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Abstract 

This thesis contains error bounds, algorithms, and techniques for evaluating the 

performance of convolutional codes on the Additive White Gaussian Noise (AWGN) 

channel. Convolutional encoders are analyzed using simple binary operations in or- 

der to determine the longest possible "zero-run" output and if "catastrophic error 

propagation" may occur. Methods and algorithms are presented for computing the 

weight enumerator and other generating functions, associated with convolutional 

codes, which are used to upper-bound maximum-likelihood (i.e., Viterbi) decoder 

error rates on memoryless channels. In particular, the complete path enumerator 

T ( D ,  L, I) is obtained for the memory 6, rate 112, NASA standard code. A new, 

direct technique yields the corresponding bit-error generating function. These pro- 

cedures may be used to count paths between nodes in a finite directed graph or to 

calculate transfer functions in circuits and networks modelled by signal flow graphs. 

A modified Viterbi decoding algorithm is used to obtain numbers for error bound 

computations. 

New bounds and approximations for maximum-likelihood convolutional de- 

coder first-evenr, bit, and symbol error rates are derived, the latter one for concate- 

nat ed coding system analysis. Berlekamp7s tangential union bound for maximum- 

likelihood, block decoder word error probability on the AWGN channel is adapted 

for convolutional codes. Approximations to bit and symbol error rates are obtained 

that remain within 0.2 dB of simulation results at low signal-to-noise ratios, where 

many convolutional codes operate but the standard bounds are useless. An up- 

per bound on the loss caused by truncating survivors in a Viterbi decoder leads 

to estimates of minimum practical truncation lengths. Lastly, the power loss due 

to quantizing received (demodulated) symbols from the AWGN channel is studied. 

Effective schemes are described for uniform channel symbol quantization, branch 

metric calculations, and path metric renormalization in Vit erbi decoders. 
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Chapter 1 

Introduction 

Convolutional codes are an effective forward error correction technique in many 

digital communication systems including those for deep-space telemetry/image data 

transmission and satellite links [Clar81]. The predominant cause of data errors in 

these systems is Additive White Gaussian Noise (AWGN). New standards for digitial 

cellular radio may include a convolutional code for protection against noise and 

severe signal fading. Also, direct-sequence, collision-detect multiple access (CDMA) 

systems, like those developed and proposed recently by Qualcomm Inc., utilize 

powerful convolutional coding and soft-decision Viterbi decoding to achieve low 

power consumption. Thus, it seems likely that such coding will be used in future 

wireless "personal" communication systems for transmitting speech and computer 

data within buildings. 

Unfortunately, the performance of convolutional codes is notoriously difficult 

to determine analytically. Indeed, little progress has been made since Viterbi's pi- 

oneering work [Vit71]. For quiet channels, such as the AWGN channel with high 

bit signal-t o-noise ratio Eb /No,  decoder error rates are closely upper-bounded by 

the well-known transfer function method. For a given code rate and high Eb/No, 

decoder error rates depend mainly upon the "free distance" of the convolutional 

code. The best codes are usually found by extensive computer searches for those 

having large free distance and also good distance properties. However, coding is of- 

ten used on channels subject to severe noise levels and/or bursts. Indeed, Shannon 

theory suggests pushing a channel towards its physical limit and recovering from 

the numerous transmission errors incurred by coding data. Unfortunately, upper 

bounds differ markedly from simulation results at moderate Eb/No, so coded system 

analysis becomes more difficult. In fact, the bounds are not useful at the operating 

points of the deep-space telemetry and proposed digital cellular mobile communi- 



cation systems. Although computer simulations may be used to estimate decoder 

error rates on a very noisy AWGN channel, the close approximations derived in 

Chapter 4 provide an analytical alternative. 

In Chapter 2, a procedure is developed for analyzing convolutional encoders. 

Simple binary operations are used to determine the maximum number of consec- 

utive all-zero blocks that an encoder can output (the longest "zero-run") and if 

"catastrophic error propagation" may occur. Forney's work is a reference for the 

structure and properties of convolutional encoders [Forn70, Forn731. However, his 

solutions to the two above problems are involved, indirect, and require considerable 

algebraic theory to implement or understand. In comparison, the new methods 

are direct and straightforward applications of elementary linear algebra to binary 

matrices. 

This thesis contains techniques for evaluating the performance of convolutional 

codes on the AWGN channel at moderate to low signal-to-noise ratios Eb/No. The 

complete path enumerator of a convolutional code is useful for code characterization 

and upper-bounding decoder error rates. However, this generating function is known 

only for simple codes and not the powerful or standard ones found in applications. 

The methods and algorithms developed in Chapter 3 facilitate the computation of 

the weight enumerator and also of other generating functions, associated with con- 

volut ional codes, which are used to upper bound maximum-likelihood (i.e., Viterbi) . 

decoder error rates for memoryless channels. In particular, the complete path enu- 

merator T(D, L, I )  is obtained for the memory 6, rate 112 NASA standard code. A 

new technique is described for finding bit-error generating functions without need- 

ing complicated functions T(D, L, I). The methods described may be used to count 

paths between nodes in a finite directed graph such as a signal flow graph. Mason's 

gain rule for evaluating transfer functions appears to be far more complicated and 

less efficient than applying the linear algebraic techniques in Chapter 3. 

A "concatenated" coding system, consisting of an inner convolutional code 

followed by an outer block code (e.g., Reed-Solomon) having symbols from G F ( ~ ~ ) ,  



yields a high coding gain [Clar81]. A Viterbi decoder, which effectively utilizes 

the analog nature of demodulated channel symbols, outputs data with occasional 

error bursts that is input to a Reed-Solomon decoder. The powerful burst-error 

correcting ability of the outer Reed-Solomon code usually results in very few final 

errors. This type of concatenated coding has proved to be effective for the deep- 

space and satellite communication channels [Clar81]. The appropriate performance 

measure of the inner convolutional code is the probability that a b-bit symbol is 

decoded incorrectly. An upper bound for this probability is derived in Chapter 

4 along with a close approximation to the simulated decoder symbol error rate. 

Berlekamp's tangential union bound on block codeword error probability for the 

AWGN channel is adapted to convolutional codes, yielding good approximations 

to Viterbi decoder bit and symbol error rates. Unlike the standard upper bounds 

which are not useful at low signal-to-noise ratios (where many convolutional codes 

operate), the new approximat ions remain within 0.25 dB of simulation results for 

several codes at E b / N o  = 1.0 dB. 

Two practical problems in Viterbi decoder design are studied at the end of the 

thesis. An upper bound is derived for the loss caused by the (necessary) truncation 

of survivors in a Viterbi decoder. The bound may be used for estimating the mini- 

mum truncation length required in practical Viterbi decoders. Chapter 5 contains 

a study of the E b / N o  loss due to the required quantizing of demodulated symbols 

from the AWGN channel before decoding. Optimal schemes are described for this 

quantization (performed uniformly), branch metric calculations, and renormaliza- 

tion in Viterbi decoders. Most of these results also apply to soft-decision decoding 

of block codes and to other types of convolutional decoders. 

Proofs that the approximations in Chapter 4 are actually upper bounds for 

error rates, as well as error bounds for convolutional codes used on the Rayleigh 

fading channel, would both be useful extensions of this work. A challenging task 

would be adapting material in the last three chapters to trellis codes. 



1 .I Convolutional Codes and Viterbi Decoding 

A brief overview of convolutional codes and Viterbi decoding is now presented 

in order to establish notation and definitions that are used in the four following 

independent chapters. Several text books contain detailed treatments of these two 

subjects [McE177, Clar81, Vit791. The description of Viterbi decoding is essential 

for the error bound derivations in Chapter 4 and for most material in Chapter 5. 

A binary, rate l / n  convolutional encoder is a linear circuit which produces n 

bits computed from m state bits stored in a shift register and one input data bit, 

so the data throughput rate is l /n .  These encoders, and versions with output bits 

periodically deleted, are overwhelmingly preferred in practical applications to those 

having more than one parallel input and/or nonbinary data. 

An encoder is usually realized with a length-m shift register, n modulo-2 adders 

each one producing a binary digit for output, and an n-to-1 multiplexor which 

serializes these bits. The encoder is represented by n generator polynomials 

where g$) = 1 if there is a connection from the tth shift register cell to the j th adder, 

and x represents a delay of one time unit. These polynomials may be written as 

entries in the generator matr ix for a convolutional encoder, 

for rate l / n  encoders and size k x n in general (see Chapter 2). An encoder, the 

corresponding generator matrix G ,  and the set of all sequences output by the en- 

coder (called the code), will be referred to interchangeably thoughout this thesis. 

While G could contain rational functions that represent feedback, Forney proved 

that there is a feedback-free encoder, without larger memory, that generates the 

same code as G [Forn70]. An (n, k, m) convolutional encoder has k inputs, n out- 

puts, and a total of m memory cells in k or fewer shift registers. Alternatively, an 

encoder will be described by its memory m and data throughput rate k/n. 



The current state of a rate l / n  encoder is a binary vector s = sls2 . . . s ,  

where si is the contents of the ith memory cell from the data input to the encoder 

shift register. (Throughout this thesis, binary digits or vectors are written one 

after the other to imply concatentation into a single binary vector.) The current 

data input bit ul will be the state bit sl during the next time unit. An input 

data stream, called an information sequence, represents data for encoding and 

subsequent modulation and transmission across a channel. A memory 2, rate 1/2, 

binary convolutional encoder is shown in Figure 1.1. The generator polynomials 

are g l l ( x )  = 1 +x + x 2  and g 1 2 ( x )  = 1 + x 2 .  Output bits yl and y2 are alternately 

selected as the encoder output by the 2-to-1 multiplexor switch on the right. 

Figure 1.1 A Rate 112, Memory 2, Binary Convolutional Encoder. 

For each data bit u1 input, the encoder outputs n bits 

where means inner product modulo 2. The set of all possible output sequences 

generated by G is called a convolutional code, because information sequences 

are convolved with generator polynomial coefficients. The code generated by the 

encoder in Figure 1.1 starting from state 00 is described by the trellis diagram in 

Figure 1.2. This example, taken from [McE177], is used for its simplicity. The four 

possible encoder states are listed on the left and indicated on the diagram by large 

points. Each input bit causes the encoder to change from one state to another, a 



transition indicated by a trellis branch labelled with the input bit, a /, and the two 

output bits produced. A vertical column of states will be referred to as a trellis 

level. A trellis path is a sequence of consecutive trellis branches and has weight 

equal to the total number of 1's in the branch labels. A fundamental trellis path 

goes from the all-zero state to the all-zero state via nonzero states (e.g., the thick 

path in Figure 1.2). The least weight of any such path is the free distance of the 

convolutional code, denoted dfree (5 in Figure 1.2). 

state 

s ,  s ,  

Figure 1.2 Trellis Diagram for the Encoder in Figure 1 .l. 

The NASA standard code, which has dhe, = 10, is a popular convolutional 

code. It worked successfully for images transmitted by the Voyager spacecraft and 

continues to be chosen in coding applications. For this reason, it will be used in 

examples throughout this thesis. The encoder is like the one in Figure 1.1, but has 

4 additional storage cells between the cells sl and sz, as well as extra connections 

to the two modulo-2 adders that produce output bits. Since the NASA encoder 

has memory 6, the corresponding trellis diagram and Viterbi decoder both have 64 

states. 



A rate (n - l ) /n  code may be obtained by periodically deleting bits output by 

a rate 112 encoder, to obtain a punctured encoder [Cain79]. The corresponding 

punctured code usually has a lower free distance (the price paid for increased 

rate), than the original rate 112 encoder. For example, deleting the third bit in 

every group of 4 bits output by the encoder in Figure 1.1, results in a rate 213 

encoder and a code with dhee = 3. These high rate codes are used in applications 

because they may be decoded with a rate l / n  Viterbi decoder by inserting nulls at 

the receiver for deleted bits. 

A Viterbi decoder tracks an encoder by finding, for each possible encoder state 

in successive trellis levels, the closest trellis path (called the survivor path) to the 

received channel symbols, which ends in the state. It accomplishes this task by first 

computing, for each branch into a given trellis level, a branch metric which is the 

Euclidean distance (for the AWGN channel), from the branch label with 0 and 1 

mapped to +1 and -1, to the corresponding received channel symbols. The metric 

of a path is the distance from the path to the received sequence and equals the 

sum of metrics of the branches forming the path. Given the received sequence, the 

"closest" path is the most probable one transmitted. As explained in Chapter 5, 

received (demodulated) channel symbols are first quantized by representing them 

with integers before a decoder uses them. 

A Viterbi decoder finds and stores, for each state, a state metric equal to the 

sum of the metrics of all branches forming the survivor path, and a survivor which 

is the information sequence that generates the survivor path. (Note that the most 

recent m survivor bits for a state are simply the state bits sl sz . . . s,.) Then each 

of the 2, current survivors is extended by one branch in the two possible ways (for 

a rate l / n  encoder) and the metrics for the resulting paths are computed by adding 

branch metrics to state metrics. The survivor path into each state of a trellis level 

is obtained as the path with lowest total metric that ends in the state. In effect, 

a Viterbi decoder contains one trellis level of 2, states, each one representing an 

encoder st ate. 



In theory, a Viterbi decoder outputs the information bits that generate the 

common part of all survivor paths (they all merge far enough back in the trellis). 

In practice, after every group of trellis levels, the decoder out puts informat ion bits 

that correspond to branches T or more levels back in the trellis. In order to output 

information bits, a fixed state Viterbi decoder always uses the survivor for one 

particular state, while a best state Viterbi decoder uses the survivor for the state 

with the best metric at the current trellis level. However, finding this best state is 

usually infeasible in high-speed decoders or in those with more than a few states. 

For this reason, fixed state decoders are prevalent now, even though for the same 

performance they require about twice the truncation length T used in best state 

decoders. 

Decoder error probabilities are independent of the path transmitted across a 

binary-input , output-symmetric, discrete memoryless channel [Vit 79, p. 791. Thus, 

for simplicity of derivations in this thesis, the all-zero path will be assumed as 

transmitted. Also, Pd will be the probability that the decoder chooses the survivor 

into state 0 at any trellis level as a fundamental path at distance d (in terms of 

binary branch labels) from the all-zero path. For example (see Figure 1.2)) with 

probability P5, the decoder will select the thick path instead of all zeros as the 

survivor path into state 00 after 6 channel symbols are received. When this event 

occurs, the thick path represents an error event, defined as a deviation from the 

transmitted path. Since a convolutional code is linear, the set of all possible error 

events is the same as the set of all fundamental paths. 
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Chapter 2 

Zero Runs, Catastrophic Encoders, and Dual Codes 

A binary (n, k, m) convolutional encoder is a finite-state, time-invariant, in- 

vertible, linear sequential circuit which produces n bits every clock cycle. These 

output bits are determined by the current state, represented by rn bits, and k bits 

of data input. The encoder has a total memory of m 2 1 storage cells for input 

bits, and a data throughput rate R = kln. The results in this chapter may be gen- 

eralized to include nonbinary encoders, which occur rarely in theory and virtually 

never in practice, at the expense of significantly complicating but not enhancing 

the material. 

The zero-run problem [Oden70, Forn731 is to h d  the maximum number Z 

of consecutive blocks of n zeros which may be output by an encoder starting in 

any nonzero state. A straightforward algorithm is derived to obtain 2, whose 

value determines if an encoder may cause "catastrophic error propagation." This 

new method involves only column reduction of a binary matrix, as compared to 

the standard test for "catastrophic" encoders which requires reducing a matrix of 

polynomials. Forney finds Z by constructing a dual minimal encoder (described 

below) using algebraic techniques which may require several iterations. The new 

test is direct and simple as opposed to iterative and complicated, and is useful when 

searching for encoders, with fixed parameters n, k, and m, that perform best on a 

particular channel. Such searches are performed because there are few methods for 

designing c L g ~ ~ d ' '  encoders. 

Several key values, produced when the direct algorithm is used to calculate Z 

for an encoder, specify the memory sizes of a dual encoder, whose output sequences 

are orthogonal to every one from the original encoder. A noncatastrophic dual 

encoder, with a minimum number of memory cells, is obtained simply as a solution 

to a system of binary linear equations. 



2.1 Convolutional Encoders 

In this thesis, an encoder will be represented by a rank-k, k x n generator 

matrix G with entry in row i and column j the binary polynomial 

which is the transfer function from the ith encoder input ui to the jth output bit 

y j  , where x represents a delay of one time unit. 

An encoder is a linear sequential circuit, usually realized with k shift registers, 

a modulo-2 adder for each of the n output bits, and an n-to-1 multiplexor which 

serializes these bits (see Figure 2.1). An additional 1-t o-k demultiplexor might be 

included to convert a serial input data stream into blocks of k parallel inputs. Data 

bit ui enters a shift register which contains mi = max deggij(x) storage cells. If 
3 

g!i) = 1, there is a connection from the output of the tth cell in this shift register 

to the modulo-2 adder producing output bit yj. The total encoder memory is 
k 

m = C mi and the maximum shift register length (maximum memory with respect 
i=l 

to any input) is 6 = max mi = max deg gij(x). 
2 ' , I  

Figure 2.1 A Rate 213, Memory 3, Convolutional Encoder. 



The current s ta te  of an encoder is s = sls2 sk, the concatenation of binary 

vectors si equal to the ith shift register contents (si is null if mi = 0). Then 

(0) (1) where gij = gij gij . . . giyi)r binary variables or vectors written one after the other 

means concatenation, and denotes an inner product modulo 2. The set of all pos- 

sible output sequences y generated by G is called a convolutional code, because 

input sequences u (which represent information for transmission) are convolved with 

generat or polynomial coefficients to produce encoded bits y. 

Definition. An encoder G is equivalent to another one G' if and only if G 

and G' generate the same set of output sequences (i.e., the same code). 

For example, multiplying or dividing any row of G by a polynomial, or per- 

forming elementary row operations on G,  yields an equivalent encoder GI. 

Definition. An encoder G is called catastrophic if there exist two informa- 

tion sequences u and v that differ in infinitely many positions but the corresponding 

output sequenccs y and z differ in finitely many positions. 

Catastrophic error propagation occurs when a finite number of channel errors 

change y transmitted into z received, because the decoder might output v instead 

of u (since it cannot determine which was sent), thereby making infinitely many 

errors. 

Let Ai(G) denote the ith k x k subdeterminant of G for i = 1,2,.  . . , (3 and 
let $(G)  be the greatest common divisor (GCD) of these subdeterminants. 

Theorem 2.1 [Sain68]. An (n, k, m) convolutional encoder G is catastrophic if 

and only if, for all integers j ,  $(G) # xi. 

Simple techniques for analyzing encoders will be derived in this chapter by 

expressing G in terms of binary generator matrices G i  as 



Example 2.1 The rate 213 encoder in Figure 2.1 has ml  = 1 and m2 = 2, so the 

total memory is m = 3. The encoder state, s = slszs3 is one of 2m=8  possibilities. 

Since $(G) = GCD(Al(G), A2(G), A3(G)) = I, G is noncatastrophic. 

Now if $(G) = xj, j > 0, then the encoder G contains j unnecessary memory 

cells. If in addition, G is rate l l n ,  then there are j useless delays at the input end 

of the shift register [Sain68]. Thus for rate l / n  encoders, all generator polynomials 

should be divided by the common factor X J  to remove the j extra delays. 

In general, a given rate k ln  encoder G ,  k > 1, should first be reduced, by 

creating an equivalent one with possibly less memory, before G is tested for catas- 

trophic behavior. In the first half of the reduction process, if rank(Go) < k, then 

elementary row operations are performed on G until rank(Go) = k: 

Let {gf}fEF be a set of rows in G o  that sums to zero, where F [I,. . . , k] 

is an index set. Find an e E F such that me 2 mf for all f E F. Now replacing 

gej(x) in G by x-' C g j (x) for j = 1, . . . , n, yields an equivalent encoder that 
fEF 

has me and thus m reduced by at least 1. 

For the second half of reduction, let T be the k x n binary matrix whose ith 

row consists of the coefficients of xmi in the polynomials forming the ith row of G. 

Then the above procedure is applied to T until rank(T) = k ,  but with g e j ( ~ )  in G 

replaced by C xme-mf gfj(z) for j=l, ..., n. 



A minimal encoder G is noncatastrophic, contains only polynomial entries 

(instead of rational functions), has $(G) = 1, and m = max deg Ai(G) [Forn'iO]. 
a 

Forney gave a procedure for obtaining an equivalent minimal encoder G' from any 

given encoder G and he proved that the memory of G' is the least possible of any 

encoder equivalent to G.  Thus, restricting gij(x) at the beginning of this section 

to be polynomial causes no loss of generality. All equivalent minimal encoders 

have the same shift register lengths mi [FornTO]. If an encoder G is reduced and 

noncatastrophic, then $(G)  = 1. 

Example 2.1 (continued) The encoder G is minimal because $(G) = 1 and m 

equals the maximum degree of the subdeterminants Al (G), Az(G), and As(G). 

Notice that G may not be reduced because rank(Go) = raak(T) = k = 2 : 

For a rate l / n  encoder, dividing each glj(x) by x until it contains a 1 may 

further reduce the memory. While the resulting encoder is not strictly equivalent 

to G,  only the relative order in which output bits are serialized changes but this 

does not affect the performance of the code on a memoryless channel. 

2.2 Zero Runs 

An important problem is to find Z, the maximum length of a "zero-run" in 

trellis branches, output by a convolutional encoder. Since all-zero input produces 

all-zero output, the encoder must be noncatastrophic and started in a nonzero state 

for Z to be finite and meaningful. Long zero-runs may cause a receiver to lose 

synchronization due to a lack of channel symbol transitions. The following example 

shows how Z may be found, for the minimal encoder in Example 2.1, directly from 

the binary generator matrices Go,  GI ,  and Gz.  



Example 2.2 If yl = y2 = y3 = 0 is the output of the encoder in Figure 2.1, then 

Note that the 5 x 3 matrix above, which will be called B1, may be written as 

where the superscript "-" means that all-zero rows in the matrix are removed (in 

this example, the first row of G 2  is deleted). Each one of the 4 solutions to (2.1) 

corresponds to a distinct trellis path consisting of one branch labelled with n = 3 

zeros. Now let u3 and u4 be the next input bits following ul and u2 respectively. 

The encoder output is all zeros when ~ 1 , 2 1 2 ,  us, u4 are input if 

for which the only nonzero solution vector is [ 0 1 1 0 1 0 1 1. Let B2 denote the 7 x 6 

matrix in (2.2): each row corresponds to an unknown and there is one column for 

each equation. The dimension of the space of all-zero trellis paths of two branches 

equals the dimension of the left nullspace of B2. This quantity equals 1, the rank 

of B2 minus the number of rows. Since 

has rank 9, which is also the number of rows, all zeros is the only state and input 

data which generates an all-zero trellis path of length 3 or more branches. Therefore, 

2 = 2 .  



In order to generalize this example, let d(r) be the dimension of the space of 

all-zero trellis paths of length r 2 1 branches. Then d(r) is the dimension of the 

left nullspace of 

which has m + k r  rows, each one corresponding to an unknown, and n r  columns, 

one for each equation in 

where u(') is the ith k-bit data block input. This result is summarized by 

Theorem 2.2 For a reduced, noncatastrophic encoder, 

For a catastrophic encoder, d(r) 2 1 for all T (forcing Z = oo) because there 

is an infinite all-zero trellis path which is generated by an information sequence 

containing infinitely many 1's and which never returns the encoder to the all-zero 

state. Theorem 2.3 will show that Z 5 d(1) for a reduced, noncatastrophic encoder. 

Therefore, only the ranks of Br  for T = 1,2,. . . , d(l), d(1) + 1 need be computed in 

order to obtain Z. These values may be found successively, using elementary column 

operations: reduced columns of B1 are substituted into B2,  and after reduction, 

these are substituted into B3, or Bq, etc. This process is summarized by 



Algorithm 1. Finding Z 

First reduce a given encoder G ,  so that 

rank(Go) = rank(T) = k. 

Compute rank(B1) using column operations. 

Then d(1) = m + k - rank(B1). 

For r = 2,. . . , d(l), d(1) + 1 

Compute rank(B ,) and 

d(r) = m + k r  - rank(B,). 

If d(r) = 0, output Z = r - 1 and stop. 

Output Z = oo. (G  is catastrophic) 

The d(r) values are a nonincreasing sequence, starting with d(0) defined equal 

to m, then d(1) which is usually greater than 0, continuing until d(m) = 0 if the 

encoder is reduced and noncatastrophic. In Example 2.2 where m = 3, d(0) = 3, 

d(1) = 2, d(2) = 1, and d(3) = 0. 

m 
Claim. z 2 I n - i 1 - l .  - 

Proof. rank(B,) 5 min (m + k ~ ,  nr). 

Now, d(r) > 1 if rank(B,) < m + k r ,  

which is always true if n r  < m + k r ,  or equivalently, 

r 5 1 - 1 because r is an integer. 

Intuitively, for all zeros to be the only input that produces a length-?, all-zero 

trellis path, the number of equations in (2.3) must be at least equal to  the number of 

unknowns. Then n r  2 m + k r ,  which also proves the above claim. If an encoder is 

catastrophic, then Z is infinite. However, Z 5 d(1) for a noncatastrophic encoder, 



as shown in the next theorem. Therefore, Z = m -1 for an (12, n - 1, m) encoder that 

is reduced and noncatastrophic, because the upper and lower bounds are equal. 

2.3 Catastrophic Encoders 

The next theorem specifies the largest possible value of T for which a reduced, 

noncatastrophic encoder can output a length T all-zero trellis path, while going 

through nonzero states. This number provides the stopping condition for Algorithm 

1. First, a simple fact is proven. 

Lemma 2.3 Starting from a nonzero state, a reduced encoder cannot enter the 

all-zero state if its output is always zeros. 

Proof. The idea is that a reduced encoder must output a 1 when entering the 

all-zero state from a nonzero state. In order to return to the all-zero state, the last 

cell in one or mQre of the encoder's shift register(s) must contain a 1 and all inputs 

and other cell contents must be zero. If k = 1, then giy) = 1 for some j E [I, . . . , n] 

because m = max deg gl j(~). Therefore, at least one output equals 1. For k > 1, 
3 

the matrix T of highest order coefficients in G is nonsingular because G is reduced. 

Now a 1 in row i and column j of T corresponds to a connection, from the output 

of the m:h cell (the last one) in a shift register, to the modulo-2 adder producing 

output y j .  Hence, the encoder output is nonzero because T is nonsingular. 

The following result generalizes and improves upon one by Odenwalder for rate 

l / n  codes [Oden'iO]. 

Theorem 2.3 A reduced (n, k,  m) encoder is catastrophic if 

Proof. Let do), dl), . . . , s('+~(')) be a sequence of consecutive encoder states, 

starting with do) # 0, for which the encoder out put is all zeros during the transit ion 

between any of these states. The idea is to show that this sequence (or an initial part 



of it) can be extended indefinitely, creating all-zero output from infinitely many 1's 

input, thereby proving that the encoder is catastrophic. Let u(') denote the k-bit 

input block which causes the transition from s('-') to s(') for i = 1, . . . , l+d(l). The 

encoder "contents" at step i will be defined as the binary vector c(') = di)s('-l). 

Let u(O) be the vector of iiz consecutive k-bit input data blocks which take the 

encoder from the all-zero state directly into nonzero state do). 

Now suppose the encoder outputs only zeros when it contains c(') for i = 

1, . . . 1 + ( 1 ) .  Then these vectors are linearly dependent because d(1) is the di- 

mension of the left nullspace of B1. Define j as the least integer such that 

c ( j ) =  Edf) where F [I, . . . , j -  I]. 

N~~ &+f) = ~ ( f + ~ )  t = 1,2, . . . defines an infinite sequence of binary vectors. 

P E F  
Notice that c(') is re-defined (on purpose) for i = j+l,. . . , l  + d(1). Recall that 

u(') takes the encoder contents from c('-') to c(') for i = 1,2,.  . . , j. Since a 

convolutional encoder is linear, 

changes the encoder contents from ~ ( j + ~ - ' )  to c(j+t) for t = 1,2, . . .. Therefore, C(i) 

is an infinite sequence of consecutive encoder contents, which by linearity causes all 

zeros to be output. Since Lemma 2.3 guarantees that the corresponding states s(') 

are nonzero for all i ,  the input data sequence u(O), dl), d2), . . . contains infinitely 

many 1's. Also, u(') encodes to all zeros after an initial i2 n bits which contain at 

least one 1. Since the corresponding output sequence differs from all zeros (gener- 

ated by all-zero input) in only a few positions, where channel errors could change 

the transmitted 1's to zeros, the encoder is catastrophic. 

Thus, rank(B,+a(l)) = rank(Bl+m+k-,,k(B,)) determines if an encoder G is 

catastrophic. This simple test requires only column additions and perhaps inter- 

changes. For rate l / n  encoders, the operations in column reducing B, are equiva- 

lent to the steps for computing the GCD of the n generator polynomials. For k > 1, 



the new method does not seem equivalent to running the standard test but realizes 

it in a very straightforward manner using only simple binary operations. Note that 

a reduced, noncatastrophic encoder is minimal because no equivalent encoder can 

exist with less total memory. 

Example 2.3 Consider the (8,4,3) minimal encoder with generator matrix 

A simple calculation yields d(1) = 3 + 4 - rank(B1) = 1. d(2) = 0 because the 11 

x 16 matrix 

has rank 11. Therefore, Z = 1 by Theorem 2.2 so G is not catastrophic according 

to Theorem 2.3. The standard test for catastrophic encoders involves computing 

the invariant factor decomposition of G [Forn70]. Row and column operations are 

used to obtain a k x n diagonal matrix I' such that G = ArB.  Then $(G) is the 

product of the entries in r. Notice that $(G)  is obtained without computing the 

( )  k x k subdeterminants of G. 

2.4 Dual Codes 

The dual to an (n, k) convolutional code C is an (n, n - k) code c'- whose 

sequences are orthogonal to every one in C. Thus if G is an encoder for C, then an 

encoder H for CL must satisfy G H ~  = 0. H is called a dual encoder to G and has 

n-k shift registers with lengths miL for i =  1,. . . , n-k. If G and H are both minimal, 



then their total memories and subdeterminants are the same [Forn73]. Therefore, 

if G is minimal with subdeterminants Ai(G) and G has k = n- 1 inputs, then 

is a dual minimal encoder to G. Observe that m'-  = m, H has polynomial entries 

whose GCD equals 1, and it is easily verified that G H ~ =  0. Dual encoders to those 

having k # n- 1 will be found in this section. 

Theorem [Forn73]. Let H, with memories miL for 1 5 i 5 n - k, be a minimal 

encoder for the code dual to any rate kln binary convolutional code. Then the 

number of distinct all-zero paths of length r branches in the code trellis is equal to 

2d(r), where 7 

Corollary. The longest all-zero trellis path, nowhere merged with the all-zero state, 

has length G L  - 1. Also, 

n-k 

5 5 m ( because C miL = mL = m). 
i= l  

The above results imply that Z = max{r : d ( ~ )  > 0 )  = - 1 5 m - 1. There- 

fore, an (n, k, m) encoder G is not minimal if Z 2 m, in which case either G is 

catastrophic or else it may be realized with fewer than m memory cells. 

If G is not catastrophic, then the memory sizes miL of a dual minimal encoder 

H are obtained by inverting (2.4) and using the d(r) values obtained from the ranks 
n-k 

of BT for r 2 1, and the definition d(0) = C m i L  = mL = rn. 

Define sr, as the number of length-T shift registers in H, i { j  : m j L  = r) 1. 



Lemma 2.4 For r 2 1, sr, = d(r  -1) - 2d(r) + d(r+l) .  

Proof. d(r - 1) - 2d(r) + d(r+ 1) 

- - ST,. 

Also, sro = n - k - C sr,. These shift register lengths determine the memory sizes 
r=1 

miL (whose sum is mL = m) of H .  The miL values specify the all-zero rows in 

the binary matrices Ho,  H I ,  . . . , H;, because row i in H is zero if j > miL. Now 

since G H ~  = 0, 

j 
T or x G i H j - i = O  f o r j  =0 ,1 ,2  ,... , & + 6 i L .  (2.5) 

i=O 

A dual encoder H is a solution, for this system of binary linear equations, which 

preserves the miL values so that HI has no additional all-zero rows. One such 
m 

solution always exists [Forn70]. 

Claim. The encoder H obtained by solving (2.5) is minimal. 

Proof. H has the same total memory as G ,  and also same miL values as any dual 

minimal encoder to G.  By construction, H is polynomial. If H was catastrophic, 

then deg $(H) 2 1, so there would be a nontrivial linear combination h* of rows in 

H that sums to 0 mod $. h* could be found by row-reducing H modulo $ towards 

triangular form, with all arithmetic modulo $, until a zero row is encountered. Let 



j be a row of H ,  such that miL 2 rnkL for all rows j and k which contribute to 

h*. Then replacing row j in H with h*/$ would result in an equivalent encoder 

with less memory. A similar argument shows that the matrix T of highest order 

coefficients in H must be nonsingular and that H has full rank n - k. Therefore, 

H is minimal because it cannot be reduced in any way. 

By repeatedly adding together or interchanging rows of a binary matrix, and 

then back-substituting values obtained, a minimal H is easily found. This approach 

is simple and direct as compared to Algorithm 2 extracted from [Forn70]. 

Algorithm 2. Forney's Method for Calculating H 

1) Row reduce G to obtain an equivalent encoder G' which has 

the k by k identity matrix I k  as its first k columns, and causal 

rational functions in the last n-k columns, which form a matrix 

called P. 

2) H = [pT : I k ]  satisfies G ' H ~  = 0, so multiply all rows of H 

through by denominator polynomials to clear all fractions. 

3) Make H noncatastrophic using the method in the proof above 

and then reduce it by the procedure described in Section 2.1. 

Example 2.4 For the (3,1,2) encoder with transfer function matrix 



d(r) = 0 for T 2 3 

sr1 = d(0) - 2d(l) + d(2) = 0 

sr2 = d(1) - 2d(2) + d(3) = 1. 

Thus H  has one only shift register, of length mL = m = 2. Setting 

in (2.5) yields a system of 6 equations with 12 unknowns. (However, G ~ H ; ~  = 0 

and G ~ H T  + G~H: = 0 force hi:) = 0 and hg)  = h$) = 1, leaving 4 equations 

with 9 unknowns.) Each solution for which Hz is nonzero corresponds to a dual 

minimal encoder, such as 

In summary, a given encoder G is analyzed, using the simple binary techniques 

described in this chapter, by running Algorithm 1. G is first reduced; then the 

d ( ~ )  values and Z are computed. If Z is infinite, then the encoder is catastrophic. 

Otherwise, the miL shift register lengths of a dual minimal encoder H  are computed 

using Lemma 2.4 and then (2.5) is solved for H. 
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Chapter 3 

Finding the Complete Path and 

Weight Enumerators of Convolutional Codes 

In order to bound maximum-likelihood decoder error probabilities, Viterbi de- 

fined the complete path enumerator T(D, L, I )  of a convolutional code [Vit71]. The 

bit-error generating function, B(D) = aT(D, L, I ) / a I  at L = I = 1, and code weight 

enumerator T(D) = T(D, 1 , l )  are two important quantities for upper-bounding 

node, bit, or symbol error rates of a maximum-likelihood (e.g., Viterbi) decoder. 

However, these functions are known only for encoders with few states. Hence, er- 

ror bounds are evaluated using numerical matrix multiplications [Vit 79, p. 1631, 

which require extensive computations for each channel noise level. As an alter- 

native, algorithms were developed to calculate the first few coefficients of these 

enigmatic generating functions [Cedr89, Roan891. For example, a modified Viterbi 

decoding algorithm produced the first 50 nonzero coefficients of B(D) and T(D) for 

the m = 14 Galileo code [Do188]. However, the number of coefficients required to 

approximate error bounds depends upon the channel noise level and code rate. 

A method for finding T(D) or T(D, L, I )  is described in this chapter. These 

generating functions were obtained, using a determinant algorithm derived in Sec- 

tion 3.3, for the memory 6, rate 112, NASA standard code (among many others). 

An encoder is represented by a state diagram and transition matrix of edge weights. 

Then, simple matrix operations are used to solve for T(D) or B(D). This method 

works for transfer functions of circuits or networks modelled by a directed graph. 

Poles and residues of T(D) and B(D) are used to determine, or approximate 

closely, several code properties. For example, the union bounds diverge at the least- 

magnitude pole of T(D) [Vit71]. Additional poles and residues yield the dominant 

terms in the partial fraction expansion of T(D), which lead to concise but accurate 

analytic approximations to the coefficients in the corresponding infinite series. Sim- 



ilar techniques are applied to estimate the coefficients in the expansion of B(D). 

An algorithm is described for calculating the initial coefficients of these generating 

functions. A new, direct method for computing B(D) without T ( D ,  L, I) also yields 

generating functions for upper bounding the bit error probabilities of rate (n- l)/n 

trellis codes constructed by set part it ioning signals (e.g., Ungerboeck codes). 

3.1 The Complete Path Enumerator 

The complete path enumerator T(D, L, I) of a code contains the number of 

fund arnental  trellis paths having three given parameters: weight, length, and num- 

ber of input 1s. Recall that k n transfer functions called generator polynomials 
k gij(x) may represent an encoder, which has memory m = maxj[deg gij(r)]. 

The state s of an encoder is the concatenation of all shift registers' contents. The 

integer s whose binary represent at ion is s, 'with least significant bit on the left, will 

also represent an encoder state. The state diagram for an encoder is a directed 

graph whose edges correspond to branches in the associated code trellis diagram 

and have labels ai,j = D~LI '  if there is an edge from state j into state i (otherwise 

ai,j = 0) where b and d are the number of 1's input to and output bythe encoder. 

Figure 3.1 A Modified Encoder State Diagram. 



In order to emphasize paths which will be counted, the encoder graph is mod- 

ified by deleting the loop at state zero and representing state zero by one node for 

incoming branches and another node for outgoing branches (see Figure 3.1). Define 

A as the 2" x 2" matrix whose entry in row i and column j is 6 i j  - ai,j, which 

is nonzero only if there is a directed edge from state j into state i (bi,j = 1 if i = j 

and 0 otherwise). Actually, in this section and the next, the first row and column 

(called 0) of A will be ignored because the examples use rate l / n  encoders. Let 

X, = X,(D, L, I) be the trivariate generating function of all simple paths: those 

from state 0 into state s via nonzero states. X, will be called the path transmis- 

sion from state 0 into state s. Note that X, is indexed by the destination state (s) 

while the source state (0) is fixed. Xo counts all simple paths into state 0, called 

fundamental paths, by weight d. Consider the set of linear algebraic equations : 

By Cramer's Rule, 
de t  (Ai) 

Xi = det(A) 

if i > 0, where Ai  is A with all column i entries a , i  replaced by a,,o for all rows r. 

The complete pa th  enumerator of a convolutional code is 

where {tj} are the 2klstates having edges into state 0 (so ao,,,. # 0). The code 
00 

weight enumerator is T(D) = T(D, 1,l) = a(d)Dd, where a(d) is the number 
d=dfree  

of fundament a1 trellis paths of weight d, and dfi,, is the least weight of these paths. 

The bit-error and path-length generating functions are defined as 



Notice that i(d) is the total number 1's in all input sequences to the encoder which 

generate weight d fundamental paths, while l(d) denotes the total length in trel- 

lis branches of these paths. Also, the denominator of B(D) or L(D) is simply 

that of T(D, 1, 1)2 = T(D)2. These generating functions lead to upper bounds for 

convolutional decoder error rates. 

Example 3.1 The rate 112 encoder in Figure 1.1 is in the binary state s = sls2, 

or equivalently, the integer st ate s = 2s2 + s l  . Figure 3.1 leads to  the equations 

A [xl X2 x31T = [al,o o o ] ~  : 

Then X2 = det(A2) - - ~ 3 ~ 2 1  

de t  (A) 1-DLI-DL21 

and T(D, L, I )  = Xo = D2LX2. Therefore, the code weight enumerator is 

Hence drree = 5 and a(d) = 2d-5 is the number of weight d fundamental paths. Also, 

so i(d) = (d - 4)2d-5 for d 2 5, and zero otherwise. 

Applying Mason's gain rule, to a modified encoder state diagram regarded as 

a signal flow graph with unity input, is a complicated method of finding T(D, L, I )  

and works in practice only for encoders having few states [Lin83]. For encoders 

with k > 1 parallel inputs, an extra row and column are added to A to account 

for the transmissions into and out of the split state 0. Thus, T(D) or T(D,L , I )  

are obtained simply as the ratio of two determinants, which will be calculated 

simultaneously by adjoining an extra column to A prior to row-reducing it into 

triangular form. 



3.2 Reducing the Matrix A For Rate l ln  Encoders 

For encoders with only k =  1 input, there are only 3(2"-1) -2 nonzero out of 

(2" - 1) entries in A. Since A is sparse when rn 2 3, simple row operations, which 

take advantage of the locations of these nonzero entries, are performed before com- 

puting the determinant. The following new example illustrates the reduct ion pro- 

cedure, which works in general on A for any rate l / n  encoder. A similar technique 

could reduce A for encoders with k > 1, though not as significantly. For the memory 

3 encoder with generator polynomials gll (x) = 1+ x+ x3 and g12(x) = I+ x+ x2+ s3 ,  

with L = I = 1 to simplify entries. The round brackets (parentheses) above indicate 

values in A2rn-1 which are different from those in A. The determinants of only these 

two matrices are needed for T ( D )  and this notation will lead to their simultaneous 

evaluation. 

As in Gaussian elimination, -ar,Lr/2j times row Lr/2] is added to rows r = 2 

to 2" - 1 to zero columns 1 to 2"-' - 1 in A, (AZm-I) below the main diagonal: 

Therefore, det(A) equals the determinant of the resulting lower right 2"-' by 2"-l 

submatrix. To further reduce A, row l r /2]  times -ar,2m-1+ lr/2J is added to each 

row r =2"-3 to 2m-1 (4 to 5 here), so that colunlns 2"-l+ 2m-2 to 2"-2 (both 

6 here) become zero above the main diagonal. Now det(A) = det(.&), where A is 



the new lower right 2"-' by 2"-' submatrix 

In order to zero column number 2"-' of A, (A2m-~) ,  above the lower right entry 

t i 2 m - ~ , 2 m - ~  = ~2m-1,2m-l  # 0, - i t , ,2m-~ / i t 2 m - 1 , 2 m - ~  times row 2"-' is added to each 

row r= 1 to 2"-'-1. Define B, (Bzm-1) as the resulting upper left 2m-2 by 2m-2 

submat rices : 

This reduction method simultaneously produces two dense 2m-2 by 2m-2 matrices 

(B2m-I), B with the same determinants as the corresponding original sparse 2" - 1 

by 2"-1 matrices (Azm-I), A. Then, 

An efficient algorithm for computing the determinant of B (described next) will 

produce T(D, L, I) for the 64-state NASA code, or T(D) for any rate l / n  code hav- 

ing memory < 9. For codes with k > 1, A could be reduced, but not as significantly 

as above. Also, an additional row and column for the split state 0 are appended to 

A so that one determinant (with an extra column adjoined like (Bzm- I) ,  B above) 

yields T(D) or T(D, L, I). 

3.3 Computing Determinants 

A modified Gaussian elimination algorithm is derived for reducing to triangular 

form any N x  N matrix B that has entries from a Euclidean domain such as the set of 

all polynomials with integer coefficients. Successive matrices B ( ~ ) ,  B(~- ' ) ,  B ( ~ - ~ ) ,  

... , B(') are computed, each one having the same determinant (up to sign) as B. 

Using elementary row operations, columns of B ( ~ )  are successively made zero above 

the main diagonal to create a lower triangular matrix B(') with determinant (the 



Algorithm 3. Basic Gaussian Elimination 

(for a matrix B which leads to nonzero pivots) 

set B ( ~ )  = B : bi:) = biyk for 15 i, k 5 N.  

for j = N t o  2 (step ) 
set ~ ( j - ' )  = ~ ( j )  and b(j-') = 0 for i < N .  2,N 

for i = j-1 t o  1 (row index) 

for k = j-1 t o  1 (column index) 

b y  - bjj! 
b(j-') - Y 93 9 3, 

i ,k  - b(!! (3.1) 
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output B(') : b i f i  = for k 5 i and b$ = 0 for k > i. 

product of diagonal entries) equal to det(B). Starting with B ( ~ )  = B,  step j in the 

standard Gaussian elimination process yields new entries b i f ~ ' )  for 1 5 i, k 5 j - 1 

in B(j-'), as shown in Algorithm 3. 

The input and output matrices B and B(') are row equivalent. One additional 

check is required for Algorithm 3 to work for all matrices: if b y ?  = 0 prior to step 
" l" 

j, then a column k with b(il' # 0 must first be interchanged with column j. Since 

this operation negates the determinant, a counter t is incremented to record the 

event. If no such column k exists, row j is zero, so the algorithm should output 

det(B) = det(B(j-'1) = 0 and then stop, as done in Algorithm 4. 

The A and B matrices, which are constructed for finding generating functions 

T(D) or T(D, L, I), have polynomial entries. The reduced matrices B(~- ' ) ,  . . . , B(') 

will usually contain rational functions. Then (3.1) will be a complicated operation 

which includes finding the greatest common divisor (GCD) of the numerator and 

denominator of b i ! ~ ' )  in order to cancel common factors. Wlletl the entries in B 

are multivariate polynomials (trivariate when T(D, L, I) is desired), then comput- 



ing these GCDs is difficult. Since det(B) is a polynomial, it should be calculated 

by working with polynomials only. In order to explain the following simplifica- 

tion of Algoritilm 3, entries in B will be polynomials with integer coefficients. 

Rational functions may be completely avoided in the reduced matrices by forc- 

ing a specific polynomial as the denominator of by;') for all i and k. First write 

bi;;') = n ~ c l ) / n t j .  Then from (3.1), 

As proved later, n$-') is always a polynomial, so (3.2) shows that only these nu- 

merators need be computed to obtain the reduced matrix ~ ( ' 1 .  All denominators 

in ~ ( j - ' )  are forced to be numerators of previous pivots, as illustrated in the forth- 

coming Example 3.3, and incorporated into Algorithm 4. 

Algorithm 4. Finding the Determinant of B 

( N + l )  set n i y )  =b i l k ,  t=0,  and nN+l,N+l = 1. 

for j = N to 2 (step) 
if n ( j )  - 

j 1 j  - O  
if there is a column k < j such that n$ # 0 

interchange columns j and k, and increment t. 

else output det(B) = 0 and stop. 

f o r i =  j-1 t o  1 (row index) 

for k = j- 1 t o  1 (column index) 

( j )  ,(j) j )  (  - ni . . 
( j - 1 )  - i , k  J , J  

n i l k  - j3 31 
( j + l )  (3.2) 

n j + l l j + l  

t ( 1 )  output det(B) = (-1) nll . 



Lemma. The output of Algorithm 4 is det(B). 

Proof. If B is singular, then an all-zero row will occur at some point and the 

algorithm will output 0. Otherwise, n!lJ:') = 0 for all integers i < j. Thus B(') is 

zero above its main diagonal, so 

Claim. If b i z )  is polynomial for 15 i, k 5 N, then so is every n i f ~ l )  in (3.2). 

(N+l) Proof. (Induction on j). Since nN+l,N+l  = 1 by definition, n!fjE-') is polynomial. 

Supose that for some integer h < N - 1, nifl is polynomial for all h 5 j 5 N - 1 

( h )  ( h )  ( h )  ( h )  and i 5 i, k 5 h - 1. Then by the induction hypothesis, ni lk  nhlh  - ni lhnh lk  is a 

polynomial. Expanding this expression using (3.2) with j = h proves that nh+l,h+l 

is a (polynomial) factor. Therefore, n ! : ~ ' )  must be polynomial. 

( j+l)  Since nj+l  always divides the numerator of (3.2), it should be excluded 
93 

( j  > from the calculation of ni,k during the previous step. However, the resulting error 

propagates in a manner that appears uncorrectable. This phenomenon is expected 

because Algorithm 4 implements a recursive decomposition of the equation 

where SN is the set of all permutations of the integers 1 to N. It is unfortunate 

that the n$ cancellation cannot be avoided. However, this problem also occurs in 

Sylvester's identity for determinants [Gant 591. 



Example 3.3 The following matrices illustrate the operation of Algorithm 4 on 
(4) (4) (4) (4) B ( ~ )  = B with initial entries n!:) = biQj) When j = N = 4, -b34 /b44 , -b24 /b44 , 

and -b12/bL1 times row 4 are added to rows 3,2, and 1, respectively, so that all 
(4) b entries in colunln 4 above b44 ecome zero: 

(3) (3) Then after the step with j = 3, during which -n23 /b3, times row 3 is added to row 

2 and - n 1 ~ ) / b ~ ~ )  times row 3 is added to row 1, 

det(B) = d e t ( ~ ( ~ ) )  = d e t ( ~ ( ~ ) )  because only elementary row operations on B 

have been performed. The final step ( j  =2) produces a B(') matrix identical to B ( ~ )  
(1) except that nl:)/n$t) 0 0 0 is the first row. Hence, det(B) = det(B(')) = nll  . 

Algorithm 4 was used to compute the determinants of B, (Bzrn-I), two 16 

by 16 reduced matrices, for the m = 6, rate 112, NASA standard code. Only 

a few seconds of computer time were required to calculate T(D). However, the 

complete path enumerator T(D, L, I )  required considerable effort to find, for it 

contains 1529 numerator and 2799 denominator trivariate terms! A technique in 

the next section leads to B(D) directly, eliminating the need to obtain the massive 

generating function T(D, L, I). 



3.4 Finding the Bit-Error Generating Function Directly 

Computing T(D, L, I )  in order to obtain B(D) and L(D) is an expensive and 

often difficult task. However, a union bound on Viterbi decoder bit error rate (BER) 

is usually written in terms of the partial derivative of T(D, L, I )  with respect to I. 

On the unquantized, AWGN channel with symbol signal-to-noise ratio E,/No, 

In this section, a new method is derived for computing B(D) = aT(D, L, I ) / d I  at 

L = I = 1, without finding T(D, L, I). For any rate kln encoder, several additional 

determinants, than those needed to obtain T(D), will be computed to find B(D) 

or L(D). As explained later, the techniques apply to a more general combinatorial 

problem of counting paths that have certain properties in a finite directed graph. 

Figure 3.2 Connected Encoder State Diagrams. 



The key step is to connect an encoder graph with a copy that has different 

node labels but the same edge labels, as in Figure 3.2. Nodes in the first graph are 

labelled by path transmissions X,, while those in the second graph have labels B,, 

as defined below. All edges are labelled with D raised to the number of 1's output 

by the encoder during the transition between the two connected states. Define 

B,(D) as the bit  error  transmission from state 0 to state s: the coefficient of 

D~ in B,(D) is the total number of 1's in all information sequences which generate 

weight d trellis paths that go from state 0 to state s via nonzero states. The edges 

between the two encoder graphs are established by expressing B, in terns of other 

path and bit error transmissions as 

where a,,t is a power of D if there is a transition from state t into state s (and 0 

otherwise) while is the number of 1's input to the encoder for the transition. 

Finding B(D) requires first solving the set of equations relating path trans- 

missions X,, then multiplying these values by labels on the connecting edges, sub- 

stituting them into the equations (3.3), and finally solving for B(D) by computing 

one additional determinant. Since all X, have the common denominator det(A), 

this factor is removed when solving for B(D), which has denominator [ d e t ( ~ ) ] ~ .  

Recall the 2m x 2m matrix A defined in Section 3.2 to represent the edge labels in 

the modified state diagram of an encoder. Set L = 1 so that A = A(D, I). Using 

initial, simple row reduction followed by (perhaps several applications of) Cramer's 

rule and Algorithm 4, the system of algebraic equations 

is solved for the path transmissions X, and code weight enumerator T(D), which 

all have denominator det(A(D, 1)). This system of equations will be written as 

A(D, 1) xT = h(D, I). Now define a matrix E whose entry in the ith row and jth 

column is 



where 6i,j = 1 if i = j and 0 otherwise. Then solving 

for the numerator of B* by computing one more determinant, yields B(D) as this 

polynomial divided by [det ( A(D, I))] '. 

Example 3.4 The connected state diagrams for the encoder in Figure 1.1 are 

shown in Figure 3.2. Using (3.4), the bit error transmission into state 11 is Bll = 

DBol + DBll + DXol + DXll because all simple paths ending in states 01 and 

11 are extended, by one trellis branch with label 01 resulting from a 1 input to the 

encoder, into state 11. Using Cramer's rule on the left set of equations yields 

Computing one more determinant produces B(D) = D5/(l  - 2D)2. 

Example 3.5 By deleting every third bit output by the encoder in Figure 1.1, 

a rate 213, "punctured" encoder is created with a modified state diagram (Figure 

3.3) which leads to the system of equations 

Solving A(D, 1) xT = h(D, 1) using Cramer's rule and Algorithm 4 yields 

det(A(D, 1)) = 1-30 +D3 -D4 

Xol = (D - D2 +D4 +2D6 - D 8 ) / d e t ( ~ ( ~ ,  1)) 

Xlo = (D2 +2D3 - D4 - ~ ~ ) / d e t ( ~ ( D ,  1)) 

Xll  = (2D2 - D4 - D6 + D 8 ) / d e t ( ~ ( D ,  1)) 

A(D, 1) [Bol Blo Bll B*] = det(A(D, 1)) E xT + [D D3 2D2 OIT 



Figure 3.3 Modified State Diagram for a Punctured Encoder. 

is then solved for the numerator of B*, which leads to 

This method of finding B(D) directly can be applied to the general problem 

of enumerating paths between any two nodes in a finite directed graph. Edges 

are labelled with D raised to the "weight" associated with the edge and I raised 

to some "cost" of the edge. The weight /cost of a path are the sum of its edge 

weights/costs. Analogous to T(D), a generating function may be obtained which 

enumerates paths by weights or which contains the cost of all paths having a given 

weight (like B(D)). Thus, the linear algebraic procedures developed in this chapter, 

for finding generating functions associated with convolutional cod6, also work for 

transfer functions of circuits or networks. Generating functions [Zhav87] for many 

rate (n - l ) /n  trellis codes may be obtained using these methods. 



3.5 Path Distance and Bit Error Coefficient Approximations 

The 76 poles of the NASA code weight enumerator T(D) are plotted on the 

complex plane along with the unit circle for reference (Figure 3.4). Poles occur 

in complex conjugate pairs and in positive-negative pairs because T(D) has real 

coefficients and only even powers of D. The 6 poles with smallest magnitudes 

(large ~o in t s )  are used to approximate the partial fraction expansion of T(D) as 

where * means complex conjugate and a d  = 2.3876225 is the reciprocal of the 

positive, real pole of least magnitude in T(D). Also, a b  = 1.657193e-0-983418J=i is 

the pole in the upper right quadrant with next smallest magnitude. The residues 

are 

-~(a , ' )  -p(a;') 
= 3.4103 and r2 = - - 1.075~-0.3103J=T r1 = 

01;~~ ' (a ;~)  a;l~l(a;l) 

where D'OP(D)/Q(D) = T(D) and Q1(D) is the derivative of Q(D). The other 

poles in Figure 3.3 are ignored because their magnitudes are greater than 0.8 and 

the corresponding residues have very small magnitudes - less than 0.07. 

Define a(d), i(d), and l(d) as the coefficients of D d  in T(D), L(D), and B(D) 

respectively. These generating functions are listed in Section 3.7 at the end of this 

chapter. Quantities l(d) and i(d) are the total length in trellis branches and total 

number of 1's input to the encoder for all weight d fundamental paths. The above 

approximation for T(D) leads to 



Figure 3.4 Poles of T(D) for the NASA Code. 

Similarly, the terms corresponding to the 6 lowest-magnitude poles of T(D) in the 

partial fraction expansions of L(D)  and B(D) lead to 

l(2k+10) x (77.725 +22.625k)(2.3876225)2k 

+ 39.3(1.657193)~~cos (0.485 - 1.967k) 

+ (2k+1)7.2676(1.657193)~~~0~ (0.383 - 1.967k) 

i(2k+10) x (24.474 + 12.018k)(2.3876225)~~ 

+ 9.942(1.657193)~~cos (0.575- 1.967k) 

+ (2k+1)2.8723(1.657193)2kcos (0.366 - 1.967k) 

which have a relative error < 0.0001 for k > 4. The nearest integer to an approxi 



mation above differs from the true value by 1 or 2 when k = 0,1,2, or 3. 

Since the denominator of B(D) is the square of that for T(D), the union bound 

on bit error ratc diverges when D is equal to t, the smallest magnitude of any pole 

in T(D). The union bound diverges at Ea/No = -(n/k) In z, which is 2.4 dB for 

the NASA code. 

The poles of T(D) for a rate 113, m = 5 code are shown in Figure 3.5 where 

there is no obvious group of poles which have small magnitudes. Nonetheless, under 

these adverse circumstances, good analytic approximations to a(d), t(d), and i(d) 

were obtained using only the 8 groups of poles having the lowest magnitudes, which 

are indicated by large points in Figure 3.5. For many codes, the roots of T ( D )  were 

plotted, and typically only a few poles were required to closely approximate T(D). 

Apparently, poles of small magnitude have residues which are 10 or more times 

larger than residues of poles which are inside the unit circle but farther removed 

from the origin. 

3.6 An Algorithm for Path Generating Function Coefficients 

Finding the complete path weight enumerator of m > 8 codes currently seems in- 

feasible. In these cases, a trellis searching algorithm easily produces the first twenty 

nonzero coefficients of the generating functions used for error bounds [Roan89]. 

An efficient but intricate algorithm for counting the number of paths at various dis- 

tances employs a limited tree search by taking advantage of the distance structure of 

a code [Ced89]. However, the algorithm's efficiency has not been determined when 

k > 1. Another approach involves using a bidirectional stack algorithm [Roan89], 

but additional computation is needed to ensure correct values of a(d) or l ( d ) .  

Viterbi's algorithm, with survivors replaced by vectors of integers that count 

paths, lengths, or bits, is used on a noiseless channel to compute a(d), l(d), and i(d) 

values. This mcthod has several advantages over the two mentioned above: it is 

simple and easily programed on a computer (see Algorithm 5); it always produces 

provably correct results using a minimum number of "steps", each one corresponding 



Figure 3.5 Poles of T(D) for a (3,1,5) Code. 

to a trellis level; Berlekamp's tangential union bound, which is adapted in the next 

chapter to obtain close approximat ions to error probabilities at low Ea/No, requires 

the step-by-step values computed by the algorithm, as does an upper bound (in 

Section 4.4) which incorporates the effect of finite survivor truncation. Rate l / n  

codes are treated first to simplify the discussion. Define outo[s] and outl [s] as 

the number of ones that the encoder outputs going from state SO = Ls/2J and 

s l  = SO + 2m-1 into state s. Analogous to a state metric, the entry in row s > 0 

and column 0 of a matrix W, referred to as W [s] [0] , will contain the least weight of 

any simple path with length 5 T trellis branches. For t = l to coeffs (a parameter 

described later), W[s][t] will be the number of simple paths of weight W[s][O]+ t -1 



and length 5 T branches into state s > 0. For state 0, W[O][t] is always kept at 

0, except W[O][l] = 1. The entries in a second matrix B count either the total 

number of ones input to the encoder (when the variable len=O) or the total length 

in trellis branches (when len=l), of all simple paths having length 5 T (again 

B[O] [t] = 0 always). These matrices are obtained for successive values of T starting 

with 1, by extending one branch length at a time (an algorithm "step"), the code 

trellis starting from state 0 only. Thus the longest path length (T) explored by the 

algorithm equals the number of "steps" executed. The algorithm terminates after 

step T* when W has reached values that will never change, which also forces B to 

remain constant. At this point, since W[s] [0] is the least weight of any simple path 

into state s > 0, dfree = W[2m-1][0] + outl[O]. Also, 

B[2"-'] [d -dfree + l] = i(d) if len = 0 

for d = dfree to dfree + coeffs - 1. If len = 1, then 

Algorithm 5 incorporates the above procedure in a C language format. Matrices 

P and A store previous W and B entries corresponding to simple paths of length 

5 T which are used to compute new W and B matrices for length 5 T + 1  simple 

paths. When change remains 0 after step T*, W (and thus B) will never change 

because W[s][t] = P[s][t] for all s and t. P[s][O] is initiaSzed to 999 for s > 0, 

P[O][l] = 1, and all other array values are initialized to 0. If any second array index 

t + offset is < 1 in the W[s][t] and B[s][t] instructions, the array referenced is 

simply ignored. 

The algorithm requires storage for 4 2m(coeffs + 2) integers and the amount 

of work per step is proportional to this number. The number of steps executed, 

T* equals the length, in trellis branches, of the longest fundamental path(s) having 

weight dfree + coeffs - 1. Algorithm 5 is useful because the number of (and total 

l's producing) trellis paths from state O having length < T branches are available 



Algorithm 5. Counting Paths 

do { 
for (s = I to 2m-1) { 

so = Ls/2j; s l  = so + 2m-1; 

bit = len + (1-len) * (s mod 2) ; 

W[s][O] = min (P[sO][O] + outo[s], P[sl][O] + outl[s]); 

offset0 = W[s][O]-P[sO][O]-outo[s]; 

offsetl = W[s][O]- P[sl][O]-outl[s]; 

for (t = 1 to coeffs) { 

W[s][t] = P[sO][t + offset01 + P[sl][t + offsetl]; 

B[s][t] = A[sO][t + offset01 + 
A[sl][t + offsetl] + bit * W[s][t]; } 

} change = 0; 

for (s = I to 2m-1) 

for (t = 0 to coeffs) 

if (P[s][t] # W[s][t]) { change = 1; 

P[sl[tl = W[sl[tl; A[sl[tl = B[sl[tl; 1 
} while (change # 0); 

for T = m + 1, m + 2, . . ., the number of steps currently completed. These values 

are required to evaluate two new error bounds derived in the next chapter. The 

parameter coeffs should be set equal to [lOn/kl because using this many nonzero 

terms in the union bounds gives results with 2 significant digits of precision when 

the bounds are tight enough to be useful. Setting coeffs = 0 in Algorithm 5 and 

ignoring offset0, offsetl, A, and B yields df,,, which is 35 for the Galileo code 

[Do188], obtained with about 32000 bytes of storage and 2 seconds of computer 

time. For rate kln codes with k > 1, out [s] is defined as the number of 1's output 

by the encoder as it enters state s with input j E [O . . . 2k - 11. New W[s] [t] and 



B[s][t] values are computed using 2kl entries from each of the P and A matrices, 

where kl 5 k is the number of encoder inputs which are stored in memory cells. 

For codes with 2' << 2m (such as rate l / n  with m > 3), Algorithm 5 may be 

improved by using in-place computation of W [s] [t] and B[s] [t] values which requires 

looping through groups of 2k states called butterflies instead of individual states 

[Onysg 01. The st orage required decreases by almost one-half by eliminating the 

"double-buffering" matrices P and A. This improved algorithm produced the first 

10n = 40 nonzero coefficients of T(D), L(D) and B(D) (Table 3.1) for the Galileo 

code, whose m = 14 encoder has 16384 states. Note that the path lengths in Table 

3.1 do not include the 14 branches generated by input zeros that return the encoder 

to the all-zero state. These numbers required only a few minutes of CPU and 7 

Mbytes of storage when 4 bytes were used for each integer. The memory used 

decreases when each integer in the matrices is stored in smallest number of bytes 

needed (1 for W[s] [0] to W[s] [15] for the Galileo code). 



Table 3.1 Galileo Code Profiles 

distance 
d  

35 
36 
37 
38 
39 
40 
41  
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61  
62 
63 
64 
6 5 
66 
67 
68 
69 
70 
7 1  
72 
73 
74 
75 
7 6 
77 
7 8 
79 
80 
81 
82 

fundamental paths 
a ( d )  

total bit errors 
i (d )  

total path lengths 
l ( d )  - 14 . a(d)  



3.7 Generating Functions for the (7,112) NASA Code 

Using the determinant Algorithm 4, the complete path enumerator T (D ,  L, I) for the memory 
6, rate 112 NASA code was computed and it contains 1529 numerator and 2799 denominator 
trivariate terms. The code's weight enumerator T(D) = T(D,  1 , l )  is 

The path-length and bit-error generating functions L(D) and B(D) both have denominators 
equal to the square of T(D)'s denominator above. Their numerators are respectively 

and 
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Chapter 4 

Symbol and Bit Error Rate Bounds 

The appropriate performance measure of a convolutional code, when it is con- 

catenated with an outer block code having symbols from ~ ~ ( 2 7 ,  is the probability 

that a b-bit symbol is decoded incorrectly, denoted SERb. By considering all ways 

in which error events may corrupt a block of b consecutive decoded bits, the union 

bound on bit error rate (BER) is generalized in the next section to one for SERb. 

Then, new lower bounds on the first event and bit error probabilities of a maximum- 

likelihood decoder are derived. 

Berlekamp's tangential union bound for maximum-likelihood block decoder 

word error rate on the AWGN channel is modified for convolutional codes to ob- 

tain estimates of Viterbi decoder error rates. These approximations are quite good 

at low Eb/No, where the union bounds are either very loose or completely useless 

because they have diverged. 

Lastly, the effect of truncating survivors in the Viterbi algorithm is studied. A 

union bound is derived for bit error rate, taking into account the finite length of 

survivors in practical decoders. This result is used to estimate the least truncation 

length required for a given decoded bit error rate. 

4.1 A Symbol Error Bound 

Recall from Section 1.1 that the all-zero path may be assumed transmitted 

when error probabilities are derived for maximum-likelihood decoding on a binary- 

input, output-symmetric, discrete memoryless channel, such as the AWGN channel. 

Thus, every error event is a fundamental trellis path. For each received n-vector, a 

(theoretical) Viterbi decoder outputs k bits corresponding to one branch T levels 

back in the trellis, where T is a fixed, large integer. At each trellis level, with 

probability Pd, the decoder selects a fundamental path c of weight d instead of the 



all-zero path as the survivor into state 0, eventually causing a decoded bit error 

for each 1 in the information sequence u that generates c .  Hence, for each block 

of n received channel symbols, corresponding to k information bits, the expected 

number of bit errors caused by all paths c is at most i(d)Pd (the "union" bound 

[Vit71]). Recall that i(d) is the total number of 1's in all u's which produce paths 

c of weight d. Therefore, a Viterbi decoder's bit error rate is upper bounded as 

The approach in the following alternative derivation of (4.1) will be used again later. 

Consider the Viterbi decoding of a fixed block v of k information bits. Suppose 

that a particular fundamental path c of weight d is selected, at some trellis level, 

as the survivor into state zero instead of the all-zero path. This event occurs with 

probability Pd and leads to a number of bit errors equal to the number of 1's in u 

which overlap v. By considering all possible ways that c could overlap v,  each one 

being mutually exclusive and occurring with probability Pd, the average number of 

bit errors in v,  caused by c, is at most Pd times the number of 1's in u. Now (4.1) 

follows by summing this quantity over all paths c because each fundamental path 

is a possible error event. 

In order to generalize (4.1) to blocks of b consecutive decoded bits, define li 

for a fundamental path c as the number of consecutive information bits, counted 

from the first 1 entering the encoder to the last 1 in the corresponding information 

sequence u. Since m zeros (and possibly more if k > 1) are required to return an 

encoder to the all-zero state, li is at least m less than k times the number ( t )  of 

trellis branches in c .  Let li(d) be the sum of li over all weight d fundamental paths 

and recall that a(d) and l(d) denote the number and total length in trellis branches 

of these paths. Consider the Viterbi decoding of a fixed symbol v consisting of b 

information bits and assume with probability l/ k that j E [I, . . . , k] bits of a k-bit 

trellis branch overlap v from the left-hand side. Under this "random alignment" 

assumption, which is always valid when k and b are relatively prime, there are 



li + - ' 1 mutually exclusive ways, each occurring with probability Pd, that a 

&eight d fundamental path c could be chosen as the surivivor path into state 0 at 

some trellis level, such that v is overlapped by the corresponding information vector 

u (which has li bits including the starting and ending 1's). Therefore, the average 

fraction of decoded symbols which are incorrect because of an error event c is upper 

bounded by 

assuming that every possible overlap by u over v contains at least one 1. As 

justified later, this assumption does not significantly contribute to the looseness of 

the following union bound, 

1 
SERb 5 , C C (li + b- 1) a(d, li) Pd 

where a(d, li) is the number of fundamental trellis paths having weight d and length 

li information bits. Notice that for b =  1, (4.2) is looser than (4.1) because the li 

information bits of most fundamental paths contain zeros which are not taken into 

account in (4.2). If b divides k and symbol boundaries are aligned with trellis 
l i + b - k  

branches, then there are only 
k 

different ways that the li information bits 

of c could overlap v,  so in this special case, the 1 in (4.2) should be replaced by k. 

In general, li(d) 5 t(d), but for rate l l n ,  memory m, feedforward convolutional 

encoders and their punctured variants, li(d) = t(d) - m-a(d) because a fundamental 

trellis path with l branches has length li = l - m information bits. For these 

encoders, (4.2) becomes 

Since li(d) t(d) for encoders with feedback, they perform worse in concatenated 

systems, according to the above bound at high Eb/No and simulations at Eb/No = 2 

to 4 dB of the NASA code. 



For a rate kln Viterbi decoder on the unquantized AWGN channel, Pd = 
00 

~ ( d 2 d ( k / n ) ~ ~ / ~ ~ )  where Q(x) = e-y2I2* [Vit79]. Now from [Abr64], 6 x 

as x goes to infinity, where - means that the ratio goes to 1. Therefore, at high bit 

signal-to-noise ratio Eb/No, the right side of (4.2) is asymptotically equal to 

which upper-bounds the probability that a b-bit symbol is corrupted by an error 

event (fundamental path) of weight dfree. For future use, define s b(d) = (b-l)a(d) + 
li(d). Notice that the SERb bounds diverge at Eb/No = 10loglo(-nlk in z )  dB, 

just as the BER union bound does, where z is the magnitude of a pole having least 

magnitude in the code's path weight enumerator T ( D ) .  

Example 4.1 For the code (CC1) with gll(x) = 1 + x + x2 and g12(x) = 1+ x2, 

Since any error event corresponds to a fundamental path, all symbols overlapped 

by the corresponding information sequence u will be decoded incorrectly because u 

cannot contain m= 2 consecutive zeros in this example. Therefore, this bound is as 

tight as the bit error union bound, as illustrated in Figure 4.1. 

Note. A11 li+b-1 possible ways that a length li vector u could overlap a b-bit 

decoded symbol will cause an error when the corresponding fundamental path c is 

chosen instead o f  0 ,  unless u contains at least b consecutive zeros, which requires 

that li 2 b+2 and b s m - 1 .  

Since vectors u of length li 2 b + 2 usually produce fundamental paths of 

weight greater than dfree, the decoder will choose these paths over 0 with very low 

probability as compared to fundamental paths having weight near dfree and whose 



u's are short (i.e., 1,11,10 1,111). Furthermore, each sequence of b consecutive zeros 

in u will result in only one less way that u can overlap a symbol v and cause it to be 

decoded incorrectly. Thus for b > 1, the SERb bounds (4.2) or (4.3) will be nearly as 

tight as the BER union bound. If b < m - 1, define s;(dfree) as s b(dfree) minus the 

number of groups of b consecutive zeros in all information vectors u which produce 

fundamental paths of weight dfree. For b 2 m, set s;(dfree) = sb(dfree) and observe 

that s; (dire,) = i(diree)* 

Example 4.2 For the NASA code, which has m =  6, 

Now u =  100001, which generates a fundamental path c having weight 16 > dire, = 

10, can cause a 4-bit symbol error in 8 instead of 9 ways. However, this in- 

formation sequence, and others containing groups of 4 or 5 consecutive zeros, 

have no significant effect on this bound which is tight for high Eb/No (see Fig- 

ure 4.1). Indeed, ss(dfree) = s8(dfree) = 88. The first term of the SER4 bound, 

[-3a(10) + l(lO)]Plo = 88 Q( d m ) ) ,  is indicated in Figure 4.1 by a dotted 

line. For eight - bit decoded symbols, 

and since b = 8 > m - 1 = 5, every symbol overlapped by an error event will be 
10n 

decoded incorrectly. Using only the terms for d =  dfree to d =  dire, + in the 

SERb bounds yields results with 2 significant digits of precision for Eb/No values 

at which the bounds are useful (i.e., within 0.2 dB of simulation results). 

Now suppose that a convolutiond code is concatenated with an outer block 

code that has b-bit symbols, rate k'ln', and minimum distance dmin. Define e = 

[dmin/21 and assume sufficient outer codeword interleaving to make b-bit symbols 

statistically independent. The concatenated decoder word error (P,) and bit error 



Figure 4.1 Symbol Error Rates for CC1 and the NASA Code. 



(Pbit) probabilities are 

when the block decoder corrects only up to e - 1 errors [Torr84]. Hence, 

for high Ei  /No = (nl/ kl)Eb /No, the concat enat ed decoder operating bit signal-to- 

noise ratio. Since Q(x) - e - X ~ / ~ / ( X & ) ,  the asymptotic coding gain is 

kk' 
10log,, (,drree[dmin/21) nn dB- 

4.2 A Lower Bound on Bit Error Rate 

It is well-known that a lower bound on decoder error rates is the probability of 

error due to a single path having distance drree. However, this bound is very loose 

except at very h ~ g h  signal-to-noise ratios. In this section, a lower bound on decoded 

BER is obtained by subtracting, from the union bound k-' C i ( d )  Pd, a second 

term which accounts for the probability that the received sequence r is closer to two 

fundamental paths than to the all-zero path. For simplicity, a corresponding bound 

is now derived for the "first-event" error probability Pf that a Vit erbi decoder makes 

an error for the first time. With probability Pd, the decoder selects a fundamental 

path of weight d instead of all-zero (the transmitted and therefore correct path), as 

the survivor into state 0. Summing probabilities over all a(d) of these paths and all 

distances d yields the union bound 



By the principie of inclusion-exclusion, a lower bound on Pf is obtained by sub- 

tracting from C a(d) Pd, the sum, over all pairs of fundamental paths e and f ,  of 

the probability po(e, f )  that the decoder could select either e or f instead of the 

all-zero path as the survivor into state 0 at any trellis level. Thus po(e, f )  is the 

probability that the received channel symbol sequence r is closer to both e and f 

than to the transmitted all-zero path 0. 

d=dfree e f f e  

An analogous lower bound to (4.4) for BER follows by observing that, if the 

information vectors which generate e and f contain ie and if 1's) then the con- 

tribution of these paths to (4.1) is iePd(,) + if Pd(f) where d(e) and d(f) are the 

number of 1's in e and f .  If r is closer to both of these paths than to 0,  then at 

least min(i,, if) bit errors will occur. It follows from the "weighted" version of the 

principle of inclusion and exclusion that, 

1 I 
BER 2 - i(d)Pd - k- max(ie,if)po(e,f). 

k (4.5) 
d= d f m  e f#e 

Now replace 0 with +1 and 1 with -1 on all branch labels, so that O becomes 

all +17s. Then for memoryless channels, po(e, f )  is a function of the noise level and 

the numbers 
n l  = IS1 = {i : ei = +1 AND f i  = -I)( 

n2=  I S 2 = { i : e i = - 1  AND f i=+l ) (  

n3=  I S 3 = { i : e i = - 1  AND fi=-111 
where the index i runs from 1 to the maximum length (in bits) of e or f .  

Theorem 4.2 For nl ,  nz, and n3 all nonzero, on the unquantized AWGN channel, 

where Pj  = n j  f i  = n j  and a! = n j  No/2, E, and Ea are the transmitted 

channel symbol (i.e., signal) and information bit energies, R = kln  is the code rate, 

and No is the one-sided noise spectral density. 



Proof. Let the all-zero path 0 be represented by +l's and transmitted as signals 

with amplitudes +G. The channel adds zero-mean, white Gaussian noise with 

variance a2 = No/2. Thus, received (demodulated) channel symbols ri are inde- 

pendent, conditionally Gaussian random variables with mean +a and variance 

a2. Define the vector r as [rl, 7-2, . . . , rn,+n2+n3]. Let X1,X2 and Xj be the sum 

of the variables ri for those values of i in Sl, S2, and S3, respectively. At each trellis 

level, a Viterbi decoder prefers e to 0 as the survivor into the all-zero state if 

where I I I I means Euclidean distance and ties are resolved against the decoder. This 

condition is equivalent to 

Since e and O differ in n2 + n3 positions, where ei = -1, then 

Similarly, the decoder prefers f over 0 if -XI 2 X3. Therefore, 

po(e, f )  = Pr {-XI 2 X3 AND - X2 2 X3) 

Pr{-XI 2 y ,  - X 2 2  y I X ~ = Y ) P ~ { X ~ = Y } ~ Y .  

The result follows from the fact that the Xi are independent Gaussian random 

variables with mean n j and variance n ja2. 

Figure 4.2 shows a lower bound on the BER for the NASA code. Only funda- 

mental paths of weight < 20 were considered as possible error events because these 

are the most likely ones. Notice that the lower bound diverges at a higher Eb/No 

than the upper bound because of the double sum over all pairs of these fundamen- 

tal paths. However, for values of Eb/No greater than the point at which the lower 

bound is horizontal, this bound helps to determine the accuracy of the union bound. 



Another lower 5ound on BER results from considering the error probability due to 

only the fundament a1 paths of weight dfree. This probability is then lower bounded 

by an expression, like that on the right of (4.5), in which the sums are restricted 

to these paths. For the NASA code, this bound is shown in Figure 4.2 as a dotted 

line below the simulation data. 

For the AWGN channel with very high bit signal-to-noise ratio high Eb/No, 

the union bound 

is asymptotically equal to the first term in the sum, 

Conjecture. On the AWGN channel, a rate R = kln, maximum-likelihood 

convolutional decoder's bit error rate is asymptotically equal to 

which is the first term in the BER union bound (4.1). Naturally, this conjecture 

is true if there is only one fundamental path having weight dfree because the error 

probability due to this path is a lower bound on BER. Essentially, the claim is 

that at high enough Ea/No, the fundamental paths of weight dfree, which dominate 

as error events, occur independently as error events. To prove the conjecture, one 

must show that po(e, f) for these paths is asymptotically negligible with respect to 

Pdfree  



2 
, Eb/!! (dB) 4 

Figure 4.2 Bit Error Rate Bounds for the NASA Code. 



4.3 Adapting Berlekamp's Tangential Union Bound 

At low bit signal-to-noise ratios Eb/No on the AWGN channel, the performance 

of block and convolutional codes depends largely upon the geometrical arrangement 

of error events in Euclidean space. In this section, Berlekamp's tangential union 

bound for block code error rates on the AWGN channel is used to obtain good 

approximations for Viterbi decoder error rates. These estimates are useful at low 

Eb/No, where the union bound is not, because they are within 0.2-0.3 dB of several 

simulated decoder error rates. Berlekamp proved that, for maximum-likelihood 

decoding of a length n binary block code on the AWGN channel, 

by considering codewords as points on a sphere of radius d m  in n- 

dimensional Euclidean space [Berl80]. A noise vector, which consists of n inde- 

pendent, zero-mean, unit variance, Gaussian random variables, is separated into 

a radial component z and a tangential component. The Q[ ] term in (4.6) is the 

error probability due to the tangential component of the noise vector, given a fixed 

value of radial noise z. By summing error probabilities over all nonzero codewords, 

Berlekamp obtains a union bound on word error probability Pw as 

which he shows is equivalent to the standard union bound C a ( d ) ~ ( J v ) .  

However, for any given value of the radial noise component z, the probability of 

incorrect decoding due to the corresponding tangential noise is at most equal to 1. 

Therefore, the term 

may be limited to 1 for any value of z. This leads to the tangential  union bound, 

pw I / O O  -00 min ( I ,  a ( d ) ~  [ ( d m z )  /%I) n -  $ dz (4.7) 
d=dmin 



Unlike the standard union bound, this new bound does not diverge at low Eb/No ,  

because the right side is always less than or equal to 1. 

Unfortunately, the tangential union bound cannot be directly adapted for 

Viterbi decoder first-event error probabilities because fundamental paths have dif- 

ferent lengths. Therefore, error events do not correspond to signal points in a 

fixed-dimensional Euclidean space. Nonetheless, close approximations to Viterbi 

decoder error rates may be obtained by applying the bound to convolutional codes. 

Previous work in this direction [Mart791 will now be extended. Truncating a convo- 

lutional code so that all paths have the same length L yields a block code. However, 

the large value of L required to retain the important error events (i.e., low weight 

fundamental paths) causes (4.7) to yield virtually the same results as the standard 

union bound. 

From (4.6)) a Viterbi decoder selects a weight d, length k' trellis branches, 

fundamental path as the survivor path into the all-zero state with probability 

Summing this probability over all fundamental paths yields the union bound 

where a(d, k') is the number of fundamental paths having weight d and length k' trellis 

branches. For a given value of z, the probability of error due to a fundamental path 

of length k' trellis branches and weight d is 

Berlekarnp shows that the union bound above on Pf is equivalent to the standard 

one (4.1) [Berl80]. Although z may no longer be interpreted as the radial component 



of the noise vector, limiting 

to 1 yields the approximation 

From the derivation of the bit error union bound (4.1), in which all possible ways 

that an error event could cause a single bit error were considered, it seems likely 

that any individual bit is decoded incorrectly with probability at most 1. This claim 

leads to the tangential BER approximation 

BER 

Similarly, from the derivation of the symbol error bounds in Section 4.1, an analo- 

gous approximntion for SERb is 

At high Eb/No these two expressions become equal to the union bounds. 

The tangential BER approximation (shown in Figure 4.3 for the NASA code) 

is extremely good at low Eb/No and always better than the standard union bound 

that is useless for Eb/No 5 2.7 dB. An improved version of Algorithm 5 generated 

coefficients a(d,l) and i(d,l) for successive values of d up to 100. Truncating the 

sum on d at this point made no noticeable difference. A striking example of the 

tangential BER approximation is illustrated in Figure 4.4 for the memory 14, rate 

114, Galileo code. The union bound diverges well before the intended operating 

point of Eb/No = 0.5 dB. However, the tangential approxilr.~tion yields an estimate 

of the decoded bit error rate that is about twice the simulated value and pessimistic 

by only 0.3 dB. This discrepancy is slightly smaller than that at the same BER 



Figure 4.3 Tangential Approximation for the NASA Code. 





for the NASA code because only fundamental paths of weight 5 200 were used in 

evaluating (4.9) although longer error events may be important at extremely low 

Eb/No near 0 dB. 

4.4 Truncation Loss 

In order to design efficient and high performance Viterbi decoders, one must 

know the precise loss from maximum-likelihood decoding (MLD) when survivor 

paths are truncated to T trellis branches. The problem is to determine the least 

value of T such that this loss is negligible because hardware for survivor storage 

usually forms a large (sometimes 50%) portion of the decoder. Recall from Section 

1.1 that at each trellis level, a best state, truncation length T, Viterbi decoder 

outputs the information bit(s) corresponding to the T~~ oldest branch of the survivor 

path into the state with lowest metric, while a fixed state decoder always uses a 

branch of the survivor into one fixed state. Also, fixed state decoders are widely 

used in practice because it is usually infeasible to find the state with least metric 

after each trellis level or groups of trellis levels. However, best state decoders may 

be analyzed, and the results can be applied to practical decoders. For example, 

extensive simulations show that a fixed st ate decoder requires twice the truncation 

length of a best state decoder [McE189]. For those (practical) decoders which output 

bits for several trellis branches at a time, T should be interpreted as the average (not 

the least) truncation length because the average BER over the truncation lengths 

used is not significantly different from the BER of a decoder using the average 

truncation length to decode one branch at a time. The exact choice of T depends 

upon the code, channel noise level, acceptable loss from MLD, and the manner in 

which the Viterbi decoder outputs bits. 

Assume that all zeros are transmitted and, at time t + T, let e denote the 

survivor path into the state s having lowest metric. Let a,(d,T) be the number 

of weight d trellis paths, of length T or more branches, which go from state 0 into 

state s via nonzero states. Consider decoding bit(s) for the trellis branch from level 



t to t + 1. Decoder bit error(s) occur i) if e merges with state 0 at some level > t 

and nonzero information bit(s) correspond to the branch from level t to t+l,  or else 

ii) if e merges with state 0 at level t but not afterwards, or else iii) with probability 

112 if e merge5 with state 0 at level < t but not afterwai-(1s (see Fig. 1). These 

situations are shown in Figure 4.5. First, note that MLD errors overbound those 

in case i). With probability Pd, the decoder selects one of the a,(d, T +  1) weight d 

trellis paths of type iii). One of the as(d, T)  - as(d, T+1) weight d trellis paths of 

type ii) causes an average of 1~2~- ' / (2~-1 )  bit errors when k bits are decoded for 

the branch leaving state 0. Applying a union bound yields 

level t 

- 
state s 

Figure 4.5 Trellis Paths. 

This bound generalizes and strengthens a previous one [Hemm77]. Simulations 

of the m= 6, rate 112 NASA standard code at a BER of lo-' on the unquantized 

AWGN channel show that a Viterbi decoder with T = 24,27,30 or T = oo (i.e., 

MLD) performs within 0.1 dB of the pjT) bound. For other codes, similar accuracy 

is expected when the MLD bound k-' C i(d) Pd is tight. 

For each st-te in a rate l / n  Viterbi decoder, the newest survivor bit is the oldest 

bit (s,) of the predecessor state for which the state metric plus branch metric are 



a minimum. Therefore, only T - m physical storage bits (kT - m in general) per 

survivor are required for truncation T decoding. 

Define Tc as the least value of T such that a,(d, T)  = 0 for all d 5 drree. 

A decoder with truncation length Tc will have no loss from MLD on "asymptot- 

ically quiet" channels such as the AWGN with extremely high bit signal-to-noise 

ratio Eb/No. Several researchers recommend decoding with truncation length Tc 

[Hemm77, And891, but this may cause a large loss, for example in Eb/No on the 

AWGN channel, when the decoder BER 2 Tc is shown in Table 4.1 for sev- 

eral rate l / n  codes with encoder generator polynomials represented in octal form 

and right-justified so that x3 + x2 + 1 is shown as 15. 

A maximum-likelihood decoder's performance on a memoryless channel does 

not change when all encoder generator polynomials are reversed. For if an informa- 

tion vector u,  starting and ending with m zeros, encodes to c ,  then c reversed is the 

output of the reversed encoder with input u reversed. However, if any generator 

polynomial is not symmetric, the loss for a Viterbi decoder having T < oo may 

change because the truncated trellis branch labels and thus a,(d, T)  values are dif- 

ferent. Therefore, encoders should be designed with generator polynomials oriented 

to minimize truncation loss. 

Example 4.5 For the (13,17) code, P:") 5 4P6 + 32P7 + 102Ps + 240.5P9 + 
while for the reversed code (15,17), pilo) 5 2P6+29P7+85.5P8+223.5P9+. - (The 

MLD BER 5 2P6 + 7P7 + 18P8 + 49P9 + 0 ) .  On the unquantized AWGN channel 

at Eb/No = 5.41 dB, the above bounds are 3.42 x 10-~,2.66 x and 

respectively. (The first 20 nonzero terms in (4.11) were sufficient for 3 significant 

digits of precision). An additional 0.40 or 0.32 dB is required when Tb = 10 for 

the (15,17) or (13,17) code, respectively, to achieve a BER of These losses 

are excessive because only 0.05 dB extra is needed when Tb = 14. Furthermore, 

P ~ O )  5 for the (5,7) code at Eb/No = 5.94 dB, with only half the decoding 

computation. Hence, truncation length Tc = 10 for the (15,17) code is insufficient, 

unless the BER is < 



The truncation bound (4.11) may be computed using the "path counting" Al- 

gorithm 5 described in Section 3.6. The parameter "coeffs" is set to [lOnlk]. When 

the algorithm terminates, i(d) values are recorded. At this point, the algorithm is 

conceptually at time t in the code trellis of Figure 4.5, so P[0][0] is made 999 to 

inhibit paths from state 0. Also, A, B and change may be ignored. Then after the 

T~~ next step, a,(d,T) = W[s][d- W[s][O]+l] for d = W[s][O] to W[s][O]+coeffs-1. 

Thus, Algorithm 4 can easily produce quantities required in (4.11). 

A more accurate estimate of truncation loss may be obtained using an approx- 

imation developed from the tangential union bound. 

In Table 4.1, Tb is the least value of T such that a best state Viterbi decoder 

will perform within 0.05 dB of MLD on the unquantized AWGN channel for BER 

5 lo-'. Since each survivor is La = Tb - m bits long, the decoder's path memory 

grows linearly with T. However, the decoder complexity doubles for each increase 

in m by one while the Eb/No needed for BER 5 lo-' decreases less than 0.5 dB 

for most codes in Table 4.1. Therefore, a truncation length of at least Tb should be 

used. A larger Ta may be needed as m increases beyond 6 because the Eb/No gain 

decreases so the acceptable truncation loss is reduced. For higherllower error rates, 

Tb must be greaterlsmaller to maintain a fixed Eb/No loss. Recall that Tb* is the 

least truncation length required for no asymptotic loss from MLD. This theoretical 

value is (considerably) less than the practical Tb suggested. For best-state decoders 

that output a block of bits at a time, the average truncation length should be Tb. For 

fixed state Viterbi decoders, the results of [McE189] suggest that survivors should 

be made 2Lb bits long. 



TABLE 4.1 Truncation Lengths for Several Rate 112 or 113 Codes. 

&/No 

5.94 
5.46 
5.07 
4.63 
5.68 
4.23 
3.93 
3.63 
3.49 

5.95 
5.19 
4.68 
5.05 
4.25 
3.93 
3.57 
3.37 
3.15 

m octal generators df,,, 

2 5, 7 5 
3 15, 17 6 
4 23, 31 6 
5 75, 57 8 
6 1, 117 6 
6 133, 171 10 
7 345, 237 10 
8 561, 753 12 
9 1167, 1545 12 

2 5 , 7 9 7  8 
3 13, 15, 17 10 
4 37, 33, 25 12 
5 1, 75, 67 10 
5 71, 65, 57 13 
6 133, 171, 165 14 
7 251, 233, 357 16 
8 557, 663, 711 18 
9 1765, 1631, 1327 19 

T,* Tb bits La 

8 10 8 
10 14 11 

13 21 17 
19 27 22 
12 14 8 
27 35 29 
28 46 39 
33 59 51 
37 68 59 

9 11 9 
10 13 10 
13 17 13 
10 13 8 
17 22 17 
21 29 23 
20 37 30 
25 45 37 
26 53 44 
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Chapter 5 

Quantization Loss in Convolutional Decoding 

Using q < 8 bits to quantize received symbols from the AWGN channel may 

significantly increase the bit signal- t o-noise ratio (Eb /No) required to achieve a 

particular decoded bit error rate (BER). This increase in dB, called quantization 

loss, is measured with respect to using q = 12, which causes no measurable loss. The 

hardware complexity of one section in a convolutional decoder increases linearly with 

both q and the number of bits (1) used to represent path metrics. The decoder's 

speed also depends strongly upon q and l. In order to design efficient and high 

performance decoders, these parameters must be chosen as the smallest values that 

do not cause a significant Eb/No loss. For example, changing from the best memory 

5, rate 112 code (drree = 8) to the memory 6, rate 112 NASA code yields an 

additional 0.41 dB coding gain when the BER is at the expense of doubling 

the Viterbi decoding complexity. Since a loss of 0.2 dB would occur in either case 

if q=3, more than 3 quantization bits must be used. Although BER depends upon 

the code, the quantization loss seems to depend mainly upon the channel. 

In the next section, an optimal branch metric and uniform quantization scheme 

are derived for the AWGN channel. Nonuniform quantizers are not considered 

because they do not significantly decrease BER. For practical values of q, AWGN 

channel capacity and cutoff rate are used to compute lower and upper bounds (that 

lead to accurate estimates) on the optimal uniform quantizer stepsize A and the 

corresponding Eb/No power loss. The range of path metrics and renormalization of 

state metrics are analyzed, in particular for the memory 14, rate l / n  for n = 2 to 

6, new BIG Viterbi Decoder (BVD) at JPL for the Galileo mission [Stat88]. Since 

the BVD performs twice the computation of a memory 13 decoder having similar 

design, but requires (at rate 114) about 0.1 dB less Eb/No for a bit error rate (BER) 

of 0.005, even a quantization loss of 0.02 dB may be unacceptable. A probabilistic 

bound on the maximum difference between any two path metrics is derived to 



minimize t .  The theoretical results are verified by simulations of three codes: the 

NASA standard code; the experimental, m= 14, rate 114, Galileo code [Stat88]; and 

the m = 14, rate 116, "2-dB" code for future deep-space missions [Yuen85]. Since 

the same quantization losses occurred when symbol error rates were measured, these 

results apply when a block code is concatenated with an inner convolutional code. 

Although the examples presented here are for rate l / n  Viterbi decoders, this work 

applies to soft-decision decoding of block codes and to other convolutional decoders. 

5.1 Branch Metrics 

When an encoded 011 is mapped to +1/ - 1 and then transmitted with signal 

energy s2 = E, , the demodulator output at the receiver is a conditionally Gaussian 

random variable y with mean +s/-s and the same variance a2 = s2/(2REa/No) as 

the zero-mean AWGN channel noise. Binary phase-shift keying (BPSK) or quadra- 

ture PSK modulation with ideal coherent detection is assumed. For purposes of 

analysis, y is usually divided by a because the automatic gain control (AGC) in a 

wideband receiver makes the channel noise variance essentially unity [He1171, Gi11711. 

Since JPL's demodulator always outputs symbols with a mean s = 0.84 volts, y will 

not be normalized here and this value of s will be used herein. If y was divided by 

a, then so should all quantizer stepsizes in this chapter. 

For the AWGN channel, a Viterbi decoder finds the trellis path with minimum 

Euclidean distance or equivalently, minimum negative inner product, to the received 

sequence. Thus, the metric for a trellis branch is the inner product of the length n 

branch label, with 011 replaced by +I/-1, and the negative of a received vector 

[yl, y2,. . . , yn]. Note that branches with lower metrics are closer to the received 

vector and that trellis path metrics are the sum of the constituent branch metrics. 

If a does not change significantly, incrementing or multiplying all branch metrics 

by a constant does not alter the decoder's output. Thus -yi or +yi, equivalently 

(-yi + lyi1)/2 (:r (yi + Iyil)/2, is added to the metrics of those branches with a +1 

or -1 in position i. Therefore, the decoder may add lyil to the metrics of branches 



having different signs in position i than that of yi, and zero otherwise. This sign- 

magnitude method will be used throughout this chapter because it halves the branch 

and state metric maximum ranges which result from using standard integer metrics 

[Clar81, He11711. The new method is provably optimum for uniform quantization 

and superior to previous heuristic schemes [Clar81, Gilh701. 

C Rate 1/2 (i.e. NASA) Code at Eb/No =2.25 dB 

% Rate 1/4 (i.e. Galileo) Code at Eb/No =0.5 dB 

 ate 116 (i.e. '2 dB') Code at Eb/No = 0.1 dB 

lyl VOLTS 

Figure 5.1 Received Signal Magnitude Distribution. 



5.2 Channel Symbol Quantization 

A decoder first quantizes analog voltages y before computing branch metrics. 

When zeros and ones are equally likely in the encoder input data, 

The probability distribution of lyl is shown in Figure 5.1 for the operating noise 

levels of three JPL codes. However, these curves do not aid quantizer design, 

which should be based upon channel cutoff rate and the fact that integers represent 

quantized symbols in practical decoders. 

Let the random variable J be the quantized value of y and define 

Then pj = Pr(J  = j 1 +1) is the probability that the integer j represents y after 

quantization. For j = f (29-' - 1), p j  is the above integral with limits ( j  - 0.5)A 

and +oo, or -00 and ( j  + 0.5)A. 

Since I J1 1 ,  . . . , I J, I are summed to form branch metrics, the absolute error 

I Ji - y i l  in quantizing yi is also the contribution to the branch metric error that 

results from quantization. A decoder using signed integers to represent Ji could 

conceptually use 0, f A, f 2A, . . . , f (29-' - 1)A for any real number A, because 

multiplying all metrics by A has no effect. Therefore, a uniform quantizer should 

have thresholds spaced A volts apart at f A/2, f 3A/2,. . . , f (29-')A/2, because 

this minimizes the metric error defined above (and also any positive function of 

Ji - yi, such as the quantizer mean square error). Note that this quantizer will not 

necessarily minimize decoder BER, the desired objective. A nonuniform scheme 

might perform better [Vit79, p. 781, at the expense of additional complexity. How- 

ever, simulations of the NASA code using 3-bit integer branch metrics and nonuni- 

form quantization schemes (including the ones that maximized capacity or cutoff 

rate) never produced lower BERs than using the best A. Simulations of several 



codes indicated that nonuniform quantizers with 3,4, or 5 levels would yield slight 

improvements (but the gain would decrease rapidly with more levels). Thus, only 

uniform quantization schemes, characterized by q and A, are considered herein. 

Since Ji is normally one of 7 values from -3 to +3 when q =3, quantizer levels 

+4 and -4 are appended (Figure 5.2) in this case only, to achieve the BER for 

8 levels and standard integer metrics. Only for q = 3 herein, 29-'- 1 will be replaced 

by 4 instead of 3. In rate 112 decoders, a branch metric of 8 is decreased to 7 so 

that q = 3 bits still represent all possible values. This event occurs with probability 

(p+, +p-4)2, which is only 0.11 for the NASA code at Eb/No = 2.25 dB. 

Figure 5.2 An Optimal Quantization Scheme. 

5.3 Quantization Loss 

The following quantities are used to estimate the Eb/No loss when received 

channel symbols are quantized with q bits: 

is almost 0 for high Eb/No and approaches 1 for very noisy channels. The binary- 

input, q-bit uniformly quantized, AWGN channel capacity and cutoff rate are 

Ro(q) = 1 - log2(1+ 7) bits per channel use. 



Observe how rapidly the maximum possible (uniform) cutoff rate Ro(q) and 

capacity C,(q) in Figure 5.3 approach their limits when a  = 0.65 (the rate 112 

NASA code at Eb/No = 2.25 dB) and when a= 1.12 (the rate 114 Galileo code at 

Eb/No = 0.5 dB). Ro (3) and C, (3) are based upon the 9-level quantizer in Figure 5.2 

while a q = 4 or q = 5 quantizer has 15 or 31 levels, respectively. The lines between 

data points correspond to uniform quantizers having intermediate numbers of levels, 

such as 24. 

- - - -  7 - - -  

cutoff Rate for a = 1.12 (~dileo c&) 
Cutoff Rate for o = 0.65 (m we) 
Capacity for a = 1.12 
Capacity for a = 0.65 

I 

5 6 7 

Quantization Bits q 

Figure 5.3 Uniformly-Quantized, AWGN Channel 

Capacities and Cutoff Rates 



The curves in Figure 5.3 show that there is negligible cutoff rate loss for q > 6, and in 

fact Ro (5)/Ro(oo) 2 0.996 suggests a very small quantization loss for q 2 5 (verified 

by simulations). The above formulae lead to theoretical bounds on quantizer Ea/No 

loss, shown in Tables 5.1 and 5.2. Capacity loss is the additional Eb/No required for 

a q-bit quantized channel to have the same capacity as one with q = 16 (essentially 

unquantized). It indicates the theoretically least possible Eb/No degradation and 

should be considered when the code rate is greater than the channel cutoff rate, 

which is true for the three JPL codes. The measured quantization losses from 

software simulations agree with the cutoff rate loss, and both sets are virtually 

independent of the channel noise level. In practice, quantization losses are larger 

because the noise is usually not perfectly Gaussian. The q = 3, 9-level loss of 0.14 

dB is much less than the well-known (8-level) 0.25 dB value calculated using a union 

bound [He1171, Gilh71, Clar811. 

TABLE 5.1 Quantization Losses in dB (0 = 0.65). 

TABLE 5.2 Quantization Losses in dB (0  = 1.12 or 1.455). 

q bits 

3 
4 
5 
6 

These numbers do not change when an outer block code is concatenated with a 

convolutional inner code because the simulation losses do not depend upon whether 

BER, 4-bit SER, 8-bit SER, etc., is measured. 

capacity loss 

0.084 
0.034 
0.010 
0.003 

q bits 

3 
4 
5 
6 

cutoff rate loss 

0.135 
0.054 
0.016 
0.005 

capacity loss 

0.110 
0.044 
0.012 
0.004 

measured 

0.14 
0.05 
- 

- 

cutoff rate loss 

0.130 
0.053 
0.015 
0.005 

measured 
- 

0.05 
0.02 
- 



5.4 Quantizer Stepsize 

The stepsize A that maximizes cutoff rate for a given Eb/No almost minimizes 

BER and symbol error rate (SER) when Eb/No increases ti; up to 1 dB. A should 

be chosen to maximize capacity only if the code rate is well above the cutoff rate, 

otherwise A should maximize cutoff rate. For Viterbi decoding at high Eb/No, A 

could be chosen to minimize the union bound 

where Pd is the probability that the decoder chooses a path at distance d from the 

one transmitted. Define 
29-I -1 

and let [ p ( ~ ) ~ ] ~  denote the coefficient of xi in [j(x)ld. Then 

According to the union bound, the NASA code Eb/No quantization loss when q =4 is 

at most 0.065 dB for BER 5 loq5 or Eb/No > 4 dB. However, simulations indicate 

that quantization loss is independent of the code, insensitive to the channel noise 

level, and significantly less for q = 3 and q = 4 than the values computed using the 

union bound. Furthermore, the union bound is not accurate at moderate Eb/No 

and becomes useless at low Eb/No (2 dB) where many convolutional codes operate. 

Therefore, maximizing channel cutoff rate is the preferred method for determining 

quantization loss and the best A. 

In Figure 5.4 for the NASA code, there is a negligible loss for q 2 4 and the 

BER increases slowly for A greater than the optimum, so A should be larger instead 

of smaller than the best value. The labels C and Ro in Figure 5.4 indicate the 

stepsizes that ~laximize C, (q) and Ro (q), respectively. The A that maximizes 

Ro(q) is a safe choice since it is larger than the value which minimizes BER, and 



also because it yields the lowest BER (while maximizing capacity does not) for q = 3 

with 9 quantizer levels (Figure 5.2). The A that maximizes C,(q) is a lower bound 

on quantizer stepsize, just as the quantization loss according to capacity loss was a 

lower bound in the last section. The shape and spacing of the BER curves in Figure 

5.4 are the same for the corresponding %bit SER curves (and also if 4,5,6, or 7-bit 

SER is measured). Therefore, concatenating the NASA code with the (255,223) 

Reed-Solomon code does not affect quantization loss, as expected because the loss 

depends only upon the channel. 

0 . 3  0 . 4  0 . 5  
Quantizer Stepsize A* 2(g-3) volts 

Figure 5.4 Bit Error Rate of the NASA Code at Ea/No = 2.25 dB. 

Many sets of software simulations were run for the NASA code and the Galileo 

code. The values of q were 3, 4, 5, or.6 and Ea/No ranged from 0 dB to 3.5 dB. 



In all simulations, the A's which maximize C,(q) or Ro(q) were slightly smaller 

or larger (respectively) than the A that minimized BER. For q = 3 or 4, the A's 

which minimize the quantizer mean-square error or absolute error were too large. 

Simulations of the two m= 14 codes revealed a 0.02 dB or 0.05 dB Ea/No quanti- 

zation loss for q =  5 or 4 at the BER of 0.005 required for JPL's images and at an 

8-bit SER of 0.20 for a concatenated system BER of (using an outer (255,223) 

Reed-Solomon code). 

5.5 Metric Range and Renormalization in Viterbi Decoders 

For each received n-vector and encoder state 2, a Viterbi decoder finds the 

trellis path, into 2, which has the least metric (sum of the metrics of the consecutive 

branches forming the path). This trellis path is called the survivor path for state 

s and the state metric of 5 is the metric of this path. Recall that a trellis level - 

consists of all the branches corresponding to a received vector of n demodulated 

channel symbols. When the channel is noisy, the minimum over all state metrics 

will increase as the decoder processes trellis levels. Since st ate metrics are stored in 

&bit registers, they must all be decreased by a constant before an overflow occurs. 

This procedure, called renormalization could be implemented by subtracting the 

least state metric from all metrics after each trellis level. However, finding the 

minimum of the state metrics is impractical in most decoders, such as the fully 

connected BVD which contains 16384 st at es. Alternatively, renormalization can 

be accomplished by zeroing every register's most significant bit (msb), which is 

equivalent to subtracting 2'-' from every metric if every register has an msb of 

1. Since detecting the latter event is impractical for most decoders (including the 

BVD) , several new met hods for renormalization are now described. 

After each trellis level, let the random variable M be the difference between the 

maximum and minimum state metrics. If any state metric is 2 2'-' + 2'-2, (its two 

most significant bits are 1) and M < 2'-2, then the msb is 1 for all state metrics 

since they are at least 2'-', so renormalization should occur. This method requires 



- 
that t = 2 + [log, &?I, where M is the maximum state metric range for which 

the decoder always retains paths closest to the received sequence (i.e., it operates 

correctly). The following technique uses up 1.4 bits of t .  Let W be the maximum 

of the metrics of the all-zero state, the all-one state, and the state with a 1 input 

followed by m- 1 zeros. Since most state metrics differ from one of these three 

metrics by the contributions from only a few quantized channel symbols, W is very 

close to the largest state metric (Galileo code simulations verified this). Therefore, 

ren~rmalizatio~ could occur when W exceeds a threshold such as 2'-' + 2'-, + P 3 .  

Figure 5.5 Binary Modulo Metrics. 

The following scheme for comparing path metrics and renormalizing state met- 

rics is currently the best [ShunSO]. M and M^ must be defined for metrics of paths 

into a state, not state metrics. Let M be the maximum difference between the met- 

rics for any pair of paths into the same state. If M > M^, the decoder will choose 

an incorrect survivor path (perhaps causing extra bit errors). By performing path - 
metric arithmetic modulo 2M, renormalization occurs automatically. Metrics are - 
conceptually arranged on a circle of circumference 2M (see Figure 5.5). Since any 

pair always lies within a half-circle, the decoder finds the least one by comparison 

without the msb's but reverses the result when the msb's of the two metrics differ 



[Shun901 . Using modulo arithmetic requires only one extra bit, so l =  1 + [logz Q . 
Furthermore, global signals for renormalization and metric monitoring are elimi- 

nated, a crucial advantage in high-speed, parallel decoders. This "best" met hod 

will be assumed in the following analysis for rate 1 / 7 2  Viterbi decoders (which also 

work for rate (n - l ) /n  punctured codes). 

Lemma. M 5 dfree ( 2 ~ '  - 1). 

Proof. Let b and w be two paths (into some state s) with largest metric difference 

of all pairs of paths compared by the decoder at the current trellis level. Let b 

have lower metric than w. Since a convolutional code is linear, adding a weight 

drree fundamental path to b yields a path c that differs from b in dfree positions 

but coincides with w on a branch into s. Since w is the path with least metric at 

the previous trellis level into a state which preceeds s, the metric of w is less than 

or equal to the metric of c, which is at most dfree (29-' - 1) plus the metric of 

b, because the maximum contribution to a branch metric by one received channel 

symbol y is 29-' - 1. 

Corollary. In the absence of noise, M = Mo = dfree 10.5 + s/AJ . 

Mo may be a useful design parameter because noisy channel simulations of 

the Galileo and NASA codes suggest that it is an upper bound on the mean of 

M and that 2Mo is usually larger than M. Typically, dfree is substantially less 

than n (m + I), the maximum possible. For the Galileo code dfree = 35, so 

Mo = 140 for q = 5, A = 0.20, and s = 0.84. For the rate 116 "2-dB" code, 

dfree = 56 < n (m+l )  = 90 SO Mo = 336 for q = 6 and A = 0.14 volts. 

dfree (2q-  -1) 

Claim. Pr (M > 3 )  5 ~ ( r ) ~ " " ] ~  . 

Proof. Define paths band w asinthelemmaabove. AnupperboundonPr(M=t) 

is obtained by considering the worst possible case: paths b and w differ in exactly 

dfree positions, and in these positions, the branch labels of w have a different sign 



than the quantized channel symbols. For each of these dfree independent symbols, 

the coefficient of xi in p(x) is the probability that the contribution (maybe negative) 

to M equals i. Therefore, in this worst case, Pr(M = i) is the coefficient of xi in 

[p(z)] df"e. 

This bound is very loose because a worst-case assumption was made on the path 

metric differences, but it does estimate the probability that path metrics exceed a 

designed maximum possible range G. If l < 1 + log2 [dfree (29-' - I)], the decoder 

will make inco~~iect decisions between trellis paths when M > G, which may occur 

very rarely. 

If modulo arithmetic is not used for path and state metrics, the above results 

must be adjusted to consider state metrics only instead of path metrics. Then, 

every occurrence of dfree above would be replaced by the maximum weight, over all 

states s, of the least-weight trellis path from thk all-zero state into s. Also, M would 

remain as originally defined: the difference between the maximum and minimum 

state metrics after a trellis level. 

Myth. If M > G, then the decoder fails completely. 

Galileo code simulations for q = 5 and 4 with short state metric registers having 

t = 9 and 8 bits, yielded the same BER because the odd path metric range overflow 

that occurred did not significantly affect the output, since Viterbi decoders are 

robust and tolerate occasional state metric disruptions. Further shortening of the 

state metric registers to 8 or 7 bits resulted in a graceful BER increase, as though 

q was being decreased. This behavior is expected because the overall trellis path 

metric resolution is the decoder parameter, affected by input quantization, that 

influences decisions in a Viterbi decoder. 
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