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ABSTRACT 

The hydrodynamic forces acting on a solid particle in a v i scous , 

incompressible fluid medium at low Reynolds number flow is investi

gated mathematically as a prerequisite to the unde rstanding of ·t rans

port processes in two-phase flow involv ing solid particles and fluid. 

Viscous interactim. between a small number of sphe rical p art icles 

and continuous solid boundaries as well as fluid interface are analyzed 

under a "point-force" approximation. Non-spherical and elastic 

spherical particles in simple shear flow are then considered. Non

steady motion of a spherical particle is briefly touched upon to illus

trate the transient effect of particle motion . . 

A macroscopic continuum description of particle-fluid flow is 

formulated in terms of spatial averages yielding a set of p a rticle con

tinuum and bulk fluid equation13. Phenomenological formulas describ

ing the tran'.'Jport processes in a fluid medium are extended to cases . 

where the volume concentration .of solid particles is sufficiently high 

to exert an important influence . Hydrodynamic fo rces acting on a 

spherical solid particle iri such a system, e .. g. drag, torque, rota

tional coupling force, and viscous collision force between streams of 

different sized particles moving relative to each "other are obtained. 

Phenomenolog ical constants , such as the shear v iscosity coefficient, 

the thermal conductivity coefficient, and the diffusion coefficient of 

the bulk fluid, are found as a function of the material properties of the 

constituents of the two-phase system a nd the volume concentration of 

solid. For transient heat conduction phenomena, it i s found that the 

introduction of a complex conductivity for the bulk fluid permits a 
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simple mathematical description of this otherwise complicated pro

cess. The rate of heat transfer between particle continuum and bulk 

fluid is also investigated by means of an Oseen-type approximation to 

the energy e quation. 
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1. INTRODUCTION 

The subject of fluid-particle flow has focussed the attention of 

both engineers and scientists for many decades. Such two-phase flow 

phenomena occur almost in every aspect of daily life from the flow of 

blood to the motion of dusty air, and are important in many industrial 

applications from sedimentation processes to fluidized beds, In the 

fields of propulsion and combustion, new interest has recently been 

directed to the transport phenomena of fluid-solid particle flow, 

which is the main theme of this thesis. 

To understand such a complicated phenomenon involving a 

cloud of solid particles in a viscous fluid medium, it is essential that 

the phenomenon involving a single particle be first fairly well under-

. stood. Part II of this thesis is devoted entirely to this aspect. How

ever, due to grave mathematical difficulty inherent in the structure of 

the Navier-Stokes equations, general treatment of this problem is so 

far not possible. As a result, the present treatment will be entirely 

restricted to low Reynolds number flow where simplification in the 

flow fie ld equation is permissible. 

The fundamental s elution to St okes equation is first examined. 

This forms the basis of the approximation that it is suffic iently ac 

curate to r e place particles in a fluid flow field by point forces. The 

viscous drag on a class of axially symmetric particles in a uniform 

flow is then investigated by me ans of the matching technique. Vis

cous inte·raction between a small number of spherical solid particles 

in a fluid -medium i~ next being considered using a "point force" ap

proximation. This serves to pave the way for the introduction of the 
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"screened" Stokes equation in Part III of this thesis. Viscous inter-

action between a spherical particle and continuous solid boundaries, 

as well as fluid interface, is analyzed. This permits an estimate of 

the importance of the influence of continuous boundaries on the hydro-

dynamic forces acting on a solid particle moving relative to them. 

The shape of the particle too has a significant effect on the drag and 

lift it would experience when moving through a fluid medium. This is 

treated in a fairly general manner for particles the shapes of which 

do not deviate markedly from a sphere. Hydrodynamic forces arising 

fr.om the elastic deformation of a spherical particle in a shear flow is 

then taken into account. It is shown that a particle will drift side-

ways so as to decrease the slip velocity between the fluid medium and 

the particle. Non-steady motion of a spherical particle in a viscous 

fluid medium is briefly touched upon. The fundamental solution to 

the lineariz.ed time-dependent Navier-Stokes equation is obtained. 

The motion of a particle starting from rest under externally applied 

force is then dealt with. This makes it possible to estimate the rela-

tive importance of transient effect on particle motion. 

Part III of this thesis deals w ith the macroscopic continuum 

description of solid particle-fluid flow. There, particles are as-

sumed to be small compared with any sc.ale of phenomenon of macro-

scopic interest. Also, the p a rticles will be assumed to be numerous 

so that the concept of continuum applies. For very dilute volume 

concentration of solid particles , the general practice is to modify the 

fluid ' field equations slightly by me rely adding a body force term, 

taken as the particle fluid inter.action force l-6 • For moderate particle 
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volume concentration, this procedure tends to obliterate many sig

nificant changes in the transport properties of the system. This part 

of the thesis is primarily devoted to a critical examination of the im-

portance of this effect. On starting from t~e Navier-Stokes equation, 

and by assuming certain properties possessed by spatial averages of 

physical quantities of the two-phase system, a set of bulk fluid equa

tions are obtained. This is supplemented by a set of phenomenologi

cal formulas characterizing the transport properties of the bulk fluid, 

thus reducing the problem to the determination of the phenomenologi

cal constants involved. 

The hydrodynamic forces acting between particle cloud and 

bulk fluid are analyzed based on a "smoothed field" and "detailed 

field" consideration. A "screened" Stokes equation is introduced to 

describe the disturbances produced in such a particle suspension. 

The existence of a rotational coupling force is demonstrated and its 

formula obtained. It is to be noted that this force has no analogue in 

single particle consideration and should be regarded as an effect 

arising from particles as a cloud. 

The exchange of momentum between. streams of particles of 

diiferent sizes moving relative to each other, resulting from viscous 

disturbances generated in the fluid medium, called viscous collision, 

is investigated quantitatively. At low relative velocity, this mechan

ism of momentum exchange is shown to be far more important than 

that arising from direct contact collision between streams of particles. 

Shear viscosity coefficient of the bulk fluid as a function of 

volume concentration of solid particles is obtained. At moderate 
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volume concentration, this differs significantly from that of the pure 

fluid. At low volume concentration, the well known Einstein's formu
. 7 

la is recovered • 

Thermal transmission property of the bulk flui d is then ex-

amined. The steady-state thermal conductivity of the bulk fluid is 

expressed as a function of the thermal conductivities of the pure fluid 

and solid and the volume concentration of solid. The same idea is 

extended to the case of transient heat conduction. It is found that the 

introduction of a complex thermal conductivity coefficient permits a 

simple description of this otherwise complicated process. Similar to 

the thermal conductivity coefficient, diffusion coefficient in a particle 

suspension is obtained by a simple analogy. When the mean particle 

temperature and mean bulk fluid temperature are unequal, heat trans -

fer between the two phases takes place. By means of an Oseen type 

approximatipn to the energy equation, the rate of heat transfer is 

found to depend on the temperature difference, the thermal conduc-

tivities · of the two phases, and the volume concentration of solid 

particles. Explicit expression of Nusselt's number is then given for 

cases where Peclet's number is small. 
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PART II. 

The Hydrodynamic Forces Acting on a Solid Particle 

in an hi.compressible Fluid Medium 

at Low Reynolds Number Flow 
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1. Fundamental Solution of Stokes Equation 

For slow motion of a viscous incompressible fluid flowing 

past a finite solid object, it is sufficiently accurate to take Stokes 

equation as the governing field equation for the fluid. The object 

resists the movement of the fluid and exerts on the fluid field a drag 

force, D If the object is small, it is possible to regard it as a 

point force. The velocity and pressure field produced by a point 

force in a Stokes flow is referred to as the fundamental solution of 

-Stokes equation. Mathematically, this is given by the solution u 

fluid velocity, and p , fluid pres sure of the follow ing boundary 

value problem. 

V fo = f 'V
1 U + D ;_ fcx) 

-'\/ · lA. - 6 

f - 0 
as )'"" - 00 

( 1. 1) 

( 1. 2) 

( 1. 3) 

where ~ <x) is the Dirac delta function and the point force has 

been taken to be applied in the ;t. -direction. f is the viscosity of 

the fluid. 

To solve for U and f' , take divergence of equation ( 1. 1) 

and use equation ( 1. 2): 

(1. 4) 

It is well known that the solution of 

'7·+ fcx .i +- 0 v-....., 

is 9 ' -4-TY 



- 7-. 

Therefore, 

Jx(+) ( 1. 5) 

-{;;- · being even in .:ic. 

Substitute equation (1. 5) into equation (1. 1) 

.. -v Vl ( 1. 6) 

- -where E. has the property "V-E 0 from equation (l! 4 ). The 

s elution of ( 1. 6 ) is 

'1·7) 

To see that . u as g iven by ( 1. 7) satisfies equation O.. 2),take 

div. of(l.7) 

-v-i1=-"V·J 

' 
.it-ii 

Integ rate by parts 

-

g <x ') o<lx• 
..+.,, l x-~' I 

V·U = -

.:> - _J_ ( ( v - I~. ) • E (;{,) rJ. 'x. I 

4-1i" J l x - :.< I 

'-=!" _,. ' , 
'1· 5-lx.)otx - 6 

s ince V·E = o by equation (1. 4 ) . . 

Now to obtain explicit form of equation (1. 7 ),it is necessary -first to evaluate E 

E - 2-}_ 
~ 

It i s to be noted that p as give:ri by equation(l. 5 ) i s a discontinuous 
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function, being singular at ...-. o To take the gradient of f 
one should add the proper magnitude of the 11 jump value . 11 

To find the proper "jump value", , in the x. -direc-

tion, one may integrate the pressure force acting on a sphe r e of 

radius Y"' · in the x:. direction. Let S. and s.. denote the two 

hemispheres formed with the 'j - ..a plane. Then 

1::. x J p I C:..ScSI "'' l - f j>l"-ed,I 
~. ~. 

D . ~ f <:..<n:>. e cl.~ = _e_ 
-4-"7i s, 

)'" > 3 

Similarly, 

,6 J 

The above consideration gives the following formulas 

,,. I 3 x . .' -·----+ -yl -y" 

( 1. 8) 

= 3 x J 
y5 

( 1. 9) 
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Hence 

(1.10) 

On using equations ( h8), (1. 9 ), and (L 10). it is easy to verify that 

equation (1. 4) i's indeed satisfied. 

From equation (1. 10) 

£ -~ {- ~ I ..2. P.('-""CI> J ... ..B.::!r_ r(xJ ·1 + 
47if l YI ' 0 j 

.... i. P:t....-.\llJ S•.:.. + } 
y~ 

(1.11) ' 

where the :><... -axis has been taken as the polar axis. P ... - denotes 

the associated Legendre function. 

Substituting equation (1. 11) int o equation (1.7) and using the 

following representation for 1x- x'I and the orthogonal proper-

ties of P ... - (<..a.so) c. .. s .... ip (see Appendix IIA) 

(1. 12) 

where ..... > 0 

is the smaller (larger) of IXI and ~· Ix \ 

Integrate over oJ. ./l...' and then cl..,.' ; equation ( 1. 7) becomes 
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-U ._D_ 

4-•r 
Therefore, the fundamental solution is 

LI .. _D_ 
. 8rf 

(1.13) 

The above solution can also be obtained in a less direct way, 

a technique which will again be used in later sections. Stokes origi-

nal solution of uniform flow past a sphere, after subtracting out the 

velocity at infinity, can be written as 
8 

u=2- r-~(~-·)+-'-c~ .. _s.~.) x. 
87rf l y• -(' jY y" J 

( 1.14) 

where D .. - ' ..._-,;" ( u_ radius of sphere. 

Now keep D fixed and let ~- 0 ; equation (1. 13) is re-

covered. 

2. Dra g Formula for a Class of Axially Symmetric Particles in a 

Uniform Flow 

Consider a uniform stream of fluid flowing past an axially 

symmetric particle, the axis of symmetry being in .the direction of 

the unperturbed flow. Let the fluid be incompressible with density p 



-11-

and viscosity f If u· and P' are the velocity and pres sure of 

-the fluid, then u· and satisfy the time independent Navier-

Stokes equation and continuity equation together with the no slip con-

dition on the surface of the particle and appropriate conditions at 

infinity. These equations and conditions are 

- ·-f Ll'·"VU' . f,' = -v r 
• -->' 

V'· u ... 0 

-, u - Uoo " :.:. 

fa. 0 

-Ll . 
"" 0 

Y"' .. °"" 

"r"" • ..0 

on surface of particle. · 

. . 

(2. 1) 

(2. 2) 

(2. 3) 

(2. 4) 

( 2. 5) 

Take a coordinate system x. . 'J . z centered at the particle 

with the x.' - axis coinciding with the axis of symmetry of the particle. 

Upon introducing the following dimensionless variables, equations 

(2. 1) through (2. 5) can be put into a non-dimensional form 

x x . 
-£ 

I 

" 'j "' + .i!. Y'" . v 
CL a. Q.. 0.. 

f 0. & I - Ii• ,. u - IZ. . ( u,. ~ <<. I J f lJ.,, LJ.., r 
where Q. is a characteris t ic length of the particle and R-- i s the 

Reynolds number, so that 

=-vf (2. 6) 

'l·Li - o ( 2. 7) 

- .. 
IJ - ;x. r - oo (2. 8) 
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-Ll - 0 on surface of particle. (2. 9) 

To solve equations (2. 6), (2 .. 7) satisfying conditions (2. 8) and 

(2. 9), the matching technique as explained in references 9, 10, 11, 

12, and 13 will be us ed. 

Stokes Expansion. First, seek a solution to equation (2. 6} and 

(2. 7) in the form of Stokes expa,nsio:ri. 

(2. 10) 

f : ~o T ~ f' .. • ( R.,) ( 2. 11) 

Substitute (2. 10) and (2. 11) into equations (2. 6) and (2. 7) and equate 

. coefficients according to powers of R... to obtain 

-'V· u ... 0 

u. =- 0 on surface of partic le 

v f. + u:."' u. ~-... "V u, 
~ 

V· U, • o 

--U, • o on surface of particle. 

·(2. 12) 

( 2. 13) 

(2. 14) 

(2. 15) 

Also, require u. , u, etc., to match the asymptotic solution of 

equations (2. 6) and (2. 7). 

Asymptotic or Os een Expansion. Suppose the drag force act-

ing on the particle is ' " D x ; then an asymptotic solution of equa-

tions (2. 6) and (2. 7) would be given by the solution of 

- -R.IJ · 'VU /, ·- "V r +"Vu 

0 

-c.X.fc.x) (2. 16) 

(2. 17) 
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- A u = x 

t:> • 

"'f u .. 
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{2. 18) 

Solution of {2. 16) - {2. 18) will approach the exact solution for 

large v- or when R... -r is of order unity where R.- <- c. 1 • This 

suggests the use of stretched variables defined by 

s .. R.. x: 1 .. R.-1 J • R..L (" R.r 

- (l · l<f, 
..... 

w R. ) : u ( .(, 'J· .2 ' R... ) 
{ 2. 19) 

p ls , 1 , 1' . rl._ ) si' f ( '><, 'd · ~ . IL) 

In terms of the stretched variables, equations {2. 16) and 

{2. 17) become 

(2. 20) 

-9 . w = ., {2. 21) 

- .. w =- x.. p & 0 {2. 22) 

Now, seek an asymptotic solution int he form of 

- --- -w .. WO t R.. w. + 0 ( IZ...) 

.P • P. ~ 1<..P. otoCR..J 
( 2. 23) 

D = D. + R.. D, .. o ( 12.. ) 

Substituting {2. 23) into equations {2. 20) and {2. 21) and on equating 

coefficients of powers of R.. , one obtains 

~," w vv. " - - v P. ·-+ v w. 
-\I· w. - 0 {2. 24) 

p ...... 
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~ -
W.· V W, .. -W · <VW . . 

-\!· w • 0 • 

-w, • 0 P. "' a 

(2. 25) 

To obtain the asymptotic solution, it is to be noted that the 

only unknown in equations (2. 24) and (2. 25) is t>. , which, of 

course, can be found using the inner solution or. the Stokes expansion. 

The relation between the Stokes expansion and the asymptotic expan-

s ion is that they must match to all terms of unity with respect to R...-

or in their respective expansions in 

Zeroth Order Asymptotic Solution. The solution of equation 

(2. 24) satisfying the appropriate boundary conditions is 

w. P • • o ( 2. 26) 

Thus, from equation (2. 25), the first order asymptotic solu-

tion must satisfy 

~ 

w. - 0 

-\J·W,=o 

P. - <> 

( 2. 2 7) 

(2. 28) 

(2. 29) 

First Order Asymptotic Solution (Fundamental Solution of . 

Oseen Equation. To solve W, .and P, , take divergence of 

equation (2. 27) and use equation (2. 28) to obtain 

'V>. p 
I (2. 3 0) 



-15-

Therefore, as in Section 1, 

P. 

and 

'VP. 

where the .x -axis has been chosen as the polar axis. 

Equation (2. 27) can be written as 

Let 

satisfies 

"V £>, + ~o X ~ ( f) 

f~
- -e. v and substitute into equation (2. 33 ). 

........... -
"VV--'-V 

+ 

( 2. 31) 

( 2. 3 2) 

(2. 3 3) 

Then 
..... 
v 

(2. 34) , 

Using the Green's function as given by equation (A-4) of Appendix 

A , · the s elution of equation (2. 34) is 

Therefore, 

( 2. 3 5) 

In order to show that equation (2. 35) is the required solution, 

it is necessary to demonstrate that 
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-"Y· W, = o and 
____. 
w , -0 

Take divergence of equation (2. 35): 

f 
--t-t(-('1 -1..Cf · ~'l . 

. "V. w. .. - _I_ ( '1 -R -e.· ) • ( v' P, 
+r. Ir- f 'I 

+'1i J "' ( 
Integrate by Parts 

= _ · _1 r 
-4-11 j 

as 

But V
1

• [v'P. ~ o • .£ ~<('J]•o byequation(2.30). Hence, the con-

tinuity equation is satisfied. Also, since 

I f-( I I > ( ~ - ~ \) 

from equation (2. 35), 

l W: I 

The right hand side was shown to be the fundamental solution of 

Stokes equation (Section 1) which vanishes as · \ ~ 00 

. . . --,,q, - 0 as (--

Hence equation (2. 35) is' indeed the required solution. 

To facilitate the application of the matching requirement, it is 

useful to expand equation (2. 35) as a power series in 

-t I (-('i 
f 

The function _,_ 
.Jt.71 'f- ('t 

has the representation (see equation (A-1 ), Appendix A) 
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= - 2 ~ f 
Cao "''• 

(2.36) 

Denote w, 
,.. 

• u x. Substitute equations (2. 3 2) 

and (2. 36) into equation (2. 35) and integrate out the ~ -function and 

cp' · Then 

u, 
-.f.W 

=-~~ 
6-r. 

To -integrate e , ·consider the integral 

.. s~· 
- I 

-o< >( 

~ < x ~ {~ ( )( ) Ji "" )(. 

Using the orthogonal property of the Legendre functions and the 

representation 

(-1) ( ~.._+-I 

one obtains 

}(.,, ::. [Ji_ (-I/ I 3 ( i t-1)(.f+.J 

;--::; \. <•-'••J<~.t.u 
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Therefore, 

Li ,,. -
(2. 37) 

where . 

+--L- (J.f ... ,,){. c.fJ· ;d{P-•) 1~-· <-t:JJ~} 
(.J.l'-•J j Y, (4.R."- IJ ~ (' (2. 38) 

Similarly, using integration by parts on the following integral, 

... 
F I -o<'I\ ·, I I 
fl"' -e_ P.<xJ~lX)C>\.)(. 

_, 

- - 3 {' (I -
_, 

it is straightforward to obtain 

Y, • -

(2.39) 

where 
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~1.l"J=-<-•f .. 
1

6c .. ...e~.J (-[ K.t•:{(-tf) I..,.Y.<-G=>} {;" f 
\ .>--'. c.e ... , 1 J ,-;-( rp F(· I 

• vf'> ./le l 

From equations (2. 38) and (2 . 40), to terms of order f 

fo(() I 
o(r) ~ 

..I. 4-

f.(( "' - --L ... 0(( _, 
I~ 

f. '\ J ""' 
_,_ ... o(('J 
(, ( 

f1 '( J = - _,_ -t o( r) 
-4- 0 

f ~ 'i) :: O(lJ I"\ > 3 
(2. 4 1) 

':!·tr J = _.>_ 
-# DC j J 

.... 0 

d ,_(() = I + o(rJ 
~( 

Jl <r., .. ) + O( () (;;-
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From equations (2. 26), (2. 37), (2. 39), and (2. 41), by the 

matching hypothesis, the terms that have to be matched by the Stokes 

exp ans ion are: 

to order unity -u 
... 
x 

to order 12.. 

..;..-

.Li • 2 r -e:0 

( t + f.-) + ~ -~c +~£) 1611 .J.A7i i i' J 

-~(--4-~-&-;t-)! 
J.,l. ;r r- t J 

!>. (-t -I~(· _)1 
3~ 1i J 

(2. 42) 

Zeroth Order Stokes Expansion. From equations (2. 12), (2.13 ), 

and {2. 42), the solution of the zeroth order Stokes expansion must 

satisfy 

in 

v }. = 

_.... " w ... x. 

L-v V<o 

- 0 

on surface of body 

(2. 12) 

(2. 13) 

However, in the matching hypothesis, only the leading terms 

are of importance. The leading terms of the solution of 

equations (2. 12) and (2. 13) can be obtained by considering the body as 
,. 

a point force of magnitude - Do ~ This is the fundamental s olu-

tion of the Stokes equation which has been obtained in Section 1. Hence 

(2. 43) 
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On comparing terms of equations (2. 42) and (2. 43), it is clear that 

the terms that have to be matched by -U, are 

;_ r ~(+·~)! 
.3..l "Ti (' ' J 

- j [ 3:; (-t ~ ~J 
-2 [~(-_;... .. ~{ 

J.> 11 i ,~ j 
{2. 44) 

First Orde r Stokes Expansion. From equations (2. 14) and 

(2. 15 ), ·the first order Stokes expansion satisfies 

v f. t ·- v IA., 

'V· lA' - 0 

Using equation ( 2. 43 ), the leading terms of -I.lo . 'VU,. 

( - 4y~l ( } 
- _... u •. v u. 

4:) 1} 
;~ 4~~,~ H 

(2. 45) 

(2~ 46) 

are 

( 2. 4 7) 

A particular solu,tio.n of equations (2. 45 ) and (2. 46) correspond

ing to terms of (2. 47) is 

f, (
- _J_ ..,. 
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- " { ~ [ x x:l j • ( :: J} u - x -- + - - +~ r 81i +v +v' b4-7i~ 

,.. ( -~ r-+ ·4J ~ 

r-~+4J! + J + ~ 
&• -'f>V 4 'Y .I ,4 '1T. ;;;. 'Y ~ y't 

,... { - D. [ 2 + :d._J + 
.. 

~~1} + z. _Q._ r - i! (2. 48) 
8Ti - :;y: 4 ...,, i:-+7t" ~..,· 

On comparing equations (2. 44) and (2. 48), it is clear that all 

D "' the terms are matched except for the constant ,,~ .x:. As far 

as the Stokes expansion is concerned, this term corresponds to a 

uniform flow at infinity. The drag given rise by the requirement that 

this term be matched is therefore equal to 

C>, (2. 49) 

Now consider only the class of axially symmetric bodies 

which are also symmetric with respect to the ~ - .Z. plane. It is 

intended to show that had it not been for the requirement imposed by 

the matching hypothesis that the term be matched, this 

class of bodies would have D, • o The proof will be based on a 

symmetry argument. As vector quantities will be dealt with, "sym-

metry" and "antisymmetry1
' of a vector quantity with respect to the 

plane will first be defined. 

A vector quantity will be called "symmetric 11 or "antisym-

metric" with respect to the J - :Z . plane if its magnitudes at the 

mirror image points with respect to the '1- z plane are the 

same while the directions are as indicated in the diagram. 

.... 
It i s clear from the definition above that the uni t vector x_ is 
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antisymmetric, while f . 9 '-05 f + 2 s.:. + is symmetric. 

- -- f 

--------1--------x. -------+----.),_---- x. 

-------1---------X 

'C>)'MMk.TltlC. 

Because of the linearity of Stokes equation, for the problem 

under consideration, it is obvious that if the direction of flow at in-

finity is reversed, the velocity at any point will reverse in direction 

but the magnitude will remain unchanged. Since the body is sym-

metric about the '(f • ~ plane, it follows that 

is antisymmetric, 

is antisymmetric. 

" are the velocity components in the x. and 

directions. 

As is antisymmetric, is symmetric; therefore, 

u )< must be an even function of x. and is an odd func-
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tion of x. 

Now cons ider the function U: -vu. in equation (2. 14). 

- -u.· vu. 

in cylindrical coordinates. 

From the conclusion that is an even function of ><. 

- -is an odd funct ion of :x. it is clear that LJ • • 'V' u. i s sym-

metric with respect to the 'if - Z plane. Now consider equation 

(2. 14): 

._--4 } 
V W , -v. ( 2. 14) 

The term u . -'1Uo can be regarded as a body force acting 

on the fluid. However, a symmetric body fo r ce cannot produce any 

drag on a symmetrical body. Hence, the proof is completed. From 

e q uation (2. 49) the drag on the class of bodies under consideration to 

order ~ is given by 

,.. 
( Do ~) " Dx D., I -t- x (2. 50) 

, , 71' 

where r u ... °"Do Stokes drag on body. 

From equation (2. 48) and the fundamental S tokes solution 

which yields a drag force given by equation (2. 49 ), the leading terms 

of are 
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(2. 51) 

To compute the higher order solutions of the Stokes expansion, 

it is necessary to calculate which has as its 

leading terms 

~ { ~ 
+ [ ·~(~ -~-~1'1.) .. ~ (-2*--+~ +.fiJ- - 13~>) ~ 

e-rr 4 .; J -:;;r /.J.8Wt yJ yt- yS , Jd 

~ ( 

On computing the particular solution corresponding to the se 

terms, it is found, as was first pointed out by Proudman and Pear-

12 
son a term of the form 

would appear. To match this term, by the matching hypothesis, a 

term would appear. Since the outer solu-

ti on does not seem to possess such a term, it was suggested by 

Proudman and Person that a Stokes zeroth-order solution multiplied 
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by - should be added to the Stokes expansion so 

that the two constant terms involving can be cancelled 

out in the process of matching. In so ·doing, the drag on the particle 

would be increased by 

o} R.:· 1- R-, ,. ,,. 
On combining with equation (2. 50), the drag formula becomes 

D 1 + Oo R., + ~ fi!.J' J. R.., ~ •• . (2. 52) 
16Ti 1Gor.'" 

14 
Equation (2. 52) is in agreement with the result of Bre nner and Cox . 

3. Viscous Interaction Between a Small Number of Spherica l 

Particles 

The main aim of this section is to investigate the modification 

on the drag experienced by a spherical particle in a uniform flow 

field due to the presence of a small number of spherical particle$ in 

its vicinity. Here, the fluid velocity is assumed to be small so that 

Stokes equation applie s . However, even with this simplification, the 

full mathematical problem is still too involved to admit a closed so-

lution. In the following, this problem will be dealt with by means of 

a "point force" approximation. 

(a) Two Spheres in a Uniform Flow. Consider the case of 

two spheres A and of radius a.. and , respectively, 

in a uniform flow, the line joining the centers of A and B being 

parallel to the unperturbed fluid velocity. Imagine two observers, A . 

arid & , stationed on sphere A and ~ , respectively. Con-
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sider observer A If cl , the distance between the centers of 

spheres A and £!::> is much greater than o.. !, , · then to A 

sphere, . 8 is approximately a point. Thus, if is the 

drag of sphere B , observer A can replace sphere B by 

Therefore, observer A will seek a 

solution to the following problem 

(3. 1) 

-'J . Ll = 0 (3. 2) 

with the boundary conditions 
__,. " L1 u.,. x.. y. - (3. 3) 

fa ,. 0 ...,- ... 00 

-u - 0 'Y" . Cl\. (3. 4) 

Similarly, observer ~ will seek a solution to the. following prob-

lem: 

'V ;:> - r (3. 5) 

~ 

V· U • o 
(3. 6) 

with the boundary conditions 

" u ... x f .. 0 (3. 7) 

-LJ = 0 -y- - b (3. 8) 

The present method is to solve problems A and e, sepa-

rately to yield two linear algebraic equations for D 6 and D,.. 

the solution of which gives the drag experienced by each sphere. 

Solution of Problem A 

In polar coordinates, the governing equations and boundary 



·u .. 

conditions are 

I 
I 
I 
\ 

/ 
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-- " \ 
\ 

-i D .. 

I 
I " / '~-./ 

"' r [ 'V'IA& 

(3. 9) 

(3 . 10) 

(3. 11) 

'Y - o() (3. 12) 

(3.13) 

Now divide the space into two regions according to Y- > J... 

and Y' < "'- For ...-- I(. J.. , the solution of equations (3. 9), (3,10), 

(3. 11) satisfying the boundary condition (3. 12) is (using Lamb's solu-
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tion, see Appendix B) 

u,. • ·_, ·~ [ ( : ..( c. 
r L ,<.~ .... ~.) ,, . 

.. .. 
-r + c _e ... ,) 

). ( "'-'.,. ' ) 

+ ..,,. r: ( ~ + • ra _. I c....1 o.11 J ( n r-.
1 

y .I•. I - j r- ) p ] 
y ~~~ 

U 9 '.~ -
1 ~ f ( r .j•· 

(.J+3)(J1 

l. U+ I H .) .h· ~ ) 

+ 

For , the solution can be written as 

f-1 ... ' 

u .. "' u.. P, ( ....., J fl , ... ~ 
.... 

(..R+ • J 

r .lC.l-''"') 

-P,' c. ... • ~ ' - -' l -'""'<_.;_. _z._) __ 

r "~· .l., 'J _, -. ) 

I PA., .... ~ t9) 

To satisfy boundary condition (3. 13). 

I 
(=>_, , ..... J 6 ) 

(3. 14) 

(3. 15) 
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... 

r-r ;. C .t+ , ) ( ~ R .. l ) 

( j}+ I J r:.A 1 ,. o 
0... '1#• 

J-1 
};_ a. + ... 

(3. 16) 

(3. 17) 

The remaining step to the solution of this problem is to match 

the two parts of solution given by equations {3. 14) and (3. 15) ade

quately on the surface of .the sphere v- • J. 

Matching Consideration 

It is clear that the functions UY, () •, fa> must be continu-

ous everywhere on ~ • J.. except possibly at the singularity S 

However, before resorting to this "physically obvious (? ) 11 continuity 

criterion, it is advantageous and indeed proved to be important to · 

investigate the situation more thoroughly. Use will be made of the 

fundamental solution of Stokes equation obtained in Section 1. In 

cylindrical coordinates it can be written as 

Ux D 
[ 

x \. +1 = + 

8r.t' ")•"~ 

u( : _D_ r71 87if 

r . D~ (3. 18) 
"1-T'Vl 

Consider the 'j · ~ plane to be the surface on which matching 

of solution is to be made • . From equation (3. 18) u )< is even in x; 

hence, on approaching the origin from any direction, U" always 
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x. 

tends to + oa Therefore, on the matching surface, U,. is 

continuous. 

Now consider the pressure. It is an odd function in x. 

Hence while fa - - - Therefore, 

although J:> . is continuous everywhere on the matching surface, it 

has singular limits of opposite sign at the origin. However, the 

function .. I 
~ - -2L) 

v~ 

is even in x ., so that the singular behavior of this function does 

not depend on the pa th. Thus, it is clear that the continuity of 4 
; V' 

should be specified as the matching condition and not }' in problem 

A. 

Similarly, the continuity of will be taken instead of 

the continuity of Us 

The above consideration provides three matching conditions . 

The fourth matching condition must, however, be derived from the 

behavior of the singularity. 

From equation (3. 10), 
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r r 
Integrate this equation over ...- from Y" • d- E to J..,." 

and let Since Uy and J '-'s d .. are continuous, 

the last two terms vanish as ~ - 0 

J?g f cc. .. se-•J 
.l. 1i' 

From the continuity equation, 

and therefore is discontinuous at 
.,Lt' 

J,'" [ p) .; f)I) £c,~ci -1> 
d-E ~To'" 

Hence 

must behave as 

Hence 

Summing up, the matching conditions are 

c;;. - 0 0 (3. 19) 

(3. 20) 

(3. 21) 

{3. 22) 

Equations _(3.16), (3.17), (3.19), {3.20), {3.21), and {3.22)provide · 

six equations for the determination of the six sets of unknowns A 

B , c , D , E , and F Writing equations {3 . 19) - (3. 22) 
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out in full, 

u.;. + A. -
t"tJ... 

\ _c <f... 

/or + 
r- - ..l. ,., c-, r 
~ 

_._, F 
+ Jl. /;.._ cJ... - ( ,.R 1' I ) ..t 

- C.J+• )~ 
d.. .t•. 

of.._, .. •. 

(..1-f J) (, c;{J. 

fl.(.J..e~.J) 

..Ra I, ~ • • ' 

... ( .f- 2. ) 

;;,,..(JA-•)r 

.A'·.. r 
C..P-· · I ~.A t:f- - <.P+ ~ J r..e 

""' 
~(c. • ..>'9) -2 

.J•• 

= r l .~ __&. 
&I.,.' 

[ 
.. ( _-___ _s__'.Q l ..!..!:_.P+ I ) R 00. 

Ru .l. ( J-' "3 ) 

.. 

, d 4'rJ 

~( ... .J9)1' 1 
..l ( 1.-t- ' } 

..l.-( .I. "' - ' ) 

.R• 0 

o_, )P.e, ..... •c!I) 
d. .#f I 

4- r 1. (; ( _Q - I j E:. cJ.. .#• l+ ( _2 ~ ~~~:. ) F..) r,_ ( .__,") j 
.J• 0 

(3. 23) 

(3. 24) 

{3. 25) 

(3. 26) 
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In equation (3. 26 ), to obtain the equation for the coefficients of index 

• multiply the whole equation by p.f. , .... , l9 ) and integrate ,;( c.. .. o 

from - 1 to ,_ I Solving for the set corresponding 

to e '= I , One obtains 

.t>, - - 3 o.. f. Uoo _ _.3_ ( 
. ~ 8Ti 

using equation B-3 of Appendix B. 

Drag on sphere A - D,., • - +Ti D, Therefore, 

DA :::. '"Ii" r a. U.,,. + 3 ( o...J a. ) D 
-::;:- 3 c1.} - T 0 (3. 27) 

Proceed exactly the same as above. It is easy then to obtain from 

Problem B 

(3. 28) 

Solving equations (3. 27) and (3. 28) simultaneously, 

[ ,_ 
_3 _k_ ( 3- -~)J 

.2... "'- cJ... 3 cl .. } 

( I - q a, 1. {, J/ l 7( T - Jo..')( -z- Jc.(.,) 

D .... b,,. )-1 h U.,.. 
6 J 

r 
,_ 3 C\.. ( b - b

3 1 7 6 T 3 c()) (3. 29) 

( I - 3-( ~ -~ )( ~ -~) J 
4 "- 3 rJ._J ;:(. l d.' 

If b , then 

D,., 
I 

il ( °'l ) 
+ -::;:- ~ - .l cl.I 

(3 . 30) 

The correction factor to Stokes drag formula is 
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x.' :. 

A n exact solution of the above two spheres problem has been 

17 
g iven by Stimson and J efferys • The exact solut i on yields a -cor-

rection factor 

-
'- ,, • I \ "c ,.. t- • I 
/' =- ....... s . " " o( \ 

•••• -1. 3 L 
(.l .11 - 1 H . .. . n 

·J.."c •/ • ·L t 4 s .... J, + / ... ) o( - ( .J. ,., .,. , ) s. .... « 

.,2 .f,:.. J.. ( ~ .. 4' I ) tX #- ( .J. .. j. I ) S I;. /... ,1 II( 

r\C' 

· whe r e is given by Comparing 

center to center distance d 
A A. ' A II 

d iameter = 2a exact 

1 0 . 645 o. 5 93 0. 571 

1. 543 0.702 o. 680 o. 673 

2. 352 0 .768 0. 760 0.758 

3. 7 62 ' o. 836 0.835 o. 834 

6. 13 2 o. 892 o. 890 0.890 

10.068 o. 93 1 0.930 o. 93 0 

(X) 1 1 1 

L inear Superposit ion. 

When there are more than two spheres in a row, no exact 

solution is available. However, us ing the 11point force" approxima-

tion above , the problem can be solved by simple linear superposition. 

In the case of three spheres, A • and c , us ing _the re-

sult of equation (3 . 23 ), 
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De. • '.,.. r bu_ + ~ r b3 __ b_)l> +L[ _L_ __ b J DA. 
3 o1.:, cl.•< < ~ 3 cJ...'AG o( Ae 

De 'rrr c u .. 2... [ 
cl - ;Ac J l)A ~+ r l -±j D., = + c. 

.;l. .3 ol..!c J ..t!c d., 

Solving 
o,.· .. 

and P,, o .. can be obtained from equation {3. 31) by cyclic per-

mutation. 

If o(A& , ol~c ,dac >> "'.J.,G, then equation (3 .3 1) can be 

approximately written as · 

D" ~ 6 "": r ... u.. [ , _ 2-L 3 c:: t + 
,.>.. c/A• - ,;;.. o/A<. J (3 . 3 2) 

(b) A More General Method. It is quite clear that the method 

of solution used in {a) makes full use of the axial symmetry of the 

problem. Here it is intended to approach the problem in a more 

general manner and to obtain a few results that are of use in a later 

section. 

Consider a sphere in an infinite space filled with an incompres-

sible fluid save for some point or line singularities (e.g., point -force, etc. ). If the sphere is .not present, let W be the velocity of 

the fluid. Take a coordinate system with its origin coinciding with 

the center of the sphere. With respect to this coordinate system, 
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w on the surface of the sphere can be written as: 

denoting 

P;"<<-•t.1>) c..·..s-+ 

w... = ~ i \ k..1:_ Y"': cs. 4' > ... J.<..;_ Y,: < o. 4,) 
.A•o ..... o 

~ ~ · l M-' YJ: (c9.1; " Y,
0

_ coAJ J ~ .,.. M,,. -'- s.:... 6 ' , .z. "' J;,• _ ... 

00 A 

l 21 ..t y;e ( (j• ~) N• Y.e: c6. ~ 1 1 = N,_ + .. ,.. 
5,;.. (!I "';.... 0 , .. ~·· 

where the coefficients are given by 

k. ..t, 0 = 
J ... 

J,o 
MJJ .... .. 

-t..o 
N_,_ 

(.i....t+o J(,.q • .,..) ! 
~7r'(.ii'-J~ 

(J.2+ •)(.i--.) ~ 

.>.-r. (.I• ... ) '· 

r w ... '( ~.o ) ,_ 
"}! .... J .... f-- ...... 

(3. 33) 

(3 . 34) 

The perturbation velocity and pressure field due to the pres-

ence of the sphere can be obtained using the general solution of Ap-

pendix B. The condition that the perturbation velocity and pressure 

vanish at infinity requires that the coefficients f: A and c. 

of equation (B-1 }, Appendix B , be set equal to zero. The other 
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coefficients are determined by the no-slip condition on the sphere. 

Writing out the equations for ..R. • 1 ""- - 0 from equation 

(3.33) ( a. = radius of sphere) 

" - H.e 
oo 

Solving 

.0 

M "o - I<.... 1 
• 0 J (3 . 35) 

But from equation (B-3) of Appendix B , the drag in the direction of 

the polar axis is given by 

Drag 1-.0 
- A>it" r,. 

Therefore, by equation (3 . 3 5 ), 

Drag (polar axis) ... - ~It" r "' r 3 M:. - k. ~. 

But from the definition of , equation (3. 34), 

~ ~.t •• ~. :. 
sfL1"'4 

Let the mean unpe rturbated velocity be denoted by 

Hence, 

Drag (polar axis) = &-r.-ra. w , . ""• ; ... ., ,.,. ... 

(3. 36) 

(3. 3 7) 
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Since the polar axis is arbitrary, therefore 

Drag on sphere "" C. '"'I\ r "'- mean unperturbed velocity over 

sphere in corresponding direction (3. 38) 

Let the x. - axis be the polar axis and L be the scale of 

length. 

I 

x. - 3-
1-

are the dimensionless variables: 

Expand w,. as a power series about the center of the sphere so 

that 

(3. 39) 
.J,-,A •t 

where 

= ( vv. ) l 
. o 

Substitute equation (3. 39) into {3. 36) 

A 
-.t--

(~) 
J.. 

where B <..., .... > is the beta function. 

From equation (3. 40), the following formula holds: 

-drag .. 
.. 

0 ( ~ .. ) (3. 41) 

where v .... i:. is the velocity of fluid at the center of the sphere if 

· the sphere is removed. 
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A 
x. 

Now consider Problem A above once again. Using equation 

(1. 13) of Section 1, the velocity due to a point force as shown 

on the surface of sphere A lS 

I l + L ~ ~ c ..... J.. -,)o.ol.<.ote) 
(3. 42) 

Substituting e quation (3. 42) into equation (3. 36 ), the drag on sphere A 

due to point force ·De is 

D.A. D [ ( ..<.- o.. c-.ns / 
- 8 r. r . -(-... "'".-... -d.-. --1-... -,,1-... -.-, -,g-;1. + 

Hence equation (3. 27) is being recovered. 

If equation (3 . 41) is used instead of equation (3. 36 ), then in 

this case, -v ,,,-t ( u_ 

· Therefore, 
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Similarly, 

D,, -

In case ~ • .b 

D11 ... D., 6 -,r r .... u ... 
I 

f? !-r 
,, 

& Tr r <> >-- u_ (3. 43) 

the correction factor has been shown on · page 35. It agrees 

fairly well with the exact solution. 

4. The Effect of Continuous Solid Boundaries and Fluid Interface on 

the Drag of a Solid Particle 

When a small solid particle moves through a viscous fluid ad-

jacent to continuous solid boundaries or fluid interface, the drag force 

which the particle encounters depends on its proximity to such dis-

continuities. Since the work of H . Lorentz (1907), this so-called 

"wall effect" on the drag of a particle has been the subject of much 

18-28 
research • However, most of the work done so far, with the ex-

ception of reference 27, is only approximate. Here, the problem will 

also be attacked in an approximate fashion by means of the "point 

force" technique employed in previous sections. 

'(a) Potential Functions for Stokes Equation. Stokes equation 

is · 
(4. 1) 

-\J. LA .. c. (4. 2) 

The structure of equations (4. 1) and (4. 2) permits one to construct a 

scalar and a vector potential such that the scalar potential for u 
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satisfies ·the inhomogeneous equation while the vector potential satis-

fies .the homogeneous equation. It is easy to verify that scalar poten-

tial ~ , defined by the following equation, will satisfy equations 

(4. 1} and (4. 2} identically 

.. 

(4. 3} 

where 
• 0 

(4. 4) 

- -Let lJ be given by vector potential A as 

-· u -
"" A 

(4. 5} 

then the continuity equation is satisfied identically.· Substit ute into 

the homogeneous p ,art of equation (4. 1} 

·-. "'V L..l 
\. _, 

V (V• A) - 0 

Hence -A (4. 6) 

The homogeneous Stokes equation w ill be satisfied if f. J. 
and L o/J are harmonic functions, i . e. , 

(4. 7) 

(b) The "Point Force" Approximation. Consider an axially 

symmetric solid particle moving close to a solid wall in a viscous 

fluid with its velocity vector in the direction of its axis of symmetry. 

Let be the drag such a particle would experience on moving 
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through a stationary fluid of infinite extent with velocity U The ex-

act mathematical problem in this case is to seek a solution to Stokes 

equation satisfying the no-slip boundary condition on the wall and the 

surface of the particle. The "point force" approximation involves the 

following two steps: 

(1) Replace the particle by a point force of strength D where 

-- D is the drag on the particle. 

(2) Replace the no-slip condition on the surface of the particle 

by the following equation which is a direct generalization 

of equation (3. 41 ). 

- -D o< v .... r..· (4. 8) 

where v .. .,t. is the velocity of fluid as seen by the point force. 

(c) Two Axially Symmetric Particles Falling Towards a Plane 

Wall. Consider two axially symmetric particles A and B charac-

terized by geometric factor <>< ... , °" ~ (defined in (b) ) at distance L. 

and h ~ falling towards a plane wall. Let C>A and D. be the 

drag on the particles. On using the point force approximation out-

lined in the field equation and boundary conditions become 

..l. 

I 
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at infinity 

(4. 9) 

(4. 10) 

(4. 11) 

The present problem is linear, and hence it is possible to deal 

with each point force separately and then superimpose the solutions 

together. Consider particle A only. Let - ___,. -u u .. -+ Ur 
fa f ~ + fr 

(4. 12) 

so that the particular solution 
--... 

fr solves the inhomogeneous u r , 

part of equation (4. 9). Here, to facilitate calculation, the particular 

-solution will be taken as the one corresponding to a point force I>~ 

at A and an image force at .Z. "' - J.... ... with the wall removed. 

and ff can be calculated easily by means of equation 

(1. 13} so that the boundary conditions for U: 
subscript c. will be dropped) : 

at infinity 

L.lit .. Q 

are (the 

( 4. 13) 

(4. 14) 

To solve for u and r , one can make use of scalar po-

teritial ~ introduced in {a). Hence , · let 
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- - _,_ 

L • _ , ..Lr l~~ 1 
F T ~r ( >c n J -

(4. 15) 

where 

.. 0 (4. 16) 

and from equations (4. 13) and (4. 14), the boundary conditions for ~ 

are 

ii... = 0 L .. oo 

+ _1_ l_f_ 
(" ~ ( 

. () 

( 4. 17) 

(4. 18) 

(4. 19) 

where equation (4. 19) has been obtained after one integration with 

respect to ( 

Define the zeroth order Hankel transform by .. 

From equations (4. 16) through (4. 19), iI. satisfies the following 

equation and boundary value problem: 

"' 0 (4. 20) 

" 0 (4. 21) 

i . 0 'Z • 0 (4. 22) 
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.z - " ( 4. 23) 

The solution of equation (4. 20) satisfying (4. 21), (4. 22), and (4. 23) is 

= (4. 24) 

Therefore 

D,. L. .. :l. . 
( 4. 2 5) 

Substituting into equation ( 4. 15 }, 

( 4. Z6} 

Similarly, an equation similar to equation (4. 26) can be obtained for 

particle B . 

To determine . C>..,. apply equation (4. 8), using 

-u1 and. (4. 26}. 

For particle A 

-Y .. ,t A U + DA 
A .. 

q.,. r i- .. 

,:, .. LL. + _ _....; ____ _ 

.n· ( c L ... L " l1 ( 4. 27) 

For particle & 

3 De 

'"lr rt.. .. 
... D..,. .,. D,.. /..,. L 1, _ D,.. 1 z 

.4r.r cJ.,..d~} Jr./ ( J...+ £~l 4--rfr Jl..~ - 1.. .. 1 

Therefore, 

3 °t>A .. __ D_o__ + (4. ZS) 
,,...,,r J.... .. +r.f<J.. .. ~L~> 
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D,,J... .. (~ DA 1 
J.'Kr d .. t '·J +•r<""-"·' 

(4. 29) 

and D. can be obtained by solving equations (4. 28) and 

(4. 29) simultaneously. 

If the particles are spheres 

and b are the radii of A 

are given by 

D.., -

o<..._ .. '"7('r0.. 
and B 

and Da by inte rehanging o... and /,. 

For a single sphere case, put J:> .. o • Ua • .. 

(4. 30 ): 
D 

(4. 30) 

into equation 

(4. 31) 

Equation (4. 31) agrees fairly well with the exact solution given by 

Maude 
27

• 

(d) Particle Mov ing Perpendicularly to a Flu id Inte rface . The 

proper macroscopic boundar y condit ions at the interface o f two fluids 

have bee n discussed in g r e at deta il in many books , notably in 

Levich 1s
2

·9 • Here , for simplici ty, the fluids involved will be as-

sumed to be isothermal and homogeneous a nd the interfa ce f r e e from 

absorbed material. Furthermore, the surface tension at the inter-

face will be assumed to be very l a rge· so that the continuity of normal 

stress is guaranteed. Consider a spherical p a rticle moving per-
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pendicular to a fluid interface as shown. Upon assuming that the in-

terface remains practically plane, the relevant boundary conditions 

are 

u. } 0 at infinity 

I· 
1'2..GGION 2.. 

I 

Q..I;G I ON 

At .L • 0 

(continuity of tangential velocity) (4. 3 2) 

_u,i - u ... 0 
(4. 3 3) 

(continuity of tangential stress) 

.. f· r .) u.~ + ~] 
l ~ ( 'z 

(4. 34) 

Split the solution into a homogeneous and a particular solution 

as m (c) and use the fundamental solution of Stokes equation obtained 

in Section 1, so that: 

in region (2), let 
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(4. 3 5) 

and 

0 
(4. 36) 

in region ( 1) ( - D - drag on particle), let 

(4. 3 7) 

· and 

(4. 38) 

Substituting (4. 35) and (4. 37) into equations (4. 32), (4. 33), 

and (4. 34), the bqunda ry conditions become 

at ...e. • " 

(4. 3 9) 

( 4. 40) 
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where equation (4. 39) has b e en integrated one~ with respect to (' 

Let £ , f . be the ze roth order Hankel transform of $ and 

1 as defined in (c); then from equations (4. 36), (4 . 38), (4. 39), 

(4~ 40), and (4. 41). ~ and f satisfy the following differential equa

tion and boundary conditions: 

( ~ s' + ~:. )' [ ~ J ~ 0 (4. 42) 

at Z.. • " 

(4. 43) 

(4. 44) 

c). - [ -f.L -~.<.J <='" --+.I. +_!2_ ).~ .. ~ = - -r f °" 0 

f" · e-r. t'· ! 1'4~ 

( 4. 45) 

The solution of equati~n (4. 42) satisfying the boundary conditions is 

(4. 46) 

(4. 47) 

where 
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F - - p [ I-<" d.. J -~cl 
..q.1, tfJ.~f~H ~ 

From equation (4. 37) the reflected velocity is given by 

Hence 

-<> 

u. ;i ... J c \- ~ ) =- I ~ J. cs r:-' u. :i < r . ~ ) "f 

Therefore, 

Using equation (4. 8), 

so that 

D - - {, -rr f· " v ... -t- = 6 "Ti I' · Au + 3""' D [ ~ f 
4J.. I+ '-'f· ~f'•> J 

If 

) 
)-

J -

{solid wall), 

... u 
as equation (4. 31) 

q a.. . 
RT 

(4. 48) 

(4. 49) 
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If - 0 (free surface) 

(4. 50) 

(e) P a rticle Moving Between Two Parallel Walls . For the 

case of an axially symmetric particle moving perpendicularly to two 

walls, as shown, the technique used in (c) a nd (d) applies. By means 

of Hankel transform on (' and imposing the no-slip condition on 

the two walls, it is straightforward to obtain the follow ing drag 

formula~ 

°' geome tric fac tor of particle ( 67' r Q. for a sphe r e) 

0- _g_ 
}-.. 

I<\7'.) 
00 

1 [ 



-53-

drag = D o( u (4. 51) 
i- 3 ~L«rJ 

.+I.. 

(f) Particle Moving Perpendicular to a Solid Wall and Free 

Surface. If, instead of two solid walls as i:r~ {e), the upper wall is 

replaced by a free surface, the same analysis as before can be car-

ried out without difficulty. The only necessary modification is to 

i u 

I . 

change the no-slip condition at the upper wall into a stress-free 

condition. .On carrying out the necessary changes, the following 

drag formula can easily be obtained: 

ol.. . - geometric factor of particle (equal to '..,,. r ... 
for a sphere 

" . _;., _ .. 1 I. -a.,a--1)1 
t 4 (I- ~0-) 1 - 4crl - .2.. - J._(0--1 J1-" + ~ + .l-t .JI.. 

-l.(""·''T - >..l0-·IJ1 -.).1"1 I [ ,_a-1 -:..0-1 _, 
- .l-1 ~ + ..R. - .l ~ ) ~ - -C!. - 4 "1 J "' { 

drag = D = o{ u ( 4. 52) 

1- ..!.: JlC-) 
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(g ) Particle Moving Parallel to a Fluid Interface or Plane 

Wall. Consider a sphere of radius A. moving parallel to an inter-

face with veloci~y U in the x - direction, as shown. Let - D be 

JZ. .. b:C.ION 2 

0 x 

12...~G I 0 "1 I I ru 
' 2. t 

the drag experienced by the particle. · The Boundary conditions at 

the interface are z ,. 0 

(4. 53) 

( 4. 54) 

LJ I>< u •X ( 4. 55) 

u."J .,. u • .,. ( 4; 56) 

U,A u •.I: ~ 0 (4. 57) 

-u.,:.., 0 at infinity 

Here, using the scalar function ili. alone is insufficient, 

-and it is necessary to add one component of vector potential A de-

fined in (a) in order that the boundary conditions can be satisfied, 



fu region {1 ), let 

u.,. 

where 

where 

p 

-+ 7i' 

= 0 

=< 0 
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x.. 

[ ' ' . ]"/~ x+1,.c~·'-J 

. l 

(4. 58) 

(4. 59) 

(4. 60) 

(4. 61) 

( 4. 6 2) 

( 4. 63) 

Substituting equations {4. 58) and {4. 61) into (4. 53)to (4. 57), 

the boundary conditions become: 
I 
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At .Z. ·"' 

+ -1._Q_ _.x._ ... _1-.._. -..,.,-
( • • I • J'I• x 4 J -f .... 

(4. 64) 

(4. 6 5) 

( 4. 66) 

( 4 . 67) 

(4. 68) 

Denote the Fourier transform of j I'>< , J J by 
;.oo 

Then from (4. 64) to (4. 68), the boundary conditions for -~ , 'f , f , 
and X are 

f-

(4. 69) 
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(4. 70) 

~1. [ 
:: _L [- °'~f ~ Hj r· cJ .zr" (4. 71) 

c} <k 
... x I.. 

_I_ °" .>.... £ ... _J_ _Q_ [ J.. o( .A. + 
ol A.. ) - (Of o.. ) 

- ... >...' J/. ..e r· t'· .J 2 *f· (<><'+~) lo( ... ) 

I 
o1.A 1 + I ,) x (4. 72) 

~ ... r· ,,; :;z. 

(4. 7 3) 

Also, from equations (4. 59), (4. 60), (4. 62), and (4. 63), the differen

tial equatio~s for :f , f , -X , f are 

[ f,-. -C J '• A' J [ ~ l o 

The solution of equations (4. 74) and (4. 75) satisfying the 

boundary conditions at infinity is 

- ( .>. -~ ...... )){ .z - (.>. '"+ .... ·) Y..il 

':i A...e... ..- B.%....e... 

f 
+ .. 

... ()..'-TO('- )X. & 

c. _.Q 

E ~ ( ""-~ .. · /~ l1 + != ..c ..12< >.",..:/»J. 

~.,..~ .... ,><.-
1-f ~ 

(4. 74) 

(4. 7 5) 

(4. 76) 
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Substitute equation (4. 76) into equations (4. 69) to (4. 73) to yield six 

equations for the six unknown coefficients. Solving 
. ..v. 

_b "' .. ~ (I +-/!i )" (/\'"'+o<') 

. r· ~ 

{ 

-(.>.'•~'"'J k 

A = 4 ~ ( I i- . 0~ ) [,.). + ,). J.. ( A '1 °'' ):'. J ~ -t ;;.· [ 

- ,.l... + } 

From equation (4. 58), the reflected velocity is 

Hence 

Therefore 

3 >...'+ L 
(o<.'+..A- )~ 

_I (-oe'~+J'°j) 
~· 0 :z ... 

'- y, 
-(.>.+«") J, 

A >." -'1- -t B 

-
--

( 3 >-'t ... 14 o( ... ), ... + & ,,(.'I") /... 

(. ..>. '"-t ol"') v. 

(4. 77) 
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The last double integral can ·be performe·d by using polar coordinates 

A. • ( <.OJ (9 

= { 
I( TT!,/... 

D (4. 78) 

using equation (4. 8), 

v,,,.t • - u "' D 

Therefore 

J) ,,. bTr,o. [ U - p (-)( 1- ~jJ 
16-r.r.1.. '-t-/;.· ~r· 

Hence 

D ;::= 

(4. 79) 
I+ 

In the case of a solid wall, 

r·- ~ 
D (4.80)' J q A.. 

J -
I(. {.,,_ 

In the case of a free surface, 
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- <I 

D = ( 4. 81) 

(h) Long Circular Cylinder. Consider two spherical particles 

A and ~ falling along the axis of an infinite circular cylinder of 

radius IL Because of the linearity of the problem, it is possible 

to consider the flow field due to each particle separately. For 

ID.._ 9---H--r 

particle A , using cylindrical coordinates as shown, let 

(4. 82) 

(4. 83) 

Then Stokes equation wo.uld be satisfied if 

0 (4. 84) 

The boundary condition at infinity and the no-slip condition at ( • ~ 

require 



2 - 0 

+ -'-ll. Dr 
~ ~r . e-rr 

Combining (4. 85) and (4. 86), 

D .i! 
.... 

-61-

(4. 85) 

or (4. 86) 

(4. 87) 

The equation for ~ (equation (4. 86))as well as the boundary 

conditions, equations (4. 86), (4. 87 ), are all even in Z • Therefore, 

the solution must be even in ~ , i.e. , 

odd integer 
;a - 0 

Define the Fourier cosine transform of f C ~; by 

Then if satisfies the following d ifferential e quation and boundary 

conditions. 

(4. 88) 

( 4. 89) 

(4. 90) 
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A solution of equation {4~ 88) which is finite at f- o is 

= { 4. 91) 

Substitute equation (4. 91) into equations (4. 89) and (4. 90) and solve 

for A and .B. 

( oU!,,l.c .... ~ j . l,Lw"-1) K.< .. "') - l ,'"'"') k..co1.c. )-toll(... 1, (.J.ll., K, ( .ill: JJ 

r ...t.. z '"'"' > ( .,, I(. I <" tt.. i - Z '"' ... 1 )- ...L. Z , ... ie 1 Z '"' "'J - + L"" c. > l .... l"'"' 1 j .2, 0 • I ..Z,. I • .,_ f 

e:, = -12.!S._fe. ( <><~ l.C-'tf..) 1<.,C-<it.J-t ..<R-K~l-'itJl,l .. nJ] 

er.c:>l " ( r .. t"'"-J l.'"'"J-+ ~Ill.. r.·c."'J - o1.e. z:<«R.J J 

From equation (4. 82) the reflected velocity is 

u2 - -'-
/" r ~·1 I ) j_- ! --+---

~ \- ( ~ \ 

Therefore, using (4. 91 ), 

U,. C(.1). r;;___, 1-{ ~ [JZ
0
C-p;t-«f"l,te1(.)]., 

... v 1-:;-r ~ - 1 1 

Hence 

LA I: c o, i) "' r:- r J- c A-+°'. 13 ) ~-' i ola5. 
..... p. J7f r o 

From equation (4. 92), 

D 

where 

r;: + (.$ ) 
Ir. 

(4. 92) 

(4. 93) 

(4. 94) 
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Therefore, 

= (4. 95) 

l£ , by repeat inte g ration by parts, 

1-J ( :. ) ,....., { 4. 96) 
" .. 

where · 
J,•+' i { <> ) 

Now apply equation {4. 8): 

v -f . ::. - UA - D,.. /-/ ( 0 ) - Dd i.J r ~ ) ... P4 ,,,. • A A.,,., R., "'I-Ti'/~ 4-irr o(. 

v;:,. 't A - - IA~ - Do t+(o) - .D !}, I+ ( :. J + D11 

.4-7i · r11.. -4-"r fl,, " .. ,., .,(_ 

Theref ore, 

DA Hto) -+ Oe ( 4 . 97 ) 

" .. rf'. 4-7ir~ 

D0 ... t;. -rr f I. [ u .s -+ Do 
.4 "ITr ,_ (4. 98) 

Solving (4 . 97) and (4. 98), 
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[ 
b . ( 3 "'- 3 °"' i-1 (~) J '-rrr a UA ( , __ 3 - J-j{o)) - · b Ua ~ - . ~ ) 

D . .>'l;'I(. ..l "'- .,l.">i" ~ 

~ s ----'----'-------------------------------------------------=---

Similarly, for with inte rehanged with I. 

If 

DA • 
( 

.J <>.. 
I -t- -.,,_ eA. 

5. Non-Spherical Particle 

, then 

I 
-~ t-1 co> - 3 o.. 1-1 (A-J) 
~r.~ ~To~ ~ 

(4. 99) 

(4.100) 

It is quite clear that the hydrodynamic forces a particle would 

experience when moving slowly through a viscous fluid depends very 

much on its geometric shape . A general treatment of this "shape 

factor" problem is mathematically formidable. In the literature on 

Stokes flow; only particles with certain well-defined r egular geometry 

have been dealf with. Here, an attempt is made to treat approximate-

ly, but in a fairly general manner, this problem for particles the 

shape of which does not deviate very much from a sphere. The re-

sulting formula is necessarily not exact, yet its simplicity and gener-

ality do seem to serve as a first step towards the ultimate goal. 

In general, the shape of a particle can be represented by 

(5. 1) 

where the expression has been normalized with respect to the mean 

radius 
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a"' f y' cl.A. y- = 

Now Jc~, f can be represented by 

f ce, 1 J = 1 ~ [ ~~ p41""'-•"'G, ~ .... f .. ~- ?_.";.~11J s.;. -+ 1 (5. 2) 

It will be assumed in all subsequent analysis of this section that 

I J: ... I << 1 for all ) , ...... (5. 3) 

Conditions imposed by (5. 3) permit one to neglect terms of 

• 
order and J:_ in comparison with unity. Further, the 

decomposition of j < B , 1 > into spherical harmonics allows each 

mode to be considered separately. 

Consider a solid particle in a shear flow. Let the unperturbed 

velocity be given by U: = X. ( 1 + f J ) If the particle is a sphere 

of radius unity, then the velocity field is given by 

"u I __ 3_ + 

.l. v 

+~{[-1-r 
~ ..... IS> 

I J . . • + -- S•~ f9 + 
4- yd 

where the x. - axis has been taken as the polar axis. 

If the particle shape is given by 

. (5. 4) 
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then the flow field will differ from that given by (5. 4 ) only to orde r 

or The necessary correction can be obtained by 

making use of L amb's general solut i on (Appendix B ) and the r ela-

tions of assoc iated L egendre functions . It is straightforward, al -

though rathe r lengthy, to show that to order ~.1 - and f,_ the fol -

lowing is the required solution satisfying the no-slip condition on the 

surface of the particle. 

Denoti ng 

y/_ ( ~-+ ) p; c ...... "$ ) e-~ +~ 
y 0 . 

I' .... ( c9, t r:>;' ,.,, • ) ~ - ~ -f 

--2: 1,: 
~ y 

+ [ 3 (1-· )(J.il - ~;(-1.~ .... )J r 
).. .,f( J j+-1) l 

+ 
J 

J="/~-· }:~~ ,.. .. , i:. F--"•.J,•·• '( .. + "(,_: .. + y -c 
+ t .. :.~. I 

, ,. ,.. ,.., .. , 
Y' ~ .. l 

,1.1,,.. .. , 
y·"ot y-'·• J: .. 1, ... . , 

y ... •J 

F .Q y"' F,: _ .. y~~A ~ I · ~o ;:, :_, .t-'P I 1, ,,,,,.., + + .... ~. ,.,._, Y .. :~~·· -1-
Y o 

y- , .. , , .. ~ 1,, ..... . y#'·' y v"•' 
-+ 

. -. . 
~P .. L, ""•I y · .. -o 

+ s= , ... ~ ....... , Y., ........... + }-=_, ,.., ... y"' -4 s .. , .... , y• 
y,1 .. , -*:a,-·• 

"¥ ,,., " ...... , 1-s.."" ,_ , y , • • 'Y .,. ' 



..... 

+ 

... 

1' 

.+ 

.. 
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I J ... --
~ '(:i. 

y" .. 

[- 3 ( (1- ..... -t-• )( ,e+;i..) 
+ .3 ( JJ- WI.. .. ')( .R+l..) j l ~~~ 1-l: .. - + s:_ 1~: .. _ j 

4(..i..l+•)'l.IJ .. , + (.J..i+•) v"'"'j 

l 
[ 

I 
[ 

l 
f 

3 (../-I J( }-t ....._ ) - 3 (.l- • J(..P+-> J [ G1 _ 
y.AI ..... ~- Y:.~.-1 

-4-( J ..Q-t-IJY 
,, . ' 4 (. J. ..R + , ) y ,, .. , f .. 1.-

.. 
( .R+ 5 ) s=: •• -· . .... .. 

.l.(2..li'l)Y 

F.e B .. C-R+-•)Jy.t (.R+1) e~·• - ./. ...... '"t 

.l ( J..1-•J v-' y ,.. • ~.-· • 

., 13: ...... L..R- •) J , .. + ( .J - I ) F, .• -- I -
2. ( ~-' • S" J v"""' 

.f . .... _ ... 
y ' 

( .Q+ I) Fp ... _ •. - B: ..... ( .9+1) J '(. .t + .. .,.,, .. ~--·· 
.l.(..1.J - 1)Y y 

[ 

[ 

[ 

( .J - · ) s:: _, 8.. (.Q-t)1 y~ r ,, ......... , - .Q' • ). * "'I -fo 

.t·• 4 .... ). •• , 
:i..(.l.i•S j 'I' y ' . 

(..Q-4 I) .i: .. : ., Bs.
0 

__ ' (.Pi- I 1j - y" 
2. (:i..Q - • j y .t y#• .. 

,_ ...... J 

<-'·•) F,..: -· · e.~ ...... (.R·•J ..: y• 
.>. l J.'·s J-y•·• y .. 

, .. ~ ..... , 

c,.,. , :iFp:,, - 13,g_· .... (.R• • )i y 0 

:I. (:i..l-1 J y .. 
'"Y .#+L. ~, -., 

0 

B.11~ ...... C.t-•)1 y• (.P-•) ~ ....... -,.. ... t -'- A• I 
i,(J...1-rJv y.A! • 
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+ 

(JJ ....... )(.ld;y .. \ 

lJ-...l .. S".) ·"! .... 

.... r- t-"·l)G: .. 
.J~(~.1-·) ..., .. 

~c..e--~"'Jy-4 _c;.. ...... J(..P+•)y• l 
( ). .J -t I ) .I~•. ,... 1 ( J. .I+ I ) I·! "'"' 

c..e+-·JJ(.f!-·Jy-C r 
( ~ .I • ~ ) 1-J ... . ' 

... ( .... - ' ) t{~. ~·· 'f .• J ......... 
. y.. . 

.. 8...,: ..... ~ · ] [ 
.., ... .. (.l+•JU- .... ti.J y-' _ ( .1 ..... •J){h1)y...11 l-+-

( J.R• $ J "'0 •••• c~ .1+ 1 1 # ...... . . 

, ... t. 
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· + ... 

.. (.J-•)(i- ... ·iJ y" - (i+--oJ(P. - •) y"" l 
(.J....f'-3) .f .. r .... •1 (~.J-3) ~-.J.1-.• • J 

r( ...... ,J'fD• .... J..-1 ..... , .... 

!'.>• 1f .J(J--•L) yo . r.:::::.., ...... 
y-"•• ( .)...Q+ •) _,., •• , 

( !+-•I) (..Q_,.,) '(~ ... , l 
( l.-1 _,. I) ' ) 

+ [ - ( ,..., '+) r,.: .... .. 
.f-• 

;i..(,,Q - i J(.>..t·S)) 

+ 

[ -
.f 

( ..... -I) D,., __ ., 
y- .ll .... 

l -~ s.: ... I 

.f• .... 
~(J+•J(ii..R~~) Y 

+ [- (..1-l;j F..: .... . ~ 
).. ( }·•>< •J>-r)/·' 

"' <,.,+•> D,,. i .. •• Yo 

e.~: .... .ir u-~1c ~ --J 1..: .. _ ( ,f+ ... -.3)(1-· J 1 .. r 
H c ~ _, _ J ) • • c)-" - 3 .) ,, ........ } 

~ . l 
- ( .... "I ) C?.., "'"' '( d 

_$ ... ,..., 
y.. . 

y-'•• .., .. , ...... 1 '( .. , J} 
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I { ( ~ ~] ( 3 S '~ <9 '-- {) ~ l -Tv* + 'v~ -

+ [ -
3 ""- ( ,J - "'+ I ) ( _,l- ' ) (;;.q_ + 3 -. ( _2. "'- + I ) (;; ~~ J '( 0 

4-C-P-+•H~J+1)Y"'., -4-(J..i"'•JV-'•~ f+1,...._ 

[- 3"' <..1_ ....... , ><-f-o> S_,_ .. 3 ..... c..e--· ·) f,_ J y 11 

4(./-t,J(~J+,)y-'•1 4(~.R+•)Y-'"~ J•t.-.. 

./' r 3 .... (J+-)(,P-3)6~- _ 3 c.1-•J(J+ .... ) € ....... 
l -4- .J1 (). ../-+ O ) Y ./- I 4 (.) .P + I ) ,( Y H• 

f 
.3 - C.J + ..... J < P- 3 ) f,_ 

-R· • 
4,.R()..R-+•) y 

.. f 

~ [ 

[ 
... 

+ ( - - I ) .). F .... --· 
;t..(~+>.)( J.~+l)Y.f .. • 

c--·) s_,: .... ,} y .. 
y-'++ .I•'·""'-' 

-t [ ( .... - I ) (.I->. ) s: .. ::.-1 -
.l.A ( ;,.J- 1 ) y-' 

+ ~ -_c_ ... _-_•_)_c_i_-_4'_)_F.;o....;:"=---'- _ c ,... _ , .1-1 _ .. ' 

::.. (..I - .. ) ( .j - s ) )/ ... ~ 
) B .. ~. ···I y 0 ... .l ·>.--1 
y 

~ 

D., .. ,,~ .. , [ (.J+ I)( Jl- .... +j) Yo - l .P"' 1. )( ; + ...... ) Y. • 
.1,~-· 

y-' ... t J,.,t + ) ) .I~ ....... l .J...C + !. J 
0 

[ '(,_:_ ... J D..1-1 ........ (..Q-1;( ,1 ........ ,) y• - ,t(,J+ ... ->..) 

y'" (:i_.J- I 
.1, .... , 

(.l. .fl- , ) ) 

[ 
-~ 

I ) B ; ... - • I J y 0 
4 ( "'t I ) .J F_,.\. ""'1" I ( ,.,.-\. 

;;,..l.P+>.J(..l...R1"l ))' 
.fH y ... ++ ..1+:..,-. .. , 

[ 
c ....... , JC..P-~)F-' ... -•· " J Y.~-~· + - ( ""'*'I ) B ,, ... :"I 

.;;...J(~-1-•) y .a y~ .... 

r 
( ...... 11(.J-'I-) s~ .. 

-~· J 'l:~a.."-+I ... ... .. - c ....... I J s .... ... 
J. ( ~- t)(J.~-~.) y..t·• y.f 

'-•""I:. 
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• D,., -·1 [ (fl-+ 1)( 1 .... I) y• - { fl ... ... >( 1l ......... ~ ) Y_/ ... , 1 
'I ~.' ( .I ,e .... J .., .. ~ ..... , 

Ci-"+~~ 

• l Yo )A...,.) 0 

D, ... ~ .... •• (..R-1J(J> ...... ) - .t ( y 

( 
( 

f 

~ 
- [ 
- [ 

y .. ( l ~ - I 
.1,- .... 

(.J../-•J I·'·-•' 

0 

< .... - , ) ~ F ......... . 
.l. I .i .+ :t. I ( .l. .e .. l J 'r ~ .. 

- l ..... ·•J B.: ..... -•j y .. 
y.., ... ., .I•~-·' 

" < ,,_ _. ) ( .R - .._) FJ, .... , 
.)..t (:i../ -•J Y "' J 

y .f . 
.... --• 

c--•>(J-4-)F,~ •.•.. _ c ..... B; .. *-' J y .. 
_:_ _ _:.____:::....._ • · • , ._. I 

:..(-"-J.>l.i.1-S)Y.t-• Y.e 

c.1+1Hl- ... ·d>y.f _ c.t-+ ... >(.Qf' ... ) Y.,,: .. J 
(J..R-f'?,) .tu, ... , (J...R+l) 

t>,~ .. ~-1 [ 

y .. 

< - ... >C-'-1.) F/ ..... . 
.;,.· -l ( l .J - ' ) .,, .f 

F. 
0 

(. "'-1- I ) ( 1- '+ ) .I·• *•0 

.l. ( J - l, J ( ~ _Q • S ) y .f•L 

Y./ ..... - -EC-€-1- .... - l.) 
(.1.l-1) 

' "' ... I ) B~ ....... I l y .I/ 
y .I+~ .I.-.-. I 

JI 

[ 'i JI. ( .R-1 ... )( .p;. ... ;. J.) y JI l D..( .... ,, ...... , ( 1 + I >LI- ....... • ) 
y., ... (J.J..-~) 

,, ... _ .... , Ll-" •~> .P .... ~• 

Jl 

r yl::,N•I ~ t D, ... , ~ "' "'' (.f-1 J(.i- ... - 1 ) .ll -'C-f+ ..... ) Y..1,-., -
y"' (i..J-•) (,.I-•) 

e. .. 
..t•i. ....... 

(5. 5) 
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I=, .. "'-· ... .. 
&,,, ,.. •• F;~•I 

,l. ( J. j!- I ) :L{J..f-1 ) 

~ ,, ... F..,..,a ,.,. .. , i3. F'.t. :t. ... . , l-i., ..... , 

.l. ( J "' . s ) .l. I J. 4". $ ) 

_ 5 ( .R-;...+ o )(JI-...,+~)( fl-...,+1) 

.l(J..ll-+1) 

-5 ( J- J. ;(_:i..R • 5 )( .J,..,_ J(..P ... ... - I ){ .P+ .... • z.) 

~(./J-• ; ( .J..P,..o)(JP-o) 

~,_, 

; 

(J .... --.)(-f-,_+,>('.J...e
3 r 1 e-e~.,.30...P--.-re-R1-1s ... - 1 J.)~-J 

.,l. ( l ,p_,. I ) (. .J ~ ... j ) ( .<' -t- I 

( _p _ ..... f ) ( -f - ........ ,I..) ( _ll..,_ s ..... ~ 3 ) 

.;>. ( .J...P .... I )( _f + I J( .P + l. J 

r.P ....... ;c-R ... --. >( .J-s ... +4-J 

.:l jJ (.J.f-1' I)[ .P -' ) 

S' ( ..J--.,..1) 

.l-(~..1 .. o ) 
~- f 

s c .f+-., < J- 2.; c .J.-P-s) 

..2.(.f- • )(.J.~+1)( J. .4'- o) 

(-1J...e.$- 1e.J."+.1.,-R-. 1-18..J. ... , s- ....... ,~)~ f 
~ .... 

J..( .J..R + I J(.J..f+ 3 )( _R+ 1) 

c..R-s--3 2 
;J. ( .1 ./ + I J(..f-t' I)(_/+ 2-) 

replaced by 
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- 0 
.. 

1='.1.:, '"" ..... 
-C! 

F,, .. ·.--' - F, ...... ,.,. . .. - F~t'". -· · 
!=" ,,;· _.,._, F.;" ~.I~.-. ... 

~ - F~ . ....... ... ' 
0 _.,, 

F., ... :,,.. ... f=,,~ .... ,.. .. , F ., .... , ... ~ , - 1-, .. ~. ,__, -. 
B-1 ........ , s; .. ,, ..... , 0 

le;,, ...,,l, ..... 
.. 

B, ........... 

e,,:-~. 
.. 

~:.-.. .. - B.,,, __ , - B". - • ' . .. 
B;.\._. .. B: ... ........ B .... 1.; ... - · B., .......... . -. .,, • D:, .... 1'• D,.,.,, ...... - - D., •.. ... , D ... ,, ...... - -

)0 .. ~,~ - · 
,. 

<> .. - - D,,_ ......... D,, ... •-+• - - D..,.,_ ..... , . , 

For a particle, the shape of which i s given by equations (5. 1} 

and (5. 2}, the corresponding solution can be obtained by summing 

over the appropriate index J. and """ 

To find the forces acting on the particle, it is only necessary 

to find the forces acting on a sphere of radius R.... and let fl.. - -

By means of e quation (5. 5} one obtains, after carrying out the neces-

sary computation, the dimensionless force acting on the particle. 

.,. 

' "1T [ 

r 
[ 

I-

_3_ r .. - ~ 
..l<> 7 

E .• f 
I 

~e 

The dimensional (primed) and dimensl.onless (unprimed) 

(5. 6) 



quantities are related by 

- ... u.., == u_ ~ + f ; 

F 

B' ~ 
J 

u .. 

[' 

f "'L.loo 
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_,_ 
A-lo 

I y't..c!>,+J "'..fl. 

- .. 0 

Example 

at infinity 

(.J-...,)! 

c.1~ .... ) ! 

--+-(-·-LB-· 
.). .R 

{5. 7) 

Consider the case of a finite cylinder with axis of symmetry 

pointing in the x. - direction in a simple shear flow U.,. .,. (I.A .... J '/ Y;;, 

Let ~. e::: b then the geometry of the particle is defined by 

-t .... o<. = b/.£ 



Hence, as in (5. 7}, . 

+ 
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r~ 

l _b_ 
(,..: (!I 

<X 

b ( ~ - -f .. _-' i ) 

By equation (5. 6), the drag is approximately given by 

6. Elastic Spherical Particle in Shear Flow 

(5. 8) 

(5. 9) 

In this section, the additional hydrodynamic forces acting on a 

spherical particle due to elastic deformation are being investigated. 
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Here, the particle will be assumed to be small compared with the 

characteristic length of the flow field . Thus, it is. sufficient to con-

sider the particle as existing in a simple shear flow with velocity 

relative to the sphere. 

It is well known that a rigid sphere in a simple shear flow 

will experience a drag and a torque due to hydrodynamic forces. 

Therefore, if the particle is not subjected to other external forces, it 

will unde rgo a translat ional and an angular acceleration. Let the 

angular velocity of the particle be ...v i Then the drag and torque 

acting on such a rigid particle of radius G\. is 

- ~ 

(drag} D {,"Ti f Q, u .. x 

(torque} - 'BTl"r o...' ( ,_..j ... *) z. \ 

Here, it will be assumed that the sphere undergoes linear and angular 

acceleratio~ so that the drag may be considered to be balanced by a 
,., 

constant body force e qual to )(. and the torque by a 

body force in the form f · A z ... -:; Also, deformation due to 

centrifugal force arising from the angular velocity of the sphere will 

be neglected. 

To determine the constant A 

torque --f 
sf~-

.. .... ... 
A(i!.,.y).,vJ.., 

A = 

Hence 

(6. 1} 
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For slow motion of the fluid, Stokes equation applies. From 

the general solution of Stokes equation (Appendix B ), the flow field 

near the sphere is found to be 

-u 

-+ -eo { u .. f-r ... ~+ °'J]s-.;.o+! r...r::. - ~Jcse....-..·c!!-•) ""+ 
4-r +vl l S ~-..,'!' 

~ f [ 
. .l 

... ~ 
y. 

(6. 2) 

(the x. axis is taken as the polar axis) 

Let denote the stress tensor. Then, the surface 

stresses acting on the sphere corresponding to the velocity and pres-

sure field given by (6. 2) are 

er · ~ y .. ; ' [ s r< u.. P, l...,. o , • 
~ ... 

(6. 3) 
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To describe the deformation of the spherical particle, it is as-

sumed that the elastic displacement is small, so that linear elasticity 

theory applies. Also, the material of the sphere will be taken as 

homogeneous and isotropic, characterized by the stress-strain rela-

ti on 

where 

and S 

c:r-7 . 
'J = + ;}. G -ei 

is the displacement vector. 

The displacement field is governed by the Navier equation 

( A..+ G > "1 ( V'· s; 1- (6. 4) 

where 
-> 
F is the body force, and in the present case, 

F .. .. 
:/.. 

The particular solution to equation (6. 4) corresponding to 

above is 

+ '·- f:. 
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q f U.,, v { 
... 

(L+w)/ [--±-1"',.__,, , ._, P't. ...... •)l ,.;;;,cj> l 
Ji 1 s ,. 7 2 J 

(6. 5) 

The stress components corresponding to (6. 5) are 

J l?pU .. G-r P(• .... 0)~ 'l'fA U .. Y ( CG*'SA)P, ,....,..· "' 
J . J J s ,,._ ... ( A. .. i G ) 0.. ( A t' .2 G ) . I ., 

+ 

I f . I f f' (<• 9) (;..> J - _1_1_ p ( .. .,.") '-"'> ... 
' 9'°0J . 

(6. 6} 

From equations (6. 3 ) and (6. 6), the boundary condition to be satisfied 
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by the homogeneous solution of equation (6. 4 ) i s 

At v-- = ~ 

/ 

+ _.€ 0 [- µ U..,(s.A...+4-G) .. ,_.. U.., (7.A-1-..l 0 GJ p, •• .s.,>- 7~t'U.,G f, .. 191 

.S•~ <9 ) SA •( .>,.+..z~) r 7 ... c A..+.ZG) ... .Js !c>..-t.zG.J. 

.. 

+ -J;-; ( * ~ LA.)) p:c~lO ) '-°" 3+ ! 
~ _;_i [ f ( 4-~) ,.~, ..... JC!))S•.: + +7(L+iN)f':c .. uo.JS·~+ 

.r.:... <' ,f/.l; ' 7 ) '{] J:l-

(6. 7) 

The homogeneous solution of equation (6. 4) can be obtained by us ing 

equations (C- 1 ) and (C-2) of Appendix C and the boundary condition 

provided by e quation (6. 7 ). Writing out explicitly the equations for 

coefficients B'"' ·- c ... 
, J 0 , 

J> ... 

B .. , . c .. , 

- B~o f 
3A_ .... 1G 

1 .i. G " 3 p U ... ( f>° .>-.. t 4' G ) 

>-..- G j s ... ( ,1\..1'.LGJ 

~ l 3A.r4G !.i.G~· • (4-G o.)= 18 µ U-G Blo c,o -
a>---t- G . r.J.l ,)...+.2(,) 

2>;. ( 3.>---t-..i.G 

I 
~G .... ~ Uo0 (S-f-.l-4G) 

.>-...- G ~ Js-.(.>...t.LG) 



B J) (>..'"G G -'l ., - .2. c., 

q~ .. : [ 

Solving 

B.>.... ... 7G 
'1 >-... 
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µ u..., ( 7 A. + ..i. o G ) 
I 

7.,,_c.A.-r2.GJ 

---4;-f-

s;, - 0 

c~ 
3o ::: - q µ u ... c~ ... 

Therefore, 

__.. .. 
S',.---€., = 

Combining equations (6 . 5) and (6 . 8), 

s = s,1"$ ~ .ev [- ~,., ~ y- p',.._.,;c,....,_f+ ... ·] .. ... 
. c . 7'JG • 

(6. 8) 

(6. 9) 

In order to find the additional hydrodynamic forces acting on 

the particle, it is necessary to find the deformed shape of the parti-
1s 1 

cle. Since b y assumption -.._- < .. 
1 

(6. 10) 

where Y c Q, e. f) gives the deformed shape o.£ the particle. From 

(6. 10), 



Hence 

Therefore, 

"1( ... ,13,..p) 

0.... 
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= I -t-

From equation (6. 9) above and equation (5. 7 ), 

and 

E ... - st' f 
~G 

- 3,.~' IJ .. 0. ~ 
r J 

J. G (6. 11) 

Therefore, a transverse force acts on the particle as a re-

sult of elastic deformation, even though the drag remains unaltered 

to the first approximation. It is to be noted that the transverse force 

is in such a direction as to cause the particle to drift to the side 

where the velocity difference between fluid and particle would be 

smaller. 

7_. Non-Stationary Motion 

This section concerns primarily the non-stationary motion of 

a small, spherical particle in a viscous, incompressible fluid under 

the action of external forces. The prime objective is to obtain an 

estimate of the importance of transient effects and to illustrate the 

complicated nature of transient motion even in very simple particle 

systems. 

Consider a sphere of radius .._ suddenly being set into con-

stant motion with velocity U .. ;_ It will be assumed that the motion 

is slow enough that the linearized,time-dependent Navier-Stokes 
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equation is quite adequate for the purpose of describing the flow field. 

Thus, the fluid field is given by the solution of (using a coordinate 

system fixed to the centel". of the sphere): 

-V · U " 0 (7. 1) 

(7. 2) 

-(..l. - 0 y- = "' (7. 3) 

(7. 4) 

where >-1<tJ is the unit step function. 

To find -L1 and fa , take Laplace transform of (7. 1) to 

(7.4). Then -"V· u - 0 (7. 5} 

~ " vf .... -:;+ 
f S 

\.,(. - (' u .. "' ... .... r v ~ (7,. 6) 

and the bou:n.dary conditions 

=-u. - 0 (7. 7) 

"'='"' u. .. ,- .. 0 
·- 00 (7 . 8) 

where ::. is the transformed variable. 

A general solution of equations (7 . 5) and (7. 6) satisfying the 

condition at infinity is 

~-. 
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· uT = U,,., P,l...,•t!!i ...,_,_' (.P .. •)A.o p-' (•o~<P) 
~ sf" L v"'· • 

~ t .. 0 

~ .. 
I 

P ... t ~., • '° l 

where ..:; Ir a I I\ ' and the x. axis has been taken as the polar axis. 

Impose condition (7. 7) on (7. 9) to obtain 

f = ( : u.. [ KS:/. (ff a.) I ~ l 
K.1,<A ... ) 

J-;: u ... 
S K;;. <B--o.) 

J [ K" ( {f-.) J "'" o U19 u .. $•::... e - °"' u ... 
s 

..l.. '5 [-f. y-l J<x < .., "') 

-f 
~ u .. [ .l. l(x( r+T) < j(" ( ~ T) l 

..l.. s 
k'..;s <If·> .[Y fY 

(7 . 10) 

The inverse transform of (7. 10} yields 

fa = 

u..,. 

( I - J. .J f - _:;___ ) -" y f C ( Y"'- "'" _\ ! u .. £A• & 
...,.... ..,..... :>..)..J-t. ) 
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' - ('(' ...... ) _3o..faj-tc ~) ~ ---- lt-..e. 
.l.Y" 1T Y" 

{7. 11) 

From equation (7. 11) the drag on the particle can be found to 

be 

drag • r b '7T r 0.. + .l T( (~ 0..1. fc t) t b 0.. ~r ff. J u ... (7. 12) 

For an arbitrary motion of the particle, the drag can .be obtained 

from equation (7. 12) by means of the Duhamel integral. 

drag "" s i-r 
" l 

Therefore, 

(7. 13} · 

Equation (7. 13) is the Boussinesq 1s formula8• 20 . 

Now consider an external force I= lt) , e. g. gravity, act-

ing on the sphere which i s at rest at time f "' o The motion of 

the particle is described by 

__, 
fC-t') - (7. 14) 

where W\ r is the mass of the particle. 

By means of equation (7. 13) and on writing 

each Cartesian component of (7. 14) can be written as 
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(7. 15) 

To solve equation (7. 15), take Laplac e transform of the whole equa-

tion and use the convolution theorem for the integral: 

f(.5) 6 -,( t:!. ().. l Jf: u.r Ms ut = - 6-irro.u, 
Irv 

or 

Uf ~) 
J 

(Ms +6-.rr ....... Gr.r~'/5;-'J 

Therefore, 

0-..r\.'.o st 

UJ' f 
f (s;) ~ 

Js. (7 ~ 16) 
,.l. 1' ~ 

M [ S + 
b"fi~o . .'JS 6 -.; t:. 0.. 

J.i 'p- + ~ Y' - .., .. °"' 

To integrate (7 . 16), fd) will be assumed to be a physically 

reasonable forc ing function so that is an analytic function 

save for some isolated poles. The denominator in (7. 16} depends on 

JS and so, to insure single-valuedness, introduce a cut in the 

s - plane along the negative real axis. To evaluate the integral, 

take the contour as shown below. 

Consider the function ( s + A[!;" + B ) where A and B 

are real, positive constants. The imaginary part of ( s -t A [S + e. ) 

which has no zero in the s plane ex-

cept on the positive real axis . The real part of ( s; ., A IS+ 6 .) 

is ( Y ' .. J 19 ., 4.....,. o/. .. 13 ) 

axis. Therefore, the function 

which has no ze ro on the positive real 

c s .. 6-rre o.'rs + 
11,..., r:7 

has no 
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S· .PLANb 

l.t. ~--
c. r - o 

pole within the contour f' shown. 

If are the poles of and f .. .-
the residues then by Cauchy's theorem, 

y., ...... 
&t 

) JCS) ~ Jr. 
.l T...: 

""' [ s • 6,,.~ .:rs .. '7<!" l y., . .., JM r,; 
· -.; " r .}. · £ · I · I · S. l 

... f,. el.; 1: 
+ l ~ 

(7. 1 7) 
~ [ 6-.r,... ... t. rrr ... ~P:-! 

~ .... ,!.. .... °"",: .... ,:., IV 

For a reasonable function :f 1.. -tJ , it is easy to show that the 

integral over A e c and F' G. 1-l g ives no contribution. 

The integral over path o t=. yields as . E. -. o the contribu-

ti on 

&. .... 
[ -
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Integral over CD gives 

io6M 
-Yt _,_ J (- v ) -(.. cl y 

w> r. ~ r ,.,,.~"'-..,..+ b"lf/A"-·r-;: . i ;.;. J, N ' 

Integral over f:. F gives 
- ,,.{: 

__ , _ f. ---+f-l_-v_)_..(. __ .i._v-___ _ 

.Pi'"° M [- r .,,~ - 6-.rr._'.fY.-l 
,...... MN J 

.. 

Summing up all the contributions, 

-+ Lt 
1; ...... 

"" - -¥.f 
( Jx f (-X) -e. Jx 

J [ ( 6;;(;... ).. ~ ' 71'' }"' ~ .... J( J • - >< ,.. I 
• M' v 

(7. 18) 

The integral in equation (7. 18) r epresents the transient solu- . 

ti on. 

Special Cases. · 

(a) Constant force , e.g. gravity. In this case 

From (7. 18), 

uf c-t ) • K 

'""to.. 

For large f.. , (7. 19) becomes 

u, ( t) ,......_ K. - ~ 
4 

6-r.r .... , /7 -rr l/r ff 
t;,.,., ... ·K.. 

J> .r::; 

K. 

s 

( ~~ t-1 ) 

v J"fl" f"'''" 

(7 . 19) 

J .,- + • •.. 

..>- t'h 
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(b) Sinusoida l force. In this case, 

Jct ) · "°';..., >.... { 

(7. 20) 

Fundamental Solution 

Consider a force pulse of intensity D applied to the fluid at 

time f. at the origin in the x. ·direction. It is clear that disturb-

ances will be initiated and propagate in all directions. The velocity 

and pressure field resulting from such a pulse are given by the funda-

mental solution of the linearized time-dependent Navier-Stokes equa

tion, i.e., U and } satisfy the following equations: 

( ; ? -t- "'V l ~ r 'V' LA + D;. J( >() f ( t- fo ) (7 . 21) 

(7 . 22) 

LA · I )' = 0 at infinity. 

To solve for u and p , take L aplace transform of equations (7. 21) 

and (7. 22); then 

ls 
. r - sf. 

T D ;;(. ~(.X) -e. 
(7 . 23) 

__. 
'V· Ct - 0 (7. 24) 

Take divergence of equation (7. 23) and use (7. 24) 
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- cf. I (' 
p-e ..st--lo<K'>) 

ax. 

Hence 

f -
From equation (7. 23 }, 

fi 
. -sf 

._.,I • j I 

(l(I~ Jot)( 

On computing 'VJ as in Section 1, 
JS~_, 

u" --'- f _:;_ --;,<x--<~\' _P_ {-x [ ..z. t: c""~·J 
-4" 1x-'i<"1 -+1or · -y'~ 

Inverting the Laplace transform, 
. 1'it-~'1~ 

__.U. ( _. ~ ) I f i , { -~, 
')( I D - -- ~ X ___ ..e ___ _ 

. 41i c-7 {. 1. ., J/, 
J.~r." · ~- '• l 

>-Jc f-f0 ) _D_ L ~ F «- G' J 

· 4.,.r L y"* 

... 
+ 1 I f P, t......, & ' J c......, 

y' j 

D 

, .. r 
1-J.c.f. - f.) ... 

----""-· .x. + 
.J. /7i" 

(7. 25} 

(7. 26} 

(7.27) 

If, instead of a pulse f orce, a consta nt forc e i s applied, then, inte-

grating over all time , e quation (7. 27) becomes 

--'O _, . { ) I U tX ) • _ I J. X j) 

.4-r.' l 51- x' I -4-r. f [ - ~ 

D (7. 28) 
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Equation (7. 28) is the fundamental solution of Stokes equation as ob

tained in Section 1. 
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PART III. 

Macroscopic Continuum Description of 

Particle - Fluid Flow 
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8. Particle Continuum Equations 

The particle-fluid system that is being considered in this 

thesis consists of solid spheres and viscous incompressible fluid. 

The particles are assumed to be small and numerous . Further, they 

would be regarded as having the same size unless otherwise specified. 

Owing to the existence o f viscous fluid intervening between 

particles, a form of viscous interaction exists between neighboring 

spheres_. This interaction tends to smooth out any possible velocity 

dispersion among adjacent particles. In general, as a first approxi

mation, the velocity difference can be neglected. The consequence of 

this l ack of dispersion is that particle-particle collision is infrequent. 

In fact, for slow motion in which viscous forces dominate, direct 

contact collision between particles during which significant momentum 

exchange takes place is rather rare. Thus, the particle cloud may be 

regarded as 11collisionless. 11 

To describe the motion of the particle cloud, it is possible to 

define a distribution function f C x, v, f: ) for the particles and to _ob-

tain the conservation equations by taking moments of the collisionless 

· Boltzmann equation as was done by Marble 
4

. Here, such a procedure 

will not be undertaken as t he force acting on each particle is still un

known .(a major subject of investigation in later sections). Instead, 

for simplicity, the following assumptions would be made to achieve 

the same goal. 

{l) The number density of the particles is large . 

(2) The radius of the spheres is very small compared with any 

macroscopic length of interest. 
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(3). Velocity dispersion is negligible. 

Assumptions (1) and (2) assure that the particle cloud may be con-

sidered as a continuum, while assumption (3) permits the use of a 

-particle continuum velocity U f with sufficient precision. With the 

above assumptions; the following field equations for the particle con-

tinuum can be written down immediately. 

Continuity 

~ ... \J . (I'\. u, ) - 0 

.i-t 

Conservation of Linear Momentum 

· cons e rvation of Angular Momentum 

I r ( J~ ~t ... u; . v z:,;, ) . r 
Conservation of Energy 

; +. [ r\ c .R, + 7 -at' .. ~ ~,. > I + v · f I\ v;. c ~ r ~ 7 -u,- .. ~ ::;·r' ) J 

. where 

,,_ = number density of particle 

L:ir" velocity of particle continuum 

<-Vr.. angular velocity of particle 

..,, r = mass of a single particle 

I 1 • moment of inertia of a single particle 

..llr .. internal energy of p article 

(8. 1) 

(8. 2) 

(8. 3) 

(8~ 4) 
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F force exerted on particle continuum by surrounding fluid per 

unit volume of space 

-I • torque exerted on a particle by its surrounding fluid 

ai. • heat given to particle continuum by. surrounding fluid per unit 

volume 

9. Bulk Fluid Equations 

The . fluid phase of the particle-fluid system is assumed to con-

sist of a viscous incompressible fluid, the motion of which is de-

scribed by the Navier-Stokes equation. As the fluid does not occupy 

all space, for the region exterior to all spheres, the following equa-

tions apply. 

Continuity * + v. (rv) • 0 (9. 1) 

Momentum 

+ \l· ( ( 
-~ u u = J = '7· (J (9. 2) 

(Navier-Stokes relation) 

Ene r gy 

(9. 3) 

y = - k., VT 

{Fourier law of conducti on} 
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where 

f = density of fluid 

r .. viscosity of fluid 

k ... thermal conductivity of fluid 

u. • velocity of fluid 

cr' • stress tens or 

f • heat flux vector 

..fl .. internal energy of fluid 

T • temperature of fluid 

j> "' pressure of fluid 

In principle, the particle continuum equations of Sect i on 1, to-

gether with equations {9. 1), (9. 2), and (9. 3) above , give a complete 

description of the two-phase system. A solution of these sets of 

equations satisfying appropriate boundary conditions would, in effect, 

yield all available information. However, a rn.oment of thought would 

easily convince anyone that such is an impossible and forbidding task. 

. -3 
Imagine the particles to be of the size of 10 microns or 10 cm, and 

assume that they are about 100 microns apart. Thus, in a cubic mil-

limeter, there are about 1000 particles, giving 1000 isolated surfaces 

on which the solution has to satisfy the no-slip boundary condition (a 

rather hopeless endeavor!). Of course, the difficulty comes from the 

deterministic approach to the .problem, a course that is purposely 

avoided in all subsequent sections of this thesis . . 

For many practical purposes, full detailed information con-

cerning the behavior of the fluid-particle system is not required. In 

fact, a gross averaged description is sufficient to meet the need. 
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With this in mind, it should be quite clear that a "macroscopic de-

scription" in terms of averaged quantities not only would satisfy 

practical requirements but also would circumvent the dilemma of the 

deterministic approach. To be sure, a "microscopic description" 

involving a detailed account of the behavior of a typical particle and 

its surrounding fluid is indispensable in determining the transport 

properties of the two-phase system. These two descriptions will be 

taken as complementary to each other in the analysis to follow. 

By the assumptions of section 8, it is to be noted that there 

are two basic scales in the two-phase system in consideration. The 

first scale length is the one that measures the influence of a single 

particle on the fluid, which is of the order of the size of the sphere. 

The second scale length corresponds to the measure of macroscopic 

changes that are of direct interest. It will be assumed from now on 

that the two scales differ by several orders of magnitude. 

To describe the system macroscopically, it is necessary first 

to define bulk or averaged quantities of the fluid. For this purpose, 

let < ) denote an averaging operation involving the following steps: 

(a) divide space into small cubic volume v , very large . 
compared with the size of a particle but very small in re-

lation to the macro-scale ; 

(b) take averages of the physical quantities of the fluid over 

the volume occupied by_ the fluid VJ- in V Thus, for 

a quantity Ct 
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< © '> ~ f Q Jv 
v 

"''f 
By means of operator <. > , the following "bulk fluid" quan-

ti ties can be defined. 

Bulk fluid dens i ty f 1 " < (° > 

B ulk fluid velocity -U5 ., _I_ <(LA)> 
f -f 

Bulk fluid internal energy _Qt - _,_ <(-"> 
(f 

Bulk fluid pressure f 1 = 
_,_ 

<. f >-
/• G 

Bulk fluid temperature Tf .. I <. T > 
1- c. 

where 
4it ~ 

C. "' - 3 - "- t'\. • volume concentration of solid particles. 

For systems in which the particle volume concentration is 

relatively low, it is clear that the presence of particles introduces 

only small ~ocal variations in the fluid field . With respect to the 

macro-scale , these local variations can be ignored, so that varia-

tions in the mac ro- scale can be represented adequately by variations 

of the averages. Naturally, the above s t atement is not exact, yet i ts 

· accuracy would improve if the relative size of the two scales in-

creases. Here , for clarity, the following explicit assumption would 

be made. 

Bulk Fluid Assumption. 

If 'V is the gradient operator, then, with respect to the 

macro- scal e , the two· operators V a nd < ) commute, or 

< " > ) 
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The assumption assumes that the average of the derivative is 

equal to the derivative of the average. This is exact in the limit V-+ o • 

Granted that the bulk fluid assumption holds, then a set of bulk 

fluid equations can be derived from equations (9.1), (9.2), and (9.3). 

Apply <. > to (9.1) and use the assumption of commutation, 

then 

~ + "' . c !t <=11 ) = 0 

c) t:. 
(9. 4) 

which is the continuity equation of bulk fluid. 

Applying <. > to (9. 2), one obtains 

; t ( (j ~ ) + "'V. ( (t c;; ~ ) = "V. Of. ~ fl. (9. 5) 

where 

= V'. ( (f ~ Jj. ) - < 'V· I(-;_:: ~) > ... < 'V· a- > 

The di££erence of the te rms 'V· c (/. ~ :/j > - <.'V· <(-;.:;» + < v -~ "> 

m (9. 5) has been separated into two parts for the following reasons. 

Consider the case in which the particles have negligible inertia. Then 

the particles and fluid will move together and so behave as more or 

less a homogeneous fluid to which one can assign a stress tensor a=; 
to describe its mecha nical behavior. When the particles do possess 

inertia and hence slip occurs, it is still meaningful to retain the con-

cept o-1 and to account for the difference by the term 
_,, 

. F 
f 

meanwhile, signifies the body force arising from particle-fluid interac-

tion, part of which can b e seen by considering the term < tr-i!i-> 

< 'V-rf-7 .. -b- f <v·j:_ ~v + f ::-_. 5- J.s 
Vj $~ 

The contribution to the last integral from the surfaces of the spheres 

gives the total force exerted on the fluid by the particles in volume v 
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- -Moreover, the difference between the terms 'V · ( (r Uf i.Jf 

and <. v · < (" t:\ >A ) > represents the momentum associated with the 

disturbances produced in the fluid due to the presence of the particles . 

The existence of this momentum difference makes it clear that, in 

general, 

-where Ff is the force exerted on the fluid by a single particle. 

Similarly, applying < > to equation (9. 3 ), one obtains 

;t [ (t (.Pt .. f ~") 1 -+ V'· [ \f :ff (PJ. + + u.;. J J 

-- V'· r,. + (Qf 
(9. 6) 

where 

- 'V· { f + CD f = - < v- f > + < v . c ~ . ~ > > - " . ( ~f . c::., ) 

+ v· r (t vf (..P-r~~Li/)J- <'V·fri1(-e+.-r~·i1) 

I __., • 
- ..!Z_ < +("'IA > 

Jt \ 

The term Q.. denotes the heat exchange between particles 

and fluid which arises from the term < 'V· f > 
_.. 

< 'V · ! > .:: _L 1 \7-r ~" 
v "'f 

f 
v 

The contribution to the last integra l from the surfaces of the particles 

gives the h e at flux from particle to fluid. 

The generalized heat flux vector is quite complicated. 

However, when motion is sufficiently low, the h e at conduction part 

dominates. 1 It is accurate enough to regard - -bf C.. '{ t.o~.IHI. • ._ 

Finally, summarizing, the field equations for the bulk fluid 

are : 
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!t f (1 (.PJ .. + ~·)J ~ "'· [ C'r1- 1 ( .{>f .. + v/Jj 
'V. ( Of . Uj ) - V· ft + 19J 

10. Approximate Phenomenological Formulas of Bulk Fluid 

(9. 4) 

(9. 5) 

(9. 6) 

Equations (9. 4). (9. 5 ), and (9. 6) provide the field equations 

for the description of the bulk fluid. However, l:>y themselves alone, 

they do not form a closed set. To make the set of equations com-

plete, it is necessary to supplement them with phenomenological 

formulas relating ~ , F; ·. 'D and Q 1 to the field variables. As 

mentioned in Section 2, the stress tensor 0:-f describes the mechan-

ical behavior of a homogeneous suspension; hence, to first approxi-

mation, one may postulate that 

where ff is the coefficient of viscosity of bulk fluid depending on 

r and c 

Note: In general, it is easy to show that ) depends on con-

centration gradient and therefore is small compared with (I 

will be ignored in subsequent consideration. 

It 
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· Similarly, the vector -f / can, in the 

steady state case, be postulated as given by 

whe re k J- is the steady-state thermal conductivity of the bulk fluid. 

It is the goal of this thesis to determine the phenomenological 

constants ft and k. f , the force of interaction Ff and the 

hea..t transfer rate between solid particles and bulk fluid Qf In 

this way, it is believed that a first step towards the understanding of 

the transport properties of particle-fluid flow might be achieved . 

11. The "Screened" Stokes Equation and the Drag Formula 

Consider a homogeneous cloud of spherical particles of radius 

a. and. number density r1. moving steadily in an otherwise station-

.ary, viscous incompressible fluid with velocity ul' ;_ Let the drag 

~ 

expe.rienced by a typical particle be - D :><. To obtain an overall 

picture or a macroscopic description of the flow field, one may use 

the bulk fluid equations of Section 9. ·With Ff - ,... D;,, , they are -'1· uf 0 (11.1) 

( 11. 2) 

It is obvious that the solution of the bulk fluid equations does 

· not in itself provide any information concerning the drag on the 

spheres. To obtain a drag formula, it is necessary to examine in 

great detail the actual fluid motion near a sphere. In fact, it is only 

through the knowledge of this that the hydrodynamic forces acting on 

the spheres can be found and hence the overall fluid motion known. 



-103-

T.o do so, a " detailed11 or "microscopic 11 description is required. 

This will be carried out by the following consideration. 

"Screened " Stokes Equation 

The solution of equations (11. 1 ) and ( 1 1. 2) gives an ave r age d 

value of the fluid field at any point. Near any sphere, the velocity 

and pressure field would differ appreciably from Llf and f f 
However, if one fixes one's attention on a typical sphere A , one 

may regard A as existing in an environment with a smoothed-

out background fluid velocity and pressur e uf and ff Let u.._ 

and p... be the velocity and pressure d i sturbance produced by par-

ticle A upon the gross fluid flow fie l d , so that the actual fluid ve-

locity and pressure near A are 

__. - -u ::. uf .. u ... 

} )f ... f-- (11.3) 

To determine u.._ and f .. ' 
it is necessary to examine 

the propagati on of disturbance in a particle suspension. Consider 

first the parti cles are infinitel y apart . Then, in the Stokes flow re-

gime, the disturba nce satisfies the Stokes equation, or 
__. 

" . u"" :: 0 

"V f(). .. -; r <y u,__ 

Now, let the interparticle distance be decreas e d . It is clear that the 

-.presence of other par ticles will significantly alter the disturbance 

~ and of the particle A The effect of the other par -

-ticles will tend to confine u... to the vicinity of A A form of 

screening action is in operation, so that the disturbance produced by 

particle A would not be felt by particles at some dista nce from 
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A From the consideration on the drag of a finite number of 

particles in Part II , it is clear that a good simulation of the modi-

-fication on L1 .. by the presence of other particles is to re gard 

each of the other particles as exerting a point force proportional to 

u... at the locations of the particles. For very large interparticle 
__. 

distance, this is app roximately given by - 6 -r.f"' u .. However, 

· for a sUfficie ntly dense cloud, the mutua l influence of a ll particles 

must be considered and hence, in general, one can assume that the 

other particles exert a body force ->-' u... on the fluid opposing the 

spread of 11 ... >-...: will be referred to as the screening constant 

and is an inherent property of the suspension. As a result of the 

above discussion, the disturbance · U:. and f .. associated with 

particle A should be found as a solution of t he 11 screene d 11 Stokes 

):( 

.equation 

-'V· LA..., • 

(11 . 4) 

}:c: 
The "screened" Stokes equation can also be obtained by the foll ow -

ing argument. 
The only possible effect of the presence of other particles is 

to exert a body force on the fluid so as to confine u.. . Let this 
force be f ~ S:- c~ ... J D evelop F into a se ries -F .. 

--- t ~ . -41• A .., c. o ~ s . u... .. o c l.< .. ) 

Since U:. - ., "? - 0 , t he ref ore A • o Also, Stokes equation 
was obtained by linearizing the Na vier-Stokes equation; hence, to be 
consistent, the quadratic and higher order terms in U:. should be 
dropped. So 

The negative sign indicates that the force tends to oppose the 
spread of the disturbance . 
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Drag Formula 

Now we return to the drag problem. The solution of the bulk 

fluid equations (11. 1) and (11. 2) is 

(with respect to coordinate system 

fixed to center of sphere A 

( 11. 5) 

Thus, macroscopically, the particles literally pierce through the 

fluid without causing perceptible fluid motion, while the force ex-

erted on the fluid by the particles is balanced by an overall pres sure 

·gradient. 

Near sphere A , however, the velocity and pressure dis-

turbance is given by the solution of the "screened" Stokes equation. 

-'\/· u_ ; o 

(11. 4) 

The term represents the body force exerted by the particle 

Cloud on the fluid if the relative velocity between fluid and particles is 

u... However, f or the .problem under consideration, . a particle 

exerts a force equal to D when the relative velocity is LJr 

Therefore, .A." = ... o Hence, equation (11. 4) becomes 
'-'r 

V· LJ .. = 0 

The boundary conditions on 

~u.., 
v.I 

are: 

(11. 6) 

(1) disturbances vanish at large distance from sphere, i . e., 

u ...... 0 r- - 00 
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(2) the no-slip boundary condition on the sphere must be 

satisfied, i.e., 

-u = -.IA f t U._ .,. o or at 

To solve equation (11. 6), let Then, by means of 

the general solution of 11 screened 11 Stokes equation of Appendix D, 

the solution satisfying the required boundary condition is found to be · 

f .. = 

w .. = 

[ 

<A..l ( 3 
.. yl .,{•,;..,' 

.. _.s_ + I ·l LA' 
o( .... 

.. _3_ ... I)-~(-' + -'-) ~o<(V• .. ) J U (.A,!, 4:1 

°'"'" oi Y' · o(.yJ f 

.3 
+-....... 

- .d v-- ... J 

+I)-~.:-(~+ ~~J + ~ )~ l ~,, .. :.~ (11. 7) 

From equations (11.5) and (11. 7), the stress components on 

the surface of ·sphere A are 

(11. 8) 

Hence, using {11. 8), 

D drag ( \ ' 
6 ...,,-r o. U f I + OC. o.. .+ o<.. 30.. } (11. 9a) 

or 
o( ..... 
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' . (1+.x"'-+~) 
3 

c volume concentration of solid. Therefore, 

drag on sphere. ,.,. u,.. I 
J" ,._r.. l 

(screening constant) 
\.. 

tA. = 

qc 1s}2c-J<.' 

A- - {, c. r (11. 9) 

(11. 10) 

The drag formula, equation (11. 9), was obtained in 1947 by 

Brinkman
31 

(see also references 32 and 33) through a different argu-

ment. Brinkman's original treatment in many respects, however; 

was rather obscure. In addition, he was uncertain whether the vis-

cosity in equation (11. 9) should be the viscosity of the pure fluid or 

Einstein's viscosity coefficient 
.. r . r ( 1+ .l · S"e) 

Recent experiments performed by Hoppel and Epstein
34 

con-

firmed that equation ( 11 . 9) is valid for the whole range c. ..:: o ·s 

even though they rejected Brinkman's equation as arbitrary and non-

rigorous. 

Motion of a Single Particle 

The drag formula, as given by equation (11. 9}, was derived 

by considering the motion of a cloud of particles. Now suppose all 

particles, except one, are stationary, say, sphere A In this 

case, let u ;_ be the steady velocity of A Then, with respect to 

a coordinate system fixed to A , the solution of the bulk fluid 

equation is 
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(11. 11) 

Again, if iJ' ... f... is the disturbance associated with sphere 

A , such that near A the actual fluid velocity and pressure are 

{11. 12) 

-u.. and are to .be found as the solution of "screened" 

Stokes equation 

where c:>( 

-v.u ... = 0 

\7 f ... .. f V'·u .. - t" .,(,~ -:;_,_ 

is given by ( 11. 10 ). 

The boundary conditions on u... and J ... are 

(a) 

{b) 

-v: - 0 

-(...( = 
- 0 

or 

{11. 13) 

{11. 14) 

. The solution of equation ( 11. 13) satisfying ( 11. 14) is the same 

as given by (11. 7). The stresses acting on the surface of the spher e 

are 

°$o<.f1 U(-'- + f.,. ~) c•SG 
/~ °" ~ l 

(11. 15) 

From (11. 15), the drag on s phere A is 

D ( 
.. • = 6 .,,.., ... u I + 0(. "' ... 

o( ""'- ) 
q 

= r~ i:_. [ 
'1 (. + ) j 3.c. - J (.. r ( ,_ c:. ) 

4-- 6 (. 

{11. 16) 
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On comparing equations ( 11. 9) and ( 11. 16 ), it is quite clear 

that the drag given by (11. 16) is smaller. 'The difference between the 

two formulas is physically obvious and is the direct result of the 

overall pressure gradient which exists when a cloud of particles 

moves through a fluid. Here, it should be pointed out that this dif-

ference clearly illustrates the necessity of an .overall or bulk fluid 

consideration in the determination of hydrodynamic forces acting on 

spheres in particle-fluid flow. 

Fundamental Solution of 11Screened" Stokes Equation 

The "screened" Stokes equation formulated above shall again 

be used in subsequent sections. Because of this, it ·is meaningful to 

examine the nature of this equation by obtaining its fundamental solu-

tion. Consider a disturbance characterized by a point force acting at 

the origin in the x - direction. · Then 

(ll. 17) . 

-V· LA • o (ll. 18) 

Take divergence of equation (11. 17) and use (11. 18), 

Therefore, as in Section 1 of Part II A, one obtains 

~ 

+ z (11. 19) 

From equation ( 11. 11) 
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\ __. --a ----
"VIA. <>1'"1A"' f. 

7 
Therefore, using the Green's function of Appendix A• 

__. 
u. ....... - , _JJ , 

i=_,x. J "'"x (11.20) 

It is easy to verify that u given by (11. 20) satisfies (11. 18). 

To integrate (11. 20), the representation of 

in series form, as g iven in Appendix A , may be used. Also, for 

integration over the radial part, formulas provided on pages 79-80 of 

reference 35 are useful. After integration, one obtains 

- " { ~~.,. [ -~ ~ J ~ l -' " . ) } 
u = x.. _Q_ .. _1_ -~ (, ... _1_ -i'-~-) 

~"r iJ .... . o(.. y l J v ~ '<(' °'. v" 

{ - - "'v 

~ °':v.] } D I J-: [ 1 P~~ .. ,9 • ~··f + 'J + 1+--
47'( .,.."'yl ol V' 

r __ J_ 
-... .,. 

+ ol:Y. J} f>:<.~•QJ £•~ + (11. 21} ,.. p 1-~r I -I- _3_ ... ~ 
J/.Tr \ ot•v 1 

J y 
... .,, 

Equation {11. 2 1) shows clearly the manner in which the dis-

turbance dies off. The longitud:lnal component of the disturbance de-

I cays at a rate of -;s as compared to -'-... in t h e case of Stokes 

e quation . The transverse components are exponentially damped. 

The screening length is approximately equal to -i;: Therefore, in 

a particle suspension, disturbances are localized. They are screened 

by the particles and tend to d ecay at a fast rate whe n propagating 

away from the source. 

Particle Cloud with a Distributed Size of Particles 

In the derivation of {11. 9) above, a particle cloud of one size 
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particles was assumed. Now consider the case of a particle cloud 

. consisting of particles of a range of particle radius such that the 

number of particles with radius er is 

Let D Lo-) be the drag on the particle with radius o- • Then 

the screening constant of the particle cloud is 

.. 
.A., .. I 

~, s 
a. 

"· 

where Ur is the steady velocity of the particle cloud. 

The body force applied to the fluid by the particle · cloud is 

j) (.a- ) }1. <T ) "'<T' - (11. 22) 

Hence the solution of the bulk fluid equations is 

(w ith respect to coordinate system 

fixed to particle of radius a- } 

Q. 

~ J ou'Jtr>.lo- .,, u,.A..;_ ... 
The "screened'' Stokes equation governing the disturbance of a 

particle of radius a- is 

The corresponding boundary conditions on 71'.,... , fer are 

(a ) 

(b ) 

0 I tr - 0 
'( .. °" 

y- - er-

( 11. 23) 

(11. 24) 

Equation (11. 23 ) and boundary conditions (11. 24) are similar 

to u.... and f.. in equation ( 11. 6 ). By changing the appropriate pa-

rameters of equations (11. 9a} one obtains 
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Deer) .. {, "r u, er ( I .... oi, a- .. O(,:u-· ) 

o<. a.= • 
~ 
r 

_,_ 
r ""'r 

Multiply both sides of equation {11. 25) by · J10-) .J r 

over the range of a- ; then 

where 

.:...J • '"". . 6 ;r + ct, M • . -t C c<, \ J 
.,,. -r. 

S
Q. 

"-1 '- f cr) o-- ,,fa-. , 
c S... l f '\" er \.O"J al a-... 

Solving equation {11. 26), 

c:X , . 6-r. H, + j 3' Ti",_,:;. i. 4 r. H, (1-..f<.J 

..l - .3 c. 

Therefore, the drag formula is 

J)(o-) = 

where o<, is given by (11 . 26). 

.. . 
(I -t- ot,a-+ Ol , rr .) 

s 

{11.25) 

and integrate 

( 11. 26 ) 

(11.27) 

(11 . 28) 

(11.29) 

For the particular ca·se where there are only two types of 

particles with radius .... and b • then 

f<~ t7 ... r c. <T"- ... ) + t( lo f< <T"- b) 

From (11.21). 

M, Gl r-J • . ..- !."1,_ 

M, "": tJ .. ... /..' "14 

<'.. -4-T/ (. ... 1 "1 ... + l..1 Ni,) 
J 



· Hence, by ( 11. 22 ), 

o( " ' . 

Also, 
D -.... 
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12. The Torque Formula and Rotational Coupling Force 

(11.30) 

(11. 31) 

Consider a particle cloud of spheres of radius "'- and volume 

concentration c suspended in a viscous incompressible fluid. Let A 

be one of the particles of this homogeneous suspension. If A ro-

tates steadily with an angular velocity ';'.; , then the disturbance 

produced by A is given by the solution of the "screened" Stokes 

equation. 

vf -r 
-V· I.A "' o 

·-o{ (..{ ( 12. 1) 

( 12. 2) 

For the particle cloud under consideration, oc is given by {Section 11) 

cX " --;; r qc. ... 3)8c. - 3c, .. J 
l 4-(,c. 

The boundary conditions on the dl.sturbance are 

(a) 

(b) 

f = 

To find the disturbance produced, let 

= c .... ~ r f, I') ~ J 

= [ V' f ~--) J " ~ 
( 12. 3) 
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Then equation ( 12. 2) is satisfied identically. 

Substitute ( 12. 3) into ( 12. 1) and obtain the following equation 

to be satisfied by f' y ' 

v'"jtv) - ~· .j(~) "' D 

or 

( 12. 4} 

The solution of . (11. 4) satisfying the boundary condition at in-

finity is 

f . 
Therefore, 

i7 = [ 

- .,, 'f' 

f3 ~- ~ ~ ) ~ 

From the boundary condition at y- .. °'" 

Hence, 

where 

l o( ... 

0... Jl 

= __ o.. __ ..e. __ _ ( ~ ~ 
I _.,., 

-)...e y. 

_., ... 
( ~ • 7 ).ll s.;. fJ 

has been chosen as the polar axis. 

( 1 2. 5} 

From equation (12. 5} the ' stress component on the surface of · 

the sphere is 

( ~ -~) 
i}y y ...... 

( 3 + J o( o.. + cw' ' .o..''" ) $• .:._ 0 Jl 

Total moment acting on the sphere is 



-115-

Hence 

torque ( 12. 6} 

Equation (12 . 6} gives the torque a spinning sphere will experi-

ence in an otherwise stationary particle suspens ion. For very dilute 

suspension, o<. - • (12. 6} reduces to the well-known Kirchhoff 

formula 

T e -rt r 
Combining equations (12. 5) and (12. 6}, if T is the torque ap-

plied on the fluid by a spinning sphere, the velocity field is given by 

_., 
u -

0(.0.. 

3 ....Q I ( ol --'Y'__,, -
-------- --- + -'-) ~ T .. ':i. 

l+ j.(o.. .. o<'o..' YL "' 
( 12. 7} 

_,,. 
Now, in equation (12. 7), keep · T fixed and let the sphere go to 

zero, i.e. , "'- -- o Then the fundamental solution of the 

~ 

"screened" Stokes equation corresponding to a point torque T ap-

plied at the origin in obtained. 

- .. ,. 
I - -( ~ +__J_)-t. T"' x. 

e y.... y 1 

""r 
- ( 12. 8) 

Rotational Coupling Force 

-Consider now a body force f;; J applied to the fluid in the ho

mogeneous suspension. Then the "screened" Stokes equation becomes 

_, vf 
r 

_. 

( 12. 9) 

By means of Appendix II A, the fluid velocity induced by f' x J is 

Uf = I 
.l/oT.r f --~-"'_'-_"_-;c·, 

_, - I 

I '>< - '-' I 

(12.10) 
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Now consider in the homogeneous suspension that there is a 

-spatial distribution of mome nt I c>< J Each torque element will 

induce fluid motion in the suspension. The overall fluid flow field due 

to this spatial distribution of torque can be obtained by means of the 

fundamental solution given by equation {12. 8). Thus, 

- --'-

( - .... x- x ) 

f - v '(---e_-_-_1_~_-~_·_, ) x Tex 0 J ot 1x' 

I x-1<' I 

The last integral can be converted into a surface integral of 

which vanishes if -T is assumed localized. Therefore, 

J I .::{. x {12. 11} 

On comparing equations (12. 10} and (12. 11), it is clear that a 

spatial distribution of moments is equivalent to a body force. This 

will be referred to as the rotational coupling force, given by 

r c~ ) = _, v ., =r (X) 
.2.. 

' 

( 12. 12) 

A cloud of spinning particles exerts a spatial distribution of 

torque on the fluid. By equation (12. 12), the rotational coupling 

force can be calculated. Equation ( 12. 12) has no analogue in the 

single particle motion .considered in Part II. This rotational 

coupling force arises solely as a result of collective behavior of the 

particles. 
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Equation (12. 12) above was derived entirely from a mathe-

matical consideration. However, the same formula may be obtained 

by a more phys ical argument. Neglect the screening effect of parti -

cles and consider a torque field being applied on a fluid in a domain 

v Divide Y into many small elements ol v = Jx. dj of z In 

general, a point torque can be repl aced by a pair of equal but opposite 

forces acting at an infinitesimal distance apart • .. 

. E] ,. .... F"'T .. ... 'i'Ot-lliJ 
,.. ... , ... "' r 1 • ... r l 

Consider the fluid element shown. If T;1 , the ;. - component 

of the torque field varies from element to element. F~ and F;r 

the force components, too, must vary from element to e l ement. The 

relation of thi s variation is given by 

{ 12. 13 ) 

-Similarl y , by considering the other components of T , one obtains 

rJ.. '~ = A F.;") cJ z - A F~"' ' cl l 

ti. '1 !='. , .. , 
.A ti. J '>C - .c..F/'ot:z. 

or 
f " ' 

A " ;:. ;} Tl . F. .._a J 

..:I.. .. "' 
_ J T'J 

d J J.i!. 

A i:: "' I .tT.,, F "' J T~ 
1 "' 4 J = -

cl2 .I )<. 

F l) ' 
A. ~ -L4 F ,., 

6 • - - ~ T" 
d ')(. ~I 
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Now there is a net body force acting on the element Jv • The 

component of this force is equal to 

Similarly, the ';f 

i ( .). 1x _ J T~ ) 
..>. dz ~" 

or, in general, 

f-

as equation (12. 12). 

and l components are 

and 

-..L c." • .e T ... 

The factor '/.:>... 
. VI 

comes from the fact that "'1l=,. etc. varies 

continuously. Such a factor should be included when replaced by a 

completely localized point force. 

Example. 

Consider a fluid particle system. Assume the particles are 

spheres of r adius GI. and are somehow fixed in space against trans -

lation and rotation. For the purpose of this example, it will be as -

sumed that the drag and torque on a sphere of the particle cloud are 

given approximately by 
__, 
D ~ 

( 1 2. 14) -T 

Essentially, in (12 . 14), the mutual interference effect of the 

particles has been neglecte d . 

Therefore, with respect to the bulk fluid, the particle cloud 

exerts : 

a drag force 
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a rotational coupling force 

= 

Hence, 

{ 12. 15) . 

Substitute (12. 15) into the ''bulk fluid" equations of Section 9; 

then, for steady flow and homogeneous particle cloud { n. = constant) 

'V· Uj • o { 12. 16) 

171·~Vj. -\7;,f ~ff~~~~ ff {12. 17) 

Equation { 12. 17) becomes 

{12. 18) 

But 

{ 12. 19) 

by means of equation ( 12. 16 ). 

Substitute {12. 19) into (12. 17): 

{12. 20) 

From (12. 20), it is clear that the effe ctive viscosity of the bulk fluid 

is now equal to 

However, if the particles are fixed but free to rotate, then T - 0 

and hence the rotational coupling force is zero, and r it. ff 

The physical interpretation of this apparent increase in vis-

cosity is rather obvious. The fluid will find it harder to flow through 

a particle cloud if the particles are fixed against rotation than i f they 
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are free to turn. P a rticles locked against rotation generate addi-

tional disturbances in the fluid and hinder the general fluid flow. At 

the same t ime, they increase the dissipation rate . Macroscopically, 

this is represented by an apparent increase in the bulk fluid viscosity 

which equals I• S er as a zeroth order approximation. 

13. Viscosity Coefficient of Bulk Fluid 

In Section 3, the bulk fluid stress - strain rate relation was 

postulated in analogy to the well-known Navier-Stokes relation to be 

a-;" ;)"'J (13. 1) 

Substituting relation ( 13. 1) into the bulk fluid momentum and continu-

ity equa tion, for a homogeneous fluid-particle system, 

(13. 2) 

( 13. 3) 

The bulk fluid viscosity coefficient (t in the above e qua

tions is still unknown and is the subject of investigation in this section. 

The subject 11v i scosity of a suspension 11 has been the goal of 

many resea r ches ever s i nce the work of Einste in 
7 

in 1906. In rheolo-

gy as well as in physical chemistry, a good deal of work has been 

published since that time. However, the so-called 11 vis cos ity of a 

suspension" has never been clearly defined, and hence its relation to 

the description of the flow field remains rather obscure. To avoid 

confusion and ambiguity, the t erm "bulk fluid viscosity" shall be us e d 

throughout this section to designate a material constant of the bulk 
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fluid which. characterizes the mechanical behavior of the bulk fluid by 

relation (13. l}. Thus, Yr is a quantity which has a meaning only 

in the macroscopic sens e, as described in Sections 9 and 1 O. 

Review on "Viscosity of a Suspension'' 

The hydrodynamica l treatment of viscosity of a suspension, 

as initiated by ' Einstein 
7

, has been extended by many research work-

40 
ers since 1906. Among them, Jeffery was the first to apply the 

41 
. same technique to ellipsoidal particles. Later, in 1932, Taylor 

. employed an essentially simila r argument to deal with the problem 

of the viscosity of a fluid conta ining small drops of another liquid. 

Since then, particles of various shapes have been treated by other 

authors, yet the mathematical treatment and physical idea are es sen-

tially that of Einstein. This so-called "method of Stokes-Einstein" 

. 42 43 
has been outlined in great detail by Sadron and Frisch and Simha • 

In ,1938, Bi.+rgers took a substantially different approach to this prob-

lem (Burgers' method is also explained in references 42 and 43). To 

a first approximation in c , the volume concentration of solid parti-

cles, the above two methods do agree. For suspensions of relatively 

high concentration, many formulas were proposed, e.g. references 

45 and 46. However, the methods used were invariably based on 

small perturbations of some basic hydrodynamic flow field. The re-

sulting viscosity formula is generally expressed in a powe r series of 

c and is seldom given beyond the term involving C ~ Also, the 

coefficients of the various terms,as proposed by v ar ious authors, do 

not agree. Indeed, even the very basic physical mechanism of dissi

pation involved is still a matter lacking general agreement a .nd hence 
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making "viscosity of a suspension" very much. a subject of present 

d ay research. 

Viscosity of Bulk Fluid 

Consider a fluid-particle system in which the particles are 

spheres of radius · ~ As s ume that the inertia of the particles is 

very small so .that the particles always transla te and rotate with the 

same linear and angular velocity of the bulk fl uid. Thus, the fluid-

particle system is essentially homogeneous. For such a system, the 

gross particle-fluid interaction force, Ft , is equal to zero. Hence 

the bulk fluid equations of (13. 2) and (13 . 3) reduce to 

(13 . 4) 

(13. 5) 

I 
I 
I 
I 
I 

I 

Consider the case of simple parallel shear flow. This is 

given by 

(with respect to a coordinate system 

fixed to a sphere) (13. 6) 

which is a solution of equations (13. 4) a nd (13. 5). From equation 

(13. 6 ), the angular velocity of the bulk fluid is 

....., f ~ -+ c... • .e -Ur .. -+ i 
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By assumption, this is also the angular velocity of the particles. 

{13. 7) 

Let A be .a particle of the two-phase system. Then, _ near 

sphere A , let · U... and fa.. be the disturbance produced by A 

on the gross fluid field. As in Section 4, the actu al fluid velocity and 

pressure in the vicinity of A ·are given by 
__, -... _,, 
u ur ... u .. 

p h .. }-. {13. 8) 

__,. 
Now u.. and ):::>... are described by the "screened" Stokes equation of 

Section 11: 

. {13. 9) 

where 

o<. ... _J_ r 
0... j (13 . 10) 

The boundary conditions on the disturba nce are 

- f~= u .. .. 0 0 r . .... (13. 11) 

- - - -u . (.,(.,. + uf : i..0 /' ... .. ..,... :r GI. 

(13. 12) 

Using {13. 6) and {13. 7), equation (13. 12) becomes 

Ll,,_ = ..;,,, [-10..t•:. $ .. •J()C.••+J+..;o r, ... (~ . .:.·ci~u•f - 7, .. ~~.>J 

T ..; f [ !-:?- C.-J Q .l'•;_ <} l (13, 13} . 

or 
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To solve for u~ . f.. , the general solution provided in Ap

pendix D maybe used. Therefore, let 

11..: _; r Bf b Kc/. '"") r>:t<o•o• c.o'f j - -A r-!>-f>\•• 1 •1 C.0 'f1\ 
y l ..., '' • j v 'r- ~ J 

(13. 14) 

Impose boundary condition (13. 13} 

~;L 

--f-~ . 
't [ ~ K~ to< .. ) - o(.,. ( K11, (.i•)+J<v.<"'•J)j 

B. 

(13. 15) 

A = ~ 4 [ 

In polar coordinates, the stress components are 

u. ) +--.,.. 

.a.r(-
.... ~ • .:. G 

+~ + 
y 

,. f (+ - ~'9 ) 
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(13. 16) 

u.fv • r ( ~ + ~ V{, 
.,}'( y..s.:.o!) ~ - -7-) 

From equations (13. 6), (13 . 14), (13. 15), and (13. 16), the 

stress components of bulk fluid and d~sturbance are 

J-
0--"' = 

f. 
0- eo 

f o-H 

+ o-,,& 

f o-,,-t 
Q7 + 

cj>v 

with 1 • ..:c. )--... 

... 
a-; 0 

.J. ff f .SI~ E) c.. .. ' 0 c.. ... + 
- .l. fj f ~.:. ~ c... .. ~ e 

'-" &. + 
0 

ftf ( C..o~'-& • .s.:... C9) 
t."S + 

t'+ f .t•!.. I!> s.:.. t 
-rrf , .. ..s e -1.'- f 

0( ... 

- _§__ 1~ ...e ( . I ). 
18 ,,. 1+o<<>. 

[
. I .. _(._ + _1_S_ 

o( ..,. c"' "l) • 
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where superscript f and ... denote that of the bulk fluid and 

disturbance, respectively. 

The dissipation function in spherical coordinates is 

{13.18} 

The dissipation function due to the presence of particle A is 

; ... f' f~ l~ 
.). c. Of, .. ~. J - C. v;-. l - c..u;-., l -C.<:J;i'I ' 

Total dissipation due to the presence of particle A 

f Y
0 

a volume outside sphere A } 

_, JJ."" [( v;., a./ .. 
~"Ii .. 

~ 

( u;& .. ) .. 

using {13. 17), 

{13. 19) 

Since near sphere A actual field velocity is given by 

-Dissipation per unit volume due to Ut part of U 

$ __ 1 (o-;-.fc..-c.J 
"-f u 
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actual dissipation rate per unit volume of bulk fluid 

) + 

-rt)[/1-C(~·S+ 
{13 . 20) 

Howeve r, the actual dissipation ·rate can also be calculated by 

just considering the bulk fluid. 

per unit volume {13. 21) 

Equate (13. 21) and {13. 20} 

_µ -
t' 

I + c [.i .s ... 3 I s (o.' ~ j 
---"-

/~(1+o<"':l 

But 

.4 - ' c 

Therefore, 

J -t G ( .l • J;~ + {13 . 22) 

In the above analysis, the particles and fluid elements are as-

sumed to be in a state where both relative angular and translational 

velocities are zero. This corresponds to the c ondition of minimum 

deviation from dynamic e qui librium and hence minimum dissipation. 

If Brownian motion and possible particle collision, etc., a re taken 

into consideration, the rate of dissipation would then be higher, re-

sulting in a higher f"t Thus, the expression obtained above 

(13. 22) can be regarded as the ideal viscosity of the bulk fluid cor-

responding to the lowest value possible. It should be pointed out 

here, however, that the inclusion of Brownian motion, etc. , should 
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be done in such a way that the bulk fluid remains homogeneous and 

isotropic, for otherwise the concept of viscosity of bulk fluid would 

be rendered meaningless. In actual experiments , the ideal state of 

zero relative angular and translational velocities can never be 

achieved, du·e to particle collisions, wall effect, etc. As a conse

quence, experimental data of f i should be higher than that of the 

ideal value. 

The Effect of Collision 

In the above analysis, the particles a r e assumed to rotate 

and translate with the same velocity of the fluid. However, for par:.. 

ticles of finite size, such a state cannot be attained. Owing to the 

difference in velocities between adjacent l ayers of fluid, and there

fore the particles, collisions are inevitable • . The direct result of . 

these collisions is to make the particle-fluid system deviate from its 

ideal state .of minimum dissipation, giving rise to an increas e in the 

value of ff 
To account for the increase in ff due to collis ion, a de

tailed analysis of the process of particle-particle encounters is nec

essary, but for sufficiently viscous fluid and light particles, it is ob

served in many experiments that particles do not actually collide but 

just slip past by one another . In the following, this slip-by model 

will be adopted. To carry out the analysis, it is necessary, first, to 

find out the average deviation of a particle from its dynamic equilibri-· 

um state with respect to the fluid at which relative rotational and 

translational velocities are both zero. 
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+ ... 'i/ +- /.l. 

Slip-by Model 

To reduce the complexity of the collision process , the follow-

ing simplifying assumptions will be made: 

{a} the displaced path of a sphere during an encounter will be 

taken as a semi-circle; 

(b} during a collision, a sphere will be displaced sideways 

in the .z - direction as well as vertically in the d -

direction. A sphere rnoving side ways, howev er, w ill 

have a higher probability of collision. On the a v erage, it 

will be assumed that,for the purpose of calculating the 

mean displacement of a sphere from its dynamic equilib-

rium position due to collision between a djacent layers of 

spheres, one may consider the spheres of each layer as 
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long cylinders. However, the collision cross-section for 

each sphere will be taken as a circle of radius .;i., "'-

By assumption (a), the average displacement over the dis-

placed path is 

{13 . 23) 
,,. 

f ¥'10 
• 

Consider a particle moving in a straight path. Let X be the 

probability of a collision. If the particle moves in some curved path, 

it will spend more time per unit distance in the x - direction, and 

hence the probability of collision increases . The relative ratio must 

be proportional to the time the particle will take to traverse unit 

distance in the )I. - direction. Over a path in the form of a semi-

circle, a particle will take seconds to travel a distance which 

will otherwise take seconds." This gives a ratio of . On 

combining this with equation (12. 23), it is clear that the average dis-

placement due to a collision can be computed from the maximum dis-

pla cement over the collis ion path if the time spent in collision is cal-

culated on the basis that the particle is travelling in a straight line. 

Collision Cross-section 
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By assumption (b), a particle will suffer a maximum displace-

ment over the collision pat h equal to x. -: A._; 'if:.. due to a collision 

with impact parameter 'J The probability of collision with im-

pact parameter ~ is proportional to the volumetric rate of flow 

through the strip J.1 relative to the particle, i.e. , 

or, in terms of "" 

P,,.c x ) d x 

·normalizing 

P.,t'>'>dx H"--x) j;o.,. -x"' olx 
"-I 

From this it follows that the mean displacement is 

')( "' (13. 24) 

A particle which is displaced a distance ~ from its dynamic 

equilibrium position will experience a slip velocity! x with respect t _o 

the fluid and, by formula (11. 16), a drag force of magnitude 

F t' (3 x [ 
I J .. 

n. 0... 

.(13. 25) 

This gives rise to a rate of dissipation of 

force slip velocity ... 9 c -t ~ J g ' - J G. I .( ( - c: ) 

4 - ' c; j 

On the other hand, a particle travelling in a straight line will 

spend a certain fraction of its time in coll is ion with a particle moving 

through the upper half of its collision cross section. This fraction is 

. equal to the volumetric ratio of particle to fluid flowing through it, or 
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c. for a homogeneous particle-fluid system. After accounting for 

collision with particles above and below,·the extra dissipation rate per 

unit volume of bulk fluid is 

{13. 26) 

Adding this dissipation rate to equation {13. 20), one obtains 

{13. 27) 

where 

[ 
q C +- 1 / 9c. - 3 G • l 

------'--

.#- 6 <: 

14. Momentum Exchange B e tween-Two Streams of Particles of Dif-

ferent Size Moving Relative to One Anothe r in a Viscous Fluid 

The purpose of this section is to give a very elementary ac-

count of the dynamic viscous interactions when two different streams 

of particles flow past each other in a viscous fluid in slow motion. 

As the goal is qualitative in nature and serves only to lay down the 

fundamental concepts of the phenomenon, an attempt will not be made 

to give a full and detailed quantitative analysis of this complicated 

process. 

Viscous Collision 

Consider two spherical particles A and B with radii .a. 

and b moving with velocities lJ"' and Ua , respectively in a 

viscous fluid as shown. To a first approximation, assume the drag 

on the particles to be in the x. - direction. This is a fairly good 
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+o } Ward and Whitmore (1950, Brit. J. App. Phys • ..!_, 286) 

Robinson (1949, J. Phy. Colloid Chem. 53, 1042) 

• glass . spheres in S . A. E. No. 30 motor oil 

)4 glass spheres in S. A. E . No. 50 motor oil 

A glass spheres in castor oil 

Vand ( 1948, J. Phy. Colloid Chem. ~' 277) 

t:I 

• 

+ 

0 

g lass spheres with No. 3 Ostwald viscosimeter 

glass spheres with No. 4 Ostwald viscosimeter 

o • I 

c 

0 

• .. 

/Ur vs . C DJAGlZA M 

-t;; .. • J •• • ,.. 

o·s 
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app roximation to the actual case of two streams of particles movi ng 

in the x - direction, for in this case, on the average, the drag in 

the 1 - direction is zero. 

By means of the 11point force " approximation of Part II, the 

drag experienced by particles 

For particle A 

\/,.+. • 

For ' particle & 

v ..... t = 

Hence 

Solving ( 14. 1 ) and ( 14. 2 ), 

I -

UA 

LJ 8 

q .... " - ,-,-

.. 

+ 

A and e. can be found. 

D~ r ~ +-' J 
B• f Ya Y 

DA [ ~ ~-' l 
s .. r v 1 v 

( 14. 1 ) 

( 14. 2) 

( 14. 3) 

r x• _i__1• 
-:;-I .+ "( J 
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J 
( 14. 4) 

I- q,..!. [...:L ... _• J. 
I(, y J y 

Equations (14. 3) and (14. 4) can be r ewritten as 

( 14. 5) 

( 
x• I ) -f Ti r ,,.. l, < u. - u.., ) r. ... 7 

I - ~ ( L + _J_ ,~ 
I & yl y J 

( 14. 6) 

I - ~ (~ ·-'-)' J" yl y 

Equations (14. 5 ) and (14. 6 ) have been purposely partitioned 

into two terms. The first term will be called the "stationary interac-

tion term, 11 for it represents the drag that would be exerted on A or 

e. if the other particle is moving at the same velocity. In the case 

of two streams of particles flowing past each other, the 11stationary 

interaction terrd'depends on the number density of the particles alone. 

The second term represents the dynamic effect due to the .relative mo-

tion of the particles and shall be refe rred to as the "viscous collision11 

term. 

The "Impulse Function" 

Consider two streams of particles flowing past each other. Let 

A and B be two particles of the two streams. To a first approxi- . 

mation, assume that the path of e. relative to A is straight and also 

t hat the relative velocity LJ S A is constant. (This approximation is 

justified if one is interested in the overall effect. ) Further from 
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A,._ 

equation (14. 6), the collision force is significant only when A and e. 

. are relatively close together,and during this span of time one may . 

consider the path of B to be sufficiently straight. ) If f... denotes 

the force acting on A due to "viscous collision" between A and e. , 

then, from equation (14. 6), 

) 

q- ... , (~.i.-'-)~ 
I - -,-,- y.J y 

( 14. 7) 

In the course of t ime, B w ill mo.re past A and vanish into 

infinity. The impuls e given to A at time interval (l{.f. is 

( 14. 8) 

From (14. 7) and (14. 8), 

,. 
~ 

IA ) ..!L 
0.. b 7i" .r L)GA [ C-<':·;//A ... <.x'~:;(iv. l .,, d.t 

q ... I. x• 
I r I - ,><.-.. '1· //· . 

.. 
( x' .. ·l /• -T 

J ' 

where ';! is ·the impact parameter and .2 T is the collision time. 

But 

Hence 
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)
~·'! J ·'/.. 

I -f "" b " r ( l. ·x· ... { H ><' + 1' J 
A. .. .-~--.. ---1'3--

0
-,,,_-1.---.---.- ol x 

( ')( .. 1·) - _ ... __ ( ... >( .. 1.) 
- ~lj) ' I' 

Now if the number density of particles s ls "'• 

collision frequency with impact parameter d is 

of.. NlJJ • .,1. '7i' J f'./8 U.,,. o/1 
Therefore, the total force acting on particle A ls 

'j ,_ • ., 

J=..,::: 1a ... L 71f N 4 U84 J 'd -'1 

( 14. 9) 

, then the 

l£ particles A can be regarded as a continuum with number 

density N,. , then the force per unit volume acting on particles 

due to viscous collision with B is 

~':t) 

J J 
3/,. 

. 
LJ 

8
"' ._, J J --=-( _l. -"' .. _ .. ~'f~·-J_C_><_ .. _+_..';f_"_.> __ J x. 

g I 9 J. .,. • ' (.><.'+1') - _ .. _(£'( "'1 J 
I 4 

.';/ ... :.. 

( 14. 10) 

where the cutoff distance may be taken as 

';J ..... .,, ~ viscous screening distance, Section 11, 

· (viscous screening distance)" - 'J'" 

Equation (14. 10) was obtained from consideration of particle 

pairs only. It provides a rough estimate on the effect of viscous col-

lision between two streams of particles moving relative to each other. 

That F •A depends linearly on u • ., is characteristic of viscous 

force. 
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Density Effect 

One of the important phenomena of a particle cloud, as has 

b e en analyzed in Section 11, is the effect of viscous screening or 

density effect. In the derivation of equation (14. 10), this was, how-

ever, neglected in order to show clearly the physical pheno1nenon 

involved . . Here, it woµld be assumed that the number densities of 

the two streams of particles are so large that single particle-

particle encounter, as dealt with above, , is predominated by density 

effect. With this assumption, the "screened" Stokes equation can 

once again be us ed. 

Consider a stream of particles A moving through an other-

wise stationary, viscous incompressible fluid and a stationary cloud 

of particles .!:!> " Let - D,,. x. be the drag on a particle A and 

... - D,"' be the induced viscous force acting on a particle s due 

to the motion of particles A In this case, the solution of the 

bulk fluid equations with respect to particles A is 

- A uj • - UA• J(. (14. 11) 

The disturbance fa-, u ... associated with a particle A is given 

by the solution of the "screened" Stokes equation and the following 

boundary conditions: 

'V } .. • r 
-"¥ · u... :a 0 (14. 12) 

-u ... = 0 "('- .. 00 

- - _.. U • U.,+Uf ... 0 

where, from equation (11. 30 ), 
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(14. 13 ) 

The solution of equation (14. 12) is 

(14. 14) 

so that . 

U.,., • U~ ,.,.19 - U., ~ . .:.. <9 

- ..,,.,. .... ) 
.s"' ...cz. u ..... Q ..r.:.. ·s 

(14.15) 

J. ..... 

By means of the approximation of equati on (3 . 4 1) of P art II, 

the force a cting on particles e outside the volume of sphere f is 

, Ti' r h N 0 I u... J" . 

' I <>((<>.-~I 
..J 4 /. J..t "' >.> NJ. U,,.ta -R. 

) 

l et S - .... 

(14.16) 

· Hence, the force acting on particle s B per unit volume is 
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',,._...,.•"" ... L "1.,. "'' , i •• [ _, r-'"'J l _..,,- " r o U,. • I .,_ ~ -: " 

r «~ 
(14.17) 

where, in equation (14. 17), has been put · equal to so 

that j:. 9A is comple tely ·symmetric in o. • l. 

Direct Contact Collision 

In order to compare t he importance of momentum exchange 

due to relative motion of two streams of particles through viscous 

forces and direct contact collision, in the following, calculation 

would be made based on the classical hard elastic sphere model. 

v 

Let Ui. > U, , then, inthe center of mass system, the ge-

ometry of collision w ould be as shown. The velocity of the center of 

mass system is 

u ~N\ 

The relation between impact parameter ~ 

angle e is 

(14.18) 

and scattering 

(14. 19.) 

Number of particles with impact p a rameter between J and 

striking A per second is 
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Therefore, 

.. 
(.._+I.) c... c.JL •. :.... £. ,/f9 

Hence 

J.. A/( C9) 

_ti.fl .... 
::. Ni. I Ui.- U~( ( """ '-/ 

'4 

.. ,,,. 

For a B - particle scattered into the angle 19 

change in forward momentum is 

A f~ .. IY'1.4 r Ub - ( [,(,_. u.,,,.> C.•$6 - u .. ,., l 

The ref ore, force acting on particle A is 

= 

(14. 20) 

, the 

(14. 21) 

From (14. 21), the force exerte d on particles A per unit 

volume due to contact collision is 

(1 4. 22} 
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15. Thermal Conductivity of Bulk Fluid. 

The aim of this section is to describe the thermal transmis-

sion property of the bulk fluid from the known thermal properties of 

the fluid and particles. It will be shown later that in the treatment of 

transient heat transfer, the introducetion of a complex thermal con-

ductivity would simplify the mathematical description. However, to 

build up an understanding of the problem, the steady-state case will 

first be treated. 

Steady-State Thermal Conductivity 

Consider the case of a homogeneous particle - fluid system 

at rest. Then., from Section 9, the bulk fluid equations reduce to 

-V·i.f = o ( 15. 1) 

Now, the steady-state thermal conductivity of the bulk fluid will be 

defined by 

v ( 15. 2) 

where v is the volume defined in Section 9. 

Substituting (15. 2) into (15. 1), the governing field equation 

for lf is 

= 0 (15. 3) 
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Let 

thermal conductivity of solid particle 

thermal conductivity of fluid 

c. = volume concentration of particles 

""- • number density of particles 

Take a coordinate system with origin at the center of a parti-

cle A Consider the case in which the bulk fluid temperature 

distribution is linear, i. e. , , which satisfies (15. 3 ). 

Assume that the number density of the particles is such that, 

as a first approximation, the mutual influence effect among the parti-

cles can be neglected. 

Let 

Tf actual temperature of particle A 

actual temperature of fluid near A 

Here, T ... may be considered as the thermal disturbance produced 

on the fluid associated with the presence of particle A 

From Fourier's law of heat conduction, Ir and T .. satisfy 

0 ( 15. 4) 

( 15. 5) 

To determine Tf and T ... ·, · one needs to impose proper 
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boundary conditions on them. Since T... represents a thermal dis -

turbance, it must die out. far away from A Let T ... • o at .,... • ~ 

where ~ >"> ... Thus, the required set of boundary conditions is 

(a) 

(b) 

Ta • o 

is bounded 

(c) continuity of temperature field 

T = II' 

(d) continuity of normal component of 

heat flux vector at surface of sphere, 

r y continuous at v- .... 

The general solution of (15 . 4) and (15. 5) is 

T ... " 

I. r 
... c .. Y' .... o.. ) 

--;;-: y . 
P.._l ... ,,,) 

Impose the conditions of (a) to (d) ; obtain 

B.# ,. C_. • D" • o .fl.> I 

Also, 

B • 
0 

c. - T. 

( 15. 6) 
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I ( .lo(... I ( k ) o.! I + J;:f ) + "17 --;;; - I 

h._ I I ) 

p ( h - ')( 7--zr 
I J' . 

c .. , ! + 

Therefore, 

T .... ( 15. 7) 

( 15. 8) 

It is clear from ( 15. 7) that therma l disturbance ~ distorts 

the isotherms of the t empe rature field. The tota l heat transport due 

to this distortion i s 

= 

L et ~ - _, 



,,.. <. T .. ) -

1 ... - , 
J 

_I 

t?.! 
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- k 0 
J 

h.. 
( I- J.., ) 

( I + 

( ~ - I r ) 

( I .,. ~) 
Jz. r 

+ 

i J.... 
r.., 

'-• .s (9 

v-" 

4 .l 
T """- ( 15. 9} 

) 

(15.10) 

( 15. 11} 

On using ( 15. 10} and ( 15. 11 }, the integral of equation ( 15. 2} 

can be evaluated. 

) l· ol v f 7 . .'1 v 

Vf 
+ 

Yr ( Vf .. VI' ... V ) 
v . 

v v v 

- k. r .)T "'v - Ji.,, r ~ , , "'" cl'><. 

"f 
J >; 

"r 
v v 

Therefore, 

J • 

~ 
' +- k 1 

- hft1-c.J- . (15. 12) 

Hence, 
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k.j • },_ [ I -

k. l + 

3c T 3 c. h./I (15.13) 
h 

I 

I -f' ,l.-- .l. + ..Et. 1c., >-. 

Secondary Polarization 

The value of h.f obtained above , of course, holds good only 

if c is small for that the mutual interference effect among particles 

has completely been neglected. However, before an attempt is made 

to extend the above a nalysis to account for this, it is found that it is 

helpful first to summarize some of the aspects of the present problem 

demonstrated in the preceding section. 

From equation (15. 10) it is clear that the insertion of a parti-

cle into an otherwise homogeneous fluid medium produces a thermal 

disturbance radiating from the surface of the particle. The pattern 

of the disturbance is typical of a dipole field. For simplicity, one 

can regard· a particle as being transformed into a thermal dipole. 

Such a phenomenon will be referred to as the rmal polarization. The 

strength of the induce d dipole is proportional to the local temperature 

gradient, ~ Further, the field associated with the induce d dipole 

distorts the origl.nal temperature field, resulting in an enhancement 

or reduction in heat transfer. The amount of increase or decrease in 

heat transport is proportional to the local temperature gradient or 

the dipole strength. 

Now consider a cloud of particles, each being polarized into a 

dipole. The thermal disturbances associated with these dipoles will 

set up thermal gradients which tend to further polarize other parti-
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cles. This further polarization, which will be referred to as second-

ary polarization, is the mutual interference effect of the particles, 

and is now going to be accounted for. In order to reduce cornplica-

tion, a "dipole approximation" will be .made in the following analysis 

to the effect that a particle can only be polarized into a dipole, i.e., 

all higher order poles can be neglected. 

To see the necessary modifications which have to be made to 

account for secondary polarization, first consider the particles to be 

infinitely apart. Then equations (15. 4) and (15. 5) will give a corn-

plete description of the temperature field. Now bring the particles 

together. It is clear that this will not affect equation (15. 4); indeed, 

the only necessary change that is required is in equation (15. 5), 

wh~cli describes T ... 

From the remarks made in the preceding paragraphs, it is 

known that T.. will tend to polarize all other particles, which will 

in turn tend to enhance or oppose the flow of heat associated with A • 

Therefore, in calculating j .. c T .. J , equation (15. 9), one should use 

h} instead of /,.. , i.e. , one may regard that outside the sphere 

is a homogeneous medium characterized by a thermal conductivity hj. 

Hence, instead of equation (15. 12), one has 

(15. 14) 
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Solving for k. J 

.. 
h. [.). h. + k.f' +-.). c ( h,- /... J J (15. 15} 

·11-z.,+ ... J... - c.( 1..,. h, l 

>:< 
Equation (15. 15} agrees very well with experimental data ob-

tained by Sugawara and Yoshizawa 
48

. Comparison with their experi-

mental results of glass balls in air and water is s hown on the follow-

ing page. 

The Complex Thermal Conductivity 

The case of steady-state thermal conductiv'ity of bulk fluid has 

been d ealt with. Here, it is intended to generalize the result above 

to unsteady thermal conduction. It will be found, as will be shown be -

low, that it is advantageous to introduce a complex thermal conduc-

tivity and to carry out the solution of this type of problem in the 

Fourier transform plane. 

As in the steady state case, consider a fluid-particle system 

of vast extent and fix a c oordinate system with origin at the center of 

a sphere A which is located at .:t.. · as shown. As far as 

::::: 
Equation (15. 15} is similar in form to Maxwell's formula for the 

electrical conductiv ity of a heterogeneous media in which mutual in
fluence among spherical particles has been omitted. 47 
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sphere A is concerned, one may regard it as situated in an aver-

aged thermal field described by Tf , the bulk fluid temperature. 

Here, c , the volume concentration of solid particles will be as-

sumed to be such that the secondary polarization effect can be ne-

glected as a first approximation. 

Denote 

~ <(- t > • temperature of particle A 

T..1(.d • temperature of thermal disturbance associated with 

particle A 

so that If and T.. satisfy the Fourier heat conduction equation, 

where 

x,, .) T.. ... 
.d: 

K. f .11; -
,{ 

"I'• T ... 

['. l" . • density of fluid, particle 

c. ct .. heat capacity of fluid, particle 

h., kr • thermal conductivity of fluid, particle. 

(15. 16) 

(15.17) 

As it is generally possible to decompose a heat pulse into 

Fourier components without loss of generality, let the bulk fluid tem-
,._f. 

perature be given by lj . Jj.C;°. w) ~ where 7f cV',..JJ and .,.., may 

be complex, and satisfies 

(15. 18) 

where kt is the complex thermal conductivity of the bulk fluid. 

Since Tf varies as , one expects all quantities to 

,· ... t 
vary as -'- Hence, let 
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(15.19) 

12. • ......,>o 

so that equations (15. 16) and (15. 17) become 

"'. T ... - ,. 0 (15.20) . 

(15. 21) 

As in the steady state case, the boundary conditions on T
1
• 

and I.,_ will be taken as (15. 6), i.e., the conditions of continuity 

and boundedness. 

Consider the case where 'j depends on .x. only. Then 

near sphere A 

lf (v,wJ) = 

Here, the sphere will be considered as so small that in the macro-

s copic scale one can make a "dipole approximation 11 and take 

(15. 22} 

The general solut.ion of (15. 20) and (15. 21) satisfying the 

boundedness conditions at infinity and the origin is 

(15. 23) 

.P•. 

(15. 24) 
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where 
-.• J ' 

1-1 • and d,, are the spherica l Hankel and Bessel functions, 

re s pectively. 

The conditions of continuity of temperature and heat .flux on 

the surface of A require 

A .. • B ... o .. _j '> I 

A. 1-I ~·. r (. c-t .: ) I~ ......... 0... J + 'f ~ "'·) . - B., o' 0 [ (. . ... ..: J ) i<..e .. w ... ! 
A. 1-1:···r , ....... )}.c;: ... 1 ... (_.:L.) °' .. B.j. f c..~.i)/J(r;i .. J 

.. >< ... 

h.. A, ( d. 1-J.u') + h..(.1'1) • 
""\ ... J x ><. 

Solving equation {15. 25 ), 

. A. T. ( x. ) 

k 
d J-/~) 

k, e,·(~) 
"'l 0. 

( (~l , .. [ 
- I-} 0 c ... ~) 1~ .. ...:i ... j . 

l J..I ( _:!_t_) 
"'(' .. 

B. T t x. > 

(15. 25) 
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{15. 26) 

and 

{15. 27) 

By means of (15. 27), the heat transport due to T... is (omitting the 

factor 

) ,,. 

(15. 28) 

Also, 
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From equatio~ {15. 2), supp res sing the factor 

~ f- k(~~) (1-c) dv 

" . 

The.refore, 

where indicates R., iN > o 

In the limit V.J - .. 

h_f ~ h_ [ I - 3 C 1r 
J + ~ h, 

, (1 5. 30 ) reduces to 

3 c h, 

.,4"'1" ~ 
h... 

(15. 29) 

1-/..(, -~) 
(15. 30) 

which is equation (15. 13), corresponding to the steady state case. 

For R.. • ...J < o , equations ( 15. 20 ), ( 15. 21) can be r ewrit -

ten as 
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·v'T ..... ( ... · - ' ) 

~ - cl(. (-w) T ... ~ 0 ... 
v'lr L c.: - I ) 

• -r, .... k~ (- .....i) - 0 

':2. 

On carrying out calculations as above, it is easy to obtain 

If 

I - I t * 
k..f ( ..... ) =- n.f (- ...... ,) 

signifies the complex conjugate. 

l . "r ~ , .. : I < < I I ~......, •• : I <.C. I 
I 

(15. 31) 

, then ( 15. 3 0) is ap-

proximately given by 

where 

h + 
f 

b.. = o-.' cl(. c 

(15. 32) 

(1-~)k(~-1+ ~) 
h.r hr !: cK. 

(15. 3 3) 

To account for the effect of secondary polariz ation, one can 

proceed as ' in the steady state case. Equation (15. 30) becomes 

Hence 

"' k,;} ::: 

h..<·-')+ c. !:r / 

' ... ...£... 1-J 
._,, 

I 

I 
IJ I 

I-. 
k.. ' d;, d • - 0.. -11..:.. 

t + "' h.r di - hi 1-l, , ______ _ 

1.J,"' ti l - Ji:_ i. J 1-(' 
ti ( i..., ;. f 

[ - J µ ~· - f-/ "' J 
', :H:i' - ~~.l!·..'!1-J °' c h. ,,(c c .... 

h. 
h.t. J ' - o.~ 

.t c I t .. A 

>-1"'~ I.. I . ol IJ ,"' 

' "' ( --;;;J·z 

r· .. 

(15. 34) 
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jc)(.._,o."j<<.I 

Complex Fourier Conduction Equation · 

The analysis shown above reveals that k. f depends on ....., as 

well as on c:1.. , the radius of solid particle, in addition to the thermal 

properties of the constituents of thep article -fluid system. Here, it 

is intended to outline a method for solving transient heat conduction 

problems for such a system. For this purpose, the Fourier trans -

form tech:r:iique will be employed. Denoting T..,c~. w) as the Fou-

rier transform of ll , i. e. ' 

T ... C.-Y·, .....,) 

so that 

Consider a motionless particle-fluid system. The particle 

continuum and bulk fluid equations of Sections 8 and 9 reduce to 

R .. w >• 

fl,. ..., <.. 0 

T ,. -,-r I_. >- + -
.: .,..,. ... ( Y, w ) - I f ( Y, 0 ) - k.. f (...,) "' }..., ( .,, . <..,} ) 

r· 'I 
: ~ -,:· c "Y', ""' ) - 't "cv, 0; • h. f t ..... > ""·-r .. ; l -:: . ..... J 

t· c. 

(15.36) 
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where 

and 

{15.37) 

Equation (15. 36) is the complex Fourier conduction equation 

which describes the heat transmission phenomenon under considera-

tion, while (15. 37} gives the inversion back to the t ime variable t 

For problems which vary slowly with time, one may use the 

approximated value of hf given by {15. 35), so that making use of 

{15.31), (15. 36) b.ecomes 

1,'..,.l T... <..¥, o.J )- If (-:1_. J - hj .f .. .17 + ~....i k. v' -r ... CV-:....,> 
('• c £ 

By inve rt~ng ( 15. 3 8) one obtains 

If <v' I.; r Y' ,o > .. o the equation reduces to 

(15. 38} 

(15 . 39) 

The term h., v "__& 
. '~ 

can b e interpreted as follows. As 

has been seen earlier, a spherical particle beha ves as a dipole in a 

temperature field and the dipole strength is proportional to the tern-

pe rature g radient, i. e. , P . ' 0 ~ • i. ""'r If G2. denotes the 

amount of heat stored in the dipoles, then & • c...-~ f. "'1 · P .. co*.f. v'T-f 

(This i s exactly analogous to the relation between e l ectric charge and 

dipole where excess charge . ) 
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Thus the term h.. v ~ .1T1 
•t 

is actually or the rate of change of 

heat associated with the heat dipoles. Hence {15. 39) merely accounts 

for this extra heat flux which normally does not arise in a homogene-

ous medium. 

Example 

To illustrate the use of (15 . 36), consider a semi.:. infinite slab 

of metal e. containing infinitely many small, spherical particles of 

metal A Let one face of the a lloy slab be kept at a temperature 

T. I. .s·~ .. t The present problem is to inquire into the temper-

ature variation after the transient period. 

x. 

/ 

For the present problem, equation {15. 36) becomes 
t 

t' ......, T ..... + = hf c ...... > cJ.. 'T..,1-
\ • c, tlJt.' 

r· '. 

(15. 40) 

Assume o<. is such that one can use the a pp roximate value of 

Rt givenby(l5.35), i. e ., 

k, > o 

The boundary conditions on T...., are 
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(a) .X:,: OD 

S
- _, .... f 

{b ) T.... - T. 1-1 t t- J .s . ;,. "' .f: -e. ,,ti " _.!.. (-' _ _ _, ) 1'. 
_.., .l .,.., .. .,. w·.i 

x " 0 

( v.; has a small negative imaginary part). 

The solution of (15. 40) satisfying the boundary conditions is 

' -J ' ..,,) ( ht ,t - L ..... le, ) I(• ( .. " 
-r..., = T.. (-'-'- - _, -) ~ 1.;.t . . .... • 1.: 

.:i.. ...,." ..,;-o1 

(15. 41) 

Substitute (15 . 41) into the inversion formula, equation (15. 37): 

T,f rx. , t) =-' JI.(-'---' )~/ 
).7i .,l. ...,.... ..... ... (15. 42) 

·-

W- j>LA.1-Jf: 

L . 

R..-oO r E: ·-o 
I ' 
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The integral of ( 15. 42) can be evaluated by completing the con-

. tour as shown. By Jordan lemma, the integral over the semi-Circle 

does not contribute. Hence, by Cauchy's theorem, the integral of 

(15. 42) is given by the contribution from the poles at c.v• .:!. °"" and the 

integral over the cut. However, the long time response is given by 

the residues of the poles. 

• T. 

(15. 43) 

s.:... 

where 

The solution given by ( 15. 43) shows that, as compared with a 

homogeneous medium, the inclusion of foreign small spherical· ob-

jects tends to alter the phase ~t any speci fic location. Also, the 

penetration depth, as characterized by the value of the exponent in 

front of .:ic. • depends more strongly on the frequency. The physi-

cal explanation of this is quite clear if one imagines each particle to 

behave as an oscillating dipole out of phase with the driving frequency. 

The heat flux associated with the dipoles causes the phase shift as 
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well as alters the decay rate. 

16. Diffusion Coefficient of a Substance in a P article-Fluid Suspen

sion 

The process of diffusion of a substance through a static, 

homogeneous fluid is described macroscopically by the following con-

servation and phenomenological equations 

___,. 
V· J ... .,. (16. 1) 

( 16. 2) 

where 

Y is the concentration of the substance, 

J is the diffusional flux, 

D is the diffusion coefficient. 

If solid spherical particles are introduced into the fluid, the 

rate of diffusion is changed. On assuming that no chemical reaction 

takes place, then, on the surfaces of the solid 

J· A 0 

or (16.3) 
0 

where is the normal to the sphere. 

It is easy to see that equations (16. 1), (16 . 2 ), and (16. 3) are 

exactly similar to the process of h eat diffusion through a particle 

suspension. Hence, for an overall macroscopic description of this 

phenomenon, one may define 

S -J .. .1-_~ Jv 
v 

v 
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in analogy to equation {15. 2) for heat flux. 

The boundary condition given by { 16. 3) cor;responds exactly to 

to the case of insulated spheres. Therefore, one can obtain the dif-

fusion coefficient corresponding to a solid particle suspension by put

ting k _. P and kl'=<> in equation {15. 15). Thus, 

D .J.(1-C) (16. 4) 
c_.,,.,+ c.) 

where c is the volume concentration of solid particles. 

17. The Rate of Heat Transfer Between Particles and Bulk Fluid 

The rate of heat transfer from a solid sphere to a moving 

fluid has been investigated theoretically and experimentally by many 

49-54 . authors in the past. In this section, the heat transfer rate 

from solid spherical particles to the surrounding fluid in a fluid-

particle system when there is relative motion between them is being 

calculated. 

" ,.. u I.. be the particle temperature, bulk 

fluid tempe rature, and bulk fluid velocity with respect to a coordinate 

system fixed to a solid sphere A as obtained from the solution of 

· the bulk fluid equations and particle continuum equa tions. Near 

sphere A , let the actual fluid temperature be <If • i~ J and the 

actual temperature of the particle be (T1,-. T.:) , so that T ... and T.: 

represent the thermal disturbances associated w ith particle A out-

side and inside the sphere . To d etermine I: and I.: so as to find 

the heat transfer rate, the following three assumptions will be made. 

(1) All time - varying effects are small and can be ignored. 



-164-

(2} Heat is lost uniformly from the whole of the sphere; let 

the heat transfer rate between a particle and fluid be 

--4 

(3) The convective heat transfer term u · '1 (CJ lj ) can be 

approximated by 

(Approximation in (3) is valid if is small. } 

By means of assumptions ( 1} and (2}, the governing equation 

. for T, can be written as 

(17. 1) 

Also, on neglecting mutual interference effect of particles as 

a first approximation (this will be accounted for later), the equation 

governing T... is 

~ · .<\/ < ( c T .. > - k ". T.. - o 

On using assumption (3} thi s becomes 

(17.2) 

x. 

A 

The conditions that have to be imposed on T. and T-. for a 

unique determination of the present problem are 

(a) The disturbance goes to zero away from the sphere, i.e., 

T ... = o 
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(b) The disturbance must be bounded, i.e., T"· bounded. 

(c) The mean temperature of the particle is equal to Tp 

(d) Temperature is continuous on the surface of the sphere, 

i. e. , y- • "'- T.- .. If = 7f .. T ... 

(e) The heat flux vector normal to the surface of the sphere 

must be continuous 

A particular solution of equation (17. 1) is 

) = Q .... • 

6 1-r.r 

I y- = 0..,. 

Thus, the complete solution of equation (17. 1) satisfying condition 

(b) is 

0() 

T.: = ;- .2 A-4 Y.A f. C< .. e} (17.3) 

.t•. 

By condition (c), 

Ao ... 
Io hr 

Hence (17.3)becomes 

-
( 1 7. 4) 

A complete solution of (17. 2 ) satisfying condition (a ) can be 

written as 
ol l( -. .... 

l_ 
..l•• 

K"~x. ( ~) 
/Y 

(17. 5 ) 

Now conditions (d) and (e) provide a unique determination of 
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the coefficients Q A; and B.11 That is, 

.... 

(If -Tf )T ~ At o.:' P ... L~""l3~i·1 13. ~ •• ~7) ~ , ... •o) 

.l•t A•• 

(17. 6} 

-cc..·'~ ..Q ... • . 

~ • hr [- ':,_: ·). 1 A. ,,'."' P. • •••1j. ~!. B, [ "~,. k.,~ '.' J 
(17.7} 

+ L ( K-1~:.-. ( ~)) ~ , .. •J e > 
t:Jy i y 

Va o. 

On using the relation 

the coefficients in ( 17. 6} and (17. 7} ·can be solved by solving an m -

finite determinant. However, on restricting to small value of~ .... , 

one can easily obtain the heat transfer from particle to fluid: 

where 

N ... = 

4 l r"I 
-- .... a.. '-" 

.J 

4" ... h.. ( Tp- 'f ) r _5_ .. _s_( _5_ .. _5'-+1---1.,,_~_J _ 
l ~ 'C' 1 .I. (. I 1' .. 1. ) ( S + 1 )• 

Or if 

Nusselt number, 
.J. -rr .,._ 1z. ( 1 1, - If I 

(17.8} 
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... . 
a<. "'- . + .•. 

If the volume concentration of the solid particles is sufficient-

ly large, it is necessary to modify the above analysis to account for 

this density effect. To do so, the method that is going to be used is 

still .based on the approximation that if one .fixes one's attention on a 

specific particle one may regard this particle as situated in an over-

all averaged fluid medium constituted by the fluid and other particles. 

To see this more clearly, first assume that the particles are far 

apart. Then, as shown above, the thermal disturbances associated 

with particle A are governed by the equations 

1-:z., 'V' T· -!- 0. .. 0 .,... <. ~ < I . 
I 

(17. 1) 

ot.. J.I ... - ""• T ... - 0 .,.. > ~ (17.2) 
d x. 

Now let the particles be brought closer togethe+, but assume 

that A is the only particle that has a higher temperature than the 

fluid. It is clear that pothing has really changed except the thermal 

conductivity and fluid density of the medium outside A Thus, one 

should account for this change in thermal transmission property by 

using hf (bulk fluid thermal conductivity) instead of h, and (t 

in place of ( , so that equations (17. 1) and (17 . 2) become 

kr 'V·T~· -!- CQ. ~ 0 v- < "' (17. 10) 

u ct~~ J. T.._ - v' T ... 
- 0 

r- > Q.. 

"'- f ~ x 
(17.11) 

Let the temperature of the other particles be raised to T 1 

Heat is now being given to the fluid everywhere. Locally, near sphere 
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A , the change from the ear lier picture can be obtained from the 

bulk fluid equation. In this gross description, it is possible to re-

gard each particle as a heat source of strength ~r, ..!. Q. , or in ef-
. J 

fe e t, the bulk fluid is flowing through a region where there is a heat 

source of strength +-ir {;4.

1
1'/ CO. ; c Q per unit volume. Thus 

(17. 12) 

whi ch yields a solution 

Tf T. . ;- cQ 
f · x. 

o(j- h-1 
(17. 13 ) 

where 

o( f .. U CJ:~ 
hf 

(17 . 14) 

Tf. "" mean bulk fluid temperature near A 

Hence, the averaged backgr ound temperature with respect to parti cle 

A is 

l.s c Tr .. c:. , - c.. i 7f. (17 . 15) 

With the above modification, one may now seek a solution to 

I... and I.: , equations · ( 17. 10) and ( 17. 11) satisfying the bounded-

nes s and continuity conditions as before. 

I;; = _Q__ r~ -~1 ... ~ A"' Y J ~ , ... , " ) 
h.. . JO ' L I .t•, 

(17 . 16 ) 

(17. 17) 
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Imposing the continuity conditions 

-"'f"".:.•JC9 I ~ ... - Q °"~ 4 ( 't -~ ) - c GI. Q 
i.s hr o<J k.f 

+ 1 A,o..'P,«·,.,l 
f •I 

r; c. .... ") (1 7. 18) 

~ .. 0 

<><> 

= k.f 1 B, [ °"f ::H> (~) I<. ..L+~ .. + 
;--;;:-

( 17. 19} 

"~. 

On solving equations (17 . 18) and (17. 19), denoting 

the heat transfer from a particle to fluid 

Q ca _:j_ 7( ()..} Q. 
r 3 

... .+Tio. k..f [ Trl'-'-> -Tf(•-c.>} [ s,-tsc .,. _is_(_s_ ... _s.J-x_-.J-f-=->-o<o.. 
.l .l(l+~sJ(S .. !l' 

where 

CX.f i sgivenby (l7.14}, 

h.f • h. [ .l k..-f k.e + H- c h.rk.)J 
[ h,. + :2- h. - c ( 1.,. k.) j 

(17. 20) 

from Section 15. 
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APPENDIX A. 

On Green's Function of a Certain Differential Equation 

In this appendix, the Green 1 s function for the following dif-

ferential equation is c;onstructed for the full physical space: 

where S < >< > is the Dirac ~ - function. 

Method 1. 

Denote the Fourier transform of G, lx, X:') by 

_ .. 
Then, from equation (A-1 ), G satisfies 

or 

G 

Therefore, 

Ge>!,)(';= ' ( 
-p.1Tl ) 

• -r. (-;(. x ') 
~ t;).)k 

<...l. • .''-t "''> 

Let be the polar axis; then e quation (A-3) becomes 

G ..... ~. 
lX,X)"' 

(.~7j l 
where R.. " 1 x -x ' I 

Integrate over 

G<'><.><· J "' 

~ and 

(..1. Ti) .. i R. 

19 

"" ; I.. R.. 

_i -€ 
k_,· .. ()(.~ 

(A-1) 

(A-2) 

(A-3) 

The l ast integ r a l can be e valuate d in the complex k. pla n e by 
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completing the contour in the upper half plane. 

By Jordan lemma, there is no contribution to the integral 

over the semi-circle as r- .... The only contribution comes 

from the pole ... : o< Hence 

- obt .. 

G ( X, X' I) - - -'l ---

~ ~· -o<l)(-.>GI 

(A-4) 

Method 2. 

Equation (A-4) above is not in a convenient form for the pur-

pose of computation. An alternative representation of the Green's 

function can be constructed as follows. 

In polar coordinates 

r(y.y'J ft,•JG--c.,....,9 ' ) fc.J.-4') (A-5) 
-y ~ 

Since form a complete set, let 

"" ' Clx,x'),,. lL jJlt..,,> ( c~~ P~-l••J(l)) P_.-Ct.. .. JGl'j '- 0 • ... f~o• ... fl 
.,,, .. .... . (A-6) 

where P~~-••)denotes the associated Legendre function. Also, 
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Substit~te (A-5} and (A-6} into (A-1): 

+ l ~ 1 #. , ... .._. .. 

Take 
• c.,_ 

JUro) 
y' 

~.... u ..Q+,) ( .R- .... ) ! 

Using the orthogonal property of ~~ .... .,) , c.•c -f 
(A-7 ), 

+ .L 
y 

and a similar equation for f .. (.-) 

(A-7) 

...... 0 

• I 

from 

(A-8} 

The homogeneous part of equation (A-8) has the solutions 

j.I/ h." ff; K. ..... ~ ( ol v ) 

' /.':. I J• x. ( -< ,.. ) v.o 

where >t. and I are modified Bessel functions. 

The discontinuity in slope is 

)'"' . (A-9} 
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Therefore, J"" ("y) • being continuous, maybe taken as 

f 
A ..JL k..,.c,, ( <>( 'i ) ]~·x (o1v' J y '> y 

:i.. k r:;- ;y. 

ji -

l A 11 K.,. y, l<>< -v'1 I.., ~i:j, l oi v ) y < y 
.), h. .j--Y.- F (A- 10) 

The Wronskian of k .. and -<.I A is 

2.k w [ h. ' ' k._. ~ .t - ...(,A ..c 

" 
"' - (A-11) 

Hence, on substituting (A-10) into (A-9) and using (A- 11). 

A "' - ,2.,k. 
-rr 

Therefore, 

.t• 0 ... . . 

(A- 12) 

. Since the Green 1 s function is unique , from equations (A-4) and (A-12) 

:,_ • '"·" " • ~ ~ [ ",., <~ y • l I,.«• Y. ii c,.: e,-,~ .. ' P;, •.. •, 
_,, - , I~ ;;('j JV: [Y; j 
-r 11 ~ a•o •:i.O 

(A-13) 

where Y< ( Y.,. ) is the smaller (larg er) of IXI, 1)( ' 1 

For o1. .. 11 , equation (A-13) reduces to 

(.J--) '. 

(A- 14 ) 
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APPENDIX B. 

Lamb's General Solution of Stokes' Equation 

15 
L amb has provided a general solution of the Stokes Equation 

in polar coordinates. Kaufman 
16 

has put this into a vector form. 

Here, Lamb's solution will be written out explicitly together w ith 

some of its properties. 

Stokes Equation 

'\T· u "' 0 

Lamb 1 s Solution 

Let 

The general solution can be written as 

u .. 

( J;. ""-) (J+ I ) y. J 
l ~.., ... f.) ,g-·~-

+ A y ... e:. .. _ .1 ( J---+ I l YD -
r 

o l•I o J ( 
-_,_ . ~ (~..J.f I.) hi., .... 

+-' ~< ~ . .:.. .. LL 
..fa•._., 

[ 

.I) .I ~ J[ . 1 [ " ~ .. ) ..i; """ co# r ... D,_ - y clll,+, .. ..... c..,_ y ... ~ '(. 
- - .1- #•1 ,_ 

..,....... y 
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[ 

-'+I 0 
(..t. .. J) 'Y t;,.._ 

l.. ( ,f.t ' )(.),-' .. l ) 

(..P-:z..) .F..: 
,2...((.l..l·•JY..t 

c-' - 2. > F q~ J y ..a:_ c 8. 4 ' 
.l..i'P-'·•)Y 

I~- + ....... A,_ y .. 8_,_ Y .. _ . r .. .... . J ~ 
y .. ., .. 

(B-i) 

Let x.- axis be the polar axis. Assume that a flow field is 

given by the general solution above. Consider a sphere of radius r-

and denote the stress acting on 'this sphere in the x. direction by Py._ • 

Then 

drag ( >C - .,( .~ .... J. : .... .. J f'.,,.. J.s 

.r"""f•u •} 
1,fL.,... ... 

(B-2) 

Substitute (B-1} into (B-2} and, by the orthogonal properties of the 

angular functions, the follow ing formula holds: 

D ... (B-3} 

where F;. is the coefficient defined in (B-1). 
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APPENDIX C. 

Elastic Distortion of a Sphere · 

{Part of this appendix is based on Chapter 13 of reference 30.) 

Navier Eguation 

( >-.. .. C. ) "V ( "V· 5 > + G 'Y ' s = o 

A general solution of the homogeneous Navier equation {finite 

at ..., =- 0 ) can be written as 

-s 

{1 }._ l 
+ [ 

~ [ 

. + }l [~c::~:-·.·J·/·'( 
.I•• '"". 'i) 

+ 

..Q-.- "I- I f>,.. (.,.J$) -
~ ... 

,R .. I 

_Q."' + I 

.("'1 I 

( J • ... +1 > 
JJ -t' I 

c.J>+..,) p""' .. ··••)) c. ... -~l 
-' ~~· J 

P,: (•••OJ) ~~ -+ J + 

(• ... t. 
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.l+I 

B
0 

...,_y ( Jd.R+t)-+ G<J·~J) P-
....... I _. '&.•• \)! J 

1-t 1 )\ .P + G t .J- ~ I 

- I 

(C-1) 

+ 11 [-
J~· ...... 

The corresponding stress components are 

r 
... ; 
l l ·[ B .. ( >-..G ( .:1..e'-~.1-(, }+ ).G ... (R•d(J-a..)) A,,,.. .!.) 

Y ~.JI, .... "'"' c..•• .... r 
,_ :>....I + c;, ( .#. & ) ,. .. .... . 

+ 

( 
,t ( .£ ........ ' ) - ( ..P )( .1 ) .. l -----~ .. , ,t.. .. oo) - +.,. +t f';_,C•••CI>) 

J..I""• (..,.D .. • I 

.1.' -·· 

+ t. .... f. 
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{ ~ f [A,> . .- f • A,>'-j Jr Go- •J ,-'l 
I•~ ,....~. 

{C-2) 
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APPENDIX D. 

G eneral Solution of 11Screened 11 Stokes 1 Equation 

The 11screened 11 Stokes .equation is -"V· L.( .. 

a.- \ _.. . rvu ·-ro< (..( 
Let the solution be 

..... 
'V,, A 

Then equation. {D-1) will be satisfied identically if 

0 

The corp.plete solution .of {D-4) which vanishe.s a t infinity is 

R, -. 

where 

{D-1) 

{D-2) 

{D-3) 

(D-4) 

{D-5) 

(D-6) 

Therefore, the pre ssure and longit udinal velocity components are 

(D-7) 

Equation (D-5) has two linearly independent solutions. If 
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~ .t .. modified spherical Bessel function 

the two transverse velocity vectors are 

-'" LJ + ....... 

~ [+ L ( .,. i c °' v ) ) ...L :X - t 9, 9> 1 J ... ~e "'v ~ Je ,,. 

.. [ . 
;., ( vL-'i«v1)X; 1~.1>] (D-8) .,. ...et " --"'(' ,,:.... c9 

~o.>J [ .l_, l~Y) x; C•,<}>l u = ....(.0 
""-

+-.... . 
~ . :..<Si 

~f [ ' L.A.C..tv) 
) x: c e, cp > (D-9) ,. 
}~ 


