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ABSTRACT

The hyd_rodynamic forces acting on a solid particle in a viscous,
incompressible fluid medium at low Reynolds number flow is investi=-
gated matﬁematically as a prerequisite to the understanding of ‘trans-
port processes in two-phase flow involving solid particles and fluid.
Viscous interactiom. between a small number of spherical particles
and cqntinuous solid boundaries as well as fluid interface are analyzed
under a ""point-force' approximation. Non-spherical and elastic
spherical particles in simple shear flow are then considered. Non-
steady nl'mtion of a spherical particle is briefly touched upon to illus~
trate the transient effect of particle motion.

A macroscopic continuum description of particle-fluid flow is
formulated in terms of spatial averages yielding a set of particle con-
tinuum and bulk fluid equations. Phenomenological formulas describ-
ing .the tranéport processes in a fluid medium are extended to cases
where the volume concentraition of solid partiéles is sufficiently high
to exert an important influence. Hydrodynamic forces acting on a
spherical solid particle in such a system, e.g. drag, torque, rota-
tional coupling force, and'vilscous collision force between streams of
different sized particles moving relative to each other are obtained.
Phenomenological constants, such as the shear viscosity coefficient,
the thermal conductivity coefficient, and the diffusion coefficient of
the bulk fluid, are found as a function of the material properties of.the
constituents of the two-phase system and the volume concent‘rat‘ion of
solid. For transient heat conduction phenomena, it is found that the

introduction of a complex conductivity for the bulk fluid permits a
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simple mathematical &escription of this otherwise corl;xplicated pro-
cess. The rate of heat transfer between particle continuum and bulk
fluid is also investigated by means of an Oseen-type approximation to

the energy equation.
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1. INTRODUCTION

The subject of fluid-particle flow has focussed the attention of
both engineers and scientists for many decades. Such two-phase flow
phenomena occur almost in every aspect of daiiy life fromthe flow of
blood to the motion of dusty air, and are important in many industrial
applications from sedimentation processes to fluidized béds. In the
fieldé of propulsion and combustion, new interest has recently béen.
directeci to the transport phenomena of fluid-solid particle flow,
which is the main theme of this thesis.

To understand such a complicated phenomenon involving a
cloud of ‘solid particles in a viscou‘s fluid medium, it is essential that
the phenomenon involving a single particle be first fairly well under-

'stood. Part II. of this thesis is devoted entirely to this aspect. How-
ever, dué to grave mathematical difficulty inherent in the structure of
the Navier-Stokes equations, general treatment of this problem isr s0
far not possible. As a result, the present treatment will be entire_lf
restricted to low Reynolds number flox;v where simplification in the
flow field equation is permissible.

| The fundamental solution to Stokes equation is first examined.
This forms the basis of the approximation thaf: it is sufficiently ac-
curate to replace particles in a fluid flow field by point forces.‘ The
viscous drag on a class of axially symmetric particles in a uniform
flow is then investigated by means of the matching technique. Vis~
cous interaction between a small number of spherical solid pa.rtidles
in a fluid medium is next being considered using> a ""point force' ap-

proximation. This serves to pave the way for the introduction of the
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"scréened" Stokes equation in Part III of this thesis. Viscous iﬂter-
action between a spherical particle and continuous solid boundaries,
as well as fluid interface, is analyzed. This permits an estimate of
the importance of the influence of continuous boundaries on the hydro-
dynamic.forces acting on a solid particle moving relative to them.
The shape of the particle too has a significant effect on the drag and
1ift it would experience when moving through a fluid medium. This is
treated in a fairly general manner for particles the shapes of which
do not deviate markedly from a sphére. Hydrodynamic forces arising
from the elastic deformationof a spherical particle in a shear flow is
then taken into account. It is shown that a particle will drift side-
ways so as to decrease the ;sli}f) velocity between the fluid medium and
the particle. Non-steady motion of a spherical particle in a viscous
fluid medium is briefly touched upon. The fundamental solution to

the linearized time~dependent Navier-Stokes equation is obtained.

The motion of a particle starting from rest under éxterna.lly applied
force isr then dealt with.‘ This makes it possible to estimate the rela-
 tive importance of trar'lsienf effect on particle motion.

Part IIT of this thesis deals with the macroscopic continuum
'description of solid particle-fluid flow. Theré, particles are as-
sumed to be small compared with any scale of phenomenon of macro-
scopic interest. Also, the particles will be assumed to be numerous
~ so that the céncept of continuum applies. For very dilute volume
concentration of solid particles, the general practice is to modify the
fluid field equations slightly by merely adding é body“ force term,

taken as the particle fluid interaction forcel-é. For moderate particle
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volume concentration, this procedure tends to obliterate many sig-
nificant éhanges in the transport properties of the system. This part
of the thesis is primarily devoted to a critical examination of the im=~
‘portance of this effect. On starting from the Navier-Stokes equation,
and by assuming certain properties possessed by spatial averages of
physical quantities of the two-fhase system, a set of bulk fluid equa-
tions are obtained. This is supplemented by a set of phenomenologi—v
cal formulas characterizing the tra.nsp.ort properties of the bulk fluid,
thus reducing the problem to the determination of the phenomenologi-
cal constants involved.

The hydrodynamic forces acting between particle cloud and
bulk fluid are analyzed based on a "'smoothed field" and ''detailed
field" consideration. A ''screened' Stokes equation is introduced to
descriBé the disturbances produced in such a particle suspension.
The existence of a rotational coﬁpling force is demonstrated and its
formula obtained. It is to be noted that this force has no analogue in
single particle consideration and should be regarded as an effect
arisiﬁg from particles as a cloud.

| The exchange of momentum between streams of particles of
different sizés moving relative to each other, resulting from viscous
disturbances generated in the fluid medium, called viscous collision,
is investigated quantitatively. At low relative‘v‘elocity, this mechan-
ism of momentum exchange is shown to be far more important than
that arising from direct contact collision between streams of particles.
Shear viscosity coefficient of the bulk fluid as a function of

volume concentration of solid particles is obtained. At moderate
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volume concentration, this differs significantly from that of the pure
fluid. At low volume concentratioh, the wel]h known Einstein's formu-~
la is recoverred?.

- Thermal transmission prope/rty of the bulk fluid is then ex-
amined. The steady-state thermal conductivity of the bulk fluid is
expressed as a function of the thermal conductivities of the pure fluid -
and solid and the volume concentration of solid. The same idea is
extended to the case of transient heat conduction. It is found that the
introduction of a complex thermal conductivity coefficient permits a
simple description of this otherwise complicated process. Similar to
the thermal conductivity coefficient, diffusion céefficient in a particle
suspension is obtaiﬁed by a simple analogy. When the mean particle
temperature and mean bulk fluid terﬁperature are unequal, heat trans-
fer between the two phases takes place. By m;eans of an Oseen type
approximation to the energy equation, the rate of heat transfer is
found to depend on the temperature difference, the thermal conduc-
tivities of the two phases, and the volume concentration of solid
particles. Explicit expression of Nusselt's number is then g‘iven for

cases where Peclet's number is small.



PART II.

The Hydrodynamic Forces Acting on a Solid Particle
in an Incompressible Fluid Medium

at Low Reynolds Number Flow



-

1. Fundamental Solution of Stokes Equation

For slow motion of a viscous incompressible fluid flowing
past a finite solid object, it is sufﬁcientlyraccurate to take Stokes
equation as the governing field equation for the fluid. The object
resists the movement of the fluid and exerts on the fluid field a drag
force, T . If the object is small, it is possible to regard it as a
point force.l The velocity and pressure field produced by a point
force in a Stokes flow is referred to as the fundamental sbiution of
Stokes equation. Mathematically, this is given by the solution u s

fluid velocity, and }5 » fluid pressure of the following boundary

value problem.

Vf,v = p F'U » B H¥y (1. 1)
B vV G (1l 2)
g, ;3-—1-0 as - —= oo (1.3}

where g(’i’) is the Dirac delta function and the pdint force has
been taken to be applied in the X -direction. f' is the viscosity of
the fluid.

To solve for U and ﬁ » take divergence of equation (1. 1)

and use equation (1. 2):
e o= b3 (% |
: /2 DX ) (1. 4)

It is well known that the solution of

wid = WX) , fews  wee e

is c#).:- {




Therefore,
o D sk o 1.5
7‘; LT ( ) 5T v’ ( )
--- being even in % ‘

¥

Substitute equation (1. 5) into equation (1. 1)

v = b v("( )*_e_ifﬁc‘) - E (1. 6)

IA

—

where E has the property " E = o . from equation (1. 4). The

solution of (1.6) is

—_— —’ 3 1
ol & - —Exc*() ' A X (1.7)
L | X=X

To see that U as given by (1.7) ‘satisfies equation (l.2),take

div. of (1.7)

y. B dx’

o T - jM =-—’—-§<va'd
IX-%|

@7 | -1 4T
= f(v sy o« BOR 1l
Jr'r IX-% 1

Integrate by parts

v- o = —__L.g.,__‘:,_. =1 & LN
AE 11X
since o B by equation (1. 4).,
Now to obtain explicit form of equation (1.7)it is necessary
first to evaluate E
E-3p .o
P

It is to be noted that P as given by equation(l.5)is a discontinuous

2 §¢X)
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function, being singular at v = o . To take the gradient of ]E

one should add the proper magnitude of the "jump value. "

To find the proper "jump value'", A, , inthe x -direc-
tion, one may integrate the pressure force acting on a sphere of
radius ‘v in the x direction. Let &, and ¢$. denote the two

hemispheres formed with the y= & plane. Then
Al =§ ﬁ]used:]-IJ,Imgds(
% s, S,

- .l v m.a 5{5 =
4T s r*

2
=

Similarly,

The above consideration gives the following formulas

(&) ~ o B L e Ty : (1.8)
s b g 3 .
() = - EXL (1.9)

*7



Hence

Vhed [ 22l 2 6

AT
. [;.%-.(_ELJ_J} . 2 [%({L})J (1.10)

On using equations (1. 8), (1.9), and (1. 10), it is easy to verify that

equation (1. 4) is indeed satisfied.

From equation (1. 10)

E - __2_ { % Ilﬁcmm’ - 87" gc"‘f,l} 4 3 P:(‘-ﬂ(’j c.u-o+
‘ 3

=
-%wrf) v? weid

Y-
yS

} (1.11)"

where the » =~axis has been taken as the polar axis. P denotes

the associated Legendre function.
Substituting equation (1. 11) into equation (1. 7) and using the
: . ‘
following representation for T R and the orthogonal proper-

ties of P, (teso) 5 S--'\ch 5 C-S»«-tf’ (see Appendix IIA)

I aliey E} £, Elemd] [P:c:—-uu P:cusa';("f"“";{"‘cnéjis ;

L [R-%T . & = (R4 m)!
. . L £
v Simm oind )H Y [ (1.12)
S
where €. = 1 ~ > o
L ya- Laad = o
Ve Y5 is the smaller (larger) of IX| and X\
oA’ and then d~»' ; equation (l.7) becomes

Integrate over
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U =

v

B {[_'_L__.. P,tn»o)J; . [‘Prlu—'ﬁl mfjg = [ P;rw.m .su'n.4)J ;:}
-4»1‘{0 3r 3 v ‘

Therefore, the fundamental solution is

S REL 2 L B (x} 5 D x Z | %
v+7'l 51‘/»‘ vyt ‘1 ! -
e 18

: ; (1.13)
a y?

The above solution can also be obtained in a less direct way,

a technique which will agéin be used in later sections. Stokes origi-

nal solution of uniform flow past a sphere, after subtracting out the

velocity at infinity, can be written ass

pe 2
4T v!
b=_0 [- 2 _&__--),.._i_-(&-&_a._)i x
g#r v3 N 3 v*
. (1.14)
=S ce gy e B e .= ] 2
2 [ 2 cega]d - [ abo- =
where D = - € A'“'/“ Ueo P o = radius of sphere.

Now keep D = fixed and let & — o

; equation (1. 13) is re-
" covered.

2. Drag Formula for a Class of Axially Symmetric Particles in a

Uniform Flow '

Consider a uniform stream of fluid flowing past an axially
symmetric particle, the axis of symmetry being in the direction of

the unperturbed flow. Let the fluid be incompressible with density. P
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and viscosity )u « I U and ' are the velocity and pressure of
the fluid, then U' and )‘: satisfy the time independent Navier-
Stokes equation and continuity equation together with the no slip con-
dition on the surface of the particle and appropriate conditions at

infinity. These equations and conditions are

pU VU = -vp + pvru’ (2. 1)
VU= (2. 2)
U= Uy, % Y o= o {2« 3)
/5' - o v om0 (2. 4)
w = e on surface of particle. (2.5)
Take a coordinate system x' ‘j .z  centered at the particle
with the »' - axis coinciding with the axis of symmetry of the particle.

Upon introducing the following dimensionless variables, equations

(2. 1) through (2. 5) can be put into a non-dimensional form

where a is a characteristic length of the particle and 2 is the
" Reynolds number, so that
RO -vVU =-vh+v'U : (2. 6)
VU = e (2.7)

.l:-l.-;- f:"-o T = oo (2-8)

’
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U = o on surface of particle. (2.9)

To solve equations (2.6), (2.7) satisfying conditions (2. 8) and
(2. 9), the matching technique as explained in references 9, 10, 11,
12, and 13 will be used.

Stokes Expansion. First, seek a solution to equation (2.6) and

(2.7) in the form of Stokes expansion.

o= U, F BY, = «CR) (2.10)

f;- - }5 i 42_/,, . elmy : (2. 11)

Substitute (2. 10} and (2. 11) into equations (2. 6) and (2. 7) and eqﬁaté

coefficients according to powers of R. to obtain

vh o= T, (2.12)
v.U, = o : (2. 13)
U, = o on surface of particle
Vp o+ TevU - vy, (2. 14)
e B | (2. 15)
U, = o on surface of particle.
Also, require v, , U, , etc., to match the asymptotic solution of

equations (2.6) and (2. 7).

Asymptotic or Oseen Expansion. Suppose the drag force act-

ing on the particle is B ; then an asymptotic solution of equa-
tions (2.6) and (2. 7) would be given by the solution of

RO -9TU = - p o+ YU -0k {K) (2. 16)

VO o w ' ' (2.17)
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— A
U= x ., pbao (2. 18)

where o % b’

ﬂ/"U,,

Solution of (2. 16) - (2. 18) will approach the exact solution for

large v or when RY is of order unity where R << This

suggests the use of stretched variables defined by
§=r2,x 12&7 ‘3‘-R.2. (2=az.v~
W(&'I‘T’R") 2 UCI_J,Z,Q.J

o C§. F. 0 - R:'j:cx,;,z.z_J

’

(2.19)

In terms of the stretched variables, equations (2. 16) and
(2. 17) become

— -

W VW = -v/: r v - R.oifc(?)

(2. 20)
VW = (2. 21)
— _ A
HER g Pas [ - - (2 22
Now, seek an asymptotic solution inthe form of
W o= W, + RW «eo(o)
E = P, v = P. r aCE,)
(2. 23)
D E D. + R D,

v o ()

Substituting (2. 23) into equations (2. 20) and (2. 21) and on equating

coefficients of powers of R, one obtains

W, VW, = -VP, «v'W,

VW, = o (2. 24)
p

Tl

W, = X
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W, VW, .« W.9W, =~ -VP « VW - Db xS

— (2. 25)
W, = °© Poa o f = o0
To obtain the asymptotic solution, it is to be noted that the

only unknown in équations (2.‘24) and (2.25)is D, , which, of
course, can be found using the inner solution or the Stokes expansion.
The relation between the Stokes expansion and the asymptotic expan-
sion is that they must match to all terms of unity with respect to =&~
or e in ‘-ch.eir respective expansions in &

Zeroth Order Asymptotic Solution. The solution of equation

(2. 24) satisfying the appropriate boundary conditions is

W, = = P.o= o (2. 26)
Thus, from equation (2. 25), the first order asymptotic solu-

tion must satisfy

MW, w v P + VW -D % S’c(?, (2. 27)
o §
—
e (2. 28)
W= oo P = o e 7 (2. 29)

First Order Asymptotic Solution (Fundamental Solution of

Oseen Equation. To solve W, and P, , take divergence of

equation (2. 27) and use equation (2. 28) to obtain

. - 3 =1 , .
v e, D, = Sr(u (2.30)
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Therefore, as in Section 1,

P& -« B g_ (2.31)

4w (3
and
v P. + Do £ S(_(-‘.) = Do [ .2. R(MG) + Q'ﬂ' J(“’) 2
. @ f& 3 f
+ [ ‘.Pllma) t—bCP {i % P:(urao) S.'né 2 (2 32)
¢’ ¢ |
where the X ~axis has been chosen as the polar axis.
Equation (2. 27) can be written as
W, - AW, . 9P o+ B X 5((:‘) ' (2.33)
; e_g
oy By o &
Tet W =2 Vv and substitute into equation (2.33). Then V
satisfies
PN e LY é“(vf « DX &) (2.34)-
':z.__' f (3 f -

Using the Green's function as given by equation (A-4) of Appendix

A , the solution of equation (2. 34) is

—» =l i -i'/i. ,I i : ;
Vo= -.—‘-—f_i__( 2 [veer e DR Ec(?')jac’r

Therefore,
= 0P g
W o= - | g [v'f(‘b D £5Y*Uloﬁ'
AT lF"?J[ = 4 (’ ¥ s ( g (2'35)

In order to show that equation (2. 35) is the required solution, |

it is necessary to demonstrate that
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VW, = o and W, — o as (—*N

Take divergence of equation (2.35):

— .l..l( Cl ce-¢' -
T W, --_J(v _:‘_H‘)-[v'P,Jf D.:Eftf';]a(’g'
' -:-'l_‘?’ ‘bci'%'i ' A -t 3 .0
b v(_ﬁu__a ).[v[’,@ D,xgc(«J]otf
47 1 F-3
T
Intégrate by Parts

l__;'-—Jll .
h(’( _-'-‘S‘g‘J : ’ s - 3
=-1L_F_g __ﬁ:;'?__g v.[v[—jqo.acfcfj‘['dg

But Y- [v'p 0% Sc(’ »]=o by equation (2.30). Hence, the con-

tinuity equation'is satisfied. Also, since
-1 = cg-§"
from equation (2. 35),

—_—

W | & }S’ [ vecE )+rf?l.n§< 7ol ax

The right hand side was shown to be the fundamental solution of

Stokes e.qua.tion (Section 1) which vanishes as f — oo
B ;(/—: —> 0 as F —s oo
Hence equation (2. 35) is' indeed the required solution.

To facilitate the application of the matching requirement, it is

useful to expand equation (2.35) as a power series in P
X p—
( Y
1

The function - 2
) A"?f ) — -y
Tt i

has the representation (see equation (A-1), Appendix A )
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"T‘ 3 eo & A '
== 2k EE { (£ )| Encatris (g-my!

FE g =5 J_" I -7 § aond |
= - ‘ ' . . '
¥ Jb_.' Cem o) P‘ [wO'J [ ‘-!"Dlﬁ-é CoSmtfl + I-N\h% Son '-%’ I (2' 36)
Denote W. = u,’fc + v, \3 + W, z . Substitute equations (2.32)

and (2. 36) into equation (2.35) and integrate out the § -function and

c#" . Then
- (P%) 5/ - _
U =-DPs =2 *_ D2 S[‘ZP‘CMG“J z K Kog B Tox (&) o
v¢ e E I AT
-.F-.mb
* [(_*'_] F‘Lwnj-ﬂ. Pz(“")at“’c‘)j A emit!
To integrate o' » consider the integral
L —ot X
K, = j P Pix>a dx
-1
. A ’ .
.Y [sepenctens G L B Y £)!+’)cha)+ 302 P i ot
o 'a(;ﬂ«)(u?‘-l) a(28e1) | (28¢3) (eL£-0) 3 L(4251)
Using the orthogonal property of the Legendre functions and the
. representation
RPPEvS L -
ST S e caneny Ly e Rao
3 , *
one obtains _ , Z
fachuun) ¥ ~ ‘
K, e fm gt | 3 5 ces, b [dm . -*‘”JI )0 32020 1 )
"'( \1(11-01)(111-3) revr) pCz+3) GR-1) 3 24 (4‘,(,-|} ¥

(I‘zu n o< o )

"
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Therefore,
...L(‘, f" E/‘
b, = -Deo” ¥ -
éne E_Z fui0 Fecemes (2.37)
where.

£ = —C- (e +2 !
Loy s leik ulw)[ /_"’E.[ KexOF) I, (L JJM_I
fl’ C ‘ #= lj: K v (’, ‘E‘/( CaR+1(aL+3) A (‘é‘)

v 3 ((J’-H) .k _uﬁm)_;q({_’y_é_i?_!ﬁ_-"j__lhﬂ(-r{)_[i?'-}

(Ad+1) AW (28~1) (4._2‘_

(2. 38)

Similarly, using integration by parts on the following‘ integral,

Y- 3
f ) P(x) Bioxy dx

. -otl %
o (,_«x-s:c‘..dx’)ﬁnm_e o x

it is straightforward to obtain

$4 e

V. s = Dy, 2 E jgf(o_; PjtmeJ CnCP

AT =

W = 2 j‘f’ P (no) ,.~ch (2.39)

2 ay

where



=« TG

Lad

A '
31[(’)2(—') GCrRer) J [Kh;{(%) I—?'-»‘G(‘é() )l [ £ (fe J(sa){Re3) i (6{,)
3 L]
stlberv & 7 “Is O sGorentaarsanersy #%

4 A+ L+2) ] '(’G;) " {_ \ﬂ'c,cu.) +f'c!+.)c£+a_;‘ +‘ o (hei )’
GRetWadvr1) <% a1+ ) ;.\capm:,(ai’nxaltr) A—ifa—?h;(l-?f.#)

Mo A Sl Tl Sl NI
(3 2 =

2Cabe 3 (e d=1) QAP 3) (3Re)ad-)

p [t 4 Paerey | ol A I B 1 (2
b 1 3 v 13 A -F;-)
a0} A2 PSRRI A (2w ) (aR-0) 2 (aRera(sR-1)(20-3) '

3.8(0-01 ; ‘0 (R-ts( 42}
PR 1 gl e Gt ]
Cele i (2d-1) sCafe2{ag-c)(28-3)

&

(4?:} Eg? | (2. 40)

From equations (2. 38) and (2. 40), to terms of order (O

) b
f; ¢ ~— + elp)

Fe’

H

- _}J;_ “ O((’—‘
e w4 o(p)
e 5 * =
( S ¢
fs(J P + O (7)

f.. (r)

j-‘(” = 3 4 otp

It

]

o " > 3
¢’ : (2. 41)

j,(c;

]

'

s

o
B

!

“

A el ]
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From equations (2. 26), (2.37), (2.39), and (2. 41), by the
matching hypothesis, the terms that have to be matched by the Stokes
expansion are:

4 > .
to order unity . U = x

to order K

LB . Bt +_§_‘3;)} (2. 42)
3 (’ .

Zeroth Order Stokes Expansion. From equations (2.12), (2.13),

and (2.42), the solution of the zeroth order Stokes expansion must

satisfy
L—
V/‘g- - W Us (2.12)
7 a’h - o = (2. 13)
W, = o on surface of body
w. = £ E i = o0

However, in the matching hypothesis, only the leading terms
in -+ are of importance. The leading terms of the solution of
equations (2. 12) and (2. 13) can be obtained by considering the body as
a point force of magnitude - &» % . This is the fundamental solu=- -

tion of the Stokes equation which has been obtained in Section 1. Hence

— ~ &
Ll A= 2 fe Bsr 1 o %" . I D, :L_;{ - D, 2
7 'R ( ¥ v ) [, ew 3 gw !

f’- Gl S (2. 43)
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On comparing terms of equations (2. 42) and (2. 43), it is clear that

the terms that have to be matched by U, are

’ JE Dy 5 & :: { Dy (
16T . : 3aT

+—S‘—H] (2. 44)

First Order Stokes Expansion. From equations (2. 14) and

(2. 15), the first order Stokes expansion satisfies

vheTW . vU = K (2. 45)
V- U = o (2. 46)
Using equation (2. 43), the leading terms of 3., V'CT., are
U.VU ~ % _D.,{::C _3x’}+l>b‘ [_4«’
: P ¥ ¥ L ¥¢
~ LY b 9 ~
. g 2_[_1__:111@4_[_;: ﬂ‘_;l
an v? o (4w ¥ Y
LY 1% -~
- D[ 2 _3ixZ D, 2 _axzll
T { 81.‘{7’ "‘J+“T'( L T
(2. 47)

A particular solution of equations (2. 45) and (2. 46) correspond-

ing to terms of (2.47) is
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&% <y (4wt 3y ki

~ » a

.z -q_e-_.{.z,,x‘q,_o._{-z‘, 1z (2. 48)
8T 4 ¥ 4 y3 s+t 2yt S

On comparing equations (2. 44) and (2. 48), it is clear that all

the terms are matched except for the constant —,?—“_- £ . As far
as the Stokes expansion is concerned, this term corresponds to a
uniform flow at infinity. The drag given rise by the requirement that

this term be matched is therefore equal to

D' - DO (2“ 4:9)

16T

Now consider only the class of axially symmetric bodies
~ which are also symmetric with respect to the Yy -2 plane. It is

intended to show that had it not been for the requirement imposed by

the matching hypothesis that the term 'TD:'F X be matched, this
class of bodies would have ©, = o . The proof will be based on a

symmetry argument. As vector quantities will be dealt w-‘ith, "sym-~
metry' and "antisymmetry' of a vector quantity with resiaect to the
y- z plane will first be defined.

A vector quantity will be called '"symmetric' or "antisym-
-metric” with respect to the f =&, plane if its magnitudes at the
mirror image points with respect to the Y-z plane are the
same while the directions are as indicated in the diagram.

It is clear from the definition above that the unit vector X is
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antisymmetric, while (3 ” 3 ,,.;.{s ¢ = s.;;{, is symmetric.
Y-Z pLANE . Y-Z PLANE
o e R e 1

ANTI SYMMETRIC

SYMMETRIC

Because of the linearity of Stokes equation, for the problem
under considervation, it is ébvious that if the direction of flow at in-
finity is reversed, the ‘velocity at any point will reverse in direction
but the magnitude will remain unchanged. Since the body is sym-

metric about the Y-z plane, it follows that

u, % is antisymmetric,
uf {- is antisymmetric.
e, U, are the ve‘locity components in the X ' and E
directions.
As X is antisymmetric, (3 is symmetric; therefore,

1 % must be an even function of x and u( is an odd func-
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tion of X

Now consider the function U: . VU: '~ in equation (2. 14).
“"Vf'(r-g‘*“ crRl
(Mf _L; w Uy 2Ux )x in cylindrical coordinates.
P4 '
From the conclusion that Uy is an even function of x and u(,
is an odd function of x , it is clear that Wz V‘—‘: is sym-
metric with respect to the y-Z plane. Now consider equation
(2. 14):
- — — —_—
v -vh - WV, (2. 14)
The term .- VU: can be regarded as a body force acting

on the fluid. However, a symmetric body force cannot prodﬁce any
~drag on a symmetrical body. Hence, the proof is completed. From
equation (2. 49) the drag on the class of bodies under consideration to

~order R is given by

~

Dx = Dy (++ Dar) x . (2. 50)
6w
where f.( U, a D, = Stokes drag on body.

From equation (2. 48) and the fundamental Stokes solution

which yields a drag force given by equation (2. 49), the leading terms

e

of U, are
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O, 1B D (Luxty. Bog ok ,xhy, 00 ’)‘
16 su8wt ¥ ¥ 8w ‘4 4-73 c«w V"
1. Dy ;% Y L 5; De
+, J [ uer."(" it ( 4+ )4447*‘ )S
£ [- D, b._(__z X2\, Dy (- E_ .2
5 YT A ( &w ( 47 * 4v‘)*54r (;v‘+ “') (2.51)

To compute the higher order solutions of the Stokes expansion,.
. ; — — - — . ,
it is necessary to calculate U, YU, *+ U, -V U, which has as its

leading terms

~ _Do_( T x"_gxf* 4 D:( / _}.JL+5xL+6X}_l3K)
Bn * ¥ - WK g pgae™ ¥ ¥ ¥ vs
. [ D-(Sx‘_{ _3)(‘1)_‘ D,l (_;j o ‘?x-f +6x‘f_ 13x° ‘j‘)jﬁ
g 4v3 4\4! l-'ls'ﬂ“ Y" Y*' ¥s
+[ D.(sx2~3,§1z ( ‘_q,<z+<;xz_,3xz)]}_
4 v PAN-E W 4 8

On computing the particular solution corresponding to these

terms, it is found, as was first pointed out by Proudman and Pear-

1 B
son Z, a term of the form
Uar . - __.25_‘-— »en v
16"

would appear. 7To match this term, by the matching hypothesis, a
term N - would appear. Since the outer solu-
Jow T

tion does not seem to possess such a term, it was suggested by

Proudman and Person that a Stokes zeroth-order solution multiplied
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by - _‘E%‘ 2t d e should be added to the Stokes expansion so
I ™
that the two constant terms involving RrR'J4. R can be cancelled

out in the process of matching. In so'doing, the drag on the iaa,rticle

would be increased by

D. RS M.

(6ot

On combining with equation (2. 50), the drag formula becomes

D = D.iu+ D, ,1¢_Q,;z,‘y.e,+---} ; (2. 52)
16T 6o w”

Equation (2. 52) is in agreement with the result of Brenner and Gzt

3. Viscous Interaction Between a Small Number of Spherical

Particles

The main aim of this section is to investigate the modification
"on the drag experienced by a spherical parti.cle in a2 uniform flow
field due to,the presence of a small number of spherical particles in
its vicinity. Here, the fluid velocity is assumed to be small so that
Stokes equatibn applies. However, even with this simplification, the
full mathematical problem is still too involved to admit a closea so-
lution. In the following, this problem will be dealt with by means of
a '""point force'' approximation.

(&) Two Sphéres in a Uniform Flow. Consider the case of

two spheres A and B of radius -« and b , respectively,
in a uniform flow, the line joining the centers of A and & being
parallel to the unperturbed fluid velocity. Imagine two observers, A

and ® , stationed on sphere A and B , respectively. Con-
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sider observer A « M o , the distance between the centersl of
spheres A and &  is much greater than . b , thento A
sphere, B is approximately a point. Thus, if D, is the
drag of sphere B , observer A can repllé.ce sphere B by
- % Da J‘(X-v()g(-,)fti) . Therefore, observer A will seek a

solution to the following problem

Vo= M VO - Dy & fox-oy foyr diad (3. 1)
V—L:r = o ‘ (3. 2)

with the boundary conditions

T = Uax o= oe (3.3
j? = o v = oo
T = v o= a - (3. 4)

Similarly, observer R  will seek a solution to the following prob-

lem:
vp - P YW - 0y £ Sexeds Sigs Jeay (3. 5)
el (3. 6)
with the boundary conditions
D_” - U— 2 . j) [ [ kol =‘ od (3' 7)
U = o v~ -« b (3. 8)

The present method is to solve problems A and B sepa-
rately to yield two linear algebraic equations for Ps and Da ,
the solution of which gives the drag experienced by each sphere.

Solution of Problem A

In polar coordinates, the governing equations and boundary
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"Use _ \ L
: “ /
\._____—_M/
conditions are
43 (yu L 3 _(sie U o
v av(v ']‘V.s-ko 20 (oo U ° B9

iﬁ = Dy Scv-ody Stevso-1d 'J"'[Vtuv -2, 2 _)__(,,,-,,u’,} (3.10)

a4 Anrd”

) 3 X U 2 YU :

e = e w ® S U

L -—ﬁw F [ o - e . 2 2d l (3.11)
u,' - MN ces O J UHeg = = Ue 5.2 O . j7 s 0 Y = od (3. 12)
U, = Ug = o v oz oo (3. 13}

Now divide the space into two regions according to Y > d
and T <d |, For v «d , the solution of equations (3. 9), (3.10),

(3.11) satisfying the boundary condition (3. 12) is (using Lamb's solu~
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tion, see Appendix B)

)‘D"E(C‘ T"'-b_&_) P‘Cu-‘e)

2

d=0 A
= o ¥ R
LJ,-_'_} [( £ Ca ¥ +J_&£f_) pﬂftolGi
! & >(aked) 2¢30#+)  ¥*

+ () E, Y"‘."_ g,g«)Fg ) &(ud@]}

Y fo".l

: 2 ..H'J [
uea_;lré [( (J+3) Ca ___(-’“_“___.E%.) Prtems
Are

2 (0+1){2R+3) AR (x2-1) Y

% (E_‘ Y'e"... F.r ) Ff:l(u.\e)‘l )

A2

For ¥ > d , the solution can be written as

- :
jy- ) _&ﬂ_ P,(c.\-ao)
‘f""
Aw
é: Ll
U, = U, P'(uJo,+§ (L+ 1) A Plitun 68 3
£
o P oatadeny Y
- .
- -i—j.‘-—')__B_-'_ ﬁ,_(a-.a@)
VJ‘J. .
Lue
¢ -G
LJ‘. U, R(L-JG)..__L. (£-2) A {D;cu.‘a)
g 22Cad-0y o

fra

oo
- ‘ ......._J__B P;Esidﬂ)
£ y

Lo

To satisfy boundary condition (3. 13),

(3. 14)

{3.15)
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: . 2 ‘
_-n_( A€o, _caes Do, [4E at ____WUF:) .o (3.16)
JA 2lade3) Afak-)  af P S

_’_[ (2e3)C o™ | (2-2) D, }* [Ea”,, F»—j-o (3.17)
I 20 8¢ (287 3) Ak (asry ot * fed

The remaining step to the solution of this problem is to match
the two parts of solution given by equations (3. 14) and (3. 15) ade-~
quately on the surface of the sphere ¥~ = o .

Matching Consideration

It is clear that the functions Uy, Us, /: must be continﬁ—
ous everywhere on ¥ = d except possibly at the singularity 2 .
However, before resorting to this ""physically obvious (?)" continuity
criterion, it is advantageous and indeed proved to be important to
investigate the situation more thoroughly. Use will be made of the
fundamental solution of Stokes equation obtained in Section 1. In

cylindrical coordinates it can be written as

Ux

D [ x" o, ]
81:'}) ¥ \g

)
n

2 |25

j> -« _DxX_ | - | (3. 18)

o v?

Consider the 4y-2& plane to be the surface on which matching
of solution is to be made. From equation (3.18) Ux 1is even in X;

hence, on approaching the origin from any direction, Ux always
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/

=
tends to + ©0 . Therefore, on the matching surface, Ux is

continuous.
Now consider the pressure. It is an odd function in x .

Hence LE, ¥ies }5"*" while L{ Xom o jb e N Therefore,

although p is continuous everywhere on the matching surface, it

has singular limits of opposite sign at-the origin. However, the

function
Yk . _D [~k e
o T v? v
is even in X » 50 that the singular behavior of this function does

not depend on the path. Thus, it is clear that the continuity of i,["v.
&
should be specified as the matching condition and not f: in problem

AI

Similarly, the continuity of ‘3‘:‘_‘9 will be taken instead of
the continuity of Uyp . |

‘The above consideration provides three matching conditions.
The fourth matching condition must, however, be derived from the
behavior of the singularity.

From equation (3. 10),



G2

%{7_ & Dg g(‘r-ohdr(c-s-n.) - ./“ [v‘u,--\uv - < 2 (sneUy)
Y Aaw ALY i Y'eA0 00
Integrate this equation over y from v =« d-¢ to odec
and let & — o . Since U, and juo oy are continuous,
the last two terms vanish as & —=-° . Hence
R
e):.'(:a g"'_‘y\-r)(:_ die @ D choss ) o /_; f 3{(\'.%) dv
From the continuity quation, _%,,b_“_; must behave as U,

and therefore is discontinuous at o . Hence
dté dv &

obu[j:) + Dy '&_‘fﬁ—-’) =/u o‘-h[i_“;l € = o
bk

d-& rv

Summing up, the matching conditions are

d+ €

— g U, i 3.19
¢ AT (3. 19)
o+ &
} = o
[T’é e (3. 20)
Du e G )
2 Ye - h
‘d . ] o (3. 21)
d-G .
d+c Bl
. B Liewgen) o [ 34l
[ /JL_E , e T P e L_é | (3. 22)

Equations (3.16), (3.17), (3.19), (3.20), (3.21), and (3.22) provide

six equations for the determination of the six sets of unknowns A ,

B ;€ 40, E , and F .. Writing equations (3.19) - (3. 22)
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out in full,

-~ B .- fe
A L”
o & Ay o AB % C_a{.‘ “ P, {_:;_,xl:‘
Pk ! to p oo at
(P+13 Ay , ~AldredBs o _LE L' e D, (3. 23)
P Ll20-1) el P ki ' 2
ACa2e3, p a(ad-ypmd
+ _QE_,_ OQ-.“_ (L+1) F.l. A= _\j
D(‘-"J’
- (N4 )_Aa_ A = ,Q.C‘o?‘-j-l- (J-ﬁr)D:g s v, 3
oL-Hl . 0{4*1 ; (3- 24)
(£-2 Ay _ paea) Bi o cae3) Codt L (£-2) De
sag-ap 4™t palate s (e~ A
(3. 25)
=2
+ Cpor E AL = c#vay Fe L=t 1, e
FE =
{ P(LlJ\SJ-E ((‘d, - Di )j?'(‘_,“,J " Da S‘(Lu-s‘i)
= a4 QT At
/A[ 2 [P EEPE.] A'.t ﬁ(""e)"' 2 (Q+i)(L8+42) Ba .Pfu'-lG)
C1R-1) & LA
/AL d. b= o OL ’
[2 J(HuC,A‘ £L( L+ ) P
55 ) e Censd )
s 2(20¢3) 2Lt d.‘”'

& E (1(1-.1E a” gﬂwJ[!wa)F)P‘(u_,“}

XY
A~ . o

(3. 26)
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' In equation (3. 26), to obtain the equation for the coefficients of index

e » multiply the whole equation by P, (cess , and integrate of ces ab
from -1 to «+ . Solving for the set corresponding
to €= 1 , one obtains
Bys ~dapls . 2 ( & _.a)
: W 8w \ a4

using equaﬁon B-3 of Appendix B.
Drag on sphere A =« D, = - 4w D, . Therefore,

Dy, = 6'&‘/«46\ u, + _3 (_S_GL_;____)D : (3. 27)

Proceed exactly the same as above. It is easy then to obtain from

Problem B
D = G‘JT‘ L U, +_£_ -
(3 /" 2 ( T ;[’L—)DA (3. 28)
Solving equations (3. 27) and (3. 28) simultaneously,
-2 b (fa &
: { : A o~ [ S sck,‘)J
DA - & mw Qa u..
fJ Q@ (a & L F
- AL 2
: ._-i. 2. ( b _ b )]
b FEEYE (3. 29)
D, = Cwp b i
/ -4 (a ol v b b
[‘ -5 B o e
¥ a= b » then
B, = Dg = G gt m Ll (3.30)

.\

|
’ _E_(-_‘:'t.- .zd.')

The correction factor to Stokes drag formula is
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' i
)\. = 3 3
R -l

An exact solution of the above two spheres problem has been
given by Stimson and Jefferysl7. The exact solution yields a cor-

rection factor

-0 "
L . * -
':\’/\“K Alae) [ J. A e (nth)et = Crne) sm/“.c

et = s
s (an-1)(ansl) o .\'.-'\}. Camst)of + Cimet) sinh 2o
‘where is given by cesh « = -f% . Comparing
'center to center distance _ d \ X A
diameter 2a exact
1 0. 645 0. 593 0. 571
1.543 0.702 0. 680 0. 673
2.352 ' 0.768 0.760 0. 758
3,762 " 0. 836 0.835 0. 834
6.132 _ 0. 892 0. 890 0. 890
10, 068 0.931 0. 930 0. 930
co ' 1 1 1

Linear Superposition.

When there are more than two spheres in a row, no exact
solution is available. However, using the '"'point force' approxima-
tion above, the problem can be solved by simple linear superposition.
In the case of three spheres, A , 2 , and ¢ , using the re-

sult of equation (3. 23),

Dy = éwpatly, « 3 [ _a __a |p _2_[&-&1
i jA = ]‘«4 30‘:¢ dAv._l




Do » Cwp bu. +a [ b . _b ]D¢+,é_[ b £]:>A
& 3 o(:‘ ol e >, 3 ds ol ae

Dc = ¢rpc U, + 2 ¢! ‘]D 3 ¢ ._&1p

F *‘[.Bal:w 5 “a[ut;‘ a.J"

Dy w & u. b . 3
R e e e o = L SR S N/ VX S e S

3 3
oy o e e B o o

& 2 S % R T =
zd:ﬂ dAB)( 3dA¢ dﬂﬂ) (34'4L Jnc )(a"Aa dlac

(
(
(_!;__’_L_ et _g(_a_’_-L
(

3ol dee?™ 3 dge olac & \3dig d“(a.,l’ 4.,)(3.;.,

R

———

3 J:,_ dac

Zd, "‘Al)(.id‘ ) Jnt)]
and D D.‘ can be obtained from equation (3.31) by cyclic per-

mutation.

IF 0(45 . o’Ac ’Olgc >> a, b, < , then equation (3.31) can be

approximately written as

D, = 6wp all ns!:_sci e & o ¥
A Tf [ : Ad‘. 2 a"“ * = { "’AOJJ (Ju_) 1 (3- 32.)

(b) A More General Method. It is quite clear that the m ethod

of solution used in (a) makes full use of the axial symmetry of the
problem. Here it is intended to approach the problem in a more
general manner and to obtain a few results that are of use in a later
section.

Consider a sphere in an infinite space filled with an incompres-
sible fluid save for some point or line singular.ities (e. g., point
force, etc. ). If the sphere is not present, let W be the velocity of
- the fluid. Take a coordinate system with its origin coinciding with

the center of the sphere. With respect to this coordinate system,
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w7 on the surface of the sphere can be written as:

denoting

Y‘,e (G,+) = Pr(coao)c.qm+

-

YJ:"‘(Q'CF) -'P:(uno)s:-'\».c’g
{ KE Y o.hw KL ‘r,ica..w}

E " .
2- [ My Yo 0.9) L M Y...co.&J}

Sin 8 §18 O

o]
ws=§

oo R
Wi =‘§§ ENL ﬁbﬂiﬁ+“ﬁ-l&ﬁi%
s B - 0
30 mme B (3- 33)

where the coefficients are given by

-+, 0 ' 8
Mo ) o CAdEs Il W, Wu: 6.9 )dn

Qa7 (( Rtwm) !

tf‘ovd dwew f‘u

L, 0 ]
M_,,,_ = C22+ ¢ )(L-m ), S- W Y:"ce_c})).r.;e A
ST (Lt )] -

%9 ] ‘ .
P Calwvi) (A=~ Sw‘* Y::(G,+)"'\|9JJL

a2 ((Abm)y ! (3. 34)

The perturbatioﬁ vel.ocity and pressure field due to the pres-~
ence of the sphere can be obtained using the generai solution of Ap-
pendix B. The condition that the perturbation velocity and pressure

- vanish at infinity requires that the coefficients & , A4 , and <

of equation (B-1), Appendix B , be set equal to zero. The other
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coefficients are determined by the no-slip condition on the sphere.
Writing out the equatiohs for L= 1 s M= o from equation

(3.33)( a = radius of sphere)

L]

;:10 - -2., B:: - .K.A
"& a" e
LEL L aBL L. omt
& 3 atl '
Solving
. :
= ° >
Fre e [aml - k7] (3. 35)

But from equation (B-3) of Appendix B , the drag in the direction of
the polar axis is given by
Drag = - 4w }-_:

Therefore, by equation (3.35),

Drag (polar axis) = - _)_-,,-/.4 a (5M:’. . Kf,]

?

But from the definition of M,, K7 | equation (3. 34),

4

. SRR 3. :
DP-;”.,“,,” Arfa[sza s,aman-_é_'(w, ces o dn
‘ Splons tuf--l- iflent r-vj-u

- 3 | | |
—ﬁig Wt HE | (3. 36)

t[aLvu

Let the mean unperturbated velocity be denoted by

W '=_'-§‘ W AR

4T ‘j‘lu

Hence,

Drag (polar axis) = Grf,u a W palos onie —

Lo
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Since the‘pola.r axis is arbitrary, therefore
Drag on sphere = 6= et @ mean unperturbed velocity over
Su"](ac-u o{- sphere in corresponding direction (3. 38)

Let the x ~ axis be the polar axis and L be the scale of

length. x.q9.2, ¥ are the dimensionless variables:
!
X = __,JE_ " Z ' - 2 v' = _S-
7 L d -E— [ L
Expand W, as a power series about the center of the sphere so
that
oo
- -+ & * i
Wy W, 2 A % (3. 39)
FR
- where
A b bt
’ |
Ave = 1 27 ()
: ﬂ,"lh.'_f!l. ax.ﬁ)y:ndz:h
L)
Substitute equation (3. 39) into (3. 36)
Lemra P %
ﬁ‘u—-y .(..-. (—-——) s O s O Flwéb«rb%‘].r..:aofon{i‘

‘;h,. ..,--

- a 2 K. e 4+ 1 msned nAvl mel
_%__[”w,+§ — A (&) B(T_}_)s(_‘.::_».)J (3. 40)

2.

i odot

where B(a,~) is the beta function.

From equation (3. 40), the following formula holds:

drag = 6'1'-'./'—‘\“L Ve -+ O(.L.") (3. 41)
where  V.ut, is the velocity of fluid at the center of the sphere if

the sphere is removed.
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1

Now consider Problem A above once again. Using equation

(1. 13) of Section 1, the velocity due to a point force Dag as shown

on the surface of sphere A is
W - - D 0( Gt tes ® . i
£ ; [ ;( T riosl ) V. e % (3.42)
(a"+k ~2add cas o) (a'+d - 2acleesa)

g
Substituting equation (3. 42) into equation (3. 36), the drag on sphere A

due to point force Ds is

. ;
Do = 2pa g - _DPe ( ( d-aceso) 5 t I
e Spheva 87"/'“ - (atr d-2adeese)” C*u"d‘--l‘o((.ua)!‘ :

3
S Dy = B0 { o . &
2 ' A

Hence equation (3. 27) is being recovered.
If equation (3. 41) is used instead of equation (3. 36), then in

this case,

_\Zn{ = ( Uo - 43;0’. ) 4
" Therefore, »
Py = ' = D
A 4 -r/» o [ U 47;’*1
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Similarly,

D, = erL[u,-?fE?_d_l

In case a = b

DA.. Dy = 6w po U, - €T D)s"u.. >(3.43)
pu L <o F
E
the correction factor X' has been shown on - page 35, It agrees

fairly well with the exact solution.

4., The Effect of Continuous Solid Boundaries and Fluid Interface on

the Drag of a Solid Particle

When a small solid particle moves through a viscous fluid ad-
jacent to continuous solid boundaries or fluid interface, the drag forcé
which the particle encounters depends‘onr its proximity.to such dis-~
continuities. Since the work of H. Lorentz (1907), this so-called
"wall effect' on the drag of a particle has been the subject of much
research18-28. However, most of the work done so fan with the ex-
ceistion of reference 27, is only approximate. Here, theproble:ﬁ will
also be attacked in an approximate fashion by means of the "point

force' technique employed in previous sections.

(a) Potential Functions for Stokes Eguation. Stokes equation

v/; - /u vt u (4. 1)

V-u = » S (4. 2)

The structure of equations (4. 1) and (4. 2) permits one to construct a

scalar and a vector potential such that the scalar potential for U
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sati_sfies-the‘ inhomogeneous equatidn while the vector potential satis-
fies the homogeneous equation. It is easy to verify that scalar poten-
tial @ , defined by the following equation, will satisfy equations

(4. 1) and (4. 2) identically

[ 'S & - VIE
L[ v s - v

AP .
f> ) % ; (4. 3)
where
Vq.i) - © .
(4. 4)
Let U be given by vector potential A as
o = Ve« A (4. 5)

then the continuity equation is satisfied identically. Substitute into
the homogeneous part of equation (4. 1)

VT = VUVA ) = Va(VA)= o

Hence

A - Cﬁ_£+9&3+9§‘ﬁ (4. 6)

- The homogeneous Stokes equation will be satisfied if n# 5 ‘ié. 5

‘and ‘%3 are harmonic functions, i.e.,

¢ - o jf“f# -e - E (4. 7)

(b) The "Point Force' Approximation. Consider an axially

symmetric solid particle moving close to a solid wall in a viscous
fluid with its velocity vector in the direction of its axis of symmetry.

Let - « U be the drag such a particle would experience on moving
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through a stationary fluid of infinite extent with velocity U . The ex-
act mathematical problem in this case is to seek a sqlution to Stokes
equation satisfying the no-slip boundary condition on the wail and the
surface of the particle. The ""point force' approximation involves the
following two steps: |

(1) Replace the particle by a point force of strength T  where

) is the drag on the particle.
(2) Replace the no-slip condition on the surface of the particle
by the following equation which is a direct generalization

of equation (3. 41).

B = - ot v.n..f, (4. 8)
where -\_/:,f_ is the velocity of fluid as seen by the point force.

(c) Two Axially Symmetric Particles Falling Towards a Plane

Wall. Consider two axially symmetric particles A and B charac-
terized by geometric factor oa, o, . (defined in (b) ) at distance ha
and h. falling towards a plane wall. Let Da and Das be the
drag on the particles. On using the point force approximation out-

lined in the field equation and boundary conditions become

2]
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vjé - p vd-D, 2z §ca-ho fc(n- o, Z f(z-L,)fc(w

v.u,w- ° (4. 9)

=9 j;= o  at infinity (4. 10)
U - O . E = o (4:. 11)

The present problem is linear and hence it is possible to deal -
with each point force separately and then superimpose the solutions

together. Consider particle A only. Let

D"-?+Ur

&

boa e (4. 12)

so that the particular solution U; , /7,. solves the inhomogeneous

part of equation (4. 9). Here, to facilitate calcﬁiation, the particular

solution will be taken as the one corresponding to a poiﬁt force _Sn

at A and an image force at Z = - KA. with the wall removed.
_L-Joj, and /9‘, can be calculated easily by means.of eguation

(1. 13‘) s0 that the boundary conditions for U, and f’; are (the

‘subscript ¢ will be dropped):

U = /= - & at infinity (4.13)

L“l = [ z_ = 0

U, = = _DPa { ho (2 J Z=o0 ; 4 14
( Jf-'rrf-‘ (L;? v" )-Ua. g ( . )

. i ,
To solve for U and j: , one can make use of scalar po-

tential ¥  introduced in (a). Hence, let

Fl i8]

Uz =




45

u{ R B I
g i('al
N Y | . Y@ . (4. 15)
ﬁ C *({( ;(-le Jd |

where

——J§ < A (4. 16)

and from equations (4. 13) and (4. 14), the boundary conditions for £

are
s - o o o S - (¢ = (4. 17)
‘§ H — i‘“— = o -9 L]
%?‘ (" , e 5z (4. 18)
AE = - DA Lq. e
o2 ATt (L.:+ (,x)y. . Z (4. 19)

where equation (4. 19) has been obtained after one integration with

respect to (’ .

Define the zeroth order Hankel transform by

j_(_(f’ - j;fjé((u J.cg\wdr

From equations (4. 16) through (4. 19), =) satisfies the following

equation and boundary value problem:

- v ez -

g. E -2 S D[;é; + 0(’_{'. = o (4_._ 20)
Az 4z

f & .0 Z = oo (4. 21)

B - Z - ° (4. 22)
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— - ha§
d’_ = - D*\L‘ S & = o (4. 23)
ALz PR ¢

The solution of equation (4. 20) satisfying (4. 21), (4. 22), and (4. 23) is

il
T o D,\Lf. 7 2= (4. 24)
T

The revfore

L v w_ Bib 2

> 4, 25
AT [f'-{-(L,ﬂ-?_J"J 4 ( )
Substituting into eqﬁa.tion (4. 15),
LIZ RN 3 Dﬁ Lp, -Z ‘ 3 DA I\._ ZFL 4 26
/" . o R . YA ( o )
L-r.-[(:+tlwzj] -4-11[(7*<L.J'33J

Similarly, an equatiron> similar to equation (4. 26) can be obtained for
particle & .

To determine. Pa and Des , apply equation (4. 8), using

t and (4. 26).

For particle A

ity [ U +—Pa . _Ba . _ De
8F P ha 1w Ao duTr L
/"‘ H /»(l.n o

& D ks L; - Ds } 2“ ' |
a7 p chawd, P 4”‘”“_“‘ (4. 27)

For particle %

Voo ‘[Uw« 3 D . Da o Bakaobe . Pa 12
lérr/u [ A-vfj-ﬁ Chas b)) ,\-:.-Ju choek s 41‘/MJL‘.L_|
Therefore, ’ '
DA = o"}A { U4 + 3Dy - bs .». Do A‘L" - De -g (4- 28)
167 ha dwp Charkyd ,u'-xr(l\‘fk,,)‘ 4T kb ‘
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Dy = g {Uy +.3De 4 __Da a Dy hiby _ Da I (4. 29)
lhrr Ke A’foﬂr(‘\,n’.‘) .\rr(/\,pLJ 44".#*“*-:“;'

D, and D. can be obtained by solving equations (4. 28) and
(4. 29) simultaneously.
| If the paf?‘:icles are spheres o, = ¢ r/u a g Ky .= 61‘/v~ Lo,
o and b are the radii of A and B s Da and De

are given by

. [l qLI ( BGLuLb g 30~Lm}
B GTF"U" glel T Srr/uU. thaeded  TLSLN

('_.ia_”,_qlal_[ML:L,__@_&_L_:(HL‘L._;LL‘; (4. 30)
& ha TR TR | Py T

and D, by interchanging o and b .

For a single sphere case, put b=o LUy = o into equation
(4.30): : :
‘b = 6w pa U
T : (4.31)
8

Equation (4. 31) agrees fairly well with the exact solution given by

Man de27.

(d) Particle MOVing-Perpendicularly to a Fluid Interface. The

proper macroscopic boundary conditions at the interfé.ce of two fluids
have been discussed in great detail in many books, notably in
Levich'sz‘g. Here, for simplicity, the fluids involved will be as~-
sumed to be isothermal and homogeneous and the inte-rface free from
absorbed material. Furthermore, the surface tension at the inter—

face will be assumed to be very large so that the continuity of normal

stress is guaranteed. Consider a spherical particle moving per-



A

pendicular to a fluid interface as shown. Upon assuming that the in=-

terface remains practically plane, the relevant boundary conditions

are
u , /v - o at infinity
LEGION 2 '
REGION | ! .
|
i
I,
At _z ™ o
U.(- - U.r _ (continuity of tangential velocity)

{continuity of tangential stress)

Pl 2ie] - et %

(4. 32)

(4.33)

(4. 34)

Split the solution into a homogeneous and a particular solution

as in (c) and use the fundamental solution of Stokes equation obtained

in Section 1, so that:

in region (2), let



u-\i‘ = -—,-‘ [ . + ks _f_é “
AT S 1
U, = - L ' 2
( P apea (4. 35)
jDI. = [ )‘ (..3_712;.) + —L';_L‘?L__ - )J‘_‘!
e Y bE ¢ s23f J =23
and |
4
v ° (4. 36)
in region (1) ( - P = drag on particle), let
U.z-—'['§§+_‘__9§j* D.[ (z-o) | l
' [ ¢ #pg 5”"[“' [ta-d;’vr‘jy‘ [(;-4)‘4-(,'3:‘
U,(z-_I_. >—§ g D [ p[Z-O() 1 .
' > 0% 81r/~4, [(,,-.i(f+ r‘ 5’/‘ J ' (4.37)
J o { e 3P N Aji . D (2-o)
“C“, [ s oz’ +n[<z--«,‘*r“]"‘
and ) - )
+ ‘
Vi om o . : (4. 38)
Substituting (4. 35) and (4. 37) into equations (4. 32), (4.33),
and (4. 34), the boundary conditions become
at £ = o
[a‘§+_|&j X aL‘“ [»_f_a_-!—_i;l: ‘
>e ¢ szt dpt (atar‘)h Set o or¢ 9z (4. 39)
. 3 _ DA - ;3{:
40)

P oA hf: c.L‘(‘J/‘ R (4.
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_L_[ A‘§+f(__>§3+ D { oL - ' _11=_'_{-’_\;.P+J_J 'l“(4-41)
r. }fu (- )C grf‘- y r“.lﬁ(‘,]/l (o(-‘f (J“)‘J /‘1- )(n- ( ‘(’ "
where equation (4.39) has been integrated once with respect to ¢

Let & , -F be the zeroth order Hankel transform of £ and - -

+ as defined in (c); then from equations (4. 36), (4.38), (4.39),
(4. 40), and (4. 41), F and 7'(: satisfy the following differential equa-

tion and boundary conditions:

(—g‘-{-— QQ.LH)L{‘?J = 0 (4 42)
dz o : ;
at £ = ©
L &{,_ A —JS: y - a{:." ’ ’
= - 42 ., D _— ”
7 e A = - e
A3 f I
ol 2 . Dde "~ _ 1t d
Bz Tpapg e AE s
— -cd -cd o
"_g_,lg +_D_ ‘:A-Q.Ea-ﬂ-?J ,=-__g__7(zo-a (4-45)
AT e § P
The solution of equatibn (4. 42) satisfying the boundary conditions is
o CE
- Fzee (4. 46)
‘ -¢z
2 « (A« Ba ).e,E (4. 47)
where




Wl

B-’

D MM, { A . CpEM) 1’
il SR T VS 1
Akl -t::T [ trj‘v}'fd:.)g j;_-sat

From equation (4. 37) the reflected velocity is given by

U,z reflected ,-_g_:;r _— [0(+_§'-+ e _2J:d”)f

M gr,-fx. [t P

Hence

IIE ~f (r_z) = f.o§ \I(‘fc/ U.z (E_Z)Jf

Therefore,

Yoz uf (o, d) = f § U, (g dodg

= -.P [.+szt_] (4. 48)

Errj-!,ol 2O,

+
'S
L 4
2

Using equation (4. 8),

\@4 - -L,r-M}DM[,+ E'L ]

so that

Pa-em ,nVL+= Erpu, al + _3ab .
f*. ‘/J = o ['*uﬁ..,m!

_ g ™ a '

. ¢ K
‘ (4. 49)
) — 3 Q‘_[ | -+ _TE_L__ ]
RS J.(_/J.-f/",.l
If }JL — oo (solid wall),
> 6 ~ LJ
D Tj'“ as equation (4.31)

- Ao
! 8

d
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It == (free surface)
D = 67 pu a U '
ar . (4. 50)
4 d

(e) Particle Moving Between Two Parallel Walls. For the

case of an axially symmetric particle moving perpendicularly to two

walls, as shown, the technique used in (c) and (d) applies. By means

) £
LA AT LIS ELINSL L ELLEL L LTSS

|
|
|
yu
|

S
FELAL LTS TEALL L LTSS

of Hankel transform on (a and imposing the no-slip condition on.

the two walls, it is straightforward to obtain the following drag
formula.

ot geometric factor of particle ( 61/4 o for a sphere)

g = X
A

o (3067-2) (ae=) (303 _m .
I(U") = j { L2 1 -2 'l . }ro_,_‘)_e'[."_‘_a—_.)_ei
o

+ *
v

T v o 1 T

"'1 \ » ~ =
- - BB ) - G (40"-:)__;'__(70‘-4"4').2
H 1%
1 T g f
-1 ~H1 -(nr-u-I .tu-uu-l ~ e -2 -l"‘l
« =l o - R - =R =2 o R + G- + —e_l J'
» =
1 S | 1 Sk 1 T

Lo EE e | -t y

QI"'TT,L"1+{JT.'(T

2
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drag = D - o U ' (4. 51)

;- _'th—I,co*J

(f) Particle Moving Perpendicular to a Solid Wall and Free

Surface. If, instead of two solid walls as in (e), the upper wall is
replaced by a free surface, the same analysis as before can be car=-

ried out without difficulty. The only necessary modification is to

(CFREC sumfact

|
2 } |
wo

: |
/////////////I////////////F/

change the no-slip condition at the upper wall into a stress-free
condition. On carrying out the necessary changes, the following
drag formula can easily be obtained:

ot . = geometric factor of particle (equal to ¢ 7 p=a

for a sphere

o— = £
s

: ol " (0= ) l-tﬂ"”'( P ] > ~
J‘.G")=J [.).".,Q, .,av(.o. - R -rJ.(.G"—'J-‘(J.oR_T
? . R
- ~l"l -A.—( L -zur-')v(
+4(:-z¢J1~4T1-L—LcT-'J'(4 + = +L1-L
-t

g AT T 2 [T e

drag = D = = U (4. 52)

3a
Wk Jie)
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(g) Particle Moving Parallel to a Fluid Interface or Plane

Wall. Consider a sphere of radius a moving parallel to an inter-

face with veloci’py U in the X - direction, as shown. Let - D be

REGION 2

EGION |

the drag experienced by the particle.’ The Boundary conditions at

the interface are Z = o

fv’. [ Au'l',,, )ull
o X d Z 4 L ¢ &

; }& [ & W, 9 U.ﬁj (4. 53)

[ 3 JU-:I - P 3¢z . aqu
ju 2 oy >y oz

(4. 54)
U‘K - ul)( (4- 55)
Uiy = Uiy | (4. 56)
U,z = W,z == o (4:. 57)
\
—
U, a = o at infinity
Here, using the scalar function =) alone is insufficient,

op
and it is necessary to add one component of vector potential A de-

fined in (a) in order that the boundary conditions can be satisfied.
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In region (1), let

U.,=—'—[33§+3\§3* D‘{ ) .
R M R Al

[ €™ g a-hy

u'jﬁ__!-lé\;iuﬂﬁj)' D < ¥
Fol axsy oz - ey, [xﬁjhcz-A;JM
Li,z.-_'_[ e ch)1+ D ) (2-h)
f"- axval" “‘J 31-;]4. [X‘f :1t.1 (ﬂ'A).J)/L
po--viE , _p x
- e + T [x“«j#ce-L;J‘V‘
where .
VYR = oo
V‘h = 5]
In region (2), let
> ¥
u;x. = -—# { d,j\- JZLJ
U =__L.[é‘;£,,a')<.}
Y . 2% 9y 4z
u;} = —_'_- [ s“i + AXJ
s IXIZ "‘zf
e -3
dx
where
]
5 = o
VYN =~ e

i

(4. 58)

(4. 59)
(4. 60)

(4. 61)

(4. 62)
(4. 63)

Substituting equations (4. 58) and (4. 61) into (4. 53)to (4. 57),

the boundary conditions become:



At ZL=o
JXF ¢ ¥ L PF , 30 2L
J-xct dl " | lJ‘J JU\JZ P] 2" L (X"'f 7‘.1’ T J‘/x
3 v ) 1
= - S‘L_ éx + A7L +'} ‘(4-64)
asL SR Aaca;{ aj‘az Q2!
a L% 3
BEPE- SR  JR W NV TSRS SR
Ixsy 92 o 37‘ Lt (_x‘fj"«.l'.)/‘ Ixdyd2
b 2 X . EX (4. 65)
> " &j‘

1 [2E ;‘§}+ p [ n . [, S
f"' [Jj" v 22" E’le, (x“ xj‘q—l\")y' (% j"v LL_)'V'J f'; ( 2 az" ‘ (4. 66)

YE 3¢, D x4 ao L3 3% (467

__&ii,_-_f_éca __n =L _ O 13X L, (4.68)
l '_JX.C‘Z I‘t' 3‘2 31\‘.’4. (xt.pj\fL i lfl\- X oF s Jj

Denote the Fourier transform of ][n,j ) by

- o -..'(Ax!-u\"j’)
JC = fj ](Lx,j ) < ol x n/J
-l V

Then from (4. 64) to (4. 68), the boundary conditions fér $, jl’ 5 '77;

b

and X are

i — — g7 n_“'y"L
X +)\_o¢c;4_of3§ L '8 *__D-[,_ g j_;f" >
) o2 0z ozt 2

[N c}")"”

_- )\\-% ) ol)\’)—(--"“g_'i'_ +3JE
J

dx oz’ , "~ (4. 69)



P o - (v(‘+.a")‘ & . e _
22 L2 T ._Q__L_.i_}\.-_v-ﬁ Lex A 2 N T (4. 70)
o0& JZ" 20"+ JZ sz
= = L chieeay
_'_[-,("é*t’i‘}_,__?__[ Z b B 34 *
g oz AP Lt e XY e XD e
= ko - G‘L + )‘i
2 [ + Tie (4. 71)
S -+ et L
_L_u)\,_;;._.._l.__jé_é - b { A ot N + “)‘T,},Ql >
J”. /J. JZ 4_/4 Ty T T
= ! of O \7’ b 9 (4. 72)
Ju e am
— _ sk —
NPT I S-S S W g AP (4. 73)
Mooz 4/.:_(9\‘«-#.\/' Moz M ,

Also, from equations (4. 59), (4.60), (4.62), and (4. 63), the differen-

tial equa,tioris for &, ‘? 5N “/’ are

6{\ P ’ z & :
[I{‘ ( )\)] [ 7 | E (4. 74)
[ Lo [ F] - | (.75
dz* _32_1 _

The solution of equations (4. 74) and (4. 75) satisfying the‘

boundary conditions at infinity is

— & (.x"«o\.")x 2 = (AN V"t:

F = A= + BZ =
‘ _cz‘-ea")xz

%; = C

“’. . .

— us“ru‘J)iz (ATeuy & (4 76)
\.IJ = E =2 + F Z e

—_— u\"-od‘jx.i

> = H e
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Substitute equation (4. 7 ) into equations (4. 69) to (4. 73) to yield six

equations for the six unknown coefficients. Solving
34

Soa -2.(:+7ﬂ__) ¢ 2w )

4
—(vea) R .
A=___ I+ v { —Lf)-L()\vf,(_) g -[_&_L__
4 A ( 7%-) [ J jjg'- (“L* )“-Jy‘
L ‘JKL
gl A (3.)&*4‘ 1ot A+ gd‘f)[\T-;(A«u
P N b ]
S P ( Ji_){[ }{_J .,(_,“'J)\")XLJL L ()\ )/ _(-(f.\) A}
TRy L B i 3 (Are™) |0 + [(_4.A+4=¢J % B e !
48 f". JU |

From equation (4. 58), the reflected velocity is

N (N, 2) = L (mud + "3

1% safboifad H ;- )
: N —(_)s.(--\')j : ‘_.(_ac"r):':y.:
=——’-—[‘A)\.rz_ .rB[_L(.o(r.,\Jq../\i]—E-

¥
eah (et

J.x (X ot L) = FI-—(H 71“‘_‘)._2_ { [4)\"[.. (a<"+)g‘)y: S e J -

+ 7tﬂ [ > ”L—.,, P B ] Y
H (ot*+ N7) ’ P U o

a ERvaT) Tk
CLCien+ 8ol )()\+a<)+)\L(4)\+4‘°‘)5 } (4.77)

Hence
u,, (x,/j,L) - L
re fhafad ()

Therefore

Wow (0,0, 4) = T, (Ao, ho de dx
TR L—“‘J

‘%

7 .‘z.:\x«uyl___
(,_Q U N, o0 Ay A eatof A

-



-59-

The last double integral can be performed by using polar coordinates

)\‘--(400.1@ o(-r'-l":oe

* ed 27T
LJ,,‘ (o, e, by = _1_ j = D { [4 ("L ' O - zrkcn‘(‘) - 4{0‘:::\0};‘1‘(
(J"’T) N ‘9(,‘&‘.)("‘," )

.‘.7;:(‘_‘, [3 C"L o 0 55 ;(q‘cv{o . 4—('}.-'."64- (3(”4,;@ u‘rr’cn"a :..'."oHS’rJ,,;’o)L

- h (10 oo © + B wis © )Iosxt e kb(’*m‘b]-ﬂ:‘rl‘} (:al {GJG

/(-rer,L [ ;+7%_ H $e %ﬁ—} (4. ?‘8)

using equation (4. 8),

Vit = - U+ b { I ?[ E g.}
¢ :(n/ﬂ,k 1+ j ’

Therefore ‘

Hence

/ (4. 79)

In the case of a solid wall,
D = é WM, o S

q a
16 A

(4. 80)
I-—

In the case of a free surface,



o

D = 6 Ma U , (4. 81)
M
N

(h) Long Circular Cylinder. Consider two spherical particles

A and B falling along the axis of an infinite circular cylinder of
radius & . DBecause of the linearity of the problem, it is possible

to consider the flow field due to each particle separately. For
: : z

| .

particle A , using cylindrical coordinates as shown, let

U, » o[22 +_:_.>s?‘é}_£_[ R (4. 82)
£ L0 © 3 mplohyy s
Ue = =L ) £ - 5 K. (4. 83)
r d(’dz 87‘:}"(3\"{"); i
Then Stokes equatioﬁ would be satisfied if
vie = o (4. 84)

The bounda'ry condition at infinity and the no-slip condition at (’ = R

require



-6]1=

§ - [ Zx = 4 oo

2'2 , 32 _ b [ A \ | (4. 85)
‘)(" il éw LR (2¥e RO fu i

*‘$ _ . Dzr & b R :

22 . —= ox 5" — (4. 86)

( e (2% ") ¢ gm (2% p™

Combining (4. 85) and (4. 86),
3P Dz (4. 87)

2 (7 gw (2 e)”
The equation for £ (equation (4. 86))as well as the boundary
conditions, equations (4.86), (4.87), are all evenin Z . Therefore,

the solution must be even in Z2 , il.e.,

ij_ - rn. odd integer
92" 1 g e

Define the Fourier cosine transform of J(cz ) by

-)
qux)- 2 )[(e-)c.«--(a-ofz
w o )

Then £ satisfies the following differential equation and boundary

conditions.
QL'+_L_3\'___°<"K D = 3 | (4. 88)
|35 1%
o= =
3 F ,/—? PR ol &) (4. 89)
e V= ew

.‘L};’ _.\/_::__ _[_)_.( K (tR )- ot & Kl(,an.lj
S T | (4. 90)
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A solution of equation (4. 88) which is finite at - o is
g = A (k2 8 I, Cetppo .
s il i i ¢ (4.91)

Substitute equation (4. 91) into equations (4. 89) and (4. 90) and solve

for A and &

A . o /T Lf,&g_]o(,;g) . Z‘L.(R,,) K.'cost) - I‘(d&)}’(,(d&j-fd(. 1'(0“-) K.(—“JJ

é% | «w [a.zr.z-c.m;(.4.,1_(.1:,)-1_:_.‘;))-—_!:Z.L.«.n)z.c.«m)-—ttdm I,LC-M!S

B o= DR JZ fxe I(er) K (=<R) + oL R K.,(,uz)l'(.dru] (4. 92)
g7 ot w [ Ttetn) [ (ot ) + XR Z,‘(-IAJ - Z.LL«Q.JJ

From equation (4. 82) the reflected velocity is
u, - L] 33, 05

[

s o C ¢ C

Therefore, using (4.91), |
U‘,..;p_((j‘ ) 'E TL—J; { _é-f.: Z.(xr) wx(’ I,cu(wj « B .,‘Zl(.egg

(
3 Bo(“[ 1, [o(f) ¢ Z.cu(ﬂ] } ot ot 2 ol ot
Hence
. | |
Lbec,ZJ==F_,._L.5 ( At o' B) cmu 2 dak (4. 93)
.-t._f-t’. k r o
From equation (4. 92),

L
s L, s K,C“ c2 L sy K G)rgl (s )K (8- -S:-I,(.:) K Cs) - —_‘_L-s")cc.u'l',c.sﬂ

A'.“"B. D 2
gw | W

S Lo - 2 IS - S J

: A
- ;P:/‘; s | .(4.94)

where S = ot £,
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Therefore,

’ o4
U, to,2) o __ D Jﬁ sy emS2 o5
4Tjﬂg‘ s £

,_QJ‘-’.
= D WitE (4. 95)
47}’"”»«11., =
If Z>>e s, by repeat integration by parts,
2 = et adl s
i o i~ - & >
H (=) ZL -1 5}(0) (1;_ (4. 96)
Whefe s . Lhtf
‘7L (o) = 0{ sf— {2)
d‘fa-vﬂ
Now apply equation (4. 8):
\/,,‘-(-_ A = = UA - _Da  Heesr - Da -~ !'_d‘__,) ™ Peg
g e 47 R ok
\4"‘4 = -Ua - P ey - __Da H,(E.(_) + _Da
47"k Jf-z,-‘/um - _41/ut
Therefore,
Dy = “1’7/‘-““"{"‘» "'._DL,__H“«)+ Ps H(—%_‘;)- Da I (4~97’)
JTJM <% 4.7.-/4,.& 4-7rju°(
B = “’U‘“’[“*’*———D‘ Heeo e Do H(L)- Ra l (4. 98)
-417741'- 4::7:& At ol -

Solving (4. 97) and (4. 98),



Y

iju[ﬂu,‘(l-j._é_ﬂto))_' LUB(SQ - ga—%f‘:‘_{)]

Da i 47 R (4. 99)
_abHte) - 3.«.\1-/(»; - 3LH(—-} Jul—jf‘%}
( ¢ -~ Ra )( I T & ) ( ey )( -—-‘—"-:-)
Similarly, for Pe with a  interchanged with & 5
If a = b | U, a U, , then
Da = Dy = En pma U ' (4.100)

/
.i.f_’.. - o _d_
(l-f- FEY Fy (o> .I?.‘"-H("'),)

5. Non=-Spherical Particle

It is quite clear that the hydrodynamic forces a particle would
experience when moving slowly through a viscous fluid depends very
much on its geometric shape. A general treatmént of this ''shape
factor' problem is mathematically formidable. In the literature on
Stokes flow; only particles with certain well-defined regular geometry
have been dealt with. Here, an attempt is made to treat approximate-
ly, but in a fairly general manner, this problem for particles the
shape of which does not deviate very much from a sphere. The re-
sultlng formula is necessarily not exa.ct, vet its simplicity and gener—
allty do seem to serve as a first step towards the ultimate goal.

In general, the shape of a particle can be represented by

o= e fued) (5. 1)
where the expression has been normalized with respect to the mean

radius



Erge e 1 v
X

Now )[(0,% ) can be represented by

}ce,s‘) E E}_ [é,__ Plemor comnd « &, P:““'“"“"*I (5. 2)

Lss map

It will be assumed in all subsequent analysis of this section that |
F G | <<t o 1 &1 << for all A, m (5.3)

Conditions imposed by (5. 3) permit one to neglect terms of
order é;m and é:,,: in comparison with unity. Further, the
decomposition of j:(e,af) into spherical harmonics allows each

~mode to be considered separately. |

Consider a solid particle in a shear flow. ILet the unperturbed

velocity be given by -L-J; = X C H‘f#] ) . If the particle is a sphere

of radius uﬁity‘, then the velocity field is given by

.*“"= o _ 3 ) : .
R e ]

”~

) [ 3 / ] = [ 2 LV Y
+ o e i Sin O —_}L -3 san)(5eme -t Chflﬁ
i B { 4y 4”/3 5 Yl* s ( 2-‘ )( d )

" e (5. 4)

+ié—[ [cﬁr“’ = 6{3 S.SJ-'-'\S u—.:os':.cla }

where the x ~ axis has been taken as the polar axis.

If the particle shape is given by
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then the flow field will differ from that given by (5. 4) only to order
&4 OF Crn..\ . The necessary correction can be obtained by
making use of Lamb's general solution (Appendix B ) and the rela-
tions of associated Legendre functions. It is straightforward, al-
though rather lengthy, to show that to order &,. and {_ the fql-
lowing is the required solution satisf.ying the no-slip condition on the
surface of the particle. |
Denoting
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- For a particle,the shape of which is given by equations (5. 1)
and (5. 2), the corresponding solﬁtion can be obtained by summing
over the appropriate index A and =~ .

To find the forces acting on the particle, it is only necessary
to find the forces acting on a sphere of radius & | and let &= == |
By ﬁeans of equation (5. 5) one obtains, after carrying out the neces-

sary computation, the dimensionless force acting on the particle.

Foooen | - Lo . € p - mfﬂ»__gﬁfsj;
5 7
“"‘"{i €. -5 €ufpr L apld

(5.6)

¢ I-L"T[ 3 S\..-—é—g.fgi'

- o

The dimensional (primed) and dimensionless (unprimed)
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quantities are related by

b, = L % « _)&‘ Y at infinity
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(5.7)
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Consider the case of a finite cylinder with axis of symmetry
pointing in the x - direction in a simple shear flow U, = (M.*fjl;c

Let £~ b ; then the geometry of the particle is defined by
7L-n. =< = L/_E
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Hence, as in (5.7),
: = A
a = J A 56 do « b e 40
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€, - 5._{f = [ ben® .2y gie oo
: a s 8 < 2
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L
+ f _k_ denle 1 ysze do
ol SA 0 B o~

5 (e[ s o [ e

By equation (5. 6), the drag is approximately given by

Do - &xp U [ Lo (LT :Si—L“J (5. 9)

6. Elastic Spherical Particle in Shear Flow

In this section,the additional hydrodynamic forces acting on a

spherical particle due to elastic deformation are being investigated.
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Here, the particle will be assumed to be small compared with the
characteristic length of the flow field. Thus, it is sufficient to con-
sider the particle as existing in a simple shear flow with velocity
'U_‘ = (U, + FJJJZ. relative to the sphere. ‘

It is well known that a rigid sphere in a simple shear flow
| will experience a drag and a torque due to hydrodynamic forces.
Therefore, if the particle is not subjected to other external forces, it
‘will undergo a translational and an angular acceleration. Let the

angular velocity of the particle be w Z . Then the drag and torque

acting on such a rigid particle of radius a is
(drag) : B e & g a U, X
(torque) T w _s-rrj; al (ma-%)é

Here, it will be assumed that the sphere undergoes linear and angular
acceleration so that the drag may be considered to be balanced by a
constant body force equal to ~ —q# * and the torque by a
body force in the form )Z. - AZ.¥ . Also, deformation due to
centrifugal force arising from the angular velocity of the sphere will

be neglected.

To determine the constant A

& Lol A —
torque=*67r'/ua- (w—%)_z --f AL2 T )y dv
.‘/-'-n-—o
L TN o

Hence

—

fom LA (L) 247 o (6. 1)
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For slow motion of the fluid, Stokes equation applies. From
the general solution of Stokes equation (Appendix B ), the flow field

near the sphere is found to be

-.—D - . 3
U=, {L_L [ pea O a_j { [ ) +f[-_3r_ ,&-_%_‘:,J(—_;;.;Q r.a.o:,-.%_)}

Ex*  avy

+-€c{ u..{*'*- 3a . o Jsf—la\sf {_f". o &’ jCSMa@") (‘"‘Ib

s 5"("'

s 3 3
Pl eyl
Y . et L
H P o o] o nd - sl ey |

}3 N a U, g‘@___s_ﬁ.}iis,AGmogmt# (6_2)
v" : :

& P

(the x - axis is taken as the polar axis)
Let & denote the stress tensor. Then, the surface
stresses acting on the sphere corresponding to the velocity and pres=-

sure field given by (6. 2) are

Q—_""___‘:* = -4;«[ gti :J"‘ P‘(.w\o: '—‘S—I&Tt. P,'(°“5936°5+J

+ Lo [-/P‘au* . jf“:.J-n Ji(mae‘)i- 5/-4 (f+w)P.'(mos (_.si- 2 Fsﬁ F;‘“‘"“"&}

$ia ®

~ )
+ _i_*;_{ j&#P"(umgs.-‘-%’ - F‘tc.-.lﬂ_; S c’) }
Sin O

(6.3)
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To describe the deformation of the spherical particle, it is as-
sumed that the elastic displacement is ;small, so thaﬁ linear elasticity
| theory a,pplies. Also, the material of the éphere will be taken as

. homogeneous and isotropic, characterized by the stress-strain rela-

tion

o**d “ KB S() . _AG@‘(,/.
where

€ > = QS.,' + QS"

and S  is the displacement vector.
The displacement field is governed by the Navier equation

(s wlte-B it T +F ws 6. 4)

where [  is the body force, and in the present case,

F--9pu ; LS X
T & e B
The particular solution to equation (6.4) corresponding to

above is

420

w B (£ +m‘)-73'[_._.'_. Potimsrivsid 4 L P e 3 “"“iQ”

+ c--—é.
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(6. 5)

The stress components corresponding to (6. 5) are:

= A A
q“.,z_(:,qv{ JSKU GY“ F(tha)* Gu U, ¥ (CG*SA)PLmD)
S a" (n+r2G) aj(kflG)

Sin O atlx+2G) S L , w5

+ 20 { ?IHU..G" [ 38 ﬁ(an@) "__.._J" F..(v’-“al ‘—.l-—g

_/_4‘7&__(7&+“J){-_f Cemo) z...,a%

%0

, ‘
4 = ﬁcc—a)wu% = bl F’(wv) wt-c;b e Pcu.o;c«%”
4-6 -

| (6. 6)
+%{i§fi‘—4(7€—+w){4:. Pl :.:\37( -Ti_P"J,'..% ‘—f,—ﬁ,"":ﬂ } |

From equations (6.3) and (6. 6), the boundary condition to be satisfied
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by the homogeneous solution of equation (6. 4) is

At v = «
6-_--3., = __g [ 3"" U (5,\*-46)[’(. ®) - ’g"-_J u G"_Pcané) _P#rd.b-s)’"‘%
Sa (AN+2G) Ealrt2G)

-ﬁj‘i—.(ﬁ_-«uz) P‘ltme» c-cs'% *ﬁr C.f'_ ) Pi(ms) m-’“}‘l

- B [_ BU, (SA4G) o gt Uy (TA+20G) P yenser- TAHUG P e,
SR O Salrn+2G) Fal A+2G) 3Sal X+2G)

% 3 ﬂ; p f.'co-.se)c:odnj o o [~%*”'—i—:§—) Pj'cg...‘e)c-mfa
g Pl et p (Rl e oni

+ ‘7%-(7@:*. w) ch«—ue) c.as%rl
+__'-»;3; [/"‘(.ﬂj&..Jl«D)f’tquJs-n% +,,_7y_(7p_“,)p(._.,,,s,,,%

“75&‘— (7%--4- ) fj(te&o) $om 5% J

(6.7)

The homogeneous solution of equation (6. 4) can be obtained by using

equations {C~-1) and (C-2) of Appendix C and the bouhdary condition

provided by equation (6. 7). Writing out explicitly the equations for

£

coefficients B, B C;, Bl C}

3 pp U (CEX+aG)
G ol Mrtl2E )

- BT, [._____3’\*‘C’E 2 Ga = -
X-G '

a1, {.M_CLIAGD."*- CF (4GaYs = 1 g UG
)

It G FalXN+t20

B".(B.b.«-AGI E_ toa ow g U (s_);n--'-pG)
B T 3 P rat At i
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Solving

e, °
BJ" . B B)l - e

’

C? == M Uas e - B
30 / . an
. 102" (AY20) GG

Therefore,

R, « LA pUey’ P,‘..,o,__%g_c_grp"(b.,o,a,.%_.. (6. 8)
&

toa” (A*+2G)

Combining equations (6. 5) and (6. 8),

—_— e —a

S =Srvfsn= -’Q‘V[_S'L;GEV‘ P:LH'JJ"""':?"'""I"‘"' (6'9)

In order to find the additional hydrodynamic forces acting on

the particle, it is necessary to find the deformed shape of the parti-
g1 :
L

. . < = |
cle. Since by assumption a

;—4(0\19*89 3S+_§_§_)=a-€,+§(a,a.<jﬁj
Atsy

a+Sy 7

(6.10)

where ¥ (e, 9,}) gives the deformed shape of the particle. From

(6. 10),

Y“(‘J\_Ocj’) ka__s‘_-* g(o.',g-.ﬂ_ CP__EL)

ov Sy . otde

La, 0.9, = &, S(2.0.9), o))
o



Hence

a, [ a a

Therefore,

vT(0d) o . Srta0.4s

a a
From equation (6. 9) above and equation (5. 7),

é..l.l e -‘_ﬁLLs

6 G
and

F., - —ST/MLU..G[?
o

d e (6.11)

The rlefore, a transverse force acts on the particle as a re-
sult of elastic deformation, even though the drag remains una.ltergd
. to the first approximation. It is to be noted that the transverse force
is in such a direction as to cause the particle to drift to the side
where the velocity difference between fluid and particle would be

smaller.

7. Non-Stationary Motion

This section concerns primarily the non-stationary motion of
a small, spherical particle in a viscous, incompressible fluid under
the action of external forces. Thé prime objectivé is to obtain an
estimate of the importance of transient effects and to illustrate the
complicated nature of transient motion even in very simple particle
systems.

Consider a sphere of radius = sucidenly being set into con-

stant motion with velocity U.% . It will be assumed that the motion

is slow enough that the linearized,time-dependent Navier-Stokes



B -
equation is quite adequate for the purpose of describing the flow field.
Thus, the fluid field is given by the solution of (using a coordiné.te
system fixed to the center 6£ the sphere):‘

v.ou o= o | (7. 1)

p%%+vf-/avu _ (7. 2)
’J”_o Y= a (7'3)
T w W,y HOE) & ,/,-u ¥ B (7. 4)

where Ht) 1is the unit step function.
To find T and f , take Laplace transform of (7.1) to

(7. 4). Then

- ? = o (7 5)
fs_f-fu,:c‘-vf"gfv‘-&_‘ (7. 6)

and the boundary conditions |
—j. = © Yy~ = o (7.7)
?'%;‘ g Som By T 5 (7. 8)

where s is the transformed variable.
- A general solution of equations (7. 5) and (7. 6) satisfying the
condition at infinity is

AN -
F 2—,‘;7[’““”

v
[
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= JT [
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e TFL .4&) s(”_z_ Y‘f‘ P, teeso )
- (7.9)
+Z B, [ (“'J_—K"‘Vx(gv) » £ K4r34( %'Y)E‘P‘Ludol
. 430 \/_‘:: N T *

where /f = '/(; , and the ‘x axis has been taken as the polar axis.

Impose condition (7.7) on (7. 9) to obtain

.- o s, { K (2]
2 K‘/‘(/:—z_a}

Er = _u—h Cos O - “-3 uoﬁ [ K%(J%G)J Cos O
. S

5 o)
Risg € 5w ) r?

X

T_S

= U [ RIDN K%cﬁ;s-*JJ‘mo
S Ky(fSay L. V¥ i

s 3

R =
Uy = = Us gine - & U, { KK(WT“)J:A@

2 S J<7J\[—E——"‘) ¥
. = b t [.uq(f—?—*) . K%(/EVV)E (7. 10)
LS Ky J¥ ~

The inverse transform of (7. 10) vields

proopease | fuoes S22
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From equation (7. 11) the drag on the particle can be found to

be

drag = | 2 ol . 7. 12
rag {Gwr +ﬂ(;__§(f)+éa/«/3_%}uﬂ ( )

For an arbitrary motion of the particle, the drag can be obtained

from equation (7. 12) by means of the Duhamel integral.

dragnj [-‘_“rifce t)o(d+€w/4a(,+a. )%JJ.C
| l'\,t,('s) ;

‘Therefore,

drag = AT Lo olq + G et ) + & du 4T (7. 13)
3 ' oo ) A T

Equation (7. 13) is the Boussinesq's formulas’ L
Now consider an external force F () s €.g. gravity, act-
ing on the sphere which is at rest at time €= o . The motion of

the particle is described by
AT, . F R o
WAy A - Fee) T (7. 14)

where p is the mass of the particle.
-3
By means of equation (7. 13) and on writing M = mp+ a7 ra
¥y q g 4 _ﬁ_

each Cartesian component of ‘(7. 14) can be written as
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¢
M odu, = [ct)- 6wpa ll, - €x pa ol d, dT (7 15)
=3 oty g g% ds

To solve equation (7. 15), take Laplace transform of the whole equa-

tion and use the convolution theorem for the integral:

MSU‘, = f—cn- ﬁ-n'/uaar -._/1’—.5-'"1_5“1 J—s—tr
or ' |
T . Leos

T 7
) (Ms +6-t/.l.o.+6'ﬁ‘/--“\f_s;)
Therefore,
‘ Tteo - ot
U = 53 f flei s (7: 16)
vk 6 pmatfo 6 o
¥ -k M { i< A * ~ ]

To integrate (7. 16), J"*) will be assumed to be a physically
reasonable forcing function so that }:J is an analytic function
save for some isolated poles. The denominator in (7. 16) depends on

Vs and so, to insure single~valuedness, introduce a cut in the
S - plane along the negative real axis. To evaluate the integral,
take the contour as shown below. -

Consider the function ( s+ AJs + B ) where A and B
are real, positive constants. The imaginary part of (s+ A /s + 8 )
is (vesne + AV sn O/ ) which has no zero in the s plane ex-

cept on the positive real axis. The realpartof (g-+a/s + 6 )

is (reev e+ Aem &% 4 B ) . which has no zero on the positive real
‘ " s
axis. Therefore, the function ( s« wmals . Ewma ) has no
i I r
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pole within the contour [V shown.
If & (=t , .0 n ) are the poles of Jf—t_c) and ]{u; 5

the residues then by Cauchy's theorem,

Ties

—_ ot
. g fes) = AS'-'{S*g‘ Lk
i 8 o M[S* 6 M a..‘v's__‘ srr“\] T

iz ~ ABe  <v  ge  Ef  FGM
- gt
-+ —E-n.' £
T P (7. 17)
~ ~ T

For a reasonable function ]ft*-') , it is easy to show that the
integral over Ae<c and FGH  gives no contribution.
The integral over path oE yields as & —+ o the contribu-

Lt [_ Ei_ze)i

& - 6"!/“'”‘

tion
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Integral over co gives

o0

I 5 .{-._c-v) -Q-.Y Adx
“EC ) [-J (vb‘r*“_.,.,, GZHE‘FCK
Integral over EF gives
o } JI-(.-Y) J":vf oV

BT A M [ar Gupes, , 06 pha ]
"~ S

Summing up all the contributions,

7 L o e _—
U, ) = 2 ﬁ;ue, L Lt [ E£CEJ§
o oM { Gwﬂa*‘o{‘.'c-ﬂﬂa‘m“ €. 6‘:![4""

M ~ o

{ .
P (7. 18)

a0 —_— -
-+ G::L:;A S Ix ;,L(-x).e_ i
N WA
moIT ) [(‘675« ~x) e 3‘:-%“ I
The integral in equation (7. 18) represents the transient solu- -
tion. -

Special Cases.’

() Constant force , e.g. gravity. In this case

jd‘}w L& ]ZZU- LN

S
From (7. 18),
o - x4
(Jr (t) . K - 6 M & K o Ax
/ . e
51/‘.“ M‘JTJ_ ) F{chﬂq -x): 34 w"fa.oo. xJ (7. 19)
~

For large £ , (7.19) becomes

B D s e, S " 6#«"‘-( L~ )_ff_.
! Grja»- GJT-W”:[J./-'C- A‘f:
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(b) Sinusoidal force. In this case,

Jtct) v s Pk : y:;, -

s A

A

& B R N f = 1 d
. i"l)\

nu

- B vy ! Cw patJx '
o ey o (ATER STy it (e SR L

r P~ VIV -
. : L ; . 1
w [(S3f2 Sz B0y (o amps 0
‘ s .
. B 2" X | . (7. 20)
M‘J—'\—;— % (x"A“)f(_M,L""" d'-x)h-t- '—_":-—_3‘:; :"PXJ

Fundamental Solution

Consider a force pulse of intensity b applied to the fluid at
time T. at the origin in the x-direction. It is clear that disturb-
ances will be initiated and propagate in all directions. The velocity
and pressure field resulting from such a pulse are given by the funda-
mental solution of the linearized time~-dependent Navier-Stokes equa;—

tion, i.e., W and j=' satisfy the following equations:

’3—’: aE v/- =/u Y U+ DK,. $i7) feetss (7. 21)
Wt = o8 C(7.22)
o, j’ = © : at infinity.

To solve for U and )Qv , take Laplace transform of equations (7. 21)

and (7. 22); then
—_— L= : fo2 -s%,
g -rv]: ./,«'Vu r DX FX) 2 (7. 23)

Tk » ® (7. 24)

Take divergence of equation (7. 23) and use (7. 24)
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kY - f'. ‘
V]‘a’ = b Sy
ox
Hence
wi B '
/S-_g_x' & ot /4".._..‘D K Jed-d e 25
. PN LT v

o wr it £ v/é-Dx.S\cx»‘t.stx'

On computing v/- as in Section 1,

_— - R
U =-_1.( P 3| 2ftmey 8w Loy
pid )X =% AW v'3 3
& j‘ [ P: (eme') Cm . B F':u.-o'a .r':-#" -Q""f' (7. 26)
Y*J *1. P
Inverting the Laplace transform, "
LR
Ve = L[ 2 g *VtTte s B_ {8 O Liwe
e X _______J_/_._Hctfﬂ)_____ x 0 's)
2fmv C€-1) 417»- NI
o 7 Pies’ )f-wq( . (’me):wzfa J
e R ‘
Nt (7. 27)
b _—?.“f-f.)o I-—}f_‘é'ﬂ) ;(: 2

(Tju f;—(.'f:“h:;/‘ 2 J=

lf, instead of a pulse force, a constant force is applied, then, inte-

grating over all time, equation (7. 27) becomes

— 3 5 ! 1]
ah(x) PRI d % D {~§‘ (’cuu.e)_‘_ .‘j fc._,..e‘,u-up
[ Pl S e L T b
4T — - :
IX-%"1 4*‘]‘ v oS
7 V’Gcc i ‘+’ ] &
o B Loeend) sk J . P X (7. 28)
yid

CTpy
J
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Equation (7. 28) is the fundamental solution of Stokes equation as ob-

tained in Section 1.



G

PART IL

Macroscopic Continuum Description of

Particle -~ Fluid Flow



.

8. Particle Continuum Eguations

The pa.rticle-ﬂﬁid system that is being considered in this
thesis -consists of solid spheres and viscous incompressible fluid.
The particles are assumed to be small and numerous. Further, they
would be regarded as having the same size unless otherwise specified.

Owing to the existence of viscous fluid intervening between
particles, a form of viscous interaction exists between neighboring
spheres. This interaction tends to smooth out any possible velocity
dispersion among adjacent particles. -In general, as a first approxi-
mation, the velocity difference can be neglected. The consequence of
this lack of dispersion is that particle-particle collision is inf?equent.
In fact, for slow motion in which viscous forces dominate, direct
cc;ntact collision between particles during which significant momentum
exchange takes place is ra.ther rare. Thus, ‘the particle cloud may be
regarded as ''collisionless. "

' To describe the motion of the particle cloud, it is possible to
define a distribution function f(i’, V,¢)> for the particles and to ob-
tain the conservation equations by taking moments of the collisionless
Boltzmann equation as was done by Mar'bleé. Here, such a procedure
will not be undertaken as the force acting on each particle is still un-
known (a major subject of investigation in later sections). Instead,
for simplicity, the following assumptions would be made to achieve
the same goal.

(1) The number density of the particles is large.

(2) The radius of the spheres is very small compared with any;

macroscopic length of interest.
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(3). Velocity dispersion is negligible.
Assumptions (1) and (2) assure that the particle cloud may be con-
sidered as a continuum, while assumption (3) permits the use of a
particle continuum velocity R_J.f, with sufficient preéision. With the
above assumptions, the following field equations for the particle con=-

tinuum can be written down immediately.

Continuity
i’;*-V‘(r\uf)-o (8.1)
Conservation of Linear Momentum
ml,n(.mﬁwa}.va‘r),,: (8. 2)
+ £
"Conservation of Angular Momentum
Tk, T = 8.3
IJ,(JuJﬁq.ur.\/w’,).T (8.3)
>t
Conservation of Energy
— — bwrs o euich \-. I _—
f_€ [n(-?r+_':‘+ ur & _ZJ: W )I*‘ V-{n Ur(.e,,* 2 Y :#Nr )]
ST O AT v @ (8. 4)
where
n = number density of particle

' Cl'r = velocity of particle continuum
(ISr = angular velocity of particle
mp= MaASs of a single particlel
I, = moment of inertia of a.‘ single particle

<, = internal energy of particle



F - force exerted on particle continuum by surrounding fluid per
unit volume of space
T - torque exerted on a particle by its surrounding fluid

@ = heat given to particle continuum by surrounding fluid per unit

volume

9. Bulk Fluid Equations

The. fluid phase of the particle-fluid system is assumed to con-
sist of a viscous incompressible fluid, the motion of which is de-
scribed by the Navier-Stokes equation. As the fluid does not occupy
all space, for the region exterior to all spheres, the following equa-

tions apply.

Continuity
_>_E+VA-((°U) - 0 (9. 1)
2
Momentum |
Yed . Vi (pUT) = V- F (9. 2)
it r
o7 - - L SU: , au
d ’ﬁ l} fd ( axd- . d % ¢ )
(Navier-Stokes relation)
Energy

9
<L

5 [r(“_’_._;;',] . ¥ [(,-E' (&f..;_U'JJ- - (

o )-V-Z (9.3)

Tf=~h_vT

(Fourier law of conduction)
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where
. g = density of fluid
P Vviscosity.of fiuid
k = thermal conductivity of fluid
U = velocity of fluid
& » stress tensor

heat flux vector

=2}

- = internal energy of fluid
T = temperature of fluid

= pressure of fluid

%._

In principle, the particle continuum equations of Section 1, to-
gether with equations (9. 1), (9. 2), and (9. 3) above, give a compléte
description of the two-phase system. A solution of these sets of
equations satisfying appropr'ia.te boundary conditions would, in effect,
vield all available information. However, a nloﬁent of thought would
easily convince anyone that such is an impossible and forbidding task.
Ima.gine the particles to be of the size of 10 microns or 10-3 cm, and
assume that they are about 100 microns apart. Thus, in a cubic mil-
limeter, there are about 1000 partibles,r‘giving 1000 isolated surfaces
on which the solution has to satisfy the no=-slip boﬁndary condition (a
i-ather hopeless endeavor! ). Of course, the difficulty comes from the
deterministic approach to the problem, a course that is purposely
avoided in all subse.quent sections of this thesis.

For many practical purposes, full detailed information con-
cerning the behavior of the fluid-particle system is not requiréd. In

fact, a gross averaged description is sufficient to meet the need.
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With this in mind, it should be quite clear that a "macroscopic de-
scription' in terms of averaged quantities nét only would satisfy
practical requirements but also would circumvent the dilemma of the
deterministic approach. To be sure, a "microscopic description”
involving a detailed account of the behavior of a typical particlé and
its surrounding fluid is indispensable in determining the transport '
proper.ties of the two-phase system. These two descfiptions will be
taken as complementary to each other in the analysis to follow.

By the as suinptions of secfion 8, it is to be noted that there
are two basic scales in the two-phase system in consideration. The
first scale length is the one that measures the influence of a single
particle on the fluid, which is of the order of the size of the sphere.
The second scale length corresponds to the measure of macroscopic
changes that are of direct interest. It will be assumed from now on
that the two scales differ by sever.al orders of magnitude.

To describe the system macroscopically, it is necessary first
to define bulk or averaged guantities of the fluid. For this purpose,
let < ) denote an averaging operation involving the following steps:

(a) divide space intov small cubic volume v , very large

compared with the size of a particle but very small in re-
lation to the macro-scale;

(b) take averages of the physical quantities of the fluid over

the volume occupied by the fluid V3 in V . Thus, for

a quaﬁtity a



-98-
oy = _1 d
{O> VS;QV

By means of operator < > , the following 'bulk fluid" quan-

tities can be defined.

Bulk fluid density f’! *REE
Bulk fluid velocity D} - —f" < (—TI >
1
Bulk fluid internal energy -0:,_ - L <Lpe>
Ct
Bulk fluid pressure ]é-f " L < /4 >
g - <
Bulk fluid temperature T],_ - L o<T >
il
where & ﬁ;j—of n = volume concentration of solid particles.

For systems in which the particle volume concentration is
relatively low, it is clear that the presence of particles introduces
only small local variations in the fluid field. With respect to the
macro~scale, these local variations can be ignored, so that varia-
tions in the macro-scale can be represented adequafely by variations
of the averages. Naturally, the above statement is not exact, yet its
accuracy would improve if the relative size of the two scales in-
creases. Here, for clarity, the following explicit assumption would
be made.

Bulk Fluid Assumption.

¥ v is the gradient operator, then, with respect fo the
macro-scale, the two operators V and < % comimute, or

LV > = VKL ?
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The assumption assumes that the average of the derivative is
equal to the derivative of the average. This is exact in the limit v=+. .
Granted that the bulk fluid assumption holds, then a set of bulk
fluid equations can be derived from equations (9.1), (9.2), and (9.3).
Apply < » to (9.1) and use the assumption of commutation,
then

2L Vel pTH » o
otr ! r

NN R (9. 4)

o &
which is the continuity equation of bulk fluid.

Applying < > to (9.2), one obtains

_E_Eqaju}nv-((’f ufu})=V-5}*F+ (9. 5)
where
V'U:E} +E; - v-((’fa;,_a;)— <v.((-3:)>w<v-é:->

The difference of the terms V- ¢ ﬁ.:’}% X =L ((17\:» s v
in (9. 5) has been separated into two parts for the following reasons.
Consider the case in which the particles have negligible inertia. Then
the particles and fluid will move together and so behave as more or
less a homogeneous fluid to which one can assign a stress tensor aijf
‘to describe its mechanical behavior. When the particles do possess
inertia and hence slip occurs, it is still meaningful to retain the con-

cept g-f and to account for the difference by the term -{_-—;_ | . -f:"

f
.meanwhile, signifies the body force arising from particle-fluid interac-

H

tion, part of which can be seen by considering the term ¢ V.G
- —i—fv-o‘zdv = L f,i.é"—ds
V} ‘(’
The contribution to the last integral from the surfaces of the spheres -

gives the total force exerted on the fluid by the particles in volume v .
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Moreover, the difference between the terms V- ('("f a}_ I"* )
aptd <& vilp Ay > represents the momentum associated with the
disturbances produced in the. fluid due to the presence of the particles.

The existence of this momentum difference makes it clear that, in

general, ‘;L]L 5 &
Fe *nF

where ?,. is the force exerted on the fluid by a single particle.

. Similarly, applying < » to equation (9.3), one obtains

) g . - - g — . — - =
el ee T~ [a¥ B8] - vog oy (9. 6)
= V.zf + CQ+
where
'V"Zf + (Qf = ~<v-z > o+ < v-(&-‘a»—v-(é";-uj,)
+V‘I(’+ L_‘:( C-’f.*‘/gg}t)]—<V'fra.(4+/‘{3"11>
b Sl

The term @Q denotes the heat exchange between particles
and fluid which arises from the term < V- ‘z—' >

<v-‘zl> = %_SVV-ZAV __\L/_yﬁ.fol;

\ff J‘*

The contribution to the last integral from the surfaces of the particles
gives the heat flux from particle to fluid.

The generalized heat flux vector ﬁ} is quite complicated.
However, when motion is sufficiently low, the heat conduction part
dominates.\ It'is accurate enough to regard f; o ?‘“,.Jn,e_;_, P

Finally, summarizing, the field equations for the bulk fluid

are:



3 R v U,) = o ‘ “ (9. 4)
< (%%

3 u _,,V-( UU) =V-§" -r-f—? (9. 5)
o Y% [ERAY’
} '——" —_ . =¥ . 4
T(T[(afu}"*— })I’fv'[@t“f L9 T“;)j (9. 6)
= IR

10. Approximate Phenomenological Formulas of Bulk Fluid

Equations (9. 4), (9.5), and (9. 6) provide the field equations
for the description of the bulk fluid. However, by themselves alone,
they do not form a closed set. To make the set of equations com~
plete, it is necessary to supplement them with phenomenological
formulas re;lating -:'} —F; By ?} and Q; to the field variables. As
mentioned in Seqtion 2, the stress tensor 5—"‘} describes the mechan-

ical behavior of a homogeneous suspension; hence, to first approxi-

mation, one may postulate that

(TR R RN AE-TEE L EVELT

where }u} is the coefficient of viscosity of bulk fluid depending on
P and ¢ 7
Note: In general, it is easy to show that ¥ depends on con-
centration gradient and therefore is small compared with /uf . At

will be ignored in subsequent consideration.
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Similarly, the vector —‘ﬁ . T“-J\n‘.-‘-. ' can, in the

steady state case, be postulated as given by

"?’f=-/e.fv7}

where lmj. is the steady-state the rmal conductivity of the bulk fluid.
It is the goal of this thesis to determine the phenomenological

—_—

constants P and /z.f » the force of interaction J:]L and the
heat transfer rate between solid particles and bulk fluid Q; . In
this way, it is believed that a first step towards the understanding of

the transport properties of particle-~fluid flow might be achieved.

11. The '"Screened' Stokes Equation and the Drag Formula

Consider a homogeneous cloud of spherical particles of radius
a and number density n moving steadily in an otherwise station-
ary, viscous incompressible fluid with velocity u, x . Let the drag
experienced by a typical particle be - Db X . To obtain an overall
picture or a macroscopic description of the flow field, one may use

the bulk fluid equations of Section 9. With F, = A DX, they are

v‘a”; - ' (11.1)
uj_v } = -le,fq./ufv U}e-n.D.X. (1102)

It is ob,v_ioué that the solution of the bulk ﬂuid equations does
not in itself provide any information concerning the drag on the
spheres. To obtain a drag formula, it is neceslsar’y‘ to examine in
great detail the actual fluid motion near a sphere. In fact, it is only
through the knowledge of this that the hydrodynamic forces acting on

the spheres can be found and hence the overall fluid motion known.
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To do so, a '"detailed" or '"microscopic' description is required.
This will be carried out by the following consideration.

"Screened' Stokes Equation

The solution of equations (11. 1) and (11. 2) gives an averaged
value of the fiuid ﬂeld at any point‘u Near any sphere, the velocity
and pressure field would differ appreciably from U} and f)} .
However, if one fixes one's attention on a typical sphere A , one
may regard A as existing in an environment with a smoothed~
out background fluid velocity and pressure Uf. and AL . Let U,
and /D,_ be the velocity and pressure disturbance produced by par=-
ticle A upon the gross fluid flow field, so that the actual fluid ve- .

locity and pressure near A are

T.T W -
fo= Fy P (11.3)

—

To determine . and ju » it is necessary to examine
the propagation of disturbance in a particle suspension. Consider
first the particles are infinitely épart. Then, in the Stokes flow re-
gime, the disturbance satisfies the Stokes equation, or

V.U\ = o

v/:o_ = SN

Now, let the interpé.rticle distance be decreased. It is clear that the
presence of other particles will significantly alter the disturbance
Ua. and /9... of the particle A . The effect of the other par-
ticles will tend to confine Ua to the vicinity of A . A form of
screening action is in operation, so that the disturbance produced by

particle A would not be felt by particles at some distance from
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A . From the consideration on the drag of a finite number of
particles in Part II , it is clear that a good simulation of the modi-
fication on U« by the presence .of other particles is to regard
each of the other particles as exerting a point force proportional to

U, at the locations of the particles. For very large interparticle
distance, this ié approximately given by - G-r:‘/-! % Ul . However,
for a sufficiently dense cloud, the mutual influence of all particles
must be considered and hence, in general, one can assume that the
other particles exert a body force -X U. on the fluid opposing the
spread of e X" will be réferred to as the screening constant
and is an inherent property of the suspension. As a result of the
above discussion, the disturbance -Jx and /9. associated with
particle A should be found as a solution of the "screened" Stokes

%
equation

Vo= op VUM UL , (11.4)

" The "screened" Stokes equation can also be obtained by the follow-

‘ing argument. ‘
The only possible effect of the presence of other particles is

to exert a body force on the fluid so as to confine Ta . Let this

force be F = FM.) . Develop F into a series

? = E‘ - (.ensf. a.a. -+ 0.(;“-')
Since Um=s , F = , therefore A=o . Also, Stokes equation
was obtained by linearizing the Navier-Stokes equation; hence, to be
consistent, the quadratic and higher order terms in U. should be
dropped. So

—_—

F = -~ Ua

The negative sign indicates that the force tends to oppose the
spread of the disturbance.
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Drag Formula

Now we return to the drag problem. The solution of the bulk
fluid equations (I11.1) and (11. 2) is

u} = - ul‘,, x : (with respect to coordinate system

fixed to center of sphere A )
ﬁ—f . A DX ' (111 5)

Thus, macroscopically, the particles literally pierce through the
fluid without causing perceptible fluid motion, while the force ex-
erted on the fluid by the particles is balanced by an ove fall presslure
gradient. |

Near sphere A » however, the velocity and pressure dis-

turbance is given by the solution of the ""screened'' Stokes equation.

V- U, = o
Ve = p VIEL - AW (11. 4)
The term XN Wa represents the body force exerted by the particle

cloud on the fluid if the relative velocity between fluid and particles is
d. . HO\.vever, for the problem under consideration, a particle
exerts a force equal to B  when the relative velocity is u, .
Therefore, A = ~D . Hence, equation (11. 4) becomes
up -

—_

vV U, = @
L — np : (1 1. 6)
N - == u
The boundary conditions on Al \ f-'.. are:

(1) disturbances vanish at large distance from sphere, i.e.,

u“ru f“-'e Y- = oa
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(2) the no-slip boundary condition on the sphere must be

satisfied, i.e.,

] — —

T_T=Mf¢u,\=o or Ug = UJ.X- ‘at v o= a

To solve equation (11.6), let e’ = 2= . Then, by means of
the general solution of '""screened' Stokes equation of Appendix D,

the solution satisfying the required boundary condition is found to be

]g,_ = )\'\-&3 [ 3 + 3 + |l UJ' Cos ©

) < ~k(v=-)

Wa = .—2,, 5\’;( 3 + 3 -0-')-5“(__'_.4- I )-E. u, cso
b ottt ol & o Rl e ¢

3 - s Yen)
-+ -‘ZTQ 2 ( 3 b +')-.3_°“. ol &ﬁ(—).c. ]u',a-;e
avd ALl s kLI (11.7)
From equations (11. 5) and (11.7), the stress components on
- the surface of sphere A are

Gvy=-~§ﬁf°‘ur ! + |+ ola ces O
X ol A

G—;o - 3 P_‘ o"uF [ 1+ D‘_,..] .r,—:éJ (11.8)
S -~

Hence, using (11.8),

T

D = drag = 6‘1‘/40- Ur ( P+ oem 4 gt N ) (11.93.)

-

o o e = Fe+r 3f 8c-3c?

- § c
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a 3
where & volume concentration of solid. Therefore,
drag on spherea ]M Up [ 9¢cts/8c-3c" 5‘ (11. 9)
noat -6 <

Also,

(screening constant) A = -,&.-[ aers /8e-3e Jl (11. 10)
‘ . L - e

The drag formula, elquation (11.9), was obtained in 1947 by
Brinkman3l (see also references 32 and 33) through a different argu-
ment. Brinkman's original treatment in rn.any respects, however,
was rather obscure. In addition, he was uncertain whether the vis-
césity in equation (11; 9) should be the viscosity of the pure fluid oi‘
Einstein's viscosity coefficient )‘*' = JELeadige )

Recént experiments performed by Hoppel and Epstein?’4 con-
firmed that equation (11. 9) is valid for the whole range € < o-§
even though they rejected-B:inkman's equation as arbitrary and non-

rigorous.

Motion of a Single Particle

The drag formula, as given by equation (11.9), was derived
by considering the motion of a cloud of particles. Now suppose all
particles, except one, are stationary, say, sphere A . In this
case, let U x be the steady velocity of A . Then, with respect to
a coordinate system fixed to A , the solution of the bulk fluid

equation is
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{11. 11)

Again, if U.., /;, is the disturbance associated with sphere

A » such that near A the actual fluid velocity and preésﬁre are

T .0« b

(11. 12)
e o S
U. and Pa are to be found as the solution of '""screened"
Stokes equation
v. D“‘“_ - 0
— . (11. 13)
vf:..=f-vu.h-/u..<u.~ -
where is given by (11.10).
The boundary conditions on U. and f:.. are
(a) U.o. -0 /jh =S o= Lol
(b) -l:r £ U; + -J‘:L = o© Y = e
or U = ux (11. 14)

'The solution of equation (11.13) satisfying (11. 14) is the same

as given by (11.7). The stresses acting on the surface of the sphere

are
' Oy, a2 = 3ep U J .
v ___.ZA (o«a;*'* _C"_sfh)c s 0
Cye = —37&‘:1—U ( s ;—% ) s~ o {31 15)

From (11.15), the drag on sphere A is

l

D = § " a I+ ot o
2 ( =
/)*U:[ ‘!c.+J./..9c.-Jc. Ty
AR S &

(11. 16)
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On comparing equations (11.9) and (11. 16), it is quite clear
that the drag given by (11.16) is smaller. The difference between the
two formulas is physically obvious and is the direct result of the
overall pressure gradient which exists when a cloud of particles
moves through a fluid. Here, it should be pointed out that this dif-
ference clearly illustrates the necessity of an overall or bulk fluid
consideration in the determination of hydrodynamic forces acting on
spheres in particle-fluid flow.

Fundamental Solution of "Screened' Stokes Equation

The '"screened' Stokes equation formulated above shall again
be used in subsequent sections. Because of this, it is meaningful to
examine the nature of this equation by obtaining its fundamental solu-

tion. Consider a disturbance characterized by a point force acting at

the origin in the Xx - direction. Then
'V/’ E /U v —-/ADLLL—A.*'D-'E i) {11, 17)
W b (11.18)

Take divergence of equation (11. 17) and use (11.18),
V‘/J = p 2 (%)
JdX

Therefore, as in Section 1 of Part II A, one obtains

EeoThepa i@y » B [ 2 lakiser, ax {0
: #7 ) 3

¥ \-3

W j I P:(tOJ'J m{k % 3:,‘

P:(l.-nDJ ";4’ g } ‘ (11’ 19)

From equation (11.11)



—1
vV U - e

‘U - _E

e

, i
Therefore, using the Green's function of Appendix A ,

=¥ "7‘\?:(“'
= =P et 4 : -
L = ol s E(R'Y) £x (11.20)
4 BT

It is easy to verify that W given by (11. 20) satisfies (11. 18).

To integrate (11, 20), the representation of

-t sy
N T

| —t
R 15 - %I

in series form, as given in Appendix A , may be used. Also, for
integration over the radial part, formulas provided on pages 79-80 of

reference 35 are useful. After integration, one obtains

— g , -l -t
U= x_D {"Q‘ +[—'-‘“"" (14-_3—-0 g.)} P:‘-““’.)}

e 2 ¥ aty? 3y v oty
-y -
§ 7 b - ! o= = [ IR 3 3 + 3 ) P:\nlox c.u-lr*
okt o acy e LAt
~ oY
- T N S [,+ 3, 3 J P s s (11:21)
eyl L e §

Equation (11.21) shows clearly the manner in which the dis-

turbance dies off. The longitudinal component of the disturbance de-

cays at a rate of —i—,— as compared to - in the case of Stokes

equation. The transverse components are exponentially damped.

The screening length is approximately equal to =% . Therefore, in
a particle suspension, disturba.pces are localized. They are screened
by the parti‘cles and tend to decay at a fast rate when propagating

away from the source.

Particle Cloud with a Distributed ISize of Particles

In the derivation of (11.9) above, a particle cloud of one size
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particles was assumed. Now consider the case of a particle cloud

consisting of particles of a range of particle radius such that the

number of particles with radius ¢ is JLca-) doe | a, 2oz a

&

Let D(r) be the drag on the particle with radius o . Then

the screening constant of the particle cloud is

Q.

X m ! j‘ D(a-;}cvadcr
“e

a,

where U, is the steady velocity of the particle cloud.

The body force applied to the fluid by the particle cloud is

a, o
—_ » ~ o _ v A
F e % f plo fearde - vy N2 (11.22)
ql
Hence the solution of the bulk fluid equations is
U} = i x (with respect to'co_ordina,te system

fixed to particle of radius o= )
a. -
/)f = X £ pwJJ[t-)»(q- = ul,)x, o4

The "screened' Stokes equation governing the disturbance of a

particle of radius < is

Vfa_ = f‘ v U(a- - .)"| l/(r (11' 23)
‘ L7 4 E"_ = 0
The corresponding boundary conditions on T, /;o. are
(a) _J(.o- L ]L o ™ B Y = oo
o — - (11. 24)
(b) A = I/(_;_ - Hﬂ' a © Y = o

Equation (11. 23) and boundary conditions (11. 24) are similar
to Ua and f. inequation (11.6). By changing the appropriate pa-

rameters of equations (11.9a) dne obtains
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{11. 25)

Dt ) = éﬁrurr(:+d,r¢d,;¢l]

where

- Y an
A S ! J Dled Jﬁu-) s
i f‘ “f a,

Multiply both sides of equation (11. 25) by J[;o-; 4o and integrate

over the range of o ; then

' = 67 [M +°(,M,'-+ C'o(.l] (11.26)
47
where
a,
M, = J' J[to")ﬂ"ﬂ(a'
M~ o= J.A.‘ :Ile')a' ol o
: (11. 27)

Solving equation (11. 26),

ol w BT 1, +»/5‘7T"'f.‘* 2470, (1-2<) (11.28)

2- 3 G

Therefore, the drag formula is

Dlo) = (mpo (,+°('a-+_o%o~‘) (11.29)

where o, 1is given by (11.26).

For the particular case where there are only two types of
particles with radius « and & » then

7(“:) - . Sie-ay v n, Scr-b)

L}

From (11, 21),
M = ah/.,-* LNL

v = Na + L‘NL

¢ . AT JINLe AN
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"Hence, by (11. 22),

X, = cw (A‘N,,,qu”-r /sé.ﬂ‘(a"l\f,.r L»Nr‘_)u.\477(anl_.lo~,_;(.-.§_¢] (11.30)
a4 = 3 ¢

Also, '
: D“-'é'n'f(a.‘.lf,(l-vd.m*a(,;q.h)

DL-‘G'n'fALu (rve, b+ b ) ‘ (11.31)
3

12. The Torque Formula and Rotational Coupling Force :

Consider a particle cloud of spheres of radius o and volume
concentration ¢ suspended in a viscous incompressible fluid., Let A
be one of the p_a.rticlles of this homogeneous suspension. If A ro-
tates steadily with an angular velocity w , then the disturbance
produced by A is given by the solution of the "'screened' Stokes

equation.

v‘/,g/u jAO(H (12. 1)
i

. ® | (12. 2)

For the particle cloud under consideration, e< is given by (Section 11)

=< = . I QC‘*3/8¢.-35‘J

2 4 ~6c

The boundary conditions on the disturbance are
(a) ﬁ = o o a0 Y = oo
(b) T e oW - = a
To find the disturbance produced, let

W oo el [fen@d) |, pas
[VJ(QVJJ ® oy

{12:3)
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Then equation (12. 2) is satisfied identically.
Substitute (12.3) into (12. 1) and obtain the following equation

to be satisfied by fcvo

L 3 .
Vj[(v)—al Jtv) = 0

or
ol 2xoaf f = |
_'(_;L‘ % 5 =% ol | ) (12.4)
The solution of (11. 4) satisfying the boundary condition at in=-
finity is oy
]( " B«
™~
Therefore,
o ~evy "
u = B [—J——;- -+ i(_] L2 D X "Ev‘
¥ v

From the boundary condition at v = o

3 o a
B = a. 2
i+ o
Hence, - :
— —v
j - e — A
u = o R ( -+ u)__e A xR,
1+ ol & ¥ Y
3 A - i
% o R ( ol & i )_Q Sad B B0 _Q% (12. 5)
. 1+ o o ¥ b 1

where i has been chosen as the polar axis.
From equation (12.5) the‘stress component on the surface of -
the sphere is :
u
e
ay ¥
. (3+3xa +o'a”) 2 0 N

14 OL &

q

vu o

Total moment acting on the sphere is



Hence

torque = T 2 _3-n/1o.'(,_, i ) W (12. 6)

L(itote)

Equation (12.6) gives tiw.e torque a spinning sphere will experi-
ence in an otherwise stationary particle suspension. For very dilute
suspension, e -+ , (12.6) reduces to the well-known Kirchhoff
formula

? a - g7 /A P

Combining equations (12.5) and (12.6), if T is the torque ap-

plied on the fluid by a spinning sphere, the velocity field is given by

\3-;‘ \ ol "‘“’—-’l—'

uo- g o ( o ¥ v‘,),a Tek (17 1)
-
afl 3+ I Ko+t A

Now, in equation (12.7), keep T fiwed and let the sphere go to

zero, i.e., &« o . Then the fundamental solution of the
—_

"screened' Stokes equation corresponding to a point torque T ap-

plied at the origin in obtained.

e R -
U = __._’-—_("d‘_ +~—£—TJ_¢_ rr‘,,‘x (12.8)

d’:/u 2

Rotational Coupling Force

p—

Consider now a body force }&') applied to the fluid in the ho-

mogeneous suspension. Then thé ""screened' Stokes equation becomes

! - T YO O] [ ._:"
L Rf = CE ma B e (12.9)
By means of Appendix II A, the fluid velocity induced by ;Z.ci" is
. L
R e Sy pp (12.10)
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Now consider in the homogeneous suspension that there is a
spatial distribution of moment T&) . Each torque element will
induce fluid motion in the suspension. The overall fluid flov{'field due
to this spatial distribution of torque can be obtained by means of the

fundamental solution given by equation (12.8). Thus,

U-r - j-( o(l‘ * __‘l_“l)-e TC?')"(;?';') DtX’
B'rrf 1¥-% Ix-%'1

] —_— — } ., ’ — i
= J J‘_:“’- . Vo« Tixidx - JV:(__‘:_Q___ T | %’
e*a - — — —
j IX =% | IX-% |

The last integral can be converted into a surface integral of
—d};-i‘"
B T
% -%"

which vanishes if T is assumed localized. Therefore,

sl -ul_w:-?'l 5 r 5
By o f e ( & 9% Tith J L%’ (12.11)
a‘f"n'/* ,'\2’_’;"; 5

On comparing equations (12. 10) and (12. 11), it is clear that a
spatial distribution of moments is equivalent to a body force. This

will be referred to as the rotational coupling force, given by

Feey = L v o« TR (12.12)

A cloud of spinning pa.rticlles exerts a spatial distribution of
‘torciue on the fluid. By eqﬁ&tion (12.12), the rotational coupling
force can be calculated. Equation (12.12) has no analogue in the
s.ingle particle motion considered in Part II . This rotational
cqupling force arises solely as a result of collective behavior of the

particles.
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Equation (12. 12) above was derived entirely from a mathe-
matical consideration. However, the same formula may be obtained
by a more physical argument. Neglect the screening effect of parti~-
cles and consider a torque field béing applied on a fluid in a domain

V . Divide Vv into many small elements odv = dx ”] dz . In
general, a point torque can be replaced by a pair of equal but opposite

forces acting at an infinitesimal distance apart.

Ix

F‘Ui.‘ F-All e
vl
; l ;

P ||
F,UJ‘ & F’ (]

|

Consider the fluid element shown. If 7, , the 2- component
of the torque-field varies from element to element. F. and FE s

the force components, too, must vary from element to element. The
relation of this variation is given by
o ) )
AT, = afF; a9 -~ & F ) dx (12.13)

" Similarly, by considering the other components of 7t , one obtains
ay W
ol AF, dx - af, oy

"

ATy = aF™dx - AR oz

or
AF,:‘) = ()Ti AF‘U‘: - ‘}T:
\J\J le
AFM,I = ¢ % AFO):: - JTE
4 Z I 9 K
AF) - a7y & w < 3%

(9
X

9

g
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Now there is a net body force acting on the element v . The

'cornponent of this force is equal to

L aRva Ry o L (2T L 2Ty )
& > s o2
Similarly, the Y and £ components are
i st 3T, - Ll alg . 2L
B < e . (A Si)
or, in general,
F - wile Cuv-e T

as equation (12.12).

The factor 'Ya comes from the fact that af,’ etc. varies
.continuously. Such a factor should be included when replaced by a
cornp‘letely localized point forcé. |

Example.

Consider a fluid particle system. Assume the particles are
spheres of ?:adius a and are somehow fixed in space against trans-
lation and rotation. For the purpose of this example, it will be as~
sumed that the drag and torque on a sphere of the particle cloud are

given approximately by

Fg GT‘[AO\.“:I}
T oa mrpe (L d ) (12.14)

Essentially, in (12. 14), the mutual interference effect of the
particles has been neglected.

Therefore, with respect to the bulk fluid, the particle cloud
exerts: |

—

a drag force = - GTIAAm f
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a rotational coupling force = . .J.-r.-/u WA u (Ve -u_:,_ )
- . ¢ Enal wael o
g;‘. /A c curd Uj_
Hence,
Ppo = bim oo = Lo Bl g (12.15)

Substitute (12. 15) into the "bulk fluid' equations of Section 9;

‘ then, for steady flow and homogeneous particle cloud ( » = constant) ‘

voup = e (12.16)
AT o TR | (12.17)

Equation (12. 17) becomes

U}V_&; =-V/:j+f/; VL'-”JC -ér‘juo:,u U} -_% V‘V-U} c/M- (12_ 18)
But -
- 8 Ty - A -G U 2 -VO
Curd cw i’ v (& U}] v ]( VU.F (12. 19)
by means of equation (12. 16},
Substitute (12. 19) into (12. 17):
U}.VM; =HV./LI' +C/‘(j1‘_%_cr)vu;-éffmﬂ.uf (12.20)

From (12.20), it is clear that the effective viscosity of the bulk fluid
is now equal to .
P~ Fi 5F
However, if the particles are fixed but free to rotate, then -‘[_'. = 0
and hence the rotational coupling force is zero, and /u'- P+ o
The physical interpretation of this apparent increase in vis-
cosity is rather obvious. The fluid will find it harder to flow through

a particle cloud if the particles are fixed against rotation than if they
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are free to turn. Particles locked against rotation génerate addi-
tional distur’bances in the fluid and hinder the general fluid flow. At
the same time, they increase the dissipation rate. Macroscopically,
this is represented by an apparent increase in the bulk fluid visc‘osity

which equals +$§ G p as a zeroth order approximation.

13. Viscosity Coefficient of Bulk Fluid

In Section 3, the bulk fluid stress-strain rate relation was ‘

postulated in analogy to the well-known Navier-Stokes relation to be

g

55 = h Sy e (%ﬁ_* %’*LJ (13. 1)

Substituting relation (13. 1) into the bulk fluid momentum and continu-

ity equation, for a homogeneous fluid-particle system,

A a;t R (13, 2}
f’:’a—; . VU} = - V/‘f + /Jj_ V‘.Uf - FJ" (13.3)

| The bulk fluid viscosity coefficient Fr o in the above equa- _

tions is still unknown and is the subject of investigation in this section.
The subject '"viscosity of a suspension'' has been the goal of

many researches ever since the work of Eins‘cein7 in 1906. In rheolo-
gy as well as in physical chemistry, a good deal of work has been
published since that time. However, the so-called 'viscosity of a
suspension'' has never been clearly defined, and hence its relation to
the description of the flow field remains rather obscure. To avoid
confusion and ambiguity, the term "bulk fluid viscosity'' shall be used

throughout this section to designate a material constant of the bulk
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fluid which characterizes the mechanical behavior of the bulk fluid by

relation (13.1). Thus, }M; is a quantity which has a meaning only

in the macroscopic sense, as described in Sections 9 and 10.

Review on ”Viscosity.of a Suspension''

The hydrodynamical trea£ment of yiscosity of a suspension,
as initiated by’Einstein7, has been extended by many research work~
ers since 1906. Among them, J'effery40 was the first to apply the
: saﬁe technique to ellipsoidal particles. Later, in 1932, Taylor%l
~employed an essentially similar argument to deal with the problem
of the viscosity of a flui‘d‘conta,ining small drops of another liquid.
Since then, particles of various shapes have been treated by other
authors, yet the mathematical treatment and physical idea are essen-
tially that of Einstein. This so-called ""method of Stokes-Einstein''
has been outlined in great detail By Sadron42' and Frisch and Simha43.
In 1938, Burgers took a substantially different approach to this prob=-
lem (Burgers' method is aiso explained in references 42 and 43). To |
a first approximation in ¢ , the volume concentration of solid parti-
cles, the above two methods do agree. For suspensions of relatively
high concentration, many fofmulas were proposed, e.g. references |
45 and 46. However, the methods used were invariably based on
small perturbations of some basic hydrodynamic flow field. The re=~
sulting viscosity formula is generally expressed in a power series of

¢ and ié seldom giveﬁ beyond the term involving <¢* . Also, the
coefficients of the various term‘s,as proposed by various authors, do

not agree. Indeed, even the very basic physical mechanism of dissi-

pation involved is still a matter.lacking general agreement and hence



~122-
making '"viscosity of a suspension' very much a subject of present
day research.

Viscosity of Bulk Fluid

Consider a ﬂuid—particlé system in which the particies are
spheres of radius &« . Assume that the inertia of the particles is
very small so that the particles always traﬁslate and ;otate with the
same linear and angular velocity of the bulk fluid. Thus, the fluid-

particle system is essentially homogeneous. For such a system, the

gross particle-fluid interaction force, F{. , is equal to zero. Hence

the bulk fluid equations of (13. 2) and (13. 3) reduce to

—

LAl (13, 4)

— —

‘()f f"’l o= V/Lf * M V"a} (13.5)

.

Consider the case of simple parallel shear flow. This is
given by i
Pt oo
7,7; = jz b X (with respect to a coordinate system -
fixed to a sphere) (13.6)
which is a solution of equations (13. 4) and (13. 5). From equation
(13. 6), the angular velocity of the bulk fluid is -

—_— ~

u..)f -=—|:Du"‘e uj. "-%—Z
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By assumption, this is also the angular velocity of the particles.v

—

wyp = = g 2 (13.7)
Let A Dbe a particle of the two-phase system. Then, near

sphere A , let. U. and f:.. be the disturbanée produced by A

on the gross fluid field. As in Section 4, the actual fluid velocity and

pressure in the vicinity of A are given by
‘:r - TJ.; + U .

| (13.8)
o= Py fe .
Now U. and J~ are described by the ''screened" Stokes equation of

Section 11:

R - PV - pa o. (13.9)

where

o(_,_|__[?cr3/8c-3c.'
a “4 -6 e (13.10)

The boundary conditions on the disturbance are

Us =o P Yo e (13. 11)
’u"-‘a',+"a;=3!,,7- = a (1‘3;12)
Using (13.6) and (13.7), equation (13, 12) becomeé
= o
;‘,_ - _jgas.;@,..u;.J.ﬂ* 2, [fﬁ(‘.;‘acucp-'-;-m?‘a)]
*‘":f‘ [ ; r.aao;.:.z}l (13.13)

or
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— - a ' . . K , R
Lla 7%— Pl<" i) +—EY "'7L_6a' ;égiP‘Lu‘oJl CdJ% £s
- ._‘P———‘\ P’ (e S o ;
6 %.A O = i é FEIP
To solve for .. f:-. , the general solution provided in Ap-

pendix D may be used. Therefore, let

- A {_S_‘r P:[,l.ll') C.ot#)l\
v

— A
L, = £, (B [ 6 K‘/’.(")_ JD,‘twlco "“;9

¥ L8

. _{B { % [% ::_l_r(ﬁ K-'/a(“”)_j—g P;ce..w) :‘u[:l_, A(%% r‘:'(""“ c“ﬂ%

- {-3[ 1 i_(ﬁkx‘“;’)ﬁf‘“"”';ﬂ-ﬁ‘[ ' P:““am;‘#H (13.14)‘

)
* + vin6 dvy R
Impose boundary condition (13.13)
[
A cp o™
J
< [s K%‘-“‘J' d@(K%("")*‘K%(“))] ) S
{13.15)

A= ot C Kgeen) B &
3 A %

(-5

In polar coordinates, the stress components are

g, = )-/J‘ 2 U,
4+

sl
Q@
n
v
~
—
«|-
Q. (o
¢|<
(-]
+
¥ |<
<
S




-125-

o . - I SUs L U9 | L‘Pcu‘f‘e
¥y /u ( reko oy 5 >0 ¥ )

(13. 16)
Ve ( Ju@ - ] JU. Uy '
R L yak 6 28 o )

From equations (13.6), (13.14), (13.15), and (13. 16), the

stress components of bulk fluid and disturbance are
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where superscript J( and & denote that of the bulk fluid and
disturbance, respectively.

The dissipation function in spherical coordinates is

3 . B 4 » »
[ R A R K A Y A (13.18)

The dissipation function due to the presence of particle A is

~ ..l - i
§A =_l__[ (Ujrf‘ oy ) (O—oofﬁa-;g) + (C"«FI *‘0}43‘\“ zca;'j*o—f,_)
& i
A i
» 3005 e Ty s atogt e ogly - con st ot ety
™

Pt

¥

~a gty alogy

Total dissipation due to the presence of particle A
= y 9-'5-’“ odv (  V,= volume outside sphere A )
Y,

. _ .
Y - - > v
- _f_jf [(07,“; € LUy O 1+ ATy 14 stgy 8
% Fdy : .

using (13.17),

L3

P dvon_T o [5«“? X } " (13.19)
Q + 18(ata) + 3Ccata)s el Bupaf
Y, : 3 "

»

q (4w )

Since near sphere A actual field velocity is given by

Dissipation per unit volume due to T.T;_ part of U

% - ;}‘ (o7 Y Cimed = poETeme
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actual dissipation rate per unit volume of bulk fluid

» 4 * 3 v
= /-AJB (i =¢ ) + Rfjﬂﬂv’tjﬁ +T"//“-ﬁﬂ[;s’,_ec«-\+/8caa),,sc-uJ’J

4 g irsas

‘ 3
- /U.Fh[lfc(.l-$+ 5 (oto) )E
3 . JL (¥ XA (13. 20)
However, the actual dissipation rate can also be calculated by
just considering the bulk fluid.
éf = /Jf P. per unit volume . (13. 21) .

Equate (13.21) and (13. 20)

. 3
tff - 4 E B [-7"5 " £ (i) [

./“ la ( 1+ ad*)‘
But
oo = < = QC "5\/‘ 8:-3(:‘
A - 6 e
Therefore,
. -7 3
(_/if_) - 1% © (4-5 +_5_e___) (13. 22)
[ deak Ja(ie &))"

In the above analysis, the particles and fluid elements are as~
sumed to be in a state where both relative angular and translational
velocities are zero. This corresponds to the condition of minimum
deviation from dynamic equilibrium and hence minimum dissipation.

" If Brownian motion and possible particle collision, etc., are taken
into cbnsideration, the rate of dissipation would then be higher, re-
sulting in a higher M4 . Thus, the expression obtained above
(13. 22) can be regarded as the ideal viscosity of the bulk fluid cor-
responding to the lowest value possible. It should be‘pointed out

here, however, that the inclusion of Brownian motion, etc., should
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be done in such a way that the bulk fluid remains homogeneous and
isotropic, for otherwise the concept of viscosity of bulk ﬂuid would
be rendered meaningless. In actual experiments, the ideal state of
zero relative angular and translational velocities can never be |
achieved, due to pé.rticle collisions, wall effect, etc. As a conse-
quence, experimental data of fy¢ should be higher than that of the
ideal value. |

The Effect of Collision

In the above analysis, the particles are assgmed to rotate
.-and translate with the same velocity of_the fluid. However, for par-
'ticles of finite size, such a state cannot be attained. Owing to the
difference in velocities between adjacent layers of fluid, and there-
fore the particles, collisions are inevitable. The direct result of
these collisions is to make the particle-fluid system deviate from its
ideal state of minimum dissipation, giving rise to an increase in the
value of f4 . !

To account for the increase in flf due to collision, a de=
tailed analysis of the process of particle-particle encounters Iis nec-
essary, but for sufficiently viscous fluid ‘and light particles, it is ob=
served in many experiments that particles do not actually collide but
just slip past by one another. In the following, this slip-by mode.l
will be adopted. To carry out the analysis, it is necessary, first, to
find out the average deviation of a particle from its dynamic equilibri-
um state with respect to the fluid at which felative rotational and

translational velocities are both zero.
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Slip-by Model

To reduce the complexity of the collision prdcess, the follow-

| ing simplifying assumptions will be made:

(2) the displaced path of a sphere during an encounter will be

taken as a semi-circle;

(b) during a collision, a sphere will be displaced sideways
in the 2 - direction as well as vertically in the i =
direction. A sphere moving sideways, however, will .
have a higher probability of collision. On the average, it
will be assumed that,for the purpose of calculating the
mean displacement of a sphere from its dynamic equilib-

rium position due to collision between adjacent layers of

spheres, one may consider the spheres of each layer as
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long cylinders. However, the collision cross-section for
each sphere will be taken as a circle of radius 2 a .
By assumption (a), the average displacement over the dis-
placed path is

.
fv sen® A f Yisiho Ao

" - . (13. 23)

v ™
fd..e‘ £vd0

Consider a particle moving in a straight path. Let X be the
.probability éf a collision. If the particle moves in some curved path,
it will spend more time per unit distance in the x - direction, and
hence thé probability of collision increases. The relative ratio must
be proportional to the time the particle will take to travers‘e unit

distance in the x - direction. Over a path in the form of a semi-

circle, a particle will take :'—;}1 seconds to travel a distance which
will otherwise take =]~  seconds. This gives a ratio of X ., On

combining this with equation (12. 23), it is clear that the average dis-
placement due to a collision can be computed from the maximum dis=-
placement over the collision path if the time spent in collision is cal-

culated on the basis that the particle is travelling in a straight line.

1

Collision Cross~-section
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By assumption (b), a particle will suffer a maximum displace-
ment over the collision path equal to x = a- J/,  due to a collision
with impact parameter Y . The probability of collision with im-
pact parameter ¢ is proportional to the volurﬁetric rate of flow
through the strip 0(1 relative to the particle, i.e.,

' Pely)dy < /W oy
or, in terms of Vx 3
Plx) dx “ Ala~-x) Jaax-x" ox 0 < X £ a

normalizing

Patwidx = BCa~nj [jonx" dx

“'l

From this it follows that the mean displacement is

;( = f X Cxidx = ‘(/—-%lz—)a‘ ' (13. 24)
°

A particle which is displaced a distance X from its dynamic
equilibrium position will experience a slip velocity }3? with respect t‘o-

the fluid and, by formula (11. 16), a drag force of magnitude

/n_d\" T

B ,,.(3&[ 9c+3\/8c-3c‘}(,_<_) (13. 25)

This gives rise to a rate of dissipation of

force « Slip VelOCitY = _7&'&152_1 { C+3) Be-3c* ];(’- .
3

n; % 4= ¢ e

On the other hand, a particle travelling in a straight line will
spend a certain fraction of its time in collision with a particle moving
through the upper half of its collision cross section. This fraction is

~equal to the volumetric ratio of particle to fluid flowing through it, or
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c for a homogeneous particle-fluid system. After accounting for
collision with particles above and below, the extra dissipation rate per

unit volume of bulk fluid is

.. =/xjs‘;(,-.§.‘z){ get3/ge-3ct J (ime e (13. 26)

A C

Adding this dissipation rate to equation (13.20), one obtains

d i
H# - ;+(°;.g+-5_(€':___.;)‘:+ )(l-..j,_zr.)xgc.uc)él (13. 27)
rl Ja2rl e &)
where

& = [ Fe+3/0c-2c 1

P

14, Momentum Exchange Between Two Streams of Particles of Dif-

ferent Size Moving Relative to One Another in a Viscous Fluid

The purpose of this section is to give a very elementary ac~
count of the dynamic viscous interactions when two different streams
of particles flow past each other in a viscous fluid in slow motion.

As the goal is qualitative in nature and serves only to lay down the
fundamental concepts of the phenomenon, an attempt will not be made
to give a full and detailed quantitative analysis of this complicated

process.

Viscous Collisiop

Consider two spherical particles A and Es‘ with radii a
and b moving with velocities Ua and Ua , respectively in a
viscous fluid as shown. To a first approximation, assume the drag

on the particles to be in the x - direction. This is a fairly good
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-+ .
& } Ward and Whitmore (1950, Brit. J. App. Phys. 1, 286)

Robinson (1949, J. Phy. Golloid Chem. 53, 1042)

. glass spheres in S. A. E. No. 30 motor oil
x glass spheres in S. A. E. No. 50 motor oil

A glass spheres in castor oil

Vand (1948, J. Phy. Colloid Chem. 52, 277)

o glass spheres with No. 3 Ostwald viscosimeter

- glass spheres with No. 4 Ostwald viscosimeter

E®.13-27

-};1_*-: f+a5c

C

P4/p vs.C DIAGRAM
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A,e

approxima‘tion to the actual case of two streams of particles moving
in the x - direction, for in this case, on the average, the drag in
the y - direction is zero.

By means of the ""point force' approximation of Part II, the
drag experienced by particles A and B can be found.

For particle A
Viut = Uy De.{x‘+_l_j

T 1T
For'particle B
\/JM". = UB oty ..24_.[_1‘_*_'." .
87-'/" v? ¥
Hence
DA=-67\‘/‘“UA-SDM[><‘ ot (14.1)
C A4 v? ¥ ‘
Deg = « 67 £U3-3DAL[X‘*1 ‘
' g = it : (14. 2)
Solving (14. 1) and (14. 2),
- g
DA=-évr/u¢Un+"ﬁ'“°" Y (~7 ) (14. 3)




-135-

3

X
b, = -cwp by v Habmp U (5 ) (14. 4)
’ ab ¥ oeall”
o ql& {%’_*—V—J

Equations (14.3) and (14. 4) can be rewritten as

a =
DA s~ Cmpally * -:Tf,da\l': U, ( g r)

Tatb 3 T
) - L2 . =
' 6 (Y" V) (14.5)
- —‘:—wfal;(u.-UA)( :<] ++_)
al L 2
k= q:a _-:%"_YL-)
. '
B - gl us e Tepatu (2 0d)
i i Gab ’X"._ l)"
- e
16 Y & (14.6)
p gt v (Se e )

r- I (Y
Equations (14.5) and (14. 6) have been purposely partitioned

into two terms. The first term will be called the "stationary interac-
tion term, " for it represents the drag.that wouldybe exerted on A or

& if the other particle is moving at the same velocity. | In the case
of two streams of particles flowing past each other, the ''stationary
interaction term''depends on the number density of the particles alone.
The second term represents the dynamic effect due to the relative mo-
tion of the particles and shall be referred to as the "viscous collision"
term.

The '"Impulse Function'

Consider two streams of particles flowing past each other. Let
A and B be two particles of the two streams. To a first approxi-
mation, assume that the path of & relative to A is straight and also
that the relative velocity lea is constant. (This approximation is

justified if ohe is interested in the overall effect.) Further from
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A a

equation (14. 6), the collision force is significant only when A and X
~are relatively close together,and during this span of time one may
consider the path of B to be sufficiently straight. ) If -}A denotesl'

the force acting on A due to ''viscous collision' between A and & ,

then, from equation (14.6),

j[ = —i—-‘ﬂ"r&mé UBA (%*—&) (14: 7)
? ‘ JQ’a‘ x* LN ‘ )
ke t§ (_?’—‘*T)

In the course of time, B will move past A and vanish into

infinity. The impulse given to A at time interval a4t is

dla s ][,, at (14. 8)

From (14.7) and (14. 8),

5 v
9 ; [ X . sl l
IA = L o L Tf usa (xte :')"JM. Ot -J".)'/‘. d .{.
j Fab X i ! o /¥
. o 46 t.x"rnj"j"‘_ (.x"«-;-{"J/'S

where Y is 'the impact parameter and a7 is the collision time.
But

u & ol %
8a -y

Hence
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K 5 e T M
e il Gt X et E IS (14.9)

g L Gy q.'},‘ CasBa gy

Now if the number density of particles 8 is ~y , then the
collision frequency with impact parameter y is

oA Niy) = 7 Ne Usa 9y

Therefore, the total force acting on particle A is

olFn = Iacobys d Ny,

Tmen S'-J’ 3/n
(L1 +y ) {x"r 9
FA"" IB.:.L'IT'.'/J Ny U“S-;J} : v - o x
Cxtey™) - 7_‘_':.(;1.:‘.:7‘3
s i e
If particles A can be regarded as a continuum with number

density ANa , then the force per unit volume acting on particles

due to viscous collision with B is

3--‘ gty)
3/
* Ca gt Cxtegts
F, = ,3..Lw/.. N, Ny 'UM,( 941 e - ‘f‘ — X (14. 10)
(.x‘+~j‘1-._lfz_(n<471 .

,j.‘,; .

where the cutoff distance may be taken as
T e 2= viscous screening distance, Se(V:tion‘ 11,
f' =~  (viscous screening distance)k - J"

Equation (14. 10) was obtained from consideration of particle
pairs only. It provides a rough estimate‘ on the effect of viscous col-
lision between two streams of particles moving relative to each other.
That Fu depends linearly on  tJsa is characteristic of viscous

force.
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Density Effect

One of the important phenomeha of a particle cloud, as has
been analyzed in Section 11, is the effect of viscous screening or
density effect. In the derivation of equation (14. 10), this was, how-
ever, neglected in order to show clearly the physical phenmnehon
involved. Here, it would be assumed that the number densitiés of
the two streams of particles are so large that single particle-
particie encounter, as dealt with above, is predominated by density |
effect. With this assurﬁption, the "écreened” Stokes equation can
once again be used.

Consider a stream of particles A moving through an other-
wise stationary, viscous incorhpressible fluid and a stationary cloud
of particles B . Let - D, x be the drag on a particle A and
“ - Dg % be the induced viscous forlce acting on a particle & due
to the motion of particles A . In this case, the solution of the
bulk fluid equations with fespect to particles A is

}éf (N, Dy + NyD, ) X
Uy = - Uap X (14.11)
The disturbance /5.., W. associated with a particle A is éiven
by the solution of the "screened' Stokes equation and the following

boundary conditions:

v/é* . u VU - P o U
V.U, = o : (14.12)
e
Ug = o ™ = oo
- w—— —
o= Ll‘-i-uf = o o =0

where, from equation (11.30),
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C7 (& Not b N + ‘/347,-‘(“'(\1-_4. ALNA.‘:.IO z#-v(ﬂh/;fk'\h.)("i..‘&)

o = _
2 -3c (14.13)
The solution of equation (14. 12) is
— A 3 3 o -~ Y
U, = =, _‘L.l‘f-r_._.. SJ-S‘.-‘Q {.._'_4- "j.a_ i ces 8
b s olh tat ot > o v
+—£a p_'['+ - SJ- g% :‘-[ P S _«-10‘ o ®
av? ot VAt 2 ot r " o< v? - J CL A (14‘- 147)
so that
u.,‘ = U, ceas8 - Ug 5.4 8
3 P 3 co(¥-e) ; [ ~ )
= & e 2 L2 )-8 (___. U, (3ces© -1
ot ( oten +a¢"a-') g Y ar ) Gl
-t lV=n) .G (14. 15)
+ 3 a -2 U"a s.~ O
2

By means of the approximation of equation (3. 41) of Part I,

the force acting on particles & outside the volume of sphere § is

]LQA G-rr/-.-LN& fu“dv-
Ll=a=¢ |

J“f\lP“LNbUAa-“’- o+ o)
<"

it

let g—— a

(14. 16)

j‘aﬁ = r'lq'lel“ D'L

ol

NL Uas <_1+d§)

"Hence, the force acting on particles &  perunit volume is
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Fon = gemtpnb N Use [ 1 ttares | (14.17)
/ ﬁ(‘. -
where, in equation (14.17), ¢ has been put equal to —"i-:—‘— so

that Fsa is completely symmetric in « ., b .,

Direct Contact Collision

In order to compare the importance of momentum exchange
due to relative motion of two streams of particles through viscous
forces and direct contact collision, in the following, calculation

would be made based on the classical hard elastic sphere model.

Let U, > U. , then, in the center of mass system, the ge-
ometry of collision would be as shown. The velocity of the center of
mass system is

LJ =2 M,, U,,,,\« h~y Ub

< M

(14.18)

W, « Wy
The relation between impact parameter y and scattering
angle o is

S-.-l\ e T I “ cos O (14:.19)

at+b S
Number of particles with impact parameter between g and

r-dr * vf} striking A per second is
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d Niy) = .nrjolj Ny | U Uy

Therefore,

AN(e) = T N, LU -uU_| (ﬂ-"'BJL L-:.._f}_a-'—u.ﬂ. do
Y

Hence
L NGO - N U U [ Catb)
AN B : 4{ (14. 20)

For a B - particle scattered into the angle & , the
change in forward momentum is
A f’i = A, [ Up- CUL-Ugn) Cos8 - U,.,..l
- W la ML (U UL) (i~ tes )
Mo+ wl
Therefore, force acting on particle A s
g }ahd(a)l A} s,
o T Cath) Nymamg | U= uUal (U-Uy)
b b E s (14. 21)

Moo+

From (14. 21), the force exerted on particles A per unit

"volume due to contact collision is

Fop = wlacby Nung mame JU- Ul CU-Ua) (14. 22)

Plg + Wy
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15. Thermal Conductivity of Bulk Fluid.

The aim of this section is to describe the thermal transmis-
sion property of the bulk fluid from the known thermal properties of
the fluid and particles. It will be shown later that in the treatment of
transient heat transfer,r the introducetion of a complex thermal con-
ductivity would simplify the mathematical description. However, to
“build up aﬁ understanding of the problem, the steady-state case will

first be treated.

Steady-State Thermal Conductivity

Consider the case of a homogeneous particle - fluld system

at rest. Then, from Section 9, the bulk fluid equations reduce to
i T (15, 1)

Now, the steady-state thermal conductivity of the bulk fluid will be

defined by
- S =1 Ew
g - v ga‘{'-ﬂf g ]7. V T
Tt » f ¥ LB, 2}

4

where Vv is the volume defined in Section 9.
Substituting (15. 2} into (15. 1), the governing field equation

for T.} is

V*'@ = o , (15.3)



-143-

Let
hl’- = thermal conductivity of solid particle
kR =  thermal conductivity of fluid
e o= o < n volume concentration of particles
n - number density of particles

Take a coordinate system with origin at the center of a parti~-
cle A . Consider the case in which the bulk fluid tempe rature

distribution is linear, i.e., Ty« T *f»c , which satisfies (15.3).

Assume that the number density of the particles is such that,
as a first aiaproximation, the mutual influence effect among the parti-
cles can be neglected.

Let

T ™ Vé.ctual temperature of particle A
T = T;L + T, = actual temperature of fluid near A
Here, T may be considered as the thermal disturbance produced
on the fluid associated with the presence of particle A .
From Fourier's law of heat conduction, T, and T« satisfy
hf V‘T’F = o Y-<' a (15. 4)

12. V~~‘,‘n_ = o — > a4 (15.5)

To determine “Ti. and Ta. , one needs to impose proper
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boundary conditions on them. Since T represents a thermal dis-
turbance, it must die out far away from A . Let Ta=o at v = S:
where S- >»>a . Thus, the required set of boundary conditions is

(a.) Ta = o ol g

(b) I Tf’ is bounded
(c) continuity of temperature field (15.6)
T o= TJ’ . TR o

(d) continuity of normal component of
heat flux vector at surface of sphere,

?., continuous at v = &

The general solution of (15.4) and (15. 5) is

o

Tn. = Z (A‘rﬂ+ﬁL)P‘(LOJOJ
Y'-.I
FET ]

a3

T .Z(c,fi; Da_) P, censo)

Y.ro .

I3

Impose the conditions of (a) to (d); obtain

A_‘ = &_, = C‘ - D" =2 b _f> {
A].SO: l

A, = L]

B, =

C. G T°

k.
B, - p (g -t)
2
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K, = p (= 55)
A-E!—(l-o— Lhi)f(—z;-r)

Therefore,
h
T, - JP(,_ o) reeso . B (_;;;"") 58 (15.7)
3 e ] ’ |
_ST(;-r ..z_h’.)... (_-"'-—P-l) —i;-(a-' zf +"i.";('é.‘r ) v
ey L4
Tya T, + | VP(‘“L“)( a! S‘) )r‘ws@ | (15. 8)
T2yl )
al hep § r

It is clear from (15.7) that the rmal disturbance Ta distorts
the isotherms of the temperature field. The total heat transport due

to this distortion is

- - 3 Ta v B e - '1__&-‘ -k
e /c.g‘_____a _fsﬁ_‘(g Y h (1 Tq,')f

3
. 2k .
—E__»('vih_'.'“Ch, ')

Let ¢ — -
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7, (T — = /LJI% ("~ &y) 5=~ (15.9)
(.:-d- ____.lh’ )
R
Ta = : (T -t ) eese (15.10).
| k. L ’
Py ( b 211,) L
A
T, = T ol " op— (15.11)
l"‘.l.!}:_.

On using (15. 10) and (15. 11), the integral of equation (15. 2)
can be evaluated.

(g | g

. \74 & Ve , (vf+vf-v)
v v v ’
- )T =
= IL‘Y de dV - !LP g_%_l.f.e‘\f
Vf vl’ >
A4 v
Therefore,
f"'—*h— x '3!'.
_/311)(- —/ﬂdpf ) 8., hpu-co- hpep 75 (15.12)
b x h ' )+ B2
by by

Hence,
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&
sz - ka2 |, ack | (15.13)

Secondary Polarization

The value of h—f obtained above, of course, holds good only
if ¢ is small for that the mutual interference effect among particles
has completely been neglected. However, before an attempt is made
to extend the above analysis to account for this, it is found that it is
helpful first to summarize some of the aspects of the present problem
demonstrated in the preceding section.

From equatiOn‘(15. 10} it is clear that the insertion of a parti-
cle into an otherwise homogeneous fluid medium produces a thermal
disturbance radiating from the surface of the particle. The pattern
of the disturbance is typical of a dipole field. For simplicity, one
can regard-a particle as being transformed into a thermal dipole.
Such a phenomenon will be referred to as thermal polarization. The
strength of the induced dipole is proportional to the local temperature
gradient, B . Further, the field associated with the induced dipole
distorts the original temperature field, resulting in an enhancement
or feduction in heat transfer. The amount of increase or decrease in
heat transport is proportional to the local temperature gradient or
the dipole strength.

Now consider a cloud of particles, each being polarized into a
dipole. The thermal disturbances associated with these dipoles will

set up thermal gradients which tend to further polarize other parti-
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cles. This further polarization, whic:h‘will be referred to as second-
ary polarization, is the mutual interference effect of the particles,
and is now going to be accounted for. In order to reduce complica~
tion, a "'dipole approximation' will be made in the following analysis
to the effect that a particle can only be polarized into a dipole, | i.e.,
all higher order poles can be neglected.

To see the necessary modifications which have to be made to
account for secondary polarization, first consider the particles to be
infinitely apart. Then equations (15. 4) and (15.5) will give a com-

-plete description of the temperature field. Now bring the particles
together. It is clear that this will not affect equation (15. 4); indeed,
the only necessary change that is reciuired is in equation ‘(15. 5)
whiéiﬁ describes Ja .

From the remarks made in the preceding paragraphs, it is
known that Ta will tend to polarize all other particles;, which will
in turn tend to enhance or oppose the flow of heat associated with A .
Therefore, in calculating 7“‘7"’ » equation (15.9), one should use

hj- instead of k , i.e., one may regard that outside the sphere

is a homogeneous medium characterized by a thermal conductivity /1} =

Z,;(T:.J = - /2-3( 11:* av
I?l-‘/l!dA

Hence, instead of equation (15. 12), one has

' h. 3h
‘Lf " -Af("T!>C « hyi-ny s _fye TRy (15. 14)
{ -+ 14._&_‘,; I+2_:.L—

-
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Solving for h‘f s

hy o b2k hy +ac Chy-hil | (15.15)
Y'krae:k—c(.lzr-hJS

Equation (15. 15)* agrees very well with experimental data ob-
tained by Sugawara and Yoshizawa48. Comparison with their experi-
mental results of glass balls in air and water is shown on the follow-
ing page.

The Complex Thermal Conductivity

The case of steady-state thermal conductivity of bulk fluid has
been dealt with. Here, it is intended to generalize the result above
to unsteady thermal conduction. It will be found, as will be shown be-
low, that it is advantageous to introduce a complex thermal conduc-
ti&ity and to carry out the solution of this type of problem in the
Fourier transform plane.

As i.n the steady state case, consider a fluid-particle systém
of vast extent and fix a coordinate system with origin at the center of |

a sphere A which is located at X, as shown. As far as

sle
N

Equation (15. 15) is similar in form to Maxwell's formula for the
electrical conductivity of a heterogeneous media in which mutual in-
fluence among spherical particles has been omitted. 47
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WATERZ SATULATED

06 -

Atz SATURATED

hf. vs. C DIAGRAM

X EXDPT. RESULT OF SUGAWA A Audo YOSHIZAWA (41)
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sphere A is concerned, one may regard it as situated in an aver-
aged thermal field described by Tj: , the bulk fluid temperature.
Here, ¢ , the volume concentration of solid particles will be as~-
sumed to be such that the secondary polarization effect can be ne-
glected as a first approximation. -
Denote
T; (¢.4)« temperature of particle A

Tot¢.¢) = temperature of thermal disturbance associated with

particle A

so that T, and T. satisfy the Fourier heat conduction equation,
moaadte, o ow © (15.16)

Tu
ot
K'fi%_g - V‘Tf
2

(15.17)

where

f. (r = density of fluid, particle

€., ¢ = heat capacity of fluid, particle

k., 11-, = thermal conductivity of fluid, particle.

As it is generally possible to decompose a heat pulse into
Fourier components without loss of generality, let the vbulk fluid tem-~
perature be given by T - T (7, w) -%:uf where T (¥.,w) and ~ may
be complex, and T;  satisfies

- Wy <y ‘(‘f = h* V'T; _ “ (15.18)
where "—5— is the complex thermal conductivity of the bulk fluid.
swt

Since T} varies as - ; one expects all quantities to

|'n{'
vary as = . Hence, let
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sl
Tar = T.h(( ) 2 e (15.19)
T = “Tupow
Ra v > o
so that equations (15. 16) and (15. 17) become
a v
VT - L) e TL o= :
. = (15. 20)
2 , 5
VT[- o L%"_JLJ. W, = o (15. 21)

As in the steady state case, the boundary conditions on 7T,
and T. will be taken as (15.6), i.e., the conditions of continuity
and boundedness.

Consider the case where Tf depends on x only. Then
near sphere A,

_.0-' = T .
T T s s T o (31§ -

Here, the sphere will be considered as so small that in the macro-

scopic scale one can make a '"dipole approximation'' and take

"r}c’y“’,.,a)., T_}_(x.,w)*(ﬁg) (R (15. 22)

X
The general solution of (15.20) and (15. 21) satisfying the

boundedness conditions at infinity and the origin is

% .

o

T" = A‘ ‘-l-' [(ﬂ"\-’) "&;ﬁrl C(L‘h') (15. 23)

i |
I SOUA CRVCTYS Ay (15. 24)
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where H:” and J‘, are the spherical Hankel and Bessel functions,
respectively.
The conditions of continuity of tempe rature and heat flux on
the surface of A require

A,'B_,“’ J'bl

A. Hu'[gwd)ﬁ—?—m} @ _f;w) - B3, d“[(w;, /'_"P_“ial
A. _:-.' :+|.)‘/—"'-’o.1+(__‘G‘_) a = BJ [(.w.))/-_‘ 3

X x,

(15. 25)

A dHy W
bA ) oy 8 ()

k A (a{l-! A iy, A(%?‘l_ -k l&(id:._)u

=3

Solving equation (15. 25),

A, = 7:4—“‘- )
dH)’
( ke ( o(r Gt
- H, [owe 2l
b d!'. '
l "( ,((: )._
E = '}:L (X. )
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(15. 26)
and _ '
Ta, w i, }_f‘w[‘(_u-c) /‘—‘-:"S-rj « A, E—J:“[_—m-d)/&;" (’)c.so
(15. 27)

Tp = B,.J',[ (v+-:)/f_"":_:’*['.]* 3, J"[Lrw)ﬁ—;:zrja“w

By means of (15.27), the heat transport due to Ta is (omitting the

;'u‘e
factor < )

Z,‘L'ﬂ-)a_[«.ff ﬁ()r

4 A H‘,”f"“‘/a“("d“"s k., {15. 28)
3 ' & ‘

Also,
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tj;‘.o.-a
w oottt e ] e o] 15. 29)
sx e [orss [B2 ] k (
= 1‘0\!&
From equation (15. 2), suppressing the factor =« .

_AJS(%),:\, = —( 7,‘9(\/

L v

& %
Therefore,
¢y iy .
a.“ﬁ_”'_-;-(, [L-_ap![,
k+ s b 1 - v —h_r-dl i
g ===y % ko b U530)
'a'”l ab g ) ! }‘L,a!H‘ R
(J.-——‘--k H , H._"_[(,L'..——-d,_..'
A k dr e ke
g*=
where * indicates Ra. w >0
In the limit wo = » , (15.30) reduces to
’1 R
ki w0 e b - de kp - 3¢ 11[
d .S g,
PR Y hJ‘ o T

which is equatioﬁ (15.13), corresponding to the steady state case.

For RKRs: < <o 5 equationé (15. 20), (15.21) can be rewrit-

ten as



-156-
-V‘Tm‘ = M‘. e (-\-'JJ‘Ts. - ©
i
VLTJ, i LC;-)‘ Kf" (=) Tf - o

On carrying out calculations as above, it is eésy to obtain
= ¢ * |
ky (=) - h () (15. 31)

signifies the complex conjugate.

where *
IF | Kpw &'l << Ik wa” | <« 1, then (15.30) is ap-
proximately given by
‘-
kj- o k{‘{,‘__‘] + 0w }z.‘ © (15« 32)
where
 gut )g(ﬁ_u i;‘ﬁn)
b= o &c e he e
y _ (15. 33).
L
(1+ 2 k.
h’,

To account for the effect of secondary polarization, one can

Equation (15.30) becomes

i

proceed as in the steady state case.

NELASTAL . go o ok
4 1 + hp 0
JZ;:‘, =r.._c_. I?-:J, r ; - /)_ H:“ ‘o +jl(1-c)
o . 0] ' i 3[ v ] . [
LI AT WA R J dH,
v(f h ',;(, dr ke £p
Hence ' e=*
a.,ﬁl__iw -
!L(:-f.)«- C.‘lzt d" d{\' !
‘o SRR NPT YA
}L} =3 ds d e R a({v ras
k. oAy
vr | == g e e 4
1+ S 4 r, ¢ A (15.34)
- WY A | ko oodn”
0‘(‘ h’ d(- (0:--.
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If.[dﬁl.uum”i<<l : | e ¥ << |

E.J:.—_xlz.{-l/‘- *A;:“CCA“»‘}”(“-@c;{[ /LF
2h o+ hp - cChy-h Chptah)(hotah-cth-h)

(15. 35)
e(i-._;l-_ *L*LI’*“(AI'L)) 3%y k e % Ch=hy
Bp ko4 Ar-c(A...-A; s

Complex Fourier Conduction Equation

The analysis shown above reveals that )’L} depends on w as
well as on a , the radius of solid particle, in addition to the thermal
properties of the constituents of thep article-fluid system. Here, it
is intended to outline a method for soiving transient heat conduction
problems for such a system.. For this purpose, the Fourier trans-
form technique will be employed. Denoting T,(¥,w ) as the Fou-

rier transform of T; , i.e.,

- _".w{
T 5wy = J’ T (Tt e ot
so that
-q . U.N.P L) ,,'..16
j.}ce)JT£ & cae j’g‘wﬁ(_v,w}& A =L | T (Vesze Ao
by < 2T L & ¥

Consider a motionless particle-fluid system. The particle
continuum and bulk fluid equations of Sections 8 and 9 reduce to
. ¥ i LT = " _.‘
Ra v > ,'.,..._I:_, (v,u)-_f;(v,o).é,icw)vTH(«,.._;)
| e e (15. 36)

Raw <o .,‘n..b_l:-(';"m’)--’}-[v‘o). lﬂ-;tw) 'v"'}"w-c;"_w)
(’s Cs
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where (, <, = (’_f C} - C-r,,C
and 7
o ” 'tN-E ° R ,'w'é
TV Eiw bt To t2wmie goe .t TR ald oo (15.37)
f > i aw :

Equation (15.36) is the complex Fourier conduction equation
which describes the heat transmission phenomenon under considera-
tion, while ‘(15. 37) gives the inversion back to the time variable

For problems which vary slowly with time, one may use the
approximated value of }z}. given by (15.35), so that making use of

(15.31), (15.36) becomes

LIVJT;C.;‘,“")‘-i}C;‘_‘)'A-‘J"--J,*“:NE' VLT«J(-;D."")

7 {15. 38)
fc Cs
By inverting (15.38) one obtains
Pece 2TE by, e h V(2T ‘gcr,“;’m)
> t / 1t

If - Tf (7,030 , the equation reduces to

6 T o kg, T e kv LY (15.39)

( )t d‘clrn-d' )

The term k, v 2Ty can be interpreted as follows. As

(R -

has been seen earller, a spherical particle behaves as a dipole in a
temperature field and the dipole strength is propocrtional to the te-rn—
perature gradient, i.e., -}; o wmaails V'T} . If @ denotes the
amount of heat stored in the dipoles, then @ ce-af. P-F « zoast, v'T&‘

(This is exactly analogous to the relation between electric charge and

dipole where excess charge F « tendl, v-_}:-jb_{“-‘_ -)
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Thus the term k. vl%}_ is actually _J_%L or the rate of change of
] ¢

heat associated with the heat dipoles. Hence (15.39) merely accounts

for this extra heat flux which normally does not arise in a homogene-

ous medium.

Examp le

To‘illustra.te the use of (15.36), consider a semi~-infinite slab

of metal B containing infinitely many small, spherical particles of .
metal A . Let one face of the alloy slab be kept at a temperature

T Rarat . The present problem is to inquire into the temper-

ature variation after the transient period.

T= Tesmut

WA

For the present problem, equation (15.36) becomes
+

Foa T = kgcw) W e g
« Cs d
¢ (15. 40)

do T e kipesd S'TS
(;C.l e_(x‘

Assume o is such that one can use the approximate value of
h{- given by (15.35), i.e.,

k h

j- = 1‘,‘-“1 + W L.l - IZ.>O

The boundary conditions on Te are



(a) - Tewg = O X = oo

. dwt '
(b) j T I-!ct)sno(éx -(1‘:__1_(' { __J__)T_
2 “wI ol ol

X = e

( w has a small negative imaginary part)-

The solution of (15.40) satisfying the boundary conditions is

L (A ~iw k,) =
B I T_".( | J )-;F "fxfr)‘:f‘u’-‘l.‘ fu e ®
E = = o ) ’

5 ot ol S = of

(15. 41)

Substitute (15.41) into the inversion formula, equation (15.37):

feCavd (wrh, + ¢ Rpct) ¢
rx t)= ( j hice, + =thS i » it '
el e .. of 1 (15.42)

W- pLANE
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The integral of (15. 42) can be evaluated by completing the con-
: tou"r as shown. By Jordan lemma, the integral over the semi-circle
does not contribute. Hen:cé, by Cauchy's theorem, the integral of
(15. 42) is given by the contribution from the poles at w=3iw and the
integral over the cut. However, the long time response is given by.

the residues of the poles.

T}(yﬁe) - _;_7}"_. 7—; [2,(}(../6(' (o{".éﬁ-q.‘a‘ ,{n‘,‘) x.-b"(f)

- kit + <tk

__“'/J (_{@.C_,(d"é|+u'a<j£“¢) x;-;-c.‘uf)\

&;f:t' +« ot h} 0

=T0)< (—/ (’Jc'd v £ =
A v T

(15. 43)
Son cxf-/ (afs = ahp &
[ V Chpe + k2% “f

where

‘lL__,\_ z_js = ‘lzid‘.
o k-

T-he solution given by (15.43) shows that,as compared with a
homogeneous medium, the inclusion of foreign small spherical ob-
jects tends to alter the phase at any specific location. Also, thé
penetration depth, as characterized by the value of the exponent in
front of =x , depends more strongly on the frequency. The physi~
cal explanation of this is quite clear if one imagines each particle to
behave as an oscillating dipole out of phase with the driving frequency.

The heat flux associated with the dipoles causes the phase shift as
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well as alters the decay rate.

16. Diffusion Coefficient of a Substance in a Particle-Fluid Suspen-

sion

The process of diffusion of a substance through a static,
homogeneous fluid is described macroscopically by the following con=-

servation and phenomenological equations

% ¢ V-T = v (16. 1)
J = -pbVY (16. 2)
where |
b is the concentration of the substancl:e,
j is the diffusional flux,
D , is the diffusion coefficient.

If solid spherical particles are introduced into the fluid, the
~rate of diffusion is changed. On assuming that no chemical reaction

takes place, then, on the surfaces of the solid

a
n = o

(16.3)

or

e o

where A is the normal to the sphere.

It is easy to see that equations (16. 1), (16.2), and (16. 35 are
exactly similar to the process of heat diffusion through a particle
suspension. Hence, for an overall macroscopic description of this

phenomenon, one may define

Sovv, - T .S Tea s
v
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in analogy to equation (15. 2) for heat flux.

The boundéry condition given by (16.3) corresponds exactly to
to the case of insulated spheres. Therefore, one can obtain the dif-
fusion coefficient corresponding to a solid particle suspension by put-
ting k =+ p and lz, =¢ in equation (15.15). Thus, |

B, = B atiz6) ‘ (16. 4)

Cat C )

where ¢ is the volume concentration of solid particles.

17. The Rate of Heat Transfer Between Particles and Bulk Fluid

The rate of heat transfer from a solid sphere to a moving
fluid has been investigated theoretically and experimentally by many
a.u’chors'qt‘;’-54 in the past. In this section, the heat transfer rate
from solid spherical partiéles to the surrounding fluid in a fluid-
particle system when there is relative motion between thgm is being
calculated.

Let T, 7}. and E‘( = Ui be the particle temperature, bulk
fluid temperature, and bulk fluid velocity with respect to a coordinate
system fixed to a solid sphere A as obtained from the solution of
the bulk fluid equations and particle continuum equations. Near
sphere A , let the actual fluid temperature be (T +7T.; and the
actual temperature of the particle be (TP*T.' ) , so that T, and T
represent the thermal disturbances associated with parﬁcle A out-
side and inside the sphere. To determine T. and T. so as to find

the heat transfer rate, the following three assumptions will be made.

(1) All time-varying effects are small and can be ignored.
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(2) Heat is lost uniformly from the whole of the sphere; let
;che heat transfer rate between a particle and fluid be
N P ]
3
(3) The convective heat transfer term T v (¢ Ty ) can be
approximated by .U; -V G T} )
(Approximation in (3) is _valid if “—Ch-f‘—”-— is ‘'small. )
By means of assumptions (1) and (2), the governing equation
for T:. can be written as
| A hp 'Tc + @ = o (17. 1)
Also, 6n neglecting mutual interference effect of particles as
a filrst approximation'(this will be accounted for later), the equation
governing. Ta is
'(I}-V((:ET.J - R YT, = o

On using assumption (3) this becomes

9 X

e DIk e TIT. = o ; ol = UiF (17.2)

The conditions that have to be imposed on T; and T. for a
unique determination of the present problem are
(a) The disturbance goes to zero away from the sphere, i.e.,

-T-u"-'° Y = oo
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(b) The disturbance must be bounded,' i.e., T¢ bounded.

(c) The mean temperature of the particle is equai to T,

(d) Temperature is continuous on the surface of the sphere,
e, Tea |, TieTp o T 4T

(e) The heat flux vector normal to the surface of the sphere
must be continuous

Y= o

ke _3__(7:-+Tr) - h Dol T T )
Pad dv

A particular solution of equation (17.1) is

T.-Q
Thus, the complete solution of equation (17. 1) satisfying condition
(b) is
TC = "‘@.V‘ i E A‘ TJ ﬁCc-JQ) l (17,3)
€y
£se
By condition (c),
A,= _Qa
1o FLP
Hence (17.3) becomes
T=m@_(a‘-v‘)+§ Ay ¥ Bty - (17. 4)
}1” io é
FE-NI

A complete solution of (17. 2) satisfying condition (a) can be

written as

; T e e ¥
Tom = 75 8, Kag (5 e (7.5)
Lz0 g |

Now conditions (d) and (e) provide a unique determination of
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the coefficients @ Ag and B, . That is,

~olawei® o0
= - (ﬁ"Tf)*z A, o’ P Lessoy -23 <.A(M)P¢ wio ) (17.6)
15 hy £ Ja -
~aced - ;
EY - 2=
£ hr {_ 2+ 04 Ptusw; - ll. [D{M&& K“/(Tf\)
3 2 “ - = ;
- e (17.7)
+ _0(_( Kl*'& ( '-r)) } rica.ua)
Ay Vv
' Yae
On using the relation
-—l'.-.l®
" > ! ) Can+t ) 1 ) F (cwd @)

the coefficients in (17.6) and (17. 7) can be solved by solving an in-
finite determinant. However, on restricting to small value of «= ,

one can easily obtain the heat transfer from particle to fluid:

Qf' i.“[,‘ Q-JQ
]

= 47 ah (7;,-*@)(_.5 £ BLEe8G5 1) wa
:"‘”[ .J.(,n-x—t)(s+—(-) (17. 8)

(l):f:oso.l’ - 117\—3?467"_-5"&07‘:240-{‘) d‘a..‘----
.'A(__g-«u-( -oz—(“)

k. ’
where ’(- e » Or if
Nusselt number, Nao = Q-p
2% o bk CTp-Tr !
Nu o o o 8 (.'.‘4-1-'»,-1‘/ 5o (1)5-#!0607#!11 19;67-1-5‘4-0', ).4-u7 -)u-«r-

G 15
._r-.-—l 1711)“'1-(‘) ‘c;""b('*"‘[) (17.9)



In the limit 12‘.—-‘:0 or g =

Ne = 2 + ko = 1 xtat e

If the volume concentration of the solid particles is sufficient-
ly large, it is necessary to modify the e"xboveranalysis to account for
" this density effect. To do so, the method that is going to be used is
still based on the approximation that if one 'ﬁxes one's attention on a
specific particle one may regard this particle as situated in an over-
all averaged fluid medium constituted by the fluid and other particles.
To see this more clearly, first assume that the particles vrare far
apart. Then, as shown above, the thermal disturbances associated

with particle A are governed by the equations

}7-}, VT o+ Q = o y Y m& (17.1)
m:L-V‘TA - , v (17.2)
X ;

Now let the particles be brought closer together, but assume
that A is tine only particle -that has a higher temperature than the
fluid. It is clear that nothing has really changed except the thermal
conductivity and fluid density of the medium outside A . Thus, one
should account for this chﬁﬁge in thermal transmission prope rtjr by
ﬁsing ky (bulk fluid thermal conductivity) instead of R and t

in place of ¢ » 8O that equations (17. 1) and (17. 2) become

kr VLT,; + @ - o , v < a (17.10)
Ucf \FL o . V‘T,. -0 - > a (17.11)
}"—f ¢ X

Let the temperature of the other particles be raised to T, .

Heat is now being given to the fluid everywhere. Locally, near sphere
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A , the change from the earlier picture can be obtained from the
bulk fluid equation. In this gross description, it is possible to re-
gard each particle as a heat source of strength ai""“l‘ & , or in ef-

fect, the bulk fluid is flowing through a region where there is a heat

source of strength ‘_':‘;__-,.— AN @ = ¢ @ per unit volume. Thus
PrGuly = YT - ca (17.12)
which yields a solution
T - 7} + L& ' (17.13)

oy hy
where ' :
oy = U—ff—ﬁf_ (17.14)
l. »

'TJL. = meanbulk fluid temperature near A

Hence, the averaged background temperature with respect to particle
AV is
Te = €T, % g=sd Ty, (17.15)
With‘the above modification, one may now seek a solution to
T. and Tu » equations - (17.10) and (17. 11) satisfying the bounded-

ness and continuity conditions as before.

2 a = £ ,
e S yfx = I* A, v Pty (17.16)
! £ad
) = = Ol'E\—
Ti & o 2 B, T Pecioso (17.17)
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Imposing the continuity conditions

_Qa 4<-q,-1;)-_~c_a@_ ey

“f_’,f:‘.". AR
-2

15 h—r oly k‘f
i . oL
" z A, ot P, c‘-MK - 2 By Ky (ZE2) 1 timse (17.18)
' Ja ‘
tm £e o
.._D_"L.:(.-JD o2
a A
] /z}. - A_‘/all ﬁ(....q.p)-_ﬁ_@__ Co 80
3k, oy hy

et

< by ) m [ Kar O (Keal89) [ ar)
e ‘f—— dv vy~

a.

,l?' Cewa 8)

On solving equations (17.18) and (17.19), denoting g ot hf

P
the heat transfer from a particle to fluid

- 4 5
Qf _E-Ta.Q

= AT o 'L'JC [-T;’[l—c)-Tf(l-C.)][ 5 - IS(Fr-Sfﬂ?‘). .

5*? .1(14-.\3‘){5:—5’.3‘

| (17. 20)
_Lsa5+s060¢ #i2 ¢ -3926€ - ispogtaaagty s
“ (5 F ftf+.1§‘)’
where
°<Jc is given by (17.14),
[Qf‘ .k I‘A b+ ""J’ *ael( AJ“/"’I from Section 15.

fhp'*?-}’-"CCl'J--“t)j



4,

10.

gy o

12,

13.

=170~
REFERENCES

Carrier, C.F., "Shock wave in a dusty gas, " J. Fluid Mech.
4, Part 4 (1957), p. 376.

Saffman, P.G., '""On the stability of laminar flow of a dusty
gas, " J. Fluid. Mech. 13 (1962), p. 120.

Ranﬁie, W.D., "Perturbation analysis of one-dimensional
heterogeneous flow in rocket nozzles, ' Progress in Astro-
nautics and Rocketry, Volume 6 (1962), p. 117. Edited by

S. S. Penner and F. A. Williams, Academic Press.

Marble, F. E., ""Dynamics of a gas containing small solid
particles, " Combustion and Propulsion, 5th AGARDograph -
Colloquium (1963), p. 175.

Soo, S.L., "Boundary lyaer motion of a gas-solid suspen-
sion, " University of Illinois, Project Squzd Report ILL 3P
(Oct. 1961).

Chu, B.T. and Parlange, J. Y., "A macroscopic theory of

two phase flow with mass, momentum, and energy exchange,
Report DA-4761/4, Brown University (June 1962).

Einstein, A., "A new determination of molecular dimensions, '
Annalen der -Physik 19 (1906), p. 289; or Theory of the
Brownian Movement, edited by R. Firth, Dover Publications

(1956).

Landau, L.D. and Lifshitz, E. M., Fluid Mechanics,
Addison-Wesley (1959).

Lagerstrom, P.A. and Cole, J.D., "Examples illustrating
Expansion Procedures for the Navier-Stokes Equations, "'
J. Rational Mech. and Analysis 4 (1955), p. 817.

Kaplun, S. and Lagerstrom, P.A., "Asymptotic Expansions
of Navier-Stokes Solution for Small Reynolds Numbers, ' J.
Mathematics and Mechanics 6, no. 5 (1957), p. 585.

Kaplun, S. '"Low Reynolds Number Flow past a Circular Cyl-
inder, " J. Mathematics and Mechanics 6 (1957), p. 595.

Proudman, I. and Pearson, J.R.A., "Expansions at small

Reynolds number for the flow past a sphere and a circular
cylinder, " J. Fluid Mech. 2 (1957), p. 237.

Rubinow, S.I. and Keller, J.B., '""The transverse force on a
spinning sphere moving in a viscous fluid, ' J. Fluid Mech. 1




14.

15.

16.

17.

18.

19,

20. -

21.

22.

Z3.

24.

25. .

-171-
(1961), p. 447.
Brenner, H. and Cox, R.G., "The resistance to a particle of

arbitrary shape in translational motion at small Reynolds
numbers, "' J. Fluid Mech. 17 (1963), p. 561. '

Lamb, H., Hydrodynamics, 6th edition (1945), Dover Publi-
cations.

Kaufman, R.N., "On a complete system of solutions of the
linearized Navier-Stokes equation and its application to bound-~
ary value problems involving flow about spheres, " Appl. Math.
and Mech. 27 (1963), p. 262.

Stimson, M. and Jeffery, G. B., "The motion of two spheres
in a viscous fluid, " Proc. Royal Soc. (London) 111 (1926),
P. 1LO.

Ladenburg, R., "Uber den Einfluss von Wanden auf die
Bewegung einer Kugel in einer reibenden Flussigkeit, "
Annalen der Physik, 4th Series, 23 (1907), p. 447.

Faxen, H., '"Die Bewegung einer starven Kugel lings der
Achse eines mit zaher Flussigkeit geflillten Rohres, " Arkiv
fur Matematik, Astronomi och Fysik 17, no. 27 (1922}, p. I.

Oseen, C.W., Neueve Methoden und Ergebnisse in der Hydro-
dynamik, Akademishe Verlagsgesellschaft, Leipzig (1927).

Wakiya, S., "A spherical obstacie in the flow of a viscous
fluid through a tube, " J. of Physical Soc. of Japan 8, no. 2
(1953), p. 253.

Happel, J. and Byrne, B.J., "Motion of a sphere and fluid in

a cylindrical tube, " Industrial and Engineering Chemistry 46,
no. 6 (1954}, p. 1181,

Haberman, W.L., "Wall effect for rigid and fluid spheres in
slow motion, ' David Taylor Model Basin Report (1956); also,
Proc. 9th Intern. Congress Appl. Mech. (Brussels).

Brenner, H. and Happel, J., "Slow viscous flow past a sphere
in a cylindrical tube, " J. Fluid Mech. 4 (1958), p. 195.

Chang, I-Dee, ""On the wall effect correction of the Stockes'
drag formula for axially symmetric bodies moving inside a
cylindrical tube, " J. Appl. Math. and Phys. (ZAMP) XII,-
(1961), p. 6.




26.

27,

28.

29.

30.

31.

32.

33.

34.

35.

36.

37,
38.

39.

-172=~

Lorentz, H.A., Abhandlungen Uber theoretische Physik (1907),
Leipzig.

Maude, A.D., "End Effects in a Falling-Sphere Viscometer, "
Brit. J. Appl. Phys. 12 (1961), p. 293.

Tanner, R.IL, "End effects in a falling-ball viscometer, " i
Fluid Mech. 17 (1963), p. 161.

Levich, V.G., Physico-Chémical Hydrodynamics, Prentice-
Hall (1962).

Morse, P. M. and Feshbach, H., Methods of Theoretical .
Physics, McGraw-Hill {1953).

Brinkman, H. C., "A calculation of the viscous force exerted
by a flowing fluid on a dense swamp of particles, ' Applied Sci-
entific Research A-1 (1947-49), p. 27.

Brinkman, H.C., "On the permeability of media consisting of
closely packed porous particles, ' Applied Scientific Research
A-1(1947-1949), p. 81.

Debye, P. and Buche, A. M., "Intrinsic viscosity, diffusion,
and sedimentation rate of polymers in solution, " J. Chem.
Phys. ﬁ (1948), p. 573.

Happel, J. and Epstein,” N., '"Cubical Assemblages of Uniform l
Spheres, '" Industrial and Engineering Chemistry ﬁ:_(_)_ (1954), p.
1187.

Watson, G.N., A Treatise on the Theory of Bessel Functions,
2nd edition, Cambridge University Press(1944). ’

Ward, S.G., Whitmore, R. L., "Studies of the viscosity and
sedimentation of suspensions. Part 1. The viscosity of sus~-
pension of spherical particles, " Brit. J. Appl. Phys. 1 (1950),
p. 286.

Robinson, J. V., "The viscosity of suspensions of spheres, "
J. Physical and Colloid Chemistry 53 (1949), p. 1042.

Vand, V., ""Viscosity of Solutions and Suspensions, ' J. Phys.
and Colloid Chemistry 52 (1948), p. 277.

Higginbotham, G.H., Oliver, D.R., and Ward, S.G., '"Studies
of the viscosity and sedimentation of suspensions. . Part 4.
Capillary tube viscometry applied to stable suspensions of
spherical particles, ' Brit. J. Appl. Phys. 9 (1958), p. 372.




40.

41.

42.

43.

44.
45.
46.
47.

48.

49.

50.

51.

-173-

Jefferys, G.B., "The Motion of Ellipsoidal Particles Im-
mersed in a Viscous Fluid, " Proc. Roy. Soc. {(London) A 102
(1922), p. 161.

Taylor, G. I, '"The viscosity of a fluid containing small drops
of another fluid, " Proc. Royal Soc. (London)A 138 (1932), p.
41.

Sadron, C., '""Dilute Solutions of Impenetrable Rigid Parti-
cles, ' Chapter IV of Flow Properties of Disperse Systems,
edited by J. J. I—Iermans (1953), North Holland Publ. Co..
Amsterdam.

Frisch, H.L. and Simha, R., "The viscosity of colloidal
suspensions and macromolecular solutions, ' Chapter 14 of

Rheology, Vol. 1, edited by F.R. Eirich, Academic Press,

New York (1956).

Burgers, J. M., Second Report on Viscosity and Plasticity,
Chapter 3 (1938), North Holland Publ. Co., Amsterdam.

Simha, R., "A Treatment of the Viscosity of Concentrated
Suspensions, " J. Appl. Phys. 23 (1952), p. 1026.

Maude, A.D., "The viscosity of a suspension of spheres, !
J. Fluid Mech. 7 (1960), p. 230.

Maxwell, J.C., A Treatise on Electricity and Magnetism,
Vol: 1, 3rd edition, p. 440, Oxford Press (1881).

Sugawara, A. and Yoshizawa, Y. , "An investigation on the
thermal conductivity of porous materials and its application
to porous rock, ' Australian Journal of Physics 14 (1961), p.
469.

Kronig, R. and Bruijsten, J., "On the theory of the heat and
mass transfer from a sphere in a flowing medium at low val-
ues of Reynolds number, ' J. Appl. Scientific Research A-2,
(1951), p. 439.

Breiman, L., ""Theory of Heat and Mass Transfer from a
Slowly Moving Sphere to the Surrounding Medium, ' Report
No. 2F-2, Norman Bridge Laboratory, Calif. Inst. of Tech.
(1952).

Friedlander, S.XK., "Mass and heat transfer to single spheres
and cylinders at low Reynolds numbers, " J. Am. Inst. Chem.

Eng. 3 (1957), p. 43.




52.

53.

54.

-174-

Yuge, T., "Experiments on heat transfer from spheres in-
cluding combined natural and forced convection' J. Heat

Transfer, Trans. Am. Soc. Mech. Eng.,ﬁg (1960), Pp- 214,

Johnstone, H.F., Pigford, R. L., and Chapin, J.H., "Heat
transfer to clouds of falling particles; ' Trans. Am. Inst.

Chem. Eng. 37 (1941), p. 95.

Zenz, F.A. and Othmer, D.F., Fluidization and Fluid- .
Particle Systems (1960}, Reinhold Publ. Corp., New York.




~175-

APPENDIX A.

On Green's Function of a Certain Differential Equation

In this é.ppendix, the Green's function for the following dif-

ferential equa.tion is constructed for the full physical space:

(V- <) G(R, R = £R-7) ’ (A-1)
where 8(%X) is the Dirac §- function.
© Method 1.
Denote the Fourier transform of G(X,X') by

_4....l. “".Z:';: 2
= J‘ Cx,Xx") = ol x

Then, from equation (A-1), & satisfies

N — S o A ‘ '
S LAy G o= o2 (A-2)
or
_ L T
G = -_ 2
ke ot
Therefore,
- SRR
GIF, &Y = =L : g £ Ak (A-3)
(am) G W :
Let x-X ' be the polar axis; then equation (A-3) becomes
b ocaso :
Gl‘;,;‘)i p I[[ /u‘.r.-l'.(g 014_6(19156
L.\T‘) AUt

where R = 1% -%X"'|

Integrate over 4@ and 6

[ -] ‘L&
G X Xy = 2 b o b

LY
(A7) ¢ R ket
Py - - ]

- The last integral can be evaluated in the complex & plane by
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completing the contour in the upper half plane.

e h-prLawg

T

(]

By Jordan lemma, there is no contribution to the integral

chr
< A'rat ‘
over the semi-circle as c= = The only contribution comes

from the pole ox . Hence

Py Py e I%-%N .
GeR. %) me & o= i ol (A-4)
s ‘e X=X '

Method 2.

Equation (A-4) above is not in a convenient form for the rpur—
pose of computatidnn An alternative representation of the Green's
function can be constructed as fol'lows.‘ '

In polar coordinates

SC-\_(‘-_X..) = gfv-v') f{dl.‘&'ta‘nﬁ'} {c#-c}'} (A-5)
s :
Since P:c'--w) {:,::;} } form a complete set, let

(BB} -

- ]["”) [ C,_:__~ P:(.‘—qa) P:Lm&') Tom --7[! ;.L....,{,'I

where Pﬁ--—ﬂ)denotes the associated Legendre function. Also,
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- L
V‘j"(uﬂcn:n co:mJ’ ' [ AT o2 odGe L) j_‘,J Pliwso) (_.,_;...,4
FRED Yy d¥ v~

Substitute (A-5) and (A-6) into (A-1):

L N ' .~ e e
SO [l o2y 2t g g6 B 5 cron] o
Azs mea ’ '

- E
& 2 i { otlf, - ___-_f-_ OIA. _—?(I‘.l) f. — “‘ﬁ} C‘: ﬁht.utd') ﬁn(ono'; S m m{ .f.-:-hé 4
dv* Y dv Y

Sev-vs dessod - enn's §C<f-¥a')
. P (A—7)

Take

L

Co. = &. A+ (£-m)!

eﬂ-x Ay = ©

= n o

ERO (Pamy !

Using the orthogonal property of £

‘.Mc....g) 3 60&-+ s En:'-'-\‘; from
(A'7):

i Jo + 2 j'?“ NPICIIRE R PR S (A-8)
v*® Y ¥? '

-Y .
and a similar equation for ](.n ted

The homogeneous part of equation (A-8) has the solutions

ar

(7-\’ = A.« = Java Kaag Cetv

& = Fep I_‘,,y_(-(ri

where ¥ and 1 are modified Bessel functions.

The discontinuity in slope is

- - (A-9)
-

I ]
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Therefore, j"’ (v) » being continuous, may be taken as
V A T KJ*V.("‘") I—P*Z (b’ ) Yy >v'
= I~ e
J= - |
A -l KJ'V‘(“V'I I;l-;g(-d") Y < 'Y"

NED Jv (A-10)

Y

The Wronskian of k. and w‘, is
%w[k‘o‘-k*h[:-{_‘ 50

Hence, on substituting (A-10) into (A~9) and using (A-11),

A & -2
=
Therefore,
— =2 & -~ " .
G(K.‘()"‘EE { _¢+/("‘Y) I_u-x“"v‘) C;_ P_. cc-ao)P‘cw-o;
Avo mao Y" v Ve

’ LS ~ L
“(bﬁd‘-+ :-na-+ + Jf&m% S'n*-+ )

(A-12)

.Since the Green's function is unique, from equations (A~-4) and (A-12)

—ar I %=R" o &8
I “ Y
. S 22 [ E g toeYs) I,q_(dvdj C,. P, cwsny F':u.‘ ¢ )
4T I’;(‘-;C‘l Leo mao e R

,(‘_,.,_‘n...:;l LoSM‘}’," J'z“"“} ";h% ) (A-13)

where Y¢ (Y») is the smaller (larger) of IX ). 1%

For e =6 , equation (A-13) reduces to

wa A
! ~
= EE L LA-m}l [ P_:ct_-m) P_,_u-o.:a'a(u.n—%; ca.n-%'
A‘n‘lx’fl

avw (Remd ! 1

Adao mao

% s.;h.‘;,s.:mﬁ'x“:il . (A-14)

I
>
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APPENDIX B.

Lamb's General Solution of Stokes' Equation

Lamb'15 has provided a general solution of the Stokes Equation
in polar coordinates. Kanu.anfrcnaarl1‘6 has put this into a vector form.
Here, Lamb's solution will be written out explicitly together with
some of its properties.

Stokes Equation

_Lamb "s Solution

Let \f:._(g,(f)) = P oo c_osmzf , Y‘:(g_‘i,): P‘.'—t,_.,su,.‘\,.ﬂ%

The general solution can be written as

I\/lx

4vt

i [EL v e Bl (0% ELIN og)

Aue . A w
' = 0 } [ —e.'r Ej,\_ + {_P#a)Fp,. {‘94)),’,{£Y E,m+(}*')pl—\1\r°
= " L4, 2C2Re3) 2(28-¢yY? slafrs) a(at-0v*) 77

L B: §1+‘|3J\{‘:w,+1+(}§; Jv", i (ﬂ-n)}\]/ (0.¢)
- 7_. -

od &
I =R S Y il | RIS s VR T Ty P Rer
EE { -k . 3 * o Jamitlas pd

L€+ 13C20e3d 24 Ca0-1)Y Il Cader) Cad e

Aue mue

!AI'A

el o

) £ S o
. (c,m)i;f..r Ve ot Mthemr | cemd )
2l e dladr 3) J.l().ﬁ-e)y’ lt;.?q-) Cadv 10 it

D1, m AT

C2h+0) Cad+ 1)

o £
P EE [A"’ TJ-‘.« B:_J[ 2( f=mt ) Y" _ (Bt (P Y" }
: T

Cal4 i) Hlow C 28D s

= i 2 2 ¢ e o 4 e %
¥ J,_.‘Iﬂ 22 m {C.o.. r "'.._D_"“_][- Y,,..‘oa‘i“‘{" = [C,__Y*' —-——*D":;‘SYJ.-.
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Cal+1) Cd€ 41 J
Let x- axis be the polar axis. Assume that a flow field is
given by the general solution above. Consider a sphere of radius v
and denote the stress acting onthis sphere in the x direction by £, .

Then

dra_g ( >0 - P(:‘J-eu#;uln ) = J rJv” AS (B_Z) -

J‘h;f--u -j
tjolno-' ~
Substitute (B-1) into (B-2) and, by the orthogonal properties of the

angular functions, the following formula holds:
D, = - 4w F* (B-3)

where F . is the coefficient defined in (B-1).
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APPENDIX C.

Elastic Distortion of a Sphere-

(Part of this appendix is based on Chapter 13 of reference 30.)

Navier Equation

(A+ C) I(9T)+ GV'S =0

A general solution of the homogeneous Navier equation (finite

= o ) can be written as
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The corresponding stress components are
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APPENDIX D.

General Solution of "Screened' Stokes' Equation

The "'screened'' Stokes equation is

e

Vv WA = [

v'ﬁ = FVLL_(:‘- /Aa“a"
Let the solution be

T = v‘f
/3 = —/‘a O(l- %
Then equation (D-1) will be satisfied identically if
V‘#’ - o ‘

7 A - < K = o
The complete solution of (D~4) which vanishes at infinity is

6}3 Z o X:usmf )

where

X:lo.‘f) = R.-Ct-uv) -&‘h%

(D-1)

(D-2)

{13=3]

(D-4)

(D-5)

(D-6)

Therefore, the pressure and longitudinal velocity components are

/’ = -/‘:‘_ﬁ*_--~ X, e 4
_r.fill

—E’"T' = 2, [- (4 ) Bow X ¢o, ‘}w}*.e [B,,A X f0+)J

v.h-n FIEY de
5 J‘PE -f:w X 604 i

Equation (D-5) has two linearly independent solutions. If

Yl?‘

(D-7)
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Z , = modified spherical Bessel function

-r
= K.w—

207

(etvy)

4

the two transverse velocity vectors are
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