild [the constant

Schwarzschild mass M is replaced by the m(v) of Eq. (7.39)], the scalar field ev-

erywhere is given to a high accuracy by a solution to the wave equation in the

Schwarzschild background subject to the purely downgoing boundary condition at

the horizon. (Of course, very far from the horizon the energy contained in the inter-

vening scalar field will act as an additional mass, but we are not interested in this

region for our model problem.)

7.5 Reconstruction of Downgoing Scalar Field from

Standing-Wave Scalar Field

We turn now to our scalar-wave version of adding a radiation-reaction field to a

standing-wave spacetime to obtain a physical spacetime with downgoing waves at

horizons and outgoing waves at infinity. For this procedure there is a substantial

difference between the BBH problem and our model problem.

In the true BBH problem, the periodic standing wave (SW) solution is sourced by

the black holes and corresponds to the 1
2
Retarded+ 1

2
Advanced solution of the Green’s

function problem. In this case we add the non-sourced 1
2
Retarded− 1

2
Advanced radi-

ation reaction (RR) solution of the linearized Einstein equations in the SW spacetime

to get an approximation to the physical retarded solution [5]. At infinity, where the

SW field is 1
2
Outgoing + 1

2
Ingoing, the boundary condition for the RR field should

be set to 1
2
Outgoing − 1

2
Ingoing, so that their sum contains only physical outgoing

waves, and similarly at the horizons the RR field will be 1
2
Downgoing − 1

2
Upgoing.

Adding this RR field to the 1
2
Downgoing + 1

2
Upgoing standing waves would yield

gravitational waves that are downgoing at the expected horizon locations, conform-

ing to the expected behavior in physical black-hole spacetimes. (We do not expect the

stress-energy tensor of the sum of SW and RR waves to precisely match the Einstein

tensor of the SW spacetime because, of course, gravitational theory is not linear;

however, it is likely that ”effective linearity” holds in the sense defined by Price [4]
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for the non-tidally-locked case as well as for the tidally-locked case. In a future paper

we intend to explore this issue with a model that more closely resembles the BBH

problem.)

The scalar-field model we are currently analyzing is not sourced: the wave equa-

tion (7.1) we used to compute the SW solution is homogeneous. There is then no

perturbative homogeneous solution that is simultaneously 1
2
Outgoing − 1

2
Ingoing at

infinity and 1
2
Downgoing − 1

2
Upgoing at the expected horizon location. Since at the

outer boundary the problem is obviously linear for sufficiently weak scalar fields, it

is easy to reconstruct the outgoing solution from the SW solution there: we simply

double the outgoing component of the SW solution. The interesting case lies in the

extraction of a downgoing solution near r ≈ 2. We attempt to reconstruct the down-

going scalar field from the SW scalar field near the expected horizon by adding to the

SW field a perturbative RR field that is 1
2
Downgoing − 1

2
Upgoing at r ≈ 2. We then

compare the sum of SW and RR fields to the purely downgoing scalar field obtained

in Sec. 7.4.

As in Sec. 7.3.2, let S denote the spacetime of the complete standing-wave solu-

tion with back reaction. As discussed in the previous section, the spacetime of the

downgoing scalar field is approximated to sufficient accuracy for our purposes by the

Schwarzschild spacetime D.

The complete SW scalar field is a solution to the wave equation in spacetime S

(in our simplified treatment of the problem, spacetime S actually corresponds to the

time-averaged solution, i.e., one in which we ignore the oscillatory components of the

metric). The RR field is a solution to the same wave equation in S in our model.

The “reconstructed” downgoing field is, therefore, the downgoing solution to the wave

equation in S. We want to compare this to the “true” downgoing field, which is the

downgoing solution to the wave equation in D, i.e., in Schwarzschild.

In the region between the expected horizon location r = 2 and the inner edge of

the peak of the effective potential, the wave equation (7.1) is dominated by

d2Ψ

dr∗2
≈ −ω2Ψ (7.40)
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Figure 7.6: (a) The fractional difference in the amplitudes of the reconstructed scalar
field and downgoing scalar field δd/d ≡ (dSW+RR − ddown)/ddown (solid curve) and
the phase difference between the two fields δφd = φSW+RR

d − φdownd (dashed curve),
plotted vs. r∗. Scalar-wave amplitude and frequency chosen to model BBH separation
a ≈ 6M . (b) Same quantities plotted for scalar-field parameters chosen to model BBH
separation a ≈ 15M .

in both spacetimes S and D. Hence, the solution to the wave equation will be

oscillatory in r∗ with frequency ω, which makes sense on physical grounds, since

ingoing light cones are t+ r∗ = constant in both S and D. Moreover, as discussed in

Sec. 7.3.2, the metrics of the two spacetimes are nearly the same in the r∗ coordinate,

i.e., gS(r∗) ≈ gD(r∗). This suggests that to get the scalar wave phasing to agree, we

need to map between the two spacetimes using the r∗ radial coordinate.

We set the boundary conditions for both the RR field in S and the downgoing field

in D at a negative value of r∗ chosen so that the fields are at least a few wavelengths

inside the effective potential, and so that rS(r∗) is very close to rS = 2 (it might

actually be slightly inside r = 2). The SW+RR and downgoing scalar fields will match

by construction at the point where the initial conditions are set. We will integrate

both solutions toward larger r∗ and compare the quality of the match between the

two fields.

For the purposes of comparing the scalar fields in the two spacetimes, we sepa-

rate the complex scalar field Ψ(r∗) [the spatial factor of the complete field Φ(r, t) =

ℜ[Ψ(r∗)e−iωt]/r, cf. Eq. (7.3)] into upgoing and downgoing components. We define

the amplitudes and phases of the upgoing and downgoing fields as follows (see below
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for motivation):

u ≡ 1

2ω

∣

∣

∣

∣

dΨ

dr∗
+ iωΨ

∣

∣

∣

∣

; (7.41a)

d ≡ 1

2ω

∣

∣

∣

∣

dΨ

dr∗
− iωΨ

∣

∣

∣

∣

; (7.41b)

eiφu ≡ 1

2iωu

(

dΨ

dr∗
+ iωΨ

)

; (7.41c)

eiφd ≡ 1

−2iωd

(

dΨ

dr∗
− iωΨ

)

. (7.41d)

To motivate these definitions we consider the geometric optics limit, where the

wave phase evolves much faster than the amplitude. In this limit, the downgoing

component of the scalar field Ψd ∝ e−iωr
∗

separates unambiguously from the upgoing

component Ψu ∝ eiωr
∗

:

Ψ(r∗) = ueiφu + deiφd , (7.42a)

where we use the standard approximations

dφu
dr∗

∼= ω ≫
∣

∣

∣

∣

du

dr∗

∣

∣

∣

∣

, (7.42b)

−dφd
dr∗

∼= ω ≫
∣

∣

∣

∣

dd

dr∗

∣

∣

∣

∣

. (7.42c)

Inverting Eq. (7.42a) with these approximations yields the definitions (7.41). Al-

though the geometric optics approximations break down in the region of the effective

potential, and the separation of the scalar waves into upgoing and downgoing compo-

nents becomes ambiguous there because the wave speed is ill-determined outside the

short-wavelength limit, expressions (7.41) are adequate for comparing scalar fields in

our region of interest.

In Fig. 7.6 we show the fractional difference δd/d ≡ (dSW+RR−ddown)/ddown in the

amplitude of the downgoing components of the reconstructed SW + RR waves and

the downgoing waves along with the phase difference δφd = φSW+RR
d − φdownd . The

two plots represent the endpoints of the range of relevant BBH separations: a ≈ 6M

in Fig. 7.6(a) and a ≈ 15M in Fig. 7.6(b). Only the downgoing amplitude d and

downgoing phase φd are plotted. The upgoing field components are zero to numer-
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ical precision inside the effective potential and the differences between the reflected

upgoing components of the “reconstructed” and “true” downgoing fields outside the

effective-potential peak are similar to the differences between the downgoing field

components there, δu/u ∼ δd/d and δφu ∼ δφd.

The amplitudes and phases of the “true” downgoing field and the “reconstructed”

downgoing field match to within one part in ten million from the location where the

initial conditions are set (several scalar-field oscillations inside the effective potential)

to the inner edge of the effective-potential peak for all BBH separations in the range of

interest. Near the effective-potential peak the fractional difference in the amplitudes

does not exceed 0.03% and the phase difference is less than 0.002. Outside the effective

potential, the fractional difference in the amplitudes is 5 parts per million and the

phase difference is less than 0.00002 for the smallest BBH separations in the range of

interest.

We also compared the “reconstructed” and “true” downgoing fields very deep in-

side the effective potential when the field-matching initial conditions are set about 10

scalar-field oscillations inside the effective-potential peak. In this case, the amplitudes

of the two fields are equal to within numerical precision and the phase difference does

not exceed 3× 10−7 down to 500 scalar-field oscillations inside the effective-potential

peak. The fields begin to disagree significantly only once the naked singularity is

approached in the spacetime S, at rS(r∗) ∼< 0.2 2.

2It might seem odd that the fields continue to match far deeper (at far more negative r∗) than the
metrics, which begin to disagree by 10% at 500 scalar-field oscillations inside the effective-potential
peak. The reason is that in the wave equation, the metric enters only into the effective-potential
piece [see Eq. (7.31b)], which is so tiny throughout the region 0.2 ∼< rS ∼< 2 that even significant

deviations of the standing-wave spacetime metric gS from the Schwarzschild metric do not affect the
behavior of the scalar field.
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Chapter 8

A Three-Stage Search for
Supermassive Black Hole Binaries
in LISA Data

Gravitational waves from the inspiral and coalescence of supermassive

black-hole (SMBH) binaries with masses m1 ∼ m2 ∼ 106 M⊙ are likely

to be one of the strongest sources for the Laser Interferometer Space An-

tenna (LISA). We describe a three-stage data-analysis pipeline designed

to search for and measure the parameters of SMBH binaries in LISA

data. The first stage uses a time–frequency track-search method to search

for inspiral signals and provide a coarse estimate of the black-hole masses

m1, m2 and of the coalescence time of the binary tc. The second stage uses

a sequence of matched-filter template banks, seeded by the first stage, to

improve the measurement accuracy of the masses and coalescence time.

Finally, a Markov Chain Monte Carlo search is used to estimate all nine

physical parameters of the binary (masses, coalescence time, distance, ini-

tial phase, sky position and orientation). Using results from the second

stage substantially shortens the Markov Chain burn-in time and allows

us to determine the number of SMBH-binary signals in the data before

starting parameter estimation. We demonstrate our analysis pipeline us-

ing simulated data from the first LISA Mock Data Challenge. We discuss

our plan for improving this pipeline and the challenges that will be faced
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in real LISA data analysis.

Originally submitted for publication by Duncan A. Brown, Jeff Crow-

der, Curt Cutler, Ilya Mandel and Michele Vallisneri as a special issue

article in Class. Quantum Grav. (2007), preprint available online at

http://arxiv.org/abs/0704.2447.

8.1 Introduction

There is compelling evidence from electromagnetic observations that the cores of

galaxies contain supermassive black holes (SMBHs) [1]. SMBH binaries can form

after galactic mergers as the black holes from the individual galaxies fall to the center

of the merged system and form a bound pair. Hierarchical-merger models of galaxy

formation predict that SMBH binaries will be common in galaxies [2, 3] and the

presence of one such binary has been inferred from X-ray measurements of the core of

the galaxy NCG 6240 [4]. The evolution of an SMBH binary will eventually be driven

by radiation reaction from the emission of gravitational waves (GWs) and the binary

will inspiral and merge to form a single SMBH. The GWs from inspirals of SMBH

binaries with component masses m in the range m ∼ 104–107M⊙ will be one of the

strongest sources for LISA, the planned space-based GW detector [5, 6]. The direct

detection of SMBH binaries will be of wide astrophysical relevance, for example by

probing the merger rates and histories of galaxies [7], or by providing cosmological

standard candles [8].

Searching for SMBH binary inspiral signals is expected be one of the more straight-

forward tasks in LISA data analysis. The velocities of the black holes during the

inspiral are v/c ≪ 1, and so existing post-Newtonian waveforms [9, 10] will de-

scribe the gravitational waveforms with sufficient accuracy for use as templates in a

matched-filter search [11]. As such, searches for SMBH binaries in LISA data will

be similar in nature to existing searches for binary–neutron-star (BNS) inspirals in

ground-based GW detectors, such as the Laser Interferometer Gravitational-wave Ob-
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servatory (LIGO) [12]. However, there are several key differences between LIGO and

LISA binary inspiral searches. First, the LIGO pipelines are designed to search for

signals with expected signal-to-noise ratios (SNRs) ∼< 10, whereas the SNR of LISA

SMBH binaries at distances z ∼< 2 is expected to be several hundred or more. Sec-

ond, the BNS signals sweep through the sensitive frequency band of ground-based

detectors on timescales of order a minute, during which detector velocities and orien-

tations can be considered as fixed to high accuracy. By contrast, LISA will be able

to observe a single SMBH inspiral for weeks to months. During that time, the LISA

velocity and orientation change appreciably, inducing modulations in the recorded

signal. Indeed, almost all the information about an SMBH binary’s sky location and

orientation is encoded in these modulations. (In the ground-based case, a network

of three or more widely separated detectors is required to determine a binary’s sky

location by triangulation between the times of arrival of the GW signals at the dif-

ferent detector locations.) Finally, whereas the rate of BNS inspirals in ground-based

detectors makes it unlikely that multiple signals will be observed concurrently, LISA

data may contain simultaneous signals from a few different SMBH binaries.

Existing search pipelines developed for ground-based observations of stellar-mass

binary inspirals can achieve high detection efficiency already at SNRs ∼ 10 [13, 14,

15, 16], so the task of detecting SMBH inspirals with LISA seems easy in compari-

son. Furthermore, since SMBH binaries at z ∼ 1 have such high SNR, and because

of LISA’s relatively wider frequency band (roughly three orders of magnitude for

LISA, compared to two for LIGO), it should also be possible to determine the masses

and spins of the binaries with significantly higher accuracy in the LISA case than

for ground-based detections. Fisher-matrix calculations suggest that, for SMBHs de-

tected at z ∼ 1, LISA should be able to determine the chirp mass to relative accuracy

∼ 10−5, both individual masses to ∼ 10−3 and the SMBH spins to ∼ 10−3–10−2 [17].

Indeed, the goal of our data-analysis pipeline is not only to detect the SMBH signals,

but also to provide accurate measurements of the binary parameters.

Based partly on the considerations discussed above, our group has adopted the

following three-stage search method. Low-z SMBH binary inspirals are so bright that



251

they are easily visible as tracks in time–frequency (TF) spectrograms. Therefore our

first stage consists of a search for such TF tracks; the shape and location of the track

yields a first estimate of the two masses, m1 and m2, and the coalescence time, tc.

The second stage is a set of more refined grid-based matched-filter searches that start

in a neighborhood of the best-fit parameters found in the first stage; these searches

home in on more accurate values for the three parameters m1, m2 and tc. The

final stage is currently a straightforward implementation of a Markov Chain Monte

Carlo (MCMC) simulated-annealing search for the best-fit parameters in the full nine-

dimensional parameter space (including also the binary’s luminosity distance, initial

phase, inclination, polarization, ecliptic latitude and longitude).

There are a few reasons for adopting such a complicated algorithm. First, we

believe that the capability of looking for TF tracks is a very useful one to develop

in the LISA context: it is possible that there will be tracks that do not follow the

expected chirping pattern, and so would not be found by more sophisticated (grid-

based or MCMC) methods, even though they are visible to the eye. The track-search

method also allows us to count the number of SMBH binary signals present in the data

before attempting parameter estimation. Second, the grid search is useful to make

sure that we do not miss any binary sources, by examining the entire parameter space.

In the pipeline described here, however, we did not cover the entire parameter space

in our grid search; rather, we seeded the second-stage search using the parameters

obtained from the first stage. In future implementations, we intend to compare the

full grid search to this method. Finally, the MCMC approach is clearly very adept at

obtaining the final parameter estimates.

We have tested the performance of our SMBH binary search pipeline using data

from the Mock LISA Data Challenges (MLDCs) [18, 19]. The MLDCs are a program

sponsored by the LISA International Science Team to foster the development of LISA

data-analysis methods and tools, and to demonstrate already acquired milestones in

the extraction of science information from the LISA data output. In the MLDCs,

GW signals whose parameter values are unknown to the challenge participants are

embedded in synthetic LISA noise; participants are challenged to identify the signals
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and extract their parameters. Challenges of increasing difficulty are being issued

roughly every six months. The results from the first Challenge are summarized by

Arnaud and colleagues in this volume [20]. Challenge 1 included two datasets with

signals from isolated SMBH systems; we analyzed one of them. One of the goals of

the MLDCs is to demonstrate that data-analysis pipelines can actually achieve the

fantastic parameter measurement accuracy predicted by the Fisher-matrix analysis.

Two other differences between the ground-based and space-based cases deserve

mention. First, SMBH binaries may enter the LISA band with considerable eccen-

tricity, whereas the BNSs observed by ground-based detectors will have become es-

sentially circular by the time they enter the observation band. Second, in the ground-

based case the binary-inspiral signals are immersed in noise that originates almost

entirely from the instrument, while through much of LISA’s sensitivity band the dom-

inant noise comes from unresolved Galactic white-dwarf binaries. To keep Challenge

1 relatively simple, however, these last two complications were omitted in creating

the synthetic datasets, and hence from our initial pipeline described here.

The rest of this paper is organized as follows: in sections 8.2–8.4 we describe the

three stages in our SMBH binary data-analysis pipeline: a track search in the time-

frequency plane, a grid-based matched filtering search, and Markov Chain Monte

Carlo; in 8.5 we present the results of analyzing the MLDC dataset 1.2.1; and in 8.6

we discuss our plans for improving the pipeline to cope with issues such as binary

eccentricity and the noise sources likely to be observed in real LISA data.

8.2 Stage 1: Search for Tracks in the Time–Frequency

Plane

The TF spectrogram contains enough information to identify an SMBH binary inspi-

ral at a high SNR. The techniques described below make it possible to quickly search

for the presence of an SMBH binary inspiral in the signal and to get rough estimates

of its parameters.

Challenge 1 includes signals from the adiabatic inspiral of a circular binary system
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of nonspinning SMBHs. The frequency evolution of these inspirals is given by (7.11a)

of [21] in terms of the time of coalescence tc and the two SMBH masses m1 and m2.

We write it here as a function of the symmetric mass ratio η = m1m2/(m1 +m2)
2 and

the chirp mass Mc = (m1 + m2)η
3/5, using the second-order post-Newtonian (2PN)

approximation:

fGW(t) =
η3/5

8πMc
(Tc − T )−3/8

{

1 +

[

743

2688
+

11

32
η

]

(Tc − T )−1/4 − 3π

10
(Tc − T )−3/8(8.1)

+

[

1855099

14450688
+

56975

258048
η +

371

2048
η2

]

(Tc − T )−1/2 + O
[

(Tc − T )−5/8

]

}

.

Here fGW is the GW frequency in Hz, Mc is expressed in seconds, and T is the

dimensionless time variable related to coordinate time t by T = t η8/5/(5Mc).

We create a TF map of the noisy data stream s(t) = h(t) + n(t) [in fact, one of

the Time-Delay Interferometry (TDI) channels X(t), Y (t) and Z(t) provided in the

MLDC datasets], sampled with timestep dt, in two passes. On the first pass, we split

up the data stream into time bins of equal duration ∆t. The TF spectrogram will then

consist of pixels of size ∆t× ∆f , where ∆f = 1/(∆t). We determine the normalized

power contained in each pixel with a Fast Fourier Transform (FFT), normalizing by

the power spectral density of the noise, and then find the peak frequency in each

bin by searching for the loudest pixel (see below for details). The resulting set of

{time, frequency} pairs allows us to search for an inspiral track on the TF map (see

figure 8.1). Once such a track is identified, we make a second pass through the data,

iterating through the track region with time bins of varying duration to create an

improved TF map. Earlier in the track, a larger ∆t helps to detect a weak signal and

achieve greater frequency resolution; closer to coalescence, a smaller ∆t reduces the

error in estimating the rapidly chirping GW frequency.

In fact, we have made several improvements to the general approach outlined in the

previous paragraph. The first set of improvements concerns the determination of the

peak frequency in a given time bin. Simply searching for the loudest pixel would give

frequency-determination errors of order 1/(∆f), even for a noiseless signal. Instead,
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we achieve higher accuracy by modeling the bleeding of frequency into neighboring

pixels: specifically, we determine the peak frequency by fitting the logarithm of power

in the pixels nearest to the brightest pixel to a parabola, using zero-padding in the

time domain to achieve better frequency resolution when necessary. We also apply a

Hanning window to the signal prior to taking the FFT, and we overlap time bins to

avoid information loss from windowing.

Another improvement concerns the variable timestep and the selection of outliers

on the second pass through the data. If the peak frequencies of neighboring time bins

differ by more than 2∆f , we decrease ∆t by a pre-set factor (say, 1.5) to reduce the

sweep of frequency in each bin. If this operation fails to bring the peak frequencies

closer together, we declare the data point an outlier, and skip to the next bin.

The {time, frequency} data points obtained on the second pass serve as inputs to

a MATLAB least-squares fitting algorithm that extracts the inspiral parameters tc,

Mc and η by fitting these points to the model of (8.1) (see figure 8.2). Specifically,

we find the values t̂c, M̂c and η̂ that minimize the sum

Σ =

N
∑

i=1

[f(ti) − fGW(ti; tc,Mc, η)]
2 , (8.2)

where the ti are the centers of the output time bins, f(ti) are the associated frequen-

cies, and fGW(ti; tc,Mc, η) is the model from (8.1).

Although one could weight the data points on the basis of the signal amplitude,

such a weighting seems to carry little benefit: late in the inspiral, the increased am-

plitude offers greater SNR, which is however substantially offset by poorer frequency

determination (due either to frequency drift within each time bin if ∆t is not properly

adjusted, or to low frequency resolution if it is).

Table 8.1 shows the results of the TF search on the blind Challenge dataset 1.2.1.

After averaging results from the three TDI streams, we found M̂c = 1.208× 106 M⊙,

η̂ = 0.17 and t̂c = 1.3372 × 107 s. The accuracy of these estimates is discussed in

Sec. V below; suffice it to say that these first-stage results were certainly accurate

enough for our purpose.
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Figure 8.1: Time–frequency plot of the brightest pixel in each time bin, as computed
for the X channel of Challenge 1 training set 1.2.1. The bottom plot is a blown-up
version of the top plot showing the presumed track found on the first pass through
the data.

Table 8.1: Parameters extracted via TF searches from the X, Y and Z channels of
blind Challenge dataset 1.2.1. N is the number of data points obtained during the
second pass through the data and Σ is the sum of the squares of the residuals, as
defined in (8.2).

N Σ/10−11 Mc/(106M⊙) η tc/(107 s)
X 156 9.2 1.2096 0.182 1.3373
Y 190 9.21 1.2033 0.139 1.3370
Z 192 11.5 1.2099 0.183 1.3373
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Figure 8.2: The stars represent individual points on the TF map obtained during the
second pass through the data in the X(t) channel of where Training Set 1.2.1. The
curve is the result of fitting these points to the model (8.1).
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8.3 Stage 2: Grid-Based Search

The grid-based part of the search relies on the template placement algorithm of

Babak et. al. [13] and the findchirp matched filtering algorithm of Allen et. al. [14],

both of which were developed for the LIGO binary neutron star searches. The basic

algorithm is as follows: a grid of templates is constructed in the (m1, m2) plane

using the metric-based square-grid placement algorithm [22, 13] implemented in the

LIGO Algorithm Library (LAL) [23]1. The fineness of the grid is specified by its

minimum-match parameter MM, which is the minimum overlap between any point

in the parameter space and its nearest grid-point. To implement the algorithms

described in [14], we have written C code which implements the matched filtering

algorithms and template generation. These C functions are then “wrapped” by the

Simplified Wrapper Interface Generator (SWIG), which allows them to be called from

the Python high-level programming language. This approach allows us to rapidly

prototype and develop the procedure described below.

For each mass pair in the grid, we compute a (Fourier-transformed) waveform h̃(f)

(corresponding to coalescence at t = 0), using 2PN waveforms and the stationary

phase approximation (SPA) [24]. We transform from h̃(f) to the LISA TDI variable

X̃h(f) using

X̃h(f) = sin2(2πfL)h̃(f), (8.3)

where L is the LISA arm length. Let the (Fourier transformed) data be X̃s(f); then

for each template waveform X̃h(f) in our grid we use the FFT to compute the inverse

Fourier transform

z(t) =

∫

X̃s(f)X̃∗
h(f)

SX(f)
e2πitf df, (8.4)

and we maximize |z(t)| over t to estimate the time of coalescence. We identify the

best-fit point in the (m1, m2) plane, and then repeat the search in a neighborhood

of that point, with a finer grid. We do this four times, with a final minimum-match

1Babak et. al. also describe a more efficient hexagonal placement algorithm, however we were
unable to place templates for LISA SMBH binaries using the LAL implementation of this algorithm.
We intend to work with the authors of the LAL code to resolve this.
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parameter MM = 0.995. For Challenge 1.2.1, based on the results from the TF stage

(m1 ≈ 2.9 × 106M⊙ and m2 ≈ 7.3 × 105M⊙), we chose our initial grid to cover the

portion of the (m1, m2) plane satisfying 6 × 105 < m2 < m1 < 3.2 × 106M⊙, with

initial MM = 0.30.

Now, our parameter-estimation errors are dominated not by the coarseness of

the grid, but by the fact that our 2PN SPA waveforms are not identical to BBH

waveforms injected into the Mock LISA data, even for the same parameter values.

Our 2PN SPA waveforms differ from the MLDC versions by higher-order PN terms,

and do not include the modulations due to the detector motion. They are also simply

cut off at the frequency of the innermost stable circular orbit (ISCO) of a test mass in

the Schwarzschild spacetime, while the MLDC waveforms end with a very particular

choice of taper. Therefore we do one final grid search using MLDC waveforms (again

with MM = 0.995), and for some particular choice of the five angles (θ, φ, ι, ψ, ϕ0).

Although these angles are wrong, in this step the other features of the templates (e.g.,

the Doppler modulation of the frequency due to LISA’s orbit and the amplitude taper)

do match those of the injected MLDC binary waveforms, and so presumably yield

improved parameter estimates.

8.4 Stage 3: Markov Chain Monte Carlo

So far, the first two stages have given estimates only of the two masses and coalescence

time; in addition, the stage-2 analysis was based only on the X channel. Thus, we

rely on the MCMC stage to find the distance, sky location, and the polarization and

inclination angles of our source. A more efficient way to do this would be to use the

F -statistic [25, 26] to automatically optimize over four amplitude parameters that

are functions of distance, polarization, inclination and initial phase; however, we did

not have time to implement this procedure for Challenge 1. Therefore our MCMC

code does a brute force search over all parameters—but with the advantage that it

starts in the right vicinity for the masses and coalescence time, as estimated in the

first two stages.
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MCMC approaches have shown promise in the extraction of GW-source parame-

ters with LISA [27, 28, 29, 30, 31, 32]. Nevertheless, it has been suggested that, for

SMBH binaries, MCMC searches over a full parameter set need to be started in a

neighborhood of the correct source parameters to efficiently characterize the posterior

probability density functions [28]. Since the initial search grid provided a good esti-

mate of three parameters (the constituent masses and coalescence time tc), and since

it is trivial to extremize analytically over the luminosity distance, we were hopeful

that we could determine the values of the sky location and binary orientation with a

straightforward implementation of the Metropolis–Hastings Algorithm (MHA). Since

time was limited and posterior distributions were not required for Challenge 1, we

chose not to estimate these, but rather to use the MHA to locate the best-fit param-

eters.

In the MHA, a Markov chain is built by accepting a new proposed point with

probability α = min(1, H); H is the Hastings ratio for a jump from position ~x to ~y

in parameter space, given by

H =
p(~y)p(s|~y)q(~x|~y)
p(~x)p(s|~x)q(~y|~x) , (8.5)

where p(~x) is the prior distribution, p(s|~y) is the likelihood of the parameter set ~y

producing the signal s, and q(~x|~y) is the proposal distribution used to generate the

move from ~x to ~y. If the noise is a normal process with zero mean, the likelihood is

given by

p(s|~λ) ∝ exp−
(

s− h(~λ)
∣

∣s− h(~λ)
)

/2 , (8.6)

with “(·|·)” the standard inner product computed with respect to the LISA instrument

noise.

The Markov chain process is guaranteed to converge to the posterior probability

distribution if the proposal distribution is nontrivial; however, the speed of conver-

gence does depend on its choice. In this search we adopted two types of proposals:

the first consisted of a multivariate normal distribution with jumps directed along

the eigendirections of the Fisher information matrix, computed locally; the second
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amounted to drawing parameters from uniform distributions. For the angular param-

eters, both timid and bold draws (from small or large ranges) were made to ensure

we were fully exploring parameter space; for the component masses, only timid draws

(< 1%) were used.

Multiple concurrent chains were started using the parameter estimates obtained

in stage 2. These were run on a supercomputing cluster with 3.2 GHz Intel Pentium

4 processors, using Synthetic LISA [33] to reproduce the LISA response to the SMBH

binary waveforms. Each run was limited to 12 hours, providing ∼ 3, 500 steps in

each of the chains. The most promising candidates at the end of the first run were

used as the starting locations of a second run. At the end of the first run the best

candidates had reached log likelihood values in the neighborhood of 200, 000; the

second run saw them increase to ∼ 205, 000. The chains converged around two points

in parameter space, differing by their locations on opposite sides of the sky. This was

not unexpected: dual maxima at antipodal sky positions are a well-known degeneracy

for LISA sources. Our choice between the two final parameter sets was based on a

visual comparison of the putative signals with the challenge dataset.

In future implementations of the pipeline, we plan to incorporate the F -statistic

in the MCMC stage to reduce the size of parameter space. This will increase search

efficiency and relax the need to begin the search in a neighborhood of the best-fit

parameters (something that will be necessary when searching for the dimmer SMBH

binaries of Challenge 2). Another time-saving measure will be to start the search on

a limited portion of the data stream, and then steadily increase its size. This process,

called frequency annealing [34], allows a quick initial exploration of parameter space,

and a careful later investigation of the exquisitely sharp likelihood peaks close to

bright SMBH binaries.

8.5 Results for MLDC Challenge

As was the case for many Challenge-1 participants, the Dec. 3, 2006 submission

deadline arrived before our pipeline was fully ready; nevertheless we decided to submit
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our best estimates for the parameters of the blind dataset 1.2.1. This dataset consisted

of the three TDI unequal-Michelson channels X(t), Y (t) and Z(t). In stage 1 of our

search, we analyzed each of these channels separately, and simply averaged the three

results to arrive at the stage-one parameter estimates shown in the fourth column

of table 8.2. In stage 2, only the X(t) data was analyzed (partly because of time

pressure). In stage 3, we analyzed two orthogonal TDI channels given by X and

(X + 2Y )/
√

3.

The true signal parameters were made publicly available on Dec. 4, and here we

briefly describe how our search fared in their recovery. The injected signal had a

combined2 (A + E) SNR of 667.734; its true physical parameters are listed in the

third column of table 8.2. Our best-fit waveform matched the true waveform rather

well: it had an SNR of 664.47 and its cross-correlation with the true waveform was

0.994 for the A channel and 0.996 for the E channel [35]. The quality of the fit is

illustrated in figure 8.3, which compares the true X(t) (produced by us from the key

file) with our best-fit X(t), for short time stretches near the coalescence time tc and

near the beginning of the dataset. Clearly our fit is excellent near tc, where most

of the SNR accumulates, but is much poorer at early times, when the contribution

to the SNR is much lower. The lesson from the other two Michelson variables is

qualitatively the same.

Our best-fit parameters are listed in the last column of table 8.2: our inferred

chirp mass Mc was correct to within ∆Mc/Mc < 10−3, our inferred symmetric mass

ratio η to within ∆η ≈ 4× 10−3, and the error in our coalescence time was ∆tc ≈ 45

s, corresponding to approximately 0.05 GW periods just before the plunge. Nev-

ertheless, it is clear from our estimates for the other parameters that, instead of

converging on a neighborhood of the true maximum, our MCMC code locked onto a

high but secondary maximum of the posterior probability distribution. Our inferred

sky position is almost at the antipodes of the actual location (i.e., our ecliptic latitude

is approximately the negative of the true value, and our ecliptic longitude is off by

2In this context, A and E are the orthogonal, optimal TDI observables given by (2X −Y −Z)/3
and (Z−Y )/

√
3, as used in [20]. The third orthogonal, optimal TDI observable, T , contributes only

a tiny fraction of the total SNR for these sources.
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Table 8.2: True values and estimates from three steps for the challenge parameters.
In stages 1 and 2 estimates were made only for parameters Mc and η (and therefore
m1 and m2) and tc.
Parameter Unit True value Stage 1 Stage 2 Stage 3
Mc 106 M⊙ 1.2086 1.208 1.2108 01.2077
η 0.160 0.17 0.163 0.156
m1 106 M⊙ 2.8972 2.74 2.8536 2.9652
m2 106 M⊙ 0.7270 0.76 0.7381 0.7130
tc 107 s 1.3374027 1.3372 1.3374149 1.3374072
Ecl. Lat. θ rad 0.492 – – 0.536
Ecl. Long. φ rad 0.866 – – 4.039
Pol. Angle ψ rad 3.234 – – 5.886
Init. Phase ϕ0 rad 3.527 – – 0.233
Distance D 109 pc 8.000 – – 16.811
Incl. Angle ι rad 1.944 – – 0.617

nearly π). This was not due to a mismatch of conventions or a bug in our code;

rather, it reflects the above-mentioned degeneracy between antipodal sky locations

(the degeneracy becomes perfect in the low-frequency limit). The four parameters

(D, ι, ψ, ϕ0) that determine the overall complex amplitudes of the GW polarizations

h+ and h× were also off by factors of order one, except for our overall phase ϕ0, which

was correct to within 0.004 radians (modulo π).

Figure 8.3: Comparison of our best-fit X(t) to the true X(t) for a) a short stretch of
time near tc and b) a short stretch near the beginning of the dataset. Clearly, our fit
is excellent near tc, where most of the SNR accumulates, but much poorer at early
times.

It is also instructive (and reassuring) to contemplate the performance of the first

two stages of our search. Stage 1 returned Mc with a fractional error ∆Mc/Mc < 10−3,
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η to within ∼ 6%, and tc to within ∼ 2 × 103 s. After stage 2, the estimated Mc

was in fact slightly worse, but the errors in η and tc were significantly reduced, to

∆η ≈ 0.003 and ∆tc ≈ 120 s. This gratifying level of accuracy indicates that the

coarser stages 1 and 2 were indeed accomplishing the job required of them.

8.6 Future Directions

As explained above, the most obvious improvement to our pipeline will be to recast

the MCMC stage so that it maximizes the F -statistic on the 5-dimensional space

(Mc, η, tc, θ, φ), reducing the search-space dimensionality by three. In addition, we

will extend our grid search to handle the case where the merger occurs after the end

of the dataset (we did not compete on dataset 1.2.2 because our current grid search

could not handle such mergers). This generalization should be fairly straightforward.

In the second round of Challenges (see the proceeding by Arnaud and colleagues

in this volume [35]), dataset 2.2 contains signals from an entire Galaxy’s worth of

white-dwarf binaries, four to six SMBH binary inspirals (the exact number is not

specified) with SNRs ranging from ∼ 10 to ∼ 2000, and five EMRIs. Our plan is to

first run our pipeline as a standalone search for the SMBH binaries, and then to join

forces with Crowder and Cornish’s WD binary search [32] to iteratively improve the

fits provided by the two searches. Beyond that, we plan to extend the SMBH binaries

search to include: 1) merger and ringdown waveforms; 2) spin-precession effects; and

3) the effects of nonzero eccentricity. For the first two items, we intend to make use of

the technology already developed by the ground-based GW community. For instance,

Buonanno, Chen, and Vallisneri [36] have shown how searches for binaries of spinning

BHs can be made considerably more efficient by dividing the parameters into intrinsic

(such as the masses) and extrinsic (such as the orientation of the orbital plane at a

fiducial time), and optimizing over the extrinsic parameters semi-analytically. (This

can be viewed as a generalization to spinning binaries of the F -statistic analysis

mentioned above.) We shall endeavour to generalize this strategy to LISA searches

for SMBH binaries.
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