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Abstract

Interactions between fluid flows and elastic bodies are ubiquitous in nature. One such phenomena

that is encountered on a daily basis is the flapping and fluttering of leaves in the wind. The fluid-

structure interaction that governs the physics of a leaf in the wind is poorly understood at best and

has potential applications in biomechanics, vehicle design, and energy conversion. We build upon

previous work on the flapping dynamics of inverted flags, which are cantilevered elastic sheets with

free leading edge and fixed trailing edge that display unique large amplitude oscillatory behaviors.

We model a leaf in the laboratory using modified inverted flags, experimentally probing the governing

parameters behind leaf fluttering as well as shedding light on the physics behind the inverted flag

phenomena. The behavior of these “inverted leaves” studied here display sensitive dependence on

two biomechanically relevant parameters, stem-to-leaf rigidity and stem-to-leaf length. In addition,

leaves on a tree are not often found alone. We seek to understand the complex interactions of multiple

fluttering and flapping leaves by way of examining the interactions between pairs of inverted flags.

Coupling through their flow fields, pairs of inverted flags exhibit striking emergent phenomena. We

report these observed dynamical behaviors and the conditions upon which they arise.
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Chapter 1

Fluid-structure Interactions of
Inverted Leaves

1.1 Introduction

1.1.1 Motivation

In our natural world, interactions between fluid forces and elastic bodies are ubiquitous. Examples

can be seen in leaves that flap and flutter in the wind, or fish that bend and deform for propulsion.

In living organisms, the prevalence of fluid-structure couplings over rigid body aerodynamics can

often lead to unique dynamical behaviors. Thus, the field of bio-inspired engineering has flourished

in recent years as researchers seek inspiration from these uniquely natural phenomena. Much work

has concentrated on animal locomotion, from the beating of flagella [1], to the jet-propulsion of

jellyfish [2, 3], to the paddling propulsion of ducks [4].

However, the fluid-structure interactions of passive organisms, such as the leaves of a plant

waving in the wind whose motion require no energy expenditure on account of the plant, has not

yet garnered the same attention. From a biological standpoint, the motion of leaves in the wind is

important to understand how plants reconfigure their shapes and orientations to reduce drag and

mitigate damage in high winds [5, 6] and how mechanical deformation affects photosynthesis and

water interception [7]. From an engineering standpoint, the motion of leaves in the wind is important

to understand the fundamental physics of fluid-structure interactions, that can then inform research

that seeks to reduce vibrational damage to structures and vehicles. It will also inform the design of

new systems that harness alternative forms of energy that rely on the capture of fluid kinetic energy

[8, 9, 10]. Current horizontal axis wind turbines, the most prevalent method used to capture wind

energy, are incredibly large and costly, operating only over a narrow range of wind velocities before

damage. Recent work has focused on the possibility of capturing wind energy using the fluttering of

flags [11], as well as improving the performance and robustness of vertical axis wind turbines, noted



2

for their increased power density, by incorporating pliable blades [12].

In order to understand the physics behind the motion of leaves in the wind, one approach is

to look towards the widely studied motion of flags in the wind. Experimental studies have made

much progress in characterizing the motion of these flags with respect to various parameters [13],

as well as visualizing the flow structures [14]. Theoretical studies have focused on computational

simulations as well as on the effects of wake structure [15] and stability [16]. Unfortunately, while

these flag studies have greatly informed our understanding of the motion of leaves in the wind, they

uniformly ignore one crucial parameter: flow orientation. In these studies, flags are defined by a

piece of elastic material fixed at the front edge and free at the rear edge, hereby referred to as the

“conventional” orientation. Upon observation of the flapping and fluttering of leaves in the wind,

it is important to note that there is high variability in wind direction and speed. Thus, using only

a conventional flag to model the behavior of a leaf would ignore the majority of the physical states

of the system! As the wind may blow in any direction, some leaves in tree are bound to be in an

inverted orientation to the wind, with a free front edge and fixed rear edge.

In 2013, Kim et al. was the first to investigate the behavior of a so-called “inverted” flag, with

a clamped trailing edge and free leading edge . The result was surprising, to say the least. The

inverted flag displays a self-excited large-amplitude flapping motion about an order of magnitude

larger than the fluttering motion of conventional flags. A few studies in the literature had observed

similar fluttering behaviors in reversed flow orientations, such as the dynamical behavior of cylinders

clamped at the rear edge and free at the front edge [18], and the clapping pages of a book orientated

with pages pointing into the flow [19]. However, the observation of a large amplitude motion found

in inverted flags was unprecedented.

While the inverted flag model captures the effects of flow orientation, another crucial element is

required in order to accurately model a leaf: the leaf stem. The experiments presented here build

upon the inverted flag model of Kim et al. (2013) by freeing the boundary condition on the rear

edge of the sheet and instead, introducing a thin elastic stem fixed at the rear end. This will be

henceforth referred to in this study as an inverted leaf. By probing the effects of various parameters

on the behavior of these inverted leaves, we aim to understand the morphology of leaves from a fluid

mechanical standpoint.

1.1.2 Plant Morphology

Many studies have been conducted assessing the effects of fluid forces on plants. In increasingly high

winds and in a conventional orientation, leaves such as that of tulip poplars and red maple, among a

great many others, reconfigure by rolling up into a cone, resulting in a drag that grows much slower

than the classic U2 law [5]. In addition, the shape of the base of the leaf blade, where it meets with

the leaf stem, was found to contribute to this roll-up [20].
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The mechanical properties of the leaf blade and stem are crucial to a plant’s resilience to being

blown over or uprooted. Perennial plants such as trees, which take many years to reach sexual

maturity, often develop structures to enable them to survive an extreme range of environmental

conditions. For trees in high wind, local failure (losing leaves and branches) rather than global

failure (uprooting) may be an indication of fit design. The loss of easily replaced features such as

leaves and branches, the largest source of drag in a tree, reduces the drag of the tree and decreases

the chance of being uprooted, ensuring that the tree will survive.

One important parameter in plant morphology that has received attention is flexural rigidity,

or resistance to bending which is dependent on both material (Young’s modulus) and geometric

properties (second moment of area). One study found that loblolly pines subjected to higher winds

typically had higher flexural rigidities but lower Young’s modulus [21], and while its results are

contested and certainly inconclusive [22], it highlights the relevance of wind on plant morphology.

1.1.3 Conventional Flag Behavior

In a uniform flow and neglecting three-dimensional effects, conventional flags typically exhibit three

distinct dynamical states: a stretched straight state, a fluttering state, and an aperiodic flutter state

[14, 15, 23]. The stretched straight state is characterized by a lack of motion and occurs either below

a critical flow velocity or under a critical flag length. In the fluttering state, the motion of the flag

consists of traveling waves that move down the length of the flag. The maximum tip amplitude of

flutter in the conventional flag never exceeds approximately 0.5 of the flag length [14].

1.1.4 Inverted Flag Behavior

A schematic of the typical inverted flag is presented in Figure 1.1. The motion of inverted flags can

be divided into three main behavioral regimes, however, with drastically different properties than

the conventional flag [17]. At low wind speeds, only a straight mode with low amplitude flutter is

observed (left-most panel in Figure 1.2). Past a certain critical wind speed, Ulower, the flag enters a

limit-cycle flapping mode with large amplitude periodic flapping (center three panels in Figure 1.2).

Past another critical wind speed, Uupper, the flag enters a deflected or bent mode also with low

amplitude flutter (right-most panel in Figure 1.2). While the fluttering of conventional flags consists

of traveling waves that move down the length of the flag, the flapping of the inverted flag is observed

to be a stationary wave [17].

Previously, our group at Caltech studied the effect of two non-dimensional parameters that

characterize the interaction between fluid flow and elastic sheets [17]. These two parameters, κ and

mass ratio µ, represent the ratio of hydrodynamic pressure to elastic restoring forces and the ratio
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of fluid-to-solid inertia, respectively. They are defined as

κ ≡ ρU2L3

D
, µ ≡ ρL

ρsh

where U is the wind velocity, L is the sheet length, h is the sheet thickness, ρ is the fluid density, and

ρs is the sheet density. The flexural rigidity D of the elastic sheet is defined by D ≡ Eh3/[12(1−ν2)],

where E and ν are the Young’s modulus and Poisson’s ratio of the sheet, respectively. The range of

large-amplitude flapping of the inverted flag was found to appear in a narrow range of κ (a function

of U), above a certain aspect ratio, and be largely independent of µ.

1.2 Methods

1.2.1 Experimental Setup

Experiments were conducted in an open-loop wind tunnel with a square cross section of side length

1.2 m and capable of producing free-stream velocities between 1.8 and 8.2 m/s (Figure 1.3). The

tunnel is composed of an array of 10 x 10 computer fans [24]. The trailing edge of the leaves are

clamped vertically between two aluminum strips. Thicknesses of the strips were chosen to balance

the trade-off between rigidity and potential effects on the flow structure. For this study, the clamp

chosen measured 1.27 cm wide normal to the flow and 1.27 cm in long in the direction of the flow.

We assumed and verified that for leaves of lengths much greater than that of the clamp, the effects

of the clamp on behavior are negligible.

Images of the leaf motion are captured with a Integrated Design Tools, Inc. NanoSense MkIII

high-speed camera mounted above the test section. Images were taken at a frame rate of 100 frames

per second, for varying periods of time to capture various dynamical behaviors.

AU H

L
y

x

Figure 1.1: Schematic of inverted flag from side view (left) and top view (right), with major
dimensions indicated.
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Figure 1.2: Stroboscopic images (upper panels) and corresponding time series (lower panels) of an
inverted flag in an increasingly faster free-stream. Images were taken over 2.5 seconds for each panel
and overlaid, with darker areas indicating longer flag presence. From left to right as free-stream
velocity increases (increasing κ): straight mode (no flapping), flapping mode, flapping mode (larger
A), flapping mode (erratic), deflected mode.

U
Flag

Camera

Clamp

Figure 1.3: Schematic of experimental setup, indicating locations of the flag, clamp, flow direction,
and high-speed camera.
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AU H

Lb Ls

L

Hs

Leaf blade

Leaf stem

Figure 1.4: Schematic of inverted leaf a from side view (left) and top view (right). Both leaf stem
and blade are polycarbonate.

1.2.2 Leaf Properties

To experimentally model the fluid-structure interactions of a leaf, we construct artificial leaves

out of of polycarbonate, with Young’s modulus E = 2.41 × 109 N/m2, Poisson’s ratio ν = 0.38,

and density ρs = 1.2 × 103 kg/m3. As depicted in Figure 1.4, the leaf blades in this study are

constructed from single rectangular sheets, of varying lengths Lb, constant height H = 17.78 cm,

and constant thickness hb = 0.0508 cm, along with a small rectangular tab jutting from one edge,

of height constant Hs = 1.27 cm equal to that of the stem and constant length 1.27 cm. This small

rectangular tab is used to join the blade to the stem, constructed from two slender rectangular bars

that are sandwiched together along with the leaf blade tab and joined with cyanoacrylate adhesive

(Superglue). These two joined slender rectangular bars form the leaf stem, of varying lengths Ls,

constant height Hs = 1.27 cm, and varying total thickness hs. Note that the total length of the leaf

will be denoted L with no subscript, to remain consistent with the notation for traditional inverted

flags with no stem and fully fixed rear edge.

The rationale behind the two-layer composite design of the leaf stem was to maintain as much

simplicity and isotropy in the leaf as possible. Because of their observed regular oscillatory flapping

motions, we aimed for symmetry, resulting in the stem-leaf blade tab-stem composite. The leaf

blade tab used to join the stem and blade was designed to be as short as possible while maintaining

a solid connection between the two regions of the leaf. Therefore, we ignore any effects of either the

leaf blade tab or the two-layer composite nature of the stem and assume that they are negligible.

Further consideration of these effects and other leaf designs are beyond the scope of this thesis and

can be a avenue for future work.

We assume that fluid loading on the stem itself is negligible compared to the elastic forces in the

stem because of its small surface area. This was confirmed by placing the stem by itself in the wind

tunnel without a blade, where no motion was observed for any wind velocity. We have chosen to

focus our attention on the presence of the stem in shedding light on the behavior of leaves in nature.

We have also chosen to fix the overall lengths of all leaves/flags studied to L = 17.78 cm, in order

to fix the Reynolds number, Re ≡ UL/ν = O(104), where ν is the kinematic viscosity of air. In this
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Figure 1.5: Stroboscopic images (upper panels) and corresponding time series (lower panels) of an
inverted leaf in an increasingly faster free-stream. Overlaid images were taken over 5 seconds. The
leaf blade and stem can clearly be distinguished in the stroboscopic view. In the times series, the
blue curves corresponds to the tip positions of the full leaf at the end of the blade, while the orange
curves corresponds to the positions of the end of the stem, where it meets the blade.

Increasing
Ls

Lb

Increasing
Ds

Db

Figure 1.6: Overview of leaf experimental characterization, indicating the two parameters of inter-
est: stem-to-leaf rigidity and stem-to-leaf length. Stroboscopic images featured here display inverted
leaves at various wind speeds that correspond to each’s respective maximum flapping amplitude.
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thesis, we will be considering the effects of both stem length and stem rigidity on the behavior and

dynamics of our inverted leaves (see Figure 1.6). We examine stem-to-blade length ratio Ls/Lb of

5/9 and 9/5 (henceforth referred to as the “low” and “high” stem-to-blade length ratio, respectively)

by varying the lengths of the stem and blade accordingly such that overall length L is constant. We

then examine stem-to-blade flexural rigidity ratio Ds/Db of 3.38 and 8, (henceforth referred to as

the “low” and “high” stem-to-blade rigidity ratio, respectively) by only varying the thicknesses of

the leaf stem and keeping the leaf blade rigidity constant. Note that because blade and stem are

constructed from the same material, Ds/Db = h3s/h
3
b .

1.2.3 Image Processing & Data Extraction

The top edge of the inverted leaf is painted with white correction fluid for increased contrast with

a black background during image capture. Images of the top edge of the leaves are then processed

using MATLAB. Edge detection is used in order to extract the leaf position. Various behavioral

features, such as amplitude and frequency can thus be measured. Stroboscopic images of the leaf

motion are generated by overlaying all images taken over the sample period using transparency.

Darker areas will indicate increased presence in that location during its flapping cycle, allowing us

to precisely see when flapping is periodic versus erratic.

Both the top edge of the stem and the top edge of the blade are tracked through high-speed

photography, with the key points of interest being the location of the tip of the blade and the

location of the tip of the stem where at the stem-blade joint. Because the top edge of the blade is

tracked rather than the centerline of the blade, slight three-dimensional effects can be seen as a result

of the slight three-dimensional bending at the top and bottom edge of the blade when under high

fluid loading. Since we have kept H constant, three-dimensional effects increase with greater Ls/Lb,

as the aspect ratio of the blade increases. These effects can be observed in the stroboscopic images

presented (see Figures 1.6, 1.5), manifested by the slightly greater range of motion of the leaf blade

in the deflected position. However, because all three-dimensional effects in the leaves studied are

small relative to the extraordinarily dramatic large-amplitude behavior of the inverted configuration,

we will assume that these three-dimensional effects have negligible effects on the general behaviors

and trends observed.

In order to mollify error introduced by the composite structure as well as other experimental

error, three of each leaf/flag tested in this thesis were constructed and results are averaged between

the three. Again, relative to the highly regular large-amplitude dynamical behavior of the inverted

configuration, experimental error was found to have negligible effects on the general behaviors and

trends observed.
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1.3 Results

1.3.1 Behavioral Regimes

The presence of the leaf stem in the inverted leaf does not preclude any of the major behavioral

regimes observed in the inverted flag. As flow velocity increases, the inverted leaf exhibits a straight

mode, regular flapping mode followed by brief erratic flapping, and a deflected mode. Figure 1.5

presents stroboscopic images and time series of stem and blade tip positions for the same inverted

leaf at select flow velocities. The time series of stem and blade tip positions are normalized by the

full length of the leaf, L. Similar to the inverted flag, the full leaf amplitude (blade tip) increases

with flow velocity in the flapping regime. We observe that the stem tip amplitude also increases

with flow velocity and is always exactly in-phase with the blade tip. This supports the notion that

the oscillations of the inverted leaf form a stationary wave, just as in the inverted flag, rather than

a travelling wave as in the conventional flag.

Rather than the curved mode shape of the flapping inverted flag, which is similar to the fun-

damental mode of the linearized Euler-Bernoulli beam [17], the flapping inverted leaf exhibits a

starkly different shape. The stem bends with a curved shape, but the blade remains almost per-

fectly straight at all flow velocities (see stroboscopic images in Figures 1.6, 1.5 and compare with

inverted flag images in Figure 1.2). Because of the change in rigidity and sharp corner at the narrow

joint between the stem and blade, all the strain in the blade from fluid loading is concentrated at the

stem-blade joint. The high stress concentrations located around the joint will be further discussed

in a later section on the limiting behavior of inverted leaves.

1.3.2 Stem Length & Rigidity Effects

As stem-to-blade length ratio increases, the flapping regime shifts to higher flow velocities as both

Ulower and Uupper increase (see Figure 1.7). This trend persists regardless of the stem-to-blade

rigidity ratio, although for more rigid stems during the transition from flapping to bent, this upward

shift is much more pronounced. Similarly, as stem-to-blade rigidity ratio increases, the flapping

regime shifts to higher flow velocities (see Figure 1.8) and this trend persists regardless of the stem-

to-blade length ratio.

Overall, the leaf with the highest velocity flapping regime is also the leaf with the widest flapping

range (∆U = Uupper − Ulower): the leaf with the shorter and more rigid stem. Compared with the

behavior of the inverted flag (with the entire rear edge fixed but same full length L, height H, and

blade thickness), this leaf also happens to be the leaf that most closely resembles the inverted flag

in both flapping regime (see Figure 1.7b) as well as shape. These results suggests that the presence

of the stem serves to decrease the threshold flow velocities for flapping and bent regimes.

The maximum full leaf flapping amplitudes show a high monotonic dependence on stem rigidity
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and low dependence on stem length. For the low rigidity stems (see Figure 1.7a), maximum flapping

amplitude is greater than that of the inverted flag and closer to the maximum possible normalized

amplitude of 2. As stem rigidity increases, maximum flapping amplitude decreases. For a perfectly

stiff stem, the maximum possible flapping amplitude is only 2Lb/L, which decreases as stem length

increases. Behavior at this limit will be discussed in further detail in the following section.

The stem flapping amplitudes prescribe to the exact same behavioral regimes as the full leaf

behavior for all leaves. Interestingly, the stem amplitudes do not appear to level off and plateau at

the end of the flapping regime quite as much as the full leaf amplitudes. Rather, they monotonically

increase up until the immediate transition into the bent regime. However, whereas inverted flags

and the full leaves typically reach normalized amplitudes of about 1.8 to 1.9 before transitioning to

the bent regime, the tip amplitudes never exceed 1.5. At low stem lengths, the rigidity dependence

of stem amplitude is dramatic (see Figure 1.8a) as highly rigid stems flap very little. At high

stem lengths, this dependence is much less significant (see Figure 1.8b) as the stem amplitudes are

comparable throughout the flapping regime.

1.3.3 Limiting Behavior

Next, we consider the limits at very high stem rigidity, and then at vanishing stem length. Figure 1.9

presents the case where Ds/Db = 27. At some critical flow velocity within the flapping regime, the

stress concentration at the blade-stem joint causes the polycarbonate to fail and crack at the joint.

This failure occurred repeatedly at U = 5.1 m/s for all three leaves constructed. Once the blade-
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Figure 1.7: Full leaf (top) and stem (bottom) flapping amplitudes of inverted leaves as stem-to-
blade length ratio varies. Stem length effects are shown for both (a) low stem rigidity leaves as well
as (b) high stem rigidity leaves.
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Figure 1.8: Full leaf (top) and stem (bottom) flapping amplitudes of inverted leaves as stem-to-
blade rigidity ratio varies. Stem rigidity effects are shown for both (a) low stem length leaves as well
as (b) high stem length leaves.
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stem joint cracks, the leaf immediately transitions to the bent regime (see Figure 1.10). Similarly, in

the vanishing stem limit, the polycarbonate also fails at the leaf blade-stem joint after a critical flow

velocity (U = 3.8 m/s) within the flapping regime (see Figure 1.11). While the model leaves in this

study are only crude approximations of the diverse range of leaf morphologies found in nature, this

limiting behavior lends insight to the importance of stem rigidity and stem length on leaf behavior,

as well as to the adaptations in leaf morphology of plants that thrive in high wind conditions in

order to avoid damage.

1.4 Conclusions

The dynamics of the inverted leaf are found to heavily depend on stem length and stem rigidity.

Not only do the critical threshold velocities for flapping shift accordingly, but also the amplitude of

motion, stem curvature, and conditions for failure. Future avenues for work can potentially lie in

comparing these experimental results with wind tunnel testing of real tree leaves, similar to Vogel

(1989), but rather in an inverted configuration. In addition, flow visualization would be extremely

useful in revealing the underlying vortex dynamics.
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Chapter 2

Dynamical Behavior of Coupled
Inverted Flags

2.1 Introduction

2.1.1 Motivation

In the previous chapter, we experimentally studied the fluid-structure interactions of a single leaf in

an inverted orientation. However, upon observation of the fluttering of a real leaf on a real tree, one

may notice that this leaf is rarely alone. Rather, each leaf interacts and couples with the multitude

of leaves in close proximity. Thus, in order to understand the physics behind leaf fluttering, we must

uncover the dynamical interactions between multiple elastic structures and their flow fields.

The fluid mechanics of multiple bodies is a topic of great interest, having been applied to fish

to understand schooling patterns and animal locomotion [25], as well as humans to decrease drag

during swimming competitions [26]. It is also a topic of immediate relevance. In the field of renewable

energy, for example, one method of increasing the viability of wind farms is through studying the

interactions between multiple wind turbines to determine optimal spacing and maximize power

density [27].

From a fundamental standpoint, the interactions between flexible structures are still very poorly

understood. The complexities of the fluid-structure coupling and the multiple body coupling com-

pound one another. The majority of work in the subject thus far has focused on extending our

knowledge of the archetypal conventional flag model by considering interactions between multiple

conventional flags [14, 28, 29, 30, 31, 32]. However, as seen in a recent study of an inverted flag,

flow orientation drastically changes the fundamental nature of the fluid-structure interaction [17].

How then, does flow orientation change the fundamental nature of coupled flags? What sorts of

emergent behavior are produced? In this chapter, we aim to extend our limited understanding of

coupled fluid-structure interactions by examining pairs of inverted, rather than conventional, flags.
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Here, we present results from experiments on side-by-side inverted flags. These results are not only

of fundamental importance, but also directly inform future structural and vehicular design.

2.1.2 Background

Relevant background on single inverted flags was given in the previous chapter and will not be

repeated here. As for coupled conventional flags, recent experimental and theoretical studies have

analyzed the coupling between two-dimensional conventional flags and observed unique behavior

and synchronization. For a constant flow velocity, Zhang et al. (2000) experimentally observed

the existence of various cooperative dynamical modes in pairs of side-by-side 2D flags: locked in-

phase flapping for low inter-flag separation, out-of-phase flapping for higher inter-flag separation,

and decreasing interaction strength as inter-flag separation increases further. This is qualitatively

similar to the findings of studies on the synchronized wakes of fixed side-by-side cylinders in which

symmetric out-of-phase wakes are more frequently observed for larger separations [33].

2.2 Methods

Experiments were conducted in the same open-loop wind tunnel as in the previous chapter, with a

square cross section of side length 1.2 m and capable of producing free-stream velocities between 1.8

and 8.2 m/s. Two inverted flags were placed side-by-side in the tunnel, as depicted in Figure 2.1.

The trailing edge of each flag was clamped vertically between two aluminum strips each measuring

1.27 cm wide. Both flags are polycarbonate and identical to the control inverted flag discussed in

the previous chapter, with length L = 17.78 cm, height H = 17.78 cm, and thickness hb = 0.0508

cm. Images of the flag motion were captured with a Integrated Design Tools, Inc. NanoSense MkIII

high-speed camera mounted above the test section. The camera’s field-of-view was sufficiently large

to capture the full range of motion of both flags in a single image, obviating the need for two cameras

and synchronized triggering. Images were taken at a frame rate of 100 frames per second and we

track the positions of both flag tips simultaneously over a period of 5 to 20 sec.

Behaviors at various flow velocities are observed for two different trailing edge separation widths:

d/L = 1.86 at which flags could never collide at any point in range of motion, and d/L = 1.14 where

flags could collide and were indeed observed to collide. Both flags point directly into the flow with

negligible angle-of-attack. We denote the phase difference between the two flags’ oscillation cycles

as φ, where one period corresponds to a flag starting from one flapping extrema and returning to

the same flapping extrema.
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U d
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x

Figure 2.1: Schematic of coupled inverted flags in a side-by-side configuration.

2.3 Results

2.3.1 Behavioral Regimes

First, consider when nondimensional separation width is large enough such that the inverted flags

never collide. This was found experimentally to approximately occur at d/L = 1.86. The three main

behavioral regimes of straight, flapping, and bent persist in the coupled flag system. While flapping

onset for the coupled flag system does not significantly deviate from the single flag case, transition

from flapping to bent occurs at lower flow velocities in the coupled flag system.

New dynamical subregimes are observed corresponding to various flow velocities and Figure 2.2

depicts a summary of the steady state behaviors observed in each flow velocity regime. First,

beginning in the top row of Figure 2.2, the straight mode at low flow velocities (0 < U < 3.9 m/s)

exhibits little synchronization as the separation between the flags is large compared to the small-scale

flutter observed in the flags.

Immediately at the critical flow velocity for flapping and continuing into the low velocity regions

of the flapping regime (3.9 < U < 4.9 m/s), the only steady state observed is an attracting out-

of-phase (φ = π) flapping state. Systems initialized with in-phase (φ = 0) initial conditions and

various staggered phase (0 < φ < π) initial conditions all rapidly destabilize and converge to the

out-of-phase flapping state. Figure 2.4 presents a times series of the flag tip positions at U = 4.8

m/s initialized in an in-phase flapping state. The in-phase state rapidly destabilizes and transitions

to an out-of-phase state over the course of 4 sec.

In the out-of-phase flapping state, tip angular displacement for both flags is greater in the inside

semi-confined region between the clamps than in the outside region (see Figure 2.3). This persists
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Figure 2.2: Steady states of the coupled flag system for varying flow velocities for d/L = 1.86.
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Figure 2.3: Stroboscopic progression of coupled flags for varying flow velocities. Note that not all
possible states at each flow velocity are depicted. All flapping states depict out-of-phase flapping.
All bent states depict outside-bent states.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

x
=
L

0

0.5

1

1.5

Time (sec)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

y
=
L

-2
-1
0
1
2

Figure 2.4: Unstable in-phase flapping transitioning to stable out-of-phase flapping.

through all out-of-phase flapping modes at all flow velocities.

Next, at higher flow velocities (4.9 < U < 5.9 m/s), the coupled flag system exhibits both steady

out-of-phase and in-phase flapping states, depending on initial conditions. The out-of-phase state

remains highly attracting as before, but this new stable in-phase state is extremely sensitive to initial

conditions and perturbations in the flow field. Staggered phase flapping states quickly destabilize

into the out-of-phase flapping state.

In the next behavioral regime (5.9 < U < 6.3 m/s), steady out-of-phase, in-phase, and staggered

phase flapping states all emerge, depending on initial conditions.

Next (6.3 < U < 6.9 m/s), the coupled flags enter an erratic flapping state (see Figure 2.5).

However, while the flags jump from side to side in a seemingly erratic fashion, the shedding of vortices

still appears to occasionally synchronize. This synchronization appears to be most prominent when

both flags bend into the region between the two flags, i.e. along the inside of the clamps (fixed

trailing edges). In this region, the behavior of the coupled flags is most akin to the out-of-phase

flapping state, where the flags phase lock and appear to “clap” in the confined space.

When the coupled flags first enter the bent regime (6.9 < U < 7.9 m/s), they preferentially bend

towards the outside of the center region, i.e. away from each other. If initialized with both flags on
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Figure 2.5: Erratic flapping of the coupled flags, showing existence of synchronization.
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Figure 2.6: Steady bent state in which both flags remain along the inside, showing synchronization
in the semi-constrained flow though the middle (a). Stroboscopic image of the inside-bent state (b).
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Figure 2.7: Out-of-phase collision state. Here, a red “×” indicates that the two flags have collided
and one has stopped the other.

the inside, the system rapidly transitions to the preferential outside-bent configuration. For the case

when one flag bends inward and the other bends outward, the inward bending flag switches and the

system still stabilizes to the preferential outside-bent configuration.

Finally, for higher flow velocities (U > 7.9 m/s), both inside-bent and outside-bent configurations

are possible. In the inside-bent state (see Figure 2.6), the flags synchronize in an alternating behavior,

rather than the “clapping” behavior seen frequently at other flow regimes.

2.3.2 Separation Effects

When separation is decreased such that flag collision is possible (d/L = 1.14), an out-of-phase

colliding state dominates the dynamics of the system (see Figure 2.7). In the lower velocity regions

of the flapping regime, this attracting out-of phase state is the only steady state observed. Various

initial phase conditions all transitioned to this “clapping” state.

At higher flow velocities in the middle of the flapping range, a steady in-phase flapping state

emerges in addition to the out-of-phase “clapping” state. In this locked in-phase state, the system

corrects for small perturbations/irregularities in the flow (see Figure 2.8 during 3 < t < 5 sec).

However, sufficiently large perturbations push the system back into the “clapping” state.

At sufficiently high flow velocities towards the end of the flapping regime, the steady in-phase

flapping state observed at lower velocities is no longer present. However, it is difficult to determine

whether this is simply a result of larger flow irregularities that serve to destabilize in-phase flap-

ping towards the more energetically favorable out-of-phase clapping state. Under initially in-phase

flapping conditions (see Figure 2.9), the transition from in-phase to out-of-phase is an extremely
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Figure 2.8: Weakly stable in-phase flapping state for low separation.
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Figure 2.9: Transition from unstable in-phase flapping state to an attracting out-of-phase colliding
state.

abrupt transition rather than a smooth gradual transition. At these high velocities, there is a strong

restoring response to flow irregularities that are insufficiently large (e.g. at t = 4.2 sec), and we

observe dramatic instances where one flag is stopped mid-flap by the other flag’s shed vortex.

In the bent regime, the coupled flags universally favor the outside-bent configuration. The semi-

confined region in between the two flags is heavily disfavored as the low separation distance prevents

the flags from reaching a fully bent configuration in the inside region.

2.4 Conclusions

The dynamics of the side-by-side coupled flag system are shown to exhibit emergent behaviors that

are strongly dependent on flow velocity. As opposed to the single flag system, coupled flags display

similar flapping onset velocities, but lower flapping-to-bent critical transition velocities. In addition,
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the dominant mode of flapping is universally the out-of-phase flapping mode. For sufficiently large

separations such that flags never collide, in-phase flapping and staggered phase flapping grow in

stability as flow velocity increases. When flags undergo erratic flapping, synchronization of vortex

shedding persists. In the bent regime, outside-bent configurations are always stable, while inside-

bent configurations become stable past a critical flow velocity. For small separations such that flags

collide with each other, the out-of-phase flapping mode results in a clapping behavior. Staggered

phase flapping modes disappear, leaving only a very weakly stable in-phase flapping mode that is

observed at sufficiently high flow velocities.

One crucial avenue for future work is in flow visualization, which would reveal deeper insights

into the vortex dynamics that underlay the phenomena presented. While only side-by-side coupled

inverted flags were presented in this thesis, it is reasonable to expect synchronization to occur in

tandem inverted flags (one flag in front and one flag behind), as well as in end-on-end coupled

inverted flags (one flag above and one flag below). These configurations present other avenues for

future work.
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[11] Y. Xia, S. Michelin, and O. Doaré, “Fluid-solid-electric lock-in of energy-harvesting piezoelectric

flags,” Physical Review Applied, vol. 3, p. 014009, Jan 2015.
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