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> ABSTRACT

The feedback coding problem for Gaussian systems in which the
noise is neither white nor statistically independent between channels
is formulated in terms of arbitrary linear codes at the transmitter and
at the receiver, This new formulation is used to determine a number
of feedback communication systems. In particular, the optimum linear
code that satisfies an average power constraint on the transmitted
signals is derived for a system witﬁ noiseless feedback and forward
noise of arbitrary covariance. The noisy feedback problem is considered
and signal sets for the forward and feedback chaﬁnels are obtained ﬁith
an average power constraint on each. The general formulation and results
are valid fdr non-Gaussian systems in which the second order statistics
are known, the results being applicable to the determination of error

bounds via the Chebychev inequality.
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X. INTRODUCTION

Two-way communication systems have the capability of ﬁransmitting
information about the current status of a message being decoded at the
receiver back to the transmitting point. The returned information can
be used to simplify the coding and decoding operations in the forward
channel and to provide a lower probability of error for a given
coding delay than could be achieved without feedback. A potentially
useful application of information feedback is in the design of efficient
data retrieval systems for space vehieles, where the transmitting power
is restricted to be several orders of magnitude less than the trans-
nmitting power of the ground based.receiving equipment.-

The analysis of a feedback communication system is similar to the
one—way communication problem in that it can be separated into a
decisioﬁ or decoding problem and a signal selection or coding problem.
It differs only in the sense that in the coding problem it is possible
to optimize over both the forward and feedback signal sets., Previous
authors have approached the feedback communication problem by assuming
a specific functional relationship between the feedback signals and the
receivers estimate of the message, a functional form for the decision
procedure, and solving the remaining signal selection problem for the
forward signal set. This approach [6,1k,17,19] and other methods [1-19]
have succeeded in developing a number of efficient feedback communication
schemes, mainly for the additive white Gaussian noise (AWGN) channel with
a noiseless feedback link and the binary symmetric (BS) channel with a
noiseless BS feedback path [13]. However, because of the structural

assumptions in these schemes, the optimum linear feedback system still



2

remains to be determined even for the AWGN channel with a noiseless
return link, Systems in which the noise is not white have received
only passing mention. Attempts to take feedback noise into account
[17,18] by using a Kélman filter [20] at the transmitter have not used
an optimum decoding procedure nor an optimum set of feedback signals,

In this paper, the feedback communication problem for Gaussian
~systems in which the noise is neither white nor statistically independ-
ent between channels is formulated in terms of arbitrary linear codes
at the transmitter and at the receiver. The maximum likelihood decision
rule, which is optimum for an equiprobable message source, is determined
and the signal selection problem is posed for both the forward and
feedback sign&l sets, This new formulation, is developed in Chapter
II, and is used to determine a number of feedback communication systems.
In Chapter III the optimum linear code is derived for a system with a
noiseless feedback channel and an average power constraint on the
transmitted signals. The noisy feedback problem is considered in
Chapter IV where signal sets for the forward and feedback channels are .
obtained with an average power constraint on each,

Chaptér V considers the use of Kalman filtering at the transmitter
combined with an optimization at the receiver,

The present approach is valid for non-Gaussian systems provided
second order statistics are available, the results being applicable for
the determination of error bounds by such methods as the ChebycheV

inequality.
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The general formulation may be classified as a fixed-time-of-

decision or block-coding system in opposition to sequential-decision

systeﬁs in which the time-of-decision is a random variable, This is
the fundamental dichotomy which separates'all of the feedback communi-
cation systems reported in the literature. 1In each class, information
feedback, if it is sufficiently accurate, can provide improved perform-
ance. A special case of the latter category is when feedback is used
to inform the transmitter only of the event that a decision has been
made so that a.new message may be initiated. This has been generally
referred to as decision-feedback and was studied by Bloom, Chang,
Harris, Hauptschein, Metzner, Morgan, Schwartw, and more recently by
Viterbi [5-9,12].

They consider the transmission of binary messages using signals
that are also binary (two-levels) over the AWGN channel with a noiseless
feedback link, Viterbi also considers the M-ary case and uses M ortho-
gonal binary signals. He obtalns exponential bounds for the error
probability and shows that the negative exponent is four times the
exponent for the best available error bound on the one way channel
when the rate of transmission exceeds half the channel capacity.

* SBequential-decision systems using information feedback to
continually inform the transmitter of the state of the receilvers knowl-
edge (or uncertainty) of the message being sent have been investigated
by Horstein [13] in the case of é BS channel with a BS noiseless feed-
back link, and by Turin [14] and Horstein [19] for the AWGN channel
wifh a noiseless fzsedback liﬁk. Ideally, in sequential decision ﬁhe

receiver updates the a posteriori probability over the message set as
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new signals are received and selects the message whose a posteriori
probability, relative to the other messages, is first to exceed a
threshold, The thresholds are set by the desired probability of

error, Continually returned feedback information allows the trans-
mitter to select signals that will maximize the a posteriori probability
of the message being sent and informs the transmitter when a deciéion
has been made.

The approach in [ih] and [19] is based on the continuous time
channel and makes the assumption of instantaneous feedback, A bilnary
message source is used and the likelihood function (the logarithm of
the ratio of the two a posteriori probabilities) is continuously
computed from the received time function., The transmitted signal is a
linear function of the message being sent (0 or 1) and the current
“ value of the likelihood function available from feedback., The evolution
of the likelihood function is governed by a Zangevin differential
equation which is driven by White Gaussian noise. Thus, Tthe likelihood
function is a continuous Markov process whose probability density
satisfies a Fokker-Plank partial differential equation. A decision is
made the instant that the likelihood function first crosses one of two
thresholds. The time-of-decision, and hence duration of é message 1s a
random variable, The transmitted signals are constrained in peak and
average power and are chosen by Turin to minimize the average duration

of a message. The result is

T = 5 in 2 seconds /bit
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The probability of error vanishes when the bandwidth is infinite and

the peak power constraint is removed, so that a rate e nats/

T No

second which is equal to the capacity of the infinite bandwidth AWGN
channel 1is achieved.

Horstein's earlier work [13] on the BS channel is similar in the
sense that the nurber N of binary channel symbols per binary message
takes fhe place of T. N is a random variable for which a boﬁnd on
the mean N is found as function of the rate R, channel capacity ¢
and probability of error Pe,

The operation of a block-system is based on the principle that the
nunber or block of signals assoclated with each message is a determin-
istic quantity. The block length and the instants at which signals are
transﬁitted are known to the receiver. The receiver may compute the
a posteriori probability over the message set either continually as
new signals arrive or after the entire block is received. However,
the decision is made only after a complete block has been received so
that the decision time is deterministic and decision feedback alone is
of no use, On the other hand, information feedback that is continually
provided to the transmitter allows the transmitter to select signals
that will maximize the a posteriori probability of the message being
sent. This approach has been used by Elias [10], Schalkwijk and Kailath
[15,16] and Omura [17] for the AWGN channel with noiseless feedback and
an equiprobable M-ary message set. Their results achieve the finite
and infinite bandwidth capacity limit of Shannon [1] when an average
power censtraint is imposed, but are not optimum because the coding in
[15,16] is not optimum Wﬁile in [17] the maximum likelihood rule is not

used,
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Although some authors evaluate the performance of their noiseless
feedback codes in the presence of feedback noise, procedures specifically
designed to minimize feedback nolse were not available prior to the
work of Omura and Kashyap [18]. They use a Kalman filter at the
transmitter to form the best estimate of the receiver's "state".

However, the choice of feedback signals and decision procedure is not

optimum,
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ITI. FORMULATION OF THE FEEDBACK COMMUNICATION PROBLEM

2.1, Introduction,

In this chapter the feedback cémmunication problem for a system
in which the forward and return channels are both corrupted by additive
Gaussian noise is formulated using arbitrary linear operations at the
transmitter and at the receiver. This kind of an approach is applicable
to situationé that are more general than systems with Gaussian noise.
However, the Gaussian assumption (and the assumption of linearity)
allows simple closed form expressions for the optimum decision rule,
énd the probability of error, to be determined. In order to set up the
signal selection problem, the above expressions are augmented by
equations for the average energy transmitted in the forward channel and

the average energy required to send feedback information.

2.2. Description of the General Linear Coding Procedure.

A linear feedback communication system using a sequence of N

signals to transmit a message © 1s shown below

n.,
:'Lil *
s.=g.0 + By VW .
SR = W ,}Gl) T3Sy |Decision | ¥
rule
m, L
X .
' ; =,
V,=U.+m i bi’r'
s | ¢ 45 &l o
A

Fig. 1. Linear Feedback Communication System.
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Only the discrete version of an additive noisge channel is considered.
The connection between the discrete and continuous formulationsg is well
known [21-23] and will not be discussed further. The process begins
with 89 = gle being transmitted, By = gle + Dy, being received,

v, = bllrl is the first feedback signal which is observed at the re-

ceiver as Vi = Uy +m. The next signal to be sent can be a linear
function of 6 and Vis and is thus written as s2 = gZB + azlvl.
The general term is

i-1 .

J=1
and

i
u = Z bijrj Los ly, By, sve , Hal (2.2)
=1

The last, or N-th, feedback signal is not used in Sn and is therefore

not fed back, nor is it generated.
It is convenient to write the above and remaining analysis using

vector and matrix notation. Therefore, let s = col(sl, Soy Tt , 8

r = col(ry, *** , ry), u=col(uy, u

N L uN); ¥ col(vl, Wiy Ty

Be 27

Vi),

- S8 3 3 2 -
g = col(gl, By » gy) and let (A)ij =25 (B)jj bij be
N x N lower triangular matrices with the main diagonal of A and the

n = eolln, n, *** ; N

" W m=eol(my, my, 0, m),

N-th row of B iddentically zero. Then



u = Br | (2.3)
v=u+nmn (2.4)
s = gb + Av (2.5)
r=s+n | (2.6)

Note that A anihilates the N-th component of v, while the zero N-th
row of B causes Uy Vto be zero as required. The system is now

equivalent to the N-dimensional wvector channel below

n
s - r R il
Decision ¥
- Ee Y 4 ) - ke
ew@ *& 0 orin | B
. i
A B
m

I s
{(+ )=

i

Fig. 2. Matrix Formulation of the Feedback
Communication Process.,

Now let m and n be jointly normal with zero-mean, covariance
K and K, end cross-covariance K _, where K = E[mmT}J
m n mn m
Kn =_E[nnT], Kﬁn = E[mnT] and E[+] is the expectation operator
while "T" denotes transpose, The conditional probability density
p(r/8) can be found after r 1is written as a function of the random

verisbles ©, m and n. This is done by substituting (2.4) into

(2.5) 2nd the result into (2.6)

r = (I-88) (g6 + A + n) . (2.7)
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The conditional mean E[r/B} and covariance E[(r-E[r/GJ)(r—E[r/e])T/e]

are respectively

;e = (I~AB)dlg6 (2.8)
and

K, = (1-88)"1% K(1-88)"T (2.9)
where,

K = AKmAT + AK  + KinAT + K, {(2.10) .
Then

p(r/6) = [(2x) det KT]-% exp[ - %Hr4;eui_1

&

] (2.11)

in Ry | R I—r r-g8||? an =1
or since |lr renxfl || (1-2B)r-g HK_l d B =mu,

r

p(r/8) = {(Zn)N det Kj_% expl - %Hr—Au—gQHB_l] (2.12)
K

where det K = det K because det(I-AB) is unity, a result that
follows from the fact that AB 1s lower triangular with zeros along the
main diagonal so that I - AB 1is lower triangular with ones down the

main diagonal.
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2.3, Derivation of the Maximum Iikelihood Decision Rule,

In general, the optimum decision procedure for minimum error is

the ideal observer rule. The procedure.is for the receiver to select
the message that maximizes the a-posteriori probability distribution
p(8/r). If p(e) is the a-priori probability distribution on the

message set, then Bayes' rule gilves

p(8/r) = p(rpezp(e) (2.13)

When © 1is equiprobable over a finite set of M real points,

p(8) =5, then

i) = ﬁig%g% . (2.14)

Maximization of p(8/r) is equivalent to maximization of p(r/e),
which is the maximum likelihood rule., p(r/e) is maximized over @ if

be an arbitrary scalar

and only if ”r';e“i-l is minimized, Tet B8

r

it

leFlZ

Hr—Au—gGH;_l (2.15)

it

“I._A'u-glél\]‘ &) g(@N'e ) Hf{_l

Il

“I‘_Au_gél\]“;—l—z(él\]'-e)(6N”g“i—l - <g; K-l(r-Au)>)

+ (éN"e)zng“i__l

The middle term drops out if éN is chosen to be
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(g,K—l(r—Au)>

LA ¥, o
Kfl
Therefore
“r:{“a“f{—l = Hr-Au—g@NHi-l #* (6N“e)2“g”i_l . (2.17)

A

Since GN can take on any value on the real line while 0 18 only one

of a set of M discrete points, it is now obvious that chooéing e

closest to éN maximizes p(r/6) over ©. This is the maximum like-
*

lihood estimate of © and is denoted by 6 , 1t of course runs only

over the finite set of M message points. It is easy to show that

A - . - - - - - .
GN is in fact the minimum-variance unbliased linear estimate of 6,

- - = A
The conditional mean and variance of BN are

E[f/e] = o (2.18)

1

E[(8,-0)7/8] = —
UgHKMl

(2.19)

2.4, The Probability of Error.

An error occurs at the receiver each time € is transmitted but
G* £ 0, that is, [@N-el is not a minimum, If the M equiprobable
messages are equispaced on the interval [~L,L] on the real line, the
nearest neighbor distance is I/(M-1) and the condition for an error

is igN-Sl = I,/(M-1) when 6 1is one of the M-2 interior points of
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[-L,L]. If © is one of the end points, =+ L, the condition is
éN-e ey L/(M-1) respectively. The conditional error probability for

g L
8 £+ L is P = pr{|§N~9| & ﬁ:i/e}. Thus,

P =1- dp(éN/e) . (2.20)
= (2.21)
where
F 2
erfc x = —2 e™* ax (£.82)
7!
lell - 38,-0)2e)?
p(8/0) = [ oF e O xt | (2.23)
and,
Gez - E[6%] (E[6] = 0)
12 (M1
- L) (2.24)

When 6 1is one of the end points, Pe is slightly lower but negligibly

so, therefore, the average error equals the conditional error above,
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2.5, The Signal Selection Problem,

The signal selection problem is to choose A, B and g to
minimize Pe gubject to constraints on the forward and feedback
signal sets. Important constraints are the average power in the for-
ward and feedback channels, or equivalently, the average energy per

transmitted message in the forward and feedback channels,

N
E_ =R Z 52 (2.25)
av i .
: d=1
= E[Tr ssT]
" gt = P T TP BT 0 LA
= Tr[(I-AB) (o‘egg + AK A” + 2AK B A" + ABK B'A Y(I-B A7) ]
(2.26)
and, since © 1is statistically independent of n and m,
N-1
2 _
Ep =E Z uy : (uN = 0) (2.27)
i=1
= E[Tr BrrTBT]
’ <1, 2 T O I
= Tr[B(i-AB) (oe ge +K) (I-B7A™) 5 ] (2.28)

where Tr[+] is the trace operator defined by Tr[Q] = i% a4y

Let N = 2TW where T dis the duration of the messa;Z? or coding
delay, and W, which is defined here to be N/2T, is the "pandwidth"
of the forward channel. Note that the time duration of the (N-1)
feedback signals is BW/(N—I) so that the average power in the forward

channel is
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B= N Eav : : (2'29)
while
2W ‘ y

is the feedback power,

Other constraints ma& be either sﬁbsﬁituted for, or added to, the
above conditions, Since effc x is a monotonically decreasing function
of x, minimization of Py is equivalent to maximization of

2 2 2 2
_06 HgHK_l and hence 1 + g HgHK_l.
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ITIT. NOISELESS FEEDBACK

3.1. Introduction.

This chapter presents a number of new and interesting results for
noiseless féedbéck systems. Primarily, the sequential form of the
optimum operation of the receiver and transmitter is derived for a
general forward covériance matrix, Secondly, Theorem 2 proves_that it
is possible to achieve capacity for the wideband and finite bandwidth
AWGN channel in an essentially uncountable number of non-optimum ways.
Thirdly, it is shown that Schalkwijk's scheme follows from the solution
of the signal selection problem with additional constraints. TFourth,
it becomes evident that the dynamic programming approach of Omura, for
which it was necessary to assume the functional form of the receiver,
uses The optimum signal set, but not the optimum decision rule. The
discrepancy disappears in the limit as the block length goes to infinity
because the minimum variance estimate is asymptotically unbiased,
Finally, an almost optimum code for a.channel with first order Markov
noise is obtained. The critical rate of this code achieves the
theoretical capacity when the bandwidth is large, and almost the capacity
when the bandwidth is finite.

A model that assumes a noiseless feedback channel may be used to
represent a system in which the noise in the forward channel predomin-
ates. Calculations based on this éssumption are velid until the
cunulative effect of the small feedback noise becomes comparable to the
forward noise,

The absence of feedback noise is reflected in the general formula-

tion by the vanishing of the noise vector m, the covariance Kﬁ_ and
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the cross-covariance K o+ As a result, equations (2.10), (2.26) and

(2.28) simplify to

K=K | (3.1)
: T -1, :
B Tr[(I-AB)" (o gg T asxe’a )(I-B ) ] (3.2)
and
. -1 2 T ety M h;BT
Ep, = Tr[B(I-AB) (o4 gg +K)(I-B'A") ] : (3.37
However, Efb can be arbitrarily small for any cholce of Eav and

Pe, because B may be scaled down to eB while A is 'scaled by %

Thus, the product AB remains unchanged, E is unaffected,
; av

2

Hg“z ; and hence P_ is not affected, but E is scaled down by e
K © £

which can be made arbitrarily small.‘ TheAsignal selection problem for
the noiseless feedback casé 1s therefore not constrained by feedback
power., The problem of maximizing HgHZ_l for a fixed value of Eav is
equivalent to minimizing Eav for fixgd Hg“i_l. Note that only the

product matrix AB and g need be found. When there is feedback noise

it will be necessary to solve for both A and B,

3.2. Selection of the Coding Matrix AB,

let I+ C = (I-AB)’l then C = (I—AB)-lAE = AB(I-AB)'l is lower
-3

triangular with zeros along the main diagonal, note that AB = C(I+C)

E_, = ceaH(C+I)gH2 * Tr{cke’] ' (3.4)
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The N(N-1)/2 non-zero elements of € are arbitrary because the
N(N—l)/Z non-zero elements of AB. are arbitrary. The constraint on
HgHz_l does not affect the choice of C, therefore, the minimization
ovef the elements of C can be performed using ordinary calculus for
all values of g. Subsequently, when Eav is found in terms of .g,
its optimization over g will have to include the constraint Hg”z_l,

Let c(i-1) = col(eyy, ¢ *** , €3; ;) denote the first i-1

127
elements of the i-th row of C, .the remaining elements in the row are

zero because of the lower triangular zero-diagonal form of C. Also,

let g(i-1) = col(gy, &, *°* , 8;_;) then

N
B = ) [o,f(g; + (e(i-1),2(1-1))% + (e(i-1)K(i-1)e(i-1))]
e (3.5)
where K(i-1) = K (i-1) = E[n(i-1)n" (i-1)], n(i-1) = col(n}, n,, -+« ,

ni-l)' Note, that the individual signal energies, e, = E[s?] are

given by

e; = 0, 0(g; + (e(1-1),g(i-2)1% + (e(i-1)K(i-1)e(i-1)). (3.6)

i

Now, setting gi?i_l)Eav =0 for L =2 3 > ;8 (efl) =6) gives

e(i-1) = - Gez(gi + {c(i-1 ,E(i-l)>)K-l(i"l)g(i“l) . (3.7)

Taking the inner product of both sides with g(i-l) and solving for

{e(i-1),g(i-1)? in terms of g; and Hg(inl)Hg N gives
K (i-1)
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2
O, E.
ei-1) = - e K (i-1)g(i-1) . (3.8)
2 L 2
1+ o . |le(i-1)||
o | !Kfl(i-l)
Therefore,
. Zg 2
g =i ;
e. = E 1= l; 2, ¥ S n (3-9)
* 34 Oezﬂg(i—l)ﬂz_l ’
K “(i-1)
and
N 2 2 '
o, g.
. B
E,y = Z > (3.10)

It remains to minimize Eav with respect to g which is constrained
by HgH;_l . This is accomplished by setting §§T (Eav-vng“i;l) =0
and ‘solving the resulting N non-linear equation; for the gi's.

The solution when X = Kh is dilagonal is straight forward and is
available in closed form. When K is not diagonal the problem is more
involved. However, it is not difficult to obtain a good, although not
necessarily optimum, choice for g. Also, the functional form of the
transmitted signals and a sequential form for the computation of 8

at the receiver can be derived without knowledge of g.

3.3. General Form of the transmitted Signals.

From s = (I~AB)—1 g0 + (I—AB)hlABn = (I+C)gb + Cn it follows that
Si01 = (gi+1 + {e(i),g(i)d)o + Le(i),n(i))
: il (-0 (e(1), N (a)n()). (3.12)

1 ofleWIE,

TR A
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Since r-Au = gb + n, the minimum variance unbiased estimate of ©

after N observations is obtained from (2.16) as

A (eK )
9N_6+M’ (3.12)
K
and after 1 observations it is
. e(3), F X )n(a))
ei =8 + 2 3 . (3.13)
Hg(i)“ -1
K (1)
Therefore

2 :
Ue ng(l)Hi—l(i) A

Hgap T Bggg (9 - B e O (3.14)
€ < Ge Hg(l)HK_l(i)
Define
ofugmnz_l(_ )
T R, G:22)
e K (3)

then

8501 = 84,2(0%;) (3.16)

is the desired result,
There is no difficulty in showing that x5 is the minimum

variance linear estimate of 8 given the observations due r

Ty, T, » Tyo

Note that X5 is a bilased estimate (E[xi] # ®) as opposed to the

A N
estimate ei which is the minimum variance unbiased estimate.
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3.4. General Sequentizl Form of the Receiver,

The positive definite symmetric covariance matrix X may always
be factored into the product X = QQ?, where Q is lower triangular
and positive definite. Similaerly, K(i) = Q(i)QT(i) where Q(i) is
the upper left 1 x i corner of Q. Iet g = %w Qf, then

-1 :
L e Hf(l)”2 where

aﬂ:%QMﬂnam\mm@ll A

(i) = eol(f,, f2, wars: o fi). Then

le(0)11%8; = llz()]%e + ogte(2),a™ (Ln(1))

= lleGi-0)|%e + op¢e(i-)a (1-1)n(1)) + £,% + o . (n(5),n(4))

(3.17)

. . - <1
where h(i) = col(hil, h 3 hii) denotes the i-th row of Q °,

iz’

2

that 35 hys = (Q’l)ij £or J 23 =13 B v, §, 'S,

l£(a)]|%8, = lle(a-1)]|%8, | + £,(£,8 + <n(i),n(1))) . (3.18)
But f = oQ g, therefore T, = o (h(i),g(i)) ana

le()178; = le(1-1)]1%8; 1 + og2;<n(3), (8(1)0 + n(1))) (3.19)
But, recall that E.+ Hf(i)“ixi = £(2)|Pe,, therefore,

@+ [le@ P = @+ Hf(i)nz)xi_l - By %

g1 * 9% ula)lala)e + n{2)}))

(3.20)
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a. T,
X, =%, g b — (n(1), (e(1)® + n(i) - g(i)xy ;)
1+ |l
, o 2
& -
=X, , + L — b . fgbe o, ~ g% 2], {3.21)
L fe@® 4y WY1
Since s, = gj(e—xj_l), Ty= 8yt Iy becomes
gje Thg =Tt gX g (3.88)
it follows immediately that
oefi = :
Xi = Xi—l + _——m"_'é' Z hij[rj + gj(xj—l_xi—l)] . (3-23)

L+ fe@I® i3

The above resullt is valid for any positive definite covariance
matrix. In particular, when the noise is white so that K = o1
o}

1 .
g = = I, hij = 6ij’ £ = B it reduces to

i

2
O &5

X. £ = r.
e S o

(3.24)

If the noise 1s generated by a first order difference equation

ng = O, + W.,, where w, 1s while noise with covariance K = o I
i i-1 kL 1 w W

5 SR
then X = (I-cuT) K%(L—QJ ) where Jij = aij+l.

so that Owh(i) = pol{0;, 0, *» , O, -g, I). Then

5,
o, (g:-0g; )
8 1 Piek
T =y w * = [r,~0r, . + 0g. (x. .-x, )] (3.25)
a, -1 2 ) . 2 i -1 -1 -1 -2
5 ot + llg(3)-cg(3-1)]] * e

which is a linear difference equation of order two. In general, if the
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noise obeys a linear difference equation of order m which is driven
by white npise, then the miﬁimum variance estimate obeys a linear
difference equation of order m + 1,
via

. - = n
The decision rule requires BN.

the relationship 8 = (1 + |lel®)x/ll®, or

It can be computed from X

oo lel

0, = o (3.26)
TN

The coefficient of x,. approaches unity as HgHg_l goes to infinity
X

N

with N, and Xy is asymptotically unbiased.

3.5. Sequential Operation of the Transmitter.

Since the transmitted signals are related to the minimum variance

estimates according to s; = gi(e~xi_l) it follows that Xy_17%5.0 <
8. s,
El - gi . Substituting this into the general formula for Xy
i J
produces
1 2 3 2 . ” .
. + o le(1-1)||° g, (h(i), (x(1)-s (1))
" _ci+l K (i-1 4 .
i+l T . 2 5y (e i = /2]
81\ 1+ g%lla(D)N®_ 1+ o lei-1)|°_;
K~ (i-1) K ~(i-1)
g.e. 1.
173+1 5! : . .
== -g—-j-"—"é-:— Si - 5 ei<h(l), (r(l)—s(l))>
i+173 g.0
10
which reduces to
a2k g Bl o 2 .
Bl = + gl ¥ - ~5 %y 3.27)
ey o) €; + 0O

when the noise is white.
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of g When the Noise is Uncorrelated.

If the noise is statistically independent between signals, the

covariance matrix Kn and therefore also K is diagonal. The
o]

g . _ _ 2 -
diagonal elements are: kij = E[ninj] = 0y 615. Tet fi - 5, g;5
then

e; fi2
= (3.28)
o ° 1+ “f(i—l)“2
But
A2
, & f* e Ca)ll
e e =TT 5 () = £, = 0)
3=1 \1 + |le(5-2)]
e
= 1+ (3.29)
3=1 | 1+ le(g-n)?
1, | ej
=11 (l+ --2-) (3.30)
J=1 o.
dJ : '
hence also
e. i e
2 . j
851 = —% | (1 * "J—z') (3.31)
ce J=L Gj
and
N e
Z 2 B 1
14+ o2l - 1(1“1—--) (3.32)
K i=1 o
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Therefore, the constraint on Hgn is now a constraint on the signal

energies. It is convenlent to use ln(l + Og ﬂg“g l) and to set

3 ¢ "
= Z - vin(1 + ;m)] - (3.33)
=1 3
N » _
where 2: e. w? and Vv 1s a Lagrange multiplier. The result is
i=1
2 Eav 4+ T K ]
ey + ;% = V= ——a— i=1,2, **, N 7 (3.3%)
The above condition is meaningful only if g, = V= diz >0, a

situation that does not always prevail, If v - oiz = 0 the answer
is to set e; =0 (thus also s; = 0), N = N-1 and recalculate Vv,

Assuming that this does not occur (Eav sufficiently large or ciz =0a

N N
let T K=% 2 0.°=0" =32 Then, since E=Pr and W= zWT
i1

14 i, Hz {l + ———) (935] (3.35)
o
4

3.7. Optimum Perlormance When the Noise is White,

If the noise, in addition to being uncorrelated, is stationary
2 No No
then k,. = k|i-j| = 06,. = == 6,., where == is the two-sided noise
By 1J 2 ij 2 .

power spectral density of white noise., Then

ZWT
2 & P
1+ o4 “gHK_l = (l + ﬁ;ﬁ) (3.37)
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' 2CT
/3 (7 -1)
e 2 (eZRT—l)

where

and

1
C=Wiln (1 + ﬁ;ﬁ) nats/sec (3.39)
is the theoretical capacity of the channel and

R =% 1n M nats/sec : (3.L0)

=il eg

is the rate of the message source.

By the well known properties of erfc,

0] R<C
lin P = { erfc 2 A (3.41)
Toxo e Z
4 R>¢C .
The asymptotic behavior of the error is
. - % e2(C-RIT | (g ryT
. ' (3.42)

The double exponential decrease of the error as a function of coding
delay T, or block length N, is characteristic of codes using noise-

less feedback. If thought of as an increase in the effective block
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length due to a larger effective input alphabet then this result was

predicted by Shannon [L].

3.8. Suboptimum Codes that Achieve Channel Capacity.

There is an uncountable suboptimum choice of the signal energies

e,, € *++ that allows communication at a positive rate, in fact, up

1+ 2

to channel capacity. Define

il

_ N
R, () —zl-f Z n(l+—-—)

N
E: In(l + —=)
P =1 o
5; =
Therefore
ZRCT
3 e -1
Pe = erfc 5 TTIRT . ¢ (314-15:)
e ~_l

Theorem 1
A necessary and sufficient condition for achieving zero error

1

for 0 <R < (l—é)Rc is =5 E , = ®. This is an obvious condition,
e}

Proof

3 =1, O’

X L e.- N
Z —525 Z In(l + '—;) = In{l + Z ———)
i=1 i=) @

thus
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E E
S (3.45)
= e a .
o o
Eav S
But P is zero in and only if R T = «, thus -— = Z: — = o,
e c 2 ; 2
o) i=l o©
Definition

Iet Rc(w) be the maximum rate at which zero error can be achieved,

® e,
It is defined here by the two conditions: (a) E: -—% = o, and (b)

i=l o
e

N ;
§: In(l + —%)
=T i o
5 i " (3.46)

o
2
o

Rc(m) = 1lim
e 20

|
1=

Theorem 2
If the sequence {ei}i—l converges to a limit then Rc(w) is given

by

P s ‘ P
(a) ¢, = Win(1l + EZW) i iig ey = ﬁ;ﬁ
P . :
R(=) = {(b) C, =% if lime; =0 (3.47)
fe) 1
(&) © if lime; = =

The proof is in Appendix I,

3.9. A Class of Codes that Achieve C_ for the Additive White Noise
Channel.

Theorem 2(b) indicates that there exists a variety of feedback

codes that can achieve the infinite bandwidth capacity limit %L . One
‘ o
method of classifying these schemes 1s to examine how N, or W, in-

creases with T, For example, consider the class of codes in which the
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signal energles are of the form
s P '
e. = ('i‘) (3-"*8)

where O < vy <1, First, vy = O. corresponds to the coptimum scheme in

Which P/W l, C =1n2 so that W 1is finite and independent of T.

W

The other extreme is for vy = 1 which gives

1,

c '—2'111(1+N)

2R T
N=e % -1

therefore

ZR T
c

W= (e - 1)/27 (3.49)

When 0 < p <1l and T is sufficiently large, R ~C_ = P/N_ and

c @ o
N
R.T = 2{: In(l + 17Y)
d=
N
~ }Zj 1Y for large N
Fig=lll
-y
e

thus



30
1 i

N ~ [2¢_(1~y)1"Y oY

S

1
W~ 3 (20, (1-y)1TY oY (3.50)

In general, the growth of W with T 1is bounded between a constant
2Cc_T
=]

and (e - 1)/T for all T. The asymptotic behavior of W as a

function of T and vy is illustrated in Fig. 3.

2CT
Wee W~T Y=l/2
W~T
= 2/3
ﬁ W~ T
o
=
o
5
m
¥=0

v W=Const,

ti § - T

0

Coding Delay - T

Fig., 3. Bandwidth vs Coding Delay for a Class of Codes.

3.10. Signal Selection with an Additional Constraint.

The coding scheme of Kailath and Schalkwijk can be derived by

solving the signal selection problem subject to an additional constraint

on AB, or C

I

-]
(I-AB) "AB, and g. In their scheme, E[sl/ej = gle
while E[si/e]

il

0 for all i > 1, In vector form this translates into
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setting E[s/6] = E[(I+C)gb + Cn/8] = (T+C)gb = col(g,6,0, *++ , 0O).

- gl
Thus there is the auxiliary constraint (I+C)g = col(gl, @ *+r ; 0) or

gy + (e(i-1),g(i-1)) = 0 fel, 3 v 3 N, (3.51)

In the white noise case considered by Schalkwijk, the present formulation

gives

E_, = |l (z+¢)gl? 662 v otmr cct (3.52)
N .
- cazglg + @ 2:: Hc(i-l)“z . (3.53)
i=1

The minimization over c(i-1) must now include the N-1 constraint

equations, which are easily incorporated via Lagrange multipliers

kz, K3, e % KN' Thus, let
N N

FoogZe?e of ) lle(i))lE ) (e + Ce(i-1),8(i-1)))  (3.54)
i=2 i=2

and set gradc(i_l) F=0 for i=2, 3, *** , N in order to obtain

K
e(i-1) = - ;35 g(i-1), (3.55)

hence,

Ay =5

202 |lg(1-1)|

=2, 3, *** N (3.56)

and
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e, = ole(i-1)||"
2

. N

lle(i-2)]|7

Next, note that

2
o
2 2 PN 2 2 e 2
og llell”_; == (g," + g," + ¥y
X o
2 2
_% 5 ? I P
T2 s . o312
o i= lg(i-1)]
therefore,
e N e
2ii w2 1 i
oolelly =2 T+ 2
0 K-l 02 io o2
while,
N
E :Ze.
av i
=1
The optimum choice of signal energies is el—02
E —62 5
~é%——w - 0, Therefore,
N
E —02
2 av
oglel? ;= [1+ =2
X o N
N
av :
& L+ s -1 (the optimum result)

(3.57)

(3.58)
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with equality when N = 1 and of negligible difference as N in-

creases. However, in this case e, exceeds the remaining e's by cz.

1

If all the signal energles are made equal, the result is

2 2 Eav av
agflell g =~ 11+ =5 (3.59)
X 0N No
‘ Eav y Eav »
which is considerably less than F_+ = when g e is small,
No No Ndw

The form of the transmitted signals is obtained by eliminating

c¢(i-1) from the expression for s, as in Section 3.3. The result is

A

ei_l +

A . . - . A
s; = gi(e-ei_l). Similarly, it is easy to show that 8, =
2

g.o0
—~%——~§ r, is the sequential operation to use at the receiver,
o 2llel -

3.11, Selection of g When the Noise 1s Correlated.

The problem of optimizing Eav over g when Hg”i_i is fixed,
is in the case of correlated noise complicated by the non-diagonal
nature of K. The problem appears to be formidable even in the case of
a simple first order markov process. It is not difficult, however, to
guess a good g and to compute the resulting performance. The defini-

tion for RC is still given by

1

B, = 9

2
(1 + ogllgll” ) (3.60)
) il
K
Factorization of K into the product QQT where @ is lower triangular
and positive definite, and‘setting £ = UeQ'lg, g = %; Qf, gilves

0
1+ o llell® ) =1+ £, The identity
L
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g fiz '
1+ el =T+ = (3.61)
i=1) 1+ e(a-1)
can be used to obtain
j, & fiz ( '
R =W:x In|l + 3.62)
° N & 1+ Jle(a-0)l?
However,
= 4 y2
_ £(i),a(i)
av , (3.63)

j_zl’fl + Nf(i-l)Hz 7

is not simplified. Here, f£(i) = col(fl, fZ’ L fi)’ a(i) =
COl(qil’ s ™% qii) is the i-th row of Q, and the individual
signal energies are of the form e; = (f(i),q(i))g/(l + Hf(i—l)“z),
Thus, there does not exist a simple relationship between ¥y =
fiz/(l + Hf(iml)”g) and e; as in the case of a diagonal covariance
matrix. Nevertheless, at least two good guesses are available, The

first is to let Ty = Y a constant independent of i. This gives
R, =W In(1 + ¥) (3.64)

and

= S y)ihl _ (3.65)

so that
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N i -1 2
1-1 Z 2
E_=v ) [(1+y) £ @) %y
izl jz
N ;i fud, 12
2
Sy ) () =@ Pay  (.68)
i=1 1 j=1

Note that the sign in front of each fi affects the terms in Eav but
not those in Rc where the fi appear squared. This allows a partial
minimization of Eav over sgn fi to be carried out.

The second guess 1s to maintain gonstant average power by choosing

all the ei's equal to a constant, say e. Then

E = Ne
av
and
N : 2
1 h(4 i
R, =W X > 1nf1 + $ (1),§(1) e (3.67)
i=1 . gs

-1

2

where h(i) = COl(hil’ hioy "0, hii) is the i-th row of Q
g; = %; {q(i), £(i)>, and £ = Ue(h(i),g(i)>. Once again the signs of
the components in the inner product are available for partial optimiza-
tion of RC. An example for the case of first order Markov noise is
worked out in Appendix II where it is shown that for both Yy = ¥

and e, = e
) i

= (3.68)
Naw o '
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where @ 3is the parameter of the Markov noise (ni =om, o+ W),

The critical rate achievable is ‘_then

R, =W In(l + v)

P P :
P - s e, > ]
W in(1 + I\IW) for s> 1 (3.69)
fo) fo}
2 P P
@+ ) 55 Tor w5 <1 (3.70)
o _ o
No
where 5 is the spectral power density of the white noise which
drives the difference equation to produce Markov noise,

N

(E[Wiwj] = 5 6:1;])‘

o
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IV, NOISY FEEDBACK

h 1. Introduction.

The inclusion of feedback noise is essential in the representation
of a physically fealizable system, Otherwise, as it is shown in Section
3.1, it would be possible to use arbitrarily weak feedback signals for
conveying information to the transmitter. Thus, in the case of noisy
feedback, the probability of error is determined by the feedback power
as well as the power used in the forward channel.

The main purpose of this chapter is to establish the relationship
between the forward and feedback power and the probability of error for
systems in which the noise in the forward and feedback channels is white.
andrindependent. There are many practical situations in which this
assumption is valid. Thus, if o° and omz are the variances of the

forward and feedback noise, then K = GZI, B = YGEI and K = 0,
n m mm

N
where o° = EE ‘is the two-sided noise power spectral density in the

forward channel and v = 0&2/02. Equation (2.10) simplifies to
K = GZ(I + yAAT) 3 (4.1)

and, letting I + C = (I—AB)—l, where C = AB(I—AB)—l is lower tri-
angular with zeros along the main diagonal allows Eav’ as given by

(2.29), to be written

B = Tr[(I+C)(UezggT + GmZAAT)(I+C)T + GZCCT] ; (k.2)
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However,

mefoet] = me[(I+e) (T+0)T - ¢ - o - 1] O (.3)

and Tr[C] = O Dbecause the diagonal elements of C are identically
zero, Also Tr[I] = N, therefore

pelcet] = Te[(T+C)(1+C)T] - N . (4.4)

Substitution of (4.4) into (L4.2) préduces

By, = Tr[(1+0)(cp e +o, "aa"40?1) (140) "] - o (k.5)
NZ 4 B, = Trl(T0) (0, ge ™K (T:0)TT . (.6)

Note that the above simplification is possible only because Kn was

assumed to be diagonal. The feedback energy as given by equation (2.30)

may also be written in terms of C,
Ep, = Tr[B(1:C) (0 gs" +K)(1:c)" BT1 . (4.7)

Finally, the quantity that controls the probability of error is

1

E[(8,-0)7/8) = ——
HgHK,l

(4.8)

where
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gN {g,K (r~Au)) ) (4.9)
HgH

It is easy to see that the simple scaling argument B - €B,
A~ % A, AB — AB of Section 3.1, that caused Efb to be arbitrariiy
small without affecting E__ ”g” fails; because, in the
present case K = o© (I+YAA ) becomes © (I + —m AN ), thereby
causing HgH i to decrease while Eav increzses as € 1is reduced.

A more subtle but equally unrewarding pursuit is to choose g in
the null space of AT. This choice is deceptively promiéing but it is
easy to prove that it leads to the no-feedback solution A = 0, First,

in order to show why such a choice is seemingly good, note that

Kt - L e
g
= L rvanT(mvanh) ™, (4.10)
g
therefore,
lel? 5 = 25 el - vée, ') (4.11)
K o}
% llell? (h.12)

A
with equality if and only if ATg = 0, Thus it seems that E[(BN-G)Z/G]
and the probability of error, are minimal and independent of the feedback
noise when ATg = 0, Since the raﬁk of A 1is at most N-1, there

exists a non-trivial choiece of g that satisfies the above condition,
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Now, in order to prove that this condition leads to the no feed-
back case A = 0 as the optimum sclution, consider the expression
for +E . as given by {4.8)

Tr[(I+C)(092ggT+cm2AAT)(I+C)T + o%ceT]

=
il

av

2

UBZH(I+C)gH2 & & Tr[(I+C)yAAT(I+C)T] + O TT[CCT]

1t

oo (lell® + 2¢g, 08 + lle li®) + o®(vil(zee)all® + lc|?)

v

og (lel? + 2¢g,c,)) (4.13)

But C = AB(I—AB)'l, therefore

&,¢,> = &"aB(1-28) g (k.10)

vanishes when gTA = (ATg)T i :

2 2
=20
e = g lel® | (4.15)
with equality if and only if A = 0. In fact, the only quantity that
can become negative, and thereby play a major role in minimizing Eav’
is (b4.14). This implies (without proof, however) that A and B

should have, as in the noiseless case, rank WN-1, which is the maximum

rank allowed in the formulation,
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L,2. Solution of the Signal Selection Problem.

An important relationship between E__, E and Hg”z for
av ib K-l
systems with white and independent noise can be established by the use

of several well known matrix properties. Let

2
o] -1
58 fpamyt ——2- ga’ + I+ yAAT|(I-BTAT) (4.16)

o

Since AB 1is lower triangular with zeros down the main diagonal,
I - AB has ones down the main diagonal and det(I—AB)'l = 1. There-

fore,

a2

o \
det H = det(I-AB)™ 2 det —-g- geT & T 4 YAAT
.
2
% T T
det H = det-—§~ ge” + I + yAA
- .
=|l1l+0 ZHgHE det(I+yAAT) fhaT)
0 K—l 2

where, in general, det(I+xxT) = 1+ Hx”2 for any vector x. The
proof of this fact is simple, The vector =x 1is itself an eigenvector

T
)

of the matrix I + xx' because (Ttxxl)x = x + x(x,x) = (L + [x]|%)x.

Thus the eigenvalue associated with x 1is 1 + HXHZ. Since I + xxT
is symmetric the remaining N-1 eigenvectors must be orthogonzl to x.
Thus, if y is any other eigenvector, <{(x,y) =0, and (I+xxT)y = 7,
proving that the remaining eigenvalues are all equal to unity. Since

the determinant is equal to the product of the eigenvalues, the proof

is complete.
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The result for 1 + GGZHgHZ_l is obtained by letting
K 2
o o
Q= I+ yAAT and x = EE Qﬁlg, so that ~g— st o T % yAAT -
T T 7"
Q(xx~ + I)Q . Thus
212 _det H
14+ aflel? , - — L E
K det(I+yAA™)
N
[T v
.- — 7 (L.18)
det(I+vAA™)
where Vis Vg ', VY are the eigenvalues of H. Also
N+ =TrH
o
N
=) v, (+.19)-
i=1 '
and
E
~§9 - Tr[B BH] : (k.20)
o

where Tr[BTBH] = Tr[BHBT] follows from the invariance of the trace
operator under cyclic permutations of the matrices.
Bince erfc x 1s a monotonically decreasing function of x, the

minimization of Pe given Eav and E is equivalent to maximizing

b

l+0 BHgHZ subject to constraints on E and E But, since
© K-l av

b*
vy >0 for all i, the following product inequality always holds
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Ll 1
¥ v, =12 Z % (4.21)
i1 1 N i
i i=1
1 &
with equality if and only if Vv, = T v, =V for all i, Thus,
A=l
By )
1+ GGZHgHB,l s (k.22)
K det(T+yAA™) ,

with equality if and only if all of the eigenvalues of H are equal,
that is, v, =V = (1 + P/Ndw). In order to achieve the upper bound
it is necessary to hold det(I+YAAT) fixed while varying A B and g,
Since every symmetric matrix whose eigenvalues>are all the same is a
multiple of the identity matrix, H = VI,

Note that (4.22) immediately provides the solution to the noise-
less feedback problem (y=0) in which the forward noise is white,

The condition H = vI may not be achievable for some choices of
B or A even if of rank (N-1). However, if it is achieved then the

best choice of B (from the set for which H = vI) can be found as

follows:
E
-%E = Tr[BTBH]
[}
T
—= v Tr[B B] (k.23)
N-1 N-1
LB
i3
=], J=L

the rank constraint on B requires that
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N-1
b2, >0
11
i1

Therefore, if the last row of B is disregarded because it is iden-

tically zero, the determinant of the resulting (N-1) x (N-1) matrix

must be positive., Let ai, 52) see 5;_1, BS be the eigenvalues of

T 2 12 Eog

BB then @ is identically zero, and %ii Py = }: by, > 0. Since
i= i=1

Efb =V Tr[BBT} 5?, it is minimized by choosing Bi =p Dor all

i=1, 2 =+, N-1. This immediately indicates that B'B = p°L .

I

where is the (N-1) x (N-1) identity matrix., Therefore

IN—l ‘
B = 5IN—1‘ (Because this is the only solution when B is lower tri-

angular.) Thus it transpires that

o 2
—2— = (N—l) \)B
e}
or
vaz _ be
Y YN&W
- op (L.2k)
where p. ~ is the feedback signal-to-noise ratio. Also, there is
. P
v =1+ T
e}
=1 + p (u.25)

where p is the signal-to-ncise ratio of the forward channel. It is
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now necessary to solve for A and g from the condition H = vI

4,3, Selection of A and g when B = BI.

The starting point for the determination of A and g is the
matrix equation H = vI. DNote that this simple matrix equation repre-
sents a total of N(W+1)/2 indepeﬁdent scalar equations. The number
of unknown elements in the lower~triangular zero diagonal matrix A is
N(Nul)/z while the number of unknown components in the vector g is
N, giving a combined total of N(N+1)/2 unknowns. Thus, é solution

is to be expected, Note that

2
o
—2-gg’ + I+ yma® = (I-AB)H(I-2B)"
o
\T
= (I-pA)VI(I-BA)
= vI - vﬁ(A+AT) + vBEAAT
Therefore
& 2
—é}-ggT + I = vI - va(A+AT) + (vﬁz-y)AAT . (L.26)
o ,

Completing the "square" on the right-hand side gives

2 iy
.o;.— ggT + (.Y.@Eﬂt.\_{) T = ‘\_)EEE__) (I - l@iﬂi A )F[ i \)BZ-Y A) %
vgl-y vgZoy vB

This reduces to
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££7 + T = a?(X-D)(I-D)T (4.28)
where
vy A | | (k.2
D= |Fd .29)
1/2
2 o
o ——ESELJQL—' s @ . (L4.30)
VB~ + vy-vy o
and
2.2 ‘
o = -—-—~—--—-——2v B : (k.31)
VBT + vy=Y

The solution is to factor the positive definite symmetric matrix
ffT + I into the product of a lower triangular matrix with its trans-
pose, and to identify this with the right-hand side. It is also not

difficult to solve the N(N+1)/2 equations for f and D directly

. - 2 _ A2 -
since they are recursive. For example, fl & L &= o fzfl = - le,
2 2.2 i : 2 2, 2 w

and f2 +1=0 dzl’ this gAves f2 = (o ~1l)etc. Here, a more

economical methed will be demonstrated.,

1
‘Tet (Tefet)F = (I-Hh') where h = {1 + I£112)7% £, then

b

(D) (Bl J{T-D) =% T . ’ (L.32)

Q |+

Note that I-—hhT is positive definite since it is the inverse of a
positive definite matrix, It may be easily verified that minimization

of the trace of (I-D)T(I-hhT)(I-D) subject to a constraint on the
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determinant gives the condition that (I-D)T(I-hh')(I-D) be
diagonal.* Therefore, the diagonalization can be replaced with a
minimization of the trace. Note that det(I—D)T(I~hhT)(I—D) =1 -
Hh”z = a_ZN so that D 1is not constrained by the determinant,

Let d(i) = col(a J dNi) denote the nonven-

(i+1)1> Y(ir2)e’
ishing portion of the i-th column of D and let h(i) =
col(h 4, by o ***, hN). Note that d(N) = h(N) = 0 while 4(N-1) =

_ T
dyy.y  and h(N) = h are scalars. The trace of (I-D)(I-hh™)(I-D)

is the sum of the diagonal elements,

1+ Jlaa))|® - (hy, = (h(i),d(i)))2 = }5 ji=1, 2, e+, N
04
(k.33)

. - A . . 3 5
Setting gradd(i) 0 (or taking gradd(i) of both sides) gives
a(i) +(h; - w(i),a(1)Mn(i) =0 . (4.34)
Taking the inner product with h(i) gives

- ,
MR SR o 1 1) JSPRBEL. S k.35
hy (a(i),n(1)? O (4.35)

so that

- h.

——— h(i) . (%.36)
1 - R

a(i) =

Substituting for d(i) produces

% This is true for any positive definite matrix, e.g. H.
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BTN

therefore,
hi = l? Bina
o
- 21) 42
_ o1 -2(N-i)
2
o
where
W2 _ o1
N = —a .
052
Consequently 5
o e N W
= e
o
Qe =
Ji
0
Next,
1
£2 = (1 + ||£]|%)% n?
i i
2N[a’- 1 ~2(N~1)
Sl -
(04
hence
= L
o -11% 1
Ly = "%
a

o B
aZ

L8

for

for

(%.37)

(L.38)

(4.39)

(k.4O)
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a 1 %
8 5 i-1
Lg = (vV1)FT (4.41)
and therefore
ad™t >4
v-1 :
aji = - TB— (4.11-2)
0 Jd=&d .

4.4, Evaluation of det(I+yAAT) and Probabpility of Error,

It is necessary to calculate det(I+yAAT) in order to determine
the probability of error of the feedback code, Define the lower tri-

angular matrix J such that (J).. = &

33 note that J has zeros

13+1°2

on the diagonal., Using this notation enables A 1o be written as
- 7)™t L3
A=-~0a e J(I-—C!J) 2 ( . D)

and therefore

I+ 'yAAT = Tk 62J(I-0J)'1(1-aJT)'1 g (&.44)

where,

However, At occupies only the (N-1) x (N-1) lower right corner of
its N x N format. Therefore all the off-diagonzl elements in the

. T : 3 .
first row and column of I + vAA™ are zero. Since the first diagonal



element is unity, it is obvious that det(I+yAAT) = det(I+yAAT)

where the subscript
(N-1).

Now,

T
(T+vyAA )N—l

-1
Since det(I—aﬂ)N_l

det(I+yAAT)

where QN-l is the

14+ 8 - 0 0 ..o 0
2 2
- (1+a™+87) - R
Q’N—l i— O - ( l+(12+ &2) -t - e . O
0 0 0 0+« -a (Ldf+s?)]

50

N-1

is used to indicate that the matrix is (N-1) x

I

(1 + a(I-oﬂ)'l(I—aJT)'13N_l

il

(Im)ﬁl[(lm)(l"@)T = 5ZI]N—1(I-@TT)1€1 .

det(I-oF)y ; = 1, it follows that

Il

P
det (T+yAA )N_l

1t

det[ (T-07) (T-c)T + 6211,

det Qg ; (.15)

tri-diagonal matrix [(I-aJ)(I—aJ)T + 6211N 1
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The determinant of such a matrix is well known, however, in order to
obtain an expression that is suitable for the present analysis it must
be rederived. Observe that QN—l is almost of the form (aI-bJ)N_l

ek
(aI-bJ)N_l where

a2 +b% =1+ a” + 62 (L.b7)

and

afo? = of (k.18)

The only difference is in the first element, which instead of equaling

a2 =1+ a2 + 62 - 'b2 is equal to 1 + 62, Thus

Q. q = (aI—bJ)N_l(aI-bJ)E_l + (bz-ag)elei (k.h49)

where e, = eol(l, O, *+*+ , O0) and elez is a matrix of rank one
which is empty except for the first element which is unity. Now let
e; = (aI-bJ)z where
z = (aI—bJ)'l e : (4.50)
- N-1 71 :
then

Q; = (al-b3)y | [x + (bz-az)zzT]N*l(aI—bJ)l?I_l (k.51)

and
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det(I+yAAT) = det Q1
= 2Dy (02-0B)|12)|2] (4.52)
However,
- N-2
b b
z=coll=, =, *"*, |3 (4.53)
a, a,
therefore
L. Elz(N-l)
2
el = —% (h.51)
a =b
giving
2N,., 2 2N, 2
det(I+yaaT) = b (1-s % - 8‘2 AB =L (4.55)

b - a

The last step is to solwve for az and b2 as functions of Vv
2 :
and %—— . Observe that

2

az -+ b2 = ag + 1+ 62

vzgz + vﬁz + VY - Y+ y(v2~2v+l)
2
VB = Y 4 W

2
= V + "———'—'—"—2\)5 . ‘ (u'56)
VB & ey

and
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2

2% v B (4.57)
o+ vy
Consequently,
bz =
=1l+p (+.58)
s
a2 _ Zvﬁ
VB o+ vy-Y
Pry
RPAL .. - L,
yapar i (4.59)
and
N -1 -N -N
(1+p)" (prpey) +(1+p) ™" (2+p/0..)
det (T+yAAT) = i - =8 (4.60)
1+ (prog)
Therefore
N
2y 2 (1+p) 1
oZlell® , = el
K det (I+yAA™)
N
(1+0)" (1rp/0p )" - 1
_ (4,61)

(orpgy) (o) (e o/ )Y + 1

< Pt Py

with equality when N 1is infinite. However, half of the upper bound

is achieved with N = N

B where
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In(pto )

. =
In(1+p) (1+p/ pey)

B

(k.62)

Substitution of C =W 1n(l+p), e =W In(l+p/p, ) into Eq.(61) gives

o2llell®
0 K—l
Pe = erfe i pea
M -1
' -1}/ 27(C+e)
B -1 27(C+e) e -1
= erfe /511 + (p+pfb) e e (h.63)
e -1
s N C
B 1 o]
Thus, for T <Tp, where Tp == mzm -5, and Cy =W ln(l+pfb)

the error decreases almost as fast as in the noiseless feedback case;
and approaches the constant value
3 PHPey

erfe =
B el

. (4.6h4)

as T increases beyond the break point TB.

4,5, Selection of the Block Length.

' Unlike noiseless feedback, noisy feedback alone cannot be used to
drive the error to zero. Thus, it 1s necessary to employ one-way coding
in addition to, or even in exclusion of, feedback coding.

7Let N£ be the total block length of a code consisting of a com-
bination fegdback and one-way codes, and let N be the length of the
feedback block., The length éf the one-way code is then Nt/N’ because

each block of N signals encoded via feedback can be treated as a new
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element in the one-way block. The effective signal-to-noise ratio per

feedback block is

poep() = a@Hg(mHi_l(m

and the error resulting from the combined code is

N,
-E (p R,N ) =—

o' Peff? 77t/ N
Pe(peff(N),R,Nt) = e

2W In M

Ny

ig the rate of the message source. The length of the feedback code may

where Eo is the reliability of the one-way code and R =

be determined by selecting N to minimize Pe(peff’R’Nt) or to maxi-

mize N,R).

i
N Eo(peff’
When the one-way coding procedure is limited to be a repetition

of the feedback process (i.e., no one-way coding), the total number of

repetitions is Nt/N and the probability of error is

: N 3 p
t eff
Plp.peB N} = erfe f — = —_—
evreff t N 2 Mz-l
Tt is evident that N must be selected to meximize % peff(N) where
N=1,2 *=* , N.. Inmost cases of interest (pfb >> p) the optimum
choice is N = mln(Ni,NE). If pgm <= and N >N, then
3 N (pregy)
Pe = erfe / — - ———559— (Lh.65)
2 Ny 2(M~-1) :

Pe approaches zero as N, approaches infinity provided that M2 <N

t t°
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Consegquently, R = %ﬂ In M < 2W %e In Nt approaches zero unless W is
t t

infinite. For a more efficient one—waj code, the choice of feedback
block-length‘bécomes even less, The minimum choice for N is of
course unity, and it corresponds to the no feedback case.

It is of some interest to cbserve that in this scheme the average
power in both the forward and feé&back channels is independent of N,
and therefore also of T. That is, Pav and I}b are constant with

time,

L .6, Mechanization of the Code.,

Although the solution of the system is available in matrix f orm,
it is desirable from the standpoint of implementation to derive a more
compact representation for the coding and decoding operations. The

feedback signals are of course

i
i, vl 413
8501 =% 8 -5 3
Fe
=0ols il v
- i~ w8 i -
Therefore

_ 1+ pv- )
e TR | W ) ity
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with "initial condition”

Tl O =+ o = O'
' 0 »
I+ yAA™ = 0] 3

it is obvious that

(I+'YAAT)—1 = .
. Ty-1
| (TeyAAT)
| O J
Z N-1 .y .
Next, let g =g, col(l, o, a”, *** , & ) be partitioned into
g =8 col(l,ay) where y = col(l, q, Otz, see ozNag). Note that
= Ry -— T -l Y
(I-aJ)y_1¥ = e; vwhere e; =col(l, O, O, , 0) and (al-bJ) e, =
1 N-2
P b .. b ;
z where z =— col (l, = = r o ) Then, since
-1 1 Ty-1
K™ == (I+yaa™)"",
o
1 f a4
1 O res () ese (O l
-l l e
. T\-1
S (TevAaaT) oy oy
| O
€ . A
Tz
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However,
T,-1 T - T\-1 2 2. 1|t 1
(T+vAAT) gy = (T-ad ")y 4 (81-b37) 7 | T+ (b7-a7)zz (aI-bJ) “(I-ad)y v
= (-0 (ar-baT) L [T+ (8%-q) P22t -
= GO dg kS0 ey B- B
1 T T,-1 o
= g3 (T-ag)  (al-b37)7yz (k.67)
1+ (°-a®)||z|| N-1
and
2 A = )
lell®_ 8y = <&™7g, (T-Ap)r)
K
g - | il
= --‘%‘- 1 ayT(I+yAAT)1-\'I}l T,
“ VoL ooy | (1-88) .
v ¥ p N-1 .
by
Since (I-AB) =1 - 3’»;5 ocJ(I—ch)'l = (I-on)’l I T = % J), it follows
-1 a a a
that (I"AB)N-l = (I-—qJ)N_l (1 - = J)N-l_, where Al A Therefore,
i 2= col(rz, Tyttt ry) then

It

) ﬁ[(l (-l ) +a<z,<ax-bJ>N,l<I-%%f”}
HZ 1

ngz_leN 5 o I 2 2 2
K o 1+ (p°-a%)||z 1+ (°-a®)|z|l

I

S e ol | g e s
b o K~
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BN is the minimum variance unbiased estimate of 6, while

,- -Gg\lg\\iﬁ-l i

By | (4.69)

L. =
N 7 2
Lo el

is the minimum variance (biased) estimate of 6. Thus

.2 .
X =X + BEE% (i . 1
N T *N-1 2252 (P N
and
: i
%o o e o .
X3 =% 0% 5 T 1+ E&TJ (1+p )l # 5 ) Ty (4.70)
a : fb
with
x =0
o

is the recursion formula to use at the receiver for calculating X
) a e
y an W

M,T.' Selection of the Feedback Signals for a Specific Set of Forward
Signals,

The diagonalization of H is equivalent to the minimization of
the probability of error for a given amount of transmitted power in the
forward channél. The resulting matrix equation H = VI represents
N(N+1)/2 independent scalar equations in the N° unknown parameters
of A, B and g. Therefore, N(N-l)/B parameters can be determined

by other means. Thus, the condition B = BI in the preceding sections
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can be viewed as a particular choice of parameters, It is of course
possible to make a different assignment of the N(N-1)/2 free
parameters in A, B, and g. For example, the matrix A can be
specified instead of B. The condition H = vI 1is then sufficient to
provide a unique solution for. B and g. The feedback energy,
Eg = v Ir B'B, is then indirectly specified by A. In fact, if A
is chosen to be as in the preceeding section then B must turn out to
equal BIL ;, where I, , 1s the (N-1) x (N—l) identity matrix.

This section considers the problem of determining B and g when
A is specified. Iet C = AB(I-AB)™Y, then (I-AB) ™1 =1I+ ¢, also

o]

let f = ng Q_lg where QQT = I+ yAAT and @ is lower‘triangular_
The matrig C is lower triangular with zeros along the main diagonal,
and has a one to one correspondence with B when A has rank N-1.

The problem now is to select B and g such that Eav =Tr H is a

minimum for a fixed value of 1 + OSHgHZ_l. However,
K

.- T
e}
Tr H=Tr |I+ C --gggT-!- aq” | [T + c)
a
= TR[(@rcq) (££7+1) (@™ +QTcT)]
= TR[(A+D)(ffT+I)(A+DT)] (k.71)

= i 2 = s e —— - i %
where A = dlag ”(Kij (Q)lgéla)’ and D=0CQ+ Q - A is, again, a
lower triangular matrix with zeros along the main diagonal, Note that
minimization of Eav with respect to D is the same as with respect

to C since there is a one to one correspondence between € and D.

The constraint on “8”2_1 affects only the selection of g.
K
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Let f£(i-1) = col(fy, **+ , f; ;) and let d(i-1) = col(d,,, =**

dii-l) denote the nonvanishing portion of the i-th row of D. Then,

since diag(AD) = 0 so that TR(AD) = 0,

Ir H

H(A+D)f”2 + Tr(DbT+A25

. v . z 2 2
—%— + N = EE: (A £, + {a(i-1),£(i-1))) + [la(i-0)[[* + A
° i=1
Ne.
DR
= 2
i=1'°
where
° ' 2 2 .2
1 & _% = (Agf + €a(i-1),£(3-1)0)° + [a(-1)[" + 2]
o}
Setting gradd(iul)ei =0 Po¥ 1 =.2, 3, **+ , N obteins D

function of £, Thus

(i-1) e £(i-1)
d(i-1l) = =~ i~
1+ lEGDE

therefore
2
e. £,
1+ —% = a0 11 4 : =
o " 1+ ||£(i-1)]

Next, since Ué”g”zji ”f“z, and because of the identity
K

(4,72)

(h.73)

as a

(L.7h)

(4.75)

2



62
o

N
el = 1+ : i
2o+ el ILE 1+ lea-n))° el

there results

N CH
T,—,T (l b ""?‘é’

i=1 o]

2 2
1+ O‘engn e T ) ()'!”-77)
K det(I+yAAT)
where
N
'T*T Ki = det(I+yAAT) .
L=l

The optimum choice for ey is obtained simply by observing that

N €5 av !
I l l+"-'§ = l+-~é-—
Je=ll l¢) o°N
Eav
with equality if and only if ey = -ﬁv-i = 1, B, =+ , W. Thus, since
Vel=p= A , the result is
NW 2
! o - ON
N
211 12 1+
1+ oflel?, - —{2el (.78)
K det(I+yAA™)

The components of the vector f satisfy a recursion formula

2 a 2 5 Th=
£5 ) Vo= Ay A 1+ |\e(a-1)||

2 - Z 2 . e
£51 R voe Ny g JAL# le(i-2)]l

2 2 y
YoM W M M bl
&= 2 2 # e
% L TR 1+ |[£(i-2)]
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V- ki v
= > > ()'l'-79)
A Vo~ AL
i i-1
Therefore
. [V - Ai il
£ 32 f4a (;g
i 1= 3
: 1/
2B . 2 P o 2
AT ( fj ) . (v - Ai)(v - kj)l-l A
3 2 2 L °
1+ [le(L-1)1%/ {25y A5 k=j | Vv
Thus,
: . i=1 A
2 2a 1 k . .
Jo e - E TT (B«
i k=3 Wy,
dij = (+.80)
0 3 E L .

This provides the solution, because C = (D~Q+A)Q'l and then

AB = C(I+C)'l can be used together with the pseudo inverse A(-l)

(A(_l)A =J) to give

3 = s Bac(noy?t . (4.81)

J 1is a lowering operator that anihilates the last row of B, which is

identically zero anyway.
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As an example, consider the code with A = aJ., This is the

simplest lower triangular matrix with a zero diagonal with rank N-1,

I-
In this case 1 + cguguz_l = (l+p)N/(l+ya2)k 1 dneresses exponentially
K

with N for #ag < p. It will be shown, however, that the feedback

power is alsc an exponentially increasing quantity,

2 4is diagonal with A2 = 1

Note that I + yAAT =TI+ yaZJJT = .45 1

and 25 =1+ vya® for 1>1. Consequently,

@16 for J = l; i = 2, 3, REREE o N
di,j = - 51791 ror 1 <yl =5, & oo, K (4.82)
0 for =2i=1,2, *«* , N
where @) = (vAT)(-1)/v, 9= (v-a%)/ v end & =3/ v. Tous,
0 0 o |v 0 0]
XL 0] 0] @
D= -5 1
2
& 8 0 o o
grE g g o |0 0o 0 o @ oJ
=0
= - J(I-83)7"% (%.83)
where @ij = wiéij and P, =P for i > 1.

Next, C = (D*Q+A)Q-l = DA-l, since Q = A in this case,

therefore
C = - 3(z-87)"Fen™t (k.8Y)
(1r0) = (A (1-87) - 31(1-87)"Ten™1
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2

& c(1+c)'l

it

_ Jl1 - (sman a1t
Therefore

JB = % J(I yJ)” (¢—51)

(4.85)

where ¢ = 8I + sAY, Since J annihilstes only the last, all zero,

Trow
i 0 o} fi-s O 0
¥ i 0 0 -8
'R 0 0 -8
B :.% . .
a L] .
b3 ¢ 1 ofloo
| © 0 of] | oo

The feedback energy may be computed from Efb
it is simpler to use the fact that Tr[BHBTl = Tr[JBHBTJT]

=\ TI‘[BTB] bU.t,

since all

that J does is annihilate the last feedback signal, which is zero

anyway. Now, however, JB = A(—l)AB = A("l)C(I+C)“l because

( l)A J, thus, Tr[JBHB } [A('l)CQ(ffT+I)Q c AT( J)] giving
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i C[T[A('T)A('l)D(ffT+I)DT}
N1
L) (ati-n, 21y + fla-n)li?)
Yo ACT ' '

N-1

B SR e (4.86)
yaZ Zl L eGP
and
2
.. 1+ va
e eI
Yo va
T Y w
va?  (Liyal)i2 | (k.87)

which grows exponentially with N. N 1is determined by the maximum
allowed average feedback power, or signal-to-noise ratio. It can be
seen that while it is deéirable to—make Yaz small, it comes at the
expense of increased feedback power. Also, if a 1is chosen to give a
value for def(I+yAAT) which is equal to the same value as in

section 4.5 then it is obvious from the fact that B is not diagonal
that Efb is greater than that in Section 4.5,

The mechanization of this scheme is simple., The transmitted

signals are given by

s, = gie + av

i+l i-1

&;

€5.1

(si_l-avi_z) +oavy 4 (k.88)
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The feedback signals are of the form

- ¢(“i-1 5 2 ri) ' A (4.89)

' ’ A
The receiver computation of 6 1is given by

. N
2 A 1
lell? y By = egry + —2—5 ) (e -au, )
gL N PLLT TR " A i = |
J=g
Therefore
gZ y
A A i " 1
9 = 8.1 - N 2[91-1 N ri'aui—l)l (.50
(1+va )gl LR i
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" 4,8, Discussion.

The condition H = YI is not optimum for the noisy feedback
problem, This may be seen by comparing the present result with a

calculation for N = 2 made by Elias in 1956 [10]. Elias obtains

e ol P1P2P ¢
[Gg”g“ -l]Elias = ik Po + (,-I-.91)

where p; = el/c2 and p, = 62/02. It may be verified that the

optimum choice for Py and Py when Pyt Py = _%K is Py = Py =
E . g
p = —E% . Thus
20
Z
2y 12 P Prp
[Geng“ —l]Elias =ap + 2 : ' (k.92)
K ” (L+p)° + P
Now, when H = (l+p)I the result is
(1+0) (L4 p/bg,) - 1
211,112 P/ Py
[ogllell®_,2 = 5 3 (.93)
K™ H=(1+p)T  (1+9)"(1+p/pg) |

+ 1

P+ Pep
and it is clear that the expression in (h_93) is always less than or
equal to that in (k.92), with equality occurring at Pep = @
An explanation as to why H = yI is not optimum is obtained from
the requirement that det(I+yAAT), in the expression
‘2 de£ H

p == | X

1+ ogllel
K det(Tryaa’)

be kept fixed. When N = 2 this amounts to holding the entire matrix

A (since it has only one non-zero entry) fixed. Thus, in effect the
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optimization is only over B. Equation (4.91) results from an optimi-

zation of (4.94) over A.

It is instructive to go through the steps in greater detail,
: . 2y B . BB . :
Without loss of generality, let Ge/d and Y = cm/c be unity, then

0O © b0
A = b B = g
a O o 0
0 o 1 o0 7
T .
C = : . I+ YAA” =
lab O .0 l+a2_
1 0 Tt 1 ab]
8, &8, )
H = e
2 2

ab 1 8185 l&gz+a 0 1 |

From this it may be seen that P1s Py and Pep » 88 given by

(H)ll -1, (H)22 -1, and bz(H)ll, respectively, are:

Py = (g2+a‘bgl)2 + azbz + B2 . (1.96)
oo = () P . (4.97)

Now



T0

2
21 12 2 &
oollell® . = &7 + (k.98)
° K_l & 1l 4 a
7 2
) (abgl g %; - a®(14+17) )

1+ az

Maximization over a of the above expression yields equation (4.91).
It may be verified that the resulting optimum value of a does not
diagonalize H.
The diagonalization of H occurs if g1, &5 and a are held
> % e s A
fixed, while the minimization of the forward energy E =0 (pl+p2)

is attempted by varying over b (and thus over Since only

B p2
depends on b, +the indicated choice is b = - glgz/a(l+gi). Equation

Pep) -

g ;. 5 2
(4.93) is obtained when a = glgz/b(l+gl) and b = pfb/(l+gl) are
substituted into (4.98), followed by the setting of Py = Py = P.
The optimization of Hg”z_l over A for values of N > 2 has,
K +

up to the present, proven to be practically impossible.
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V. RECURSIVE CODING FOR NOISY FEEDBACK

5.1. Introduction.

This chapter develops a linear coding procedure, for the AWGN
channel with an AWGN feedback link, using an approach that differs from
the matrix methods in the precediﬁg_chapters. The approach is suggested
by the form of the noiseless feedback scheme, where the receiver employs
a first order difference equation to compute the minimum variance biased
and unbiased estimates of the message, Here, the feedback signals are
assumed to be the successive estimatgs of the message. The strategy of
the transmitter is to compute thé optimum estimate @i of the receiver's

estimate gi’ and to fransmit
8y = (B0, o) i=12 *», N (5.1)

Because of the initial structural assumptions, it is not possible
to claim optimality. In fact, the recursive estimation performed by
the receiver is optimum only in the sense that the receiver computes the
best estimate from the data contained in the preceding estimate and the
latest observation., This can, however, be generalized to a receiver
that takes a linear combination of all the preceding estimates and the
latest observation, which 1s equivalent to taking a weighted sum of all
the observations and varying the weighting coefficients so as to

minimize the varilance.

5.2. Description of the process.

The coding procedure is diagrammed in Fig. 4. It is in principle
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equivalent to that of Omura [17] and Kashyap [18] except that an
optimization over the recelver's parameters is also carried out. This
last step is important and it leads to a significant improvement in
system performance. It might be added that the work described in this
chapter predates the matrix approach of the earlier chapters, and, like
that of [17] and [18], was prompted by the interesting paper of
Schalkwijk and Kailath.[15,16] who use the Robbins-Monro method of

stochastic approximation,

5
A
S.=g.(e-.g. ) r. A A
L7 A (DL olb, b, sam, L b
Nt i 7i-1 it i
m,

i
Kalman V. /JL\( u, = h.@.
i A 5} i1

i Filter i Nt

o]

Fig. 4. TFeedback Coding with Recursive Estimation at the Transmitter.

The first signal is 84 = gle, the receiver observesr Ty =8 + 10y
and computes the minimum variance unbilased estimate %l = éi . The
first feedback signal is u, = hlal, the transmitier observes
vy = U+ my and computes the best estimate of 81 from its knowledge
of & and v;. By "best" it is meant that E[(El-al)z] is a minimum,
where ‘ﬁl is the transmitters estimate of 61. It is given.by

2
T =0+ plh% i | (5.2)

Cym hl
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i g v - Vo A —=
where p; 1s chosen to minimize E[(G-Gl) 1. Let 6, = 6,46, then
2 2 2 vat
p-h g . p-h o]
~P g 8 il
BLE] = L - g | | —] 3 (5.3)
o] g c h
m 1 m 1
. 3 a2 .
taking —— E[6.] = 0 gives
opq L
il
P =73 2 (5.4)
L&
02 02
m
which, after substitution into (5.3) provides
E[6°] = p (5.5)
Y1 1 . .

The form of the transmitted signals is taken to be 5, = gi(e;ﬁ),

the received observations are ri = Si + ni and the receivers recursive

A
determination of ei is assumed to obey
A A
6; = 8; ; + a;Ty oi=1, 2, *vv , N (5.6)

A
where ay is to be determined, The coefficlent before ei 1 is unity

 for all i. Since E[r,/¢] =

: A _

because it is required that E[ei/e}
— A e ] A

E[gi(B—e)+ni/8]=E[gi(8—9i) + giei/sjzo; it follows that E[Gi/e] =

A A
E[ei_l + airi/e]=E[ei_l/e] = 8.

5.3. Recursive Estimation at the Transmitter (Kalman Fiitering).

The Kalman Bucy method for estimating the output of a linear

dynamical system developed in 1960-61 [20] is directly applicable to
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the present situation, Therefore, let Ei be the best estimate of @i
that the transmitter can make on the, basis of the feedback cbservations

Vi Vo T, Wy and the knowledge of €, The Kalman-Bucy filtering

1

equation for éi is then

- = hipi T -
Oy = Bpp * 248 (80; 1) v 5= | == 8y - 08 (0-8; )1 (5.7)
m i
The transmitter error, ﬁi = @i-ﬁi, is
. a
oy 8 h.p. m,
" & 4 5 g B & 3
8, = (6. , +a.n, )L - - - . (5.8)
L i-1 i'i d2 o2 ¥
m m i

Since n. ‘and m, are statistically independent and white,

2 a 2 2 2
. p. h.p. o
B[82] = (B[] 1+ alo|lL - =] + || 5 - (5.9)
# g o h;
m m 1

Since E[éi] is a minimum, it must be a minimum over p,. Thus, let

Es; E[éi] = 0 and solve for p, to find that
&
o Pi E[8¢ .1 + a,o° (5.10)
Py = -7 72 i-1 1" | 2 | * ey

o
m

which, after substitution into (5.9)  gives

2 22 2

w2 BiPs HiPi) % (5.11)
E[ejl =y (L ==~ |+ |—=| =
o) o) h.
m m e

=p, . | (5.12)
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Now Equation (5.11) reads

1 hi 1
il g« LA
Py m Ry W Sy
w 2 2
' 84Py 3 | Bg® 2
or setting q; = 5 g e SEhes and Wy = a8 gives
¥ Yy  8i%
11 1
— ==+ (5.14)
CP - .
g4
5 43 t Wy
8i.1

5.4, Recursive Estimation at the Receiver.

The receilver is supposed to compute the minimum variance estimate

%i of © given only the preceding estimate %i-l and the newest
observation T, . Thus,
8, = 6 |
;g =8 9 tar, 7 (5.15)
8.-6 0 5 b
8,-6 = 98, ;-8 + w;(6-6, ;) + o n, (5.16)
= (Si_l~8)(l—wi) + ei_l + E; n, (5.7 )

Now note that E{Eigil = 0. This may be verified by direct computation
from equations (7),(8), and (10) for 51 and ﬁ; and p,. It is simply a
statement of the projection theorem, which states that the'errdr Gi

is statistically orthogonal to the estimate ©. Since 5; is independ-

ent of © it follows that E[68,] = 0. Therefore,
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E[(8;-0)%] = E[(5,+8,-0)7]

1l

E[('e'i-e)zj & E['éi] .

2
. BY el s - )
Letting a; = ;5 E{(ei-e) ], and By = E[(ei-e) 1 gives

oo

A i=1,2, **,N

L i

S Q
1]
>

From (5.17) and (5.19) and (5.20) it follows- that

: . B
A - R 2 2 o ~2
E[(ei-e) 1= (l-wi) E[(ei_l—e) ] Wy E[Gi_l]
2 2
o 2 2 %
—5 Oy = (1-w)" By g + Wy 5+ Py g -
g5 . g1

The minimization over W, is straight forward;

2 2
g o)l
- B W e
€4 81
2
=

Q
It
=
+
0

The inverse of both sides of (5.23) is

.

7.
ow .
i

=0

{5.18)

(5.19)

(5.20)

(5.21)

(5.22)

gives

(5.23)

(5.85Y)

(5.25)
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g;.= R R (5.26)
W. 2 :
7 g,
By 1 —
i-1 02

1 1 '
e & 1 + T o (5.27)
i : gi‘
(@ 5 -95.4) 3

In summary, the operation of the system is completely characterized
by Equatiom (5.14), (5.25) and (5.27). They are restated for future

convenience as the system of coupled equations (5.28zbe).

il

%_ g JE e * : (a)
a (7 - 910 N

lH
IH
=

= A —————————— . b '28
93 Yi w2 + et = b .
i i%i-1
.ai = Wi + hiqi—l (c)

By B B R, EE — o
where A = gi/gi“l and v, = Omgi/o h; . The initial conditions for
starting the system of equations (5.28abc) are Wy = l/gl and g, = O.
: N ] v
After the sequences {li}izl‘ and {Yi}izl are specified, the
system (528abc) can be simulated on a digital machine and the parameters

of the code a; = wi/gi, and p; = ozqi/gi determined. These numbers
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can be precomputed and stored at the transmitter and receiver, or special
purpose computers can be built to generate them iteratively at each
station,

5.5. Equations for P

. be, Pe and RC.

The average power transmitted in the forward channel is

HIH‘

N
}: mle’(6-5, )"

- 2 : 2
but E[(G-Gi_l) ] = Biq = (O‘i-l - qi_l)/gi_l , ‘thus,

-
ZWao 6

P = Egl '—'2" i (ai—l-qi—l)] . (5.29)
B S -

Similarly, the average feedback power is

- Z 2 i
Frp =TI By BL6;]

% A A A :
vut, E[6Z] = E[(8,-6+0)] = B[(6,-0)°] + E[6°], therefore,
N-1
- i n;
fo ~ N-I — (@, + g; %o ) (5.30)
i

The error probablility after N iterations is found by the same

method as in Section 2.4 with cé“g“z_l replaced by degN/G o Thus
K .



=

2 s

C.g
P_ = erfc % —fll%?—- (5.31)
o (M°-1) o
‘and the expression for the critical rate is
dEgZ
1 B°=N
R,(N) = 55 In {1+ . : (5.32).

OZGN

5.6. Asymptotic Performance of the Code,

The performance of the scheme in the limit of large N can be

determined after establishing the limiting form of AGp @

N and qN

as N approaches infinity.
There are two situations of interest. One is the infinite bandwidth
case, which is obtained by setting Ki =\=1 and Y; = Y- The other

is the finite bandwidth case which is obtailned by setting hi —

and Ya =Y It can be seen that gi = g?_lx = gixl implies that the

feedback power must grow exponentially with N when ) > 1,2 and.
a

linearly when X = 1. This follows from the fact that h§="E§ g? .

It is also evident that the feedback power is zero when

Theorem 3.

(a) The assumption that Y = w, and Qe = 4, are constants

(independent of N) for A > 1, is consistent with the system of
equations (5.28abc).

b The assumption that w and aq are of the limiting form
i n N

W =2 and q, =3, with q = w(w-1) and w(w-l)z/(ZW-l) =y as
N N-1 N N
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N - », is also consistent with (5.28abc).

Proof.
The proof is obtained by assuming the hypothesis for N and
showing that it satisfies (5.28abc). First it is convenient to

eliminate o, by substituting (5.28¢) into (5.28a)

1

s |
= =1 ; (5.33)
4 (wy_g * My p = 9334 -
also,
%f'- - % b (5.28b)
* Vit My

(a) Let w, =w and ¢; =gq. Then (5.33) and (5.28) provide two

simultaneous equations in w and q as functions of )\ and v,

% = l + l (5-3"")
aw o+ A(A-1)g

1 1 1

—_— = e em— - (5-35)

E B e '

It is easy to see that X\ > 1 1is necessary,for if X =1, there would

1 g fon: 5 : " . . o
be % =1+ o which is impossible. (A <1 1is not considered since it

implies g§ - 0).

¥ 58, o _
(b) Let w,,1 =%, andlet g, , =335 then (5.33) (for A _‘l)

gives,




i

i-1
W

q .l
1 - ;r: I O(-i)

81

as i -« all the terms O(ll‘) are negligible., By equating the sur-

viving terms there results

q:

w(w-1) .

Similarly, from (5.28b)

i+1

thus

By substituting for

YW, a
8 "
i i
1,12
Ty a w2
1+ —
9
2
1 i w 5l
:-\—{-Fa-‘q—‘z—'f-o(—i'),
2
+q_::%—- &

q from (5.36) it is evident that

(5.36)

(5.37)
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- S wz(w~l)2

or

j -
w(=1)" . (5.38)

2w-1

thus completing the proof.

5.7. The Wideﬁénd and Narrowband Rates.

The asymptotic form for o is obtained from (5.28¢c) which in the

infinite bandwidth case (X=1) is

O =Wyt Uy

. 2
oL W -w
N1 N-1
5
W
= Y (5.39)

The average power, from (5.29) is

2 X
-E_ - .];... ._.9. 4 z (a = B )
7 = € 3 1-1 7 %41
20° 2T B aam

v
o I1n(N-1) (5.40)

The eritical rate is therefore



& 2
1 % & (N-1)
Rc(N) = B 1o Y + = ;
o W
4
Infl + —2 (N-1)
_1 F oW
Yooe® - 1n(N-1)

Taking the limit as N - « gives

B (=) = (5.141)

(a2]

¢
W

. o 2
where C_ = —Eé and E&E:El_ = v¥. The nontrivial solution for w
20 2w-1
when v =0 is w =1, thus achieving C_ when the feedback becomes
noiseless,
The feedback power as given by (5.30) and (5.39) grows linearly with

the bandwidth W, or N.

D ¥ 3
b % 2
o R IR
,de vy N-1 1=l
W woin(N-1) \ BB
Y ¥-1 ' 8%
W 22
m; glce (5.]4-2)

Note that the forward power is increasing only logarithmically

with N, thus the relative gfowth of P to that of P 1s exponen-

b
tial, The same arises in the bandlimited case (x>l), except that P

increases linearly with N while P grows exponentially,

b



8L

That the bandwidth is finite for )\ > 1 can be seen from

o o gz
R(N) = 2= In 1+ 2 X
& By
=—2—T-lnl+—§ —_— ) (5_)-1-3)
g (0

where again from (5.28¢c), but with > 1
O =w+ Ag J (5.L4)

and, w and q are given by the solution to (5.34) and (5.35). Thus,

J

as N - = (5.,43) yields
R(®) =W ln L . (5.45)

This time

It

P 5 3 2
= [g.8 N-1) (a-q) ]
— = [59 + (-1)(ea)

or

w
W (5.46)

1

When the feedback noise is small, vy << l; (5.35) indicates that

q =Y, and equation (5.34) can be used to obtain
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WR‘;‘T+ Y
and
14+ £ .
A == (l+ LS = . : (5.’-#7)
1+ yll + EW)

The improvement due to the partial optimization of the receiver
operation can be appreciated by com@aring the present calculation for

Rc(w) in the wide band case, to that of Kashyap [18], who retains the

noiseless receiver with %. = 8. + % r.. Kashyap obtains
‘ i i-1 i 4
B L) e . (5.48)
1 2
1+ b5y« §1ly + by
4
CCD
-——‘7— for Y < .01
1 +4/v
~ (5.49)
Co. '
—_— for v =1
1+ 5y
\
The result obtained here is Rc(w) = C_fw(y), which gives
¢ P
for « < A
1+yY
R, (=) = ¢ (5.50)
CDD
~ for vy > 10
1+/2 vy
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VI. CONCLUSIONS

The work described in this report émploys a new and general linear
formulation of the feedback communication problem., The utility of the
formulation has been demonstrated in Chapter III, by the first derivation
of the best linear coding procédure for systems with arbitrary Gaussian
forward noise and noisefree feedback. The formulation was used in
Chapter IV to cobtain a partially optimum scheme for a system with
independent additive white Gaussian nolse in both the forward and
return channels. Chapter V describes a recursive procedure for.calcu—
lating the parameters for the nolsy feedback problem, with new results,
concerning improved estimation at the receiver, being obtained.

An important advantage of the general approach is in the derivation
of fhe optimﬁm receiver, and the expression for the variance, Uéﬂg”z_l,
This obviates the need for finding the optimum receiver configuratiog, or
its performance, Thus; an optimization over the receiv;r parameters,
such as is necessary in Chapter V and also in Refs.[17] and [18] is
eliminated.

Of interest is a comparison of the performance of the noisy schemes

in Chapters IV and V to the result of Elias, who found the optimum for

N = 2. Tobe very simple, let p =1, and p, = 2. Then, if Pers
. : s : . . . 1
is the resulting signal to p01se ratlé, Elias obtains Pefp = 2 % 4
the method in Chapter IV gives peff = . % » while the approach in

: : 1
Chapter V yields Parf = 1 3

It is not possible to say how well the optimum system will perform
when N > 2. The solution of this problem would constitute an important

future contribution. It is conjectured here that the general behavior
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will still be one that requires the feedback power to be exponentially
related to the forward power.

As a matter of general principle, there exist problems in learning
theory, or pattern recognition, that closely parallel the feedback
communication problem, and which would be amenable to the same analysis.
A case in point is the problem of learning with a teacher. (The

teaéher, naturally, provides feedback information.)
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APFENDIX I
PROOF OF THEOREM IXI

Proof of (a)

e,
i P
Let X, = —3 and let x = T then
a o
N .
E:JJKI#X.)
P =} i
R (») = = lim
c N , N
o Now E:
: X,
i
1=1

By hypothesis, given any € > O there exists an integer N such that

v &1
x-e=x, <x+e forall i=zN. Therefore, if A = %E ln(l+xi)
. i=1

-1
and B = %Z Xi"
i=1
N N
2: ]zﬂlﬁxi) = A+ E: 1n(l+xi)
i=1 i=N '
: €
< A+ (N-N€+l) ln(l+xi+e)
and

consequently,
A
" -'N-:*N—e‘:j: * l't’l(l+X+€)
& S
RC(M) No %iz - + X -
N-N +1 €
€
In{Jl4x+e)
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similarly,
R () = P In(ltx-e¢)
c No X + €

‘Since this is true for all ¢ > 0 no matter how small, it follows that

P In(l+x
Rc(oc) = -ﬁ: .Ll

X

=%

Proof of (b)
Since Xy = 0 for all 1 and 1im X, = 0 it follows that for
0
any ¢ > 0 there exists an integer NE such that Xy <€ for sd1
5 1 _2 .
i=zN_. Now, ln(lﬁxi) z x, - 5 x; " ‘therefore

N
A+ E: xi(l -5 x,)

1 i
P 5 1=Né
Rc(m) ZN—- 1lim i
o N-o=
B + E: XK
K i
1=N
€
*5 €
but _l_E_Zl.‘-Z_ thU.S,

i
P : ) €
Rc(m) = -l-\-].-— 1im i J
o N—=
B + 2: X
J i
i=N
€
z2(1-35c¢ %
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The upper bound is simplest, ln(l+xi) < x; for any x, = 0 therefore

™=
4
Hl

R (») =i 1im|3ZL
c N N 5
° Y
X,
K i
E=1
consequently, R (®) = i
4 c I\I0 :

Proof of (c)

By hypothesis, given any number M < ® there exists a number

N, such that 1+ x; = M for all 1= Ny. ILet vy, = ln(l+xi) then
Z.L:Lmyi = © and vs =2M for all i ZNM. Now,

l—-)CD

™=
o
o

0 <R (=) = P i1im Al
c No N yi
LY (e )
i=1
=1 N
L Wy E X Ys
i=1 i=
£ & Jam
N N -1 N
o N-=| "M yl o
1
Z (e _l)+ Z (yi+§yl g W )
sl i=NN
M
N
A + iZN yl
< —g—a i i} M
o N—» n
B+ (1 + —Zﬁ) Z s
1=NM

thus
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OSRC(@)S-P— ___]_'_..._.

No 1+%m

Because M 1is arbitrary and can be chosen as large as desired, Rc(w)

must be zero,
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APPENDIX IT

THE CRITICAL RATE OF A FIRST ORDER MARKOV
CHANNEI. WITH FEEDBACK

First order Markov noise is described by a first order linear

difference equation which is driven by a white Gaussian process. Thus

ng =ong g+ Wy i=1, 8 == N (I1.1)
hence
. T - i o
n, 0 © 0 n, Wy n,
n, 1 O© n, Vg 0
2 0] 1 . . .
J =a . 0 Jd o+ L F o,
»HTE .O e =& 0 1 O. LnN. Wi OJ
thus
=oJn + w' {11.2)
where (J);5 = 855 3, m=collny, ny, cemy), W= col(wl, Wy ote ),
N
w' = col(wl + 0ng, Wy, Wa, L WN), and K. = E[ww ] = 021 = 59 T,

Stationarity requires that the covariance of the noise Kn = E[nnT]
be given by (Kn)lg = kij = E{ninj] = k(ll—Jl). This condition is
satisfied if and only if kii = E[ni] = 02 for all 1 =131, 28, »= , N,

By statistical independence, therefore
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@ =afc® + O
giving
2 9 1
o = _.E;_E ; (I1.4)
l-0

which has meaning if and only if az <1, and it implies that

E[n02] = 62 = sz/(l-az).‘ Since n = (I“QJ)—l LA
w3 Ty=1
K - (Iﬂqg) Kw,(I-aJ_) | (11.5)

where KX = E[W'W'T] is diagonal, and except for the fact that

(%,,)3, = ELGryram )21 = BLw, 2] + of E[n 2] - o 2

+ azowz/(lhozz) =
owz/(l—az), its elements are the same as those of K . From (IT1.5)

it may be verified that

|i-3]
B, =87 Hee (I1.6)
ij W 1 - aB
= 0'2 (xli-j‘

The elements of the lower triangular matrix @Q, from QQT = K 5 &re

n
therefore
O'al-l for L=< 3
Q.. = (O al=d for 1 <j<i (1T.7)
683 w :
0] for i <
Also, it is obvious tha£ Q_l = (I-aJ)’% so that h,. = (Q'l) =
2 w! 11 11
2 ; : 1
1-a“fo, while h(i) = col(h,,, h ., by ) =g 20l

W'

(0, 0, =+ , ~a;,1) for all i 5 2, 3, *** , N.
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Now, in order to calculate Rc(m) for the case of v, =Yy being

constant, recall that fiz = (l+y)fi_l, therefore

]
I

i /1 + Y fi1 - | | (I1.8)

1
q
oo
==
!._.l
L
o3
+
o
1
}'g

J=1
_ 2
N A% 1+ v+ Ial -la]
=—2 1+ »
2
B F-+ o W/l - 1+ vy
VI +y
Therefore
N
2 _1 z:
Tw ¥ |
= i=1

E AT o(%) ' (1I.9)

B : P :
i e e, C>>
Since ,NaW <vy, it follows that Néw 1l gives v 1, and

—hZL-— << 1, This indicates that v R;ﬁfﬁ so that
1+ vy o

R, =W In(l+y)



g

- P
=Win [l + g+ e) { II,15)
o
where e = ('\{ NPW . -2|O£| - ﬂl____ .
o V1+y + P
1+ §w
However, it also follows from (II.9) that vy < %P_W’ therefore,
o
Yy << 1 when ﬁ?’ﬁ << 1, which shows that _lP_‘_L. i~ |O£| . Thus
o '\/l + Y
R, =W In(1+v)
2 P
= W ln[l v (1 a)? 5 - e] , (II.11)
o.
in fact,
Lin R = (1+a])” = (I1.12)
W © (o}
Next, consider the case when e, = e = L This time
2 ' i W
2 P 2
Y= M1 TR W Sl
while
& A
P i-1
Yi T WW (l‘a g )
e i
Jol |
P a
o
By
where T = - sgn &, However,

gi.1
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0

2 N
1+ cezllgl\i_l = l+dez Nl [QL - oML + l%l_g z HZ(l-l)J

1=2
= % b e {Tet®) & (l (<] i (HZN—HB)
or Now ' M nz = L

2

1+ l%‘-l-) (nB(N"l)-l)‘ I

2
e -?———J (II.1h)
T - X

o 2llell’_, =ww
5] K™ &

N P a 2.,N-1
But this should equal ]fT (l+yi);u'[l * T (l + lﬁl) ] X
i=1 o

* + ﬁ%ﬁ (1—&2)). Consequently
o

2

1+ lgl

NW
o)

(11.15)

thus from (II.13)

2
n -1 Q:Yi =N

and now (II,15) implies that

2
'Yﬁ""-P" 1 + lO&]
N&W V1+ oy

which is the same as (II.9).



[1]

[2]

[31]

[

5]

[6]

[7]

[8]

[9]

“[10]

[11]

(12]

[13]

[14]

a7
REFERENCES

C. E, Shannon and W. Weaver, "The Mathematical Theory of
Communication", The University of Illinois Press, Urbana, Il1l.,

1ghkg,

C. E. Shannon, "The Zero-Error Capacity of a Noisy Channel",
I.R.E. Trans, on Information Theory, Vol. IT-2, pp. 8—19,
September 1956,

S. 8. L, Chang, "Theory of Information Feedback Systems," I.R.E.
Trans. on Informstion Theory; Vol. IT-2, pp. 29-40, September 1956.

C. E. Shannon, "Channels with Side Information at the Transmitter",
I.B.M. Journal, Vol, 2, pp. 289-293, October 1958,

F. J. Bloom, et.,al., "Improvement of Binary Transmission by Null-
Zone Reception", Proc. I.R.E. Vol. L5, pp. 963-975, July 1957.

B. Herris, A. Hauptschein and L. 8. Schwartz, "Optimum Decision
Feedback Systems"”, I.R.E. Conv. Record, Pt. 2, pp. 3-10, 1957.

B, Harris, A. Hauptschein, K. C. Morgan, and L. S. Schwartz,

"Binary Decision Feedback Systemg for Maintaining Reliability
under Conditions of Varying Field Strength," Proc. Nat. Elect.
Conf., Vol., 13, pp. 126-140, 1957,

B. Harris and K. C. Morgan, "Binary Symmetric Decision Feedback
Systems", A.I.E.E. Communication and Electronics, No. 38, pp. U36-
L3, September 1958.

J. J. Metzner, "Binary Relay Communication with Decision Feedback
Circuits", I.R.E. Conv. Record, Pt. 4, pp. 112-119, 1959.

P. Elias, "Channel Capacity Without Coding", in Lectures on
Communication System Theory, Baghdady, Ed., McGraw-Hill, New York,

19%1; PP- 363"366 .

P. E. Green, "Feedback Communication Systems", ibid, pp. 345-348.

A, J. Viterbi, "The Effect of Se@uential Decision Feedback on
Communication over the Gaussian Channel”, Information and Control,
Vol. 8, pp. 80-92, February 1965.

M. Horstein, "Sequential Transmission Using Noiseless Feedback",
I.E.E.E. Trans, on Information Theory, Vol. IT-9, pp. 136-1Li3,
July 1963.

G. L. Turin, "Signal Design for Sequential Detection Systems with
Feedback”, I.E.E.E. Trans. on Information Theory, Vol, IT-11,
pp. 401-408, July 1965.




98

(15] J. P. M. Schalkwijk and T, Kailath, "A Coding Scheme for Additive
Noise Channels with Feedback - Part 1: No-Bandwidth Constraint",
I.E.E.E, Trans, on Information Theory, Vol. IT-12, pp. 172-182,
April 1966. : '

[16] J. P. M. Schalkwijk, "A Coding Scheme for Additive Noise Channels
with Feedback - Part. II: Band-Limited Signals", I,E.E.E, Trans.
on Information Theory, Vol. IT-12, pp. 183-189, April 1966.

[17] J. K. Omura, "Signal Optimization for Channels with Feedback",
Rept, SEL-66-068, Stanford Electronics Labs., Stanford, Calif.,
August 1966,

{18] R. L. Kashyap, "Sequential Coding Schemes for an Additive Noise
: Channel with a Noisy Feedback Link", Rept. Harvard University,
Canbridge, Mass., June 1966,

[19] M. Horstein, "On the Design of Signals for Sequential and Non-
sequential Detection Systems", I.E.E,E, Trans, on Information
Theory, Vol. IT-12, pp. 4U48-455, October 1366,

[20] R. E. Kalman and R. S. Bucy, "New Results in Linear Filtering and
Prediction Theory"”, J. Basic Eng., Trans. ASME, pp. 95-108,
March 1961, '

[21] J. M. Wozencraft and I. M. Jacobs, "Pfinciplesrof Communication
Engineering", J, Wiley, New York, 1965,

[22] R. B. Ash, "Information Theory", J. Wiley, New York, 1965, Ch. 8.

[23] R. M. Fano, "Transmission of Information"”, M.I.T. Press, Cambridge,
Mass., 1961.




