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:- ABSTRACT 

The feedback coding problem for Gaussian systems in which the 

noise is neither white nor statistically indep2ndent b etween channels 

is formulated in terms of arbitrary l inear codes at the transmitter and 

at the r ece iver. This new formulation is us ed to qetermine a nwnber 

of f eedback communi cation systems . In :particular, the optimwn linear 

code that satisfies an average power cons traint on the t ransmitted 

signals is der ived f or a system with noiseless feedback and forward 

noise of arbitrary covariance . The noisy feedback problem i s considered 

' and signal sets for the forward and feedback channels are obtained with 

an average power constraint on each . The general formulation and results 

are va lid for non-Gaussian systems in which the s e cond order statistics 

are known, the results b e i ng applicable to the determinat ion of error 

bounds via the Chebychev inequality . 
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I. INTRODUCTION 

Two-way communica tion systems have the capability of transmitting 

information about the current status of a message b e ing decoded at the 

receiver back to the transmitting point . The r eturned information can 

be used to simplify the coding and decoding operations in the forward 

channe l and to :provide a lower probability of error for a given 

coding delay than could be achieved without feedback . A potentially 

useful application of information f eedback i s in the design of efficient 

data retrieval systems for space vehicles, where the transmitting power 

is r estricted to be several orders of magnitude less than the trans-

mitting power of the ground based rece i ving equipment. 

The analysis of a feedback communication system is simil ar to the 

one-way communication problem in that it can be separated into a 

decision or decoding probl.em and a signal selection. or codine; problem. 

It differs only in the sense that in the coding problem it is possible 

to optimize over both the forward and feedba ck s i gnal sets. Previous 

authors have approached the feedback communication problem by assu,~ing 

a specific functiona l relationship b etween the feedback signal s and the 

receiver~ estimate of the message, a functional for m for the decis i on 

procedure, and s olv ing the remaining s ignal sel ection problem for the 

:forward signa l_ set. '111is approach [ 6,14,17,19] a..'1.d other methods [l-19] 

have succeeded in developing a number of efficient feedback communication 

schemes , mainly for the additive ·white Gaussian noise (AWGN) channel with 

a noiseless feedback link and the binary syrn_rn.etric (BS) channel_ with a 

noiseless BS feedback path [J_3 ]. However, becau.se of the structm·al 

assumptions in these schemes , the opt i mum l:'!.near feedback system still 
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remains to be determined even for the AWGN channel with a noiseless 

return link. Systems in which the noise is not white have received 

only passing mention. Attempts to take feedback noise into account 

[l7,l8] by using a Kalman filter [20] at the transmitter have not used 

an optimum decoding procedure nor an optimum set of feedback signals. 

In this paper, the feedback communication problem for Gaussian 

systems in which the noise is neither white nor statistically independ

ent between channels is formulated in terms of arbitrary linear codes 

at the transmitter and at the receiver. The maximum likelihood decision 

rule, which is optimum for an equiprobable message source, is determined 

and the signal selection problem i s posed for both the forward and 

feedback signal sets. This new formulation, is developed in Chapter 

II, and is used to determine a number of feedback communication systems, 

In Chapter III the optimum linear code is derived .for a system with a 

noiseless feedback channel and an average power constraint on the 

transmitted signals . The noisy feedback problem is considered in 

Chapter IV where signal sets for the forward and feedback channels are 

obtained with an average power constraint on each. 

Chapter V considers the use of Kalman filtering at the transmitter 

combined with an optimization at the receiver . 

The present approach is valid for non-Gaussian systems provided 

second order statistics are available, the results being applicable for 

the determination of error bounds by such methods as the ChebycheV 

inequality. 
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The general formulation may be classified as a fixed-time-of

d ecision or block--codi~~L syst~ in opposition to sequential-de cision 

systems in which the time-of-decision is a r andom variabl e . This i s 

the fundamental dichotomy which separates all of the feedback communi

cation systems r eported in the literature , In each class, information 

feedback, if it is sufficiently accurate, can provide improved perform

ance. A special case of the latter category is when feedback is used 

to inform the t ransmitter only of the event that a decision has been 

made so that a new message may b e initiated . This has been generally 

r e f erred to as decision-feedback and was studied by Bloom, Cha.ng, 

Harris, Hauptschein, Metzner, Morgan, Schwartz, and more recently by 

Viterbi [5-9,12]. 

'l'hey consider the transmission of binary mes sages using signals 

t hat are also binary (two-levels) over the AWGN channel with a noiseless 

feedback link . Viterbi also considers the M-ary case and uses M ortho

gonal binary signals. He obtains exponential bounds for the error 

probability and shows that the negative exponent i s four times the 

exponent for the b es t available error bound on the one way channel 

when the rate of transmission exceeds half t he channel capacity. 

Sequential-·decision systems using information feedback to 

continually i nform the transmitter of the state of the receivers kr1owl

edge (or uncertainty ) of the message being sent have been i nvestigated 

by Horstein [13] in the case of a BS channel with a BS nois el ess feed 

back link, and by Turin [14] and Horstein [19] for the AWGN channel 

with a noiseless feedback link. Ideally, in sequential decision the 

receiver updates the a posteriori probability over the message set as 
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new signals are received and selects the message whose a posteriori 

probability, relative to the other messages, is first to exceed a 

threshold. The thresholds are set by the desired probability of 

error. Continually returned feedback information allows the trans-

mitter to select signals that will maximize the a posteriori probability 

of the message being sent and informs the transmitter when a decision 

has been made. 

The approach in [l4] and [l9] is based on the continuous time 

channel and makes the assumption of instantaneous feedback. A binary 

message source is used and the likelihood function (the logarithm of 

the ratio of the two a posteriori probabilities) is continuously 

computed from the received time function. The transmitted signal is a 

linear function of the message being sent (0 or 1) and the current 

value of the likelihood function available from feedback. The evolution 

of the likelihood function is governed by a Langevin differential 

equation which is driven by White Gaussian noise. Thus, the likelihood 

function is a continuous Markov process whose probability density 

satisfies a Fokker-Plank partial differential equation. A decision is 

made the instant that the likelihood function first crosses one of two 

thresholds . The time-of-decision, and hence duration of a message is a 

random variable. The transmitted signals are constrained in peak and 

average power and are chosen by Turin to minimize the average duration 

of a message. The result is 

seconds/bit 
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The probability of error vanishes when the bandwidth is infinite and 

the peak power constraint is rembved, so that a rate 
l 

'T 
nats/ 

second which is equal to the capacity of the infinite bandwidth AWGN 

channel is achieved. 

Horstein's earlier work [l3] on the BS channel is similar in the 

sense that the nuniber N of binary channel symbols per binary message 

takes the place of T. N is a random variable for which a bound on 

the mean N is found as function of the rate R, channel capacity C 

and probability of error Pe. 

The operation of a block-system is based on the principle that the 

number or block of signals associated with each message is a determin-

istic quantity. The block length and the instants at which signals are 

transmitted are known to the receiver. The receiver may compute the 

a posteriori probability over the message set either continually as 

new signals arrive or after the entire block is received. However, 

the decision is made only after a complete block has been received so 

that the decision time is deterministic and decision feedback alone is 

of no use. On the other hand, information feedback that is continually 

provided to the transmitte r allows the transmitter to select signals 

that will maximize t he a posteriori probability of the message being 

sent. This approach has been used by Elias [10], Schalkwijk and Kailath 

[15,16] and Omura [17] for the AWGN channel with noiseless feedback and 

an equiprobable M-ary message set. Their results achieve the finite 

and infinite ba.ndwidth capacity limit of Shannon [l] when an average 

power constraint is impos ed, but are not optimum b ecaus e the coding in 

[l5,16] is not optimum while in [17 ] the maxi mum likelihood rule is not 

used. 
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Although some authors evaluate the performance of their noiseless 

feedback codes in the presence of feedback noise, procedures specifically 

des i gned to minimize feedback noise were not available prior to the 

work of Omma and Kashyap [18] . They use a Ka.J_man filter at the 

transmitter to fcrm the best estimate of the receiver's nstat e n. 

However, the choice of feedback signals and decision procedure is not 

opt i mum . 
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II. FORMULATION OF THE FEEDBACK COMMUNICATI ON PROBLEM 

2 .1. Introduction. 

In this chapter the f eedback communication problem for a system 

in which the f orward and return channels are both corrupted by additive 

Gaussian noise is formulated using arbitrary J_inear operations at the 

transmitter and at the r eceiver. This kind of an approach is applicable 

to situations that are more general than systems with Gaussian noise . 

However, the Gaussian assumption (and the assumption of linearity) 

allows simple closed form expressions for the optimum decision rule, 

and the probability of error, to be determined . In order to set up the 

signal selection problem, the above expressions art::: augmented by 

equations for the average energy transmitted in the forward channel and 

the average energy r e quired to send feedback information . 

2.2. Description of the Genera l Linear Coding Procedure . 

A linear feed.back c ommunicat i on system usi.ng a s equence of N 

signals to transmit a message e is shown below 

s . =g . e + 
l l 

V. =U. +:r:J.. 
l l l -
Fig. 1. 

i-l 
n. 

l 

r.=s .+n . J.z=l al. J" vl. 4 
l l l ------ + >---- - --

Deci s ion 
rule 

m. 
l i . l.: b .. r . 

lJ J 
-

-

Linear Feedback Communi cation System. 

* ,_ e 
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Only the discrete version of an additive noise channel is cons idered. 

The connection between the discrete and continuous formul ations is well 

known [ 21-23 ] and will not be discussed further. The process begins 

with sl = gl e being transmitted, rl = gl e + nl, being rece ived,, 

u
1 

= b11r
1 

is the first feedba,ck signal which is observed at the re-

ceiver as The next signal to be sent can be a linear 

function of e and vl' and is thus written as 

The general term is 

i -1 

s . = g e + I a .. v. 
l l lJ J 

i 1, 2, • • • , N (2.1) 

j=l 

and 

i 

u. I: b .. :r. 
l 1.J J 

i = 1, 2, • • • , N-1 (2. 2 ) 

j=l 

The last, or N-th, feedback signal is not used in and is therefore 

not fed back, nor is i t generated . 

It is convenient to write the above and remaining analysis using 

vector and matrix notation. Therefore, let s = col(s1, s2' 
.. . 

sN) ' ' 
r = col(r1, ... rN), u col(ul' u2, ., ) v = col ( v 1, v 2' ' ' VN ' 

vN)' n = col(np n2' 
... 

nN)' m - col(m1, m2' ~), 

g col(g1, g2' 
.. . '\ and let (A) ij = a . . , (B) . . = b .. be 

' gN, lJ' l .J lJ 

N x N lower trianguJ.ar matrices with the ma.in diagonal of A and the 

N-th row of B identically zero . Then 

' 
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u =Br ( 2 .3 ) 

v u + m ( 2 . 4 ) 

s g8 + Av ( 2 . 5 ) 

r s + n (2 . 6) 

Note tha t A anihilates the N- th component of v 
' 

while t he zer o N-th 

row of B cau s es ~ to be zero a s requ ired. The sy s tem is now 

equiva lent to the N-dimens i onal vector channe l b e l ow 

n 

s . 
Decision 

l=============rr==::::::~ rule 
r 

A 

Fig . 2 . Ma trix For mulation of the Feedback 
Communicati on Process . 

* ..... 8 

Now l e t m and n b e jointly n ormal with zero-mean, c ovari ance 

K and K , m n and cr oss - covar i ance Kmn' where T K = E[rnm ], 
m 

T 
Kn = . E[nn J, K E[ mnTJ and E [ · ] is the expectation operator mn 

wh ile 11 T" denotes tran spose . The conditional p:cobab i li ty density 

p(r/8 ) can b e found aft er r is wr i t t en a s a f unction of t he r andom 

v a riabl es e, m and n . This is done by substitu ting ( 2 .4) into 

( 2 . 5) and the r esult i nto (2 . 6 ) 

r (I-AB )-1 (g8 + Am + n) . (2 . 7) 
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The conditional mean E[r/8 ] and covar i ance E[(r-E[r/8J)(r-E[r/8])T/8] 

are respectively 

(2.8) 

and 

K = (I-AB)-l K(I-AB)-T 
r (2 .9) 

where, 

K = AK AT + AK + KT AT + K 
m mn mn n ( 2 .10 ) 

Then 

(2.ll) 

( 2 .12 ) 

where det K = det K because det(I-AB) is unity, a result that 
r 

follows from the fact that AB is l ower triangular with zeros along the 

main diagona l so that I - AB is lower triangul ar with ones down the 

main diagonal. 
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2.3. Derivation of the Maximum Likelihood Decision Rule. 

In general, the optimum decision procedure for minimum error is 

the ideal observer rule. The procedure is for the rece iver to select 

the message that maximizes the a-posteriori probability distribution 

p(8/r). If p(8) is the a-priori probability distribution on the 

mes sage set, then Bayes' rule g ives 

p(8/r) 
p(r 8)p(8) 

= Pr 
. (2 .13) 

When 8 is equiprobable over a finite set of M real points, 

p(e) 
l then = -
M ' 

p(e/r) = p(r{ej Mpr (2.14) 

Maximization of p(8/r) i s equivalent to maximization of p(r/e), 

which is the maximum likelihood rule. p(r/e) i s maximized over e if 

and only if \\r-r8!1 2_1 is minimized . Let SN be an arbitrary scal ar 
K 

r 

\\r-r 811
2 

_1 
K 

r 

\\r-Au-ge\1 2_1 
K 

= ll r-Au-geN + g(eN-e)\\:_1 

\\r-Au-geN\\ 2 _1-2 ( eN-8) ( SN\\g\\ 2 -l 
K K 

The middle term drops out if 
I\ 

9N is chosen to be 

(2.15) 



Therefore 

\\r-r e 1\2 -l 
K 

r 

12 

(2 .16) 

(2 .17 ) 

" Since eN can take on any value on the real line while e i s only one 

of a s e t of M discrete poi nts) it is now obvious that choos ing e 

closest to 
I\ 

eN maxi mi zes p( r / e ) over e. This is the maximum like-

* lihood estiJnate of e and is denoted by e it of course runs only 

over the finite s et of M message p oints . It is easy t o show t hat 

" eN i s in fact the minim1..un-variance unbiased l inear estimate of e . 

" The conditional mean and variance of eN are 

e 

1 

llg\\2 _l 
K 

2 .L~ . The P-.cobab ili ty of Error . 

(2.18) 

(2.19) 

An error occurs at the receiver each time e is transmitted but 

e* f e, that is, I eN .. e I i s not a mini mum . If the M equiprobable 

messages are equispaced on the interval [ - L,L] on the real line, the 

nearest ne i ghbor d istance is I./(M-1) and t be condi tion for an error 

i s I eN- 9 I ~ L/(M- 1.) when e is one of the M- 2 interior points of 
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[-L,L]. If e is one of the end points, ± L, the condition is 

eN-8 ~ + L/(M-l) r espectively. The conditional error probability for 

e f ± L i s Pe = pr(leN-el ~ M~1/e}. Thus, 

where 

and, 

P
0 

• l - f p(9N/e) 

1eN-e1 s; L/(M-l) 

30e2 llgll2_1 
K 

00 

erfc x = ~ J e-x
2 

dx 

-Vx x 

oe 2 = E[82 ] 

L
2 (M+l) 

= 3(M-l) 

(E[eJ = o) 

(2.20) 

(2.2l) 

(2. 22 ) 

(2. 23 ) 

( 2 ~ 24) 

When e is one of the end points , P is slightly lower but negl i gibly 
e 

so, therefore, the average error equals the conditional error above . 
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2 . 5. The Signal Sel ection Problem. 

The signal selection :problem is to choose A, B e.nd g to 

mi nimize P subject to constrai nts on the forward and feedback 
e 

signal sets . Important constraints are the average :power in the for -

ward and feedback channels, or equiva lently, the average energy :per 

transmitted message in the forward and fe edba ck channel s . 

N 

E == E L 2 
s . 

1 av 
i=l 

T 
== E [ Tr SS ] 

( 2 . 25) 

== Tr[(I-AB) - 1c0
8
ggT + AKmAT + 2AKmnBTAT + ABKnBTAT)(I·-BTAT)-l] 

(2. 26) 

and) since e is statistically independent of n and m) 

where 

Let 

N- l 

E == E 
fb I: 

i =l 

2 u. 
)_ 

== E[Tr BrrTBT] 

Tr [ . J is t he trace 

N 2'1W where T 

(~ - o) 

N 
operator defined by Tr[Q] == l: 

i=l 
is the duration of the message, 

( 2.27) 

(2 .28 ) 

CJ.ii . 

or coding 

delay, and w, which i s defined here to be N/2T, i s the "bandwi dth" 

of t he forward channel . Note that the t ime duration of t he (N-l) 

f eedback signals is 2W/(N- l) so t hat t he average power in the forward 

channel is 



while 

p == 2W E 
N av 

2W 
pfb == -- E N-l fb 

is the feedback power . 

15 

(2 .29) 

(2.30) 

other constraints may b e e ither substituted for, or added to, the 

above conditions. Since erfc x i s a monotonically decreasing function 

of x, minimiza tion of Pe i s equivalent t o maximization of 

0 8 
2 \\ g \\ 2 _1 and hence 

. K 
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III. NOISELESS FEEDBACK 

3 . l . Introduction , 

This chapter presents a number of new and interesting r esults for 

noiseless f eedback systems. Primarily, the sequential form of the 

optimum operation of the receiver and transmitter is deri ved for a 

general forward covariance matrix . Secondly, Theorem 2 proves that it 

is possible to achieve capacity for the wideband and finite bandwidth 

AWGN channel in an essentially uncountable nwn"ber of non-optimum ways . 

Thirdly, i t is shown that Schalkwijk's scheme follows from the solut i on 

of the signal selection problem with additional const raints . Fourth, 

i t becomes evident thg,t the dynamic programming approach of Omura, for 

which it was necessary to assume the functional form of the receiver, 

us es the optimlun s i gnal set, but not the optimum decision rule. The 

discrepancy disappears in the limit as the block length goes to inf i nity 

b ecause the minimum variance estimate is asymptotical ly unbiased . 

Finally, an almost optimum. code for a chan~1el with first order Markov 

noise i s obtained . The critical rate of this code achieves the 

t heoret icaJ_ capacity when the bandwidth is large , and almost the capacity 

when the bandwidth is finite . 

A model that assumes a noiseless f eedback channel may be used to 

r epresent a system in which the noise in the :forward channel predomin-

ates . Calculations based on t h is assumption are valid until the 

cumulative effect of the small f'eedback noise becomes comparable to the 

forward noise . 

The absence of feedback noise is r e flec ted in t he general formula -

tion by the vanishing of the noise vector m, the covariance K a..11d 
m 
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the cross-covariance K . 
mn 

As a result, eq_uations (2 . lo), (2. 26) and 

(2.28) simplify to 

and 

K = K n (3 .1) 

(3. 2) 

(3 ,3) 

However, can be arbitrarily smal l for any choice of E and av 

P , b ecause 
e 

B may be scaled d.own to EB while A is scaled by l 
E 

Thus, the product AB remai.ns unchanged, E is unaffected, av 

l\gll 2 _1 and hence 
K 

p 
e i s not affected, but Efb is scaled down by 2 

E 

which can be made arbitrarily small. The signal selection problem for 

the noiseless feedback case i s therefore not constrained by feedback 

eq_uivalent to minimizing E for av 

\lg\\
2 

_1 for a fixed value of Eav 
K 2 

fixed \\gl\ _1 . Note that only the 
K 

is power. The problem of maximizing 

product matrix AB and g need be found . When t here i s feedback noise 

it will be ne cessary to sol ve for both A and B. 

3. 2 . Selection of the Coding Matrix AB. 

Let I + C = (I-AB )-l then C = ( I-.A.13 )-1
Jl...B = AB (I-AB )-l is lower 

triangular with zeros along the main diagonal, note that AB = C(I+C) -
1

• 

E av (3 .4) 
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The N(N-l)/2 non-zero el ements of C are _arbitrary b ecause the 

N(N- l)/2 non- zero elements of AB. are arbitrary . Tne constraint on 

\\g\\ 2 - l does not affect the choice of C7 therefore7 the minimization 
K 

over the elements of C can be performed using ordinary calculus for 

all values of g . Subsequently7 when E is found in terms of g 7 av 

its optimization over. g will have to include the constraint \\gl\ 2 
- l ' 

K 
Let c(i-l) == col( cil; ci2' , . c. . 1 ) denote the first i - l 

ll-

elements of the i-th row of C7 . the remaining e l ements in the row are 

zero b ecause of the lower triangular zero- diagonal form of C. Also, 

let ... then 

N 

Eav L [o9
2

(gi + (c(i-l),g(i-1)))
2 

+ (c(i-l)K(i-l)c(i-l))] 

where 

n. l). 
l-

K(i- 1) == Kn(i-1) == E[n(i-l)nT(i-l)], n(i-l) == col (n
1

, 

2 Note, that the indiv i dual signal energies , e. == E[s.] 
l l 

given by 

(3 .5) 

n •• • 
2' ' 

are 

ei == o8
2

(gi + (c(i-l), g (i- l)))
2 

+ (c(i-l)K(i-l)c(i-1)) . (3. 6) 

Now, setting grad E 
c(i-l) av 

r , . ...:,.· 

0 

.\".j 

for i 2 , 3, · · · , N (c(l) = 0) g ives 

c(i-1) == - o8
2 (gi + (c(i-l), g (i-l) ) )K- 1 ( i-l)g(i-l) . (3 . 7) 

Taking the inner product of both sides with g (j ... 1) and solving r~or 

(c(i-l) 7 g(i-l)) in t erms of gi and \\g (i--J_)\\2 
. K-l( i -J_) 

gives 
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2 

c(i-1) == 

0 e gi l 
--------- K- (i-l)g(i-1) . 

Therefore, 

and 

2 2 
0 e gi 

e. == -----------
1 l + cre 21\g (i-l) \\2 -l 

K (i-1) 

N 

i == l, 2, • • • ' N 

(3 . 8) 

(3.9) 

E = \ 
av L (3 .10) 

;!.· ,., .... •' 
, ,, •,, r 

It r emains to minimize E with r espect to g which is constrained av 

by l\gl\2 _l . 
K 

Th is is accomplished by setting 

and solving the resulting N non-linear e~uations for the 

The solution when K == K is diagonal is straight forward and is 
n 

available in closed form. When K is not diagonal the problem i s more 

involved . However, i t is not difficult to obtain a good, although not 

ne cessarily optimum, choice for g. Also, the functional form of the 

transmitted signals and a se~uential form for the computation of " e 
N 

at the r e ceiver can be derived without knowledge of g . 

3 . 3 . General Form of the transmitted Signals. 

From s == (I-AB)-l g8 + (I-AB )-lABn == (I+C)g e + Cn it follows that 

si+l == (gi +l + (c(i),g(i)))e + (c (i),n(i) ) 

(8-cr~ (g(i),K-
1
(i)n(i))). (3 . ll) 

/.~· 
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Since r-Au = g8 + n, the minimum variance unbiased estimate of e 

after N observations is obtained from (2.16) as 

and after i observations it is 

The ref ore 

Define 

then 

(g(i),K-1 (i)n(i)) 

llg(i)\\
2 

1 
K- (i) 

gi+l ( e -

oe2\\g(i)\l2 l 
K- (i) 

1 + oe2l\g(i)\\2 1 
K- (i) 

082\lg(i)\\2 -1 
K (i) /\ e. 

l 
l + cre2\\g(i)\\2 _1 

K (i) 

is the desired result. 

(3 .12) 

(3 .13) 

(3 .14) 

(3,15) 

(3.16) 

There is no difficulty in showing that x. is the minimum 
l 

variance linear estimate of 8 given the observations r 1, r
2

, 

Note that xi is a biased estimate (E[xi] f 8) as opposed to the 

estimate 
/\ 

e. which is the minimum variance unbiased estimate. 
l 
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3.4. General Sequential Form of the Receiver. 

The positive definite symmetric covariance matrix K may a lways 

be factored into the product K = QQ.T, where Q is lower tria.~gular 

and positive definite . Similarly, K(i) = Q.(i)Q.T(i) where Q.(i) is 

the upper le~ i x i 

g(i) = !_ Q.(i)f(i) 
ae 

and 

corner of 
l 

Q.. Let g = - Q.f, 
oe 

then 

\\g(i)l\
2 

= ·~ \\f(i)\\
2 

where 
K-l(i) oe2 

... , fi). Then 

= llr(i-l)\\
2e + o

9
(±'(i-l)Q.-

1
(i-l)n(i)) + fi

2e + o
9
fi (h(i),n(i)) 

(3.l7) 

where h(i) = col(hil' hi2, • • • , hii) denotes t he i-th row of -l Q , 

. ( -l) that J_s h .. = Q . . for j =:;; i = l, 
1J 1J 

2, • • • , N. Thus, 

\\r(i)\ J
2e. = \\f(i-1)\ \ 2~. l + f.(f.e + (h(i),n(i))) . 

J_ 1- J_ J_ 
(3 .l8) 

But therefore 

(3.19 ) 

But, recall that ~ + \\f (i) \\}i == l\f(i)\\
2ei' t herefore, 

(l + l\f(i)\\
2

)xi = (1 + \\f(i)\\
2
)xi-l - fi 

2
xi-l + o 9fi (h(i),(g(i)e + n(i) ) ) 

(3.20) 



Since g. ( 8-x. l)' J J-
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i 

\ h .. (g.8 + n. - g.x. l) . L__, lJ J J J l-
j=l 

r. 
J 

s . + n . becomes 
J J 

g . 8 + n. = r . + g .x . l ' 
J J J J J-

it follows immediately that 

i 

h .. [r. + g.(x. 1 -x. l)J . 
lJ J J J- l-

(3.2l) 

(3.22) 

(3. 23) 

The above resu_lt is valid for any positive definite covariance 

matrix. In particular, when the noise is white so that K = 0
21, 

-l l l 
0 e 

Q 
0 

I, hij = cr 6ij' f = 0- g it reduces to 

(3.24) 

If the noise is generated by a first order diffe r e nce equation 

ni = ani-l + wi' where wi is white noise with covariance 

then Kn= (I-aJ)-lKw(I-aJT)-l where Jij = oij+l" Thus 

so that o h(i) = col(O, o, , o, -ex, l). Then w 

2 
K = o I, w w 

-l 1 ( ' Q I-aJ J 
0 

w 

082(g.-ag. 1) 
l l-

02 + llg(i)-ag(i-l)ll2 
[r.-ar. 1 + ry.g. l(x. l-x. 2 )J 

l l- l- l- l-
(3 .25) 

w 

which is a linear difference equation of order two. In general, if the 
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noise obeys a linear difference eg_uation of order m which i s driven 

by white noise, then the minimum variance estirno,te obeys a linear 

difference equation of order m + 1. 

I\ 
The decision rule req_uires eN. It can be computed from xN via 

the relationship eN = (l + \\f\\
2

)xN/\\f\\
2

, or 

oe 2\ \g\ \2 -1 
A K 
9 = ---2--2- xN • 

N l + oe \\g\I -l 
K 

(3.26) 

The coefficient of xN approaches unity as \\g\ \ 2 _1 goes to inf inity 
K 

with N, and xN is asymptotically unbiased . 

3 . 5. Sequent i al Operation of the Transmitter . 

Since the transmitted signals are related to the minimun1 variance 

estimates according to s. = 
]_ 

g. (e-x. 
1

) 
]_ ]_-

it fol.lows that x . l-x . l = J- i-s. 
]_ 

s . 
]_ 

Substituting this into the general for mula for x . 
]_ 

gi+l 
s --i +l - g. 

]_ 

gifi(h(i), (r( i )-s (i))) ) 

l + a e 21 \g (i-l)\\2 - l 
K (i-1) 

::: 
giei+l 

g i + l e i 
e i (h(i), (r(i)-s ( i))) ) 

which r educes to 

ye. 1 ( e.).( 
= J.+ - 1 + ~ Si 

e . a J 
]_ 

(3. 27) 

when the noise is white . 



3. 6 . Sel ecti on of g When the Noi se i s Uncorrel ated . 

If the noise i s s tatistically i ndependent b et ween signals) the 

covari ance mat rix K and therefore also K i s diag onal . The 
n 

diagona l e l ements are : 2 
k.J. = E [n. n .] = 0 . 6 . .. 

1 1 J 1 1J 

then 

But 

e . 
1 

- 2 = 
0. 

1 

f. 2 
1 

l + \\f (i-1) 1\
2 

i 

Let 

l + [[f(i) \\
2 -n 

j =l ( 

l + \\f ( j )\ \
2

) 

l + \\f (j-l ) 112 
C\\f (o)\\2 

= r
0 

= o) 

= n l + --""'"J __ _ i ( r.
2 

) 

j =l . 1 + \If ( j - l ) 11
2 

h ence a l so 

e i +l fr( l + ej ) 
2 . l 2 

0e J = 0 j 

and 

2 2 N ( e. ) 1 + 0 e \J gl\ - 1 = n 1 + ~ 
K 1=1 0. 

1 

(3 . 28) 

(3 . 29) 

(3 . 30) 

(3 . 31) 

(3 .32 ) 
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Therefore, the constrai nt on l\g\\ 2 _1 i s now a constraint on the signal 
K 2 2 

energies . It i s c onvenient to use ln(l + ere j\g\\ _1 ) and t o set 
K 

N 

where I e. E av' J_ 

i=l 

e 
vln(l + i 2 ) J = 0 

er. 
J_ 

and \) i s a Lagrange multiplier. 

E av + Tr K 
2 i 1, 2, N e. + er. \) = ... 

N ' J_ J_ 

The above c ondition is meaningful only if e. 
J_ 

= \) - er. 2 
J_ 

situation that does not always prevail. If \) - er. 2 ::;; 0 
J_ 

.(3 .33) 

The result is 

(3.34 ) 

> o, a 

the answer 

i s to set e . = 0 ( t hus also s. = O), N = N-1 and recalculate \) 
J_ 

Assuming that this does not 

N 

. J_ 

occur (E sufficiently large or av 
2 er. 

J_ 

~ Tr 1 NO 
l et K L 2 2 

='N er. = er =2 N J_ 
Then, since E "" PT and N 2WT 

i;::l 

( 
p 2WT 

1 + -) 

NW 

N 2 
TT(~) 
i=l er. 

J_ 

(3.35) 

0 

( 
p ) 2WT 

~ 1 + --
NW 

0 

3 .7 . Optimum Performance When the Noise is White . 

If the noise, in addition t o being uncorrelated, is stationary 
N N 

then kij = kj i -j I = er
2 

6ij = 2 ° 1\j' where 2 ° is the t wo-sided noise 

power spect ral density of white noise . Then 

2 2 
l + ere \\g\\ - l 

K 

_R__)2WT (i +NW 
0 

(3 . 37 ) 



and 

where 

p 
e 

erfc 
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p 
c = W ln (l + N W) nats/sec 

0 

is the theoretical capacity of the channel and 

l 
R = T ln M nats/sec 

is the rate of the message source. 

By the v1ell known properties of erfc, 

lim P = 
T__,co e 

0 

erfc} 
2 

1 

R<C 

R c 

R > C 

The asymptotic behavior of the error is 

p 
e 

2 
= -- e 

3"\f 

- J e2(C-R)T + (C-R)T 
2 

(3 .38) 

(3 .39) 

(3.40) 

(3.41) 

(3.42) 

The double exponential decrease of the error as a function of coding 

delay T, or block l ength N, is character ist ic of codes us ing noise-

less feedback. If thought of as an increase in the effective block 
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l ength du e to a l arger effective input alphab et t hen this result was 

predicted by Shannon [4]. 

3 .8. Suboptimum Codes that Achieve Channel Capacity . 

There is an uncountable suboptimwn choi ce of the signa l energi es 

that allows c orrnnunication at a pos itive r a te, in f act, up 

to cha nnel capa city . Define 

R (N) c 

Theref or e 

The orem l 

l 
2T 

N e. 

2= ln(l + ~) 
i=l 0 

N e . 
I ln(l + ~) 
i =l CJ 

3 
2 

N e . 
L 2: 
. l 2 1= CJ 

e 
2R T 

c 
- l 

2RT 
e - l 

(3 .43 ) 

(3.44) 

A necessary and suf f i cient condition for achi eving zero error 

for 

Proof' 

thus 

0 <R < (l - o)R 
c 

N 

L
e. 
2: ~ 

2 
i =l 

0 

N 

[ 

i s ~E 
2 av 

CJ 

= co This i s an obvious condit i on . 

e. N e . 
l n (l + 2:) ~ l n (l + L -~) 

2 . l 2 
CJ 1 =-· CJ 



But p 
e 

E E 
av ;:z: R T ~ ln(l + av) 

02 c 02 

is zero in and only if 

28 

R T = 00, thus 
c 

E av 
0 2 

= 

(3 .45) 

oo e. 
2= ~ = 00 

. 1 2 J.= 0 

Defi nition 

Let R ( oo) 
c 

be t he maxi m.um rate at which zero error can b e achi eved . 

It is defined here by the two condit ions: (a) ~ ei --L 00 , and 
. 1 2 

(b) 

N e. 
2= in(J_ + ~) 

i =l (J 

J.= (J 

R ( oo) 
c 

1. p 
== J.m --2 
~00 20 

N e. 

2= ~ 
i=l (J 

(3.46) 

Theorem 2 

If the sequen ce r e .}~ l ~ J. J.== 
converges to a l imit then R ( oo) 

c 
is given 

by 

(a) 
p p 

~ = Wln(l + -) if lim e . NW NW i -iro J. 
p 0 0 

R ( oo) (b) c =N if lim e . 0 (3 .47 ) c 00 J.. 
0 i ->oo 

( c ) 0 if lim e . 00 

i -icc J.. 

The proof i s in Appendix I. 

3 , 9 , A Class of Codes t hat Achieve C for the Additive White Noise 
CP 

Channel . 

The orem 2(b ) indicates that there exists a vari ety of feedback 

codes that can achieve the i nfinite bandwidth capacity limit 

method of classifying t hese schemes i s to exami ne how NJ or 

p 

N 
0 

w} 

One 

in-

creases with T. For exampl e} consider the class of codes in which the 
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signal energies are of the form 

e == (2:)Y 
i 1 

(3.48) 

where 0 ~ y ~ l. First, y == 0 corresponds to the optimum scheme in 

which P/w == J., Cw == ln 2 so that W is finite and independent of T. 

The other extreme i s for y == l which gives 

2R T 
c 

- l 

therefore 

2R T 
W == (e c - l)/2T 

When 0 < p < 1 and T is sufficiently large, 

thus 

N 

RCT == L ln(l + i-y) 

i==l 

N I: i-y 

~-y 

l - y 

for large N 

(3 .49) 

R ~ C c co 



and 

l l 

N ~ [ 2C (l-y)Jl-y Tl-y 
0) 

30 

(3.50) 

In general, the growth of W with T is bounded between a constant 
2C

00
T 

and ( e - l) /T for all T. The asymptotic behavior of W as a 

function of T and y is illustrated in Fig. 3 . 

Y=l y=l/3 

W 2CT 
~e 

Y=l/2 
w~ 

y=O 
~~~~~~~~~~~W=Const. 

L~~~~~~~~~--T 
0 

Coding Del ay - T 

Fig. 3 . Bandwidth vs Coding Delay for a Class of Codes . 

3.10. Signal Selection with an Additional Constraint . 

The coding scheme of Kailath and Scha:;_kwijk can be derived by 

solving the signal selection problem sub j ect to an additional constraint 

_, I 
on AB, or C = (I-AB) -AB, and g. In their scheme, E[sl e] = gle 

while E[ s ./8] -· 0 f or all i > 1 . In vector form this translates into 
1. 
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setting E[s/e] = E[(I+C)ge + Cn/eJ = (I+C)ge = col(g1e,o, ··· , o). 

Thus there is the auxiliary constraint (I+C)g = col(g1, ?, ••• , 0) or 

g. + (c(i-l),g(i-1)) 0 
. 1 

i = 2, 3, • · • , N • (3.51) 

In the white noise case considered by Schalkwijk, t he present formulation 

gives 

E II (I+C)gll
2 2 o2Tr CCT 

av ere + (3.52) 

N 
' 

2 2 ()2 I: llc(i-l)l\
2 

ere gl + (3.53) 
i=l 

The minimization over c(i-1) must now include the N-l constraint 

equations, which are easily incorporated via Lagrange multipliers 

N N 
2 2 ,.,.2 F = er9 g1 + ..., I: l\c (i-1) \1

2 
+ L A..(g. + (c(i-l),g(i-1))) 

1 1 
(3 .54 ) 

i=2 i =2 

and set gradc(i-l) F = 0 for i = 2, 3, • • • , N in order to obtain 

A.. 
c(i-l) - ~ g(i-1), 

2cr 
(3.55) 

hence, 

i 2, 3, • • · N (3 . 56) 

and, 



2 
= .CY2 __ g_i_--,,-

1 lg ( i-l) \ \ 
2 

Next, note that 

therefore , 

while, 

N 

E = I: av 
i=l 

2 
CYe 2 

= - g 
CY2 l 

e. 
1 

32 

2 ) 
N g . n l + 1 2 

h2 ( [[g(i-1)[[ 

The optimum choice of s ignal energi es i s 

2 E - CY 
av 

N 
2 

- CY • Ther efore, 

(the opt imwn r esult) 

(3 .57) 

(3 ,58) 
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with equality when N = 1 and of negligible difference as N in-

creases . However, in this case e1 exceeds the remaining e ' s by 2 
cr . 

I f all the signal energies are made equal, the result is 

(

- )N-1 
cre 211gll 2 - 1 = E~v 1 + Ea~ 

K cr N Ncr 
(3 . 59 ) 

p 
which is considerably less than 

E )N 
(
1 + ~ 

Ncr2 
when 

E av 

Ncr2 is small. 
NW 

0 

The form of the transmitted signals is obtained by eliminating 

c(i-1 ) from the expression for s. 
]._ 

as in Section 3 . 3 . The result is 

/\ 

s. = g . (e- e. 1 ). 
]._ ]._ ]._ -

2 

Similarly, i t is easy to show that 
A 

e. 1 + ]._ -

gicr 
is the sequenti al operation to use at t he receiver . 

3 .11 . Selecti on of g When the Noise is Correlated . 

The problem of optimizing E 
av 

over g when i s fixed, 

is in the case of correlated noise complicated by the non- diagonal 

nature of K. The problem appears to be formidable even in the case of 

a simple first order markov process . It is not difficult, however,_ to 

guess a good g and to compute the resulting per formance . The defini-

t ion for R is still gi~en by c 

R c (3. 60 ) 

Factorization of K into the product QQT where Q is lower trianguiar 

and.positive definite, and setting 

1 + ae 2\lg\1
2 

- 1 = 1 + llrll2
. The identity 

K 

g 
1 

Qf, ae 
gives 



l + \lf\1 2 

l + 

can be used to obtain 

However, 

R =W.:!: f ln (l+ 
c N i =l 1 + 

E av 

N 2= (f(i),q_(i))
2 

i=l"l + \lf(i -1) 112 

f. 2 ) 

\\f~i-1) \\ 2 . 

i s not simplified . Here, f(i) = col(f1, f 2_, 

(3 . 6l) . 

(3 . 62 ) 

(3 . 63 ) 

col(q_il' q_i2' ••• , q_ii) i s the i-th row of Q, and the individual 

signal energies are of the form e i = (f(i),q_(i) ) 2/( l + l\f (i-1) \\ 2 ). 

Thus, there does not exist a simple relationship between y. = 
1 

f. 2/(l + llf(i-·1)112 ) and e . as in the case of a diagonal covari ance 
1 1 

matrix . Neverthel ess , at least two good guesses are available . The 

first is to l et y . = y a constant independent of i . This g i ves 
1 . 

R = W ln ( 1 + y ) ( 3 . 64) c 

and 

-J ( i-l 
±f'. = y ,1 + y) 

1 
(3. 65 ) 

so that 
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Note that the sign in front of each 

(3. 66) 

f. affect s the terms in E but 
i av 

not those in R where the f. appear squared . This a llows a partial c J. 

minimization of E over sgn f. to b e carried out. av J. 

The second guess i s to maintain constant average power by choosing 

all t he e . ' s equal to a constant, say e . 
J. 

Then 

E == Ne av 

and 

(3 . 67 ) 

where h(i) == col(hil' h i 2' • • • , hii ) is the i-th r ow of Q.-
1

, 

g . == ~ (q(i), f(i)), and f
1
. = 0 8(h(i), g (i)) . Once agai n the signs of 

i cre 
the components in the inner product are avaiJ_able for partial optimiza-

tion of R . An example for the case of first order Markov noise is c 

worked out i n Appendix II where it is shown that for both yi = y, 

and e. = e 
l 

p 

NW 
0 

'Y 

(
1. ~) 
T~ 

2 
(3 . 68 ) 
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where ex is the :Parameter of t he Markov noise 

The critical rate achievabl e is then 

R = W ln(l + l') 
c 

p 
. W ln(l + NW) 

0 

(l + jexj ) 2 NPW 
0 

for __!._ >> l 
NW 

0 

f'or ~ << l NW 
0 

(n. = an. l + -w .). 
1 1- 1 

{3.69) 

(3. 70) 

·-where 
N 

0 

2 is the spectral power density of the white noise which 

dr ives the dif'ference equation to produce Markov noise, 
N 

(E[ w. w.] = 
2
° 6 .. ) • 

1 J 1J 
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IV. NOISY FEEDBACK 

4.1. Introduction. 

The inclusion of feedback noise is essential in the representation 

of a physically realizable system. otherwise, as it is shown in Section 

3,l, it would be poss ible to use arbitrarily weak feedback signals for 

conveying information to the transmitter . Thus , in the case of noisy 

feedback, the probability of error is determined by the feedback power 

as well as the power used in the forward channel. 

The main purpose of this chapter is to establish the relationship 

between the forward and feedback power and the probability of error for 

systems in which the :10ise in the forward and feedback channels is 1,-;hite . 

and independent. There are many pr a.ct ical s i tuci.tions in which this 

assumption i s valid. Thus, if 

forward and feedback noise , then 
N 

where a2 0 is the two-sided :::: 2-

forward channel and ·2 2 
y == a /o . m 

2 T 
K == er (I + yAA ) , 

2 and 2 
the variances of the a a are 

ID 

K 
2 

K ya2I and K o, a I, -· n ID mm 

noise power s pectral density in the 

Equation (2.10) simplifies to 

(4.l) 

and, l e tting I+ C = ( I -AB)-1, where C == AB(I-AB) -l is lower tri-

angular with zeros along the main diagonal a llows 

( 2.29), to be written 

E av' as given by 

(4.2) 
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However, 

Tr[(I+C)( I+C)T - C - CT - I] (4 .3) 

and Tr[C] = 0 b ecause the diagonal elements of C are ident ically 

zero. Also Tr[I] = N; therefore 

Substitution of (4.4) into (4. 2 ) produces 

E av 

N 2 
+ E 

0 av 

2 T 2 T 2 T 2 
Tr [( I+C )(oe gg +om AA +0 I)(I+C) J - 0 N 

2 T T 
Tr [(I+c )(oe gg +K)(I+C) ] 

Note that the above simplificat i on i s possible only because 

(4.4) 

(4. 5) 

(4 .6) 

K was 
n 

a ssumed to' be diagonal. The feedback energy as given by equation ( 2 .30) 

may also be writte n in terms of c, 

2 T T T 
Tr[B(I+C)(oe gg +K)(I+C ) B J (4.7) 

Finally, the quantity that controls the probability of error is 

l (4. 8) 

where 
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It is easy to see t hat the simpl e scaling argument B _. EB, 

1 A _. - A 
E ' 

AB_. AB of Section 3.1, that caused E:fb to b e arbitrarily 

small without affecting E av and llg\j 2 _1 f a ils; b ecause, in the 

K 2 T 
present case K = a~(I+yAAT) becomes a (I + Y2 AA ), thereby 

E 

causing jjgjj2 _1 to decrease whil e 
K 

E av increases as E i s reduced. 

A more subtle but equa lly unrewarding pursuit is to choose g in 

the null space of AT. This choice is deceptively promi sing but it is 

easy to prove that it l eads to the no-feedback solution A = O. Fi rst, 

in order to show why such a choice is seemingly good, note that 

K-1 = 1 2 (I+yAAT)-1 
a 

therefore, 

= 12 [I-yAAT(I+yAAT)-1] ' 
a 

jjgl\:-1 = : 2 \jgj\2 - y(g,AATg) K-1 

~ ~ \lg\\2 
02 

(4.10) 

(4.11) 

(4.12 ) 

with equality if and only if ATg = o. Thus it s eems that E[(eN-e) 2/e] 

and the probability of error, are minimal and independent of the f eedback 

noise when ATg = O. Since the r ank of A is at most N-1, t here 

ex ists a non-trivial choice of g that satisfies the above condition . 
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Now, i n order to prove that this condi:tion l eads to the no feed-

b a ck case A = 0 as the optimu.~ solution, cons ider the express ion 

for · E as given by (4. 2). 
av 

E 
av 

2 T 2 T T 2 T 
Tr[(I+C)(ae gg +am A . .A.. )(I+C) + a cc ] 

ae
2(\\g\l2 

+ 2(g,cg) + l\cg!l 2 ) + a
2

(y\! (I+C)A\]
2 

+ \lc\\ 2) 

:2'. 0 e
2

(\ \g l\2 
+ 2(g,cg) ) 

t ( -- )-1 Bu C ::: AB J_- AB , therefore 

(g, c > 
g 

T ( )-1 g AB I-AB g 

vani s h es when g TA T T T (A g ) = O. Thus, if A g 0 then 

(4 .13 ) 

( 4 .11~) 

with equality if and only if A = O. In fact, the only ~uantity that 

can -b ecome nega tive, and thereby play a I112.jor rol e in minimizing E , 
av 

i s ( 4 . 14). This i mpl ies (wi thout proof, however) that A and B 

should have, as in the n oisel ess case, rank N-1, which i s the maximum 

r ank aJ.lowed in the f ormu l ation. 
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4.2. Solution of the Signal Se lection P-roblem . 

An important relationship between E 
av' 

E 
fb 

and for 

systems with white and independent noise can be established by the use 

of several well known matrix: properties . Let 

~ -l 0 e T T T T -l 
( 

2 ) ~ = (I-.P.B) <J2 gg + I + yAA (I-B A ) (4.l6) 

Since AB is lowe r triangular with zeros dovm the main diagonal, 

I - AB has one s d01m the main diagonal and det ( I-AB )-l = l. There-

f'ore, 

det H det (I-AB )-2 

det H 

(Je 

( 

2 

det -·-
02 

T 
gg + I+ 

. (4.17 ) 

where, in general, det(I+xxT) = l + llxil 2 for any vector x . The 

proof of this fact is simple . The vector x i s itself an eigenvector 

T T x(x, x) (l + llxl\ 2 )x. of the matrix: I + xx b ecau.se (I+xx )x x + = 

Thus the eigenval u e associated with x is l + !\x\1 2
• Since I+ x...x T 

is synnnetr ic the remaining N- l eigenvectors must be orthogonal to x . 

Thus , i f y i s any other e i genvector, (x, y) = o, and 
T 

(I+xx )y = J , 

proving that the remaining eigenval ues a rc a ll equal to u.""lity . Since 

the determinant i s equa l to . the product of the e i genvalues, the proof 

is complete . 
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oe 2llg\12 .. 1 
K 

is obtained by letting 

T T 
QQ = I + yAA and 

Q(xxT + I)Q.T . Thus 

0 e -l 
x = 0 Q g, 

( 

2 
0 e T so that 
02 

gg + I + 

det H 

det(I+yAAT) 

N n \I. 

i=l l. 
= ------

det(I+yAAT) 

where v1, v 2, •·· , vN are the eigenvalues of H. Also 

E 
N+ 

av Tr H -2-
0 

N 

= l: \). 
1 

i =l 

and 

(4.18) 

(4 .19)· 

(4 . 20) 

where Tr[BTBH] = Tr[BHBT] follows from the invariance of the trace 

operator under cyclic permutations of t he matrices . 

Since erfc x is a monotonically decreasing function of x, the 

minimization of P given E and Ef'b is equivalent to maximizing 
e av . 

subject to constraints on E av and But, since 

v . > 0 for all i, the following product inequality always holds 
l. 



with 

with 

N 

n 
i=l 

\I. s 
J._ 

eq_uality i f and only if \I . 
J._ 

1 
=N 

E r 
1 + ae 21\gll2 -1 s 

( 1 +. N:; .. 

T 
K det (I+yAA ) 

N 

L'. \I . = \I for all 
i=l 

J._ 

eq_uality if and only if all of the e i genvalues of H 

(4.21) 

i, Thus, 

(4 . 22 ) 

are eq_ual, 

that i s , vi = \I = (1 + P/N
0
W) . In order to achieve the upper bound 

. T 
it is necessary to hold det(I+yM ) fixed while varying AB and g . 

Since every s ymmetric matrix whose eigenval ues are all the same is a 

multiple of the identity. matr ix, H = VI , 

Note that (4. 22 ) i mmediately provi des the solution to the noise-

l ess feedback probl em (y=O) in which the forward noise i s white . 

The cond i tion H = vI may not b e achievable for some choices of 

B or A even if of rank (N-1) . However, if it is achieved then the 

bes t choice of B ( from the set for which H = vI) can be found as 

follows: 

Efb 
= 

02 
Tr [BTBH] 

(4 . 23 ) 

N- 1 N- l 

\I L I: b~j 
i=l j=l 

t he rank constraint on B req_uires that 



N- l 

\ b~. > 0 L 11 

i=l 
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Therefore, if the last row of B is disregarded because it is iden-

tically zero, the deter minant of the resulting (N-1) x (N-l) matrix 

must b e positive. Let 2 2 
~l' ~2' , ~;_1, ~2 b e the eigenvalues of 

l N2 N-l 2 

Efb 

-2 then P. ...,N 

= v Tr[BBT] 

i = 1., 2 • • • . 
' ' 

is identically zero, and ~- = 2: b .. > O. Since 
J._ i =l J._J._ 

= ~~' it is minimized by choosing ~~ = ~2 for all 

N-l. This immediately i ndicates that BTB = ~2L_ 
J\r-l 

where IN-l is the (N-1) x (N-l) identity matrix. Therefore 

B = ~~-l · (Because this is the only solution when B is lower tr i

angular . ) Thus it transpires that 

or 

wher e 

Efb 
- 2- = 
0 

\)~2 
y 

= 

Pfb is 

pfb 

yN W 
0 

pfb 

the 

l + 
p 

\) = NW 
0 

= l + p 

(4.24 ) 

feedback signal-to- noise r a tio. Al so, there is 

(4. 25) 

where p is the signal-to-noise r a tio of the forward channel. It is 



now necessary to solve for A and g from the condition H vr. 

4.3. Selection of A and g when B = ~I. 

The starting point for the determination of A and g is the 

matrix equation H = vI. Note that this simple matrix equat ion repre-

sents a total of N(N+l)/2 independent scalar equations. The number 

of unknown elements in the lower-triangular zero diagonal matrix A is 

N(N-1)/2 while the number of unknown components in the vector g is 

N, giving a combined total of N(N+l)/2 u_-rlknowns. Thus, a solution 

is to be expected. Note that 

2 
0 e T T T I yAA = (I-AB)H(I-AB) 02 gg + + 

Therefore 

2 
0 e T 
2gg + I = 
a 

(4. 26) 

Completing the " square" on the right-hand side gives 

This r educes to 
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(4 . 28) 

where 

(4. 29) 

f 
\!f3 -y e ( 
2 )l/2 0 

\!(32 + vy-y -;;-- g 
(4 .30) 

and 

2·2 
2 \) (3 a = __ _,_ __ 

2 v(3 + vy-y 
(4.3l) 

The sol ution is to factor the positive defi nite symmetric matrix 

ffT + I into the product of a l ower triangular matr ix wi th its tran s -

pose, an:l to identify this with the r i ght-hand side . It is also not 

difficult to solve the N(N+l)/2 equat i ons for f and D directly 

2 2 2 
since they are recurs ive. For exampl e , fl+ l =a f

2
f l = -a d

2
l, 

2 2 2 2 2 2 
and f

2 
+ 1 =a d21, this gives f 2 =a (a -l) etc. Here , a more 

economical method will be demonstrated . 

(I-D)T(I-hhT)(I-D) = l 2 I 
a 

(4. 32) 

Note that I-hhT is positive definite since it i s the inverse of a 

positive definite matrix. I t may b e eas ily v erified that minimization 

of the trace of (I-D)T(I-hhT)(I-D) subject to a constraint ·on the 



determinant gives the condition that T T (I-D) (I-hh )(I-D) be 

* diagonal. Therefore, the diagonalization can be repla ced with a 

minimization of the trace. T T Note that det (I-D) (I-hh )(I-D) = 1 -

!lh\\2 
= ar2N so that D is not constrained by the determinant. 

Let d(i) = col(d(i+l)i' d(i+2)i' ·~· , ~i) denote the nonvan

ishing portion of the i-·th column of D and l et h( i) 

col(hi+l' hi+2' ••• , ~). Note that d(N) = h(N) = 0 while d(N-1) 

dNN-l and h(N) = ~ are scalars. The trace of (I-D)(I-hhT)(I-D) 

is the sum of the diagonal elements, 

1 + !ld(i)ll
2 

- (hi - (h(i),d(i)))
2 

= 
1

2 ; i = 1, 2, ••• , N 
a 

(4.33 ) 

Setting gradd(i) = 0 (or taking gradd(i) of both sides ) gives 

d ( i) + (h. - (h ( i)' d ( i) >) h ( i) 
1. 

0 . 

Taking the inner product with h(i) gives 

so that 

hi. - (d(i),h(i)) 
1 - \lh(i)[\

2 

d(i) 
- h. 

____ i_-=- h( i) 

1 - \\h(i) \\
2 

. 

Substituting for d(i) produces 

* This is true for any positive definite matrix, e .g. H. 

(4.34) 

(4. 35 ) 

(4.36) 



h. 2 
1. l 

l - = 2 
l - \\h(i)\1

2 
0: 

therefore, 

where 

2 l 
h. = -2 h . l 

1. 1.+ 
0: 

= o:-2(N-i) ~ 

0:2-l 

= 7 

2 
h 2 0: -l 

N = - 2-
0: 

-2(N-i) 
0: 

Conseq_uently 
2 l .. 

Next, 

hence 

0: - J-1. 

70: 

d . . = 
J 1. 

0 

fi = ci + \ \ f ll 2 Y~ hi 
2N(o:

2-1J - 2(N- i ) = 0: - 2- 0: 
0: 
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(4 .37) 

(4,38) 

for j > i 

(4 ,39) 

for j ~ i 

(4.4o) 



and therefore 

1 . 1 
(v-1)2 ci·- (4 .41) 

cxj - i j > i 

4.4 . 

v-1 
- v13 

Eval uation of 

0 

T det(I+yAA ) 

It is necessary to calculate 

(4.42) 
j ~ i 

and Probab ility of Error. 

T det(I+yAA ) in order to determine 

the probability of error of the feedback code. Define the l ower tri-

angular matrix J such that (J)ij = oi j+l' note that J has zeros 

on the diagonal . Using this notation enables A to be written as 

A= - a 

and therefore 

wher e , 

v - 1 
v13 (4.43) 

(4 .44 ) 

However, AAT occupies only the (N-1) x (N-1) lower right corner of 

its N x N format . 'I'herefore all the off- diagonal e l ements in the 

first row and colum.'1. of a:r.e zero. Since the first diagonal 
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T T e l ement is unity, it is obvious that det( I+yAA ) = det(I+yAA )N-l 

where the subscript is us ed to indicate that the matrix is (N-l) x 

(N-l). 

Now, 

( I+yAAT)N-1 = [I + 6(I-a.J)-l(I-a.JT)-l]N-l 

= (I-a.J);:l[(I-a.J)(I-a.J)T + 62I]N-l(I-a.JT);:l . 

-l 
Since det(I-a.J)N-l = det(I-a.J)N-l = 1, it follows that 

T T 
det(I+yAA ) = det(I+yAA )N-l 

= det ~-l (4.45) 

where ~-l is the tri-diagonal matrix [(I-a.J)(I-a.J)T + 62I ]N-l 

l + 62 -a 0 

-a (l+a2 + 62) -a 

QN-l = 0 -a (l+a2 + 62) 

0 0 0 

0 

0 

-a 

o • • • -a 

0 

0 

0 

2 2 (l+o: +6 ) 

(4 .46) 



51 

The determinant of such a matr i x is well known, however, in order to 

obtain an expression that is suitable for the present analysis it must 

be rederived. Observe that Q__ is almost of the form 
"N-l ( a I-bJ )N-l 

T 
(aI-bJ)N-l where 

and 

l + a.2 + 52 (4.47) 

(4.48) 

The only difference is in the first element, which instead of equaling 

is equal to 

where e1 = col(l, o, ··· , o) and 

2 l + 5 . Thus 

(4.49) 

i s a matrix of r ank one 

which is empty except for t he first el ement which is unity. Now l et 

e1 = (a I-bJ)z where 

-l 
z = (aI -bJ )N-l e1 (1~ .50) 

then 

~-1 (4 . 51) 

and 
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T 
det(I+yAA ) = det ~-l 

(4,52) 

However, 

N-2) ••• _b _ 
' N-l a 

(4 ,53) 

therefore 

(4,54) 

giving 

(4.55) 

The last step is to solve for 2 2 · a and b as functions of v, 

and 
~2 

Observe that 
y 

\)~2 = \) + _ 2 _____ _ 

\)~ + vy-y 
(4 .. 56) 

and 
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(4.57) 2 
\Jf3 + vy- y 

Consequently) 

b2 = \) 

= l + p (4.58) 

2 \Jf32 
a 

2 
\Jf3 + vy- y 

pfb 
= , 

Pfb + p (4.59) 

and 

N ( )-l -N I )-N (l+p ) p+pfb + (l+p) (l+p Pfb 

l + (p+pfb)-l 
(4. 6o) 

Therefore 

2\1 \12 (l+ p)N 0 e g -l = T 
K de t(I+yAA ) 

- 1 

N N 
(l+p ) (l+p/pfb) - l 

(4. 6l) 

with equal ity when N is infinite . Howev er J h a l f of the upper bou_11d 

i s achi ev e d with N "' NBJ where 



ln(p+pfb) 

ln(l+p) (l+ p/ pfb) 
(l+. 62 ) 

Substitution of C = W ln(l+p ), E = W ln(l+ p/pfb) into Eq.( 61) gives 

p 
e 

erfc 

erf c 

Thus, f or T < TB' 

o~l\g\ 1 2 _1 
K 

( ) -l 2T(C+e ) 
p+ pfb e (4. 63 ) 

where 

the error decreases almost as fast as in the noiseless feedback case; 

and approaches the constant value 

erf c (4.64) 

as T increases b eyond the break point TB. 

4.5. Sel ection of the Block Length . 

· Unlike noisel ess f eedback, noisy feedba.ck alone cannot be used to 

drive the error to zero . Thus , it i s ne cessary t o employ one - way coding 

in addition to, or even in exclusion of, f eedback coding . 

Let Nt be the total b l ock l ength of a code consisting of a com-

bina tion f eedback and one -way codes, and let N b e the l ength of t he 

f eedback block . The l e ngth of the one -way code i s the n Nt/N, because 

each block o:f N signal s encoded via feedback can be treated as a new 
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element in the one-way block. The effective signal-to-noise ratio pe r 

feedback block is 

and the error resulting from the combined code is 

where E 
0 

is the reliability of the one-way code and 

is the rate of the message source. The l ength of the feedback code may 

be determined by sel ecting N to minimize Pe(peff'R,Nt) or to maxi-

mize 

When the one-way coding procedure is limited to be a repetition 

of the feedback pr ocess (i.e., no one-way coding); the total number of 

repetitions is Nt/N and the probability of error is 

It is evident that 

N = l, 2, 

choice is 

p = erfc e 

3 
erfc 

2 

N must b e selected to ma_ximizc 

3 

2 

In most cases of interest (p 
fb 

If < c:i and 

Nt ( p+ Pfb) 

NB 2(M2-l) 

l 
N peff(N) where 

>> p) the optimum 

then 

(4. 65) 

p approaches zero as Nt approaches infinity :provided tha t M2 < Nt. e 
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Consequently, R = 
2W ln M < 2W i ln Nt approaches zero unless W is 
Nt t 

inf'inite. For a more eff'icient one-way code, the choice of' f'eedback 

block length becomes even less. The minimum choice f'or N is of' 

course unity, and it corresponds to the no f'eedback case. 

It is of' some interest to observe that in this scheme the average 

:power in both the forward and f'eedback channels is independent of N, 

and theref'ore also of T. That is, 

time . 

4.6. Mechanization of the Code. 

P and Pf'b are constant with av 

Although the solution of the system is available in matrix f'orm, 

it is desirable from the standpoint of implementation to derive a more 

compact representation for the coding and decoding operations . The 

feedback signals are of course 

u. = ~r. 
1 1 

The transmitted signals are ·given by 

i 
i \J-l I: i+l-j 

si+l gl::t e - \)~ a v . 
J 

j =l 

= a (si - v-l ) 
\)~ vi . 

Therefore 

I l + p 
= __ l_+_p_/~p_,_f1_b s . -

l 
(4. 66) 
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with "initia l condition" 

The computation of eN involves the inversion of I + yAAT Since 

it is obvious that 

l 0 0 

0 

0 

l 

0 

T . 
(I+yAA )N-l 

0 0 

( T)-l 
I+yAA N-l 

' 

Next, let 2 g = g1 col(l, a, a , ... N-l) 
' a be partitioned j_nto 

y = col(l, a, g = gl col(l,cxy) where 

(I-etJ)N-ly = el where e1 

z. where z = ~ col ( l, ~' 
-l l ( T)-l K = °""2 I+yA.A. , 

0 

col(l, o, 
b a: , ' 

2 N-2) a , • • • , a . 

0 • • • 0) J , and 

Note that 

(aI-bJ);:1 e1 = 
~ N- 2)· Then, since 

l 0 • • • 0 • • • 0 1 
-l l -

K g = 2 gl 0 
CJ 

( T)-1 I+yAA . N-1 

0 

gl 

[ a(I+~~T)~=ly l =2 
0 
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However, 

T)-l ( T) ( . T)-l ( 2 2) T ( -l 
( )

-l 
(I+yAA N-ly = I -aJ N-l aI-bJ N-l I + b -a zz aI-bJ) (I-aJ)N-ly 

T T -l ( 2 2 T) -l = (I-aJ)N-l (aI-bJ )N-l I + (t' -a) zz z 

l T T -l 
2 2 2 (I-aJ) (aI-bJ )N lz 

l + (b -a )llzll N-l -
(4. 67 ) 

and 

l 

\J-l ( ) --V- ay I-At) N-l 

Since (I-At)) = I - \J-l aJ(I-aJ)-l = (I-aJ)-l (I - ~ J), 
. \) y 

that (I-At))N-l = (I-aJ);:l (I - ~ J)N-l' 

if r' = col(r2, r
3

, ••• , rN) then 

where 

rN 

it follows 

Therefore, 

2 /:). g1 . [( (cl-a
2

) llzll
2 

) r + a( z, (aI-bJ)N-l (I - ~ J)N_1r' )] 
llgllK_leN = 

0
2 l + 2 2 2 l 2 2 2 

l + (b -0: ) llzll l + (b -a: ) llzll 
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,.. 
eN is the minimum variance unbj_ased estimate of e ) 

. cr~\\g\\ 2 - ·i 
K B XN ::: 

+ cr~\\g\\2 -1 l N 

K 

is the minimum variance (biased) estimate of e. Thus 

and 

x . 
J_ == x. l + 1-

with 

0 

_fl_ 
l+p (1+p 

i 

J(1 + P!;)f 2 r. 
l. 

while 

(4. 69) 

(4. 70) 

is the recurs ion formula to use a t the receiver for calculating xN' 

/\ * eN and eN . 

4. 7 . · Selection of t he Feedback Signals for a Specific Set of Forward 
Signals. 

The diagonalization of H is equivalent to the minimization of 

the probability of error for a g i ven amount of transmitted power in the 

forward channel. The r esulting ma-i:;rix equation H = \II represents 

N(N+l)/2 independent scalar .equations in the N2 unknmm parame t ers 

of A, B and g . Therefore, N(N-1)/2 parameters can be determined 

by other means. Thus, the condition B = (3I in the preceding sections 
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can be viewed as a particular choice of parameters . It i s of course 

possible to make a different assignment of the N(N-1) /2 free 

parameters in A, B, and g. For exampl e , the matrix A can be 

s peci fied instead of B. The condition H vI is then sufficient to 

provide a uni que solution for B and g . The feedback energy, 

Efb = v Tr BTB, is then indirectly specified by A. In f act, if A 

i s chosen to b e as in the preceeding section then B nrust turn out to 

equal ~~-l' where I N-'l i s the (N-1) x ( N-1) i dentity matrix. 

This section considers the probl em of determining B and g when 

A i s specified . Let c ) - 1 = AB( I -AB , then (I-AB)-l = I + c, also 

l e t 
cre 

f = 2 
CJ 

- l 
Q g where T 

QQ, = I + yAAT and Q, is l ower triangular . 

The matrix c is lower triangular with zeros along the main diagonal, 

and has a one to one correspondence with B when A has 

The problem now i s to sel .ect B and g such t hat E av 

minimum for a fixed val ue of 1 + cr~\\g\1 2 _1 . However, 
K 

iT H ~ iT (I + Cl ( :~ gg T + QQ T) [r + C ( 

= TR[ ( Q+CQ.) (ffT+I) (QT+Q_TcT)] 

rank N-1. 

Tr H is a 

(4.71) 

where A = d i ag Q(\ij = (Q)ij oij ), and D = CQ + Q - A i s , agai n, a 

l ower triangular rnatrix with zeros along t he ma in diagonal . Note that 

mi nimi zation of E with r espect to D i s the same as with respect av 

to C since there is a one to one correspondence between C and D. 

The constraint on \\g\\ 2 _1 affects onl y the sel ection of g . 
K 
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Let f(i-l) ::::: col(f1, • • ~ , fi-l) and l et d(i-l) ::::: col(dil' • • • , 

d .. l) denote the nonvanishing portion of t he i-th r ow of D. Then, 
l.l.-

since diag ( AD ) = 0 so that TR(AD) = o, 

E 
~+ N::::: 
cr2 

N 

2= 
i :::::l 

~ f ( e~ + i\ 
. l CY 1 
l.::::: 

where 

(4.72 ) 

e. 2 
1 + _?:_ ::::: (A.f. + (d(i-l), f (i-1))) + \\d (i-l) \1

2 
+ /...~ (4. 73 ) 

CY2 J. J. J. . 

Setting gradd( i--l) e i = 0 for i ::::: 2, 3, • • • , N obtains D as a 

function of f. Thus 

d(i-1) 

the refore 

e . 
l. 

l + 2 
0 

/....f . 
---

1
-

1 
f( i-1) 

1 + \\ f (i-1) \1
2 

= /...~ ( 1 + 
l. l + 

Next, since cr~\\g\1 2 _\ \lf\1
2

, . and because of the i dentity 
K 

(4.75) 
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l + \lril 2. = rr
1

.N=l (l + · f~ ) 
l + llf(i -l)\1

2 

there results 

(4.77) 

where 

The optimum choice for e . 
) _ 

i s obtained simply by observing that 

fr (1 + eo~} :::;; 
i =l 

E 
with equality if and only i f e. = ;vi= l, 2, ••• , N. Thus, since 

. E . 1 

P av 
\I - l = P = N W ·= - 2- , the r esult is 

o . o N 

The components of the vector f satisfy a recursion formula 

2 
fi 

- 2- = 

f. 1 1-

= (~ 2 lei ) ( ~~-~ ) ( 1 + 
A. \) le. 1 1 + 

1 1-

f. l 
2 ) 

\\~~ i-2) \\
2 



The ref ore 

(

. ; 2 ) . 1 \) - I\. l-

f~ = /.... ~ l 1I { /.... ~ ) 
l J 

Thus, 

d .. 
lJ 

(4.79) 

i-1 n 
k =j (~) j < i 

(4.80) 

This provides the solution, because C = (D-Q+A)Q-l and then 

AB= C(I+C)-l can be used together with the pseudo inverse A(-l) 

(A(-l)A = J) to give 

J is a lo...rering operator that anihilates the last row of B, which is 

identically zero anyway. 
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As an example, consider the code with A= aJ. This is the 

simplest lower triangular matrix with a zero diagonal with rank N-1. 

211 112 N 2 N-l In this case l + 0 6 g _1 = (l+p) /(l+ya ) increas es exponentially 
K . 

with N for ya2 < p. It will be shown, however, that the f eedback 

power 

and 

where 

is also 

Note that 

A.~ 1 + == l. 

d .. 
l.J 

== 

cpl 

D -

an exponentially increasing quantity. 

I + yMT = I + ya2JJT = A2 is diagonal with 

2 for i > l. Consequently, ya 

{ i-2 for j == l; i = 2, 3, 
cplLj-l 

... N , 
- cp6 for l < j < i = 3, 4, 

' 
N 

0 for j ~ i = l, 2, ... N 
' 

(\I-A. 2) (\1-l) /\), cp == c \I-A. 2) I \) and 6 = A./ \). 

0 

l 

6 
62 

N- 2 
6 

0 

0 

l 

6 

N-3 
6 

0 

1 0 

cpl 0 0 0 

0 cp 0 

0 O· cp 

0 0 0 0 cp 0 

)
-1 

== - J(I-6J q> 

where cpij cpi6ij and cpi = cp for i > 1. 

A. 2 
l == l 

(4.82) 

Thus, 

(4.83) 

Next, C == (D-Q+A)Q-l = DA-1, since Q A in this case, 

ther efore 

(4.84) 

(I+C) 
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and 

aJB = C(I+C) -l 

Therefore 

(4.85) 

where 1lr 
-l 51 + ~A . Since J annihilates only the last, all zero, 

row 

l 0 0 0 ¥1- 5 0 0 0 0 

*1 1 0 0 0 *- 5 0 

*1* * l 0 0 1\r-5 
l 

B = -a 

·N-3 
1li11lr 1lr 

N-4 

* 1 0 0 0 0 1\r-5 0 

0 0 0 0 0 0 0 

T The feedback energy may be computed from Ef'b = v Tr [B B] but, 

it is simpler t o use the fact that Tr[BHBT] = Tr[JBHBTJT] since all 

that J does i s annihilate the last feedback signal, which i s zero 

anyway . Now, however, JB = A( - l)AB = A(-l)C(I+C) - l b ecause 

A(-l)A ~ J, thus, T-.c[JBHBTJT] = Tr[A( - l)CQ( ffT+I)QTCTAT(-J.)J giving 



and 
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Efb· Tr[A(-T)A(-l)D(ffT+I)DT] 
02 :::: 

N-1 
Efb l 
- 2:::: -2 
yo ya 

I: ((d(i-l),f(i-1))
2 

+ 11dci-1 )11
2

) 

i=l 

l 
== - 2 

ya 

N-1 

L 
i ==l 

\\f( i-1) \\ 2 
l + l\f(i-1) 112 

E · l + 
fb 
-2 ~ 

ya2 

2 ya 
\lf(i-1)\\

2 

yo 

l 
~ --2 

ya 

(l+p)N-1 

(l+ya2)N-2 

, (4. 86) 

(4. 87 ) 

which grows exponentially with N. N is determined by the maximum 

allowed average feedback power, or signal-to-noise ratio . It can be 

s een that whil e it i s des i rable to make 2 ya small, it comes at the 

expense of increased feedback power . Also, if a is chosen to give a 

value for 
. T 

det(I+yAA ) which is equal to the same value as i n 

s ect i on 4.5 then it i s obvious from the fact that B is not diagonal 

that Efb i s greater than that in Section 4.5 . 

The mechanization of this scheme is simple. The transmi tted 

signal s are g i ven by 

si+l gi 8 + av i-1 

(4.88) 



The feedback signals are of the form 

i 

Ui= I:bijrj 
j=l 

" The r eceiver computation of e is given by 

The ref ore 

" . e. 
l. 

" e. 1 -l.- 2 2 2 (l+ya )gl + g2 + • .• + 

g.(r.-au. 1 ) 
J J J-

l (r. -au. 1)1 
gi l. l.-

(4.89) 

(4.90) 
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4~8. Discussion. 

The condition H = yI is not optimum for the noisy feedback 

problem. This may be seen by comparing the present result with a 

calculation for N = 2 made by Elias in 1956 [10]. Elias obtains 

(4.91) 

where P1 = el/cl and P2 = e2/cr2. It may be verified 
E 

tha t the 

optimum choice for and when av is P1 P2 P1 + P2 = - 2-
E cr 

av Thus p = -2 
2cr 

2 
p pf'b 2p + ___ 2 __ _ 

(l+p) + pf'b 
(4.92) 

Now, when H = (l+p )I the result is 

2 
(l+p) (l+p/pf'b) 

= --------~ 
(l+p)2(l+p/pf'b)2 

- l 
(4.93) 

+ l 
p + pf'b 

and it is clear that the expression in (4.93 ) is always less than or 

equal to that in (4.92), with equality occurring at = co 

An explanation as to wh;;r H = yI is not optimum is obtained from 

the r equirement that 
T 

det ( I +yAA ) , 

det H 
T 

det(I+yA..t1. ) 

in the expression 

(4.94) 

be kept fixed. When N = 2 this amounts to holding the entire matrix 

A (since it has only one non-zero entry) fixed. Thus, in effect the 



optimization is only over B. E~ua.tion (4.91) results from an optimi-

zation of (4.94) over A. 

It is instructive to go through the steps in greater detail. 

Without loss of generality, let 

A J B 

H = 

and Y = o2/o2 be unity, then 
m 

r: :i 

and as given by From this it may be seen that p1, p2 
2 (H)11 -1, (H) 22 - 1 , and b (H)11, respectively, are: 

2 
P1 = gl (4.95) 

P2 = 2 ~2 (g2+abg1 ) + a + a 2 (4.96) 

2 
pf'b = (l+ p,l) b . (4.97) 

Now 
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2 

cr~\\ g\\ 2 -l 
2 g2 

= gl + 2 
K l+ a 

(4.98) 

{a~gl + ~-. a2(l+b2) t 2 
= gl + 2 

l + a 
(4.99) 

Maximization over a of the above expression yields equation (4.91). 

It may be verified that the r esultirig optimum value of a does not 

diagonalize H. 

The diagonalization of H occurs if and a 

fixed, while the minimization of the forward energy E av 

are held 

is attempted by varying over b (and thus over pfb). Since only p2 

depends on b, the indicated choice is b = - g1g2/a(l+g~) . Equation 

(4.93) is obta ined when a = glg2/b(l+gr) and b = pfb/(l+gr) are 

substituted into (4.98), followed by the setting of p1 = p2 = p. 

The optimization of \\g\\ 2_1 over A for values of N > 2 has , 
K 

up to the present, proven to be practically impossible. 
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V. RECURS IVE CODING FOR NOISY FEEDBACK 

5.l. Introduction. 

This chapter develops a linear coding procedure, for ·the AWGN 

channel with an AWGN feedback link, using an approach that differs from 

the matrix methods in the preceding chapters. The approach is suggested 

by the form of the noiseless feedback scheme, where the receiver employs 

a first order difference equation to compute the minimum variance biased 

and unbiased estimates of the message . Here, the feedback signals are 

assumed to be the successive estimates of the message. The strategy of 

the transmitter is to compute the optimum estimate 
/\ 

estimate e., and to transmit 
J. 

s. = g.(e-e. l) 
J. J. J.-

. i = l, 2, • • • , N 

e. 
J. 

of the receiver's 

(5.l) 

Because of the initial structural assumptions, it is not possible 

to claim optimality. In fact, the recursive estimation performed by 

the receiver is optimum only in the smse that the receiver computes the 

best estimate from the data contained in the preceding estimate and the 

latest observation. This can, however, be generalized to a receiver 

that takes a linear combination of all the preceding estimates and the 

latest observation, which is equivalent to taking a weighted sum of all 

the observations and varying the weighting coefficients so as to 

minimize the variance. 

5.2. Description of the process. 

The coding procedure is diagrammed in Fig. 4. It is in principle 
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eQuivalent to that of Omura [17] and Kashyap [18] except that an 

optimization over the receiver ' s parameters is also carried out. This 

last step is important and it l eads to a significant improvement in 

system performance. It might be added that the work described in this 

chapter predates the matrix approach of the earlier chapters, and, like 

that of [17] and [18], was prompted by the interesting paper of 

Schalkwijk and Kailath [15,16] who use the Robbins-Monro method of 

stochastic approximation. 

s. = g. ( e-8. 
1

) 
]. ]. i-

~ ~ · Kalman v . 
e. ]. 

]. Filter 

r i .A ' · f------e. =9. 1+a.r. 
]. ].- ]. ]. 

m. 
]. 

~ 
!::.. 

u. = h.9. 
]. ]. ]. 

{\ 

e. 
]. 

Fi g. 4. Feedback Coding with Recursive Estimation at the Transmitter. 

The first signal is the receiver observes r
1 

/\ rl 
e = - • 

1 gl 
and computes the minimum variance unbiased estimate 

first feedback signal is the transmitter observes 

== sl + nl 

The 

and computes the best estimate of 
I\ 
el from its knowledge 

of e and By "best" it is meant that 
- A 2 

E[(el- 9l) ] is a minimum, 

where 6
1 

is the transmitters estimate of It is given by 

(5~ 2 ) 
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E[ (e-ei) 

2J. 
f\ ,.,.. 

where Pi is chosen to minimize Let el = el+el then 

~ 2r ( 2 ) u2 --'2 - plhl ~ plhl 

hI 
(5.3) E[e1 J = 2 2 + 2 

cr g
1 

cr 
m m 

taking 2_ E[e2] 
Opl 1 = 0 gives 

1 (5.4) Pi = 
h2 2 

l gl 
-+-
cr2 cr2 

m 

which, a:fter substitution into (5.3) provides 

(5.5) 

The form of the transmitted signals is taken to be s. =g.(8-8), 
J_ J_ 

the received observations are r. = s . + n . 
J_ J_ J_ 

and the receivers recursive 
II 

determination of ei is assumed to obey 

A 

e. l + a.r. 
i- J_ J_ 

i l, 2, ... 
' N (5. 6) 

fl 
where a. is to be determined. The coefficient before e. l is unity 

J_ i-

because it is re~uired that 
/\ . 

E[e./eJ =8 for all 
l 

i, Since E[rjeJ = 
II 

it follows that E[e ./e] = 
l 

5. 3. Recursive Estimation at the Transmitter (Kalman Filtering). 

The Kalman Bucy method for estimating the output of a linear 

dynamical system developed in l960-6l [20] is directly applicable to 



/\ 

the present situation. Therefore, let ei be the best estimate of e. 
1 

that the transmitter can make on th~ basis of the feedback observations 

vl, v2, ••• , vi and the knowledge of e. The Kalman-Bucy filtering 

eq_ua ti on for e. is then 
1 

e. = e. l + a.g.(e-9. l) + 
1 1- 1 1 1- (

vi - [e. l - a .g.(e-e. l)JJ. 
1- 1 1 1-

h. 
1 

(5.?) 

The transmitter error, 

e. = (e. i + 
1 1-

/v e. 
1 

is 

Since and m. 
1 

are statistically independent and white, 

E[El~] 
1 

2 .)( h~pi)
2 

(h~I\)
2 

+ a.cr l - ----2- + ----2-
1 0 0 

m m 

Since E[e~J 
1 

is a minimum, it must be a minimum over 

0 E[ef! J = 0 
~1 

and solve for pi to find that 

which, after substitution into (5.9) gives 

E[B~] 
1 ( h~p. )2 02 

1 1 m 

7 h~ 
m 1 

p .• 
1 

(5.8) 

(5. 9) 

Thus, let 

(5.lO) 

(5.ll) 

(5.l2) 
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Now Equation (5 .11) reads 

1 h~ l 
l 

= 2 + 2 2 
p i (J pi- 1 + a1cr m 

(5 .13) 

2 h~cr2 
setting 

gipi 1 l and 2 2 2 gives or qi = ~ , =22 w. = aigi l 
Yi g. (J 

i m 

1 1 1 
= - + 2 . q. Yi l gi 2 

(5 .14) 

qi + w. 2 l 

gi-1 

5 .4 . Recursive Estimat i on at the Rece i ver. 

The receiver is supposed to compute the minimum vari ance estimate 

I\ 
8 . of 

J.. 
8 

/\ 
g i ven only the precedi ng est i mate · 8. 

1 J.. -

observation r . . Thus, 
J.. 

/\ /I 

8 . = 8. 1 + a . r. 
l l- J.. l 

/I ~ - ) e. -e = e. 1-e + w.(8-e. 1 l l - J.. J..-

w. 
l 

+ - n . 
gi l 

. "' wi 
(e. 

1
- e) ( 1 -w . ) + e . 1 + - n. 

l- l J.. - gi J.. 

and t he newest 

(5. 15) 

(5.16) 

(5.17) 

Now note that E[e.e.] = O. This may be verified by direct computation 
l l 

from equations (7),(8), and (10) fore. and e. and p .. It is simpl y a 
l l l 

statement of the projection theorem, which states that the error e. 
J.. 

is statistically orthogonal to the estimate e. ,.., 
Since 8 . is independ

i 

ent of e 
,.,,, 

it follows that E[88.] = 0 . 
1 

Therefore, 



= E[ (e. -8) 2 ] + E[~~J . 
l. l. 

Letting and [3. = E [ (e . - 8) 2] 
l. l. 

i = l, 2, • • • , N 

From (5.l7) and (5.l9) and (5.20) it follows · that 

. 2 
E[(e.-e) 2J = .(1-w.) 2 E[(e. l-e)2J + w2

1
. 

0

2 + E[e2 ] 
l. l. l.- i-l 

gi 

The minimization over wi is straight forward; 

[3 . 1 l.-w i = ____ CJ..,.~ ' 

[3i-l + 2 
gl 

which, when substituted into (5.22), gives 

The inverse of both sides of (5.23) is 

(5.18) 

(5.19) 

gives 

(5.20) 

(5.21) 

(5.22) 

Co:. 
l. 

Ow. = 0 gives 
l. 

( 5. 23) 

(5 . 24) . 

(5.25) 



l l 
=l+----=-

g~ 
]. 

f3i-l 2 
a 

· substituting (5. 20) obtains 
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l l 
= l + --------,,..-~ . . 2 . w. 

]. gi 
(a. l - q. l) -2~ 

].- ].-

gi-l 

(5.26 ) 

(5. 27) 

In summary, the operation of the system is completely characterized 

by Equatiors (5.14), (5.25) and (5.27). They are restated for future 

convenience as the system of coupled equations (5.28abc). 

l 
w. 

1 

l 
l + -------

(a i - l - qi-l) "-i 

l l = - + __ 2 ___ _ 

Yi· + ~ q w. I\· . l 
1 1 1-

. a
1
. = w. + "- . q. 1 1 1 ].-

(a) 

(b) 

(c) 

(5. 28) 

where 2 2 2 2 2 2 
"- · = g./g. l and y. =a g./a h .. 

1 1 1- i m i 1 
The initial conditions for 

starting the system of equations (5. 28abc) a:re w1 = l/g1 and ~· O. 

N N 
After the sequence s [1'.i}i=l and (yi}i=l are specified, the 

system (528abc) can b e simulated on a digital machine and the parameters 

of the code and 2 2 
p. = a q_./g. 

1 1 1 
dete rmined . These numbers 



can be precomputed and stored at the transmitter and receiver, or special 

purpose computers can be built to generate them iteratively at each 

station. 

5. 5. Equations for P, P · p· · and R. 
fb' e c 

The average power transmitted in the forward channel is 

2 - )2 E[g.(e-e . 1 J 
1 1-

but E[(e-8. 1 )
2

] = ~- 1 = (a. l - q. 1)/g~ l, thus, 
1- 1- 1- 1- 1-

2 02 
· 2w0 e 

p = -- [gl 2 + 
N o 

N 

I: ~.(a. 1-q. l)J · 
1 1- 1-

i=2 

Similarly, the average feedback power is 

but, 

N-1 
2W 

pfb = N-1 \ h~ E[e~J L 1 1 

N-1 
= 2Wo

2 
\ h~ 

N-l L -
. l 2 l= g . 

l. 

2 2 (a. + g.0
6

) • 
l. 1 

therefore, 

(5.29) 

(5.30) 

The error probability a~er N iterations is found by the same 

method as in Section 2.4 with o~\\g\ \ 2 _1 replaced by 
K 

Thus 
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(5.31) 

and the expression for the critical rate is 

1n (1 + 

2 2 

) R (N) 
· 1 0 egN 

= 2T 2 c 
a~ 

(5 .32) 

5. 6. Asymptotic Performance of the Code . 

The performance of t h e scheme in the limit of large N can b e 

determined after estciblishi ng the limiting form of ~' 

as N approaches infinity. 

and 

There are two situations of interest. One i s the infinite bandwidth 

case, which is obtained by s etting /..... = A. = 1, 
)_ 

and The other 

i s the finite bandwidth case which i s obtained by setting t...i = A. > l 

and It can b e seen that implies that the 

feedback p ower must grow exponentially with N when A. > 1,2 and 

2 °m 2 
hi=--2 gi 

ya 
linearly when A. = 1. This follows from the fact that 

I t is a lso evi dent that the feedback power i s zer o when 

2 
(5 = o. 

m 

Theorem 3 . 

( a) The assumption that wN = w, and are constants 

(independent of N) for A. ~ l, i s consistent with the system of 

equations (5 . 28abc). 

(b) The assumption that 

w and with 
N-1 

wN' and qN are of the limiting form 

q = w(w-l) and w(w-l) 2/( 2w-l) == y as 
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N _, co, is aJ_so cons is tent with ( 5 . 28abc). 

Proof. 

The proof is obtained by assuming the hypothesis for N and 

showing that it satisfies (5 . 28abc) . First it is convenient to 

eliminate a . by substituting (5 . 28c) into (5.28a) 
J_ 

l l + l . , w. 
(w. l + A.q. 2 qi-l) A. J_ -i- i -

a l so, 

l l 1 ::: - + 
2 q. y 

A.q. l J_ w. + 
J_ i-

(5.33 ) 

(5.28b) 

(a) Let wi = w and qi = q. Then (5.33) and (5 . 28 ) provide two 

simultaneous equations in w and q as functions of A. and y, 

l l + l 
- = w A.w + A. ( A.- l)q 

(5 . 34) 

l 1 l 
= - + 2 q y w + A.q 

( 5 . 35) 

It is easy to see that A. > l is necessary, for if A. = 1, there would 

l l be ::: l + - which is impossible . (A.< l is not considered since it w w 
2 implies gN _, 0) . 

(b) 

gives, 

w 
Let wi+l = T , and let qi+l = i;l then (5 .33 ) (for A. 

i l 
::: l + ----w 

1) 
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i-1 q 0(-1.) l +-- 1--+ 
w wi 1 

as i ~ 00 all the t er ms o(~) a r e negligible . By equating the sur
i 

viving t e rms there r e sults 

q = w(w-1) . (5 ,36) 

Similarly, from (5. 28b ) 

i + l 1 1 
= - + 

2 q y 
w g -+ . 2 

i J. 

1 i 1 
= -· + 2 y q 

1 + 
w 
q . 

1. 

1 i 
2 

O(~) w 
=- + - - 2 + J y q 1. 

q 

thus 

2 
w

2 
+ q = g_ (5 . 37 ) 

'Y 

By subs tituting f or q f r om ( 5 .36) it i s ev i dent tha t 
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o:r 

(5.38) 

thus completing the proof . 

5 . 7 . IJ:'he Wide band and Narr ow band Rates • 

'l'he asymptotic form for ON is obtained from (5. 28c) which in the 

inf inite bandwidth ca8e (A=l) is 

(5.39) 

The average p ower, from (5. 29) is 

N 

[ (o: . l -q. l)) :t- :t-

R:l:;T ln( N-1) (5.40) 

'I'he critical rate is therefore 



1 
Rc(N) = ZT ln 

l+ +. ~ (N-1)] 
ln(N-1) 

Taking the limit as N ~ oo g i ves 

where 

R (oo) = ~ C 
c w 00 

c 
00 

p 
=-2 

2cr 
and 

. .. . 2 
w(w-1) 

2w-l 
The nontrivial sol ution for 

(5.41) 

w 

when y = 0 is w = 1, thus achieving C when the f eedback becomes 
00 

noiseless. 

The feedback power as given by (5 .30) and (5 .39) grows linearly with 

the b andwidth W, or N. 

w 1 N-1 
pfb l: 2 2 

2cr2 = (ai + gl ere) 
N-1 

ID 
y i=l 

2 w w ln(N-1) 2 2 
= - N - 1 + glcr8 y 

w 2 2 
(5.42 ) :=:::- gl cre y 

Note that the forward power is increasing only logarithmica lly 

with N, thus the relative growth of Pfb to that of P is exponen

tial . The same ar i ses in the bandlimited case (A>l), except that P 

increases l inearly with N while Pfb grows exponentially. 
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That the bandwidth is finite for A > l can be seen from 

(5 .43) 

where again from (5.28c), but with A> l 

a= w + Aq (5.44) 

and, w and q are given by the solution to (5.34) and (5.35). Thus, 

as N ~ ro (5.43) yields 

R {ro) = W ln A c 

This time 

or 

p 

2CJ;l 

(5.45) 

(5 . 46) 

When the feedback noise is small, y << l, (5.35) indicates that 

q ~Y, and equation (5. 34) can be used to obtain 



and 

~-1 
w~T+ y 

{ 1 + ~w) 

The improvement due to the partial optimization of the receiver 

operation can be appreciated by comparing the present calculation for 

R (ro) in the wide band case, to that of Kashyap [18], who retains the 
c 

noiseless receiver with 
f\ e. 

1. 

" l e. l + -:- r .. 
1.- 1. 1. 

Cro 
R (ro)~~~~~~~-

c 1 + 4. 5Y + ~Vi + 4y 

c 
0) 

for y < .Ol 
l +-yY 

for y :<!: l 
l + 5y 

Kashyap obtains 

The result obtained here is Rc(ro) = Ca:Jw(y), which gives 

c 
~ 

for y < .1 

R ( ro) 
c 

c::o 

1 +JiY 
for y > 10 

(5.48) 

(5.49) 

(5.50) 
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VI. CONCLUSIONS 

The work described in this report employs a new and general linear 

:formulation of the feedback communication problem. The utility of the 

:formulation has been demonstrated in Chapter III, by the first derivation 

of the best linear coding proceO.ure for systems with arbitrary Gaussian 

forward noise and noisefree feedback. The formulation was used in 

Chapter IV to obtain a partially optimum scheme for a system with 

independent additive white Gaussian noise in both the forward and 

r eturn channels. Chapter V describes a recursive procedure for calcu-

lating the parameters for the noisy feedback problem, with n ew results, 

concerning improved estimation at the receiver, b eing obtained . 

.An important advantage of the general approach is in the derivation 

of the optimum receiver, and the expression for the variance, o~ \\gll 2 _1 . 
K 

This obviates the need for finding the optim1un receiver configuration, or 

its performance. Thus·, an optimization over the receiver parameters, 

such as is necessary in Chapter V and also in Refs.[17] and [18] is 

eliminated. 

Of' interest is a comparison of the performance of t h e noisy schemes 

in Chapters IV and V to the result of Elias, who found the optimum for 

N = 2. To b e very simple, l et p = l, and pfb = 2 . 

is the resulting signal to noise ratio, Elias obtains 

Then, if peff 
l 

Peff = 2 3 ' 
the method in Chapter IV gives l ~ Peff = 3 ' while the approach in 

Chapter V yields l 
Peff = l 3· 

It is not possible to say how well the opti1num system will perform 

when N > 2. The solution of this problem would constitute an important 

future contribution. It is conjectured here that the general b ehavior 



will still be one that r equi res the f eedback power to b e exponentially 

related to the forward power . 

As a matter of general principle, there exist problems in learning 

theory, or pattern recognition, that closely parallel the feedback 

corrnnunication problem, and which would be amenable to the same analysis. 

A case in point is the problem of learning with a t eacher. (The 

teacher, naturally, provides f eedback information.) 



Proof of (a ) 

Let 
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APPENDIX I 
PROOF OF THEOREM II 

and let 

N 

p 
x =NW' 

0 

[ inci+x. y 
i =l J. 

N 
[ xi 
i=l 

t h en 

By hypothesis, given any E > 0 there exists an integer N 
N ~l 

x -

and 

and 

E S X. S X + E for all i ~N. Therefore, 
ii - 1 . E 

B = ~ x . , 
i=l J. 

N N 

I: ln(l+x . ) 
J. 

A+ I: ln(l+x .) 
J. 

i=l 

N 

I: x . 
J. 

= B + 

SA+ 

i =N 
E 

i=N 
E 

(N- N +l) 
E 

~ B + (N-N +l) (x-E) 
E 

ln(l+x .+E) 
J. 

consequently, 

R (ro) s K_ 
c N 

0 

lim 
N->e0 

A 

[ 

N-Nfl + ln(l+X+€) J 
N-N +l + x - E 

E 

ln(l+X+E) 
X - E 

if A= ~ 
i =l 

such that 

l n( l +x . ) 
J. 



similarly, 

R ( oo) ~ E_ ln(l+x-E) 
c N x + E 

0 

·since this is true for all E > 0 no matter how small, it follows that 

Rc(cc) =:; ln(;+x) 
0 

Proof of (b) 

Since x. ~ 0 for all 
J. 

i and lim x . = 0 
i_,oo J. 

it follows that for 

any E > 0 there exists an integer N 
E 

such that for all 

i ~ N • Now, 
E 

R ( oo) 
c 

but 
x. 

l - ..2 ~ 
. 2 

R ( "") c 

l 2 ln(l +x. ) ~ x. - - x · therefore 
J. J. 2 i 

N 

c+ i~N xi(l l. xi)] - 2 

>~ l" E - N im N 
0 N_,oo L B + x. 

i=N J. 

E 

l - E thus, 2 

N 

lime + 
(l - ~ E) l: x. 

i =N J. -, 

> .!:._ E 

J - N N_,c::i N 
0 

B + l: x . 
i =N J. 

E 

;;.: (l - ~ E) 
p 

N 
0 



The upper bound is simplest, 
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ln(l+x .) s; x. 

l l 

R (co) s; K_ 
c N 

0 

consequently, 

Proof of (c) 

l . ( i~l xi) 
im N , 

N_,co \' . 
L, x. 

i =l l 

for any x. ~ 0 therefore 
l 

By hypothesis , given any number M <co there exists a number 

such that for all Let 

limy. = co and y. ;?: M for all i ;?: NM. Now, 
. l l 
l ->CP 

thus 

~-l N 

L: y. + L: 
i =l l 

p l" 
s; N im N -l 

o N->eo M y. 
L: ce J.-1) + 

i ==l 

A+ 

s; ~ lim [ 
o N- >"" 

B + 

N 

L: y. 
. N i 
l = M 

l 
(l + 2M) 

N 

L: 
i-N -M 

f y.J 
i-N 1 

- M 

y. = ln(l+x. ) 
l l 

then 
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O ~ R (ro) ~ .!'___ 
c N 

0 

l 

1 + fa M 

Because M is arbitrary and can be chosen as large as desired, R (ro) 
c 

must be zero. 



92 

APPENDJX II 
THE CRITICAL RATE OF A FIRST ORDER MARKOV 

CHANNEL WITH FEEDBACK 

First order Markov noise is described by a first order linear 

difference equation which is dri ven by a white Gaussian process. Thus 

hence 

nl 0 0 

n2 l 0 

0 l 
= ex 0 

11N 0 0 

thus 

n = cxJn + w' 

where (J) . . 
1.J 

= 0ij+l' n = 

w' = col(w1 + an
0

, w2' w3' 

Stationarity r equires 

be given by (K ) .. = k . . 
n 1.J 1.J 

i 

0 nl 

n2 

0 1 0 11N 

col(nl' n2' 
.. . 11N), 

wN), .. . and I\i ) 

that the covariance 

=E[n.n. J 
J_ J k( ji - j\) . 

(11 .1) 

wl no 

w2 0 

+ + a 

WN 0 

( II.2) 

w ~ col(w w •• • wN)' l' 2' 
T 2 No 

= E[ww ] =CTI=-I w 2 . 

noise T of the K = E[nn ] n 

This condition is 

satisfied if and only if 2 2 
k . . = E[n. ] = cr for all i = l, 2, • • . ' N . J_J_ J_ 

By statis tical independence, ther efor e 



giving 

2 2 2 2 cr :::acr +cr 
w 

cr 2 
cr2 == w 2 

l - a 

which has meaning if a nd only if 

2 2 2/ 2 E[n ] = cr = cr (l-a ) . 
0 w . Since 
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2 a < l, and it i mplies that 

-l 
n = (I-a.J) w', 

where T K = E[w'w' ] is diagonal, and except for the fact that 

(II .l+) 

(II. 5) 

. 2 2 2 2 2 2 2 2 
(K ,)ll = E[(w1+an ) ] = E[w1 ] +a E[n ] = cr +a cr /(1-a ) w 0 0 w w 

crw2/(l-a
2
), its elements are the same as those of Kw . From (II.5) 

it may be verified that 

(II. 6 ) 

The elements of the lower triangular matrix Q,, T from Q,Q, 

therefor e 

cr a i-1 for 1 j ~ i 

qij 
i-j for 1 < j ~ i (II. 7) cr a w 

0 for i < j 

-l 1,. 
(Q-l)ll Also, it i s obvious that Q, = (I-a.J) K2

, so that hll = w 

l 2 while h(i) col(hil' hi2' hii) 
l col - a / cr ::: = -w' 0 
w' 

( o, o, . . . -a,l) for all i ::: 2, 3, . .. N . ' ' 



Now, in order to calculate for the case of y. = y being 
1 

constant, recall that 2 2 
f. = (l+y)f. l' 

1 1-

Take fi = - \.fl+ y f. 1 sgn a, 
J.-

e . = y ( ~ ± q. . f . )
2 

1 L_, 1J J 
. j=l 

then 

therefor e 

(II,8) 

· y [ ( 1 + Y + la! 
2 l + -v 2 ( 7fH 1-a l + . 

. 1 2 

-l)(:;f J ' 
y1 + y 

Therefore 

Since 

\al 
l + y 

N 
p 1 

NW=N I e. 
J. 

0 i=l 

y 

= (1 + !al r + 

~) 

O(~) 
N 

p 
NW < y, 

0 

it follows that ~>>l NW 
0 

<< 1. This indicates that 

RC = W ln(l+y) 

(II.9) 

gives y >> 1, and 

so that 
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~ w ln ( 1 + N:W + E) (II.10 ) 

where E = ( Y _ Npw ) ~ -2lal ~ -,_2_la_I __ 
0 -V1 +y /1 ___!>__ 

+NW 
0 

However, i t also follows from (II.9) that y < ~PW' therefore , 

y << l when ___!>__ << 1 which shows that !al ~ \~I . Thus 
NOW ' -V1 + y 

in fact, 

R = W ln(l+y) 
c 

lim R 
w-f(X) c 

Next, consider the case when e i 

while 

2 p 2 
Yi = ehll = N w (1-a ) 

0 

p r g. l r Yi =NW l-a ~~ 
0 

2 
p (1 + ¥ ) =N W 
0 

g . 
where ~ = - i sgn a. However, 

gi-1 

p 
e = 2W • This time 

(II.11) 

(II.12 ) 

(II.13 ) 



l + 

or 

p [ 2 ( l + M) 2 (1J 2N - ] 2) J = l + N W (l-a ) + _ 
0 . 1J 112 - l 

But this should equal 
N . p M 2 N-l L1 (l+yJ ~ [l + NOW ( l + 1J ) J X 

p . 2 
(l +NW (l-a )). Consequently 

0 

2 · P .( M)2 

Tl ~ 1 + NOW l + .1J 

thus from (II.l3) 

2 1J - l~ y . =Y 
J. 

and now (II.l5) implies that 

y ~ NPW (l + '"'::la:::::J===-)2 
0 -Vi+ y 

which is the same as (II.9). 

( II.l4) 

(II .l5) 
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