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Abstract

The first part of this thesis combines Bolocam observations of the thermal Sunyaev-Zeldovich (SZ) effect

at 140 GHz with X-ray observations from Chandra, strong lensing data from the Hubble Space Telescope

(HST), and weak lensing data from HST and Subaru to constrain parametric models for the distribution of

dark and baryonic matter in a sample of six massive, dynamically relaxed galaxy clusters. For five of the

six clusters, the full multiwavelength dataset is well described by a relatively simple model that assumes

spherical symmetry, hydrostatic equilibrium, and entirely thermal pressure support. The multiwavelength

analysis yields considerably better constraints on the total mass and concentration compared to analysis of any

one dataset individually. The subsample of five galaxy clusters is used to place an upper limit on the fraction

of pressure support in the intracluster medium (ICM) due to nonthermal processes, such as turbulent and

bulk flow of the gas. We constrain the nonthermal pressure fraction at r500c to be < 0.11 at 95% confidence,

where r500c refers to radius at which the average enclosed density is 500 times the critical density of the

Universe. This is in tension with state-of-the-art hydrodynamical simulations, which predict a nonthermal

pressure fraction of ≈ 0.25 at r500c for the clusters in this sample.

The second part of this thesis focuses on the characterization of the Multiwavelength Sub/millimeter

Inductance Camera (MUSIC), a photometric imaging camera that was commissioned at the Caltech Submil-

limeter Observatory (CSO) in 2012. MUSIC is designed to have a 14 arcminute, diffraction-limited field of

view populated with 576 spatial pixels that are simultaneously sensitive to four bands at 150, 220, 290, and

350 GHz. It is well-suited for studies of dusty star forming galaxies, galaxy clusters via the SZ Effect, and

galactic star formation. MUSIC employs a number of novel detector technologies: broadband phased-arrays

of slot dipole antennas for beam formation, on-chip lumped element filters for band definition, and Mi-

crowave Kinetic Inductance Detectors (MKIDs) for transduction of incoming light to electric signal. MKIDs

are superconducting micro-resonators coupled to a feedline. Incoming light breaks apart Cooper pairs in the

superconductor, causing a change in the quality factor and frequency of the resonator. This is read out as

amplitude and phase modulation of a microwave probe signal centered on the resonant frequency. By tuning

each resonator to a slightly different frequency and sending out a superposition of probe signals, hundreds

of detectors can be read out on a single feedline. This natural capability for large scale, frequency domain

multiplexing combined with relatively simple fabrication makes MKIDs a promising low temperature de-

tector for future kilopixel sub/millimeter instruments. There is also considerable interest in using MKIDs
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for optical through near-infrared spectrophotometry due to their fast microsecond response time and modest

energy resolution. In order to optimize the MKID design to obtain suitable performance for any particular

application, it is critical to have a well-understood physical model for the detectors and the sources of noise

to which they are susceptible. MUSIC has collected many hours of on-sky data with over 1000 MKIDs. This

work studies the performance of the detectors in the context of one such physical model. Chapter 2 describes

the theoretical model for the responsivity and noise of MKIDs. Chapter 3 outlines the set of measurements

used to calibrate this model for the MUSIC detectors. Chapter 4 presents the resulting estimates of the spec-

tral response, optical efficiency, and on-sky loading. The measured detector response to Uranus is compared

to the calibrated model prediction in order to determine how well the model describes the propagation of

signal through the full instrument. Chapter 5 examines the noise present in the detector timestreams during

recent science observations. Noise due to fluctuations in atmospheric emission dominate at long timescales

(. 0.5 Hz). Fluctuations in the amplitude and phase of the microwave probe signal due to the readout elec-

tronics contribute significant 1/ f and drift-type noise at shorter timescales. The atmospheric noise is removed

by creating a template for the fluctuations in atmospheric emission from weighted averages of the detector

timestreams. The electronics noise is removed by using probe signals centered off-resonance to construct

templates for the amplitude and phase fluctuations. The algorithms that perform the atmospheric and elec-

tronic noise removal are described. After removal, we find good agreement between the observed residual

noise and our expectation for intrinsic detector noise over a significant fraction of the signal bandwidth.
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Chapter 1

Spherical Analysis of the CLASH
Sample

1.1 Introduction

Galaxy clusters occupy a unique position in the Universe as the largest objects to have undergone gravitational

collapse. This makes them a powerful tool for understanding the hierarchical process of structure formation

and the cosmological backdrop in which it occurred. The number of clusters above a given mass as a function

of redshift is sensitive to the dynamical properties of the dark energy that comprises 73% of the energy

density of the Universe and drives its acceleration. This is because dark energy counteracts gravitational

attraction, thereby slowing structure formation and exhibiting a strong influence over the resulting number

of massive clusters. Consequently, cluster number counts N(M,z) can constrain the dark energy density ΩΛ

and its equation of state w, as well as the average matter density ΩM and the amplitude of the initial density

perturbations σ8 [1, 2, 3].

As large nonlinear excursions in the matter density field, clusters are individually identifiable objects with

a wealth of observables through which they can be detected and studied. They are populated with luminous

galaxies that emit light in the optical and infrared regions of the spectrum. They also gravitationally lens

the light emitted from background galaxies. The vast majority (∼ 90%) of a cluster’s baryonic mass lies not

in galaxies and stars but rather in a diffuse and hot, ionized gas known as the intracluster medium (ICM).

This gas emits X-rays through thermal bremsstrahlung radiation [4] and inverse-Compton scatters Cosmic

Microwave Background (CMB) photons through the thermal Sunyaev-Zel’dovich (SZ) effect [5].

The net result of the SZ effect is a small distortion of the CMB spectrum in the direction of a cluster. The

distortion manifests itself as a temperature decrement at low frequencies and an increment at high frequencies,

with a null at ν ' 220 GHz or λ ' 1.36 mm. The magnitude of the temperature change at any given frequency

is proportional to the thermal electron pressure Pe = kBneTe integrated along the line of sight. This simple

linear relationship makes the SZ effect an ideal probe of the ICM gas pressure. X-ray surface brightness,

on the other hand, is proportional to a slightly different combination of the number density and temperature
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— specifically n2
eT 1/2

e — and thus provides a slightly different probe of the ICM thermal state, one that is

extremely sensitive to the electron density.

The hydrodynamical state of the ICM can be predicted from analytical considerations and, more often,

from numerical simulations. However, it is not yet known how well these simulations account for many

of the complicated but relevant baryonic processes that take place during cluster formation. These include

star formation, energy loss via radiative cooling, energy injection and metal enrichment via active galactic

nuclei and supernovae winds, and nonthermal processes at the cluster outskirts such as turbulence, bulk

flow, and incomplete virialization. These processes are most certainly occurring in clusters, but their relative

importance and impact on the basic thermal characteristics of the ICM are poorly characterized. Our lack of

knowledge is especially evident in the cluster outskirts, where there is sparse observational data to ground the

predictions made by hydrodynamical simulations.

In our current understanding of cluster formation, an initial fast collapse and series of major mergers is

followed by slow growth of the cluster outskirts through accretion of the surrounding intergalactic medium

(IGM). The cold IGM infalls at supersonic speeds and is shock heated near the virial radius. These accretion

shocks are strong, thermalizing the majority of the kinetic energy acquired by the gas during infall. Recent

work suggests, however, that this mechanism does not result in complete virialization, and that some fraction

of the kinetic energy remains in bulk, turbulent flow of the gas [6]. This turbulent component contributes

to the total pressure required to maintain the ICM in a state of hydrostatic equilibrium, but is nonthermal in

nature. Recent numerical simulations predict the nonthermal component to contribute 10−30% of the total

pressure at the virial radius, and an even larger fraction in unrelaxed clusters [7, 8, 9].

Quantifying the level of nonthermal support is of critical importance if one is to use clusters to perform

precision cosmology. Recently, the South Pole Telescope used maps of 800 deg2 of sky at 95, 150, and 220

GHz to remove astrophysical foregrounds and measure the CMB power spectrum at angular scales 2,000 <

` < 9,400. They found excess power over the primary CMB anisotropy in the 150 GHz band due to the SZ

effect, and measured the amplitude of the thermal SZ power spectrum at `= 3000 to be 3.65±0.69 µK2 [10].

The amplitude of the thermal SZ power spectrum is sensitive to several parameters in the standard ΛCDM

cosmology, primarily the amplitude of the initial density perturbations σ8. However, in order to predict how

much power one should expect to see in the thermal SZ signal for a given cosmology, one must know the

level of nonthermal support in clusters over a wide range of masses and redshifts, and at large radii. Current

simulations differ in their treatment of the cluster thermal state and thus vary by over 50% in their predictions

of the thermal SZ amplitude [11]. As a result, theoretical modeling uncertainties limited the constraint on

σ8 that could be derived from this measurement, offering only marginal improvements over the existing

constraint from measurements of the CMB, H0, and BAO.

As another example, the most stringent cosmological constraints derived from cluster abundances to date

have been made using X-ray constructed catalogs [12, 13]. In these analyses the X-ray observables that are

measured — such as TX , YX , and Mgas — must be related to the underlying cluster mass that our theories and
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numerical simulations predict. In order to do this, one must invert the equation of hydrostatic equilibrium as-

suming that the entirety of the ICM pressure is thermal in nature. A nonthermal component will bias low the

resulting estimates of the total mass by tens of percent [14, 7]. Moreover, since the actual amount of nonther-

mal pressure support and its variation between clusters is so poorly constrained observationally, and since

hydrodynamical simulations offer different predictions based on the input physics, a simple correction for

this nonthermal component is difficult to make. Instead this possible bias is usually included as a systematic

uncertainty in the analyses, which degrades the precision of the observable-mass relation and the resulting

cosmological parameters. The same is true for recent and ongoing SZ cluster surveys that use the integrated

SZ flux as a proxy for total cluster mass. Benson et al found that the cosmological constraints that could be

derived from the SPT survey consisting of only 18 clusters was not limited by sample size, but rather by the

assumed systematic uncertainty on the normalization of the observable-mass relation [15].

The Cluster Lensing and Supernova survey with Hubble (CLASH) was awarded 524 orbits on the Hub-

ble Space Telescope over a three year period to study the distribution of dark matter at cluster scales via

gravitational strong lensing [16]. The CLASH sample consists of 25 clusters, of which 20 were selected

from X-ray data alone. These 20 clusters have large X-ray temperatures TX > 5 keV and surface brightness

maps characterized by a single well-defined peak and nearly concentric isophotes. This suggests that the

clusters are massive, dynamically relaxed, and not undergoing major mergers. The other 5 clusters were

chosen based on the presence of large Einstein radii and also serve the separate science goal of discovering

magnified high-z galaxies at z > 7. The sample as a whole covers a significant portion of cluster formation

history (0.2 < z < 0.9) and spans almost an order of magnitude in mass (5−30×1014 M�).

The CLASH sample is the most comprehensive and detailed dataset to date on the distribution of dark

and baryonic matter in massive galaxy clusters. All 25 clusters have been observed with the Chandra X-ray

Observatory and 15 of the clusters also have XMM-Newton data available. The thermal SZ effect has been

measured at 140 GHz for all 25 of the clusters with Bolocam, a millimeter-wave imaging camera at the

Caltech Submillimeter Observatory. HST provides 16-band, high-precision strong lensing data in the cluster

core and weak lensing data at intermediate radii, while the multi-band Suprime camera on Subaru provides

wide-field weak lensing data of the outskirts, thereby characterizing the dark matter distribution over a wide

range of scales. In this chapter, we fit parametric models to the combined multiwavelength dataset for a

subset of the CLASH clusters. Doing so we are able to constrain the distribution of dark and baryonic matter

and the level of nonthermal pressure support.

The layout of this chapter is as follows. Section 1.2 presents the theoretical model used to describe the

multiwavelength dataset. Section 1.3 provides an overview of the Bolocam observations of the SZ effect,

Chandra observations of the X-ray emission, HST gravitational strong lensing measurements, and HST and

Subaru weak lensing measurements. Section 1.4 describes the specifics of our analysis: the fitting method em-

ployed, the definition of our sample, and the determination of the optimal sub-model. Section 1.5 presents the

results and Section 1.6 concludes with a discussion of the results. Throughout this work we assume a ΛCDM
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cosmology with Ωm = 0.30, ΩΛ = 0.70, and h ≡ 0.70×h70 = 0.70, where H0 = h×100 km s−1 Mpc−1.

1.2 Model

Our model assumes that the galaxy cluster is spherically symmetric. We model the total matter density with

the Navarro-Frenk-White profile (NFW hereafter) [17]

ρtot(r) = ρtot,0

(
r
rs

)−1(
1+

r
rs

)−2

, (1.1)

which is defined by two parameters, a normalization ρtot,0 and scale radius rs. It is standard to reparameterize

in terms of the total mass and concentration at a particular overdensity radius

Mtot, ∆ref ≡ 4πr3
s ρtot,0

[
ln
(

rs + r∆ref

rs

)
− r∆ref

rs + r∆ref

]
, c∆ref ≡

r∆ref

rs
, (1.2)

where r∆ref denotes the radius at which the average enclosed density is ∆ times some reference density. Two

common references, both of which we will employ in this work, are the critical density of the universe and

the mean matter density of the universe

ρc(z) =
3H2

0
8πG

(Ωm(1+ z)3 +ΩΛ), (1.3)

ρm(z) =
3H2

0
8πG

Ωm(1+ z)3 . (1.4)

The overdensity radius is determined by solving the implicit equation

Mtot, ∆ref =
4
3

πr3
∆ref∆ρref . (1.5)

We model the gas density as

ρgas(r) = ρgas,0

(
r
rx

)−α
(

1+
(

r
rx

)2
)(α−3β )/2(

1+
(

r
ro

)δ
)−ε/δ

+ρgas,c

(
1+
(

r
rc

)2
)−3βc/2

, (1.6)

which is inspired by the expression used in Vikhlinin et al. [18] to describe the X-ray surface brightness

of nearby relaxed galaxy clusters. Equation (1.6) is the sum of two β -models [19], with the first β -model

modified by two additional factors. The r−α power-law factor allows for a central cusp instead of the flat core

inherent to the β -model. This is necessary to describe cool-core clusters, which tend to exhibit a nonzero

logarithmic slope α ≈ 0.5 in the cluster core [20]. The r−ε factor allows for the logarithmic slope of the gas

density to steepen by some amount ε at radius ro (with ro > rx). The parameter δ controls how quickly the gas

density transitions from the r−3β power-law to the r−3β−ε power-law. Steepening of the gas density profile in
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the cluster outskirts is observed in hydrodynamical simulations [21], X-ray observations of individual clusters

[22, 23, 18, 24, 20], and the stacked analysis of X-ray data from many clusters [25]. Our primary motivation

for including this factor, however, is that it results in more realistic uncertainty estimates on the gas density

profile at large radii where we do not have X-ray data. The second β -model aids in the description of the core

region of the cluster. To ensure this role we force rc < 50 kpc and fix βc = 1. We note that our model differs

from that presented in Vikhlinin et al. [18] in two regards. First, we assume a value δ = 4 which results in

a slightly more rapid transition than their model which assumes a value δ = 3. Second, we model the gas

density ρgas whereas they model the surface brightness, which is proportional to ρ2
gas. Hence, our prediction

for the surface brightness will have a cross-term between the first and second β -model that is not present in

their model. This will result in slightly different gas density profiles for the same set of parameter values in

the region where the core β -model transitions to the primary β -model.

We assume that the total pressure is the sum of the thermal pressure and the nonthermal pressure due to

internal gas motions

Ptot = Pth +Pnth (1.7)

=
kBT ρgas

µmp
+Pnth . (1.8)

Here mp is the proton mass, µ is the mean molecular weight of the ICM, and T is the temperature of the ICM.

We model the nonthermal pressure fraction as

Pnth

Ptot

(r)≡ F (r) = Fout(r)+Fin(r) (1.9)

with

Fout(r) =C
{

1−A
(

1+ exp
[(

r/r200m

B

)γ])}
(1.10)

and

Fin(r) = D

(
1+
(

r/r200m

E

)4
)−ζ/4

. (1.11)

The Fout term is a scaled version of the Nelson et al. [9] empirical fitting formula used to describe the mean

nonthermal pressure fraction observed in a mass-limited sample of clusters from a high-resolution hydrody-

namical simulation. We fix the radial dependence to that observed in the simulation by fixing the parameters

[A, B, γ] at their best fit values [0.452, 0.841, 1.628], and allow only the normalization C to float. The Fin

term allows the nonthermal pressure fraction to increase by some amount D in the cluster core. We require

that E < 0.1, which corresponds to the minimum radius examined in the simulation. There are a number of
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physical processes that can strongly influence the thermodynamic state of the ICM in the cluster core. Our

goal in introducing the second term is to decouple the nonthermal pressure in the outer regions of the cluster,

which is the quantity we would like to constrain, from that in the core.

We assume that the ICM is in a state of equilibrium where the inward gravitational pull is balanced by

a pressure gradient. This assumption of hydrostatic equilibrium is expressed as the following differential

equation:

∇Ptot =−ρgas∇Φ , (1.12)

where Φ is the gravitational potential. We note that Equation (1.12) differs from the standard definition of

hydrostatic equilibrium that is commonly used in the literature and implies entirely thermal pressure support.

We are allowing a nonthermal pressure component sourced by bulk and turbulent motions of the gas to

provide some fraction of the support necessary to prevent gravitational collapse. We integrate Equation (1.12)

to determine the temperature,

d
dr

[
1

1−F (r)
ρgas(r)kBT (r)

µmp

]
=−GMtot(r)ρgas(r)

r2

kBT (r) = kBTtrunc +(1−F (r))
µmp

ρgas(r)

∫ rtrunc

r

GMtot(x)ρgas(x)
x2 dx , (1.13)

where G is the gravitational constant, kB is the Boltzmann constant, and Ttrunc is the temperature at some radius

rtrunc that designates the outer boundary of the ICM. Our model does not assume an explicit parameterization

for the temperature, rather it is an internal variable that is derived from the total density, gas density, and

nonthermal pressure fraction assuming hydrostatic equilibrium.

We describe the metallicity with the function

Z
Z�

(r) = Z0

(
1+
(

r
rZ

)2
)−3βZ/2

, (1.14)

which allows for a central metallicity Z0 that transitions to a power-law r−3βZ at radius rZ [26]. The electron

and hydrogen number density are given by

nH =
Xρgas

mp
, ne =

〈
ne

nH

〉
Xρgas

mp
, (1.15)

where X denotes the hydrogen mass fraction and < ne/nH > the ion to hydrogen ratio. The quantities µ , X ,

and < ne/nH > are all mild functions of the metallicity, and are calculated using an absolute metallicity given

by Equation (1.14) with the relative abundances fixed on the Grevesse and Sauval [27] scale.

All observable quantities of interest can be predicted from the above model. Let DA(z) denote the angular

diameter distance, θ the angular separation from the cluster center, and R = DAθ the radius from the cluster
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center projected on the plane of the sky. The X-ray flux from the cluster measured at a frequency ν within an

annulus of inner radius R1 and outer radius R2 is given by

F =
1

4πD2
L

∫ R2

R1

2πRdR
∫ rtrunc

R
ne(r)nH(r)Λ

[
ν
′,T (r),Z(r)

] 2rdr√
r2 −R2

, (1.16)

where DL(z) is the luminosity distance, ν ′ = ν/(1 + z) is the frequency in the cluster rest frame, and

Λ [ν ′,T (r),Z(r)] is the X-ray cooling function. In addition to the X-ray flux from the cluster our model

includes X-ray flux from a uniform thermal background:

Fsbkg = Asbkg Λ [ν ,Tsbkg,Z�] . (1.17)

This accounts for galactic soft X-ray emission which varies across the sky and therefore is not adequately

subtracted using a background observation. Here Asbkg acts as an overall normalization and Tsbkg ∼ 0.5 keV is

the temperature of the galactic gas.

The thermal SZ effect results in a distortion of the CMB blackbody spectrum. The change in the temper-

ature of the CMB measured at a frequency ν and projected radius R is given by

TSZ = TCMB f (x)y . (1.18)

The function f (x) encodes the frequency dependence of the classical distortion

f (x) = x
ex +1
ex −1

−4 , (1.19)

where x ≡ hν/kBTCMB. The Compton y parameter sets the magnitude of the distortion and is proportional to

the integral of the thermal electron pressure along the line of sight

y =
σT

mec2

∫ rtrunc

R
ne(r)kBT (r) [1+δR(x,T (r))]

2rdr√
r2 −R2

, (1.20)

where σT is the Thomson cross section, c is the speed of light, and me is the mass of the electron. The

quantity δR(x,T (r)) is a correction for the relativistic motion of the electrons, which we approximate using

the expansion given in Itoh et al. [28].

Gravitational lensing of the light from background galaxies is described by a lens equation β = θ−α(θ)

which maps the coordinates of the galaxy in the source plane β = [β1,β2] to the coordinates in the lens plane

θ = [θ1,θ2] through a deflection angle α= [α1,α2]. We can define a lensing potential

Ψ(θ) =
Dls

DlDs

2
c2

∫
∞

−∞

Φ(R, `)d` , (1.21)

which is just the three-dimensional gravitational potential projected along the line of sight and rescaled. In the
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above equation Ds, Dl , and Dls denote the angular diameter distance between observer-source, observer-lens,

and lens-source, respectively. The deflection angle is then equal to the gradient of the lensing potential

α(θ) = ∇Ψ(θ) . (1.22)

The convergence κ and complex shear γ = [γ1,γ2] of the lens are also related to the lensing potential through

the equations

κ(θ) =
1
2

(
∂ 2

∂θ 2
1
+

∂ 2

∂θ 2
2

)
Ψ(θ) =

Σ(θ)

Σcrit

(1.23)

γ1(θ) =
1
2

(
∂ 2

∂θ 2
1
− ∂ 2

∂θ 2
2

)
Ψ(θ) (1.24)

γ2(θ) =
∂

∂θ1

∂

∂θ2
Ψ(θ) . (1.25)

Here Σ(θ) is the surface mass density and Σcrit is the critical surface mass density for lensing, given by

Σcrit =
c2

4πG
Ds

DlsDl
, (1.26)

where G is the gravitational constant.

In the weak lensing regime (κ � 1) the gravitational shear introduces a complex ellipticity e to the images

of background galaxies

< e>=
γ

1−κ
, (1.27)

where < e > denotes a local average necessary to mitigate the intrinsic ellipticity of the galaxies. In the

strong lensing regime (κ > 1) the lens equation becomes multi-valued, which can result in multiple images

of a single source. These multiple images straddle critical curves whose location are set by the relation

(1−κ)2 − γ
2 = 0 . (1.28)

The combined strong and weak lensing analysis outlined in the following section employs the location of the

critical curves and the ellipticity of background galaxies to measure the convergence of the galaxy cluster.

According to our model the convergence measured at a projected radius R is given by

κ =
1

Σcrit

∫
∞

R
ρtot(r)

2rdr√
r2 −R2

. (1.29)
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1.3 Description of the Multiwavelength Dataset

1.3.1 Chandra X-ray

The 25 CLASH clusters have been observed by the Chandra satellite with a median exposure time of 63 ksec.

The reduction of the CLASH X-ray data is described in detail in Donahue et al. [29], which we now briefly

summarize. The data is processed using CIAO 4.6.1 (released February 2014) and CALDB 4.5.9 (released

November 2013). Flares are identified as time intervals with outlier event rates in 0.5−7.0 keV light curves

extracted from source-free areas of the detector. Events coincident with a flare are removed from the event

lists. Bright point sources are identified using the CIAO wavdetect algorithm and a map of the PSF size as

a function of location on the detector. Regions near the bright point sources are filtered from the event lists.

Each dataset is matched to a deep background file from a similar observation epoch, which is used to subtract

contamination from faint point sources, galactic soft X-ray emission, and non-flaring particle events [30, 31].

The background files are filtered, reprojected, and rescaled to match the target observation. The rescaling is

done by adjusting the exposure time on the deep background file so that the event rate between 10−12 keV

is equal to that in the cluster field. This particular energy range is chosen because the effective area for X-ray

photons is low and the event rate is dominated by high-energy particle events.

X-ray spectra are generated in concentric annular bins centered on the coordinates given in Table 1.1. The

boundaries of the bins are selected so that at least 1500 photon counts from the cluster are contained in each

annulus and the width of each annulus is at least a few times the width of the PSF. The spectra are binned

in energy from 0.5− 11.0 keV with a bin width of 38 eV. The same binning scheme is applied to both the

observation file and the deep background file. The individual weighted redistribution matrix file (RMFs) and

ancillary response file (ARFs) are then computed. The cluster field spectra S obs, deep background spectra

S bkg, RMFs, and ARFs are all input to the multiwavelength analysis.

The spectra generated from the deep background file are eventually subtracted from the spectra generated

from the target observation file. Consider the energy bin hν j and the annulus with inner radius Ri and outer

radius Ri+1. The resulting X-ray measurement is

Si j = S obs
i j −S bkg

i j (1.30)

and the associated Poisson error is

σSi j =
√

S obs
i j +S bkg

i j (1.31)

with units of counts/sec/keV.
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1.3.2 Bolocam Thermal SZ Effect

The thermal SZ effect has been measured at 140 GHz in the 25 CLASH clusters using Bolocam, a 144-element

bolometric imaging camera at the Caltech Submillimeter Observatory [32, 33]. Bolocam has an 8 arcmin di-

ameter circular field of view (FOV) and a 58 arcsec full width at half maximum point spread function (PSF).

The measurements were made over the course of 14 observing runs between 2006 and 2012 as part of a larger

campaign that resulted in the creation of the Bolocam X-ray SZ (BOXSZ) sample of 45 galaxy clusters [34,

35]. We summarize the general properties of the SZ data products here, and direct the interested reader to

Sayers et al. [36] for a description of the data reduction, flux calibration, and noise estimation, and Czakon

et al. [35] for a description of the BOXSZ sample. The SZ data products for all of the clusters in the BOXSZ

sample are publicly available. 1

Noise sourced by fluctuations in atmospheric emission dominate the raw detector timestreams at long

timescales. The atmospheric noise is mitigated by subtracting the response-weighted mean detector signal

and applying a 250 mHz high pass filter [37]. This data processing attenuates the cluster signal in a way that

is mildly dependent on the cluster shape and also results in the loss of the image’s mean signal. To account

for the attenuation of the cluster signal, a complex valued two-dimensional map space transfer function is

calibrated for each cluster. The mean signal of the image is included as a free parameter T̄SZ in our model fits.

Pointing corrections are obtained from frequent observations of bright compact objects. The resulting

pointing accuracy is 5 arcsec RMS. Flux calibration is based on twice-nightly observations of either Uranus,

Neptune, or a secondary source from Sandell [38]. The absolute flux of the planetary sources are determined

using the model of Griffin and Orton [39], with the overall normalization of the model corrected based on

WMAP measurements [40] as outlined in Sayers et al. [41]. The resulting flux accuracy is 5% RMS.

Non-astronomical noise is estimated from 1000 jackknife realizations of the cluster image. To account

for astronomical noise sourced by CMB anisotropies and unresolved point sources, a Gaussian random real-

ization of the 140 GHz sky is generated from SPT power spectrum measurements [42, 10], passed through

the data processing pipeline, and added to each of the 1000 jackknife realizations. Note that the SPT power

spectrum measurements cover the full range of angular scales probed by the Bolocam images. It has been

confirmed that the resulting noise realizations are statistically indistinguishable from observations of blank

sky [36].

A total of six bright radio point sources are detected in the BOXSZ cluster images. These are fit with a

template for the PSF and subtracted. In addition, radio point sources in the 1.4 GHz NVSS database [43]

that are below the Bolocam detection threshold but have an extrapolated 140 GHz flux density > 0.5 mJy are

also subtracted. The extrapolation is based on 1.4 GHz and 30 GHz measurements and has an uncertainty of

' 30%. Random realizations of the estimated residual from the radio point source subtractions are injected

into the set of jackknife realization. A description of the population of radio point sources in the BOXSZ

1http://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-data/bolocam/

http://irsa.ipac.caltech.edu/data/Planck/release_2/ancillary-data/bolocam/
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cluster images can be found in Sayers et al. [34].

The pixel-to-pixel covariance matrix is estimated as

(CTSZ)i j =


(sensitivity)2

ti
i = j

0 i 6= j ,

where ti is the (known) integration time for pixel i. The sensitivity is determined by fitting a Gaussian to

a histogram of the product of pixel value and square root integration time for all pixels in all 1000 noise

realizations. The assumption that the off-diagonal elements are zero is a good but not perfect description of

the data. Unfortunately, the set of observations do not contain enough information to estimate the off-diagonal

elements of the covariance matrix, and simplifying assumptions about the structure of the covariance matrix

(e.g. that it is only a function of pixel separation) have proven false. Instead, we determine the effects that

the small inter-pixel correlations in the SZ image have on our analysis by carrying out simulations using the

1000 noise realizations. We outline this procedure in Section 1.5.

The SZ images are 14 arcmin× 14 arcmin with 20 arcsec square pixels. The CLASH clusters have a

median peak S/N of 10.6 and SZ signal is detected out to the edge of the images in azimuthally averaged

profiles. For our analysis we only fit pixels that have an integration time t > 0.25× tmax, where tmax is the

maximum integration time achieved in the center of the image. This is equivalent to only fitting pixels with

an angular separation θ ≤ 6.33 arcmin from the center of the image. The input to the multiwavelength

analysis is the image TSZ in units of µKCMB, the diagonal covariance matrix CTSZ , and the transfer function of

the data processing pipeline.

1.3.3 HST and Subaru Gravitational Lensing

The X-ray selected sample of CLASH clusters has HST strong lensing, HST weak lensing, and Subaru

Suprime-Cam weak lensing constraints. Merten et al. [44] outlines the procedure used to self-consistently

combine these constraints into a nonparametric estimate of the lensing convergence profile. We summarize

the main steps of this procedure.

The strong lensing reduction begins by identifying multiple-image systems in the 16-band HST images

using the Zitrin et al. [45] method. The redshift associated to each multiple-image system is either a spec-

troscopic redshift from the CLASH VLT-Vimos program [46], a Bayesian photometric redshift determined

from HST photometry [47], or a value taken from the literature. The multiple-image systems are used to infer

the location of the critical lines where the lensing equation becomes nonlinear using the method outlined in

Merten et al. [48]. The locations of the critical lines are inputs to the reconstruction algorithm.

The weak lensing input take the form of a shear catalogs that list the coordinates, redshift, and complex

ellipticity of background galaxies in the cluster field. The creation of the HST shear catalogs is outlined in

Section 3.2 of Merten et al. [44] and the creation of the Subaru shear catalogs is outlined in Section 4 of
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Umetsu et al. [49]. The HST and Subaru catalogs are combined into a single catalog. Before doing so, the

HST complex ellipticity measurements are multiplied by a scale factor to refer them to the effective redshift

of the Subaru catalog. The catalogs are concatenated and the signal-to-noise-weighted mean is computed for

sources that appear in both catalogs.

The SaWLens algorithm [48] is used to perform a nonparametric reconstruction of the lensing potential

ψ(θ) on an adaptively refined two-dimensional grid from the weak lensing shear catalog and the strong

lensing critical lines. Three different grid sizes are employed: a coarse resolution grid (25−36 arcsec pixel)

applicable to the wide field Subaru weak lensing data, an intermediate resolution grid (8− 13 arcsec pixel)

applicable to the HST weak lensing data, and a fine resolution grid (6− 10 arcsec pixel) applicable to the

HST strong lensing data. The lensing potential at each pixel of the grid is estimated by minimizing a χ2

function that accounts for measurements of the average ellipticity of nearby background galaxies and the

location of nearby critical lines. The assumption of spherical symmetry is not used in this reconstruction,

nor are any other prior assumptions about the mass distribution of the cluster. The convergence of the lens

κ(θ) is then obtained by taking second order numerical derivatives of the reconstructed lensing potential

as prescribed by Equation (1.23). The SaWLens algorithm has been shown to recover the convergence (or,

equivalently, surface mass density) of simulated clusters over a wide range of scales (50 kpc− several Mpc)

with an accuracy of 10% [50].

The convergence map is azimuthally binned about the coordinates given in Table 1.1. The inner boundary

is set by the resolution of the highest refinement level of the adaptive grid. The outer boundary is fixed at the

angular scale corresponding to 2 Mpc/h ≈ 2.85 Mpc/h70. The radial range defined by these two boundaries

is split into 15 bins, with the bin width decreasing as the level of refinement is increased.

Errors are estimated from 1000 resampled realizations of the κ(θ) map. Each realization is created by

taking a boot-strap resampling of the shear catalog in the case of weak lensing and a random sampling of the

allowed redshift range of the multiple-image systems in the case of strong lensing. The full reconstruction

process and azimuthal binning is carried out on the 1000 realizations. The set is use to estimate the covariance

matrix C of the 15 radial bins. The convergence profile κ and associated covariance matrix Cκ then act as

input to the multiwavelength analysis.

The only difference in the procedure outlined above and that presented in Merten et al. [44] is that we

center the convergence profile on the peak of the X-ray emission, rather than the peak of the convergence

map. As a result, we measure a lower convergence in the innermost bin than what is presented in that work.

The choice of center does not have a significant effect on the convergence profile beyond the innermost bin.
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1.4 Method

1.4.1 Joint Analysis of Cluster Observations (JACO)

We use the Joint Analysis of Cluster Observations (JACO) software package to fit the model outlined in

Section 1.2 to the X-ray, SZ, and lensing data described in Section 1.3. JACO provides a self-consistent

framework for modeling and fitting multiwavelength observations of galaxy clusters [51]. The general prin-

ciple underlying JACO is “forward model fitting”. The data is manipulated as little as possible; instead the

candidate model is projected, convolved, and filtered so that it can be compared to the data directly. The

software is well tested; JACO has been used to examine X-ray and weak lensing scaling relations for a sam-

ple of 50 massive galaxy clusters in the Canadian Cluster Comparison Project (CCCP) [52]. It has also been

used to estimate the hydrostatic mass, gas mass fraction, and ICM temperature from Chandra and XMM

observations of the CLASH sample [29].

JACO employs a Markov Chain Monte Carlo (MCMC) algorithm to perform Metropolis-Hastings sam-

pling of the joint posterior distribution

p(θp|S,TSZ,κ) ∝ L (S,TSZ,κ|θp)π(θp) , (1.32)

where

θp = [ρtot,0, rs, ρgas,0, rx, β , ro, ε, α, ρgas,c, rc, βc, Ttrunc, C, D, E, ζ , Z0, rZ , βZ , T̄SZ, Tbkg, Abkg] (1.33)

is the set of all model parameters, L (θp|S,TSZ,κ) is the likelihood function, and π(θp) is the set of prior

constraints for the model parameters.

The likelihood function is, up to an overall normalization, given by

L (θp|S,TSZ,κ) ∝ exp
(
−χ

2); χ
2 = χ

2
XR +χ

2
SZ +χ

2
SW . (1.34)

That is, we assume that the X-ray, SZ, and lensing measurements are independent, and therefore the total χ2

is the sum of the χ2 of the individual datasets. We use a uniform prior for each parameter with physically

reasonable lower and upper bounds.

For a given set of parameters, JACO generates a set of synthetic X-ray event spectra Ŝ(θp) using Equa-

tion (1.16) and the input ARF and RMF files. The cooling function is computed using the MEKAL plasma

code. The model spectra are convolved with the energy-dependent instrument PSF. The details of how the

PSF is calculated for a given set of annular bins can be found in Mahdavi et al. [51]. The X-ray contribution
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to χ2 is then given by

χ
2
XR = ∑

i, j

(Si j − Ŝi j(θp))
2

σ2
Si j

, (1.35)

where the summation runs over the desired annular bins and energy bins.

For a given set of parameters, JACO generates a model SZ image T̂SZ(θp) using Equations (1.18)−(1.20).

Prior to calculating χ2
SZ, it accounts for instrumental effects by simulating the act of observing the model SZ

image with Bolocam. The model image has a larger size (25 arcmin×25 arcmin) and a finer resolution (10

arcsec) than the data to avoid edge effects and sampling effects during convolution. It is is convolved with a

Gaussian kernel with a 60.33 arcsec FWHM in order to account for the instrument PSF (59.17 arcsec FWHM)

and pointing uncertainty (11.77 arcsec FWHM). Afterwards it is rebinned and resized to an identical grid as

that of the data. It is then convolved with the transfer function of the data processing pipeline. Finally, the

parameter T̄SZ is added to the image to represent the unknown mean signal offset. The SZ contribution to χ2

is calculated as

χ
2
SZ = ∑

i

(TSZ, i − T̂SZ, i(θp))
2

(CTSZ)ii
, (1.36)

where the summation runs over all pixels with an angular separation θ ≤ 6.33 arcmin.

Finally, for a given set of parameters, JACO generates a convergence profile κ̂(θp) using Equation (1.29).

This is compared directly to the convergence profile determined by the SaWLens algorithm. The lensing

contribution to χ2 is calculated as

χ
2
SW = (κ− κ̂(θp))

ᵀ C−1
κ (κ− κ̂(θp)) , (1.37)

which accounts for the nonzero covariance between the radial bins.

We divide the parameters into two subsets

θp,1 = [ρtot,0, rs, ρgas,0, rx, β , ro, ε, α, ρgas,c, rc, βc, C, D, E, ζ ], (1.38)

θp,2 = [Ttrunc, Z0, rZ , βZ , T̄SZ, Asbkg, Tsbkg] , (1.39)

where θp,1 contains the parameters of interest and θp,2 contains the nuisance parameters. While the nuisance

parameters do have some effect on the likelihood function, they are not tightly constrained by the data. We

allow the nuisance parameters to vary over physically reasonable bounds and then marginalize to obtain

constraints on the parameters of interest. Figure 1.1 shows an example of the marginalized two-dimensional

joint posterior distributions for the parameters θp,1 resulting from a JACO fit to the multiwavelength dataset.

The version of JACO employed in this work differs from the version described in Mahdavi et al. [51,

52] in the following ways. We have added the ability to fit Bolocam SZ images. We use the convergence
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Figure 1.1: The marginalized two-dimensional joint posterior distributions for the parameters of interest
from a fit to the complete multiwavelength dataset of MACS J1532.8+3021. Contours denote 68% and
95% credible regions. Red stars denote the maximum likelihood values. The red annotation in the upper
right corner of each panel is the Pearson correlation coefficient between the two parameters. The diagonal
panels show the marginalized one-dimensional posterior distributions and the dashed black line denotes the
negative log-likelihood profile of that parameter. The purpose of this plot is to illustrate the various parameter
degeneracies and the general shape of the posterior distribution. We have foregone units and tick-marks to
simplify the presentation.
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Table 1.1: Basic properties of the six CLASH clusters in our sample.

Name z RA DEC SZ S/N Chandra Nsys HST ρgal Subaru ρgal

(J2000) (J2000) Time [ksec] [arcmin−2] [arcmin−2]

Abell 383 0.187 02:48:03.40 -03:31:44.9 9.6 38.8 9 50.7 9.0
Abell 611 0.288 08:00:56.82 +36:03:23.6 10.8 36.1 4 42.3 8.8
MACS J1532.8+3021 0.363 15:32:53.78 +30:20:59.4 8.0 89.0 0 35.9 16.6
MACS J0429.6-0253 0.399 04:29:36.05 -02:53:06.1 8.9 23.2 3 42.4 12.0
MACS J1311.0-0310 0.494 13:11:01.80 -03:10:39.8 9.6 63.2 2 33.7 20.2
MACS J1423.8+2404 0.545 14:23:47.88 +24:04:42.5 9.4 115.6 5 75.3 9.8

rather than the tangential shear as the lensing observable. We include constraints from both weak and strong

lensing. We use a slightly different parameterization for the gas density. Finally, we include nonthermal

pressure support in our model.

1.4.2 Sample Definition

The spherically symmetric model presented in Section 1.2 does not provide a good fit to the full multiwave-

length dataset for a significant number of the CLASH clusters. It is likely that a more complex model that

accounts for the three-dimensional shape and orientation of the cluster is necessary. In this work, we re-

strict our attention to a subsample of the CLASH clusters whose X-ray and SZ images show a high degree

of regularity. A cluster must satisfy two requirements in order to be placed in our sample. First, the SZ

image must be circular. This requirement is implemented by fitting the SZ data alone using a circular and

elliptical version of the generalized-NFW model (gNFW) for the thermal pressure [53, 54], and examining

whether the elliptical model is preferred by performing a statistical F-test. Czakon et al. [35] outlines this

procedure and presents the results for all BOXSZ clusters. Second, we require that the centroid shift param-

eter w500c < 0.006. The centroid shift parameter is the standard deviation in units of r500c of the separation

between the peak and centroid of the X-ray emission calculated in increasing aperture sizes up to r500c. The

w500c values for all BOXSZ clusters were calculated according to the procedure described in Maughan et al.

[55, 56] and are presented in Sayers et al. [57]. Of the 25 CLASH clusters, 8 satisfy both of our requirements.

However, for 2 of the 8 clusters — MACS J1931.8-2634 and MS 2137 — the lensing convergence profiles κ

from two independent analyses of the same underlying data differed significantly. Since we are not confident

in the lensing constraints for these two clusters we remove them from our sample. Some basic properties of

the six cluster that make up our sample are presented in Table 1.1.

1.4.3 Model Determination

We must first choose a radius rtrunc that defines the outer boundary of the ICM. We use JACO to fit the NFW

model for the total density to the lensing data only. From these fits, we obtain an estimate of r500c. We

then refit the full multiwavelength dataset with the value of rtrunc fixed at integer multiples of r500c between 3

and 10. In all cases, it was found that the resulting constraints on the thermodynamic properties of the ICM
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converged for values of rtrunc ≥ 7xr500c. We fix the radius at which we truncate the ICM to the physical radius

corresponding to rtrunc = 7× r500c for all further analysis.

The data does not warrant the full complexity of the model presented in Section 1.2 for any of the clusters

in the spherical sample. We perform a series of F-test decision trees in order to determine the minimally

complex submodel that provides an adequate fit to the data. The F-test is a statistical test that can be used to

quantify whether adding additional model parameters results in a significantly better fit to the data. The test

statistic is the fractional increase in the minimum χ2 that results from restricting the additional parameters

divided by the fractional change in the number of degrees of freedom

F =

(
χ2

restricted −χ2
complete

)
/χ2

complete

(νrestricted −νcomplete)/νcomplete

. (1.40)

The test statistic will follow an F(νrestricted −νcomplete,νcomplete) distribution under the null hypothesis that the com-

plete model does not provide a significantly better fit than the restricted model. We reject the null hypothesis

and add the additional model parameters if the probability of observing the measured value of F is less than

0.05.

The first F-test decision tree is used to determine if the r−α power-law and the second β -model are

necessary to describe the gas density in the cluster core. We construct the following hierarchy of models

ordered by the number of free parameters:

G-0 We fix α = 0 and ρgas,c = 0.

G-1a We let α float, but fix ρgas,c = 0.

G-1b We let ρgas,c and rc float (recall that βc = 1), but fix α = 0.

G-2 We let α , ρgas,c, and rc float.

We fit all four models to the data. Since the constraints on ρgas originate from the X-ray and SZ data, we

perform this test without the lensing data. It should be noted that, in the core region, the constraints are

driven almost entirely by the X-ray data. We examine the two branches of the tree: 0→1a→2 and 0→1b→2.

We move along each branch, applying the F-test at each step, and stop when we either accept the restricted

model or reach the end of the branch. We then compare the stoping points on each branch and choose the

model that yields an acceptable fit to the data with the fewest parameters. Of the six clusters, one prefers

model G-0, two prefer model G-1a, and three prefer model G-1b.

After we have settled on a model for the gas density, we carry out a second F-test decision tree to deter-

mine if a nonthermal pressure component is necessary. In this case the hierarchy of models is

F-0 We assume completely thermal pressure support by fixing C = 0 and D = 0.

F-1a We allow for an outer nonthermal pressure component by floating C, but fix D = 0.
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F-1b We allow for an inner nonthermal pressure component by floating D, E, and ζ , but fix C = 0.

F-2 We allow for both outer and inner nonthermal pressure components by floating C, D, E, and ζ .

We fit all four models to the full multiwavelength dataset and apply the F-test decision tree. We find that

only two of the clusters prefer a nonthermal pressure component; Abell 0383 prefers model 1a and MACS

J1532.8+3021 prefers model 1b. The other four clusters prefer model 0. We compare the constraints on

C obtained when fitting model 1a and model 2 and find that they are nearly identical, suggesting that the

constraints on C are not driven by the core region of the cluster.

1.5 Results

In order to investigate the interplay between the various datasets, we fit lensing only (SW), X-ray only (XR),

joint X-ray and SZ (XR+SZ), and the complete dataset (XR+SZ+SW). When we fit the complete dataset,

we use the minimally complex model determined in Section 1.4.3 for each cluster. When we fit subsets of

the complete dataset we use restricted versions of this model. In the case of SW, the model reduces to an

NFW density profile fully described by two parameters. In the case of XR and XR+SZ, we assume entirely

thermal pressure support (by fixing C = 0 and D = 0) because our ability to constrain the nonthermal pressure

component relies on comparison of the lensing and X-ray/SZ data.

For each fit, we first employ a Levenberg−Marquardt (LM) minimization algorithm to search for the

global maximum of the likelihood function. We then run 8 MCMC chains in parallel all starting from the

best-fit parameter values determined by the LM algorithm. Each chain is run for 22,500×Nparam total itera-

tions. The first 10% of the iterations are discarded as burn-in and the chains are concatenated. This yields 2-3

million draws from the joint posterior distribution. The acceptance rate of the MCMC algorithm is close to

optimal with approximately 25% of the proposed steps accepted [58]. However, the chains have significant

serial correlation; we observe an exponential decay in the autocorrelation function with an e-folding time

τ ∼ 1000 iterations. We thin the chains by τ when calculating statistics, which results in an effective sample

size of 2,000− 3,000. We apply the Geweke diagnostic [59], Heidelberger-Welch diagnostic [60, 61], and

Raftery-Lewis diagnostic [62] to the individual parameter chains to confirm that they have converged at an

acceptable level.

The minimum χ2 for each fit is presented in Table 1.2 along with the number of model parameters, number

of degrees of freedom, and the probability to exceed (PTE). All of the clusters have an acceptable quality of

fit for all of the data combinations, with the exception of Abell 383. There is modest tension between the

X-ray and SZ data for MACS J04296-0253 and MACS J1532.8+3021, which is evident in the decrease in

PTE when including the SZ data (XR → XR+SZ). We address this tension in the subsections below where we

discuss each cluster individually. The best-fit models corresponding to the XR+SZ+SW rows are compared

to the data in Figures 1.4−1.8.
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Table 1.2: Quality of fit to different combinations of data sets.

Name χ2
XR χ2

SZ χ2
SW χ2 N Nparam ν PTE

Abell 383
SW – – 2.0 2.0 15 2 13 1.00
XR 1636.4 – – 1636.4 1477 16 1461 0.00086
XR+SZ 1637.8 1203.3 – 2841.1 2601 16 2585 0.00027
XR+SZ+SW 1636.7 1201.9 6.9 2845.5 2616 17 2599 0.00044
XR+SZ+SW (Nonthermal) 1636.7 1201.9 6.9 2845.5 2616 17 2599 0.00044

Abell 611
SW – – 4.2 4.2 15 2 13 0.99
XR 1015.0 – – 1015.0 1037 14 1023 0.56
XR+SZ 1016.1 1134.9 – 2150.9 2161 14 2147 0.47
XR+SZ+SW 1016.3 1135.6 7.9 2159.8 2176 14 2162 0.51
XR+SZ+SW (Nonthermal) 1016.5 1135.3 8.0 2159.7 2176 15 2161 0.50

MACS J0429.6-0253
SW – – 2.9 2.9 15 2 13 1.00
XR 246.7 – – 246.7 258 14 244 0.44
XR+SZ 248.7 1200.2 – 1448.9 1382 14 1368 0.063
XR+SZ+SW 249.2 1200.0 5.4 1454.6 1397 14 1383 0.088
XR+SZ+SW (Nonthermal) 249.2 1200.0 5.4 1454.6 1397 14 1382 0.085

MACS J1311.0-0310
SW – – 3.8 3.8 15 2 13 0.99
XR 295.8 – – 295.8 337 13 324 0.87
XR+SZ 297.2 1143.3 – 1440.5 1461 13 1448 0.55
XR+SZ+SW 297.1 1143.4 3.9 1444.4 1476 13 1463 0.63
XR+SZ+SW (Nonthermal) 297.1 1143.4 3.9 1444.4 1476 13 1462 0.62

MACS J1423.8+2404
SW – – 6.4 6.4 15 2 13 0.93
XR 820.9 – – 820.9 909 15 894 0.96
XR+SZ 824.5 1076.0 – 1900.5 2033 15 2018 0.97
XR+SZ+SW 823.2 1076.5 7.2 1907.0 2048 15 2033 0.98
XR+SZ+SW (Nonthermal) 823.4 1075.9 7.4 1906.7 2048 16 2032 0.98

MACS J1532.8+3021
SW – – 5.2 5.2 15 2 13 0.97
XR 2708.1 – – 2708.1 2808 15 2793 0.87
XR+SZ 2719.9 1249.0 – 3968.9 3932 15 3917 0.28
XR+SZ+SW 2704.8 1245.1 17.6 3967.5 3947 18 3929 0.33
XR+SZ+SW (Nonthermal) 2704.8 1245.1 17.6 3967.5 3947 19 3928 0.33
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We present the resulting constraints on the total mass Mtot, concentration c, and gas mass fraction fgas(r) =

Mgas(r)/Mtot(r) at several overdensity radii in Table 1.3. The quoted value and error correspond to the center

and half of the span of the smallest 68% credible region determined from the marginalized posterior distribu-

tion for that parameter. We also plot the two-dimensional constraints on Mtot,500c − c500c in Figure 1.2.

As mentioned in Section 1.4.3, Abell 383 is the only cluster that requires an outer nonthermal pressure

component based on our F-test decision tree. For this cluster, the total mass inferred from the SW analysis

is 2-3 times larger than that inferred from the XR or XR+SZ analysis. This forces the nonthermal pressure

fraction to very large values when performing the XR+SZ+SW analysis, and even that does not resolve the

discrepancy, as evidenced by the poor quality of fit. We do not believe that a spherically symmetric model

is a reasonable approximation for Abell 383 for reasons outlined in Section 1.5.1. Both nonthermal pressure

support and an elongation of the cluster along the line-of-sight direction will elevate the lensing inferred mass

compared to the X-ray/SZ inferred mass. Hence, if the cluster is elongated along the line of sight direction,

the nonthermal pressure fraction inferred from a spherical fit will be overestimated. We do not include Abell

383 in our analysis of the nonthermal pressure support for this reason, and stress caution in interpreting the

resulting mass estimates.

We use the other five clusters to place an upper bound on the nonthermal pressure support. We perform a

second fit to the full multiwavelength data set allowing the normalization C of the nonthermal pressure frac-

tion profile calibrated from simulation to vary. This fit is labeled “XR+SZ+SW (Nonthermal)” in Table 1.2

and Table 1.3. Note that a uniform prior U(0, 1.825) is placed on C. The lower bound C = 0 corresponds

to entirely thermal pressure support at all radii. The upper bound C = 1.825 corresponds to zero thermal

pressure support at the cluster outskirts (r & r200m). The marginalized posterior distribution for C is shown in

Figure 1.3 for each of the five clusters. We find that MACS J0429.6-0253, MACS J1311.0-0310, and MACSJ

1423.8+2404 have fairly flat posterior distributions, although there is a definite preference for C < 1.0 over

C > 1.0. Abell 611 and MACSJ1532.8+3021 have higher quality X-ray data and as a result are able to place

meaningful upper bounds on the nonthermal pressure fraction. Since the constraints from the individual clus-

ters are consistent with a common value of C, we multiply the posterior distributions together to obtain a

combined constraint. The resulting 95% credible interval on the normalization C is (0, 0.43). Hence, the

universal nonthermal pressure fraction profile observed in simulations (C = 1.0) is an extremely unlikely de-

scription of this sample of five clusters. We also derive the combined constraint on the nonthermal pressure

fraction F (r) at several over-density radii r = [r2500c, r500c, r200c, r200m] using the same procedure. These

are presented in Table 1.4.
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Table 1.3: Constraints on the concentration, total mass, and gas mass fraction at several overdensity radii.

Name r2500c Mtot,2500c fgas,2500c r500c Mtot,500c fgas,500c r200c c200c Mtot,200c fgas,200c
[kpc/h70] [1014 M�/h70] [kpc/h70] [1014 M�/h70] [kpc/h70] [1014 M�/h70]

Abell 383
SW 645±45 4.5±1.0 – 1460±100 10.5±2.2 – 2220±170 4.6±1.2 14.8±3.4 –
XR 460±10 1.7±0.1 0.098±0.004 1020±35 3.6±0.4 0.117±0.011 1545±60 5.1±0.4 5.0±0.6 0.129±0.020
XR+SZ 475±10 1.8±0.1 0.093±0.004 1075±40 4.2±0.5 0.104±0.011 1630±70 4.6±0.3 5.9±0.7 0.102±0.018
XR+SZ+SW 535±20 2.6±0.3 0.075±0.005 1210±50 6.0±0.8 0.080±0.010 1840±85 4.6±0.3 8.5±1.2 0.076±0.016
XR+SZ+SW (Nonthermal) 535±20 2.6±0.3 0.075±0.005 1210±50 6.0±0.8 0.080±0.010 1840±85 4.6±0.3 8.5±1.2 0.076±0.016

Abell 611
SW 495±35 2.3±0.5 – 1285±105 7.9±2.0 – 2035±200 2.5±0.7 12.6±3.8 –
XR 570±20 3.5±0.4 0.083±0.005 1380±95 9.9±2.0 0.094±0.011 2140±170 3.2±0.6 14.8±3.6 0.105±0.016
XR+SZ 545±15 3.1±0.2 0.089±0.004 1280±60 8.0±1.2 0.107±0.009 1970±115 3.7±0.5 11.7±2.0 0.123±0.013
XR+SZ+SW 545±15 3.1±0.2 0.089±0.003 1305±55 8.4±1.0 0.104±0.008 2025±95 3.4±0.4 12.5±1.8 0.118±0.011
XR+SZ+SW (Nonthermal) 550±15 3.1±0.3 0.088±0.004 1315±60 8.7±1.2 0.102±0.008 2045±105 3.4±0.4 12.9±2.0 0.115±0.011

MACS J0429.6-0253
SW 470±70 2.0±1.0 – 1160±110 6.6±1.9 – 1840±165 2.6±1.2 10.6±2.9 –
XR 515±35 2.9±0.6 0.095±0.010 1145±115 6.4±2.0 0.116±0.027 1740±195 4.8±1.0 8.9±3.0 0.117±0.041
XR+SZ 485±20 2.4±0.3 0.103±0.007 1060±60 5.2±0.9 0.143±0.016 1595±100 5.4±0.8 7.0±1.3 0.177±0.025
XR+SZ+SW 495±15 2.6±0.3 0.099±0.006 1110±55 5.9±0.9 0.132±0.013 1680±100 4.8±0.6 8.2±1.4 0.161±0.022
XR+SZ+SW (Nonthermal) 510±25 2.9±0.4 0.093±0.007 1150±65 6.5±1.1 0.125±0.014 1735±110 5.0±0.7 8.9±1.7 0.152±0.022

MACS J1311.0-0310
SW 425±35 1.8±0.5 – 960±75 4.2±1.0 – 1455±120 4.7±1.3 5.8±1.5 –
XR 435±25 2.0±0.3 0.099±0.009 1020±95 5.0±1.4 0.107±0.021 1565±165 3.7±0.8 7.3±2.3 0.117±0.031
XR+SZ 430±15 1.9±0.2 0.102±0.007 1005±65 4.9±1.0 0.112±0.015 1545±120 3.7±0.7 7.0±1.7 0.124±0.022
XR+SZ+SW 425±10 1.8±0.1 0.104±0.005 980±40 4.5±0.6 0.119±0.011 1500±75 4.1±0.5 6.5±1.0 0.134±0.015
XR+SZ+SW (Nonthermal) 435±20 2.0±0.3 0.099±0.007 1005±50 4.9±0.7 0.113±0.011 1540±80 4.2±0.5 7.0±1.1 0.128±0.015

MACS J1423.8+2404
SW 455±45 2.4±0.7 – 1025±100 5.4±1.6 – 1560±165 4.8±1.5 7.6±2.4 –
XR 470±20 2.6±0.4 0.100±0.008 1025±60 5.5±1.0 0.132±0.026 1540±100 5.6±0.6 7.4±1.5 0.155±0.045
XR+SZ 440±20 2.2±0.3 0.110±0.008 950±50 4.4±0.7 0.149±0.027 1415±80 6.3±0.6 5.8±1.0 0.175±0.048
XR+SZ+SW 450±20 2.3±0.3 0.108±0.008 965±50 4.6±0.7 0.138±0.027 1445±80 6.1±0.5 6.2±1.1 0.160±0.046
XR+SZ+SW (Nonthermal) 470±25 2.7±0.4 0.098±0.009 1020±60 5.4±1.0 0.123±0.025 1525±95 6.2±0.5 7.2±1.4 0.137±0.042

MACS J1532.8+3021
SW 435±35 1.6±0.4 – 1060±85 4.7±1.2 – 1655±150 3.1±1.0 7.2±2.0 –
XR 540±10 3.2±0.2 0.109±0.004 1245±40 7.9±0.8 0.109±0.008 1905±70 4.1±0.2 11.3±1.2 0.103±0.010
XR+SZ 510±10 2.7±0.1 0.120±0.004 1155±30 6.2±0.5 0.128±0.007 1755±45 4.6±0.2 8.8±0.7 0.129±0.009
XR+SZ+SW 500±10 2.5±0.1 0.126±0.004 1070±35 5.0±0.5 0.150±0.011 1605±65 6.2±0.8 6.7±0.8 0.162±0.016
XR+SZ+SW (Nonthermal) 505±15 2.6±0.2 0.123±0.006 1090±45 5.3±0.7 0.146±0.013 1630±80 6.2±0.8 7.0±1.0 0.155±0.018
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Figure 1.2: Constraints on the concentration and total mass of the galaxy clusters in the spherical sample
measured at r500c. Contours denote 68% and 95% credible regions. The colors denote fits to different com-
binations of data sets. The X-ray + SZ + Lensing fit, shown in orange and gold, assumes entirely thermal
pressure support (model F-0).
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Figure 1.3: Posterior distribution of the normalization C of the best-fit nonthermal pressure fraction profile
from the simulation of Nelson et al. [9]. The different colors denote the different galaxy clusters in the
spherical samples (excluding Abell 383). Black denotes the combined posterior distribution obtained by
multiplying the posterior distributions from the individual clusters. The shading denotes the 95% credible
region determined from the combined posterior distribution. The dashed gray line at C = 1.0 corresponds to
the median value observed in simulation.

In order to test the robustness of our result to the particular parameterization of the nonthermal pressure

fraction profile, we have repeated the above analysis using a simple piecewise linear function

Fout(r) =

a+b
(

r
r200m

)
r < r200m

a+b r ≥ r200m

with both the intercept a and slope b allowed to vary. A uniform prior U(0,1) is placed on both a and b, result-

ing in a nonthermal pressure fraction that linearly increases with radius until r200m and is constant thereafter.

This model has one more parameter than the simulation-based model and allows for greater freedom in the

shape of the profile. We must, however, correct for the fact that the implicit prior on the nonthermal pressure

fraction at a particular radius is nonuniform and radially dependent. After making this correction we find

nearly identical constraints as those obtained with the simulation-based model.

We have also derived frequentist confidence intervals on the normalization C using the following method.

We step over a grid of C values between 0 and 1.825. At each point in the grid, we fix C to the same value for

all five clusters and use JACO to find the minimum χ2 allowing the other parameters of the model to float. We

then sum over the five clusters and examine
(
∑ χ2

)
(C). We find that the minimum value of ∑ χ2 occurs at

C = 0. We obtain a 95% confidence interval by determining the value of C where
(
∑ χ2

)
(C)−

(
∑ χ2

)
(0) =

4.0. This results in C = (0, 0.35), which is similar to the constraints obtained with the Bayesian approach.
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Table 1.4: 95% upper bound on the nonthermal pressure fraction F at several radii.

Ncluster 95% Upper Bound Nelson et al. (2014)

C 5 0.44 1.00

F (r2500c) 5 0.06 0.15

F (r500c) 4 0.11 0.26

F (r200c) 1 0.29 0.35

F (r200m) 1 0.35 0.43

1.5.1 Abell 383

We now discuss each cluster individually, starting with Abell 383. This is the closest cluster in our sample at

a redshift of z = 0.188 and has relatively high quality X-ray data. The best fit to XR has a PTE of 0.00086.

This cluster has two independent measurements of the X-ray spectrum in each annular bin from the ACIS-I

and ACIS-S imaging spectrometers. This poor XR quality of fit is driven primarily by differences in these

two measurements in three of the annular bins: the two innermost bins and the outermost bin.

As mentioned in the previous section, the mass inferred from SW is 1.6− 2 times larger than the mass

inferred from XR or XR+SZ. In addition, the X-ray and SZ data disagree with one another. The SZ signal

predicted from the XR determined pressure is systematically lower than what is actually observed in the

region between 200−500 kpc. The X-ray data dominates the XR+SZ+SW fit, and hence underestimation of

both the SZ and lensing signal by the best fit model is apparent in Figure 1.4.

These results further support the idea that Abell 383 is elongated along the line of sight direction [63,

64]. Such a geometry would naturally produce the discrepancies observed in our spherical fits to X-ray, SZ,

and lensing data. The equation of hydrostatic equilibrium implies that the ICM “follows” the gravitational

potential. More specifically surfaces of constant gas density (and pressure) coincide with surfaces of constant

gravitational potential. A consequence of the Poisson equation is that the gravitational potential is more

spherical than the density field that produces it. In general then the gas density will be more spherical than

the total density in dynamically relaxed galaxy clusters. The X-ray and SZ observables are proportional to the

gas density projected along the line of sight, whereas the lensing observable is proportional to the total density

projected along the line of sight. Elongation of the cluster along the line of sight will be more pronounced in

the total density than the gas density, and will therefore result in a larger lensing signal than what is predicted

based on either SZ or X-ray. In addition, elongation will result in a larger SZ signal than what is predicted

from the X-ray, because the SZ observable scales as ρgas whereas the X-ray observable scales as ρ2
gas.

Newman et al. [63] combined X-ray mass estimates with HST strong lensing data, Subaru weak lensing

data, and measurements of the brightest cluster galaxy (BCG) stellar velocity dispersion profile to constrain

a triaxial gNFW model for the dark matter halo assuming a major axis oriented along the line of sight.

The X-ray mass estimates were derived assuming spherical symmetry and hydrostatic equilibrium with a
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constant 10% nonthermal pressure fraction, and were taken to represent the true, spherically averaged three-

dimensional mass. The projected mass profile measured by the lensing data was then used to constrain the

line of sight extent of the dark matter halo η−1
DM,a = 1.97+0.28

−0.16. Morandi et al. [64] performed a joint analysis

of Chandra X-ray and HST strong lensing data in which they fit a fully triaxial model for the dark matter

and gas distribution. They found that the data was well described by a triaxial dark matter halo with axis

ratios ηDM,a = 0.55±0.06 (minor/major) and ηDM,b = 0.71±0.10 (intermediate/major) with the major axis of

the dark matter halo inclined 21.1◦± 10.1◦ from the line of sight direction. They also included a constant

nonthermal pressure fraction in their model and obtained the constraint F = 0.11±0.05. Both of these works

suggest that Abell 383 has a line of sight extent that is roughly a factor of 2 larger than its extent in the plane

of sky.

1.5.2 Abell 611

The peak convergence map is offset from the peak of the X-ray emission for Abell 611. We have chosen

to center on the peak of the X-ray emission. This results in a slightly lower concentration from the lensing

only fit compared to that found in Merten et al. [44]. The effect on the multiwavelength analysis is minimal.

The multiwavelength data is in good agreement under a spherical model with completely thermal pressure

support. This places a significant upper bound on the nonthermal pressure fraction.

1.5.3 MACS J0429.6-0253

MACS J0429.6-0253 also has an offset between the X-ray and lensing determined center. The net result is

the same as in Abell 611. There is slight tension between the X-ray and SZ data. This manifests as an excess

in the measured SZ signal over what is expected based on the XR determined pressure in the region between

500− 900 kpc. This difference is not statistically significant, however, and our model is able to provide a

good quality of fit.

1.5.4 MACS J1311.0-0310 and MACS J1423.8+2404

The multiwavelength data for these two clusters is well described by a spherical model with completely

thermal pressure support. The lack of constraining power on the nonthermal pressure fraction is likely due to

their relatively high redshifts, which results in X-ray data that only extends out to 1.40× r2500c in the case of

MACS J1311.0-0310 and 0.60× r2500c in the case of MACS J1423.8+2404. The X-ray data is necessary to

constrain the gas density which can be degenerate with the nonthermal pressure fraction.

1.5.5 MACS J1532.8+3021

No strong lensing features were found in the HST data for MACSJ1532.8+3021, making it the only cluster

in our sample without gravitational strong lensing constraints. It does have high quality X-ray data that
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extends out to 0.7 × r200c. The X-ray data dominates the multiwavelength fits. The X-ray and SZ data

agree remarkably well outside of ∼ 400 kpc. Within this radius, however, there is a significant discrepancy

between the X-ray and SZ data. This cluster contains a powerful AGN that is almost certainly responsible for

the disagreement in the cluster core [65]. In our multiwavelength analysis, this results in a significant innner

nonthermal pressure component Fin that approaches ' 28% as r → 0. This is the only cluster in our sample

where the F-test prefers an inner nonthermal pressure component.

1.6 Discussion

The multiwavelength analysis results in significant improvement in the constraints on both the concentration

and mass of the five galaxy clusters examined. First, comparing the XR analysis to the XR+SZ analysis, there

is a median reduction of 8% in the uncertainty on the concentration and 35− 40% in the uncertainty on the

total mass over the radial range r2500c − r200c. This type of joint X-ray and SZ analysis is well-suited for ob-

taining mass estimates for high-z clusters, where deep X-ray observations are expensive due to cosmological

dimming. Next, comparing the XR+SZ analysis to the XR+SZ+SW analysis, we find that the median reduc-

tion in the uncertainty on the mass and concentration is minimal, at the 0−10% level. However, the addition

of lensing data allows us to examine whether nonthermal pressure support is necessary to describe the cluster,

and if so, include it in our model, thereby mitigating this known systematic bias in the resulting mass esti-

mate. Finally, comparing the SW analysis to the XR+SZ+SW analysis, we see a dramatic improvement in the

constraints on both the concentration and mass. There is a median reduction of 50−55% in the uncertainty

on the concentration and 50− 70% in the uncertainty on the total mass over the radial range r2500c − r200c.

This results in a 80−85% reduction in the area of the 68% and 95% concentration-mass credible regions.

Compared to hydrodynamical simulations, we observe a distinct lack of nonthermal pressure support in

the subset of five galaxy clusters. We now discuss assumptions implicit to our analysis that may effect these

results.

• We do not include systematic errors for the possible miscalibration of X-ray temperatures. Donahue

et al. [29] performed a comparison of the density and temperature profiles derived from Chandra and

XMM data for the X-ray selected sample of CLASH clusters. They found that the gas density profiles

measured by the two instruments were in excellent agreement. The temperature profiles were also in

good agreement in the cluster core. However, the XMM temperatures systematically declined relative

to the Chandra temperatures with increasing radius. If Chandra overestimates the gas temperature,

then that would result in a underestimation of the level of nonthermal pressure support. We point out

that our analysis includes SZ data, which provides the majority of the constraining power on the gas

temperature at large radii, where the discrepancy between the two X-ray satellites is observed.

• Our model assumes spherically symmetry; however, there is significant evidence from both observation
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[66, 67, 68, 69, 70, 71, 72, 36, 73] and numerical simulation [74, 75, 76, 77, 78, 50, 79, 80, 81, 82]

that galaxy clusters are better approximated as triaxial ellipsoids. Departures from sphericity could

potentially bias our estimate of the nonthermal pressure fraction due to the degenerate manner in which

it affects the multiwavelength observables. Specifically, both nonthermal pressure and line of sight

elongation (or compression) result in differences between the lensing and X-ray/SZ inferred mass. We

have selected clusters that are circular in the plane of the sky as evidenced by both X-ray and SZ

data. Therefore any departure from sphericity would have to occur primarily along the line of sight

direction. If the clusters were elongated along the line of sight, our analysis would overestimate the

level of nonthermal pressure support, similar to what is seen in Abell 383. Only a compression of the

galaxy cluster along the line of sight would result in an underestimation of the nonthermal pressure

support necessary to explain the discrepancy between our results and hydrodynamical simulations.

That is to say the galaxy clusters would have to be oblate ellipsoids with minor axis oriented along the

line of sight direction. However, this geometry would also result in discrepancies between the X-ray

and SZ data under the spherical model, with the pressure inferred from the X-ray data predicting more

SZ signal than what is actually observed. We do not see this type of behavior in any of the clusters.

In general, other than the modest tension observed in MACS J0429.6-0253 and MACS J1532.8+3021,

there is good agreement between the Bolocam SZ and Chandra X-ray data in the regions of radial

overlap for these five clusters.

• Selection effects may also be responsible for the lack of nonthermal pressure support. The X-ray

selected sample of 20 CLASH clusters were chosen to exhibit a high degree of regularity based on

Chandra images of the X-ray surface brightness [16, 83]. In this work, we further restricted our atten-

tion to the five clusters in the sample with the most regular morphology by placing cuts on the X-ray

centroid shift parameter w and the ellipticity of the SZ image. Therefore, our analysis is focused on

very distinct type of cluster, namely ones with gas density and pressure distributions that are circularly

symmetric when projected onto the plane of the sky.

The galaxy cluster Abell 383 illustrates the fact that even the most regular clusters can have significant

elongation along the line of sight. Previous multiwavelength analyses of Abell 383 employed X-ray and

lensing data [63, 64]. The new insight gained from our analysis is that the SZ signal scales in the expected

way for line of sight elongation. The tension between the X-ray and SZ can therefore be used to constrain the

line of sight extent, breaking the degeneracy that exists between line of sight extent and nonthermal pressure

support. Triaxial modeling of the dark matter and ICM mass distributions is necessary to do this properly.

Future work will be directed towards generalizing the JACO software to fit triaxial models and performing a

triaxial analysis of the sample of 20 X-ray selected CLASH clusters.
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1.7 Summary

We have performed a multiwavelength analysis of a subsample of 6 of the 20 X-ray selected CLASH clusters.

The subsample was selected by placing a stringent cut on the X-ray centroid shift parameter w derived from

Chandra measurements of the X-ray surface brightness and also placing a cut on the ellipticity of the SZ

image measured by Bolocam. These criteria select clusters with gas density and pressure distributions that

are circularly symmetric when projected onto the plane of the sky. For each cluster, the JACO software was

used to fit a parametric model to a set of radially binned X-ray spectra measured by Chandra, a radially

binned convergence profile derived from HST/Subaru strong and weak lensing data, and a two-dimensional

SZ image measured by Bolocam. A statistical F-test was employed to determine the minimally complex

model necessary to describe the data. Various subsets of the multiwavelength data were fit to understand the

relative contribution to the resulting constraints on the concentration and total mass of the galaxy cluster.

We find that for 5 of the 6 clusters, a relatively simple model that assumes spherical symmetry, hydrostatic

equilibrium, and entirely thermal pressure support provides a good fit to the multiwavelength dataset. There

are significant improvements (35−40%) in the constraints on the total mass when jointly fitting the X-ray and

SZ data compared to fitting the X-ray data only. There are also significant improvements in the constraints

on both the concentration (50−55%) and total mass (50−70%) when jointly fitting X-ray, SZ, and lensing

data compared to fitting lensing data only.

The five clusters that are well described by the model are used to place an upper bound on the level of

nonthermal pressure support present in the ICM. We find that the nonthermal pressure at r500c is less than 11%

of the total pressure at 95% confidence. This is in tension with state-of-the-art hydrodynamical simulations,

which suggest nonthermal pressure fractions of 26% at r500c for clusters of this mass and redshift. Possible

causes for this discrepancy include X-ray temperature miscalibration, compression of the cluster along the

line of sight direction, and selection effects.

We find that for one of the clusters, Abell 383, the multiwavelength data disagrees in a way that suggests

the cluster is elongated along the line of sight direction. Future work will generalize the model to allow the

cluster to have a triaxial shape and arbitrary orientation. In addition, the software will be upgraded to fit

X-ray surface brightness images in addition to radially binned spectra. Currently the outer radius that we can

reliably constrain the model is limited by the extent of the X-ray spectra, and including the surface brightness

in the fit will extend results to larger radii. After these modifications, the analysis will be expanded to the full

sample of 20 X-ray selected CLASH clusters.
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Figure 1.4: The SZ and lensing data compared to the best fit minimally complex model as a function of pro-
jected radius relative to r200c. Note that the model is determined from a fit to the full multiwavelength dataset.
The top portion of each panel displays the data and best fit model. The bottom portion of each panel displays
the normalized residuals (i.e., [data−model]/error). The upper panel is the azimuthally averaged SZ image.
Note that we fit the two-dimensional SZ image, but show the radial profile here for visualization purposes.
Recall that the SZ effect results in a temperature decrement, and the positive excursion at intermediate radii is
due to the filtering applied during data processing. The bottom panel is the convergence profile reconstructed
by the SaWLens algorithm from both strong and weak lensing constraints, converted to a surface mass density
profile Σ = κΣcrit. The X-ray data are presented on the following pages.
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Figure 1.5: The measured cluster X-ray spectra compared to the best fit minimally complex model for
Abell 383. Note that the model is determined from a fit to the full multiwavelength dataset. Each panel
is a different detector/annular bin. The detector name and the inner and outer radii relative to r200c are anno-
tated in the upper right corner. The top portion of each panel displays the data and best fit model. The bottom
portion of each panel displays the normalized residuals (i.e., [data−model]/error).
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Figure 1.6: The measured cluster X-ray spectra compared to the best fit minimally complex model for
Abell 611 and MACS J0429.6-0253.
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Figure 1.7: The measured cluster X-ray spectra compared to the best fit minimally complex model for
MACS J1311.0-0310 and MACS J1423.8+2404.
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Figure 1.8: The measured cluster X-ray spectra compared to the best fit minimally complex model for
MACS J1532.8+3021.
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Part II

The Characterization of the

Multiwavelength Sub/millimeter

Inductance Camera
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Chapter 2

Model for the Responsivity and Noise of
Microwave Kinetic Inductance Detectors

2.1 Notation

The analysis that follows will be simplified by using complex arithmetic and phasor notation. We denote the

voltage of a sinusoid of angular frequency ω = 2π f as

V (t) = Re
[
V̂ (t)e jωt] , (2.1)

where V̂ (t) is the time-dependent, complex amplitude. We will use sinusoids to describe the microwave

signals that probe the MKIDs, and will refer to them as carriers or carrier tones.

We will often use the greek symbol δ to denote small, time-dependent fluctuations about the mean value,

defined as

δx(t) = x(t)−< x(t)> , (2.2)

where x =< x(t)> is the time averaged value and δx � x. For simplicity, we will often suppress the explicit

dependence on time in the notation, writing δx(t) as δx and < x(t)> as x.

We denote the one-sided power spectral density (PSD) of the real quantity x(t) as Sx(ν). This is defined

as

Sx(ν) = lim
T→∞

1
T
|x̃(ν)|2 , (2.3)

where T is the sampling period, ν ≥ 0 is the temporal frequency, and x̃(ν) is the Fourier transform of x(t).

The Fourier transform is defined as

x̃(ν) = F {x(t)}=
∫

∞

−∞

x(t)e−2π jtν dt (2.4)
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with the inverse relation given by

x(t) = F−1 {x̃(ν)}=
∫

∞

−∞

x̃(ν)e2π jνtdν . (2.5)

We will occasionally label the PSD as S source
δx . This should be read as the power spectral density of the fluctua-

tions δx that were originally caused by “source”.

Finally, we denote the one-sided cross power spectral density (CPSD) between the real quantities x(t) and

y(t) as Sx,y(ν). This is defined as

Sx,y(ν) = lim
T→∞

1
T

x̃∗(ν)ỹ(ν) , (2.6)

where ∗ denotes the complex conjugate.

2.2 Responsivity

In this section we present the theoretical model that is used to predict MKID responsivity. We start by

considering the signal of interest: flux from an unresolved astronomical source. We follow this signal through

the instrument and present the theoretical considerations necessary to describe its propagation. We end with

the quantity that is directly measured by the readout electronics: the complex transmission through the system

at microwave frequencies. This can be linked to the source flux in five steps:

1. Antenna theory relates source flux to optical power incident on the detector.

2. The generation-recombination equation converts incident optical power to changes in the quasi-particle

density of the thin superconducting film.

3. Mattis-Bardeen theory relates quasi-particle density to the surface impedance of the resonator.

4. Circuit theory relates the surface impedance to the frequency and quality factor of the resonator.

5. Network transmission theory relates the frequency and quality factor to the complex transmission near

resonance.

At the end we will address several complications that arise due to nonlinear kinetic inductance, nonuniform

absorption of optical power, heating of the substrate, nonequilibrium dynamics, and direct pick-up of optical

power by the resonator.

2.2.1 Antenna Theory

Consider the case where we have a beam-filling, black-body load at the cryostat window and a single-moded

reception element feeding the MKID so that we can apply the throughput theorem AΩ = λ 2, where A is
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the area of the beam, Ω is the beam solid angle, and λ is the wavelength. The optical power in a single

polarization from this load is given by

Popt = ηoptkB (Tload +Texc)∆νmm , (2.7)

where ηopt is the total optical efficiency of the system (accounting for all sources of loss between the cryostat

window and the detector), Tload is the temperature of the beam-filling, black-body load, Texc is the excess

loading due to power reaching the detector from the inside of the cryostat referred to the cryostat window,

and ∆νmm is the effective bandwidth of the detector. In the case where we are looking at the sky, the load

temperature can be expressed as

Tload = fspillTamb +(1− fspill)Tsky

= fspillTamb +(1− fspill)
(

1− e−τ/ sin e
)

Tatm . (2.8)

That is, we assume that some fraction fspill of the beam exiting the cryostat spills onto ambient temperature

surfaces. This spill-over fraction includes the inefficiency (1−ηtel) of the telescope. The remaining beam

reaches the sky where the effective load due to atmospheric emission depends on the temperature of the

atmosphere, the optical depth at zenith τ , and the airmass 1/sine (assuming a plane-parallel atmosphere)

where e is the elevation (altitude).

Of interest is the case where the telescope scans across an unresolved astronomical source with flux S.

The change in load temperature due to this source is given by

Tsrc =
Aeff (1− fspill)e−τ/ sin eS

2kB
, (2.9)

where Aeff is the effective area of the telescope and the factor of 1/2 accounts for the fact that our detectors

are only sensitive to a single polarization. The throughput theorem for a single-moded system can be used to

calculate the effective area as Aeff = λ 2/Ωbeam where λ is the bandpass weighted wavelength and Ωbeam is the

beam solid angle.

2.2.2 Generation-Recombination Equation

At zero temperature all of the conduction electrons in a superconductor are found in Cooper pairs, a state

in which two electrons are bound together by the electron-phonon interaction [84]. The binding energy

of a Cooper pair is equal to 2∆ ≈ 3.52kBTc where ∆ is the gap energy for a single excitation and Tc is

the critical temperature of the superconductor. The binding energies of aluminum and niobium — the two

superconductors that we employ in the MUSIC detectors — are approximately 0.36 meV and 2.80 meV,

respectively. Although the binding is weak, it prevents inelastic scattering of the Cooper pairs with ions in
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(a) (b) (c)

Figure 2.1: Diagram of the processes considered in the generation-recombination equation. (a). Thermal
generation: a phonon with energy Ω ≥ 2∆ breaks apart a Cooper pair and produces two quasi-particles.
(b). Optical generation: a photon with energy hν ≥ 2∆ breaks apart a Cooper pair and produces two quasi-
particles. (c). Recombination: two quasi-particles combine to form a Cooper pair and emit a phonon with
energy Ω ≥ 2∆.

the lattice, resulting in the characteristic zero resistance.

Even at zero temperature superconductors have nonzero AC impedance. If an AC electromagnetic field

is applied to the superconductor, then the Cooper pairs will oscillate with the field creating an AC current.

Since the Cooper pairs have mass it will take the field some finite time to accelerate them. This results in a

phase-lag between the current and the electric field that has a mathematical form equivalent to an inductance.

We call it kinetic inductance because the inductive energy is stored in the kinetic energy of the Cooper pairs.

Note that kinetic inductance only occurs with high mobility charge carriers. Unbound electrons do not have

a significant kinetic inductance (at microwave frequencies) because they scatter so often that energy cannot

be stored in their motion.

At finite temperatures some fraction of the conduction electrons are thermally excited from the Cooper

pair state. These unbound electrons, known as quasi-particles, can inelastically scatter with ions in the lattice.

We refer to the process by which Cooper pairs are thermally excited into quasi-particles thermal generation.

In this process a lattice vibration (phonon) with energy greater than the binding energy breaks apart a Cooper

pair creating two quasi-particles. The reverse process in which two quasi-particles combine to form a Cooper

pair and emit a phonon can also occur. We refer to this as recombination. Finally, photons with energy

hν > 2∆ can break apart Cooper pairs, resulting in the optical generation of quasi-particles. The three

processes of thermal generation, optical generation, and recombination are illustrated in Figure 2.1

The first step in modeling the propagation of signal through the MKID is to relate incoming optical

power to the quasi-particle density of the superconducting thin film. This can be done using the generation-

recombination equation, which is simply the statement that over a given amount of time the change in the

number of quasi-particles is equal to the number that were generated thermally plus the number that were

generated optically minus the number that recombined. Writing this in differential form we have

∂ nqp

∂ t
= ΓG,th +ΓG,opt −ΓR , (2.10)

where Γ denotes the rate at which a particular process occurs in units of number of quasi-particles per unit
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volume per unit time. In a steady state, ∂nqp/∂ t = 0 and Equation (2.10) becomes

ΓG,th +ΓG,opt = ΓR . (2.11)

We will now calculate the rate at which these three processes occur. The optical generation rate is just

ΓG,opt =
2
V

ηphPopt

2∆
=

ηphPopt

V ∆
, (2.12)

where ηph is the efficiency with which photons are converted to quasi-particles, Popt is the optical power

incident on the MKID from the antenna, and V is the volume of the absorbing section. The factor of 2 in

the numerator accounts for the fact that two quasi-particles are created for every broken Cooper pair. The

efficiency factor ηph is intrinsic to pair-breaking detectors and will depend primarily on the frequency of the

incident power. Consider the absorption of a single photon of frequency νmm. If the energy of the photon

is exactly equal to the binding energy hνmm = 2∆, then the entirety of the photon’s energy goes into the

creation of quasi-particles and ηph = 1. For hνmm > 2∆, only 2∆ will go into the creation of quasi-particles

and the remainder will go into the kinetic energy of those quasi-particles. Hence, we expect a monotonic

decrease in ηph between hνmm = 2∆ and hνmm = 4∆, at which point it should reach ηph ≈ 50%. For hνmm > 4∆

the efficiency is expected to level off or slightly increase. This is because the quasi-particles created by

the photon will relax to energies E ∼ ∆ through inelastic scattering with the lattice, which results in phonon

emission. The timescale for relaxation τcascade ' 1−10 ns is much shorter than the timescale for recombination

τqp [85, 86]. When hνmm > 4∆ the phonons produced via relaxation can have energy Ω≥ 2∆, and therefore can

break Cooper pairs creating secondary quasi-particles. In the limit that hνmm � 4∆ the energy will cascade

down through multiple pair breakings. Guruswamy et al. [87] performed a proper simulation of ηph(νmm) for

Al superconductors over a wide range of film thicknesses. They measure overall trends with νmm that are

consistent with the somewhat simplistic explanation that was just given. They confirmed previous results that

showed ηph ≈ 0.58 in the limit of thick films and highly energetic photons hνmm � 4∆ [88, 85]. However,

they found that the loss of nonequilibrium phonons to the substrate becomes significant for thin films, and

that this degrades the pair breaking efficiency relative to the thick film value. For the MUSIC detectors with

film thickness d ≈ 50 nm and observing bands hνmm = [3.3, 4.9, 6.2, 7.5]×∆, their simulations predict that

ηph = [0.60, 0.50, 0.46, 0.43].

The recombination rate is defined as

ΓR =− 1
V

(
dNqp

dt

)
R

. (2.13)

If each individual quasi-particle recombines at a rate τ−1
qp then the change in the the total number of quasi-

particles Nqp per unit time will be (
dNqp

dt

)
R

=−Nqp

τqp

. (2.14)
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Solving this equation results in a exponential decay in the total number of quasi-particles with time

Nqp(t) ∝ exp(−t/τqp) . (2.15)

We refer to τqp as the quasi-particle lifetime. It is given by the equation

1
τqp

= Rnqp +
1

τmax

, (2.16)

where the recombination coefficient R is the recombination rate per unit density of quasi-particles and τ−1
max

is the maximum quasi-particle lifetime. Note that the physical mechanism responsible for saturation of

the lifetime at τmax is not fully understood, but this behavior is observed experimentally [89, 90, 91]. The

expression for ΓR is then

ΓR = Rn2
qp +

nqp

τmax

. (2.17)

We see that the rate due to pair recombination scales as n2
qp. This is exactly what one would expect since two

quasi-particles have to “find each other” in order to recombine.

Plugging Equations (2.12) and (2.17) into the generation-recombination equation yields

ΓG,th +
ηphPopt

V ∆
= Rn2

qp +
nqp

τmax

. (2.18)

We still need to determine the thermal generation rate ΓG,th. Now the total number of quasi-particles is just the

sum of the number generated thermally and the number generated optically, i.e., nqp = nqp, th +nqp, opt. Consider

the limit of no optical loading. Then Popt → 0 and nqp, opt → 0, giving us

ΓG,th = Rn2
qp, th +

nqp, th

τmax

. (2.19)

The above expression is useful because the thermal quasi-particle density nqp, th is completely determined by

the temperature and gap energy. We will derive an analytical expression for it in the following section.

Inserting Equation (2.19) back into Equation (2.18) yields

ηphPopt

V ∆
= R

(
n2

qp −n2
qp, th

)
+

1
τmax

(nqp −nqp, th) . (2.20)

We can then use the quadratic formula to obtain an explicit expression for the quasi-particle density

nqp =

[
ηphPopt

RV ∆
+n2

qp, th +
1

Rτmax

(
nqp, th +

1
4Rτmax

)]1/2

− 1
2Rτmax

. (2.21)

Here we have discarded the second root since it implies negative values. In the limit that the optical generation

of quasi-particles dominates over thermal generation and that the recombination of quasi-particles dominates
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over the decay due to τmax this becomes

nqp ≈
(

ηphPopt

RV ∆

)1/2

for nqp � nqp,th and τqp � τmax (2.22)

and we find that the quasi-particle density scales as the square root of the incident optical power. Note that in

all analysis that follows we use the full expression given in Equation (2.21).

Going forward we will be interested in how small changes in incident optical power — due to scanning

across an astronomical source, for example — translate to changes in the quasi-particle density. This is given

by

δnqp =
∂nqp

∂Popt

δPopt

=
ηphδPopt

V ∆(2Rnqp + τ−1
max )

, (2.23)

where we have evaluated the partial derivative using Equation (2.20). It is traditional to then define

1
τ eff

qp

= 2Rnqp +
1

τmax

. (2.24)

We call τ eff
qp the effective quasi-particle lifetime. It is the timescale for the decay of a small perturbation to the

quasi-particle population. Note that it differs from τqp only in the factor of two in front of the recombination

term. Equation (2.23) can then be written as

δnqp =
τ eff

qp ηphδPopt

V ∆
. (2.25)

We will discuss the effective quasi-particle lifetime further in Section 2.3.2.1.

2.2.3 Mattis-Bardeen Theory

In 1958 Mattis and Bardeen used the BCS theory of superconductivity to describe the response of a super-

conductor to an AC electromagnetic field [92]. We use Mattis-Bardeen theory to determine the relationship

between the quasi-particle density of a thin superconducting film and its surface impedance, which is a cru-

cial step in understanding how the detectors operate. To do this we follow the analysis of Gao [93]. Let

ω = 2π f denote the angular frequency of the field and T the temperature of the superconductor. We can

introduce a complex conductivity σ = σ1 − jσ2 to describe the superconducting state [94]. Then for h̄ω < ∆
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the following integrals hold:

σ1 =
2σn

h̄ω

∫
∞

∆

[ f (E)− f (E + h̄ω)]
(
E2 +∆2 + h̄ωE

)√
(E2 −∆2)

[
(E + h̄ω)2 −∆2

] dE (2.26)

σ2 =
σn

h̄ω

∫
∆

∆−h̄ω

[1−2 f (E + h̄ω)]
(
E2 +∆2 + h̄ωE

)√
(∆2 −E2)

[
(E + h̄ω)2 −∆2

] dE . (2.27)

Here ∆ is the gap energy, σn is the normal state conductivity, and f (E) is the distribution function for quasi-

particles. Assuming that the quasi-particles are in thermal equilibrium, f (E) is given by the Fermi-Dirac

distribution

f (E) =
1

1+ exp
(

E−µ∗

kBT

) . (2.28)

The chemical potential µ∗ in Equation (2.28) is used to account for optically generated quasi-particles [95].

Essentially we are assuming that the quasi-particles are in thermal equilibrium with the lattice, but are not in

chemical equilibrium. The assumption of thermal equilibrium should be valid even for optically generated

quasi-particles because the timescale for an excited quasi-particle to relax through scattering processes is

much shorter than timescale for recombination. We will return to this assumption in Section 2.2.9. The

density of excited states in a superconductor is given by

Ns(E) =
N0E√

E2 −∆2
, (2.29)

where N0 is the single-spin density of electron states at the Fermi energy level. Equation (2.29) implies that

energies below the gap |E| < ∆ are forbidden and that there is an increase in the density of states just above

the gap. This occurs because the total number of available energy states is constant, and the states that are

below the gap in a normal metal are shifted out. The quasi-particle density is obtained by integrating the

product of f (E) and Ns(E) over all energies

nqp = 4N0

∫
∞

∆

E f (E)√
E2 −∆2

dE . (2.30)

The final equation required is the self-consistent integral for the band gap

1
N0VBCS

=
∫ h̄ωD

∆

1−2 f (E)√
E2 −∆2

dE , (2.31)

where ωD is the Debye frequency and VBCS is the interaction strength in the BCS model [84]. The limit of

weak electron-phonon coupling holds for aluminum so that kBTc � h̄ωD. By examining Equation (2.31) in
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the limit that T → 0 one can derive the expression

∆0 −∆

∆0
= 2

∫
∞

∆

f (E)√
E2 −∆2

dE , (2.32)

which relates the gap at temperature T < Tc to the gap at zero temperature ∆0 = ∆(T = 0). At finite temper-

atures the quasi-particle population suppresses the gap relative to the zero temperature value.

In the limit that kBT � ∆, h̄ω � ∆, and exp(−(E −µ∗)/(kBT )) � 1 the integrals expressed in Equa-

tions (2.30), (2.32), (2.26), and (2.27) can be simplified to the following analytical formulae:

nqp = 2N0
√

2πkBT ∆exp
(
−∆−µ∗

kBT

)
(2.33)

∆

∆0
= 1−

√
2πkBT

∆
exp
(
−∆−µ∗

kBT

)
= 1− nqp

2N0∆
(2.34)

σ1

σn
=

4∆

h̄ω
exp
(
−∆−µ∗

kBT

)
sinh(ξ )K0 (ξ ) (2.35)

σ2

σn
=

π∆

h̄ω

[
1−2exp

(
−∆−µ∗

kBT

)
exp(−ξ )I0 (ξ )

]
, (2.36)

where ξ = h̄ω/2kBT is a dimensionless frequency and I0 and K0 are the zero’th order modified Bessel func-

tions of the first and second kind, respectively. We now evaluate the three conditions to determine if the

analytical formula are appropriate for the MKIDs in MUSIC. We are interested in examining the behavior of

our detectors over a range of temperatures from Tlb = 200 mK to Tub = 500 mK and under optical loads that

have temperatures up to Tload,ub = 300 K when referred to the cryostat window.

kBT � ∆

The critical temperature of aluminum is Tc = 1.2 K. Therefore Tlb = 0.17 Tc and Tub = 0.42 Tc. Over this

range of temperatures ∆ does not differ from ∆0 by more than 5% so we may write ∆ = ∆0 = 1.76kBTc.

We then have that kBTlb/∆0 = 0.10 and kBTub/∆0 = 0.25.

h̄ω � ∆

The gap energy of aluminum is ∆0 = 0.18 meV, which corresponds to a frequency of 45 GHz. The

MKIDs have resonant frequencies between 3−4 GHz. Therefore, h̄ω/∆0 = 0.08.

exp(−(E −µ∗)/(kBT ))� 1

Since we are always considering E ≥∆ in the integrals above, we can use exp(−(∆−µ∗)/(kBT )) as an

upper bound. This quantity can be approximated by Equation (2.33) with the quasi-particle density nqp

inferred from Equation (2.22) for our expected optical loading. We are interested in obtaining an upper

bound so we assume that the detectors are 100% efficient and have a bandwidth of 45 GHz. Then Tload,ub

results in 185 pW of absorbed power. Assuming N0 = 1.07× 1029 J−1
µm−3 and R = 9.4 µm3 s−1,

we obtain exp(−(∆−µ∗)/(kBT ))≤ 0.02.

The second and third conditions are certainly satisfied. The first condition will begin to break down as the
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Figure 2.2: The ratio of ∂σ(T,nqp)
∂nqp

calculated using Equations (2.40)−(2.41) to ∂σ(T )/∂T
∂nqp(T )/∂T calculated using

Equations (2.37)−(2.39) as a function of temperature. Blue (red) denote the real (imaginary) part of the
complex conductivity.

temperature approaches Tub. This exercise suggests that the analytical formula provide a good approximation

for the behavior of our detectors over all operating conditions of interest, but to obtain accurate conclusions

the full integrals should be used, especially at large temperatures.

We are interested in two scenarios. The first is a dark scenario in which the number of optically generated

quasi-particles is negligible. This can be accessed experimentally by placing an aluminum cover over the

detector array and cooling it down to sub-Kelvin temperatures. In this case we can set µ∗ = 0 and obtain

explicit expressions for all quantities of interest in terms of the temperature

nqp,th(T ) = 2N0
√

2πkBT ∆0 exp
(
− ∆0

kBT

)
(2.37)

σ dark
1 (T )

σn
=

4∆0

h̄ω
exp
(
− ∆0

kBT

)
sinh(ξ )K0 (ξ ) (2.38)

σ dark
2 (T )

σn
=

π∆0

h̄ω

[
1−

√
2πkBT

∆0
exp
(
− ∆0

kBT

)
−2exp

(
− ∆0

kBT

)
exp(−ξ )I0 (ξ )

]
. (2.39)

The second scenario is where the detectors are illuminated and the number of optically generated quasi-

particles is significant compared to the number of thermally generated quasi-particles. In this scenario we

write Equations (2.26) and (2.27) in terms of nqp in order to suppress the dependence on the chemical potential.
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This yields

σ1(T,nqp)

σn
=

1
N0h̄ω

√
2∆0

πkBT
sinh(ξ )K0 (ξ )nqp (2.40)

σ2(T,nqp)

σn
=

π∆0

h̄ω
− π

2N0h̄ω

(
1+

√
2∆0

πkBT
exp(−ξ )I0 (ξ )

)
nqp . (2.41)

The important result here is that the complex conductivity is a linear function of the quasi-particle den-

sity. We can take the partial derivative of Equations (2.40) and (2.41) with respect to nqp to determine the

conversion factor ∂σ/∂nqp between changes in quasi-particle density and changes in the complex conductiv-

ity. We can do the same for the dark scenario by evaluating ∂σ/∂nqp = (∂σ/∂T )/(∂nqp/∂T ) using Equa-

tions (2.37)−(2.39). The ratio of these two conversion factors as a function of temperature is shown in

Figure 2.2 for a typical MUSIC detector. The two are equal to within 20% over the temperature range of

interest. This implies that theoretically the change in the complex conductivity that results from the thermal

generation of a quasi-particle (through a change in the bath temperature) is approximately equivalent to the

change that results from the optical generation of a quasi-particle. This equivalence enables calibration of

the optical response by measuring the thermal response in a dark scenario. If this were not the case, the

optical response would have to be measured directly using a calibrated black-body source, which is much

more challenging. The equivalence between thermally and optically generated quasi-particles was confirmed

experimentally in an early version of the MUSIC detectors that consisted of Al CPWs on a sapphire substrate

[96]. More recently Janssen et al. [97] performed a rigorous comparison of thermal and optical response in

two hybrid NbTiN-Al MKIDs and found them to be equal to within a factor of two. The factor of two discrep-

ancies were larger than their measurement uncertainties, and they suspected that the discrepancies were due

to the inability to accurately determine ∆0 and ηph, parameters necessary to compare the thermal and optical

response within their model. We will have to address similar difficulties with our calibration procedure.

Examining Equations (2.40) and (2.41) we see that the complex conductivity of the superconductor will

depend on the normal state conductivity σn = 1/ρn. This can be obtained by measuring the sheet resistance of

the superconductor above Tc. It can also be predicted theoretically. However, as we will see in the following

sections it is the fractional change in the complex conductivity — not the absolute value — that is important in

predicting detector response. We define this change with respect to the dark value at zero temperature. In the

dark scenario, as T → 0 the quasi-particle density vanishes exponentially, and as a result so too does the real

component of the complex conductivity σ dark
1 (0) = 0. The imaginary component exponentially approaches a

finite value of σ dark
2 (0) = (π∆0/h̄ω)σn due to the kinetic inductance of the Cooper pairs. Therefore

σ0 = σ
dark

1 (0)− jσ dark
2 (0) =− j

π∆0

h̄ω
σn . (2.42)
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Figure 2.3: Left: Mattis-Bardeen prediction for a typical MUSIC resonator with frequency fres = 3.2 GHz and
gap energy ∆0 = 0.21 meV. Right: the ratio of frequency to dissipation response is shown in purple and the
angle between the quasi-particle direction and the direction normal to the resonance curve is shown in green.

We can then write
δσ

|σ |
≡ σ −σ0

|σ0|
= (κ1 + jκ2)nqp ,

where

κ1(T,ω,∆0) =
1

πN0∆0

√
2∆0

πkBT
sinh(ξ )K0 (ξ ) (2.43)

κ2(T,ω,∆0) =
1

2N0∆0

[
1+

√
2∆0

πkBT
exp(−ξ )I0 (ξ )

]
. (2.44)

The functions κ1 and κ2 are plotted as a function of temperature in the left panel of Figure 2.3 for val-

ues of ω and ∆0 typical of a MUSIC detector. These functions act as the conversion between changes in

quasi-particle density and changes in the complex conductivity. We examine the ratio of κ2 to κ1 in the right

panel of Figure 2.3. This corresponds to the ratio of the imaginary and real response to the generation of

quasi-particles. The imaginary response is intrinsically larger than the real response, and their ratio increases

approximately linearly with temperature. The MUSIC detectors operate at a temperature T = 240 mK where

κ2/κ1 ≈ 4. We can further simplify the presentation of Equation (2.43) by writing it as

δσ

|σ |
= |κ|e jΨnqp , (2.45)

with κ =
√

κ2
1 +κ2

2 and Ψ = arctan(κ2/κ1). This makes it clear that changes in quasi-particle density will

appear in a well defined direction in the complex plane. The angle Ψ is also shown in the right panel of

Figure 2.3. At our operating temperature Ψ(240 mK)' 78◦ so that the response is only slightly rotated from

the imaginary direction.
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We note that the quantity δσ/|σ | is small, even for quasi-particle densities corresponding to temperatures

as large as 0.5 Tc. This is due to the suppression of the quasi-particle density by the factor exp(−∆0/kBT )≈

exp(−1.76 Tc/T ). At temperatures T ≤ 0.5 Tc we have that κ1nqp < 0.01 and κ2nqp < 0.10 for the typical

MUSIC detector [98]. Therefore, going forward we will only consider up to first order in δσ/|σ | in the

development of the model.

2.2.4 Complex Conductivity and Surface Impedance

In general, the relationship between the surface impedance Zs and the complex conductivity σ of a super-

conductor is determined by an integral over the Mattis-Bardeen kernel that must be performed numerically.

However, simple relationships emerge in several limiting cases. The thin film limit should hold for the MU-

SIC detectors. In the thin film limit, the film thickness d is on the order of the electron mean free path l and

is much less than the effective penetration depth λeff. In this limit we have that

Zs = Rs + jωLs =
1

(σ1 − jσ2)d
, Thin film limit (2.46)

where Rs is the surface resistance in units of Ω/� and Ls is the kinetic inductance of the superconducting

thin film in units of H/�. Using this equation we can equate first order perturbations to Zs and σ to obtain

the relationship

δZs

Zs
=−δσ

σ
. (2.47)

Since we are defining changes in the complex conductivity relative to σ0 this becomes

δZs

Zs,0
=−δσ

σ0

δRs + iωδLs

iωL dark
s (0)

=−δσ1 − iδσ2

−iσ dark
2 (0)

δLs

L dark
s (0)

− i
δRs

ωL dark
s (0)

=− δσ2

σ dark
2 (0)

− i
δσ1

σ dark
2 (0)

, (2.48)

where we have used the fact that R dark
s (0) = σ dark

1 (0) = 0. Equating the imaginary parts on either side of

Equation (2.48) yields
δRs

ωL dark
s (0)

=
δσ1

σ dark
2 (0)

= κ1(T,ω,∆0)nqp . (2.49)

Similarly equating the real parts yields

δLs

L dark
s (0)

=− δσ2

σ dark
2 (0)

= κ2(T,ω,∆0)nqp , (2.50)
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which says that the change in inductance is in the opposite direction as the change in σ2. Note that Equa-

tions (2.49) and (2.50) can be combined into the following concise formula

δZs

|Zs|
=

δσ

|σ |
= |κ(T,ω,∆0)|e jΨ(T,ω,∆0)nqp . (2.51)

The properties of the resonator that we can easily measure are the frequency fres and quality factor Qi. We

would like to relate these measurable properties to the quasi-particle density of the thin superconducting film.

For an AC current at angular frequency ω the impedance of the resonant circuit is given by

Z = R+ jωL+
1

jωC
, (2.52)

where R is the resistance, L is the inductance, and C is the capacitance. The capacitance is set by the geometry

of the resonator. The resistance is set by the surface resistance Rs that originates from quasi-particles in the

thin superconducting film. The inductance has contributions from both the magnetic inductance Lm due to

the geometry of the resonator and the surface inductance of the thin superconducting film due to the kinetic

inductance Ls of the Cooper pairs

L = Lm +Ls . (2.53)

Hence Equation (2.52) can be written as

Z = Rs + jω(Lm +Ls)+
1

jωC
. (2.54)

It is useful to define a kinetic inductance fraction

α =
Ls

L
=

Ls

Ls +Lm
. (2.55)

The frequency and quality factor of the resonant circuit are given by the well known equations

fres =
1

2π
√

LC
1
Qi

=
R

ωL
. (2.56)

Consider small perturbations in the resistance δRs and kinetic inductance δLs due to changes in the quasi-
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particle density. This will result in a fractional shift in the frequency of the resonator

δ fres

fres

=

√
L√

L+δLs
−1

=

(
1+

δLs

L

)−1/2

−1

=−1
2

δLs

L

=−α

2
δLs

Ls
. (2.57)

Similarly the shift in the resonator loss is given by

δ
1
Qi

=
R+δRs

ω (L+δLs)
− R

ωL

=
R+δRs

ωL

(
1− δLs

L

)
− R

ωL

=
δRs

ωL
− RδLs

ωL2 − δRsδLs

ωL2

= α
δRs

ωLk
, (2.58)

where in the last line we have dropped the δRsδLs term since it is the product of two small numbers and also

dropped the RδLs/ωL2 term since at temperatures well below Tc the resistance of the superconductor will be

much less than the inductance and thus R/ωL will be small.

Again, referencing these changes relative to the value at zero temperature and zero optical loading, we

can combine Equations (2.50) and (2.57) to write

δ fres

fres

≡ fres(T )− f dark
res (0)

f dark
res (0)

=−α

2
κ2(T,ω,∆0)nqp . (2.59)

Similarly we can combine Equations (2.49) and (2.58) to write

δ
1
Qi

≡ 1
Qi(T )

− 1
Q dark

i (0)
= ακ1(T,ω,∆0)nqp . (2.60)

According to Mattis-Bardeen theory the loss at zero temperature and zero optical loading should be zero.

However, we find that at low temperatures the quality factors of our resonators saturate at a value on the

order of 105, suggesting the presence of an additional loss mechanism. To account for this we include

1/Qi,0 ≡ 1/Q dark
i (0) as a parameter in our model and define the quasi-particle induced shift relative to this

value. Saturation of the quality factor at low temperatures is observed by other groups as well [99, 100,

101]. Possible causes include dielectric loss, loss at the surface of the superconductor, or a population of
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nonthermal quasi-particles.

Equations (2.59) and (2.60) give the desired relationship between the measurable quantities — the fre-

quency and loss of the resonator — and the quasi-particle density of the superconducting thin film. The final

step is to examine how the frequency and loss of the resonator are probed by the readout electronics.

2.2.5 Resonant Circuit

The MUSIC readout electronics perform fast measurements of the complex transmission through the system

at microwave (RF) frequencies using a homodyne mixing technique. The basic principle is illustrated in Fig-

ure 2.4, and the actual implementation is pictured in Figure 2.5. A detailed discussion of the implementation

can be found in Duan [102].

Consider a single carrier tone at microwave frequency f = fBB + fLO. The readout electronics measure the

complex amplitude V̂ ( f , fBB) of the carrier tone at the output of the system. This can be expressed as

V̂ ( f , fBB) = I( f , fBB)+ jQ( f , fBB)

= S res
21( f )S RF

21( f )S BB
21( fBB)A0eiφ0 , (2.61)

where I and Q are the in-phase (real) and quadrature-phase (imaginary) components of the complex ampli-

tude, A0 and φ0 are the amplitude and phase of the carrier tone at the input of the system, and S res
21, S RF

21,

and S BB
21 are the complex forward transmission through the resonance, the RF electronics, and the baseband

electronics, respectively. See the caption of Figure 2.4 for further explanation.

The equivalent circuit for the MKID consists of an RLC tank circuit capacitively coupled to a feedline.

The derivation of the scattering matrix for this circuit has been worked out by a number of authors [103, 93,

104]. The end result is the following expression for the complex forward transmission through the resonance

S res
21( f ) = 1− Q/Qc

1+2 jQ f− fres
fres

, (2.62)

where fres is the resonant frequency, Q is the quality factor, and Qc is the coupling quality factor. The total

loss is the sum of the loss internal to the resonator and the loss due to coupling to the feedline, or

1
Q

=
1
Qi

+
1

Qc
, (2.63)

where Qi is the internal quality factor. We will use the terms resonator loss and resonator dissipation inter-

changeably to refer to the quantity 1/Qi.

Equation (2.62) maps the carrier frequency f into a circle in the complex plane as shown in the right

panel of Figure 2.6. The diameter of the circle is Q/Qc. If the carrier tone is placed far from resonance,

S res
21(±∞) = 1 and the resonance has no effect on its transmission. If the carrier tone is tuned directly to the



52

DAC ADC

Figure 2.4: Diagram illustrating the basic principle behind the MUSIC readout electronics. Two digital-to-
analog converters (DACs) output the real (in-phase or I) and imaginary (quadrature-phase or Q) components
of a pre-programmed waveform that consists of a superposition of sinusoids (carriers or carrier tones) at base-
band frequencies (−225 to 225 MHz). The absolute magnitude of the FFT of an example waveform is shown
in the upper left panel; it has the appearance of a “frequency comb”. The FFT of this waveform is also shown
in the complex plane in the lower left panel. Note that the phases of the carriers are randomized in order to
prevent clipping and utilize as much of the dynamic range of the DACs as possible. The I and Q components
are up-mixed with a local oscillator (LO) to microwave (RF) frequencies and sent through the cryostat on
coaxial cable. The baseband frequencies are chosen so that each carrier is centered on the resonant frequency
of an MKID after mixing. The MKIDs modulate both the amplitude and phase of the carriers. The carriers
are then amplified by a cryogenic high-electron-mobility transistor (HEMT) and down-mixed with the same
LO back to baseband frequencies. The I and Q components are digitized by two analog-to-digital converters
(ADCs). A field-programmable gate array (FPGA) is used to FFT the raw ADC timestreams, select the bins
corresponding to the carrier tones, and low-pass filter and decimate them to the desired sampling rate of 100
Hz. The final output is the I and Q components of all of the frequency bins that contain carrier tones, sampled
at 100 Hz. An example of the output at a single time sample is shown in the right column. The difference
between the left and right columns provides a measurement of the overall gain and phase delay through the
system.
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Figure 2.5: Top: Schematic of the MUSIC readout electronics board. Bottom: Picture of one of the MUSIC
readout electronics board. Each board output 144 carrier tones and measures the complex amplitude of these
tones at the output of the system at a rate of 100 Hz. Two boards are used to probe each detector array.

resonant frequency, S res
21( fres) = 1−Q/Qc = Q/Qi and it is maximally attenuated.

The squared magnitude of the transmission near resonance is given by

|S res
21( f )|2 = 1− 1− (Q/Qi)

2

1+4Q2
(

f− fres
fres

)2 . (2.64)

It is a Lorentzian dip from unity with depth 1−Q2/Q2
i and full width at half maximum FWHM = 2∆ fres =

fres/Q. We denote the half width at half maximum as ∆ fres and also refer to it as the resonator bandwidth. The

magnitude |S res
21( f )| and argument θ = arg(S res

21( f )) are shown in the left panel of Figure 2.6.

It is useful to introduce the variables

x =
f − fres

fres

, y = Qx =
f − fres

2∆ fres

, (2.65)

where x is the fractional detuning of the carrier tone from the resonant frequency and y is the normalized



54

Figure 2.6: The magnitude (upper left), phase (lower left), and complex transmission (right) near resonance.
Stars denote the location of the resonant frequency. The cross symbols in the right panel are separated by
∆ f = 10 kHz with increasing f corresponding to clockwise motion along the circle. The resonance curve
changes from the solid black line to the dashed gray line when the optical loading is increased. Note that we
measure the phase with respect to the complex origin, whereas many others measure the phase with respect to
the center of the resonance circle. All curves were calculated using Equation (2.62) with parameters typical
of a MUSIC resonator under sky loading: fres = 3.2 GHz, Q = 40,000, and Q/Qc = 0.75.

detuning in terms of the full width at half maximum of the resonance. Equation (2.62) then becomes

S res
21( f ) = 1− Q/Qc

1+2 jy
. (2.66)

In the previous section we showed that a change in the quasi-particle density results in a change in both

the frequency and dissipation of the resonator. We now calculate how these perturbations δ fres
fres

and δ
1

Qi
affect

the transmission of the carrier tone. This is given by

δS res
21 =

(
∂S res

21

∂
1

Qi

)
δ

1
Qi

+

(
∂S res

21
∂x

)
δx

=

(
∂S res

21

∂
1

Qi

)
δ

1
Qi

−
(

∂S res
21

∂x

)
δ fres

fres

, (2.67)

where in the last line we have used the fact that δx ≈ − δ fres
fres

. The partial derivatives are evaluated using
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Equation (2.62) to be

∂S res
21

∂
1

Qi

=
Q2/Qc

(1+2 jy)2 ,
∂S res

21
∂x

=
2 jQ2/Qc

(1+2 jy)2 (2.68)

and therefore

δS res
21 =

Q2/Qc

(1+2 jy)2

(
δ

1
Qi

−2 j
δ fres

fres

)
. (2.69)

If the carrier is centered directly on the resonant frequency, then y = 0 and the response is at a maximum. In

this case perturbations to the resonator frequency (dissipation) will result in purely imaginary (real) changes

in the transmission. The factor (1+2 jy)−2 encodes the effect of detuning on the small signal response. It is

helpful to write it in the form (1+2 jy)−2 = χy e jφy with

χy =
1

1+4y2 , φy =−2arctan(2y) . (2.70)

If the carrier is mis-centered, then the response will be degraded by a factor χy. The frequency and dissipation

response will still be orthogonal, and will still be oriented tangential and normal to the resonance curve.

However, this “frequency and dissipation basis” will be rotated with respect to the real and imaginary basis

by an angle φy. It is traditional to define a coupling efficiency

χc =
4 Qi

Qc(
1+ Qi

Qc

)2 , (2.71)

which takes a maximum value of 1 when the coupling quality factor is matched to the internal quality factor,

or Qc = Qi. Equation (2.69) can then be written as

δS res
21 =

1
4

Qiχcχy

(
δ

1
Qi

−2 j
δ fres

fres

)
e jφy . (2.72)

This equation suggest three steps should be taken in order to maximize response to a fixed change in frequency

and dissipation. The sources of loss intrinsic to the resonator — including the loss sourced by optically

generated quasi-particles due to the background loading — should be minimized so that Qi is large. The

coupling to the feedline should then be designed so that under typical loading conditions Qc ≈ Qi ensuring

that χc ≈ 1. Finally the carrier tone should be centered on the resonant frequency so that χy ≈ 1. The coupling

efficiency χc and tuning efficiency χy are plotted as a function of their respective arguments in Figure 2.7.

Equation (2.72) holds for slow perturbations to the resonator frequency and dissipation. For fast pertur-

bations we must account for the resonator ring-down response. This effect can be described in the Fourier
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Figure 2.7: The coupling efficiency (left) and tuning efficiency (right). The FWHM of the resonator is defined
as fres/Q.

domain as [105]

δ S̃ res
21(ν) =

1
4

QiχcχyHres(ν , f )

(
δ Q̃i

−1
(ν)−2 j

δ f̃res

fres

(ν)

)
e jφy . (2.73)

where Hres(ν , f ) is the resonator transfer function given by

Hres(ν , f ) =
1−S res

21( f +ν)

1−S res
21( f )

. (2.74)

If the carrier tone is centered on resonance this reduces to

Hres(ν , fres) =
1

1+ j ν

∆ fres

(2.75)

and the resonator acts as a low-pass filter with bandwidth ∆ fres =
fres
2Q . We are interested in signals at temporal

frequencies ν ≤ 50 Hz (the readout electronics sample at a rate νs = 100 Hz). Since ∆ fres & 20 kHz for the

MUSIC resonators, the transfer function can safely be ignored for our purposes.

We now consider perturbations to the frequency and dissipation that are sourced by perturbations in the

quasi-particle density δnqp. In this case Equation (2.72) becomes

δS res
21 =

1
4

Qiχcχyα [κ1(T,ω,∆0)+ jκ2(T,ω,∆0)]e jφyδnqp

=
1
4

Qiχcχyα|κ(T,ω,∆0)|e j
(
Ψ(T,ω,∆0)+φy

)
δnqp . (2.76)

This can easily be converted into changes in the amplitude of the carrier tone using Equation (2.61). This is

the quantity that is digitized by the readout electronics, which means that we have followed the propagation
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of signal through the entire instrument. We are now in a position to derive an expression for the response to an

astronomical source. Before doing that, we should address several complications to the model just presented.

2.2.6 Nonlinear Kinetic Inductance

As we will discuss in Section 2.3, increasing the power of the microwave probe signal decreases the ampli-

tude of both additive electronics noise and TLS noise relative to astronomical signal. Hence, one can improve

sensitivity by pushing to higher readout powers. However, as the power increases the MKID enters a non-

linear regime where the frequency and/or quality factor of the resonator are dependent on the power of the

microwave probe signal. There are several mechanisms by which the power of the probe signal can effect the

resonance; however, one mechanism that has been known to exist [106, 107] and that is also relatively easy

to model is a nonlinear kinetic inductance.

The derivation and notation below are based on the analysis of Swenson et al. [108]. We start by expand-

ing the kinetic inductance in terms of the current

Ls(I) = Ls(0)
(

1+
I2

I2
?

+ . . .

)
. (2.77)

Odd terms are dropped in the expansion, because we do not expect the kinetic inductance to depend on the

direction of the current. The quantity I? sets the scale for the onset of nonlinearity. We would like to determine

the effect that the quadratic term has on the transmission near resonance. Let fres(I = 0) ≡ fres,0 denote the

resonant frequency in the low-power limit and let ∆ fres ≡ fres − fres,0 denote the shift relative to this value due

to the quadratic term. Examining Equation (2.57) it clear that the fractional shift ∆x is given by

∆x =
∆ fres

fres,0

=−α

2
I2

I2
?

,=− E
E?

(2.78)

where we have used the equation E = LI2/2 for the energy stored in a resonator and defined a characteristic

energy E? = LI2
?/α . The fractional detuning is given by

x =
f − fres

fres

=
f − fres,0 −∆ fres

fres,0 +∆ fres

=

(
f − fres,0

fres,0

− ∆ fres

fres,0

)(
1+

∆ fres

fres,0

)−1

= (x0 −∆x)(1−∆x)

= x0 −∆x , (2.79)

where in the last line we keep only terms up to first order in x0 and ∆x, since we are always operating in a

regime where x0 � 1 and ∆x � 1.
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We would like to determine x for a given value of low-power detuning x0 and the microwave carrier power

P. We start with the standard definition for the quality factor of a resonator as the maximum energy stored

divided by the energy dissipated in one cycle, or

Qi =
E

Pdiss/2π fres

=⇒ E =
PdissQi

2π fres

, (2.80)

where Pdiss is the power dissipated by the resonator. We can derive an expression for Pdiss through conservation

of energy considerations. The microwave probe signal can either be reflected, transmitted, or absorbed by the

resonator. Therefore

P = |S res
11|2P+ |S res

21|2P+Pdiss

Pdiss = P
(
1−|S res

11|2 −|S res
21|2
)
. (2.81)

The reflection is related to the transmission via

S res
11 = S res

21 −1 =− Q/Qc

1+2 jQx
, (2.82)

where we have used Equation (2.62) for the forward transmission. Taking the squared magnitude of Equa-

tion (2.62) and Equation (2.82) and inserting into Equation (2.81) yields

Pdiss =
2Q2

QiQc

1
1+4Q2x2 P . (2.83)

Therefore the energy stored in the resonator is

E =
2Q2

Qc

1
1+4Q2x2

P
2π fres

(2.84)

and the fractional shift due to the quadratic term is

∆x =−2Q2

Qc

1
1+4Q2x2

P
2π fresE?

. (2.85)

Inserting this into Equation (2.79) yields

x0 = x− 2Q2

Qc

1
1+4Q2x2

P
2π fresE?

, (2.86)

which is an implicit equation for the power-shifted detuning x. In order to clean up the presentation of this

equation we define the nonlinearity parameter

a =
2Q3

Qc

P
2π fresE?

(2.87)
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Figure 2.8: Left: magnitude of the forward transmission for several values of the nonlinearity parameter
a. Right: forward transmission in the complex plane for a = 2.0. Stars denote the power-shifted resonant
frequency. Regions of bifurcation are designated with dashed lines. In these cases the measured curve will
depend on whether one is sweeping upward or downward in frequency and there will be a discontinuity at
the location of the arrow. The dotted line is the third (unstable) root corresponding to intermediate stored
energies. All curves were calculated using Equations (2.66) and (2.89) with parameters typical of a MUSIC
resonator under sky loading: fres,0 = 3.2 GHz, Q = 40,000, and Q/Qc = 0.75.

as well as y = Qx and y0 = Qx0. Equation (2.86) can then be written as

y0 = y− a
1+4y2 , (2.88)

which is a cubic equation for the normalized detuning y. Rearranging gives

4y3 −4y0y2 + y− (y0 +a) = 0 . (2.89)

Solving for the roots it is clear that there is a critical value of the nonlinearity parameter, acrit = 4
√

3/9 ≈ 0.77.

For a ≤ acrit there is only one purely real solution for all values of y0. For a > acrit there is range of y0 values for

which there are three purely real solutions, corresponding to three possible values for the resonant frequency

and stored energy. This means that multiple internal states exist for a single value of the carrier frequency

and power. Only two of these states, corresponding to the smallest and largest stored energies, are stable.

Therefore we say that the resonator has undergone bifurcation.

Figure 2.8 shows resonance curves for several values of a. As the carrier power is increased, the Lorentzian

shape becomes distorted and compressed towards lower frequencies. When the carrier power exceeds the

value corresponding to acrit the resonator undergoes bifurcation. Two different curves will be measured de-

pending on whether one is sweeping upward or downward in frequency, and a discontinuity appears at the
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Figure 2.9: Left: Prediction for κ̃1 and κ̃2. The solid, long-dash, short-dash, and dash-dot lines correspond to
a =0.0, 0.2, 0.4, and 0.6 respectively. Right: the ratio of frequency to dissipation response is shown in purple
and the angle between the quasi-particle direction and the direction normal to the resonance circle is shown
in green.

frequency where the resonator transitions from the bifurcated to nonbifurcated state.

In this model, the transmission near resonance is still given by Equation (2.66), but now y is determined

by Equation (2.88). This means that the resonance will still trace out a circle in the complex plane; although,

if one is operating in a regime where a > acrit then the full circle will be inaccessible due to bifurcation.

The model also predicts that the depth of the resonance is constant with carrier power. Therefore, if one

measures a non-circular resonance curve or a power-dependent resonance depth, then it is likely that some

other mechanism is causing a nonlinear dissipation (recall that in this model only the resonator frequency is

nonlinear). One example of such a mechanism is heating of the quasi-particle population by the microwave

readout power [100, 109].

We now examine how fractional perturbations to the frequency δ fres,0/ fres,0 and dissipation δ
1

Qi
translate

into perturbations to the complex transmission under the nonlinear model. We can write

δS res
21 =

(
∂S res

21

∂
1

Qi

)
δ

1
Qi

+

(
∂S res

21
∂x

)
δx

=

(
∂S res

21

∂
1

Qi

)
δ

1
Qi

+

(
∂S res

21
∂x

)[(
∂x

∂
1

Qi

)
δ

1
Qi

+

(
∂x
∂x0

)
δx0

]
, (2.90)

where we now assume that x depends on 1/Qi (first term in the square brackets), since a change in the quality

factor will change the energy stored in the resonator, thereby changing the resonant frequency through the

nonlinear kinetic inductance. Inserting the derivatives presented in Equation (2.68) and using the fact that
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δx0 =−δ fres,0/ fres,0, we have

δS res
21 =

1
4

Qiχcχy

(
δ

1
Qi

+2 j

[(
∂x

∂
1

Qi

)
δ

1
Qi

−
(

∂x
∂x0

)
δ fres,0

fres,0

])
e jφy . (2.91)

The derivatives ∂x/∂
1

Qi
and ∂x/∂x0 are evaluated using Equation (2.88) to be

∂x
∂

1
Qi

=− 2a

(1+4y2)2 +8ay
=−

2aχ2
y

1+8ayχ2
y

(2.92)

∂x
∂x0

=

(
1+4y2

)2

(1+4y2)2 +8ay
=

1
1+8χ2

y ay
. (2.93)

Inserting these into Equation (2.91) yields

δS res
21 =

1
4

Qiχcχy

[(
1− j

4aχ2
y

1+8ayχ2
y

)
δ

1
Qi

− j
2

1+8ayχ2
y

δ fres,0

fres,0

]
e jφy . (2.94)

We see that it is no longer the case that the frequency and dissipation response are orthogonal. While the

frequency response is still confined to the direction tangent to the resonance curve, the dissipation response

now leaks into the direction tangent to the resonance curve as well. We also see that detuning the carrier

tone from the power shifted resonant frequency has interesting, asymmetric effects on the response. The

factor of (1+8ayχ2
y )

−1 implies that for f > fres the frequency response will be attenuated, while for f < fres

the frequency response will be amplified. The further the resonance is driven into the nonlinear regime, the

greater this attenuation and amplification.

We now consider changes in frequency and dissipation sourced by changes in the quasi-particle density.

This is given by

δS res
21 =

1
4

Qiχcχyα

[(
1− j

4aχ2
y

1+8ayχ2
y

)
κ1(T,ω,∆0)+ j

1
1+8ayχ2

y
κ2(T,ω,∆0)

]
e jφyδnqp

=
1
4

Qiχcχyα |κ̃(T,ω,∆0,a,y)|e j
(
Ψ̃(T,ω,∆0,a,y)+φy

)
δnqp , (2.95)

where we have defined κ̃ = κ̃1 + jκ̃2 and Ψ̃ = arctan(κ̃2/κ̃1) with

 κ̃1(T,ω,∆0,a,y)

κ̃2(T,ω,∆0,a,y)

=

 1 0
−4aχ2

y
1+8ayχ2

y

1
1+8ayχ2

y

×
 κ1(T,ω,∆0)

κ2(T,ω,∆0)

 . (2.96)

If we are centered on the power-shifted resonant frequency so that y = 0, this simplifies to

δS res
21 =

1
4

Qiχcα |κ̃(T,ω,∆0,a,0)|e jΨ̃(T,ω,∆0,a,0)δnqp (2.97)
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with  κ̃1(T,ω,∆0,a,0)

κ̃2(T,ω,∆0,a,0)

=

 1 0

−4a 1

×
 κ1(T,ω,∆0)

κ2(T,ω,∆0)

 . (2.98)

In Figure 2.9 we show the predicted values of κ̃1, κ̃2, their ratio, and the corresponding angle Ψ̃ for a typical

MUSIC detector operated at y = 0 and a = [0.0, 0.2, 0.4, 0.6]. We see that as the carrier power is increased

the quasi-particle response normal to the resonance curve remains fixed, while the quasi-particle response

tangential to the resonance curve declines. This results in a decrease in the overall magnitude of the response

and a clockwise rotation of the quasi-particle direction. The reduction in response should be taken into

account in readout power optimization. Assuming that the carrier is tuned to the resonant frequency so that

y = 0 and Equation (2.98) applies, then when a > κ2/4κ1 the dissipative frequency response will be larger

than the reactive frequency response. Since κ2/κ1 ' 4 for our resonators at base temperature, this corresponds

to a value of the nonlinearity parameter a ' 1, which is just past the point of bifurcation. As the carrier power

is increased beyond this point, the quasi-particle direction rotates past the direction normal to the resonance

curve. This means that the frequency response will occur in the opposite direction as it does in the low power

regime, so that a small increase in optical loading results in an increase in the resonator frequency.

2.2.7 Impedance Mismatch

Equation (2.66) does not provide an adequate description of the transmission near the MUSIC resonators. We

observe a small rotation of the resonance circle relative to the transmission far from resonance that results in

an asymmetric line shape, even in the low-power regime. This asymmetry has been observed by a number

of authors [93, 110, 111, 112]. Khalil et al. [113] demonstrated that asymmetry can arise from a mismatch

between the input and output transmission line impedance. This introduces an imaginary component to the

coupling quality factor

1

Q̂c
=

1

|Q̂c|
e jφc = Re

{
1

Q̂c

}
+ Im

{
1

Q̂c

}
(2.99)

and results in the following expression for the complex transmission near resonance

S res
21( f ) = 1− Q/Q̂c

1+2 jy

= 1− 1
1+2 jy

Q

|Q̂c|
e jφc

= 1− 1
1+2 jy

Q
Qc cosφc

e jφc . (2.100)
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Here we have defined

1
Qc

≡ Re
{

1

Q̂c

}
=

cosφc

|Q̂c|
(2.101)

so that the internal quality factor is still given by Equation (2.63).

Equation (2.100) allows for a rotation φc of the resonance circle relative to the transmission off resonance,

as observed. The small signal response is then given by

δS res
21 =

1
4cosφc

Qiχcχy

[(
1− j

4aχ2
y

1+8ayχ2
y

)
δ

1
Qi

− j
2

1+8ayχ2
y

δ fres,0

fres,0

]
e j
(
φy+φc

)
, (2.102)

which reduces to Equation (2.94) in the case that φc = 0. If we are considering fluctuations in quasi-particle

density this becomes

δS res
21 =

1
4cosφc

Qiχcχyα |κ̃(T,ω,∆0,a,y)|e j
(
Ψ̃(T,ω,∆0,a,y)+φy+φc

)
δnqp . (2.103)

Going forward we will absorb the (cosφc)
−1 term into the coupling efficiency

χc ≡
χc

cosφc
(2.104)

in order to simplify notation.

2.2.8 Nonantenna Response

In the above analysis we have assumed that the entirety of the response is due to optical power coupled

through the antenna. However, there are a number of other (unwanted) mechanisms through which the

detectors might respond to optical power. A not necessarily exhaustive list includes

• Radiation heats the substrate, resulting in a thermal response.

• The IDC acts as an antenna and couples radiation to the MKID.

• Radiation is directly absorbed by the aluminum section of the MKID.

Evidence for all three of these mechanisms has been observed in engineering grade detector arrays. The

nonantenna response will have a beam that, in a time-reverse sense, terminates on either the interior of the

cryostat, room temperature surfaces, or the sky. This will result in an increase in loading which will in-

crease photon noise and degrade responsivity. Significant effort has been made to understand and mitigate

the nonantenna response. There is strong evidence that in the final production arrays substrate heating and

capacitive coupling are minimal, and the nonantenna response is dominated by direct absorption in the alu-

minum section.
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Including the effects of direct absorption in our full instrument model is relatively straightforward. The

optical power from a beam-filling, black-body load at the cryostat window (i.e. Equation (2.7)) will now be

the sum of the power coupled through the antenna and the power directly absorbed, or

Popt = Popt,ant +Popt,dir

= ηopt,antkB (Tload,ant +Texc,ant)∆νmm,ant +ηopt,dirkB (Tload,dir +Texc,dir)∆νmm,dir , (2.105)

where we have expressed the powers in terms of effective Rayleigh-Jeans temperatures. In the case where we

are looking at the sky, the load temperatures are parameterized as

Tload,ant = fspill,antTamb +(1− fspill,ant)
(

1− e−τant/ sin e
)

Tatm (2.106)

and similarly

Tload,dir = fspill,dirTamb +(1− fspill,dir)
(

1− e−τdir/ sin e
)

Tatm . (2.107)

That is we assume independent spillover fractions and optical depths for antenna response and direct absorp-

tion.

We can make some reasonable assumptions about the direct absorption. It is most likely unpolarized.

It is expected that the efficiency will scale with the area of the aluminum section ηopt,dir ∝ A. Finally, it is

extremely broadband, with a lower cutoff at ∼ 90 GHz set by the gap energy of aluminum and an upper

cutoff at ∼ 420 GHz set by the metal mesh filter. This means that ∆νmm,dir is 10-15 times greater than ∆νmm,ant

and that even if the efficiency ηopt,dir is small the fractional load from direct absorption can be substantial.

We use “dark resonators” — resonators not coupled to an antenna — to calibrate the nonantenna response.

These resonators are interspersed evenly throughout the focal plane. In the final detector arrays, they con-

stitute 8% of the total number of resonators. Since ηopt,ant = 0 for dark resonators, the optical power is given

by

P dark
opt = ηopt,dirkB (Tload,dir +Texc,dir)∆νmm,dir . (2.108)

The calibration procedure enables us to measure the quantities η∆νmm, Texc, and fspill for each resonator. This

corresponds to ηopt,dir∆νmm,dir, Texc,dir, and fspill,dir for the dark resonators. We take the average of these quantities

over all dark resonators and then correct the values measured for the antenna-coupled resonators to isolate

the antenna response. This procedure is discussed in greater detail in Section 3.2.

2.2.9 Substrate Heating and Nonequilibrium Dynamics

As mentioned in Section 2.2.8, radiation can heat the silicon substrate, elevating its temperature above that

of the copper focal plane unit. Let Tsub denote the temperature of the substrate and Tbath the temperature of the
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focal plane unit as measured by the Array GRT. The power that must be absorbed by the substrate in order to

maintain the elevated temperature is given by a thermal conductance function of the form

Psub = g(T n
sub −T n

bath) , (2.109)

where g is the thermal coupling constant and n is the thermal coupling power-law exponent, the exact value

of which will depend on the coupling model. We can solve this equation to obtain an expression for the

temperature of the substrate

Tsub =

(
T n

bath +
Psub

g

)1/n

=
(
T n

bath + P̃sub

)1/n
, (2.110)

where we have defined P̃sub = Psub/g since the expression depends only on the ratio of Psub and g.

Substrate heating was substantial in several generations of engineering grade arrays, dominating the

nonantenna response measured by the dark resonators. In order to model the substrate heating we used

Equation (2.110) and assumed that the temperature T appearing in the Mattis-Bardeen equations was equal

to Tsub. This added 1+Nload parameters to the overall model since a different value of Psub was required for

each loading condition under consideration.

Eventually the problem of substrate heating was remedied by connecting (via gold wirebonds) a border

of gold metal film on the detector tiles to the copper on the focal plane unit, thereby improving the thermal

conductance. After adding the gold wirebonds, measurements of the resonant frequency as a function of tem-

perature of a set of all Nb test resonators located on an engineering grade array placed strong upper limits on

the temperature difference Tsub−Tbath . 3 mK for all operating conditions of interest. To briefly summarize this

measurement: since the critical temperature of Nb is 9.2 K, the number of thermally and optically generated

quasi-particles is negligible for the test resonators at the bath temperatures and optical wavelengths at which

we operate. Their resonant frequency is entirely set by the temperature-dependent resonant response of a

thin layer of two-level systems (TLS) on the substrate. TLS are discussed in greater detail in Section 2.3.2.2,

suffice it to say that the temperature dependence of the TLS induced resonant frequency shift is theoretically

understood, is approximately linear with a positive slope (see Equation (2.179)), and is observed in the test

resonators. Therefore, we can effectively use the test resonators as “TLS thermometers”. We found that their

resonant frequencies did not change when we switched from a LN2 blackbody load to a room-temperature

blackbody load at the cryostat window. If there was substrate heating, the resonant frequency would increase

between the LN2 and room temperature load. We use this fact to place an upper limit of 1.5 mK on the differ-

ence in substrate temperature between the LN2 and room-temperature load. If we then make the reasonable

assumption that the change in substrate temperature between a 0 K and LN2 load is not larger than the change

between a LN2 and room temperature load, we obtain the quoted Tsub −Tbath . 3 mK.
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Figure 2.10: Experimental evidence for quasi-particle heating. Top Left: The dissipation 1/Qi as a function
of bath temperature and loading for a typical MUSIC detector. Black denotes negligible optical loading. Blue
(red) denote a 77K (293K) beam-filling, black-body load in front of the cryostat window. The circles are mea-
sured data points and the lines are best-fit models. Error bars are less than the radius of the circle. The dashed
line is a model without heating and the solid line is a model with heating. Bottom Left: Normalized residuals
(i.e., (data−model)/error) for the best-fit models shown in the plot above. Unfilled circles correspond to the
model without heating and filled circles correspond to the model with heating. Top Right: The factor that
converts quasi-particle density to dissipation as a function of temperature. The dashed pink line corresponds
to the model without heating and the solid blue and red lines correspond to the model with heating. Bottom
Right: The temperature as a function of bath temperature. The legend is the same as in the plot above.
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But even after adding the gold wirebonds, the frequency and dissipation of the resonators as a function

of temperature and loading exhibited behavior that could not be explained by the full instrument model

without including an effect akin to substrate heating. This is illustrated in Figure 2.10. At low temperatures

(250 mK < Tbath < 300 mK) and under both 77 K and 293 K loads the measured dissipation is constant

as a function of temperature. The model without substrate heating is unable to replicate this behavior, it

actually predicts a decrease in the dissipation with increasing temperature. This is because under the model

the number of optically generated quasi-particles is much greater than the number of thermally generated

quasi-particles at low temperatures. So as the temperature increases, the total number of quasi-particles

remains roughly constant, but the factor that converts quasi-particles to complex conductivity κ1 decreases.

Not until one reaches a temperature at which the thermally generated quasi-particles become significant

does the dissipation begin to increase. We do not observe this curvature, the measured dissipation and the

frequency are flat at low temperatures for nearly all of the resonators. In order to replicate this behavior the

model without substrate heating moves toward unphysical parameter values — particularly very low values

of τmax — and even then it yields poor fits.

We include heating in our model to explain this behavior. However, our interpretation is not that the

substrate is sitting at an elevated temperature, but rather the quasi-particles. That is, we assume that under

heavy optical loading, the quasi-particles are out of equilibrium with the lattice phonons. We further assume

that the quasi-particles can be described by a Fermi-Dirac distribution at an effective temperature T , which is

set by the thermal conductance formula

T =

(
T n

bath +
Pe

g

)1/n

=

(
T n

bath +
ηePopt

g

)1/n

, (2.111)

where we have made the reasonable assumption that the power maintaining the elevated quasi-particle tem-

perature is proportional to the absorbed optical power, Pe = ηePopt. This adds two additional parameters n and

η̃e = ηe/g to the model.

2.2.10 Nonuniform Absorption

Incident optical power from the antenna will not be absorbed uniformly along the overlap between the

Nb/Si3N4 microstrip and the Al section of the MKID. There will be some position-dependent power absorp-

tion profile that will result in a position-dependent distribution of quasi-particles. Since the incident photons

are above the pair-breaking energy, the Al can be treated as a normal metal in the calculation of the power ab-

sorption profile. The result will depend only on the resistivity and dimensions of the Al and therefore can be

constrained by a single measurement of the surface resistance. The position-dependent quasi-particle density

can then be determined by solving a position-dependent generation-recombination equation that includes the
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=
2p

ReZ
0

a(0) exp(��l) sinh(+�(l � z)) .

(13)

We may now calculate the power dissipated per unit length of the line:

dP (z)
dz

= |I(z)|2 ReZ

= P
inc

4ReZ
ReZ

0

|exp(��l) sinh(+2�(l � z))|2 .

=  (z)P
inc

. (14)

As an example, the normalized absorption profile  (z)/l is plotted below in Fig. 1,
assuming microstrip parameters that are typical of our MKID designs, and a length
l = 1 mm.
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Figure 1: Photon absorption profile in a 1 mm long Nb/SiO
2

/Al microstrip line at 250 GHz.
The layer thicknesses are taken to be 2000 Å, 4000 Å, and 400 Å, for the Niobium, SiO

2

,
and Al, respectively. For this thickness, the aluminum resistivity and sheet resistance are
calculated to be 2.2 µ⌦ cm and 0.55 ⌦, respectively. The exponential decay of the incident
wave is clearly seen, with small standing–wave ripples superimposed.

3

Figure 2.11: Power absorption profile ψ(z) for a 1 mm long Nb/SiO2/Al microstrip line at 250 GHz. Taken
from Zmuidzinas [114].

effects of diffusion. We briefly outline this procedure below following the analysis of Golwala [98].

Let z denote position along the length of the Al section, so that 0 ≤ z ≤ l. Power from the antenna is

incident on the microstrip from z = 0 and the microstrip terminates in an open circuit at z = l. Define the

power absorption profile ψ(z) as the fractional power absorbed per unit length

dP
dz

= ψ(z)Popt,ant ,
∫ l

0
ψ(z)dz = 1 . (2.112)

Note that not all power incident from the microstrip will be absorbed by the Al section. In the definitions

above we have lumped the absorption efficiency ηabs into the overall optical efficiency ηopt,ant presented in

Equation (2.105) for Popt,ant. Zmuidzinas [114] derives an analytical expression for ψ(z), assuming perfect

reflection at z = l and neglecting impedance mismatch at the microstrip and aluminum interface. We use this

analytical expression and a measurement of the Al sheet resistance at 4 K to determine ψ(z). An example

power absorption profile is shown in Figure 2.11.

If the distribution of quasi-particles is nonuniform then the quasi-particles will tend to diffuse out of high

density regions and into low density regions. This process is described by a diffusion current

J(r, t) =−D∇nqp(r, t) , (2.113)
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where we assume that the diffusion constant D is independent of position. We can write a general continuity

equation to describe the local conservation of quasi-particles

∂ nqp

∂ t
+∇ ·J = ΓG,th(r, t)+ΓG,opt(r, t)−ΓR(r, t) , (2.114)

where the now position-dependent optical and thermal generation rates act as source terms that adds quasi-

particles into the system, and the recombination rate acts as a sink term that removes quasi-particles from the

system. The diffusion length is expected to be much greater than either the width w or thickness d of the Al

section, so it is safe to assume that the quasi-particle density is constant over the cross-sectional area. This

reduces Equation (2.114) to the one-dimensional partial differential equation

∂ nqp(z, t)
∂ t

−D
∂ 2nqp(z, t)

∂ z 2 = ΓG,th(z, t)+ΓG,opt(z, t)−ΓR(z, t) . (2.115)

If we consider the steady state behavior where ∂ nqp

∂ t = 0, then Equation (2.115) yields a position-dependent

version of the generation-recombination equation

ηphPopt,antψ(z)+ηph popt,dir

∆
=−DA

∂ 2nqp(z)
∂ z 2 +RA

[
n2

qp(z)−n2
qp,th

]
+

A
τmax

[nqp(z)−nqp,th] , (2.116)

where popt,dir = Popt,dir/l is the power directly absorbed per unit length and A = wd is the cross-sectional area.

Here we are making the reasonable assumptions that the direct absorption and thermal generation occur

uniformly throughout the aluminum section. Given ψ(z) the differential equation above can be solved nu-

merically to obtain nqp(z). The boundary conditions for the equation are

∂nqp(z)
∂ z

∣∣∣∣
z=0,l

= 0 , (2.117)

which physically correspond to the fact that the quasi-particles cannot diffuse out of the Al section.

It can be shown [103] that a position-dependent quasi-particle distribution is weighted by the square of

the resonator current distribution in the determination of the resonator response. For a λ/4 transmission

line resonator the current has a standing wave distribution at resonant frequency that is given by I(z) =

I(0)cos(πz/2L) where L is the total length of the transmission line. The current is a maximum at the shorted,

inductive end (z=0) and a minimum at the open, capacitive end (z=L). As a result the “effective” quasi-particle

density is calculated as

nqp =

∫ l
0 cos2

(
πz
2L

)
nqp(z)dz∫ l

0 cos2
(

πz
2L

)
dz

. (2.118)

The MUSIC resonators are of a hybrid design in which the inductive portion is a distributed CPW transmis-

sion line and the capacitive portion is a nearly lumped element IDC. The current should be approximately
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uniform over the length of Al section, since it occupies a small fraction of the total length of the inductive

portion at the high current, shorted end. We assume that cos2
(

πz
2L

)
≈ 1 for 0 ≤ z ≤ l. The mean quasi-particle

density over the length of the Al section is then the quantity that determines resonator response. We sep-

arate the expression for the position-dependent quasi-particle density nqp(z) into the mean value nqp and a

position-dependent factor φ(z):

nqp(z) = nqpφ(z) ,
1
l

∫ l

0
φ(z)dz = 1 . (2.119)

We can then integrate Equation (2.116) over the length of the Al section to obtain an implicit expression for

the mean density

ηph (Popt,ant +Popt,dir)

∆
=−DAnqp

∫ l

0

∂ 2φ(z)
∂ z2 dz+RV

[
n2

qp

l

∫ l

0
φ

2(z)dz−n2
qp,th

]
+

V
τmax

[nqp −nqp,th] . (2.120)

The diffusion term disappears due to the boundary condition

∫ l

0

∂ 2φ(z)
∂ z2 dz =

∂φ(z)
∂ z

∣∣∣∣l
0
= 0 . (2.121)

If we then introduce the correction factor

ζ =
1
l

∫ l

0
φ

2(z)dz (2.122)

we obtain the relatively simple equation

ηphPopt,ant +ηphPopt,dir

∆
= RV

(
ζ n2

qp −n2
qp,th

)
+

V
τmax

(nqp −nqp,th) . (2.123)

An explicit expression for nqp can then be obtained by applying the quadratic formula

nqp =

[
ηphPopt,ant +ηphPopt,dir

ζ RV ∆
+

1
ζ

n2
qp,th +

1
ζ Rτmax

(
nqp,th +

1
4ζ Rτmax

)]1/2

− 1
2ζ Rτmax

, (2.124)

where again we have discarded the second root since it corresponds to negative values. Comparing to Equa-

tion (2.21) we see that, in regards to the steady-state quasi-particle density, the nonuniform absorption essen-

tially just increases the recombination constant R by a factor ζ . The factor of ζ−1 in front of the n2
qp,th term

also means that the influence of the thermal quasi-particle population is suppressed due to the nonuniform

absorption.

We now consider the effect of nonuniform absorption on the quasi-static, small-signal response. Let

δPopt,ant and δPopt,dir denote small changes in power absorbed through the antenna and the power directly

absorbed, respectively. This will result in a small position-dependent change in the quasi-particle density
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δnqp(z) = nqpδφ(z). Performing a perturbation analysis of Equation (2.116) yields

ηphδPopt,antψ(z)+ηphδPopt,dir/l
∆

=−DAnqp

∂ 2(δφ(z))
∂ z 2 +Anqp

[
2Rnqpφ(z)+

1
τmax

]
δφ(z) , (2.125)

which is a differential equation similar to Equation (2.116) but now for the small signal response profile

δφ(z). We would like to derive an expression for the mean response over the length of the Al section, since

this is the quantity that we actually measure. Integrating both sides of Equation (2.125) from 0 to l and

dropping the diffusion term, again due to boundary conditions, yields

ηph (δPopt,ant +δPopt,dir)

∆
=V nqp

1
l

∫ l

0

(
2Rnqpφ(z)+

1
τmax

)
δφ(z)dz

=V
(

2Rnqpζδ +
1

τmax

)
nqp

1
l

∫ l

0
δφ(z)dz

=V
(

2Rnqpζδ +
1

τmax

)
δnqp . (2.126)

Here we have defined the mean change in quasi-particle density

δnqp =
1
l

∫ l

0
δnqp(z)dz

=
1
l

nqp

∫ l

0
δφ(z)dz (2.127)

and also the correction factor

ζδ =

∫ l
0 φ(z)δφ(z)dz∫ l

0 δφ(z)dz
, (2.128)

which is the average value of φ(z) when weighted by the small signal response profile δφ(z). Equa-

tion (2.126) is nonlinear because the factor that scales δPopt to δnqp depends on ζδ , which depends on δφ(z),

which depends on δPopt through the differential Equation (2.125). We would like to find the linear expression

that must hold in the limit of very small changes. If we make the reasonable ansatz that the fluctuation in the

quasi-particle density at a given position is proportional to the mean quasi-particle density at that position or

δφ(z) ∝ φ(z) then ζδ = ζ and Equation (2.126) becomes

ηph (δPopt,ant +δPopt,dir)

∆
=V

(
2ζ Rnqp +

1
τmax

)
δnqp . (2.129)

We recover linearity so that the small signal responsivity only depends on the steady-state properties as de-

sired. In addition, a single parameter ζ completely characterizes the effects of nonuniform absorption and dif-

fusion. We point out that in order to calculate ζ one must numerically solve the differential Equation (2.116)
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for the quasi-particle profile φ(z). If we simply redefine the effective quasi-particle lifetime as

1
τ eff

qp

= 2ζ Rnqp +
1

τmax

(2.130)

then we obtain

δnqp =
τ eff

qp ηph (δPopt,ant +δPopt,dir)

V ∆
, (2.131)

which is the counterpart to Equation (2.25) that accounts for direct absorption, nonuniform absorption, and

diffusion.

2.2.11 Response to Unresolved Astronomical Source

We are now ready to derive an expression for the response to an unresolved astronomical source. We assume

that the flux density of the source is small enough that the detectors behave linearly. The response is then

given by

rsrc =
∂ V̂
∂S

=

(
∂V̂

∂S res
21

) (
∂S res

21
∂nqp

) (
∂nqp

∂Popt,ant

) (
∂Popt,ant

∂Tload,ant

) (
∂Tsrc

∂S

)
. (2.132)

The chain of partial derivatives describes the propagation of signal through the instrument. The quantity rsrc

will have units of volts per Jansky. We specify Popt,ant here because we are interested in the narrow-band power

at frequency νmm that is coupled through the antenna, not the wide band power due to direct absorption by

the aluminum section. The partial derivatives on the right hand side are evaluated using Equations (2.61),

(2.103), (2.131), (2.105), and (2.9) from left to right. We express the first partial derivative as

∂ V̂
∂S res

21
= S RF

21S BB
21 A0e jφ0

= (S res
21)

−1 Ae jφ

= |S res
21|

−1 Ae j(φ−θres) , (2.133)

where A and φ are the mean carrier amplitude and phase at the output of the system. The end result is

rsrc =
AQiχcχyα |κ̃|ηphηopt,ant (1− fspill,ant)e−τant/ sin eAeff ∆νmm,ant

8
∣∣S res

21

∣∣V ∆(2ζ Rnqp + τ−1
max )

e j
(
Ψ̃+φy+φc+φ−θres

)
. (2.134)

We see that the response occurs in a well defined direction in the complex plane that is rotated by an angle

θqp = Ψ̃+φy +φc +φ −θres from the I-Q basis in which the data is collected. We call this the quasi-particle

direction and will discuss it further in Section 2.4. The response has several dependencies that are not ex-

plicitly stated in Equation (2.134). In particular, κ̃ ≡ κ̃(T,ω,∆0,a,y) and Ψ̃ ≡ Ψ̃(T,ω,∆0,a,y). In addition,

the quantities Qi, χc, and τ eff
qp =

(
2ζ Rnqp + τ−1

max

)−1 will depend on the background loading conditions under
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which the source is observed.

The response is easily measured by scanning the telescope across a bright unresolved source of known

flux density and examining the peak height in the quadrature sum of the I and Q timestreams. If the response

due to direct absorption is small compared to the antenna response, then the ratio of the peak height to the

flux density is a good measure of rsrc. The response can also be predicted by calibrating the full instrument

model that was put forward in this section and then calculating rsrc directly using Equation (2.134). One of

the main goals of this thesis is to compare the measured response to the predicted response based on our

calibrated model for each MUSIC detector. If the two are equal for all detectors and observing conditions,

then it suggests we have a good understanding of the propagation of signal through the instrument.

Equation (2.134) provides insight into how to design a responsive instrument using MKIDs. However, it

is not the responsivity that characterizes instrument performance, but rather the sensitivity. In order to predict

sensitivity we must develop a model for the sources of noise inherent to MKIDs and their readout electronics.

We set upon this task in the next section, and discuss instrument optimization in the chapter summary.
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Table 2.1: Expected sources of noise in the on-resonance and off-resonance carriers. Correlated sources
of noise can (partially) be removed. The second column gives the direction in the complex plane that the
noise occurs, with Freq denoting the frequency direction (tangent to the IQ sweep) and QP denoting the
quasi-particle direction (explained in text). The third column specifies how the power spectral density is
expected to scale with temporal frequency.

Noise Direction PSD On-Res Off-Res Correlated

Additive Electronics Isotropic white X X
Multiplicative Electronics Amplitude / Phase 1/ f and drift X X X
TLS Freq ν−1/2 X
Atmospheric QP ν−8/3 X X
Photon QP white X
Generation - Recombination QP white X

Figure 2.12: Illustration of the various
noise sources in the complex plane.
The solid black line denotes the com-
plex transmission near resonance as a
function of frequency. The ellipses
are centered on the resonant frequency
and provide a rough approximation of
the relative covariance of the various
noise sources. The green ellipse is
amplifier noise. The gray ellipse is
multiplicative electronics noise. The
yellow ellipse is TLS noise. The
light blue ellipse is atmospheric noise.
Note that photon, generation, and re-
combination noise, as well as astro-
nomical signal, will also lie in the QP
direction.

2.3 Noise

The MUSIC detectors are susceptible to several sources of noise, listed in Table 2.1 and illustrated in Fig-

ure 2.12. The purpose of this section is to derive an expression for the power spectral density of each noise

source and to determine how each noise source translates into fluctuations in the complex carrier amplitude

V̂ ( f , t). We divide the noise into two categories, that which is sourced by the readout electronics and that

which is inherent to the detector element.
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2.3.1 Electronics Noise

Approximately 40% of the carrier tones read out during observations are not probing resonances but instead

are interspersed throughout the bandpass in the regions between resonances. These off-resonance carriers are

far enough from the resonant frequencies that they are not modulated by detector noise fluctuations. They

enable the noise sourced by the readout electronics to be isolated and studied separate from the detector noise.

The placement of on-resonance and off-resonance carriers is illustrated in Figure 2.13.

2.3.1.1 Additive

Figure 2.5 shows a schematic of the MUSIC readout electronics. Each device pictured will introduce some

additive noise δV (t) into the system whose variance can be characterized by a power spectral density SδV

in units of volts squared per hertz. We describe the white component of SδV with an effective input noise

temperature Tn defined as the physical temperature a perfect resistor at the input to the device would need in

order to produce that level of Johnson-Nyquist noise

Tn =
SδV

kBZ0
, (2.135)

where Z0 = 50 Ω is the characteristic impedance of the system. The electronics were designed so that the

white noise floor of the full system would be set principally by the THEMT ≈ 4 K noise temperature of the

cryogenic HEMT amplifier that immediately follows the detector array, with the ADC being the second

largest contributor. In order to achieve this we used cold attenuators to substantially reduce the noise from

the room temperature electronics on the input side of the cryostat, and we designed the receiver chain on the

output side so that it would not add significant noise when referred back to the input of the HEMT while

���������

Figure 2.13: Squared magnitude of the forward transmission through the system as a function of microwave
frequency. Shown are four resonators on one of the final MUSIC production arrays. Blue asterisks (green
squares) denote the typical placement of on-resonance (off-resonance) carriers.
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simultaneously avoiding amplifier compression.

We first consider the input side of the readout electronics, which we define as everything between the

DAC and the HEMT. The noise temperature of a passive two-port device with attenuation α (measured in

decibels) is given by

Tn = (A−1)T , (2.136)

where T is its physical temperature and A = 1/G = 10α/10. Let Tin denote the noise temperature at the input

to the device. The noise temperature at the output of the device Tout is then given by

Tout = G(Tin +Tn)

=
Tin

A
+

(
1− 1

A

)
T . (2.137)

In the limit that the device is lossless, A = 1 and Tout = Tin. In this case noise passes through the device

unattenuated. In the limit that A is very large then Tout ≈ T . In this case the input noise is absorbed by

the device and the entirety of the output noise is generated internal to the device according to its physical

temperature.

The room temperature electronics on the input side are primarily passive and will inject room temperature

noise into the cryostat. We place fixed attenuators (with large α) at the 4 K and IC stages so that the majority

of the Troom = 290 K noise is dissipated at these stages and replaced with T4K = 4 K and TIC = 400 mK noise.

Cascading Equation (2.137) for the room temperature, 4 K, and IC attenuators one obtains the following

expression for the noise temperature of the input side of the readout electronics

Tsys,in =
Troom

A4KAIC

+

(
1− 1

A4K

)
T4K

AIC

+

(
1− 1

AIC

)
TIC . (2.138)

When we first commissioned MUSIC in 2012 we used α4K = 1 dB and αIC = 31 dB for the cold attenuators,

which corresponds to Tsys,in = 0.58 K. This results in a 15% increase in the noise floor set by the HEMT. In

January 2014 we switched to α4K = 21 dB and αIC = 6 dB, which corresponds to Tsys,in = 1.87 K or a 50%

increase in the noise floor set by the HEMT. We made this switch because with the old setup the majority of

the resonators were well below their bifurcation point under the maximum carrier power that the system could

provide. The new setup allowed us to increase the carrier power used to probe the resonators by up to 5 dB.

This was in an attempt to reduce TLS noise, which is the dominant source of noise in our detectors and has

a power spectral density that scales as P−1/2. We will give an introduction to TLS noise in Section 2.3.2.2.

The point here is that the white noise from the input side of the readouts electronics is determined by the cold

attenuators and is fairly modest compared to the white noise from the HEMT.

We now consider the output side of the readout electronics, which we define as everything between the

HEMT and the ADC. Let Gi and Tn,i denote the gain and noise temperature of the i-th electronic component

following the HEMT. These are listed in the first two rows of Table 2.2. We can cascade the Tn,i using Friis
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Table 2.2: Characterization of the additive white noise for several readout boards during the 2013/09 and
2014/09 observing runs. The columns list the components from left to right in the order in which they
appear in the receiver chain, starting with the cryogenic HEMT amplifier. The first two rows denote the
gain and effective input noise temperature. The noise temperature of all passive devices are calculated using
Equation (2.136) assuming a physical temperature T = 290 K. The third column denotes median carrier
power at the input to that stage. The fourth column is the accumulated gain, or the cumulative sum of the first
column. The fifth column is the accumulated noise temperature, referred to the input of the HEMT. The sixth
(seventh) column is the corresponding noise floor at the output of that stage in units of dBm/Hz (dBc/Hz).

2013/09 - Device A2L - HEMT 289D

HEMT Coax Preamp Att-1 IF-Amp-1 SW-1 Att-2 IF-Amp-2 Att-Var Demod-Mixer BB-Amp-1 SW-2 LP-Filt ADC

G [dB] 39 -7 17 -9 14 -2 -6 14 -14 -6 17 0 -3 0
Tn [K] 4 1103 120 2014 527 120 865 527 6994 739 527 35 289 429683
Pcarrier [dBm] -81 -42 -49 -32 -41 -27 -28 -34 -20 -34 -39 -23 -23 -26
Acc G [dB] 39 32 49 40 54 53 47 61 47 42 58 58 55 55
Acc Tn at HEMT Input [K] 4.6 4.7 4.8 4.8 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 4.9 6.3
Acc Noise Floor [dBm/Hz] -153 -160 -143 -152 -137 -139 -145 -130 -144 -150 -133 -134 -137 -136
Acc Noise Floor [dBc/Hz] -111 -111 -111 -111 -111 -111 -111 -111 -111 -111 -111 -111 -111 -109

2013/09 - Device A2U - HEMT 289D

HEMT Coax Preamp Att-1 IF-Amp-1 SW-1 Att-2 IF-Amp-2 Att-Var Demod-Mixer BB-Amp-1 SW-2 LP-Filt ADC

G [dB] 39 -9 17 -9 14 -2 -6 14 -9 -6 17 0 -3 0
Tn [K] 4 2269 120 2014 527 120 865 527 2014 739 527 35 289 429683
Pcarrier [dBm] -83 -44 -53 -36 -45 -31 -33 -39 -24 -33 -39 -22 -23 -26
Acc G [dB] 39 30 47 38 52 50 44 59 50 44 61 60 57 57
Acc Tn at HEMT Input [K] 4.6 4.9 5.0 5.0 5.1 5.1 5.1 5.2 5.2 5.2 5.2 5.2 5.2 6.0
Acc Noise Floor [dBm/Hz] -153 -162 -145 -154 -140 -141 -147 -133 -142 -147 -131 -131 -134 -133
Acc Noise Floor [dBc/Hz] -109 -109 -109 -109 -108 -108 -108 -108 -108 -108 -108 -108 -108 -108

2013/09 - Device B2L - HEMT 258D

HEMT Coax Preamp Att-1 IF-Amp-1 SW-1 Att-2 IF-Amp-2 Att-Var Demod-Mixer BB-Amp-1 SW-2 LP-Filt ADC

G [dB] 37 -10 17 -9 14 -2 -6 14 -15 -6 17 0 -3 0
Tn [K] 4 2518 120 2014 527 120 865 527 8881 739 527 35 289 429683
Pcarrier [dBm] -76 -39 -49 -32 -41 -27 -28 -34 -20 -35 -41 -24 -24 -27
Acc G [dB] 37 27 44 35 49 48 42 56 41 36 52 52 49 49
Acc Tn at HEMT Input [K] 4.6 5.1 5.3 5.4 5.6 5.6 5.6 5.6 5.6 5.7 5.8 5.8 5.8 11.3
Acc Noise Floor [dBm/Hz] -155 -164 -147 -156 -142 -143 -149 -135 -150 -155 -139 -139 -142 -139
Acc Noise Floor [dBc/Hz] -116 -115 -115 -115 -115 -115 -115 -115 -115 -115 -115 -115 -115 -112

2013/09 - Device B2U - HEMT 258D

HEMT Coax Preamp Att-1 IF-Amp-1 SW-1 Att-2 IF-Amp-2 Att-Var Demod-Mixer BB-Amp-1 SW-2 LP-Filt ADC

G [dB] 37 -14 17 -9 14 -2 -6 14 -7 -6 17 0 -3 0
Tn [K] 4 6390 120 2014 527 120 865 527 1163 739 527 35 289 429683
Pcarrier [dBm] -80 -43 -56 -39 -48 -34 -36 -42 -27 -34 -40 -23 -24 -27
Acc G [dB] 37 23 40 31 46 44 38 52 45 40 57 56 53 53
Acc Tn at HEMT Input [K] 4.6 5.9 6.4 6.6 7.0 7.0 7.0 7.1 7.1 7.1 7.2 7.2 7.2 9.2
Acc Noise Floor [dBm/Hz] -155 -168 -150 -159 -144 -146 -152 -138 -145 -150 -133 -134 -137 -136
Acc Noise Floor [dBc/Hz] -112 -111 -111 -111 -110 -110 -110 -110 -110 -110 -110 -110 -110 -109

2014/07 - Device B2L - HEMT 321D

HEMT Coax Preamp Att-1 IF-Amp-1 SW-1 Att-2 IF-Amp-2 Att-Var Demod-Mixer BB-Amp-1 SW-2 LP-Filt ADC

G [dB] 37 -13 17 -9 14 -2 -6 14 -10 -6 17 0 -3 0
Tn [K] 4 6055 120 2014 527 120 865 527 2610 739 527 35 289 429683
Pcarrier [dBm] -77 -40 -53 -36 -45 -31 -33 -39 -24 -34 -40 -23 -24 -27
Acc G [dB] 37 24 41 32 46 44 38 53 43 37 54 53 50 50
Acc Tn at HEMT Input [K] 5.9 7.1 7.6 7.8 8.1 8.1 8.2 8.3 8.3 8.3 8.4 8.4 8.4 12.3
Acc Noise Floor [dBm/Hz] -154 -167 -149 -158 -144 -145 -151 -137 -147 -152 -135 -136 -139 -137
Acc Noise Floor [dBc/Hz] -114 -113 -113 -113 -112 -112 -112 -112 -112 -112 -112 -112 -112 -111

2014/07 - Device B2U - HEMT 321D

HEMT Coax Preamp Att-1 IF-Amp-1 SW-1 Att-2 IF-Amp-2 Att-Var Demod-Mixer BB-Amp-1 SW-2 LP-Filt ADC

G [dB] 37 -18 17 -9 14 -2 -6 14 -4 -6 17 0 -3 0
Tn [K] 4 17188 120 2014 527 120 865 527 438 739 527 35 289 429683
Pcarrier [dBm] -78 -41 -59 -42 -51 -37 -38 -44 -30 -34 -40 -23 -23 -26
Acc G [dB] 37 19 36 27 41 40 34 48 44 39 56 55 52 52
Acc Tn at HEMT Input [K] 5.9 9.3 10.7 11.2 12.2 12.2 12.3 12.5 12.5 12.6 12.6 12.6 12.6 15.4
Acc Noise Floor [dBm/Hz] -154 -170 -152 -161 -146 -148 -154 -139 -143 -149 -132 -133 -136 -135
Acc Noise Floor [dBc/Hz] -112 -110 -110 -110 -109 -109 -109 -109 -109 -109 -109 -109 -109 -108
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formula to obtain the effective noise temperature of the system referred to the input of the HEMT

Tsys =
T ADC

sys

Gpost-HEMT

= Tsys,in +THEMT +
Tn,1

GHEMT

+
Tn,2

GHEMTG1
+

Tn,3

GHEMTG1G2
+ · · ·

= Tsys,in +THEMT +Tsys,out , (2.139)

where T ADC
sys is the noise temperature of the system measured at the ADC and Gpost-HEMT = GHEMTG1G2 · · ·GN is

the total gain of the HEMT and all components that follow it.

The increase in Tsys due to each component can be inferred from the fifth row of Table 2.2. It is clear

examining the values for 2013/09 that on the output side the majority of the components do not contribute

significantly to the system noise temperature. This is due to the large gain of the HEMT, as each term in Tsys,out

is divided by GHEMT ≈ 10,000. The exceptions is the digitization noise from the ADC (the column labeled

ADC), which causes a non-negligible increases in system noise temperature as expected. The coaxial cables

that follow the HEMT (the column labeled Coax) can also have significant adverse effects by reducing the

gain post-HEMT, thereby increasing the noise of all components where referred to the input of the HEMT.

It should be noted that Coax refers to the niobium, copper, and stainless steel coaxes inside the cryostat, the

SMA cables that connect the output of the cryostat to the input of the readout boards, and the power-splitter

that sends the power coming from a single channel into two separate readouts boards for the upper and lower

half-bands. The power-splitter itself has an insertion loss of 4-5 dB. The coaxial cables will have an effective

physical temperature somewhere in between the temperature of the IC stage and room temperature, but in the

tables above we have assumed that they sit at Troom in order to obtain an upper limit on their noise temperature.

The carrier power at which the resonators undergo bifurcation is much higher than we anticipated when

the electronics were designed. As a result, we would like to drive the resonators with the maximum carrier

power that the readout electronics can provide. Unfortunately doing so causes the first IF amplifier following

the HEMT (the column labeled Preamp) to enter compression. This is especially true for the 2014/07 setup

because we decreased the cold attenuation on the input side of the cryostat. This forces us attenuate the power

on the output side of the cryostat before it reaches the first IF amplifier, and this is why the attenuation listed

in the Coax column increases between 2013/09 and 2014/07. Examining Table 2.2 it is clear that the increase

in post-HEMT attenuation causes a fairly large increase in the accumulated noise temperature. However, this

increase in white noise from the electronics should be offset by the decrease in TLS noise due to the higher

read out powers. We find that the value of Tsys,out varies between 6 K and 15.4 K depending on the half-band

and attenuator set-up. This corresponds to a 2-6 dB increase in the THEMT = 4 K noise floor from the HEMT

alone.
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2.3.1.2 Multiplicative

The various electronic components also suffer from multiplicative amplitude and phase noise. Examples

include fluctuations in reference voltages, fluctuations in amplifier gains, jitter in sampling clocks, and drift

in cable delays. These noise sources are modeled with the following expression for the complex amplitude

of an off-resonance carrier tone at microwave frequency f = fBB + fLO:

V̂ (t) = gRF( f )gBB( fBB)A0e j(φ0−2π f τRF−2π fBBτBB) (1+δA+ jδφ)+δw

= A( f , fBB)e jφ( f , fBB) (1+δA+ jδφ)+δw . (2.140)

In this equation, A = gRFgBBA0 and φ = φ0 − 2π f τRF − 2π fBBτBB are the DC carrier amplitude and phase

measured at the output of the system. The amplitude at the output A is related to the amplitude at the input

A0 by some overall voltage gain gRFgBB =
√

GRFGBB. Similarly the phase φ at the output is related to the phase

at the input φ0 by some overall baseband cable delay τBB and RF cable delay τRF. The δw = δwI + jδwQ term

is the additive white noise from the entire system, which was discussed in the previous section. Finally δA

and δφ denote the amplitude and phase fluctuations, respectively. The quantity δA is a linear combination

of the amplitude fluctuations from the individual electronic components. Likewise the quantity δφ is a linear

combination of the phase fluctuations from the individual electronic components. The primary assumption

underlying Equation (2.140) is that the amplitude and phase fluctuations are multiplicative. In other words

the fluctuations in the complex carrier amplitude δV̂ due to these noise sources scale with the mean carrier

amplitude A.

We suspect that the amplitude and phase fluctuations are coherent with microwave frequency, so that

carriers placed at different microwave frequencies (but measured with the same readout board) measure the

same δA and δφ . This enables us to write the following model for the in-phase and quadrature-phase data

for off-resonance carrier i at time sample j:

Ii j = Ai [(1+δA j)cosφi −δφ j sinφi]+δwI

Qi j = Ai [(1+δA j)sinφi +δφ j cosφi]+δwQ . (2.141)

The fluctuations δA and δφ can then be treated as a common signal that is measured by all carriers on a given

readout board. The off-resonance data can be used to determine the weighted least-squares estimate of δA

and δφ in the presence of the additive white noise. This enables us to subtract the amplitude and phase noise

from the on-resonance data.

From Equation (2.141) the one-sided power spectral density of the I and Q components of an off-
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resonance carrier are given by

Sδ I(ν) = A2
i
[
cos2(φi)SδA(ν)+ sin2(φi)Sδφ (ν)− sin(2φi)SδA,δφ (ν)

]
+Sδw

SδQ(ν) = A2
i
[
sin2(φi)SδA(ν)+ cos2(φi)Sδφ (ν)+ sin(2φi)SδA,δφ (ν)

]
+Sδw , (2.142)

where SδA and Sδφ are the one-sided power spectral densities of the amplitude and phase fluctuations, and

SδA,δφ is their cross power spectral density. The inclusion of a cross term accounts for the fact that the

amplitude and phase fluctuations may be correlated. This can occur if the amplitude and phase fluctuations

are generated by the same underlying physical mechanism [115]. The power spectral densities SδA and Sδφ

have a spectral shape that is combination of ν−1 (1/f) and ν−2 (drift). The white noise is assumed to be

isotropic so that SδwI
= SδwQ

≡ Sδw. The value of Sδw is given by the last column of the Acc Noise Floor row

in Table 2.2.

2.3.2 Detector Noise

In addition to the electronics noise, on-resonance carriers are sensitive to statistical fluctuations in the rate at

which quasi-particles are generated and recombine, fluctuations in the resonator frequency due to a surface

layer of two-level systems on the device, and fluctuations in the atmospheric emission about Mauna Kea.

These additional sources of noise all appear as fluctuations in the complex forward transmission through

resonance

V̂ +δV̂ = (S res
21 +δS res

21)S RF
21S BB

21 A0eiφ0

= S res
21S RF

21S BB
21 A0e jφ0

(
1+ |S res

21|
−1 e− jθres δS res

21

)
= Ae jφ

(
1+ |S res

21|
−1 e− jθres δS res

21

)
, (2.143)

and therefore result in a modulation of the complex amplitude of the carrier tone

δV̂ = Ae j(φ−θres)
δS res

21∣∣S res
21

∣∣ . (2.144)

The rest of this section will be devoted to obtaining expressions for the power spectral density of the δS res
21

fluctuations due to each of these noise sources.

2.3.2.1 Fundamental

The fundamental sources of noise in MKIDs are photon, generation, and recombination noise. These are due

to statistical fluctuations in the rate at which quasi-particles are generated optically, the rate at which they are

generated thermally, and the total rate at which they recombine. In order to model these noise sources we
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must use the time dependent version of the generation-recombination equation

∂ nqp(t)
∂ t

= ΓG,th(t)+ΓG,opt(t)−ΓR(nqp(t), t) . (2.145)

We assume that there is a small fluctuation in the quasi-particle density about its steady state value nqp(t) =

nqp +δnqp(t) due to fluctuations in the three rates about their steady state values

ΓG,th(t) = ΓG,th + γG,th(t)

ΓG,opt(t) = ΓG,opt + γG,opt(t) (2.146)

ΓR(nqp(t), t) = ΓR +
∂ ΓR

∂nqp

δnqp(t)+ γR(t) ,

where γX � ΓX. The derivative in the recombination rate can be evaluated using Equation (2.17)

∂ ΓR

∂nqp

= 2Rnqp +
1

τmax

=
1

τ eff
qp

. (2.147)

Inserting the above expressions into Equation (2.145) and applying the steady-state solution ΓG,opt +ΓG,th −

ΓR = 0 yields

∂ δnqp(t)
∂ t

+
δnqp(t)

τ eff
qp

= γG,th(t)+ γG,opt(t)− γR(t) . (2.148)

Taking the Fourier transform of both sides and solving for δ ñqp(ν) then gives

δ ñqp(ν) =
τ eff

qp

1+ j2πτ eff
qp ν

[γ̃G,th(ν)+ γ̃G,opt(ν)− γ̃R(ν)] . (2.149)

We see that the noise spectrum will be low-pass filtered by the effective quasi-particle lifetime with bandwidth

∆νqp = (2πτ eff
qp )

−1. Since the lifetime τ eff
qp . 10 µs for on-sky loading conditions, ∆νqp & 15 kHz and the

low-pass filter will have no effect at the temporal frequencies probed with our readout electronics. We can

obtain an expression for the power spectral density of the fundamental noise by taking the square magnitude

of both sides of Equation (2.149) and using the fact that the three processes are independent. This yields

S fund
δnqp

(ν) =
τ eff

qp
2

1+
(
2πτ eff

qp ν
)2

[
Sγ G,th(ν)+Sγ G,opt(ν)+Sγ R(ν)

]
. (2.150)

We now set out to derive the one-sided power spectral density for the three processes, starting with optical

generation.

2.3.2.1.1 Photon Fluctuations in the rate at which quasi-particles are generated optically are sourced by

fluctuations in the incident photon rate. It can be shown [116] that for a narrow-band, single-moded detector
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sensitive to a single polarization this photon noise will have a white power spectral density given by the

following equation,

SδPopt
(ν) =

2
ηqe

(hνmm)
2 (nopt +ηqen2

opt

)
∆νmm , (2.151)

where νmm is the center frequency of the observation, ∆νmm is the bandwidth of the detector, ηqe is the quantum

efficiency of the detector, and nopt is the mean occupation number or the number of photons in the hνmm mode.

Assuming the background loading is due to thermal radiation with a black-body spectrum at temperature Topt,

the occupation number is given by the Bose-Einstein distribution

nopt(νmm,Topt) =
1

exp(hνmm/kBTopt)−1
. (2.152)

The first term in Equation (2.151) scales as nopt and corresponds to the Poisson fluctuations in the photon

arrival time. It is commonly referred to as shot noise. The second term scales as n2
opt and arises because

photons bunch together, resulting in arrival times that are not entirely independent. It is commonly referred

to as Bose noise. In the limit that hνmm � kBTopt, then n � 1 and shot noise will dominate. This is usually

the case for wavelengths shorter than the near-infrared, where light is often conceptualized as a particle. In

the opposite limit that hνmm � kBTopt, then n � 1 and Bose noise will dominate. This is usually the case for

radio wavelengths, where light is often conceptualized as a wave. Indeed, Equation (2.151) is a manifestation

of wave-particle duality. For the submillimeter and millimeter wavelengths n ∼ 1 and the contributions from

shot and boise noise are similar; both must be taken into account.

We can write Equation (2.151) in terms of the steady state optical power

Popt = nopthνmm∆νmm . (2.153)

Doing so yields

SδPopt
(ν) = 2

[
Popthνmm

ηqe

+
P2

opt

∆νmm

]
. (2.154)

The above expression gives the spectrum of fluctuations in optical power. We can convert this to fluctuations

in the quasi-particle generation rate using the equation

γG,opt =
ηph

V ∆
δPopt . (2.155)

This results in the desired expression

Sγ G,opt = 2
(

ηph

V ∆

)2
[

Popthνmm

ηqe

+
P2

opt

∆νmm

]
. (2.156)
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2.3.2.1.2 Recombination The quantity ΓR(t) denotes the number of quasi-particles that recombine per

unit volume per unit time. This is related to the number of recombination events NR(t) by the formula

ΓR(t) =
2
V

dNR(t)
dt

, (2.157)

where the factor of 2 accounts for the fact that each recombination event annihilates two quasi-particles. We

model the recombination events NR(t) as a homogeneous Poisson process, where the probability of observing

k recombination events in some time interval (t, t + τ] is given by

P[NR(t + τ)−NR(t) = k] =
(λτ)k

k!
e−λτ k = 0,1,2, . . . . (2.158)

We would like to determine the power spectral density of this type of process. Referencing N(t ≥ 0) with

respect to N(0) = 0, it is easy to show that the expected number of recombination events is given by

< NR(t)>= λ t (2.159)

with variance

< N2
R (t)>−< NR(t)>2= λ t

< N2
R (t)>= λ t +(λ t)2 . (2.160)

The autocorrelation function can be calculated by considering positive and negative lags separately. Let t and

s denote two points in time separated by lag τ = t − s. For τ > 0 we have that

R(NR(s),NR(t); t > s) =< NR(t)NR(s)>

= 〈[NR(t)−NR(s)+NR(s)]NR(s)〉

=
〈
[NR(t)−NR(s)]NR(s)+N2

R (s)
〉

=< NR(t)−NR(s)>< NR(s)>+< N2
R (s)>

= λ (t − s)λ s+λ s+(λ s)2

= λ
2ts+λ s . (2.161)

The derivation above breaks up the expectation value into disjoint intervals and then uses the fact that for a

Poisson process the number of events observed in disjoint intervals of time are independent. We can perform

an identical calculation for the case where τ < 0 to obtain

R(NR(s),NR(t); t < s) = λ
2ts+λ t . (2.162)
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Equations (2.160), (2.161), and (2.162) can be combined into a single function

R(NR(s),NR(t)) = λ
2ts+λ [Θ(t − s)s+Θ(s− t)t] , (2.163)

which is valid for all t and s. Here Θ(x) is the Heaviside step function

Θ(x) =


0 x < 0
1
2 x = 0

1 x > 0 .

(2.164)

We are not necessarily interested in the number of recombination events that have occurred but rather the

rate of recombination events. The average rate is given by

〈
dNR(t)

dt

〉
=

d < NR(t)>
dt

=
d (λ t)

dt
= λ . (2.165)

Similarly, the autocorrelation function is given by

R
(

dNR(s)
ds

,
dNR(t)

dt

)
=

∂

∂ t

[
∂ R(NR(s),NR(t))

∂ s

]
=

∂

∂ t

[
λ

2t +λΘ(t − s)
]

= λ
2 +λδ (t − s) , (2.166)

where δ (t − s) is the Dirac delta function. We see that the autocorrelation function of the rate at two different

times depends only on the lag between those times. This enables us to write

R
(

dNR(s)
ds

,
dNR(t)

dt

)
= RdNR/dt(τ) = λ

2 +λδ (τ) . (2.167)

The two-sided power spectral density can then be calculated as the Fourier transform of the autocorrelation

function

SdNR/dt(ν) =
∫

∞

−∞

RdNR/dt(τ)e
−2π jντ dτ

=
∫

∞

−∞

[
λ

2 +λδ (τ)
]

e−2π jντ dτ

=
[
λ

2
δ (ν)+λ

]
. (2.168)

This result holds for any homogenous Poisson process and is actually just a simple description of shot noise,

which was mentioned in the previous section in the context of photon noise. In order to convert this into an

expression for the shot noise due to recombination, recall from Equation (2.165) that λ is just the average
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rate

λ =

〈
dNR

dt

〉
=

V
2
〈ΓR(t)〉=

V
2

ΓR . (2.169)

and therefore

SΓR(ν) =

(
∂ΓR(t)

∂ (dNR(t)/dt)

)2

SdNR/dt

=

(
2
V

)2
[(

V
2

ΓR

)2

δ (ν)+
V
2

ΓR

]
(2.170)

= Γ
2
Rδ (ν)+

2
V

ΓR . (2.171)

This is the two-sided power spectral density of ΓR(t). The first term is zero for all frequencies except ν = 0;

it is just the DC or steady state value. We are interested in the second term which characterizes the γ R(t)

fluctuations about the steady state value

Sγ R(ν) =
4
V

ΓR . (2.172)

Here ν ≥ 0 and we have multiplied by 2 to convert to a one-sided power spectral density. We find that

fluctuations in the quasi-particle recombination rate have a white spectrum. Inserting Equation (2.17) for the

steady state recombination rate ΓR yields

Sγ R(ν) =
4
V

(
Rn2

qp +
nqp

τmax

)
, (2.173)

which is the desired expression for recombination noise.

2.3.2.1.3 Generation The noise associated with the optical generation of quasi-particles has been ac-

counted for in the photon noise term. However we still have to derive an expression for the power spectral

density of fluctuations in the thermal generation rate. This can be treated in an identical manner as the re-

combination noise. The rate at which quasi-particles are generated thermally ΓG,th(t) is related to the number

of thermal generation events NG,th(t) by the equation

ΓG,th(t) =
2
V

dNG,th(t)
dt

. (2.174)

We model NG,th as a homogeneous Poisson process. The one sided power spectral density of γ G,th is then given

by

Sγ G,th(ν) =
4
V

ΓG,th =
4
V

(
Rn2

qp,th +
nqp,th

τmax

)
, (2.175)
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where we have used Equation (2.19) for the steady-state value ΓG,th. In a steady state under zero optical

loading, thermal generation must balance recombination. This sets the value of ΓG,th, and hence the value of

Sγ G,th .

There is some uncertainty in the τ−1
max term in Equation (2.173) and Equation (2.175). We do not know what

physical process is responsible for the saturation of the quasi-particle lifetime. If it is caused, for example,

by trapping of quasi-particles in localized, sub-gap states by magnetic impurities [91], then one could still

model it with a Poisson process; however, only a single quasi-particle would annihilate per trapping event.

As a result, Equation (2.157) which relates the quasi-particle rate to the event rate would not contain the

factor of 2 and the contribution to Sγ R due to τ−1
max would be 2nqp/V τmax instead of 4nqp/V τmax. Barends et al.

[90] observed a clear decrease in τmax by increasing the concentration of ion implanted impurities in Al and

Ta superconducting films, lending experimental support to this theory. However, the decrease occurred for

both magnetic and nonmagnetic impurities. The interpretation they put forward is that the impurities increase

disorder in the superconductor and this causes an enhancement of the recombination rate. In our model for

the noise, we assume that it is indeed an enhancement of the recombination rate that is occurring and retain

the factor of 4 in our equations. Note that the exact form used for this term does not have a significant impact

on our results since τqp � τmax.

Thermal generation-recombination noise has been measured by de Visser et al. [117] in Al CPW res-

onators between 100 and 300 mK under negligible optical loading. They used the bandwidth and intensity

of the resonator dissipation fluctuations to constrain the quasi-particle lifetime and quasi-particle density,

respectively. The model for generation-recombination noise just outlined provided a good description of

the measured values of [τ eff
qp ,nqp](Tbath). Interestingly, both the lifetime and the density saturated in a consis-

tent manner below 160 mK, suggesting that τmax is sourced by the recombination of an excess, nonthermal

population of quasi-particles in these particular Al superconductors. In order to maintain this nonthermal

quasi-particle population there must some source of power dissipation. One likely candidate is the absorption

of microwave photons [109, 118].

Up until this point we have assumed that there is a uniform distribution of quasi-particles in our derivation

of the fundamental noise. It is straightforward to determine the effects of a nonuniform distribution using

techniques similar to those employed in Section 2.2.10. The end result is that the recombination noise will

increase by a factor ζ and the effective quasi-particle lifetime will be given by Equation (2.130) instead of

Equation (2.24).

We now insert Equations (2.156), (2.173), and (2.175) into Equation (2.150) to obtain an expression for

the power spectral density of the fundamental noise sources

S fund
δnqp

(ν) =
2τ eff

qp
2

1+
(
2πτ eff

qp ν
)2

[(
ηph

V ∆

)2
(

Popthνmm

ηqe

+
P2

opt

∆νmm

)
+

2R
V

(
ζ n2

qp +n2
qp,th

)
+

2
V τmax

(nqp +nqp,th)

]
.

(2.176)
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We find that the fundamental noise has a white spectrum up to ∆νqp. Consider the case where ν � ∆νqp,

nqp � nqp,th and τqp � τmax which is a good approximation for the MUSIC detectors during on-sky loading

conditions. Then Equation (2.176) can be written as

S fund
δPopt

(ν)≈ 2Popt

(
hνmm

ηqe

+
Popt

∆νmm

+
2∆

ηph

)
for nqp � nqp,th and τqp � τmax , (2.177)

where we have used Equation (2.124) to express the quasi-particle density in terms of the optical power and

Equation (2.131) to convert fluctuations in quasi-particle density to fluctuations in optical power. The three

terms correspond to photon shot noise, photon Bose noise, and recombination noise from left to right. In

this limit, for a given observing band and superconductor the fundamental noise is entirely set by the back-

ground optical loading Popt. Ideally all other sources of noise would be subdominant to the above expression

when referred to fluctuations in incident optical power. In that case we say that the detector has achieved

background-limited performance or BLIP.

2.3.2.2 Two-Level Systems

MKIDs suffer from an excess noise in the frequency direction that originates from a surface layer of two-level

systems (TLS) [119, 120]. The material hosting the TLS is likely a thin oxide layer that forms on exposed

metal or substrate during fabrication. TLS are defects common to amorphous solids in which an atom or group

of atoms can tunnel between two potential energy minima [121, 122]. Each TLS can be treated quantum

mechanically as a particle in double-well potential. The variations in local environment that are present

in amorphous material result in TLS with an extremely broad distribution of energy splittings [123]. The

tunneling process has an electric dipole moment that couples to the electric field of the resonator and affects

the dielectric function ε = ε1 − iε2.

At microwave frequencies and low temperatures (T < 1 K) the resonant response of the ensemble of

TLS results in a temperature-dependent contribution to the real and imaginary parts of the dielectric func-

tion. This causes a temperature-dependent shift in the frequency and loss of the resonator, respectively. The

TLS-induced dielectric loss is given by

1
Qi(T )

= Fδ
0
TLS tanh

(
h̄ω

2kBT

)[
1+

|E|2

E2
c

]−1/2

, (2.178)

where ω = 2π f is the microwave angular frequency, E is the electric field, δ 0
TLS is the loss tangent due to TLS

at zero temperature and weak electric field, F is the filling factor defined as the fraction of the electric field

energy contained in material hosting TLS, and Ec is the critical electric field for saturation of the TLS-induced

loss. Similarly, the expression for the TLS-induced fractional frequency shift is given by

fres(T )− fres(0)
fres(0)

=
Fδ 0

TLS

π

[
Re
{

Ψ

(
1
2
+

h̄ω

2π jkBT

)}
− log

(
h̄ω

2πkBT

)]
, (2.179)
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where Ψ is the complex digamma function. Note that the frequency shift does not saturate with electric field

strength in the same way as the loss. This is because only TLS with excitation frequencies in a narrow region

around the microwave frequency contribute to the imaginary part of the dielectric function, whereas TLS

with a broad range of excitation frequencies contribute to the real part of the dielectric function. Said another

way, only the on-resonance TLS contribute to the loss, whereas both on-resonance and off-resonance TLS

contribute to the frequency shift [124]. The on-resonance TLS saturate with microwave power; they undergo

rapid oscillations between the two potential minima and are therefore unable to absorb additional energy.

The off-resonance TLS do not. As a result the TLS-induced frequency shift should be nearly independent of

power.

A microscopic theory for the TLS-induced frequency noise does not exist. However, a semi-empirical

model which describes how the noise scales with temporal frequency, microwave carrier power, temperature,

and resonator geometry does exist [125] and is sufficient for our purposes. The semi-empirical model assumes

a uniform spatial distribution of independently fluctuating TLS within some volume VTLS of host material. It

is assumed that there is some mechanism by which the TLS can cause fluctuations in the real component of

the dielectric function δε1 and that the magnitude of these fluctuations saturates with electric field strength

in a similar manner as the TLS-induced loss, i.e.,

Sδε1(E) ∝

[
|E|2 +E2

c,δε1

]−1/2
. (2.180)

In the limit that one is operating in a high power regime where the TLS are fully saturated or |E| � Ec,δε1 ,

the power spectral density of fractional fluctuations in the resonator frequency δ fres/ fres is given by

S TLS
δ fres/ fres

(ν) = K (ν , f ,Tbath)

∫
VTLS

|E(r)|3d3r

4(
∫

V ε(r)|E(r)|2d3r)2 , (2.181)

where the term K (ν , f ,Tbath) encodes the scaling with temporal frequency ν , microwave frequency f , and

bath temperature Tbath and is to be constrained empirically. This model has been experimentally validated

by examining the excess frequency noise in CPW resonators as a function of the center strip width s, and

confirming the s−1.55 geometrical scaling that is predicted by the integral in the equation above assuming

a surface distribution of TLS [125]. Since |E(r)| ∝ P1/2
int , where Pint is the internal resonator power, Equa-

tion (2.181) implies that the power spectral density scales as P−1/2
int . This unique scaling with power also been

confirmed experimentally.

Equation (2.181) implies that individual TLS are weighted by the cube of the electric field, so that TLS

located in the high voltage, capacitive section of the resonator have the most significant contributions to the

noise. This offers a strategy for reducing the TLS noise by designing the capacitor in such a way that the field

strength is reduced at the surface where the TLS reside. This is indeed the approach that we have taken with

the interdigitated capacitor (IDC) design used in MUSIC, which increases the area and electrode spacing of
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the capacitor in order to “spread out” the E field. This resulted in a factor of 30 reduction in the TLS noise

compared to previous CPW designs [126, 104].

The internal resonator power is given by

Pint = QiPdiss = 2
Q2

Qc
χyP =

1
2

QiχcχyP , (2.182)

where we have used Equation (2.83) to express Pdiss in terms of P, the carrier power on the feedline at the

device. There have been several measurements that have shown

K (ν , f ,Tbath) = K ( f )ν−1/2 T−β
bath (2.183)

with β = 1.2−2.0 [127, 93, 128]. Equation (2.181) can then be written as

STLS
δ fres/ fres

(ν) = B2
TLS( f )

(
1
2

QiχyχcP
)−1/2

ν
−1/2 T−β

bath , (2.184)

where the normalization BTLS will have some dependence on the microwave frequency and resonator geom-

etry. Compared to other sources of noise intrinsic to MKIDs, TLS noise has a unique scaling with temporal

frequency, bath temperature, and carrier power. We will make use of this fact to isolate the TLS noise and

measure BTLS for each resonator. This is subject of Section 3.3.4.

2.3.2.3 Atmospheric

Ground-based observations at submillimeter and millimeter wavelengths are strongly affected by water vapor

(and to a lesser extent oxygen and ozone) in the atmosphere. Atmospheric absorption results in significant

attenuation of astronomical signal as shown in Figure 2.14. Atmospheric emission increases background

loading, which increases photon noise and degrades detector responsivity. Finally, fluctuations in atmo-

spheric emission results in long-timescale noise that prevents the recovery of signal at large spatial scales.

This sensitivity to the amount and variability of atmospheric water vapor has driven the location of large

(sub)millimeter telescopes to dry and stable (and often inhospitable) sites such as Antartica, the Atacama

Desert in Chile, and the summit of Mauna Kea in Hawaii.

The majority of atmospheric water vapor is located in the troposphere at an effective height havg ∼ 1 km.

The water vapor is poorly mixed with the other dry components of the atmosphere because the temperature

of the atmosphere is near its condensation point [130]. This nonuniform distribution of water vapor is the

dominant cause of fluctuations in atmospheric emission, which we will henceforth refer to as atmospheric

noise.

Atmospheric noise above Mauna Kea has been studied at 143 and 268 GHz by Sayers et al. [37] using

data collected with Bolocam. They find that the atmospheric noise is consistent with a Kolmogorov-Taylor

(K-T) thin screen model [131]. This model assumes that there is a thin turbulent layer of thickness ∆h
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Figure 2.14: The atmospheric transmission on Mauna Kea when looking at zenith. The blue, green, and red
curves correspond to the historical 25th, 50th, and 75th percentiles for the column depth of precipitable water
vapor CPW on Mauna Kea. The curves were calculated using the ATM software [129].

at some height havg that moves horizontally across the sky with an angular velocity w, and that within the

layer the atmosphere behaves according to the K-T model of turbulence [132, 133, 134]. In the K-T model

turbulent energy is constantly injected into the atmosphere at large scales by processes such as wind shear

and convection. The energy cascades down to smaller scales through an inertial mechanism, producing a

hierarchy of eddies. Eventually it reaches a small enough scale that it can be dissipated by viscous effects.

For a three-dimensional volume the model predicts that between the injection scale L and the dissipative

scale η there will be a power spectrum of fluctuations due to turbulence that scales as |q|−11/3, where q is

the three-dimensional spatial frequency. It can be shown (e.g., [131, 135, 136]) that this gives rise to a power

spectral density of fluctuations in the brightness temperature of the sky that is given by

SδTsky
(α) =

 B2
3D|α|−11/3 havg

2∆h sin e � |α| � η

B2
2D|α|−8/3 L � |α| � havg

2∆h sin e ,
(2.185)

where α = [αx,αy] = [qx,qy]× havg

sin e is the angular wave number on the sky in units of 1/radians, B2D,3D are

normalizations in units of mK rad−5/6, and e is the elevation. The transition from the three-dimensional
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to two-dimensional regime occurs at a physical scale of approximately 2∆h, at which point the projected

power spectral density is expected to transition from a −11/3 to −8/3 power law. The normalizations will

depend on several parameters — the average height havg and thickness ∆h of the turbulent layer, the elevation

angle e, the observing wavelength νmm, and the column depth of precipitable water vapor CPW — so that

B2D,3D ≡ B2D,3D(havg,∆h,e,νmm,CPW). In the three-dimensional regime the exact dependence on the elevation,

height, and thickness can be derived

B2
3D(havg,∆h,e,νmm,CPW) = B2

3D(νmm,CPW) h5/3
avg (sine)−8/3 . (2.186)

In the two-dimensional regime the dependence on these parameters is much more complicated and should be

calculated numerically.

Sayers et al. [37] examined the cross-PSD between pairs of bolometers to constrain the angular wind

speed and found a median value of |w| ' 30 arcmin/sec. Assuming havg = 1 km this corresponds to a physical

value of ' 10 m/sec, which is reasonable. We note that this is much faster than the maximum scan speed

that can be achieved at the CSO of 4 arcmin/sec. Sayers et al. [37] then employed random simulations of

the sky in order to fit the timestream correlation between bolometers pairs as a function of pair separation to

Equation (2.185). They attempted to constrain havg and the normalization and exponent of the power-law. The

data was insensitive to havg but was able to constrain the exponent to −3.3± 1.1, consistent with the −11/3

scaling predicted for K-T fluctuations in the three-dimensional regime. They then set havg = 1 km and fixed

the exponent at −11/3 to constrain the median amplitude of the fluctuations

B2
3D(143 GHz,1.68 mm) = 280 mK2 rad−5/3 ,

B2
3D(268 GHz,1.68 mm) = 4000 mK2 rad−5/3 . (2.187)

Note that the choice of havg = 1 km is based on radiosonde measurements of the water vapor profile above

Mauna Kea [137].

The fluctuations in the brightness temperature of the sky characterized by Equation (2.185) are caused by

changes in the emissivity of the sky due to fluctuations in the column depth of precipitable water vapor. That

is to say

SδTsky
(α) =

(
∂Tsky

∂τ

)2(
∂τ

∂ CPW

)2

Sδ CPW
(α) , (2.188)

where τ (νmm,CPW) is the atmospheric opacity. It is reasonable to assume that the size of the fluctuations in

the precipitable water vapor will scale with the amount of precipitable water vapor, or δ CPW ∝ CPW so that
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Sδ CPW
(α) ∝ C 2

PW. In this case

B2
3D(νmm,CPW) ∝

[
Tatme−τ

(
∂τ

∂ CPW

)
CPW

]2

, (2.189)

where we have used the equation Tsky = (1− e−τ)Tatm for the sky temperature at zenith since the dependence

on elevation angle has already been addressed. Sayers et al. [37] found that Equation (2.189) explained the

dominant trend in the value of B2
3D with CPW and observing band. However, there was significant scatter on the

order of 100− 300% about this trend, suggesting that the assumption δ CPW ∝ CPW only holds in a statistical

sense, and that the value of CPW at the time of an observation should only be used as a rough proxy for the

amplitude of the atmospheric noise.

We are primarily interested in how the atmospheric noise will manifest in the timestreams of the MUSIC

detectors. Since S(α) is azimuthally symmetric and since the wind speed is much greater than the scan speed

of the telescope, we should have that

ν ≈ |α||w| , (2.190)

where ν is the temporal frequency. This assumes that the wind velocity is constant over the course of a

scan. If we neglect beam smoothing and windowing effects we can directly insert Equation (2.190) into

Equation (2.185) to obtain an expression for SδTsky
(ν). The atmospheric noise will be transduced via changes

in quasi-particle density, just like astronomical signal, so we can express the power spectral density as

Sδn atm
qp
(ν) =

(
∂nqp

∂Popt

)2(
∂Popt

∂Tsky

)2

B2
atm

(
ν

|w|

)−batm

=

(
τ eff

qp ηphηopt (1− fspill)∆νmm

V ∆

)2

k2
BB2

atm

(
ν

|w|

)−batm

, (2.191)

where 8/3 ≤ batm ≤ 11/3 and B2D ≤ Batm ≤ B3D depending on the value of ν relative to havg|w|
2∆h sin e . The partial

derivatives were evaluated using Equations (2.7), (2.8), and (2.25). To summarize, the atmospheric noise will

appear in the quasi-particle direction and will have a power spectral density that is a power-law in frequency

with a steep spectral index between 8/3 and 11/3. The amplitude of the noise will on average scale with the

column depth of precipitable water vapor CPW.

We expect the atmospheric noise recorded by each detector to be highly correlated with the atmospheric

noise recorded by every other detector for the following reasons. The separation between the near and far

field of our instrument is given by the Fraunhofer distance

d f =
2D2

λ
, (2.192)

where D is the diameter of the telescope and λ is the wavelength of the radiation. MUSIC uses a D = 9 m

diameter illumination of the CSO primary mirror [138], resulting in d f = [80, 120, 155, 285] km for the
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four bands. The vast majority of atmospheric water vapor resides in the troposphere between 0 and 10 km,

and therefore is well within the near field of our instrument. In the near field, the beam patterns of individual

detectors are well approximated by the primary illumination pattern, which is approximately a 9 m diameter

top-hat. Assuming havg = 1 km, the 14 arcmin field of view translates to a physical size of approximately 4 m

at the height of the turbulent layer. This means that even detectors on opposite sides of the focal plane will

have significant beam overlap at this height and at any given time the detectors will see many of the same

atmospheric fluctuations. Therefore, the atmospheric noise present in the timestreams of different detectors

will be highly correlated. One can perform a correlation analysis to remove this common signal [139, 140,

141]. Note that the atmospheric noise will be coherent across observing bands and spectral information can

be used to improve its removal [142, 143, 144].

The atmospheric noise drops off quickly with frequency. Sayers et al. [37] found that for Bolocam the

atmospheric noise is negligible compared to photon noise at frequencies ν & 0.5 Hz. Likewise for MUSIC the

atmospheric noise is subdominant at ν & 0.5−1.0 Hz, as we will show in Section 3.3.5. The long-timescales

at which the atmospheric noise is of consequence correspond to fluctuations in atmospheric emission at large

spatial scales. Again, assuming a height havg = 1 km and using the median wind speed of 10 m/sec found by

Sayers et al. [37], ν . 0.5 Hz corresponds to physical scales & 20 m or angular scales & 70 arcmin. Hence,

the atmospheric fluctuations that we are actually sensitive to occur on scales that are much larger than the

size of the focal plane, and therefore should be slowly varying over the focal plane. This further supports our

assertion that the atmospheric noise will be highly correlated between detectors.

2.4 Summary

The sources of noise discussed in this section can be combined into a single equation for the complex ampli-

tude of an on-resonance carrier tone as a function of time

V̂ (t) = Ae jφ +δw+A(δA+ jδφ)e jφ

+
1
2

A|S res
21|−1Qiχcχy

(
1+8ayχ

2
y
)−1
(

δ fres

fres

)TLS

e j
(
3π/2+φ+φy+φc−θres

)

+
1
4

A|S res
21|−1Qiχcχyα|κ̃|

(
δn atm

qp +δn fund
qp

)
e j
(
Ψ̃+φ+φy+φc−θres

)

+
1
4

A|S res
21|−1Qiχcχyα|κ̃|

τ eff
qp ηph

V ∆
δP signal

opt e j
(
Ψ̃+φ+φy+φc−θres

)
. (2.193)

The equation describes how small fluctuations due to the various noise sources translate into fluctuations in

the measured quantity. Here δw = δwI + jδwQ represents the additive white noise from the electronics, δA

and δφ represent the multiplicative amplitude and phase noise from the electronics, (δ fres/ fres)
TLS represents

fractional fluctuations in the resonator frequency due to TLS, and δn fund
qp and δn atm

qp represent fluctuations in
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the quasi-particle density due to fundamental and atmospheric noise. The astronomical signal is included as

a fluctuation in the incident optical power δP signal
opt . The average value of Equation (2.193) is defined to be

< V̂ (t)>= V̂ = Ae jφ .

It is evident from Equation (2.193) that different sources of noise appear in different directions in the

complex plane. This is illustrated in Figure 2.12. The readout electronics sample the in-phase I(t) =Re
[
V̂ (t)

]
and quadrature-phase Q(t) = Im

[
V̂ (t)

]
components. But the I-Q basis is not useful in terms of studying noise

nor isolating signal. Suppose that a particular noise/signal lies in a direction that is rotated by an angle θX

with respect to the I-Q basis. If θX can be determined, then the digitized I-Q data can be rotated into the

X-Y basis so that the noise/signal occurs in X(t) and is absent in Y (t). This rotation is given by the following

linear transformation  X(t)

Y (t)

=
1

AX

 cosθX sinθX

−sinθX cosθX

×
 I(t)

Q(t)

 , (2.194)

or equivalently

X(t)+ jY (t) =
e− jθx

AX
V̂ (t) . (2.195)

Here AX is a normalization that it might be sensible to apply alongside a particular rotation in order to extract

the desired noise/signal. There are three notable bases:

Amplitude and Phase This basis is rotated by an angle θamp = φ with respect to the I-Q basis. The angle φ

can be estimated using the mean value of the carrier amplitude, φ = arctan(Q/I). The basis is useful for

studying the multiplicative electronics noise δA and δφ . Rotation to this basis is usually accompanied

with normalization by the carrier amplitude, i.e. Aamp = A. Again, this can be estimated using the mean

value of the carrier amplitude A = [I2
+Q2

]−1/2. This transformation will isolate δA and δφ for the

off-resonance carriers.

Frequency and Dissipation This basis is rotated by an angle θfreq =
3π

2 + φ + φy + φc − θres with respect to

the I-Q basis. Note that we have defined the rotation angle so that an increase in the resonant frequency

moves in the positive frequency direction and an increase in carrier frequency moves in the negative

frequency direction. This is necessary to ensure that an increase in resonator dissipation moves in the

positive dissipation direction. The angle θfreq can be accurately determined by measuring the direction

tangent to the resonance curve. Indeed, this basis is more accurately described as the “tangent and

normal to resonance curve basis”, because when a resonator is operated in the nonlinear regime the

frequency and dissipation response are no longer orthogonal, as we saw in Section 2.2.6. Still, we will

use the name frequency and dissipation basis since it is standard. This basis is useful because TLS noise

appears in the frequency direction but not the dissipation direction. This is true even when the detector

is operated in the nonlinear regime, so long as the dissipation is independent of power. Rotation to this

basis is usually accompanied with normalization by the quantity Afreq =
1
2 A|S res

21 |−1Qiχcχy(1+8ayχ2
y )

−1
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in order to convert the timestreams into the equivalent fractional fluctuations in the resonator frequency.

The angle and normalization can be determined by measuring the resonance curve as a function of

frequency and then examining its derivative at the location of the carrier tone.

Quasi-particle and Orthogonal This basis is rotated by an angle θqp = Ψ̃+φ +φy +φc −θres with respect

to the I-Q basis. The angle θqp can be determined as θqp = θfreq +
π

2 + Ψ̃ using the theoretical value of

Ψ̃. However, the true value of Ψ̃ can deviate from the theoretical prediction for a number of reasons

and the quantity θqp is nontrivial to measure directly. This basis is useful because the astronomical

signal as well as several sources of noise appear in the quasi-particle direction but not in the orthogonal

direction.

We will examine the time-ordered data in each of these bases depending on the sources of noise we are

interested in studying.

We now set out to derive an expression for the noise equivalent power (NEP), a common metric for detec-

tor performance. The NEP is defined as the optical power incident on the detector that yields a signal-to-noise

ratio of 1 in a 1 Hz output bandwidth [145]. It is usually specified in units of W Hz−1/2. We will reference

the NEP to optical power incident on the MKID from the antenna. We start by writing Equation (2.193) as

V̂ (t) = V̂ +δV̂ signal +δV̂ noise , (2.196)

where

δV̂ signal =
1
4

A|S res
21|−1Qiχcχyα|κ̃|

τ eff
qp ηph

V ∆
δP signal

opt e jθqp (2.197)

and

δV̂ noise = δw+A(δA+ jδφ)e jφ

+
1
2

A|S res
21|−1Qiχcχy

(
1+8ayχ

2
y
)−1
(

δ fres

fres

)TLS

e jθfreq

+
1
4

A|S res
21|−1Qiχcχyα|κ̃|

(
δn atm

qp +δn fund
qp

)
e jθqp . (2.198)

Here we have used the definitions of θfreq and θqp given above. At this point we have to pick a basis. We

choose to present the NEP in the frequency and dissipation basis for two reasons. First, the data is easily

rotated into this basis because the angle of rotation θfreq is accurately determined from a measurement of the

resonance curve. Second, the TLS noise only appears in the frequency direction, so we expect the NEP in the
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frequency and dissipation direction to differ significantly. The signal in this basis is given by

δV̂ signal
freq = Re

[
δV̂ signale− jθfreq

]
=−1

4
A|S res

21|−1Qiχcχyακ̃2
τ eff

qp ηph

V ∆
δP signal

opt (2.199)

δV̂ signal
diss = Im

[
δV̂ signale− jθfreq

]
=

1
4

A|S res
21|−1Qiχcχyακ̃1

τ eff
qp ηph

V ∆
δP signal

opt (2.200)

and the noise is given by

δV̂ noise
freq = Re

[
δV̂ noisee− jθfreq

]
= δw+A [δAcos(φ −θfreq)−δφ sin(φ −θfreq)]

+
1
2

A|S res
21|−1Qiχcχy

(
1+8ayχ

2
y
)−1
(

δ fres

fres

)TLS

−1
4

A|S res
21|−1Qiχcχyακ̃2

(
δn atm

qp +δn fund
qp

)
(2.201)

δV̂ noise
diss = Im

[
δV̂ noisee− jθfreq

]
= δw+A [δAsin(φ −θfreq)+δφ cos(φ −θfreq)]

+
1
4

A|S res
21|−1Qiχcχyακ̃1

(
δn atm

qp +δn fund
qp

)
, (2.202)

where we have used the fact that e j(θqp−θfreq) =−sin(Ψ̃)+ j cos(Ψ̃) =−κ̃2 + jκ̃1.

The one-sided power spectral density of the signal and noise are obtained by taking two times the squared

magnitude of the Fourier transform of each of the equations above and dividing by the sampling period T .

In doing so we assume that the frequencies of interest are much less than the quasi-particle and resonator

bandwidths so that the roll-off due to the quasi-particle lifetime and the resonator ring-down can be ignored.

This is certainly true for all analysis presented in this work. We assume that the multiplicative amplitude

and phase noise are correlated, but that all other sources of noise are uncorrelated. This yields the following

equations for the signal:

S signal

δV̂freq
=

(
AQiχcχyακ̃2τ eff

qp ηph

4|S res
21|V ∆

)2

S signal

δPopt
(2.203)

S signal

δV̂diss
=

(
AQiχcχyακ̃1τ eff

qp ηph

4V |S res
21|∆

)2

S signal

δPopt
(2.204)
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and similarly for the noise

S noise

δV̂freq
= Sδw +A2 [SδA cos2(φ −θfreq)+Sδφ sin2(φ −θfreq)−SδA,δφ sin(2(φ −θfreq))

]
+

(
AQiχcχy

2|S res
21|(1+8ayχ2

y )

)2

S TLS
δ fres/ fres

+

(
AQiχcχyακ̃2

4|S res
21|

)2(
S atm

δnqp
(ν)+S fund

δnqp

)
(2.205)

S noise

δV̂diss
= Sδw +A2 [SδA sin2(φ −θfreq)+Sδφ cos2(φ −θfreq)+SδA,δφ sin(2(φ −θfreq))

]
+

(
AQiχcχyακ̃1

4|S res
21|

)2(
S atm

δnqp
(ν)+S fund

δnqp

)
. (2.206)

According to the definition given above, NEP is the value of
√

S signal

δPopt
that yields a signal-to-noise ratio of 1.

This is obtained by setting S
δV̂ signal

freq (diss)
= S

δV̂ noise
freq (diss)

and solving for NEP2
freq (diss) ≡ S signal

δPopt
. Doing so yields

NEP2
freq(ν) =

(
4|S res

21|V ∆

AQiχcχyακ̃2τ eff
qp ηph

)2

Sδw

+

(
4|S res

21|V ∆

Qiχcχyακ̃2τ eff
qp ηph

)2 [
cos2(φ −θfreq)SδA(ν)+ sin2(φ −θfreq)Sδφ (ν)− sin(2(φ −θfreq))SδA,δφ (ν)

]

+

(
2V ∆(

1+8ayχ2
y
)

ακ̃2τ eff
qp ηph

)2

S TLS
δ fres/ fres

(ν)

+

(
V ∆

τ eff
qp ηph

)2(
S atm

δnqp
(ν)+S fund

δnqp

)
(2.207)

NEP2
diss(ν) =

(
4|S res

21|V ∆

AQiχcχyακ̃1τ eff
qp ηph

)2

Sδw

+

(
4|S res

21|V ∆

Qiχcχyακ̃1τ eff
qp ηph

)2 [
cos2(φ −θfreq)SδA(ν)+ sin2(φ −θfreq)Sδφ (ν)− sin(2(φ −θfreq))SδA,δφ (ν)

]
+

(
V ∆

τ eff
qp ηph

)2(
S atm

δnqp
(ν)+S fund

δnqp

)
. (2.208)

We then insert Equation (2.184) for S TLS
δ fres/ fres

, Equation (2.176) for S fund
δnqp

, and Equation (2.191) for S atm
δnqp

. We

also write the additive white noise term as

(
|S res

21 |
A

)2

Sδw =
kBTsys

2P
, (2.209)
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where P is the carrier power at the resonator, Tsys is the system noise temperature referred to the input of the

HEMT (Equation (2.139)), and the factor of 1/2 arises in the conversion from peak amplitude to power. Our

final expression is then

NEP2
freq(ν) =

(
4V ∆

Qiχcχyακ̃2τ eff
qp ηph

)2 kBTsys

2P

+

(
4|S res

21|V ∆

Qiχcχyακ̃2τ eff
qp ηph

)2 [
cos2(φ −θfreq)SδA(ν)+ sin2(φ −θfreq)Sδφ (ν)− sin(2(φ −θfreq))SδA,δφ (ν)

]

+

(
2V ∆ BTLS(

1+8ayχ2
y
)

ακ̃2τ eff
qp ηph

)2 (
1
2

QiχyχcP
)−1/2

T−β
bath ν

−1/2

+[ηopt(1− fspill)∆νmmkBBatm]
2 |w|batm ν

−batm

+
2Popthνmm

ηqe

+
2P2

opt

∆νmm

+
4V ∆2

η2
ph

[
R
(
ζ n2

qp +n2
qp,th

)
+

1
τmax

(nqp +nqp,th)

]
(2.210)

NEP2
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. (2.211)

One thing to keep in mind is that these equations describe the raw NEP before any attempt at correlated

noise removal. The noise removal results in a significant reduction in the contributions to the NEP from

multiplicative electronics and atmospheric noise.

We will now discuss how to optimize MKID performance, which essentially corresponds to minimizing

the NEP. It is helpful to simplify Equation (2.210) and Equation (2.211) by using several approximations

that hold for MUSIC and are likely to hold reasonably well for other ground-based, photometric camera

employing MKIDs. If one assumes that quasi-particle loss dominates, so that Q−1
i � Q−1

i,0 , then the quality

factor can be expressed in terms of the quasi-particle density using Equation (2.60). If we further assume

that optically generated quasi-particles dominate, so that nqp � nqp,th, and that the quasi-particle lifetime is

recombination limited, so that τqp � τmax, then the quasi-particle density and quasi-particle lifetime have a

simple relationship with optical power Popt. Under these assumptions Equation (2.210) and Equation (2.211)
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+
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It is evident from these equations that the NEP is highly dependent on the background loading. As we dis-

cussed in Section 2.3.2.1, the NEP for recombination noise and shot photon noise scale as P1/2
opt , and the NEP

for Bose photon noise scales as Popt. In addition, the contributions from the electronics noise and TLS noise

scale as Popt and P1/2
opt , respectively. These dependencies arise because increasing the optical power degrades

detector responsivity by decreasing both the quality factor and the quasi-particle lifetime. It is therefore cru-

cial to minimize background loading. This is accomplished by eliminating the nonantenna response, reducing

the spill-over to the interior of the cryostat (lowering Texc,ant), reducing the spillover to ambient temperature

surfaces (lowering fspill,ant), and observing in good weather conditions (lowering [1− e−τant/ sin e]).

Increasing the carrier power on the feedline at the device is a straightforward way to reduce the NEP from

the additive electronics noise, which scales as P−1/2, and from TLS noise, which scales as P−1/4. Designing

the coupling to the feedline so that Qc is well matched to Qi under the expected loading conditions ensures the

χc ≈ 1 and reduces the contributions from the electronics NEP via the χ−1
c scaling. Centering the carrier tone

directly on the resonant frequency reduces the contribution from the electronics NEP via the χ−1
y scaling.

That said, both χc and χy are fairly mild functions of their respective arguments, as depicted in Figure 2.7.

There are two major differences between the NEP in the frequency and dissipation direction. First, the

frequency direction suffers from TLS noise, while the dissipation direction does not. Second, the additive
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and multiplicative electronics NEPs in the frequency direction are reduced by a factor of κ̃2/κ̃1. This ratio

is plotted in Figure 2.9 as a function of temperature and the nonlinearity parameter a. At our operating

temperature of 240 mK and at low power, this results in a factor of ' 4 reduction. The improvement is

less significant as one pushes to higher readout powers and thus higher values of the nonlinearity parameter.

The choice of readout power is then an optimization problem. We must balance the reduction of additive

and multiplicative electronics noise (in the frequency direction) through the κ̃2/κ̃1 responsivity factor with

the reduction of additive electronics and TLS noise through their respective P−1/2 and P−1/4 dependencies.

We have found that, so long as one is able to remove the multiplicative electronics noise reasonably well

using off-resonance carriers, it is best to operate at as high a readout power as possible. We operate the

MUSIC resonators just below the onset of bifurcation. One interesting idea is to operate the resonators well

past bifurcation so that the response in the frequency directions switches signs and κ̃2/κ̃1 begins to increase.

Swenson et al. [108] demonstrated this successfully with a single Titanium Nitride (TiN) resonator and saw

a factor of ∼ 10 improvement in NEP. This is not possible with the current version of the MUSIC readout

electronics, and would require significant redesign to increase the maximum power that they are able to

deliver and modified firmware to enable careful placement of the carrier tones. Note that past a certain carrier

power the nonlinear kinetic inductance model outlined in Section 2.2.6 will no longer provide a complete

description of the effects of readout power on the device, as heating of the quasi-particle population by the

microwave power will eventually introduce a dissipative response.

The ratio κ̃2/κ̃1 increases linearly with T/Tc. In addition, the TLS noise shows a fairly dramatic reduction

with temperature, with the NEP scaling as T−β/2
bath with β = 1.2−2.0. Thus, operating at higher temperatures

offers possible improvements in frequency direction sensitivity. This, however, has other ramifications that

must be carefully considered, and is beyond the scope of our discussion.

Increasing either α or κ̃2 improves the frequency response of the resonator to changes in quasi-particles

density, which directly translates to a reduction in the TLS NEP. There has been a recent push to use high-

resistivity superconductors such as TiN for their high kinetic inductance fractions [146, 147, 148, 149, 150].

An increase in κ̃2 can be achieved by decreasing the resonator frequency. This has the additional benefit of

increasing the ratio κ̃2/κ̃1, which scales as approximately ω−1 at low frequencies. There are several instru-

ments currently being developed that use kinetic inductance detectors at ∼ 100 MHz as opposed to ∼ 1 GHz

for primarily this reason [151, 152, 153]. The lower limit on the resonator frequency is effectively set by the

resonator bandwidth ∆ fres =
fres
2Q , because at a certain point the resonator will begin to filter out signal. The

exact frequency at which this occurs depends on the the quality factor of the resonator, the spatial extent of

the signal, and the scan speed of the telescope.

The atmospheric noise enters into the expression for NEP in an almost identical way as astronomical

signal. The best way to reduce atmospheric noise is to place the telescope in a location with a dry and stable

atmosphere. It can also be avoided by modulating the signal of interest (e.g., scanning the telescope faster,

chopping on and off source). The approach that we take, as discussed in Section 2.3.2.3, is to (partially)
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remove it in software using the fact that it is correlated between detectors.

Finally, it is useful to examine the noise equivalent flux density

NEFDfreq (diss) =

(
∂S

∂Popt,ant

)
NEPfreq (diss)

=
2 NEPfreq (diss)

Aeff ∆νmm,ant ηopt,ant(1− fspill,ant) e−τant/ sin e (2.214)

and the noise equivalent temperature

NETfreq (diss) =
Aeff

2kB
NEFDfreq (diss)

=
NEPfreq (diss)

kB ∆νmm,ant ηopt,ant(1− fspill,ant) e−τant/ sin e (2.215)

Note that these definitions assume single-polarization NEP/NET and dual-polarization NEFD. Whereas the

NEP is a measure of detector performance, the NET and NEFD are measures of instrument and instrument

plus telescope performance, respectively. For a given NEP, detector bandwidth, and telescope area, minimiz-

ing the NET/NEFD corresponds to maximizing the optical efficiency, reducing the amount of spill-over, and

observing in good weather conditions.
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Chapter 3

Calibration of the Full Instrument
Model

3.1 Overview

In the previous chapter we presented a theoretical framework that describes the behavior of the MUSIC

detectors. We introduced a number of parameters, many of which need to be measured in order to make

meaningful predictions. In this chapter we discuss the series of measurements used to calibrate the full

instrument model.

The primary measurement at our disposal is an “IQ sweep”, or a measurement of the complex transmis-

sion through the system as a function of microwave frequency near a resonance. The IQ sweep is fit to extract

the resonant frequency fres and internal quality factor Qi. By simply measuring fres and Qi at different bath

temperatures and under different loading conditions, we can constrain many of the model parameters. We

first measure these two quantities as a function of temperature in a dark scenario in order to calibrate the fre-

quency and dissipation response to changes in quasi-particle density. We then measure them as as a function

of temperature in an optical scenario, with first a room temperature and then a liquid nitrogen beam filling,

black-body load in front of the cryostat window. This constrains the loading from inside the cryostat and

the optical efficiency between the detectors and the cryostat window. Finally, we mount the cryostat on the

telescope and examine fres and Qi as a function of the angle of elevation of the telescope pointing in order to

determine how well the detectors are coupled to the sky. We also use Fourier Transform Spectroscopy (FTS)

to measure the spectral response of the detectors.

We employ a variety of techniques to isolate each source of noise presented in Section 2.3. Additive and

multiplicative electronics noise are measured directly with off-resonance carriers. TLS noise is calibrated in

a dark scenario by examining the on-resonance noise power spectral density as a function of carrier power.

Atmospheric noise is inferred from its unique spectral scaling and the fact that it is correlated between detec-

tors. Finally, fundamental noise is estimated from the full instrument model predictions for optical loading

and steady-state quasi-particle density, as well as the FTS measurements of the band center and band width.
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3.2 Responsivity

3.2.1 IQ Sweeps

We collect IQ sweeps with the MUSIC readout electronics rather than a traditional vector network analyzer

(VNA). This enables all resonances to be measured simultaneously [154, 102]. A pre-programmed buffer is

output from the DACs that consists of a superposition of baseband frequency carrier tones that when up-mixed

with the local oscillator (LO) will be centered on each of the resonances. The LO frequency is then stepped

over some range around the nominal value. At each step a short, 0.5 sec long timestream is collected at the

ADCs. The mean values of the timestreams are used as an estimate of the complex carrier amplitude at that

frequency. Equations (2.61) and (2.100) suggest that an appropriate model for this quantity is

V̂ ( f ) = (u+ jv)e−2 jπ f τRF

(
1− 1

1+2 jQ f− fres
fres

Q
Qc cosφc

e jφc

)
, (3.1)

where u+ jv acts as an overall complex normalization, τRF is the cable delay of the RF electronics, and

fres ≡ fres( f , fres,0, a) is the power-shifted resonant frequency, which is obtained by taking the appropriate root

of Equation (2.89) depending on whether one is sweeping upward or downward in frequency. Note that the

normalization u+ jv is dependent on the baseband frequency of the carrier tone.

Petersan and Anlage [155] performed a quantitative comparison of several popular methods for con-

straining the resonant frequency and internal quality factor from measurements of S res
21( f ). They found that

a nonlinear least-squares fit to the squared magnitude of the forward transmission as a function of frequency

yielded the most accurate and precise values for low signal-to-noise measurements. This agrees with our

qualitative experience that fitting the squared magnitude |V̂ ( f )|2 yields more robust results than fitting either

the complex data V̂ ( f ) or the phase θ( f ) = arg
(
V̂ ( f )

)
. Therefore, all calibration data is fit to the model

|V̂ ( f )|2 = (A+B f )

∣∣∣∣∣1− de jφc

1+2 jQ f− fres
fres

∣∣∣∣∣
2

, (3.2)

where d = Q/(Qc cosφc) is the diameter of the resonance circle and the (A+B f ) factor allows for a linear

trend in the background transmission. This model has a total of seven parameters:

θIQ = [ fres,0, Q, d, φc, a, A, B] . (3.3)

The fit is performed in IDL with the MPFIT routine, which performs Levenberg-Marquardt minimization of

the χ2 function. In order to estimate the uncertainty on the best-fit model parameters, we require estimates

of the error on our measurement of |V̂ ( f )|2. We assume the same error for all data points in the sweep and

estimate it using the two-sample variance of the residuals from the fit. The two-sample variance is calculated
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using the first and last 20% of the sweep, where the effect of the resonance on the transmission is small. The

best-fit values of d, Q, and φc are then used to determine the real component of the coupling quality factor Qc

and the internal quality factor Qi, with uncertainties propagated appropriately.

For calibration data (i.e., all measurements discussed in Section 3.2), we perform the IQ sweeps using very

low carrier power, operating in a regime where the carrier power has no effect on the shape of the resonance

curve. This typically corresponds to between -105 and -110 dBm at the device. We fix the nonlinearity

parameter a = 0 for the fit, which reduces the number of free parameters to six. All calibration data is

collected with an LO step size of 7.5 kHz.

When possible (usually once per dataset) a sweep is collected at approximately 1.2 K — just above the

critical temperature of aluminum — to characterize the background transmission. The squared magnitude

of the IQ sweeps are divided by the squared magnitude of the background sweep to isolate |S res
21|2 prior to

performing the fit.

Figure 3.1: Example IQ sweep data. The left and right columns correspond to two different resonators. In
the top panel, the black circles denote the measured data points, the solid red line denotes the best-fit model
to Equation (3.2), and the dashed red line denotes the background component (A+B f ) of the best-fit model.
The data points have a frequency spacing of 7.5 kHz. In the bottom panel, the black circles denote the
residuals calculated as (data - model).
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We show two examples of a typical fit to an IQ sweep in Figure 3.1. In most cases the quality of fit is

excellent, with a reduced χ2 approximately equal to 1 and the residuals randomly distributed about zero, as

illustrated in the left column. We occasionally see fits similar to that shown in the right column, where the

quality of fit looks good based on a plot of the model overlaid on the data; however, systematic trends with

frequency emerge at the sub-percent level and can be seen in the residuals. The general behavior of these

“bad” fits is usually the same, with the residuals displaying a divot near the resonant frequency. We flag

egregious cases by determining outliers based on the distribution of χ2 values for all resonators on a given

device half-band. Flagged data points are removed from the analysis. The less egregious cases are dealt

with by multiplying all of the parameter uncertainty estimates by
√

χ2, effectively assuming that the model

provides a good fit and using that to determine errors. It is possible that these small deviations from the model

are artifacts of nonidealities in the IQ mixer. Typically a calibrated vector network analyzer is used to perform

this type of measurements; unfortunately, this is not tractable for the large number of resonators employed in

MUSIC. It is possible to measure and correct for nonidealities in the IQ mixer [93], which would be one way

to improve the quality of these measurements in the future.

3.2.2 Dark Temperature Sweeps

The first calibration measurement consists of collecting IQ sweeps at 12-15 temperatures between 230 mK

(base) and 455 mK with the detectors dark. In order to ensure negligible optical loading during this measure-

ment an aluminum cover is placed over both the focal plane and the cryostat window. The temperature of the

detectors are monitored with a Lakeshore Germanium Resistance Thermometer (GRT) attached to the copper

focal plane unit. A 10 kΩ heater — also attached to the focal plane unit and controlled by an SRS SIM 960

Analog PID controller — is used to maintain the temperature at the desired value for data points above base.

The dark temperature sweep data for a single detector is shown in the upper panels of Figure 3.2. We fit

the IQ sweeps using the procedure outlined in the previous section. From these fits we extract the frequency

fres(T ) and inverse quality factor Q−1
i (T ) of the resonance as a function of temperature. Since the optical

loading is negligible, these trajectories are completely determined by changes in the surface impedance of the

Al absorptive section due to changes in the population of thermally generated quasi-particles. The explicit

relationships are given by Equations (2.59), (2.60), (2.43), (2.44), and (2.37). We fit the frequency and quality

factor trajectories separately using a Markov Chain Monte Carlo (MCMC) algorithm, which is described in

detail in Appendix A. The free parameters of the fit are

θdark, f =
[
∆0, f , α f , f0

]
θdark, Q = [∆0,Q, αQ, 1/Qi,0] .

The best-fit parameters and uncertainties are estimated as the mean and covariance of the joint posterior

distribution sampled by the MCMC. The parameters α and ∆0 are highly degenerate, so the uncertainty

estimates have a significant, positive off-diagonal term. In theory, there is a single gap energy ∆0 and kinetic
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Figure 3.2: Example of a dark temperature sweep. IQ sweeps are collected at several temperatures, shown as
different colors in the top row of plots. The top left panel displays the squared magnitude of the transmission
near resonance and the the top right panel displays the transmission near resonance in the complex plane. As
the temperature is increased, the resonator shifts to lower frequencies and the internal quality factor degrades,
which results in a broadening and shallowing of the Lorentzian line shape and a shrinking in the diameter
of the resonance circle. Each IQ sweep is fit to Equation (3.2) to extract fres(T ) and Q−1

i (T ), which are
shown as black circles in the bottom left panel and bottom right panel, respectively. The error bars on the
measurements are less than the size of the symbols. The temperature trajectories are fit separately using the
first order approximations for the Mattis-Bardeen integrals. The best-fit models are denoted by the red and
blue lines.

inductance fraction α that appear in the equations for both the frequency and dissipation of the resonator.

However, we have found empirically that the overall normalization of the dark trajectories differ by some

factor not explained by our model (see Figure 3.3). The magnitude of the discrepancy is αQ/α f ' 1.3 and

∆0,Q/∆0, f ' 1.03 when one assumes the first order approximation. There is better agreement if the model

is calculated using the full integrals given in Equations (2.26) and (2.27), with αQ/α f ' 1.075. A possible

explanation is that our detectors fall into a regime where the relation between the surface impedance of the

superconductor and the quasiparticle density is more complicated than the theory described in Section 2.2.4.

In any case, the thermal response of the resonator is completely characterized by θdark, f and θdark, Q. The
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Figure 3.3: Example dark temperature sweep data and best-fit model. The black circles denote the measured
frequency (left) and dissipation (right) as a function of temperature. The red line denotes the model prediction
based on the fit to the frequency data. The blue line denotes the model prediction based on the fit to the
dissipation data. The full Mattis-Bardeen integrals were used to make the model prediction. The discrepancy
between frequency and dissipation is larger if the first order approximation is used.

purpose of the dark data set is to determine the best-fit values of these parameters for each resonance so that

the thermal response can be accounted for appropriately when fitting the hot/cold data. In addition, due to

the assumed equivalence of thermally and optically generated quasi-particles, θdark, f and θdark, Q calibrate the

conversion between changes in quasi-particle density and changes in the frequency and dissipation of the

resonator.

3.2.3 Hot/Cold

The second calibration measurement is similar to the first in that we collect IQ sweeps at 12-15 temperatures

between base and 455 mK. However, for this measurement the aluminum covers are removed and we alternate

between an ambient temperature (hot) and liquid nitrogen temperature (cold) beam-filling, blackbody load in

front of the cryostat window. We use large pieces of Eccosorb R©for the loads; a microwave absorbing material

that has an approximately blackbody spectrum at sub/millimeter wavelengths [156, 157]. The Eccosorb R©is

fully submerged in a styrofoam container of LN2for the cold measurement.

The transparent portion of the MUSIC window is 300 mm in diameter. We use an ∼ 1 m square piece of

Eccosorb R©placed 300 mm from the window. This requires a large LN2bath that must be refilled often due

to evaporation from the significant exposed surface area. The IQ sweep takes approximately 15 minutes to

complete. We refill the bath before the start of the measurement and then top it off every 5 minutes.

Another difficulty in the LN2measurement is the formation of condensation on the cryostat window.

Even a thin layer of condensation has high opacity at sub/millimeter wavelengths, which will result in an

underestimation of the effective load temperature. In order to prevent condensation, we employ a nitrogen

purge window, pictured in Figure 3.4. The purge window consists of a plexiglass ring that is mounted to
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Figure 3.4: N2 purge window mounted on the bottom of the MUSIC cryostat.

the lip of the cryostat and extends 4 inches past the cryostat window. Low-density polyethylene (LDPE)

is stretched over the plexiglass ring forming a thin, air-tight membrane. N2 gas is pumped into a 1/8 inch

diameter hole in the plexiglass ring and is vented from an exhaust hole of the same diameter on the opposite

side. The pressure of the tank supplying the N2 is increased until the membrane becomes slightly inflated.

The purge window ensures that the region between the membrane and the cryostat window is void of water

vapor. However, water vapor can still condense on the outside of the membrane. We use fans to limit

conductive cooling by improving air flow in the region between the LN2bath and the membrane. Even with

these precautions, condensation still forms on the membrane when the humidity is high. We find that we are

only able to collect hot/cold data when the relative humidity is . 30%. We are also careful to check that the

membrane is dry after each LN2measurement.

We control and monitor the array temperature in the same way as the dark measurement. All of the

hot/cold results presented in this work were collected on the third floor of the CSO. The CSO measures the

temperature, humidity, and pressure using a thermometer and hygrometer mounted inside the dome. These

values are updated every 5 minutes. We use the average value of the temperature as our estimate of Tamb for

the hot measurements. We calculate the temperature of the liquid nitrogen load as

TLN2 = 77.25 K−0.00825
mb
K

× (1013.25 mb−Patm) , (3.4)

where TLN2 has units of K and Patm is the atmospheric pressure in units of millibar. The atmospheric pressure

at the summit of Mauna Kea is Patm ≈ 625 mb and so TLN2 ≈ 74 K.

Let fres(Tbath, Tload) and Q−1
i (Tbath, Tload) denote the frequency and dissipation extracted from the IQ sweep

collected at temperature Tbath with a load of temperature Tload at the cryostat window. The model prediction for

these quantities is given by Equations (2.59), (2.60), (2.43), (2.44), (2.21), (2.37), and (2.7). The purpose of

the hot/cold data set is to determine the efficiency η = ηphηopt and excess loading. The basic idea is illustrated

in Figure 3.5. The dark calibration can be used to convert either the measured frequency shift or the measured

dissipation into a quasi-particle density. The difference between the quasi-particle density under the hot and
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Figure 3.5: Idea behind the hot/cold measurement. All curves shown are theoretical predictions based on
typical MUSIC detector parameters. The black line denotes the thermal quasi-particle density or the quasi-
particle density in the absence of optical loading. The blue and red dashed line denote the quasi-particle
density with a 77 K and 293 K temperature beam-filling, blackbody load in front of the cryostat window.

cold load places a constraint on the optical efficiency. One can then extrapolate to Tload = 0 K at the cryostat

window to infer the excess loading due to beam terminating on the interior of the cryostat.

There are several complications to this simple picture. First of all, examining Equations (2.21) and (2.7)

it is clear that the sensitivity of the hot/cold data to η is completely degenerate with a number of parameters:

the gap energy ∆, the single spin density of states N0, the recombination coefficient R, the volume of the

aluminum section V , and the bandwidth of the detector ∆νmm. In order to extract the efficiency, we must

supplement the hot/cold data with independent measurements of these degenerate parameters. We determine

the gap energy from the dark data set as discussed in the previous section. We assume literature values for the

single-spin density of states and rely on a combination of theoretical predictions and measurements in order

to determine the recombination coefficient; we will discuss this further in Section 3.2.3.1 and Section 3.2.3.2.

We measure the bandwidth individually for each resonator via Fourier transform spectroscopy, which will

be discussed in Section 3.2.4. Finally, we express the volume as V = Ad with area A = 6 µm× 350 µm =

2100 µm2 and thickness d. While the area of the thin film is known, there is some uncertainty in the thickness:

60 nm of Al is deposited; however, an unknown amount is unintentionally etched away during processing.

In all analysis that follows we will assume that 15 nm is etched away so that d ≡ 45 nm and then add a

systematic error to our efficiency estimate that corresponds to the thickness varying between 30 and 60 nm.

For the analysis of the hot/cold data set, it is useful to lump several of the degenerate parameters into a

single parameter

C ≡ ηoptηph∆νmm

d
, (3.5)
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which has units of GHz nm−1. The equation for the frequency and dissipation are then given by

fres(Tbath, Tload) = fres,0 −
1
2

fres,0α f κ2
(
T,ω,∆0, f

){[CkB (Tload +Texc)

RA∆
+

1
Rτmax

(
nqp,th

(
T,∆0, f

)
+

1
4Rτmax

)]1/2

− 1
2Rτmax

}
(3.6)

Q−1
i (Tbath, Tload) =

1
Qi,0

+αQκ1(T,ω,∆0,Q)

{[
CkB (Tload +Texc)

RA∆
+

1
Rτmax

(
nqp,th(T,∆0,Q)+

1
4Rτmax

)]1/2

− 1
2Rτmax

}
, (3.7)

where the temperature T is related to the bath temperature Tbath by Equation (2.111), which accounts for

quasi-particle heating. The thermal quasi-particle density is given by Equation (2.37).

We construct the following quantities:

∆ fres(T ) = fres(Tbath, Tamb)− fres(Tbath, TLN2) (3.8)

T naive
exc (T ) =

Tamb Q−2
i (Tbath, TLN2)−TLN2 Q−2

i (Tbath, Tamb)

Q−2
i (Tbath, Tamb)−Q−2

i (Tbath, TLN2)
, (3.9)

which we refer to as the frequency shift and naive excess load. We simultaneously fit these two quantities to

the model given by Equations (3.6) and (3.7). There are several reasons why we choose to fit the frequency

shift and naive excess load rather than fit fres(T,Tload) and Q−1
i (T,Tload) directly. Fitting the frequency shift

removes the primary dependence on fres,0, which can change between the dark and optical cool down due to

flux trapping in the niobium. As was mentioned in Section 3.2.2, there is disagreement in the normalization

of the dark frequency and dissipation trajectories. The naive excess load is a ratio of resonator quality factors

at the same temperature, and therefore the exact conversion between δQ−1
i and nqp drops out. In the optical

quasi-particle dominated, recombination limited regime, the naive excess load is equal to Texc. Effectively, we

use the quality factor data to constrain the excess loading and the frequency shift data to constrain optical

efficiency.

The free parameters of the fit are

θhot/cold =
[
C, Texc, τmax, n, ηe, Q−1

i,0 , ∆0, f , α f , ∆0,Q,αQ

]
. (3.10)

The gap energies and kinetic inductance fractions are well constrained by the dark data set. We have imple-

mented a Markov Chain Monte Carlo (MCMC) that uses the Metropolis-Hastings Algorithm and simulated

annealing to efficiently explore the multi-dimensional parameter space and search for global minimum of the

likelihood function (see Appendix A). This enables us to include the results of the dark data set properly as a
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prior on [∆0, f , α f ] and [∆0,Q, αQ], taking into account the large off-diagonal elements in the uncertainty on

each pair of parameters. It also enables us to include uncertainties in bath temperature and loading conditions.
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Figure 3.6: Example hot/cold data and best-fit model. Left: The frequency shift (top panel) and naive excess
load (bottom panel) as a function of bath temperature. Data are denoted with circles and best-fit model
predictions are denoted with solid lines. The best-fit parameter values are annotated in the upper left corner
of the bottom panel. The (median) ± (median absolute deviation) of the marginalized posterior distributions
are annotated in the upper left corner of the top panel. Right: The raw measurements of the resonant frequency
(top panel) and internal quality factor (bottom panel) as a function of bath temperature under the hot (red) and
cold (blue) loads. Shown in black are the dark temperature sweep measurements collected for this resonator
during a previous cooldown. The solid black line is calculated using [∆0, f , α f ] and the dashed black line is
calculated using [∆0,Q, αQ].

Figure 3.6 shows example hot/cold data for a Band 1 resonator. It is important to note that, while the

quality of fit to the frequency shift and naive excess load is excellent, as demonstrated in the panels on the

left, the best-fit model predictions for the resonant frequency and internal quality factor are poor, as evidenced

by the panels on the right. In general, the best-fit model reproduces the measured fres(Tbath, Tload) better than

the measured Q−1
i (Tbath, Tload). We have tried to fit the frequency and internal quality factor data directly, but

find that our model cannot describe them both simultaneously. This is because the fractional change in κ1

with temperature is larger than κ2. Since the measured frequency and internal quality factor temperature

trajectories are both constant at low temperature, this means that the internal quality factor data requires

greater quasi-particle heating and a higher effective quasi-particle temperature than the frequency data (see
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Section 2.2.9).

After fitting the hot/cold data for all detectors on a given device half-band, we examine a plot of the

best-fit value of C as a function of resonant frequency. The observing band of each detector is extracted from

this plot. This is possible because detectors of the same band are grouped together in resonant frequency and

because the differences in C between bands are larger than the intrinsic scatter between detectors of the same

band. Identifying the bands in this way is necessary because not all of the detectors have FTS data available,

and even if they did, resonant frequencies shift between cooldowns due to flux trapping in the Nb and it is

not always possible to retrieve the FTS data for a particular resonator.

Since the dark resonators exhibit much lower values of C than the antenna-coupled resonators, a simple

cut on C is used to identify the dark resonators. We estimate Cdir and Texc,dir as the mean value of C and

Texc over all dark resonators on a given device half-band. We then correct the values of C and Texc for the

antenna-coupled resonators on that device half-band using the following equations:

Cant =C−Cdir (3.11)

Texc,ant =
CTexc −CdirTexc,dir

Cant

. (3.12)

In this way the dark resonators are used to measure and account for the effects of direct absorption.

3.2.3.1 Single-Spin Density of Electron States at the Fermi Energy Level

The value of N0 for aluminum is reported in the literature as 1.2 × 1010 µm−3 eV−1 [158] and 1.72 ×

1010 µm−3 eV−1 [103, 93, 159]. Throughout this thesis we assume N0 = 1.72×1010 µm−3 eV−1.

3.2.3.2 Recombination Coefficient

The recombination coefficient is given by the equation [160]

R =
(2∆)2

2(kBTc)
3 N0τ0

, (3.13)

where τ0 is the material dependent timescale for the electron-phonon interaction. Kaplan et al. [160] per-

form a theoretical calculation to obtain τ0 = 438 ns for aluminum. If we assume that ∆0 ≈ 1.76kBTc and

use the average value ∆0 = 0.205 meV observed in our detectors, then this corresponds to a recombination

coefficient R = 7.1 µm3 sec−1. Optical pulse measurements of the quasi-particle lifetime by Barends et al.

[89] suggest that τ0 may depend on both the device thickness and substrate. They find τ0 = 687 ns for

150 nm-thick aluminum on silicon and τ0 = 430 ns for 100 nm-thick aluminum on silicon, corresponding to

R = 4.5 µm3 sec−1 and R = 7.2 µm3 sec−1, respectively. Schlaerth [161] used third harmonic pulse mea-

surements of the quasi-particle lifetime to infer a value R ' 7.5 µm3 sec−1 for three detectors in an early

DemoCam array (Device 1). These detectors were aluminum-niobium hybrid CPW resonators on a silicon
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substrate with a 6 µm center strip, 2 µm gap, and a designed thickness of 60 nm.

Throughout this thesis we assume a value R = 9.4 µm3 sec−1. This is based on third harmonic pulse

measurements of the quasi-particle lifetime collected in a dark scenario using three test devices on a MUSIC

engineering-grade detector array (Device 9a). The test devices were all-aluminum CPW resonators on a sili-

con substrate with center strip/gap dimensions of 3/1, 6/2, and 9/3 (in units of µm) and a designed thickness

of 60 nm. Schlaerth [161] gives a detailed description of the third harmonic pulse technique and its caveats.

To briefly summarize, a “probe” and “pump” carrier tone are tuned to the resonant frequency and its third

harmonic, respectively. A microwave switch is used to pulse the pump signal at a frequency around 1 kHz.

The large microwave pump power generates an excess population of quasi-particle, which then recombine

to the quiescent thermal population after termination of the pulse. Read out of the probe signal is triggered

on pulse termination. The average decay profile over many pulses is used to determine the quasi-particle

lifetime. This procedure is repeated at multiple bath temperatures. The measurements [τ eff
qp (nqp,th)]

−1 are then

fit to the linear relationship given by Equation (2.24) to extract the slope R and intercept τ−1
max . Note that this

requires conversion of bath temperature to quiescent quasi-particle density, which acts as the independent

variable in the linear fit. This is accomplished using Equation (2.37) with the value of ∆0 determined from a

Mattis-Bardeen fit to dark temperature sweep, resonant frequency data. The third harmonic pulsing measure-

ments were collected with the test devices, instead of the antenna-coupled devices, because the test devices

were designed to have a resonant frequency ∼ 9 GHz, as opposed to 3− 4 GHz. As a result, the energy

of a single pump photon is a larger fraction of the aluminum gap energy and is therefore able to generate

quasi-particles more easily via heating. This is the same reason that the third harmonic is used as the pump

frequency instead of the fundamental.

Measurements of the quasi-particle lifetime were collected at eight temperatures between 240−345 mK.

The resulting [τ eff
qp (nqp,th)]

−1 trajectories showed a clear linear trend. The 9/3 and 6/2 devices yielded consistent

results of R = 9.4± 0.6 µm3 sec−1. This is higher than, but still loosely consistent with, the set of values

presented in the first paragraph of this section. We fix R = 9.4 µm3 sec−1 for all analysis. We note that

there is a large systematic uncertainty in extrapolating the test device measurement to our antenna coupled

devices. Specifically, in the test device measurement, quasi-particles are generated along the third harmonic

current distribution over the entire length of the CPW. In our detectors, quasi-particles are only generated in

the aluminum portion at the shorted end of the MKID by optical power coupled through the antenna. The

excess quasi-particle distribution is therefore considerably different between the two cases. We will address

this uncertainty in the recombination coefficient in our interpretation of relevant results. Based on the set of

values presented in the first paragraph of this section, a reasonable prior on the recombination coefficient is

7.1−9.4 µm3 sec−1.
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3.2.3.3 Nonuniform Absorption

In Section 2.2.10 we showed that, under reasonable assumptions, the effects of nonuniform absorption of

optical power are completely characterized by a single parameter ζ (Equation (2.122)). Golwala [98] carried

out the following procedure in order to determine ζ for the MUSIC detectors. First, hot/cold data were

fit using the methodology outlined in Section 3.2.3 and assuming a uniform distribution of quasi-particles

(i.e., ζ = 1). This resulted in an initial estimate of the model parameters. The power absorption profile

ψ(z) was computed assuming a sheet resistance of 0.22 Ω/�, which is based on measurements made at

4 K. The quasi-particle density profile φ(z) was then obtained by numerically solving the diffusion equation

(Equation (2.116)). In order to get the numerical solver to converge, the diffusion constant had to be reduced

to 5−10% of the theoretical value, or D = 3−12 cm2 sec−1. Note that these values are reasonably consistent

with observed values [162]. The resulting quasi-particle density profile was used to calculate ζ , and the input

model parameters were corrected. This process was repeated until ζ converged.

We employed a 1 mm long aluminum section for several generations of engineering-grade detector arrays.

In order to reduce direct pick-up, which scales as the area of the aluminum section, we reduced the length

to 0.35 mm for the science-grade detector arrays. Calculations showed that loss of power due to reflection

became significant at lengths shorter than this. The diffusion equation was solved for both 1 mm and 0.35 mm.

It was found that ζ1mm = 1.10 and ζ0.35mm = 1.01− 1.02. These results were not a strong function of optical

loading or bath temperature. This thesis is concerned with the analysis of the science-grade arrays. Since

nonuniform absorption amounts to at most a 2% correction, we do not address it in our analysis.

3.2.4 FTS

The spectral response of the MUSIC detectors is set by the on-chip lumped element filters. We measure

the bandpass of these filters using a Fourier Transform Spectrometer (FTS) that was originally built for

the SPIDER experiment by Jon Gudmundsson [163]. The apparatus is essentially a polarized Michelson

interferometer with a moving mirror that is contained in a lightweight, movable enclosure. Light from a

LN2blackbody source is collimated by a parabolic mirror and then split into two beams by a wire grid. The

first beam travels a path of fixed length, in which it reflects of a rooftop mirror and then returns. The second

beam travels a path of variable length, in which it reflects of a rooftop mirror attached to a carriage on a

linear stage and then returns. The rooftop mirrors are made of polished aluminum and consist of two plane

mirrors attached orthogonally at an edge. The beams recombine at the wire grid and then reflect off a ∼ 45 ◦

mirror directed upward into the window of the MUSIC cryostat, where they are measured by the detectors.

The beams interfere when they recombine due to phase differences introduced by differences in path length.

By moving the carriage along the stage at a constant speed vstage, differences in path length are mapped to

differences in time, which turns each detector timestream into an interferogram. The Fourier transform of the

interferogram yields the spectral response of the entire system between beam splitter and detector.



115

The length of the stage is 300 mm, which results in a frequency resolution of 1 GHz. The conversion

between temporal frequency ν and millimeter-wave frequency νmm is given by

νmm =
c

2vstage

ν , (3.14)

where c is the speed of light and the factor of two arises because the change in path length is twice the change

in the position of the stage. The MUSIC bandpass measurements were collected with a stage velocity of

8.75 mm/sec in order to place the spectra at a temporal frequency ν well above the 1/ f and drift-type multi-

plicative electronics noise. Ideally we would like to measure the band centers of our detectors to sub-percent

level accuracy, which requires that the stage move the carriage at an average velocity that deviates by less

than 1% from the velocity requested. The TIME-Pilot experiment has calibrated the SPIDER FTS using a

local oscillator as reference. The results are presented in Figure 3.7. They find that there are systematic

offsets between the requested and achieved velocity of the stage, and that the size of the offset is dependent

on the velocity requested. They performed a calibration measurement at 8.5 mm/sec, which is approximately

equal to the velocity used for our measurement, and found that the true band center is 1.0261 times larger

than the measured band center. We multiply the frequency scale νmm by a correction factor of 1.0261 for all

FTS results presented in this work.

Figure 3.7: Calibration of the velocity of the linear stage on the SPIDER FTS. All data was collected with
a single channel on the TIME-Pilot spectrometer. The LO was tuned to 216 GHz and measures the true
bandpass, and therefore sets the frequency scale. The TIME-Pilot FTS reproduces the true bandpass with
high accuracy. The SPIDER FTS reproduces the bandpass to varying degrees of accuracy depending on
the velocity of stage. We used a velocity of approximately 8.5 mm/s for the measurements of the MUSIC
bandpasses. Plot courtesy of Jonathon Hunacek.
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Figure 3.8: Example skydip data from a Band 1 resonator on Device A2. Left: Frequency shift relative to
the value under room-temperature loading as a function of 1/sine. The leftmost data point corresponds to an
elevation e= 70◦ and the rightmost data point to e= 20◦. Right: The best fit parameters from the hot/cold are
effectively used to convert ∆ f into a load temperature at the cryostat window. The solid black line denotes
the best fit of the data to Equation (2.8). The dashed black line denotes the best fit using the approximation
e−τ/ sin e = 1− τ/sine.

We describe in detail the reduction of the FTS dataset and present the resulting bandpasses, band centers,

and effective band widths in Section 4.2.2. The effective band widths are used to convert the values of C

measured with the hot/cold data to an optical efficiency.

3.2.5 Skydips

The final calibration measurement consists of collecting IQ sweeps at base temperature (T base
bath = 240 mK)

with the telescope pointed at empty sky at several elevation angles between 20◦− 70◦. From these sweeps

we extract the resonant frequency as a function of elevation angle fres(e) and calculate the shift relative to the

resonant frequency under room-temperature loading

∆ f sky
res (e) = fres(T base

bath , Tamb)− fres(T base
bath , Tload(e)) . (3.15)

We fit this quantity to the model presented in Section 2.2. The relevant equations are (2.59), (2.60), (2.43),

(2.44), (2.37), (2.21), (2.7), and (2.8). The load temperature is given by

Tload(e) = [CantTload,ant(e)+CdirTload,dir(e)]/C

=
Cant

C

[
fspill,antTamb +(1− fspill,ant)e−τant/ sin e

]
+

Cdir

C

[
fspill,dirTamb +(1− fspill,dir)e−τdir/ sin e

]
. (3.16)

The free parameters of the fit are

θsky = [ fspill,ant, τant, fspill,dir, τdir, θhot/cold] , (3.17)
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where θhot/cold are well constrained by the hot/cold data. Again, we use an MCMC to fit the data, including the

results of the hot/cold as a prior. We assume that Tatm = 250 K and use the dome temperature reported at the

time of the observation for Tamb (typically between 0–10◦ C).

Since Tload,ant(e) = 0 for the dark resonators, they are examined first and used to determine fspill,dir and τdir.

The results are then included as a prior in the analysis of the skydip data for the antenna coupled resonators.

Specifically, at each iteration of the MCMC the parameters [ fspill,dir, τdir] are drawn randomly from the joint

posterior distribution of a random dark resonator.

3.3 Noise

3.3.1 Additive Electronics

We have made precise measurements of the effective noise temperatures of the HEMTs employed in MU-

SIC at their operating temperature of 4 K in a test cryostat using a heated attenuator stage as a variable

noise source [164]. We find that in the 3–5 GHz frequency range, THEMT = 2–6 K for the entire set of eight

HEMTs (see Table 3.1). However, translating this effective noise temperature into a white noise level in the

timestreams is difficult because it requires an accurate measurement of the gain between the input of the

HEMT and the ADC. Instead of trying to dead reckon the white noise level of the electronics in this way, we

measure it directly using the off-resonance carriers. After removal of the multiplicative electronics noise, the

off-resonance data has a spectrum that is white at frequencies above 1 Hz. Since we have off-resonance carri-

ers interspersed over our bandwidth, the white noise level of the electronics as a function of carrier frequency

is directly measured.

Because the white noise floor of the electronics is designed to be dominated by the HEMT amplifier, we

can then use the measured noise floor and the HEMT noise temperature to infer the gain between the HEMT

and the ADC. Since we know the carrier power received at the ADC, we can back out the absolute power

Table 3.1: The ideal bias settings of the eight HEMT amplifiers, and the gain, noise temperature, and sus-
ceptibility to drain and gate voltage fluctuations measured at the ideal bias settings. The min{THEMT} and
max{THEMT} refer to the minimum and maximum value between 3−5 GHz.

HEMT Vdrain Vgate Idrain ∂G/∂Vdrain ∂G/∂Vgate G min{THEMT} max{THEMT}
[V] [V] [mA] [V−1] [V−1] [dB] [K] [K]

248D 1.8 3.0 36 407 297 39.8 5.1 5.8
255D 1.6 0.9 30 2990 1000 38.0 2.0 2.8
256D 1.5 1.2 30 584 362 38.0 3.0 4.2
258D 1.3 0.8 31 497 101 37.0 3.6 4.3
263D 1.6 1.4 34 209 259 37.0 3.0 3.8
266D 1.5 2.1 30 1090 1040 40.0 3.3 4.0
289D 1.5 2.0 35 394 345 39.0 2.9 3.9
321D 1.5 0.6 30 – – 37.0 2.0 3.5
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Cryo

IF

BB

Figure 3.9: Left: Power spectral density in the amplitude and phase direction in units of dBc / Hz for the
base-band (BB), intermediate-frequency (IF), and cryostat (Cyro) subsystems. Solid lines denote the median
PSD over approximately 100 off-resonance carriers measured with one readout board. Dashed lines denote
the white noise floor. Right: Cartoon of the readout electronics corresponding to one readout board. The
various subsystems are outlined and labeled.

reaching the HEMT, and accurately determine the power reaching each resonator. This is important because

knowledge of the carrier power at the resonator is required to predict the amplitude of the TLS noise.

3.3.2 Multiplicative Electronics

In this section we present several empirical facts regarding the multiplicative electronics noise that will be

used to inform the removal algorithm. All of these results followed from the study of off-resonance carrier

timestreams measured with the MUSIC readout electronics. The fact that the noise is multiplicative was

easily confirmed by examining the power spectral density as a function of carrier power at the ADC. In the

limit of zero carrier power the measured power spectral density is constant and coincides with the expected

value of the electronics white noise floor. As the carrier power is increased we observe 1/ f and drift type

noise rise above this white noise floor, and find that the normalization of these components scale as A2.
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The MUSIC readout board is equipped with two switches that place the board in different “loopback

modes” wherein the output signal is sent directly to the input, bypassing certain segments of the receiver

chain. These switches enable us to study the contribution of various subsystems to the total noise. The base-

band (BB) loopback mode sends the output of the DAC directly to the ADC, bypassing the entire process of

up-converting to microwave frequencies and then down-converting to base band. The intermediate-frequency

(IF) loopback mode sends the output of the IF board to the third IF amplifier (labeled IF-Amp-2 in Table 2.2),

bypassing the cryostat and the first two room-temperature amplifiers. Finally, an external (Ext) loopback

mode can be implemented by connecting the output of the readout board to the input with an SMA cable,

bypassing the cryostat but including all room temperature electronics.

Figure 3.9 presents the noise power spectral density measured in BB loopback mode, IF loopback mode,

and standard operations (Cryo). The carrier power at the ADC was maintained at a fixed value for all mea-

surements, approximately equal to that used during observing. The dashed lines denotes the white noise floor

of each of the subsystems. We find that in all cases 1/ f and drift type noise dominate over the additive white

noise across the frequency range of interest. We also find that in all cases the noise in the amplitude direction

is comparable in magnitude to the noise in the phase direction. In switching from BB to IF loopback we have

added up-conversion, down-conversion, and two stages of amplification. Somewhat surprisingly this intro-

duces very little noise at short timescales. It does, however, introduce significant drift type noise resulting

in a noticeable degradation in the long timescale stability. In switching from IF to Cryo we see an approxi-

mately 20 dB increase in the noise level at high frequencies and a 10-20 dB increase at low frequencies; the

timestreams are entirely dominated by the noise from the cryogenic components.

It was not always the case that the noise from the room temperature components was subdominant to

the noise from the cryogenic components. The two were comparable in magnitude throughout most of the

development of the MUSIC readout. In the final version of the readout boards we did a better job heat

sinking the ADC, DAC, and IF board, and also improved air flow by placing the boards in a ventilated crate.

This reduced the drift noise from the room temperature electronics by two orders of magnitude. As a result,

the total noise from the room temperature electronics is below the white noise floor of the system at high

frequencies (> 1 Hz) and below the cryogenic 1/ f and drift type noise at low frequencies. It is still large

enough, however, that it must be removed in order to achieve a white spectrum at frequencies below 1 Hz.

The blue and green lines in Figure 3.9 were collected with setups that differ only in the method used to

stabilize the bias power being supplied to the HEMT. For the green line we have set the power supply to

provide a specific gate and drain voltage and done nothing else. For the blue line we have set the gate and

drain voltage to the same values, but have also implemented a feedback loop that varies the gate voltage in

order to keep the drain current constant. This results in a fairly significant decrease in the magnitude of the

amplitude noise, presumably because the gain of the HEMT is more sensitive to fluctuations in the drain

current than the gate voltage. The feedback loop also decreases the magnitude of the phase noise, although

the improvement is not as noticeable as that seen in the amplitude direction.
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Figure 3.10: Left: The median power spectral density in the amplitude and phase direction in units of dBc
/ Hz. The median was taken over approximately 200 off-resonance carriers across two readout boards. The
different colors denote different HEMT amplifiers. Right: The median power spectral density in the amplitude
and phase direction relative to HEMT 289D, which has the best noise performance.

We attribute the large increase in 1/ f and drift type noise between the IF and Cryo measurement primarily

to the HEMT. Figure 3.10 compares the median off-resonance noise power spectral density collected during

an actual observation for six of the readout channels. There is significant variation across the readout channels

in both the magnitude of the noise and its spectral shape (due to differences in the relative contribution of 1/ f

and drift). The noise from the room temperature electronics is approximately uniform for the different readout

boards, and the variation seen is entirely due to differences in HEMT noise performance. This variability can

only partially be explained by the susceptibility of the HEMTs to fluctuations in bias voltage. Table 3.1 gives

the measured susceptibility ∂G/∂Vdrain and ∂G/∂Vgate of the gain of the HEMTs to fluctuations in the drain

and gate voltage at their operating bias. We see that the HEMT that has the worst noise performance (266D)

is also extremely susceptible to voltage fluctuations. In general, however, we do not observe the expected

scaling in the magnitude of the HEMT noise with susceptibility. This suggests the presence of an additional

source of noise internal to the amplifier. The large variation in HEMT noise performance means that the
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multiplicative electronics noise will be prevalent in some detector arrays and entirely subdominant in others.

If we exclude the outlier 266D, then at 1.0 Hz we see roughly 14 dB variation in the amplitude direction and

9 dB variation in the phase direction. We note that in the phase direction (and to a lesser extent the amplitude

direction) at frequencies less than 0.1 Hz, the drift noise from room temperature electronics starts to become

appreciable, which results in the noise power spectral density for the different detector arrays converging at

low frequencies in Figure 3.10.

We claimed in Section 2.3.1.2 that the amplitude and phase fluctuations measured by carriers at different

microwave frequencies are correlated. Our ability to remove the multiplicative electronics noise will depend

on the degree to which this is true. Let x and y denote the time ordered data for two different carriers in a

particular direction in the complex plane. We calculate the Pearson correlation coefficient between x and y

in the Fourier domain as

ρx,y =
x̃ · ỹ√

(x̃ · x̃)(ỹ · ỹ)
, (3.18)

where x̃ and ỹ denote the Fast Fourier Transform (FFT) of x and y. The dot product is given by

x̃ · ỹ = ∑
k

x̃∗k ỹk , (3.19)

where the summation runs over the frequency bins of interest. The Pearson correlation coefficient is a measure

of the linear correlation between x and y. By definition ρx,y ∈ [−1,1], with 1 indicating perfect correlation, 0

indicating no correlation, and -1 indicating perfect anti-correlation. If |ρx,y|= 1, then the relationship between

x and y is perfectly described by a linear model.

Figure 3.11 shows the Pearson correlation coefficient between every pair of off-resonance carriers across

four readout boards (and two readout channels) during a twenty-minute-long observation. We find that the

time ordered data in both the amplitude direction and the phase direction is highly correlated between off-

resonance carriers on the same readout board. This high degree of correlation persists between off-resonance

carriers on different readout boards but the same readout channel (i.e., same detector array and same HEMT

amplifier). This is not surprising since our previous considerations suggested that noise from the HEMT

amplifier dominates in both the amplitude and phase direction. Finally, data collected with off-resonance

carriers on different readout channels is completely uncorrelated. This is not surprising either since different

readout channels do not share any electronic components, besides a common frequency reference.

There is additional structure in the correlation matrices beyond this simple picture. This is evident in the

bottom row of Figure 3.11, which show the same data as the top row, but with a compressed color scale that

highlights these secondary variations. In general, the high degree of correlation across each readout channel

is more uniform in the amplitude direction than the phase direction. In the phase direction, the correlation

degrades as one moves away from the diagonal of the matrix, which corresponds to moving toward pairs of
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Amplitude Correlation   Phase Correlation Amplitude-Phase Cross Correlation

Figure 3.11: Pearson correlation coefficients between the 388 off-resonance carriers probing L120210.2R
and L120210.2L. The correlation coefficients were calculated using Equation (3.18). The left, middle, and
right column show the amplitude correlations, phase correlations, and amplitude-phase cross correlations,
respectively. Dashed black lines separate the different readout boards. Solid black lines separate the differ-
ent detector arrays: L120210.2R (connected to HEMT 289D) corresponds to carriers numbered 0-193, and
L120210.2L (connected to HEMT 258D) corresponds to carriers numbered 194-387. For a given detector
array, the carriers are numbered in order of increasing carrier frequency. The correlation coefficients were
calculated in the Fourier domain using only temporal frequencies between 0.2 Hz and 20.0 Hz. The bottom
row is identical to the top row, but with a compressed color scale, so that variations in the correlation co-
efficient between carriers on the same readout board are visible. Note that the white color corresponds to a
correlation coefficient ρx,y ≈ 1.
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carriers with larger frequency separations. This suggests that the phase fluctuations are somewhat local in

microwave frequency.

The lower left corner of each matrix corresponds to the off-resonance carriers that probe detector array

L120210.2R and HEMT 289D. The upper right corner corresponds to the off-resonance carriers that probe

detector array L120210.2L and HEMT 258D. 289D has the best noise performance, while 258D has the

second worst noise performance (see Figure 3.10). We note several differences in the correlation matrices

between these two readout channels. The third column in Figure 3.11 shows the cross-correlation between

the amplitude and phase direction. In the case of 258D, amplitude and phase noise are completely correlated.

This suggest a similar underlying cause, some source of low frequency noise internal to the HEMT amplifier

that results in fluctuations in both its gain and phase delay. In the case of 289D, the HEMT noise is not as

dominant. Indeed, in the phase direction it appears that the room temperature electronic noise is comparable,

as evidenced by the reduced correlation between off-resonance carriers on separate readout boards. Inter-

estingly, the amplitude and phase noise from 289D appear to be highly anti-correlated. We currently do not

have a compelling physical explanation for the HEMT phase noise. It is either highly correlated or highly

anti-correlated with the amplitude noise, depending on the amplifier.

3.3.3 Fundamental

The fundamental sources of noise include photon noise, recombination noise, and thermal generation noise.

We predict the fundamental noise using Equation (2.176). The center frequency νmm and bandwidth ∆νmm are

determined from the FTS measurements. The thermal quasi-particle density nqp,th, quasi-particle density nqp,

and optical power Popt are determined from our calibrated response model using Equations (2.37), (2.124),

and (2.105), respectively. We assume that the detectors have perfect quantum efficiency ηqe = 1 and use the

values of R and V presented earlier in this chapter. The lower bound on τmax obtained from the hot/cold data

suggests that its effect on the fundamental noise will be negligible.

Accurately predicting the fundamental noise requires a good understanding of the optical loading. Ex-

amining Equation (2.105) we see that thermal radiation from the interior of the cryostat, room temperatures

surfaces, and the sky all contribute to the total optical loading. The contribution from the interior of the

cryostat is represented by the parameters Texc,ant and Texc,dir, which have been measured for each resonator us-

ing the hot/cold dataset. The contribution from room temperature surfaces is given by ( fspill, ant + fspill,dir)Tamb.

The spillover fraction has been measured for each resonator using the skydip dataset. We use the median

ambient temperature reported by the CSO over the course of the observation as our estimate of Tamb. Finally,

the contribution from the sky will depend on the atmospheric temperature Tatm and opacity τ . We assume

Tatm = 250 K. We take the median value of τ225 reported by the CSO tipping radiometer over the course of the

observation and convert it to τant for each resonator using the ATM model for the atmospheric transmission and

the bandpass measured via FTS. Since we do not have measurements of the direct pick-up spectral response

we cannot predict τdir. As a result, we do not include the contribution from the direct pick-up beam in the
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calculation of the total loading.

We currently do not have a solid measurement of the fundamental noise to confirm the predictions of

the model. While the model is theoretically sound, there are a number of parameters that go into it that are

not well known — specifically, the recombination constant R, the volume V due to uncertainty in the film

thickness, and the maximum quasi-particle lifetime τmax. We should be able to measure this noise directly

in the frequency direction by simply sampling at a much higher frequency. Currently the MUSIC readout

electronics sample at a fs = 100 Hz, which restricts our attention to ν < 50 Hz. At these frequencies the

contamination from multiplicative electronics noise and TLS noise is significant. However, both of these

noise sources have a declining spectrum, so if we pushed to higher frequencies eventually we would observe

a white noise floor. All reasonable considerations suggest that the floor due to fundamental noise should

be larger than electronics white noise floor in the frequency direction, so measuring this white noise floor

would enable confirmation of the model. In addition, since the quasi-particle bandwidth should be less than

the resonator bandwidth, the location of the roll-off in the noise would also provide a measurement of the

quasi-particle lifetime. Unfortunately, changing the sampling frequency would require a modification of the

FPGA firmware, and is outside the scope of this thesis.

3.3.4 Two-Level Systems

In February 2013 we collected noise data at multiple carrier powers with the detectors dark in order to isolate

and measure the TLS noise. The dark configuration ensured that photon and atmospheric noise would not

confuse or overwhelm the TLS signal. Examining the power spectral density of the on-resonance noise as

a function of carrier power enabled identification of the TLS signal through the expected P−1/2 dependence

expressed in Equation (2.184). This scaling with power is unique to TLS noise. Relative to the carrier,

additive electronics noise scales as P−1, multiplicative electronics noise is independent of power, and sources

of noise transduced via changes in the quasi-particle density — such as generation-recombination noise — are

also independent of power assuming that the effect of the microwave power on the quasi-particle population

is negligible.

We collected noise data at seven carrier powers spanning 14 dB for each of the detectors on six of the

eight arrays (two of the arrays L120309.4R and L120423.1L were non-operational during this cooldown). In

addition, we collected a second redundant dataset for the detectors on L120210.2R and L120210.2L. The data

was collected with the MUSIC readout electronics. At each carrier power, we sampled V̂ (t) for 15 minutes at

fs = 100 Hz. The highest carrier power was different for each resonator and was chosen to be the maximum

power that could be delivered by the readout electronics and did not cause that resonator to bifurcate. The

carrier power at the resonator was then decreased from this maximum value in steps of 2 dB by increasing the

amount of output attenuation using the variable attenuator on the output side of the IF board. Each time the

output attenuation was increased, the input attenuation was decreased by the same amount using the variable

attenuator on the input side of the IF board. This varied the carrier power at the resonator but kept the carrier
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power at the ADC constant. All data was collected at base temperature corresponding to Tbath = 237 mK.

Many of the resonators entered the nonlinear regime at the higher carrier powers, and as a result their

resonant frequencies shifted as we varied the carrier power. In order to ensure that all data was collected

on resonance, each time we changed the attenuation we performed two IQ sweeps before collecting the

timestream. The first IQ sweep was used to determine the frequency where the derivative |dV̂ ( f )/d f | was at

a maximum, which was used as an estimate of the resonant frequency. A set of buffers were generated that

placed the on-resonance carriers at the newly determined resonant frequencies. These buffers were loaded

on the readout boards and the second IQ sweep was performed in order to measure the transmission through

the system near resonance. The second IQ sweep is necessary for two reasons. The process of generating

a new buffer randomizes the phases of the carrier tones. Since we would like to determine the frequency

direction from the IQ sweep, the phase information is crucial. Even if we are careful to maintain the phase

of each carrier tone through buffer generation, changing the base-band frequency fBB of the carrier tone

in order to place it at the resonant frequency will change the base-band transmission S BB
21( fBB). Examining

Equation (2.61) we see that this will result in values of V̂ ( f ) that differ between the first and second IQ sweep.

For the first IQ sweep, the LO was swept over N = 81 points with a frequency spacing ∆ f = 7.5 kHz. For

the second IQ sweep, the LO was swept over N = 81 points with a frequency spacing ∆ f = 2.5 kHz. After

the second IQ sweep, the LO was set to its nominal frequency and the timestream was collected.

We use the second IQ sweep to estimate both the frequency direction and the factor that converts from

volts at the ADC to the equivalent δ fres/ fres. Let f0 denote the frequency of an on-resonance carrier and let

V̂ ( fi) denote the complex carrier amplitude measured during the second IQ sweep with i=−N/2, . . . ,0, . . . ,N/2.

The derivative of V̂ ( f ) is estimated using the symmetric difference quotient

V̂ ′( fi)≈
V̂ ( fi+1)−V̂ ( fi−1)

2∆ f

=
I( fi+1)− I( fi−1)

2∆ f
+ j

Q( fi+1)−Q( fi−1)

2∆ f
. (3.20)

The frequency direction and conversion factor are then estimated as

θ̂freq = arg
(
V̂ ′( f0)

)
Âfreq =

1
f0

∣∣V̂ ′( f0)
∣∣ . (3.21)

We have confirmed that the estimates of θfreq and Afreq determined from the numerical derivative are on av-

erage equal to those obtained from fitting the complex V̂ ( f ) data to the model given by Equation (3.1) and

evaluating the derivative of the analytical model at the carrier frequency. The RMS scatter between the esti-

mates obtained from the numerical derivative and those obtained from derivative of the analytical model is

approximately 5%.

Reduction and analysis of the dark noise data proceeds as follows for each on-resonance carrier at each

carrier power. We start by filtering a large number of spectral lines that are observed in the on-resonance data.
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Figure 3.12: Top: The measured power spectral density in the frequency (red) and dissipation (blue) direction
for an antenna coupled resonator on Device L120210.2L with frequency fres = 3.089243 GHz, quality factor
Q= 68,000, and coupling quality factor Qc = 99,000. The data was collected at a temperature of 237 mK and
the highest achievable readout power, corresponding to P = −87 dBm or Pint = −38 dBm. The timestreams
were converted to the equivalent resonator frequency fluctuations δ fres

fres
and resonator dissipation fluctuations

1
2 δ

1
Qi

prior to calculating the PSDs. Dashed lines denote the PSDs before electronics noise removal and
triangles denote the PSDs after electronics noise removal. Solid black lines denote the best fit of the PSDs
after noise removal to Equation (3.24) for the frequency direction and Equation (3.25) for the dissipation
direction. The electronics white noise floor inferred from nearby off-resonance carrier tones is denoted by
the green dashed line. Bottom: The angle of the largest eigenvalue obtained from diagonalizing the I-Q cross
power-spectral density before electronics noise removal (green +) and after electronics noise removal (purple
�). The frequency direction — determined independently from an IQ sweep — is denoted by the dashed
yellow line. The amplitude and phase directions — determined from the mean value of the timestreams —
are denoted by the black dotted and black dashed line, respectively.
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These lines are narrow with FWHM less than 20 mHz. Most occur at harmonics of the pulse tube frequency

fpt = 1.41 Hz, but there are others whose origins are unknown. We apply a series of forward-backward

recursive notch-filters, with each filter designed to match the center frequency and width of a particular line

[165]. The same series of filters is applied to the I and Q data of all carriers on a given board.

Next, we remove the multiplicative electronics noise. Essentially, the algorithm constructs templates for

the amplitude and phase fluctuations from the off-resonance data, and then subtracts these templates from

both the off-resonance and on-resonance data. We are able to remove down to the white noise floor at

frequencies & 1 Hz in the off-resonance timestreams. Residual 1/ f noise is present at frequencies . 1 Hz

After filtering and noise removal, we apply the transformation

δX(t)+ jδY (t) =
1

Âfreq

(δ I(t)+ jδQ(t))e− jθ̂freq , (3.22)

which rotates the data to the frequency and dissipation direction and converts the timestreams into the equiva-

lent fractional resonant frequency fluctuations δX(t)≈− δ fres(t)
fres

and dissipation fluctuations δY (t)≈ 1
2 δ

1
Qi
(t).

We break the 15 minute long timestreams into approximately 180 distinct 5 second long blocks, thereby

restricting our attention to temporal frequencies between 0.2 Hz and 50 Hz. For each block we mean subtract

and Hanning window both δX(t) and δY (t). We then calculate the power spectral densities SδX (ν) and

SδY (ν), as well as the cross power spectral density SδX ,δY (ν). We flag any blocks that contain outlier time

samples. We also flag blocks whose total noise power in either the frequency or dissipation direction is an

outlier. We then take the mean of the unflagged blocks as our final estimate of SδX (ν), SδY (ν), and SδX ,δY (ν).

We use the standard error of the mean calculated using the unflagged blocks to estimate the uncertainty on

these (cross) power spectral density estimates.

We construct the cross power spectral density matrix

CδX ,δY (ν) =

 SδX (ν) SδX ,δY (ν)

SδX ,δY (ν) SδY (ν)

 (3.23)

and determine the eigenvectors and eigenvalues of this matrix at each frequency sampled. We then examine

the direction of the eigenvector corresponding to the largest eigenvalue in the complex plane θ1(ν). The

purpose of the dark dataset is to measure amplitude of the TLS noise for the MUSIC detectors. There

is significant empirical evidence that the TLS noise is restricted to the frequency direction. Hence, θ1(ν)

should correspond to the frequency direction for the temporal frequencies where TLS noise dominates. We

find that indeed θ1(ν)≈ θ̂freq for the majority of resonators, carrier powers, and temporal frequencies. In the

analysis that follows we only consider carrier powers where the mean value of the θ1 between 4 Hz and 30 Hz

is within 5◦ of θfreq. We also require that the standard deviation of θ1 over the same frequency range be less

than 5◦. This particular range was chosen because after applying the removal algorithm the multiplicative

electronics noise is negligible at these frequencies in the off-resonance carriers. We apply a final requirement
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that no more than 50% of the time blocks are flagged as bad.

We fit the following model to the power spectral densities

SδX (ν) =
x0 + x1/2ν−1/2 + x1ν−1

1 + (ν/νcutoff)
2 (3.24)

SδY (ν) =
y0 + y1ν−1

1 + (ν/νcutoff)
2 , (3.25)

where νcutoff = 34.54 Hz is the cutoff frequency of our anti-aliasing filter and θx = [x0, x1/2, x1] and θy =

[y0, y1] are the free parameters of the fit. Here x0 and y0 represent the white noise floor, x1 and y1 represent

the amplitude of residual 1/ f type noise, and x1/2 represents the amplitude of the TLS noise. The fit is

performed in IDL with the MPFIT routine. The model provides a good fit in almost all cases.

The data reduction described in the preceding paragraphs is illustrated in Figure 3.12 for a typical de-

tector operated at its highest carrier power. The top panel displays SδX and SδY before and after electronics

noise removal. Before removal, the multiplicative electronics noise is significant in both the frequency and

dissipation direction. After removal, the noise in the dissipation direction is consistent with the white noise

floor of the electronics at high ν and a small residual 1/ f component is evident at low ν . The noise in the

frequency direction is at least an order of magnitude larger than the noise in the dissipation direction at all

ν . The black lines denote the best fit to the model given by Equations (3.24) and (3.25). In the bottom panel

we display the rotation angle of the eigenvector corresponding to the largest eigenvalue, again both before

and after electronics noise removal. Before removal, the angle is pulled towards the amplitude direction es-

pecially at low ν where the multiplicative electronics noise dominates. After removal, the angle collapses to

the frequency direction — which is determined independently from the second IQ sweep — for all values of

ν .

We directly measure the white noise floor of the electronics as a function of microwave frequency using

the off-resonance carriers. We find that the best fit value of y0 is approximately equal to the white noise

floor of the electronics for all detectors at all carrier powers. However, we find that an excess white noise

is necessary to explain the best fit value of x0 on several of the detector arrays. When converted to δ fres
fres

and
1
2 δ

1
Qi

, the white noise floor of the electronics scales as P−1. We find that the value of x0 follows the electronics

noise floor at low carrier power but saturates at high carrier power. The measured values are consistent with

x0(P) = x elec
0 (P)+ x exc

0 , so we assume this particular relation and fit all of the SδX data simultaneously with a

single white noise parameter x exc
0 . The excess white noise is illustrated in the bottom left panel of Figure 3.13.

Thermal generation and recombination noise are perhaps the most likely explanations for the excess white

noise. The G-R noise is given by

S G-R
δ fres/ fres

=
2
V

(
ακ2τ

eff
qp

)2
(

Rn2
qp,th +

1
τmax

nqp,th

)
. (3.26)
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Figure 3.13: Top: The measured power spectral density after electronics noise removal in the frequency (left)
and dissipation (right) direction for an antenna coupled resonator on Device L120210.2R with frequency
fres = 3.134272 GHz, quality factor Q = 61,000, and coupling quality factor Qc = 105,000. The different
colors denote different carrier powers on the feedline at the device ranging from P = [−99,−84] dBm, which
corresponds to Pint = [−51,−36] dBm. The timestreams were converted to the equivalent resonator frequency
fluctuations δ fres

fres
and resonator dissipation fluctuations 1

2 δ
1

Qi
prior to calculating the PSDs. Bottom: Measured

power spectral density as a function of internal resonator power. The green dashed lines denote the electronics
white noise floor inferred from nearby off-resonance carriers. The pink dashed lines denote the white noise
floor determined from a fit to the PSDs. The triangles and squares denote the excess noise at 6.5 Hz and
1.0 Hz respectively after subtracting the white noise floor. The solid black lines denote the best fit of the
excess noise in the frequency direction to the P−1/2

int scaling characteristic of TLS noise.
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This equation is obtained by considering Equation (2.176) in the limit of zero optical loading. We can make

predictions for the expected G-R noise using the values of α and ∆0 obtained from Mattis-Bardeen fits to dark

temperature sweeps that were collected during this same cooldown. However, this prediction is sensitive to

the value of the intrinsic lifetime τmax, for which we do not have a precise estimate. Results from the analysis

of hot/cold data place a lower bound τmax & 50 µs. If τmax = 50 µs then the measured values of x exc
0 are a factor

of 6 times larger than the prediction for G-R noise. In the limit that τmax is very long (τmax & 400 µs), then the

measured values of x exc
0 are only a factor of 2 times larger than the prediction for G-R noise. We allow this

excess white noise since it is necessary to yield reasonable fits to SδX .

In order to extract the TLS noise amplitude, we examine the quantity

S TLS
δ fres/ fres

(ν)≡ x1/2ν
−1/2 + x1ν

−1 (3.27)

as a function of internal resonator power. In doing so, we are assuming that after subtracting the measured

white noise floor the entirety of the noise that remains in the frequency direction is due to TLS. The internal

resonator power is calculated using Equation (2.182); Q and Qc are determined from a fit to the first IQ

sweep collected at the lowest carrier power and P is accurately determined using the technique discussed

in Section 3.3.1. We present S TLS
δ fres/ fres

at 1 Hz and 6.5 Hz for a typical MUSIC detector in the bottom left

panel of Figure 3.13. We unambiguously observe the P−1/2
int dependence on microwave readout power over

a 14 dB range at both frequencies. That our measurements reveal this unique scaling with power combined

with the fact that the dominant source of noise occurs in the frequency direction is strong evidence that we

are seeing the TLS noise observed by other groups and described by the semi-empirical model presented in

Section 2.3.2.2.

For each resonator, we fit the measured values of S TLS
δ fres/ fres

to the following relationship based on Equa-

tion (2.184)

S TLS
δ fres/ fres

(Pint,Tbath,ν) = B2
TLS

(
Pint

1 µW

)−1/2 ( Tbath

250 mK

)−1.7 (
ν

1 Hz

)−1/2
, (3.28)

where Tbath = 237 mK, ν = 6.5 Hz, and B2
TLS is the only free parameter of the fit. We stress that even though

we are defining B2
TLS with respect to 1 Hz for simplicity, we constrain its value using only the measurements

at ν = 6.5 Hz. We chose 6.5 Hz because it is free of spectral lines, it is high enough that the contamination

from residual multiplicative electronics noise is negligible, and it is low enough that the TLS noise is still

larger than the measured white noise floor. We fit only those carrier power measurements that passed all

of the quality requirements specified above. Figure 3.14 shows the resulting best fit values of B2
TLS as a

function of resonant frequency for the six detector arrays studied during this cooldown. Noroozian et al.

[126] (henceforth N09) measured B2
TLS = 3.0× 10−20 for a nearly identical interdigitated capacitor (IDC)

geometry as that used in the MUSIC resonators. The geometry has 19 fingers on each side, with a gap and

center strip width wgap = sgap = 10 µm. We display the N09 measurement as a blue dashed lined in Figure 3.14

for comparison.
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Figure 3.14: The TLS noise amplitude B2
TLS as a function of resonant frequency for detectors on six of the

MUSIC detector arrays. The error bars for the L120210.2R and L120210.2L arrays were determined by
calculating half the average difference between estimates derived independently from two redundant data
sets. The red dashed line is the best fit to a powerlaw. The dashed cyan line is the best fit to a power law with
the exponent fixed at γtheory. The blue dashed line is the value from Noroozian et al. [126]. Note that the y-axis
range is different for the different detector arrays.
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Table 3.2: The best-fit of Equation (3.29) to the measured values of B2
TLS( fres) for six MUSIC detector arrays.

Device ID Position fres,min [GHz] γtheory γ A2
TLS [×10−20] ATLS/A

Noroozian
TLS

L120210.2R A2 2.990125 2.71 3.7 2.37 0.89
L120210.2L B2 3.000385 2.72 4.1 5.24 1.31
L120309.4L A3 2.857985 2.65 5.0 5.44 1.34
L120427.1L B3 2.915765 2.75 3.0 3.76 1.11
L120427.2R A4 2.836008 2.68 4.6 6.77 1.49
L120427.1R B4 2.883808 2.65 2.1 4.72 1.25

We find that B2
TLS has a strong dependence on resonant frequency. For each detector array, we fit a power-

law relationship

B2
TLS( fres) = A2

TLS

(
fres

fres,min

)γ

, (3.29)

where fres,min is the minimum resonant frequency observed on the array. The best-fit parameters are presented

in Table 3.2. We measure γ between 2.1 and 4.1 across the six detector arrays tested. The majority of

this dependence is now understood as an unintended consequence of how we chose to vary the resonant

frequencies. The MUSIC resonators have been scaled down to ∼ 3.0 GHz from the 5.65 GHz resonator

studied in N09 by increasing the length of the meandered inductor. The resonant frequency was then varied

by decreasing the length/number of the fingers of the IDC. In total, the length was decreased by a factor of

2.2 in order to produce resonators that ranged from 3.0 to 4.0 GHz. The TLS noise amplitude varies inversely

with the capacitor length, due to the fact that the TLS are spatially independent fluctuators whose noise

adds incoherently. This inverse scaling with length results in an approximately f 2.7
res scaling with resonator

frequency, which is not inconsistent with the best fit power laws for four out of the six detector array given the

uncertainty in our measurement, as one can see from Figure 3.14. We can make a direct comparison between

the lowest frequency MUSIC resonators and the resonator studied in N09, since the capacitor finger lengths

are identical. We find that the ratio of the ATLS that we measure to that measured by N09 varies between 0.9

and 1.5 across the six MUSIC detector arrays studied. Therefore, our results are consistent with those of N09,

given the scatter we see between arrays.

We will use the value of ATLS and γ calibrated with the dark dataset along with the semi-empirical model

given in Equation (3.28) to predict the expected TLS noise on sky for each detector. One possible concern

is that we have not confirmed the scaling with Tbath or ν . For our purpose it is not necessary to confirm the

scaling with temperature because all on-sky data will be collected at approximately the same temperature as

the dark dataset. However, we do need to confirm the ν−1/2 scaling with temporal frequency. To do so, we

examine the square root of the ratio of S TLS
δ fres/ fres

measured at ν = [6.5,1.0] Hz to that predicted by the model

expressed in Equation (3.28) using the best fit value of B2
TLS that we determined for each resonator. Figure 3.15

presents a histogram of this ratio for all resonators at all carrier powers. We see that at 6.5 Hz the ratio is

tightly clustered around 1, as it should be since the model was calibrated using these exact measurements.
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Figure 3.15: The square root of the measured value of Sδ fres/ fres
divided by the predicted value of Sδ fres/ fres

at 6.5 Hz (blue) and 1.0 Hz (red). The measured value is from the dark dataset, which we have discussed
throughout this section. The predicted value is based on the TLS noise model given by Equation (3.28),
which was calibrated individually for each resonator using the 6.5 Hz measurements. The histogram contains
a count for each resonator at each carrier power. Only resonators that have a calibrated B2

TLS are included in
the histogram. The dashed line denotes the median value. This figure suggests a steepening of the TLS noise
spectrum from the ν−1/2 behavior assumed by the model.
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However, at 1.0 Hz the measured values are approximately 20-45% larger than that predicted assuming the

ν−1/2 scaling. This is because at low frequencies the measured noise power spectral density transitions to a

steeper ν−1 scaling. The transition frequency at which the ν−1/2 term is equal to the ν−1 term varies from

resonator to resonator and array to array; in general we are not able to determine it precisely as the two

components are degenerate. We can say that for L120427.1L and L120427.1R, which show a median ratio of

1.25, the transition frequency is less than 2 Hz. For L120210.2R and L120210.2L, which have a median ratio

of 1.30, the transition frequency is less than 4 Hz. Finally, for L120309.4L and L120427.2R, which have a

median ratio of 1.45, there does not appear to be a ν−1/2 component, and the scaling is entirely ν−1.

The question then arises: does TLS noise transition to a ν−1 spectrum at low frequencies or is our

measurement of S TLS
δ fres/ fres

contaminated by some other source of noise at low frequencies? The most likely

source of contamination in a dark scenario is residual multiplicative electronics noise. Recall, however,

that our measurements at 1.0 Hz clearly show a P−1/2
int scaling, whereas multiplicative electronics noise is

independent of power in these units. It is possible that the effectiveness of the noise removal algorithm is

dependent on the level of uncorrelated noise present in the timestreams. In other words, it may be the case

that as we increase the carrier power and decrease the TLS noise, we remove the electronics noise better,

forcing a power dependence on the residual 1/ f component. This is unlikely for several reasons. First, the

electronics noise removal relies very little on the on-resonance data. The templates for the amplitude and

phase fluctuations are determined entirely from the off-resonance data. The on-resonance data is only used

to determine the mean carrier amplitude and phase. Second, this type of behavior is not observed in the

dissipation direction, as evident in Figure 3.13. Third and perhaps most convincing, the raw electronics noise

before removal — as measured by the off-resonance carriers — is below the excess low-frequency noise in

question for the detector arrays connected to less noisy HEMTs. Finally, the excess low-frequency noise is

uncorrelated between the different on-resonance carriers, whereas if the electronics noise removal was failing,

we would expect some residual correlation between detectors.

There is no particular theoretical motivation for the ν−1/2 scaling. It is entirely empirical, and often

measurements of the TLS noise are made at frequencies between 10 Hz and a few kHz. So, it is certainly

possible that the TLS noise might transition to a steeper spectrum at low frequencies. There are, in fact,

examples in the literature of deviations from the ν−1/2 scaling. Gao [93] notes that measurements of the

power spectral density in the frequency direction transition from a ν−1/2 scaling to a ν−1 scaling below

10 Hz for niobium on silicon resonators. Burnett et al. [166] use a Pound locking technique to perform

long timescale measurements of the resonant frequency of niobium on sapphire resonators, and measure TLS

noise that has an entirely ν−1 spectrum. There is also theoretical motivation for a ν−1 scaling; Faoro and

Ioffe [167] and Burnett et al. [128] develop a model for interacting TLS that predicts exactly this type of

noise spectrum.

To end, we note anomalous behavior observed in two of the detector arrays, L120309.4L and L120427.2R,

which have the largest values of A2
TLS and the largest values of γ . The TLS noise definitely exhibits a stronger
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dependence on resonant frequency than γtheory for detectors on these two arrays. In addition, while the other

four detector arrays have a ν−1/2 component to the TLS noise spectrum, these two detector arrays have a

purely ν−1 TLS noise spectrum over the frequency range that we are able to examine (ν < 50 Hz). Lastly,

the detectors on these two array have large TLS-induced loss tangents. The loss tangents were extracted from

dark temperature sweep measurements of fres(T ). Normally, at the temperatures under consideration, the

TLS-induced frequency shift is negligible compared to the quasi-particle-induced frequency shift. However,

for the detectors on these two arrays, at low temperatures, as the temperature is increased we see a clear

increase in resonant frequency. We fit the dark temperature sweep data to the sum of Equation (2.179) and

Equation (2.59), and extract Fδ 0
TLS ' 6.0×10−5 for L120309.4L and Fδ 0

TLS ' 7.8×10−5 for L120427.2R. In

the other four detector arrays, we are only able to place an upper bound of Fδ 0
TLS . 8.0×10−6.

3.3.5 Atmospheric

We now examine data collected on the telescope during the October 2012 engineering run in order to char-

acterize the atmospheric noise. Figure 3.16 shows the power spectral density calculated from the timestream

V̂ (t) of an on-resonance carrier centered on a representative Band 1 resonator. Note that this is the raw

data without filtering or noise removal. The timestream was collected during a 20-minute-long observation

in which the telescope performed raster scans across a very faint source. The impact of the source on the

individual resonator PSDs is negligible. Prior to calculating the PSD we rotated the timestream to the am-

plitude and phase basis and divided by the carrier amplitude. For comparison, Figure 3.16 also shows the

PSD of the off-resonance carrier that is closest in microwave frequency to the on-resonance carrier. If mul-

tiplicative electronics noise dominated then in these units the on-resonance and off-resonance PSDs would

be identical, and this does indeed appear to be the case at intermediate temporal frequencies in the amplitude

direction. However, there is clearly excess noise present in the on-resonance data. We know that the noise

that dominates at higher frequencies is due to TLS based on our results from the previous section. But at low

frequencies, the PSDs clearly transition to a much steeper spectrum that has a slope consistent with ν−8/3.

In Section 2.3.2.3 we showed that the K-T thin screen model for atmospheric noise predicts exactly a ν−8/3

scaling in the 2D regime, which holds if ν � havg|w|
2∆h sin e .

In addition, the noise fluctuations that exhibit this steep ν−8/3 spectrum occur in a well-defined direction

in the complex plane. We examined the angle θ1(ν) of the eigenvector corresponding to the largest eigenvalue

of the cross-power spectral density matrix for the on-resonance data. This technique was introduced in

Section 3.3.4 where we employed it to the study of TLS noise. At low frequencies θ1(ν) converges to a

fixed value that is slightly rotated from the frequency direction. This is exactly what one would expect for

atmospheric noise, which would lie in the quasi-particle direction.

We have shown that the noise fluctuations that dominate the on-resonance timestreams at low frequencies

have a ν−8/3 spectrum and appear in a direction in the complex plane that is roughly consistent with the

quasi-particle direction. One final expectation of atmospheric noise discussed in Section 2.3.2.3 is that it
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Figure 3.16: Power spectral density of the noise affecting an on-resonance carrier (red) and off-resonance
carrier (black) in the amplitude (top) and phase (bottom) direction in units of dBc/Hz. The on-resonance
carrier was centered on a Band 1 resonator on L120210.2L with a resonant frequency fres = 3.06174 GHz.
The off-resonance carrier was separated by approximately 4 MHz from the on-resonance carrier. The data
was collected during a 20-minute-long observation in which the telescope performed raster scans across a
faint source. The elevation angle of the telescope was e = 70◦ and the atmospheric opacity at 225 GHz was
τ225 = 0.075. The blue and purple lines denote a ν−8/3 scaling with temporal frequency normalized to the
value of the PSD at 50 mHz.
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Orthogonal CorrelationsQuasi-particle Correlations

Figure 3.17: Pearson correlation coefficients between the 327 on-resonance carriers probing L120210.2R
and L120210.2L. Only the carriers centered on antenna coupled resonators are shown. The quasi-particle
direction is shown on the left and the orthogonal direction is shown on the right. Dashed black lines separate
the different readout boards. Solid black lines separate the different detector arrays: L120210.2R corresponds
to carriers numbered 0-161, and L120210.2L corresponds to carriers numbered 162-326. The correlation
coefficients were calculated in the Fourier domain using only temporal frequencies between 0.02 Hz and
0.20 Hz. The data was collected during a 20-minute-long observation in which the telescope performed
raster scans across a faint source. The elevation angle of the telescope was e = 35◦ and the atmospheric
opacity at 225 GHz was τ225 = 0.12.

should be correlated across detectors. In order to investigate whether the steep low-frequency noise is corre-

lated, we use the weighted mean of θ1(ν) at low frequencies as an estimate of the quasi-particle direction θ̂qp.

We rotate the timestreams to the quasi-particle and orthogonal basis. We then calculate the Pearson correla-

tion coefficients between all on-resonance carriers in this basis. The correlation coefficients are calculated in

the Fourier domain using only frequencies between 0.02 Hz and 0.20 Hz where the noise of interest dom-

inates. The results are presented in Figure 3.17. Directing our attention first to the quasi-particle direction

we find that the majority of detectors are almost perfectly correlated with each other. Apart from a handful

of anomalous detectors, this high degree of correlation persists across observing band, readout board, and

detector array. Next, examining the orthogonal direction, we see that it looks similar to the correlation ma-

trices for the off-resonance carriers presented in Figure 3.11. The crucial piece of evidence is that detectors

on different arrays are highly correlated in the quasi-particle direction, but almost completely uncorrelated in

the orthogonal direction (as is the case for off-resonance carriers). This means that the low-frequency noise

appearing in the quasi-particle direction cannot be multiplicative electronics noise.

We have shown that noise due to fluctuations in atmospheric emission dominates at low frequencies and

appears in a well-defined direction in the complex plane. The high degree of correlation over the focal plane

and between different observing bands bodes well for the atmospheric noise removal.
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Chapter 4

MUSIC Detector Characterization

4.1 Introduction

We have calibrated the full instrument model described in Chapter 2 using the procedure outlined in Chapter 3

for the detectors on the science-grade MUSIC arrays. This chapter presents the results of the calibration

procedure. The science-grade arrays were fabricated in 2012. The yield from the initial fabrication run was

lower than expected, with many of the arrays suffering from feedline discontinuities. These discontinuities

were, for the most part, eliminated in subsequent fabrication runs by improving the cleaning process between

fabrication steps. In total, six arrays were produced that have both feedline continuity and high resonator

yield. Recall that a single array is 6× 12 pixels, with each pixel sensitive to four bands, for a total of 288

resonators. Approximately 95% of the designed resonators are identified in network analyzer sweeps for

each of the six arrays. The arrays are subdivided into two half-bands, with 144 resonators per half-band. The

lower half-band contains resonators between approximately 3− 3.4 GHz and the upper half-band contains

resonators between approximately 3.6− 4.0 GHz. The two half-bands share a HEMT and coaxial cable,

but are read-out using different electronic boards. The division is a result of the approximately 450 MHz

bandwidth of the readout electronics, which is set by the sampling rate of the ADC.

The detector arrays are identified by a name of the format L[DATE].[WAFER# ][L/R], where [DATE] is

the date that the array was fabricated, [WAFER#] is an integer that differentiates between wafers produced

on that date, and [L/R] indicates whether the array was on the left/right side of the wafer. The position of the

detector arrays in the focal plane unit (FPU) has not changed since September 20, 2012. All results presented

in this thesis were collected after that date, so we will often refer to the arrays by their position in the FPU,

which has two rows (A-B) and four columns (1-4). In most cases, we will quote separate results for the lower

and upper half band. As an example, A2L and A2U refer to the lower and upper half band of the detector

array in row A, column 2.
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4.2 Science-grade Arrays

4.2.1 ε Test Devices

Each detector array contains six ε test devices. These are lumped-element LC resonators that are inductively

coupled to the feedline. They use parallel-plate capacitors that are fabricated from the same dielectric layer

that is used for the antennas and bandpass filters. The capacitors are large enough that edge effects are

negligible. As a result, the resonant frequencies of the test devices are given by

fres =
1

2π
√

LC
=

1
2π

√
d

LAε
, (4.1)

where L is the inductance, A and d are the area and thickness of the capacitor, ε is the dielectric constant, and

C = Aε/d is the capacitance. Note that we have good control over the area of the capacitor. Assuming that

the inductance does not vary appreciably between fabrication runs, a comparison of the resonant frequencies

of the test devices on different detector arrays yields a measurement of the relative change in the ratio ε/d

of the dielectric. In addition, the internal quality factor Qi of the test devices yields a measurement of the

dielectric loss tangent.

The ε test devices are designed to have resonant frequencies between 5−8 GHz, which places them above

the detectors and below the α test devices. In order to vary the resonant frequencies of the six test devices, the

area of the capacitor is scaled according to Table 4.1. We were able to identify a subset of the test devices in

vector network analyzer measurements of the forward transmission through the science-grade detector arrays.

The expected frequency spacing was used to distinguish the test devices from spurious niobium resonances.

Three of the six arrays had at least two resonators in the designed frequency range with approximately the

correct frequency spacing.

In July 2012, we measured the complex transmission near the resonant frequencies of the ε test devices

with a vector network analyzer at six temperatures between 240 and 470 mK. The output power was set to

-55 dBm, corresponding to approximately -95 dBm on the feedline at the resonator. The squared magnitude

of the transmission is fit to the skewed Lorentzian profile given by Equation (3.2), and the frequency, internal

Table 4.1: Designed area, area ratio, and frequency ratio of the ε test devices.

ε ID Capacitor Dimension Area Frequency
[µm×µm] Ratio Ratio

1 140 x 156 1.20 0.91
2 140 x 143 1.10 0.95
3 140 x 130 1.00 1.00
4 140 x 94 0.72 1.18
5 140 x 86 0.66 1.23
6 140 x 78 0.60 1.29
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Table 4.2: Results from analysis of the ε test device temperature sweeps. The quantities fres,0 and Fδ 0
TLS are

obtained by fitting the measured fres(Tbath) curve to the TLS model given by Equation (2.179). The quanti-
ties Qc, Qi, and 1/Qi are approximately independent of temperature, and the quoted values are the inverse
variance weighted mean of the measurements at six different temperatures.

Device ID Position ε ID fres,0 [GHz] fres,0 Ratio Qc Qi 1/Qi Fδ0
TLS

Xa
1 5.765990 0.919 13,870 10,430 9.58e-5 8.83e-4
2 6.030539 0.961 9,577 26,060 3.84e-5 8.82e-4
3 6.277488 1.000 18,200 9,250 1.08e-4 8.69e-4

L120210.2R A2
1 5.574707 0.914 21,473 6,680 1.50e-4 1.13e-3
2 5.843750 0.958 27,025 13,680 7.31e-5 1.18e-3
3 6.102553 1.000 13,600 7,540 1.33e-4 1.15e-3

L120427.1L B3 2 5.875316 10,420 15,120 6.61e-5 1.11e-3
3 6.127498 6,375 4,540 2.20e-4 1.03e-3

L120427.1R B4 2 5.820225 12,854 15,000 6.61e-5 1.10e-3
4 7.457972 13,910 8,060 1.24e-4 1.07e-3

quality factor, and coupling quality factor are extracted. Since the test devices are entirely niobium, the

quasi-particle density is negligible at the bath temperatures examined, and the resonant frequency is set by

the resonant response of TLS. We fit the fres(Tbath) curve to the TLS model given by Equation (2.179) to

obtain the resonant frequency fres,0 and the quantity Fδ 0
TLS, which is the product of the dielectric filling factor

F and the TLS-induced loss tangent δ 0
TLS. Note that for the test devices the aspect ratio of the capacitor is

large enough that F = 1 is an excellent approximation. We show an example of the data and best-fit TLS

model for a single test device on L120210.2R in Figure 4.1. The other test devices show similar behavior. We

summarize the results for all test devices found on the MUSIC detector arrays in Table 4.2. To provide a point

of comparison, we also summarize the results from an identical analysis of the test devices on an engineering

grade detector array, Device Xa. The Device Xa data was collected in March 2011.

Device Xa also employed a Si3N4 dielectric. The measured band centers of the detectors on Device Xa

implied ε = 7.0 assuming the designed thickness d = 400 nm [102]. We find that the resonant frequencies on

the test devices have decreased by 3% between Device Xa and L120210.2R. This suggests a 6% increase in

the dielectric constant to ε = 7.42 (or, alternatively, a 6% decrease in the dielectric thickness to d = 376 nm,

or some combination of the two). The bandpass filter design for the detectors on the science-grade arrays was

adjusted based on the observed Device Xa bandpasses. As a result, the change in the ratio of ε/d implied

by the ε test device measurement will result in a shift in the L120210.2R band centers from the desired

values. We confirm that the L120210.2R band centers have shifted using FTS and discuss the implications in

Section 4.2.2. We also measure a 30% increase in the TLS-induced loss tangent δ 0
TLS between Device Xa and

the science-grade detector arrays.
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Figure 4.1: Top: Resonant frequency as a function of temperature for ε test device number 3 on L120210.2R.
The black circles denote the measured values. Error bars are smaller than the radius of the circle. The blue
dashed line denotes the best fit of the data to Equation (2.179). Over the temperature range that we are
able to probe, the resonant response of the TLS results in an approximately linear increase in the resonant
frequency with temperature. Bottom: Internal resonator loss as a function of temperature for the same test
device. We measures an internal resonator loss that is constant with temperature. This is in contradiction with
our expectation based on the frequency shift data, the TLS model, and our assumption of low carrier power,
which is shown as the blue dashed line. The red dashed line is the inverse variance weighted mean of the
measured data points.
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Figure 4.2: The magnitude of the transmission as a function of frequency for ε test device number 3 on
L120210.2R. The different colors denote different powers on the feedline at the device.

4.2.1.1 Power Dependence

The ε test devices have internal quality factors that are constant with temperature. If we use the best-fit

value of Fδ 0
TLS determined from the frequency shift data to predict the TLS-induced dielectric loss using

Equation (2.178) and assuming low carrier power so that (|E|/Ec)
2 � 1, we find that our prediction is larger

than what is measured and also has significant temperature dependence. This is illustrated in Figure 4.1.

The TLS-induced loss is expected to saturate with electric field strength, as discussed in Section 2.3.2.2. The

observed behavior could be explained if (|E|/Ec)
2 � 1. In this case, we have fully saturated the TLS-induced

loss and are dominated by some other temperature independent source of loss inherent to the test devices. In

order to test this hypothesis, we used a vector network analyzer to measure the complex transmission near

the resonant frequencies of the three test devices on L120210.2R as a function of power at base temperature

(240 mK). We collected measurements at 10 powers between -113 dBm and -95 dBm on the feedline at the

resonator. The results are consistent for the three test devices. We show the magnitude of the transmission

near resonance as a function of power for one of the test devices in Figure 4.2. Note that the measurements at

low power require a long integration time and many averages due to a low signal-to-noise ratio. We find that

the internal quality factor does indeed decrease with power, presumably due to an increase in the TLS-induced

loss, whereas both the resonant frequency and coupling quality factor are approximately independent of

power. These results are illustrated in Figure 4.3. Unfortunately, we are unable to collect measurements at

the low carrier powers required to satisfy (|E|/Ec)� 1. As a result, we do not see the loss-tangent inferred

from the quality factor data converge to the loss-tangent inferred from the frequency shift data.
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Figure 4.3: Top: Resonant frequency as a function of carrier power on the feedline at the device for ε test
device number 3 on L120210.2R. Bottom: Resonator loss as a function of carrier power on the feedline at
the device for the same test device. Blue triangles denote the internal resonator loss. Red asterisks denote the
loss due to coupling to the feedline, which is approximately independent of power. The purple dashed line
denotes the expectation for the TLS-induced loss in the low power limit based on analysis of the frequency
shift data.
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4.2.2 FTS

We collected FTS data over the course of three days, between 2013/07/27 and 2013/07/29. We obtained 22

datasets in total, varying the position of the SPIDER FTS apparatus with respect to the cryostat window. We

collected an IQ sweep and re-centered the carriers on-resonance approximately every other dataset. For each

dataset, the carriage carrying the mirror was set to scan the central 280 mm of the 300 mm long stage, and then

return. This was repeated Ncycle = 8−12 times, so that each dataset contained Nscan = 16−24 interferograms.

For each scan, the carriage followed a trapezoidal velocity profile in which it accelerated at 2.5 mm/sec/sec

to a maximum velocity of 8.75 mm/sec/sec, traveled at constant velocity for approximately 250 mm, and

then decelerated at 2.5 mm/sec/sec. There was no difference in the resulting spectra between forward and

backward scans.

The FTS was only capable of illuminating a small fraction of the detectors at once (roughly one device

half-band). In an attempt to obtain bandpasses for all detectors, we collected 22 datasets over a grid of

positions relative to the center of cryostat window. Our control over the position of the apparatus was fairly

crude and not entirely repeatable, so the following alignment process was carried out before collecting each

dataset. We set the carriage to the center of the stage, where the two paths of the FTS have equal lengths. This

is the location where constructive interference is maximum and is commonly referred to as the white light

fringe. We began collecting data and monitored it in real time for a subset of detectors that were evenly spaced

over the particular device half-band that we hoped to illuminate at that particular apparatus position. We then

waved a room temperature Eccosorb R© wand back-and-forth in front of the FTS LN2 load. If the detectors

were well coupled to the LN2 load, then the difference in temperature between the room temperature wand

and the LN2 load created a noticeable signal in the detector timestreams. We fine tuned the position of the

apparatus so that the room-temperature-wand signal was maximized in a significant number of the detector

timestreams. The central part of the focal plane unit was much easier to illuminate than the edges. The lower

half-bands of A2, A3, B2, and B3 were easily aligned and have high-quality spectra. In order to align the

upper half-bands of these four detector arrays, we had to direct the FTS beam into the cryostat at an angle.

This was accomplished by rotating the cryostat slightly with respect to vertical. After doing so, we were able

to obtain high-quality spectra for the upper half-bands of A2, A3, B2, and B3. In order to align the A4 and

B4 detector arrays, we had to direct the FTS beam into the cryostat at an angle orthogonal to the rotational

freedom of the cryostat. This was achieved by adjusting the angle of the last mirror with respect to horizontal

from 45 ◦ to 50 ◦. While the room-temperature-wand signal was observed in the detector timestreams for

these two arrays, few interferograms were detected, and we were only able to obtain spectra for a handful

of detectors. The number of detectors on each device half-band that measured at least one interferogram is

presented in the top panel of Figure 4.4.
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Figure 4.4: Top: The number of resonators on each device half-band that were probed during the FTS mea-
surements (blue) and measured at least one interferogram (green). Bottom: The median band center and
effective band width for the resonators on each device half-band. The different colors denote the four MU-
SIC observing bands. The gray boxes denote the designed bandpasses.
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We focus on datasets that have a white light fringe clearly visible in at least one detector timestream. Of

the 22 datasets, 15 satisfy this criteria. Analysis of each dataset proceeds as follows:

• We determine the frequency direction θ̂freq and conversion factor Âfreq for each resonator from the most

recent IQ sweep using the technique outlined in Section 3.3.4. We rotate the data to the frequency

direction and convert to fractional resonant frequency fluctuations. We apply all further analysis to the

frequency component alone.

• We examine the half-band-averaged timestreams by eye in order to determine the location of the Nscan

white light fringes.

• We extract a 28.5 second block of time centered on each white light fringe from the timestream. This

corresponds to the 250 mm where the carriage was traveling at its maximum velocity (8.75 mm/sec).

• We fit a polynomial to each block of time and then subtracted it to remove the large scale features

caused by changes in loading as the mirror moved across the stage.

• We apply a Hanning window to each block of time and then calculated the PSD. We average the PSDs

for the Nscan blocks of time together to obtain a final estimate of the PSD for each resonator for each

dataset.

• We run a peak finding algorithm on the PSDs. We apply a cut on the peak-height-to-continuum ratio,

peak width, and peak location to find the actual spectra.

• We take the square root of the PSD.

• We mask the peaks and fit the continuum noise level to the model given by Equation (3.24). We subtract

the best fit model and then normalize by the maximum value to obtain an estimate of the transmission.

• We use Equation (3.14) to convert from temporal frequency to millimeter-wave frequency. We then

multiply the millimeter-wave frequency by a factor of 1.0261 to correct for velocity miscalibration (see

Section 3.2.4).

If a resonator has spectra in multiple datasets, then we average them together, weighting by the peak-height-

to-continuum ratio.

We calculate the band center and effective bandwidth for each resonator as

νmm,ant =

∫
FTS(ν) ν dν∫

FTS(ν) dν
∆νmm,ant =

∫
FTS(ν) dν , (4.2)

where FTS(ν) denotes the measured bandpass. The median values of these two quantities are illustrated

in Figure 4.4 and presented in Table 4.3 for each device half-band. We also display the average bandpass

in Figures 4.5-4.6. In both the figures and the table we compare the measured bandpasses to the designed

bandpasses.
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Figure 4.5: MUSIC bandpasses for the L120210.2R and L120210.2L detector arrays. The different colors
denote the four observing bands. The solid-filled regions show the measured bandpasses and the hashed-filled
regions show the designed bandpasses. Overlaid on each plot is the atmospheric transmission spectrum at the
CSO for 1.68 mm precipitable water vapor (historical median). The measured bandpasses were obtained by
averaging over all detectors on the specified device half-band.
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Figure 4.6: MUSIC bandpasses for the L120309.4L and L120427.1L detector arrays. The different colors
denote the four observing bands. The solid-filled regions show the measured bandpasses and the hashed-filled
regions show the designed bandpasses. Overlaid on each plot is the atmospheric transmission spectrum at the
CSO for 1.68 mm precipitable water vapor (historical median). The measured bandpasses were obtained by
averaging over all detectors on the specified device half-band.
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Table 4.3: The median band centers and effective band widths for four of the MUSIC detector arrays.

νmm,ant [GHz]

Device ID Position Band 0 Band 1 Band 2 Band 3

Designed 151.3 226.1 289.3 345.8
L120210.2R A2 147.6 218.2 279.3 335.9
L120210.2L B2 148.3 217.8 280.2 334.7
L120309.4L A3 137.1 198.2 237.0 278.9
L120427.1L B3 144.2 212.8 257.2 303.1

νmm,ant [Measured / Designed]

Device ID Position Band 0 Band 1 Band 2 Band 3

L120210.2R A2 0.98 0.96 0.97 0.97
L120210.2L B2 0.98 0.96 0.97 0.97
L120309.4L A3 0.91 0.88 0.82 0.81
L120427.1L B3 0.95 0.94 0.89 0.88

∆νmm,ant [GHz]

Device ID Position Band 0 Band 1 Band 2 Band 3

Designed 34.3 44.5 33.8 20.7
L120210.2R A2 20.5 26.5 17.6 13.6
L120210.2L B2 18.0 23.5 16.0 12.4
L120309.4L A3 14.5 16.0 17.1 14.2
L120427.1L B3 11.7 20.0 14.1 10.7

∆νmm,ant [Measured / Designed]

Device ID Position Band 0 Band 1 Band 2 Band 3

L120210.2R A2 0.60 0.60 0.52 0.66
L120210.2L B2 0.53 0.53 0.47 0.60
L120309.4L A3 0.42 0.36 0.51 0.68
L120427.1L B3 0.34 0.45 0.42 0.52

We find that the measured band centers shifted downward in frequency by ' 3% from the designed band

centers for the A2 and B2 array. This downward shift was caused by an increase in the ratio of the dielectric

constant ε to the thickness d of the Si3N4 dielectric used for the science-grade detector array. Measurements

of the ε test devices on the A2 detector array confirm this explanation, showing an increase of 6% in ε/d

between the final engineering-grade tiles and the science-grade tiles, as discussed in Section 4.2.1. The

impact of this shift on the 150, 225, and 290 GHz observing bands is minimal; however, the 345 GHz band

shifted far enough that it has significant overlap with a water absorption line at ' 325 GHz. As a result, the

sensitivity of the 345 GHz observing band is noticeably degraded.

Clearly something more insidious is affecting the A3 and B3 band centers. We find that for these two

detector arrays, the ratio of the measured to designed band center is band dependent. This results in the

150 and 225 GHz band spilling into each other, and the 345 GHz band being far from the desired location.
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This variation in the location of the band centers makes analysis of science data collected with these arrays

difficult. Although we were unable to obtain FTS measurements for a significant number of detectors on the

A4 and B4 arrays, measurements of the response to hot and cold loads suggest that the bandpasses for these

arrays exhibit similar behavior to that seen in A3 and B3. Because of this, we have chosen to pursue science

observations with the A2 and B2 arrays only. The remainder of this thesis will focus on calibration of the

detectors on the A2 and B2 arrays.

The effective bandwidth ranges from 47% to 66% of the designed bandwidth for the A2 and B2 detectors.

The is due to modest fringing, clearly visible in Figures 4.5-4.6. Simulations of the bandpass filter, which are

also shown in Figures 4.5-4.6, do not display fringes. Vector network analyzer measurements at microwave

frequencies of a scaled version of the bandpass filter design are also free of fringes [102]. This suggests that

the source is not the actual filter, but rather the optical chain. Based on the frequency separation of adjacent

fringes, we suspect that the fringing originates from standing waves in the dielectric filters.

4.2.3 Yield

The MUSIC readout electronics are used to collect network analyzer (NA) sweeps of each detector array. NA

sweeps are measurements of the complex transmission through the system over the entire range of microwave

frequencies where we expect to find resonances (approximately 3−4 GHz). They are simply IQ sweeps with

the carrier tones distributed approximately uniformly across the readout bandwidth and the number of points

in the sweep chosen such that the range of frequencies each carrier tone sweeps out overlaps slightly with its

two neighbors. They are typically collected with a resolution of 7.5 kHz. This is the first measurement made

during both the dark and optical cooldowns. A peak finding algorithm is applied to the NA sweep to identify

the location of the resonances. The NA sweep is then scanned by eye to ensure that no resonances were

missed by the peak finding algorithm. NA sweeps of the A2 and B2 detector arrays are shown in Figure 4.7.

Table 4.4 presents the detector yield of the A2 and B2 arrays. Each array is designed to have 288 res-

onators. We find ' 95% of the designed resonances in the NA sweeps. We place an initial cut to remove

collisions: pairs of resonances that are too close to each other. We use a < 200 kHz cut on frequency sep-

aration to identify a collision, which on average corresponds to . 2.5 FWHM. The remaining ' 80% of the

designed resonances are read out during observations; however, additional cuts are used to determine which

resonances will be used for map making. We cut resonances that deviate from the skewed Lorentzian shape,

have low quality factors, or bifurcate at low readout powers, resulting in 66% of the number designed. We

then cut resonances that are outliers in terms of their noise and response performance. This leaves approx-

imately 57% of the number designed. However, some fraction of these correspond to dark resonators; the

number of antenna coupled resonators that pass all cuts is approximately 49% of the number designed.
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Figure 4.7: Top: Network analyzer sweeps of the detector arrays in the A2 (upper panel) and B2 (lower
panel) positions. Shown is the squared magnitude of the transmission through the system as a function of
microwave frequency. The large scale variations in the transmission should be ignored as they are an artifact
of the technique used to collect network analyzer sweeps with the MUSIC readout electronics. The small
scale features are accurately measured. Bottom: A zoom-in on the network analyzer sweep of the B2 detector
array. Here individual resonances can be identified. The gray box denotes a pair of resonances that are
classified as a collision.
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Table 4.4: Detector yield of the A2 and B2 arrays. The first two columns list the number of detectors designed
and the number of detectors found in network analyzer sweeps. Then, moving from left to right, the columns
list the number of resonators that remain after placing additional quality cuts. For a description of each cut
see the text. The top two rows are in units of number of resonators. The bottom two rows are in units of
percentage of resonators with respect to the number designed. Taken from Sayers et al. [168].

Device Designed Found Collisions Distorted / Low-Q / Power Noise/Response Optical

A2 288 277 227 190 166 143
B2 288 272 237 190 159 138

A2 100% 96% 79% 66% 58% 50%
B2 100% 94% 82% 66% 55% 48%

4.2.4 Dark Temperature Sweeps

We collected dark temperature sweep data for all of the MUSIC detectors in January 2013. The dataset

consists of IQ sweeps at 15 temperatures between 230 mK and 450 mK. The dataset is analyzed according

to the procedure outlined in Section 3.2. We present histograms of the resulting best-fit parameters for all

of the detectors on the A2 and B2 arrays in Figure 4.8. When fitting the resonant frequency data, we find

that the median value of the kinetic inductance fraction for our detectors is α f = 0.011 and the median value

of the gap energy at zero temperature for our detectors is ∆0, f = 0.204 meV. When fitting the dissipation

data, we find that the median value of the kinetic inductance fraction is αQ = 0.014 and the median value

of the gap energy at zero temperature is ∆0,Q = 0.21 meV. Hence, the Q−1
i (Tbath) dark trajectories imply

kinetic inductance fractions that are 30% larger and gap energies that are 3% larger than those implied by the

fres(Tbath) dark trajectories. There is evidence that this discrepancy is largely a result of using the first-order

approximation to the Mattis-Bardeen integrals. When the full integral is employed in the fitting procedure,

there is better agreement in the parameter values derived from the resonant frequency and dissipation data.

This appears to be due to the fact that at high temperatures the first-order analytical expressions provide a

better approximation to the full-integral prediction for σ2 than σ1. This is a relatively recent development,

and we have not yet implemented a full-integral analysis of the hot/cold and skydip data. Therefore, for the

remainder of this thesis we will use the first-order approximation and assume different values of [α, ∆0] when

predicting the resonant frequency and internal quality factor, as outlined in Chapter 3.

We observe variations in both the kinetic inductance fraction and the gap energy at zero temperature

across each detector array. This is illustrated in Figure 4.9, which shows α f and ∆0, f as a function of resonant

frequency for the detectors on the B2 array. The patterns that emerge when these parameters are plotted as

a function of resonant frequency are the result of trends with both the azimuth and elevation offset of the

pixels. We will present direct evidence for this in Section 4.3.1. One possible explanation is variation in

the thickness of the Al section due to a gradient in the amount of Al that is etched away during fabrication.

Recall that the best-fit parameters from the dark analysis act as input to the hot/cold analysis. Because of the

variation in α and ∆0 across the detector array, it is important to match the dark results to the hot/cold data
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Figure 4.8: Parameter estimates obtained from fitting Mattis-Bardeen theory to dark temperature sweep data.
Histograms contain the results for all detectors on the A2 and B2 arrays. Dashed black lines denote median
values. The left column shows the kinetic inductance fraction α . The right column shows the gap energy at
zero temperature ∆0. The upper panels (red) show the results of fitting the resonant frequency data fres(Tbath).
The middle panels (blue) show the results of fitting the dissipation data Q−1

i (Tbath). The bottom panels (gray)
show the ratio of the dissipation results to the frequency results.
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Figure 4.9: The kinetic inductance fraction α f and gap energy at zero temperature ∆0, f as a function of
resonant frequency for the detectors on the B2 array.
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for each resonator individually.

4.2.5 Hot/Cold

We collected hot/cold data for all of the A2 and B2 detectors on October 10, 2013. The dataset consists of IQ

sweeps measured with the MUSIC readout electronics at 10 temperatures between 240 mK and 445 mK under

both an ambient temperature and liquid nitrogen beam-filling, blackbody load. The ambient temperature was

Tamb = 283± 2 K. The dataset is analyzed according to the procedure outlined in Section 3.2.3. The results

of the analysis are presented in Tables 4.5-4.6. Table 4.5 presents the median and median absolute deviation

of the parameters of interest, taken over all detectors of the specified band on the specified device half band.

Table 4.6 is identical to Table 4.5 except that the median and median absolute deviation are taken over all

detectors of the specified band on the A2 and B2 arrays. We use the median and median absolute deviation

to quantify the center and dispersion of the distribution of values because these statistics are outlier resistant.

Note that we multiply the median absolute deviation by a factor of 1.4826 so that it is equal to the standard

deviation for normally distributed values.

The model used to describe the hot/cold data includes several nuisance parameters, which are not pre-

sented in Tables 4.5-4.6. We are not sensitive enough to the τmax parameter to fully constrain it, but we do

obtain a lower limit τmax & 50 µs. We are able to constrain 1/Qi,0 for each resonator and find values that

are consistent with the best-fit values from the dark temperature sweep, suggesting that 1/Qi,0 does not vary

between cooldowns (note that unlike α and ∆0, we do not use the results of the dark temperature sweeps

to place a prior on 1/Qi,0). Finally, the nuisance parameters used to model the elevated quasi-particle tem-

perature — n and η̃e — are highly degenerate, but we are sensitive to the difference in the temperature of

the quasi-particle population and the temperature of the bath. We find that at 240 mK the temperature of

the quasi-particle population is elevated by ≈ 3 mK from the bath temperature under the LN2 load and is

elevated by ≈ 10 mK from the bath temperature under the ambient temperature load. As the bath temperature

increases, the quasi-particle population quickly returns to bath temperature.

We find that the small-signal response due to direct absorption is [10%, 5%, 9%, 15%] of the total small-

signal response for the four observing bands (determined using the dark resonators, specifically C dark/C).

Note that this refers to the response to a beam-filling load at the cryostat window. The excess loading due to

direct absorption is [30%, 20%, 30%, 25%] of the total excess loading (determined using the dark resonators,

specifically P dark
exc /Pexc). This represents a considerable reduction in the amount of direct absorption compared

to what was seen in the engineering-grade detector arrays. These reductions were achieved through two mod-

ifications to the instrument. First, the direct absorption was found to scale as approximately the area of the

Al section, so we reduced the length of Al section from 1 mm to 0.35 mm. We did not reduce the length

further because we wanted to maintain a high absorption efficiency to radiation coupled through the antenna.

Second, the direct absorption should be sensitive to both polarizations while the antennas are only sensitive

to a single polarization, so we installed a polarizing wire grid in the optical path in late 2012. This reduced
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Table 4.5: Hot/Cold results. The quoted values are the (median) ± (median absolute deviation), calculated
using the detectors of the specified band on the specified device half-band.

Band Device Nres ∆νmm,ant [GHz] Texc [K] Pexc [pW] Pexc,ant [pW] C [GHz/nm] Cant [GHz/nm] ηant

Dark

A2L 5 – 68±36 0.2±0.1 – 0.006±0.002 – –
A2U 4 – 70±38 0.2±0.1 – 0.004±0.001 – –
B2L 6 – 149±22 0.3±0.1 – 0.003±0.000 – –
B2U 3 – 91±58 0.2±0.1 – 0.004±0.000 – –

0

A2L 4 20 36±23 0.8±0.4 0.6±0.4 0.038±0.008 0.033±0.008 0.072±0.017
A2U 10 20 28±16 0.7±0.3 0.5±0.3 0.046±0.006 0.041±0.006 0.091±0.014
B2L 6 17 34±16 0.9±0.5 0.6±0.5 0.035±0.008 0.032±0.008 0.080±0.020
B2U 6 19 24±10 0.7±0.2 0.5±0.2 0.042±0.006 0.038±0.006 0.089±0.014

1

A2L 18 27 23±15 1.1±0.7 0.9±0.7 0.078±0.005 0.073±0.005 0.118±0.009
A2U 3 25 21±3 1.1±0.3 0.9±0.3 0.079±0.004 0.075±0.004 0.133±0.007
B2L 11 22 14±11 0.6±0.4 0.3±0.4 0.066±0.004 0.063±0.004 0.128±0.009
B2U 10 23 19±4 1.0±0.2 0.7±0.2 0.078±0.009 0.073±0.009 0.138±0.018

2

A2L 20 18 25±6 0.7±0.3 0.6±0.3 0.045±0.004 0.040±0.004 0.097±0.011
A2U 11 16 35±23 0.9±0.7 0.7±0.7 0.043±0.008 0.039±0.008 0.109±0.023
B2L 20 16 16±9 0.4±0.2 0.1±0.2 0.042±0.004 0.039±0.004 0.109±0.010
B2U 12 15 26±7 0.8±0.5 0.6±0.5 0.048±0.008 0.043±0.008 0.125±0.023

3

A2L 8 16 50±9 0.8±0.1 0.7±0.1 0.028±0.006 0.022±0.006 0.063±0.016
A2U 12 11 38±14 0.7±0.3 0.5±0.3 0.032±0.010 0.027±0.010 0.103±0.036
B2L 12 13 46±17 0.7±0.4 0.5±0.4 0.025±0.003 0.022±0.003 0.073±0.011
B2U 3 10 33±3 0.3±0.1 0.1±0.1 0.018±0.005 0.014±0.005 0.059±0.021

Table 4.6: Hot/Cold results. The quoted values are the (median) ± (median absolute deviation), calculated
using all detectors of the specified band.

Band Nres ∆νmm,ant [GHz] Texc [K] Pexc [pW] Pexc,ant [pW] C [GHz/nm] Cant [GHz/nm] ηant

Dark 18 – 84±64 0.2±0.1 – 0.004±0.001 – –
0 26 20 29±13 0.7±0.3 0.5±0.3 0.042±0.008 0.038±0.008 0.083±0.013
1 42 24 20±10 1.0±0.5 0.7±0.5 0.076±0.009 0.071±0.008 0.125±0.015
2 63 16 24±10 0.6±0.3 0.4±0.3 0.044±0.004 0.040±0.004 0.108±0.014
3 35 13 47±14 0.8±0.3 0.6±0.2 0.026±0.007 0.022±0.007 0.074±0.022

Table 4.7: Comparison of the expected and measured single-polarization optical efficiency. See the text for
a description of how the different contributions to the expected efficiency are determined. The values quoted
for the measured efficiency are the median and median absolute deviations over resonators of a given band
on the detector arrays in the A2 and B2 positions.

Expected Efficiency Measured
Efficiency

(ηph ×ηopt,ant)

Measured /
Expected

Band Phonon Absorption Microstrip Antenna Lyot Stop Filters Total

0 0.60 0.88 0.88 0.74 0.28 0.74 0.071 0.083±0.013 1.17±0.18
1 0.50 0.88 0.83 0.70 0.51 0.76 0.099 0.125±0.015 1.26±0.15
2 0.46 0.88 0.79 0.78 0.68 0.69 0.117 0.108±0.014 0.92±0.12
3 0.43 0.88 0.75 0.71 0.76 0.61 0.093 0.074±0.022 0.79±0.24
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the direct absorption by a factor of ' 1.6, which is less than the expected factor of 2, but still represents a

significant improvement. The hot/cold results for the dark resonators are used to correct the hot/cold results

for the antenna coupled resonators using the procedure outlined in Section 3.2.3. This enables extraction of

the optical efficiency and excess loading of the antenna.

We now compare the measured optical efficiency to the expected optical efficiency based on the known

sources of loss in the MUSIC instrument. Table 4.7 tabulates the known sources of loss. We associate an

expected efficiency to each, which is estimated from either a direct measurement, analytical calculation, or

simulation:

Phonon Refers to ηph. The quoted values are taken from the simulation of Guruswamy et al. [87]. The origin

of ηph and a description of the simulation are given in Section 2.2.2.

Absorption Refers to the fraction of the power incident on the MKID that is absorbed by the MKID. The

quoted values are the result of an analytical calculation [161]. This calculation accounts for two effects,

which have opposing dependencies on the resistivity of the Al section. First, as the resistivity of the

Al section increases, the length scale for absorption of light from the overlapping Nb/Si3N4 microstrip

becomes smaller, resulting in an improved absorption efficiency. Second, as the resistivity of the Al

section increases, the impedance mismatch between the Al section and the Nb portion of the microstrip

increases, resulting in reflection and a reduced absorption efficiency. The calculation assumes that the

Al has a sheet resistance of 0.22 Ω/�, which is based on direct measurements made at 4 K.

Microstrip Refers to dielectric loss of the microstrip that carries the light collected by the antenna to the

MKID. The loss tangent of the Si3N4 dielectric at millimeter-wave frequencies was measured using

a set of “loss test devices” on an engineering-grade detector array, Device 9a. The loss test device is

designed as follows. Light collected by an antenna is sent through a 3 dB microstrip splitter; half of

the power is sent directly to a “reference” MKID and the other half is sent over a long run of microstrip

before terminating in a “loss” MKID. The difference in the length of microstrip between the loss and

reference MKID is 41.4 mm. The hot/cold analysis is carried out on both the loss and reference MKID.

The ratio of the optical efficiency of the loss MKID to that of the reference MKID yield an estimate

of the dielectric loss in the excess run of microstrip, which can then be converted into a dielectric loss

tangent. We find that on average the loss MKID has an optical efficiency that is 0.26 times that of the

reference MKID. We have measured the band center of the loss test devices to be 330 GHz via FTS.

Hence, the loss tangent of Si3N4 is 1.6× 10−3. This results in the microstrip efficiencies quoted in

Table 4.7 for the 8.4 mm length of microstrip used in the actual detectors.

Antenna Refers to the efficiency of the phased array of slot dipole antennas. It is calculated by applying

the method of moments to an infinite array of infinite long slots. This accounts for feed efficiency,

radiation efficiency, and transmission through the silicon and AR coating. It does not account for losses
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to substrate modes, which is expected to be an ∼ 10% effect. It also does not account for inefficiency

due to the fact that the actual slots have finite length and the impedance varies near the ends, which is

expected to be another ∼ 10% effect that will be largest for the lower frequency bands.

Lyot Accounts for the loss due to the truncation of the beam at the Lyot stop. It is estimated using Zemax

simulations of the MUSIC optics [138].

Filters Accounts for the loss and reflections of the dielectric, metal-mesh, and infrared shader filters. The

loss of each filter is estimated using the methods and references outlined in Sayers et al. [138]. The

reflections at the interface of each filter is estimated via simulation. 1

The product of these efficiencies is presented in the Total column of Table 4.7. We expect that the MUSIC in-

strument will have single-polarization optical efficiencies between 7% and 12%, depending on the observing

band.

In general, the optical efficiencies inferred from hot/cold are in good agreement with the expected optical

efficiencies. There does appear to be a slight band dependent discrepancy. In Band 0 and Band 1 the measured

efficiency is larger than expected, whereas in Band 2 and Band 3 the measured efficiency is smaller than

expected. The quoted uncertainties are simply the dispersion observed across the detectors of a given band.

There is also systematic uncertainty in the measured values that arise from our uncertainty in the assumed

values of the recombination coefficient and the thickness of the Al section. This systematic uncertainty is

not included in the quoted uncertainties. However, it should effect all bands approximately equally, and

therefore would not explain the band dependent discrepancy. The true efficiencies would be 30% greater

than the quoted values if zero Al is etched away during fabrication instead of the assumed 15 nm. The true

efficiencies would be 50% less than the quoted values if 30 nm of Al is etched away instead of the assumed 15

nm and if the recombination coefficient is 7.1 µm3 sec−1 instead of the assumed 9.4 µm3 sec−1. Note that the
+30%
−50% systematic errors correspond to the absolute boundaries of what we believe are reasonable values for the

recombination coefficient and thickness. Without independent measurements of the recombination coefficient

and thickness of the MKIDs employed in MUSIC, it is difficult to determine the overall normalization of the

band dependent optical efficiency to better than approximately 50% accuracy.

4.2.6 Skydips

Skydip data was collected for all detectors on the A2 and B2 arrays on the night of September 25, 2013.

The dataset consists of IQ sweeps collected with the dome open and the telescope pointed at 6 elevation

angles between 20◦ and 70◦; specifically e= [20◦, 30◦, 40◦, 50◦, 60◦, 70◦]. The ambient temperature over

the course of the skydip measurement was Tamb = 277.7± 0.1 K. The CSO tipping radiometer measures the

optical depth at 225 GHz every 10 minutes. The tipping radiometer reported τ225 = 0.1036±0.003 over the

course of the skydip measurement (which corresponds to CPW = 1.94±0.06 mm). The following morning the
1http://www.luxpop.com/

http://www.luxpop.com/
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opening in the hex plate of the telescope was covered with a large piece of Eccosorb R© and a final IQ sweep

was collected to act as the room-temperature load reference measurement. The ambient temperature during

the reference measurement was Tamb = 285.5 K. The dataset is analyzed according to the procedure outlined

in Section 3.2.5.

Analysis of the dark resonator skydip data yields a measurement of the direct absorption spillover frac-

tion. We find that the median spillover fraction for the dark resonators is fspill,dir = 0.28. However, there is

significant variation among the dark resonators, with spillover fractions ranging from 0.20 to 0.36. This is

much larger than the ∼ 0.01 measurement uncertainty on the individual measurements, and is most likely due

to a dependence on focal plane position. In other words, the direct absorption spillover fraction is most likely

larger for resonators positioned near the edge of the focal plane than for those positioned near the center.

However, we cannot confirm this hypothesis, because it is difficult to extract a beam location for the dark

resonators. When fitting the skydip data for the antenna coupled resonators, we place a prior on the direct

absorption spillover fraction that accounts for this large variation. We also measure τdir = 0.18±0.05 for the

dark resonators.

The best fit antenna spillover fractions fspill,ant are presented in Figure 4.10 as a function of the azimuthal

offset of the detector from the center of the focal plane. We observe a clear increase in the antenna spillover

fractions for detectors situated towards the edge of the focal plane. This increase is largest in the lower

frequency bands. The black dashed line denotes the expected spillover fraction due to the expected inef-

ficiencies of the MUSIC optics. It assumes 1% absorption for each of the five mirrors in the optics chain

and Ruze scattering from the primary mirror. In the central region of the focal plane we measure an excess

antenna spillover fraction of [0.08, 0.04, 0.02, 0.10] for the four observing bands.

We use the Atmospheric Transmission at Microwaves (ATM) model by Pardo et al. [129] to infer the

atmospheric transmission spectrum ATM(ν) from the value of τ225 measured by the CSO tipping radiometer.

The optical depth in band is then predicted as

τant =− ln
(∫

FTS(ν)ATM(ν)dν∫
FTS(ν)dν

)
, (4.3)

where FTS(ν) denotes the bandpass measured via FTS. We compare this prediction to the resulting best-fit

estimate of τant from the skydips. We find excellent agreement in Bands 0, 1, and 2. This gives us confidence

that for the three lowest frequency bands we can use τ225 and the ATM model to infer the sky loading for

any given observation. In Band 3, the predicted τant is approximately 30% larger than the value measured

via skydip. Recall that the bandpasses for the MUSIC detectors are shifted by 3% to lower frequency due

to an increase in the ratio ε/d of the Si3N4 dielectric relative to the engineering-grade tiles used to calibrate

the filter geometry. Because of this shift, Band 3 overlaps with the waterline at 325 GHz, which makes the

predicted τant very sensitive to both the ATM model and the bandpass measured via FTS. Therefore, we do

not believe that we can accurately predict the loading and responsivity for the Band 3 resonators at this time.



160

Figure 4.10: Spillover fraction fspill,ant as a function of the azimuthal offset of the detector from the center of
the focal plane. Each panel corresponds to a different observing band. The black dashed line denotes the
expected spillover fraction based on the expected inefficiencies of the MUSIC optics (see text).

Figure 4.11: Optical depth τant as a function of the azimuthal offset of the detector from the center of the
focal plane. Each panel corresponds to a different observing band. The black dashed line denotes the ex-
pected optical depth based on the average τ225 = 0.1036 reported by the CSO over the course of the skydip
measurement, the ATM model for the atmospheric transmission, and the detector bandpasses measured via
FTS.
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Table 4.8: Median background loading, calculated using detectors of the specified band on the A2 and B2
arrays. All temperatures are referred to the cryostat window. Texc is determined from the hot/cold data, Tspill

is determined from the skydip data, and Tsky is determined from the FTS bandpass measurements and the
ATM model assuming CPW = 1.3 mm. These three temperatures sum to give the total loading Tload. Popt is the
equivalent optical power incident on the MKID.

Band Texc [K] Tspill [K] Tsky [K] Tload [K] Popt [pW]

0 30 45 10 85 3.3
1 20 30 20 70 5.5
2 25 30 25 80 3.9
3 40 55 70 165 4.9

4.2.7 Loading

Table 4.8 breaks down the total detector loading Tload into contributions from spillover onto the interior of

the cryostat Texc, spillover onto room temperature surfaces Tspill = fspillTamb, and emission from the atmosphere

Tsky = (1− e−τ/ sin e)Tatm. All temperatures are referred to the cryostat window so that they can be compared

directly. For Bands 0-2 spillover onto room temperature surfaces is the dominant contribution to the loading.

Spillover onto the interior of the cryostat is also appreciable, and is only slightly smaller than spillover

onto room temperature surfaces. The contribution from atmospheric emission increases with observing band

center frequency, such that it is negligible in Band 0 and dominates in Band 3. Note that the quoted numbers

include the contributions from both the antenna and direct absorption.

4.2.8 Responsivity

We test that the calibrated model fully describes the small-signal responsivity of our detectors by comparing

the measured and predicted response to an unresolved astronomical source. We use Uranus for this anal-

ysis because it is a well-studied, stable blackbody that is bright enough to detect at high signal-to-noise in

individual detector timestreams, but not so bright that it causes non-linear response.

The measured response is obtained by taking the peak height of Uranus in the individual detector timestreams

(in units of fractional frequency fluctuations δ fres/ fres) and dividing by the known flux of Uranus. We assume

the following empirical model from Griffin and Orton [39] for the brightness temperature of Uranus:

Tb(x) = 0.931×
(
−795.694+845.179x−288.946x2 +35.200x3) , (4.4)

where x = log10 λ with the wavelength λ in units of µm. The factor of 0.931 is a correction presented in

Sayers et al. [41] based on WMAP measurements of the brightness temperature of Uranus at 94 GHz [40].

Assuming we are in the Rayleigh-Jeans limit (hν � kBTb) the intensity I(ν) is given by

I(ν) =
2kBν2Tb

c2 . (4.5)
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The flux of the source is then calculated as

S = Ωsource

∫
FTS(ν)ATM(ν ,e)I(ν)dν∫

FTS(ν)ATM(ν ,e)dν
, (4.6)

where FTS(ν) denotes the measured bandpass and ATM(ν ,e) is the atmospheric transmission at the CSO

at elevation e. The atmospheric transmission at zenith is calculated using the ATM model with the mm of

precipitable water vapor determined from the tipper measurement of τ225 at the time of the observation. The

zenith transmission is then scaled to elevation e using the relationship ATM(ν ,e) = [ATM(ν ,90◦)]1/ sin e. Since

the solid angle of Uranus varies with observation epoch, we calculate Ωsource at the time of the observation using

the JCMT FLUXES software.

The predicted response is given by

rsrc =

∣∣∣∣∂ (δ fres/ fres)

∂S

∣∣∣∣
=

∣∣∣∣∂ (δ fres/ fres)

∂nqp

∣∣∣∣ ∣∣∣∣ ∂nqp

∂Popt,ant

∣∣∣∣ ∣∣∣∣ ∂Popt,ant

∂Tload,ant

∣∣∣∣ ∣∣∣∣∂Tsrc

∂S

∣∣∣∣ , (4.7)

where the terms on the second line are obtained by taking the appropriate partial derivative of Equations (2.59),

(2.131), (2.105), and (2.9) from left to right. Doing so results in the following expression:

rsrc =
ακ2ηphηopt,ant (1− fspill,ant)e−τant/ sin eAeff ∆νmm,ant

4V ∆(2Rnqp + τ−1
max )

, (4.8)

which we can evaluate directly using the best fit model parameters for each resonator. We determine τant

from Equation (4.3) using the value of τ225 reported by the CSO at the time of the observation to infer the

atmospheric transmission. From τant we can determine the background loading which sets the quasi-particle

density nqp in the above equation.

We have collected 55 observations of Uranus for flux calibration purposes over the course of our Au-

gust/September 2013 observing run. The median value of the column density of precipitable water vapor for

this set of observations is CPW = 1.66 mm, which is approximately equal to the historical median. We calcu-

late the median ratio of measured to predicted response for each resonator over the 55 observations. This is

shown in Figure 4.12 as a function of the microwave power Pg used to probe each resonator relative to the

critical power P crit at which that resonator bifurcates. Note that the ratio P/P crit = a was estimated by fitting

the pre-observation IQ sweep to a model for the transmission near resonance that includes a nonlinear kinetic

inductance. We expect to see a slight degradation in detector responsivity with increasing power due to the

nonlinear kinetic inductance and also (possible) microwave heating of the quasi-particle population. Since all

of the calibration measurements are collected at low readout power, this effect is not included in our model

and hence not included in the predicted response. We do indeed see a degradation in the ratio of measured

to predicted response as we move to larger values of Pg/P crit
g , decreasing by ∼ 35% between the low power
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Figure 4.12: Response comparison. Light blue diamonds denote the ratio of measured to predicted response
to an unresolved astronomical source (in this case Uranus). Orange circles denote the ratio of measured to
predicted response to small changes in airmass. Blue and red lines are linear fits to the data.



164

limit and the critical power. These values are consistent with more direct measurements of the degradation in

frequency response with readout power for detectors on our engineering-grade arrays [161].

In the low power limit — where we expect our model to hold — we measure a response to Uranus that

is a factor of [0.40, 0.50, 0.45, 0.40] times the predicted response for the four observing bands. One possible

cause for this discrepancy is that a significant portion of our beam is making it to the sky but is not part of the

main beam (i.e., sidelobes or a diffuse wide-angle beam). Another possibility is that we have an incomplete

understanding of the detector physics. The instrument model is constrained using only large signal response:

for the hot/cold measurements we use the difference between a 77 K and room temperature load and for the

sky dip measurements we use the difference between a sky load and room temperature load. Perhaps the large

signal response does not translate into small signal response in the way described by the instrument model

presented in Chapter 2.

In order to distinguish between these two possibilities, we examined the detector response to small

changes in elevation. As the telescope scans in elevation there is a small change in the airmass, which in

turn causes a small change in the background loading. The majority of our science observations are collected

using a lissajous scan strategy, where the azimuth and elevation of the telescope are modulated with sine

waves of different periods. This places the signal due to changing airmass at the specific frequency with

which we are driving the telescope in the elevation direction. By examining the correlation coefficient be-

tween the detector timestreams and the elevation track of the telescope in a narrow window centered on the

fundamental scan frequency, we are able to detect this small signal response to a beam-filling calibrator.

Specifically we examine

re =
∣∣∣∣∂ (δ fres/ fres)

∂ e

∣∣∣∣
=

∣∣∣∣∂ (δ fres/ fres)

∂nqp

∣∣∣∣ ∣∣∣∣ ∂nqp

∂Popt

∣∣∣∣ ∣∣∣∣ ∂Popt

∂Tload

∣∣∣∣ ∣∣∣∣∂Tload

∂ e

∣∣∣∣
=

∣∣∣∣∂ (δ fres/ fres)

∂nqp

∣∣∣∣ ∣∣∣∣ ∂nqp

∂Popt

∣∣∣∣ ∣∣∣∣ ∂Popt

∂Tload

∣∣∣∣ (1− fspill,ant)τantTatme−τant/ sin e cos(e)
sin2(e)

, (4.9)

where the terms on the second line are obtained by taking the appropriate partial derivative of Equations (2.59),

(2.131), (2.105), and (2.9), from left to right. The ratio of the measured to predicted value of re is presented

in Figure 4.12. This was determined from over 400 observations of faint sources. In Band 1 and Band 2,

the measured and predicted response are in good agreement in the low-power regime. However, in Band 0

the measured response is 35% larger than predicted and in Band 3 the measured response is 10% smaller

than predicted. The agreement of Band 1 and Band 2 strongly suggest that our understanding of the MKID

small-signal response is correct and the discrepancy for unresolved sources is due to a significant fraction

of the beam being dispersed to wide angles. We discount Band 3 because of the systematics in the model

discussed earlier. The excess response in Band 0 is not currently understood, but points in the same direction
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as the implications of the Band 1 and Band 2 analysis. The measured Band 0 values are noisy due to the

fact that the atmosphere is relatively transparent at these frequencies, and hence the response to changes in

elevation is small.

4.3 Optics Reconfiguration

The MUSIC optics were reconfigured in early 2014 in order to couple the A2 and B2 detector arrays to the

sky with maximum per-pixel optical efficiency. Specifically, the location and geometry of the cryogenic lens

was changed in order to speed up the system to an average focal ratio of 2.19 over the focal plane [168].

This reduced the overall footprint of the focal plane from eight arrays to two arrays and reduced the field

of view from a 14 arcmin diameter circle to an 11.5 arcmin square. Zemax simulations predict that the

reconfiguration will improve the optical efficiency ηopt,ant by a factor of [2.0, 1.55, 1.25, 1.12] for the four

observing bands. This gain in optical efficiency is due to a reduction in the amount of beam terminating at the

Lyot stop. As we will see in the following chapter, the sensitivity of the MUSIC detectors is limited by TLS

noise. Equations (2.214) and (2.212) suggest that the NEFD due to TLS noise scales as η
−1/2
opt,ant , so naively

we expect the optics reconfiguration to result in a factor of [1.41, 1.24, 1.12, 1.06] improvement in NEFD.

However, Zemax simulations also predict that the optics reconfiguration will result in a moderate increase in

the size of the PSF, which will degrade the NEFD and point source sensitivity. Accounting for this, we still

expect a factor of [1.41, 1.17, 0.90, 0.82] improvement in NEFD, and therefore better sensitivity in the two

lowest frequency observing bands [168].

A series of baffles were installed on the underside of the Lyot stop at the same time as the optics recon-

figuration. These baffles are motivated by a model in which, in a time-reverse sense, 5–10% of the beam

scatters off of the flat underside of the Lyot stop, scatters off of the region near the focal plane, and then exits

the cryostat at large angles. This model explains the larger than expected spillover fraction and the increase

in spillover fraction towards the edge of the focal plane (see Section 4.2.6). If the model is correct, the baffles

will eliminate the excess spillover.

Unfortunately, the detector array in the A2 position (L120210.2R) was damaged during the optics recon-

figuration and is no longer capable of collecting data. This leaves us with the single detector array in the B2

position (L120210.2L). The resulting field of view is 11.5 arcmin×5.8 arcmin.

After the optics reconfiguration, we repeated the full suite of calibration measurements for the B2 array

(with the exception of FTS). The results are presented below. For each calibration measurement, we compare

the results obtained after the optics reconfiguration to those obtained before the optics reconfiguration. The

two analysis were performed in an identical manner. Many of the plots and tables shown in the sections below

will be similar to those shown in the sections above.
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Figure 4.13: Parameter estimates obtained from fitting Mattis-Bardeen theory to dark temperature sweep
data. Histograms contain the results for all detectors on the B2 array. Dashed black lines denote median
values. The left column shows the kinetic inductance fraction α . The right column shows the gap energy at
zero temperature ∆0. The upper panels (red) show the results of fitting the resonant frequency data fres(Tbath).
The middle panels (blue) show the results of fitting the dissipation data Q−1

i (Tbath). The bottom panels (gray)
show the ratio of the dissipation results to the frequency results.
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Figure 4.14: The kinetic inductance fraction α f and gap energy at zero temperature ∆0, f as a function of
resonant frequency for the detectors on the B2 array.
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Figure 4.15: The kinetic inductance fraction α f as a function of the offset in azimuth (top four panels) and
the offset in elevation (bottom four panels) of the detector from the center of the focal plane for detectors on
the B2 array.
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4.3.1 Dark Temperature Sweeps

We collected dark temperature sweep data for detectors on the B2 array on June 27, 2014. The dataset

consists of IQ sweeps at 12 temperatures between 225 mK and 455 mK. The dataset is analyzed according

to the procedure outlined in Section 3.2. Figure 4.13 shows histograms of the resulting best-fit parameters.

When fitting the resonant frequency data, we find that the median value of the kinetic inductance fraction

is α f = 0.013 and the median value of the gap energy at zero temperature is ∆0, f = 0.209 meV. When

fitting the dissipation data, we find that the median value of the kinetic inductance fraction is αQ = 0.019

and the median value of the gap energy at zero temperature is ∆0,Q = 0.218 meV. Hence, the Q−1
i (Tbath) dark

trajectories imply kinetic inductance fractions that are 40% larger and gap energies that are 4% larger than

those implied by the fres(Tbath) dark trajectories. Interestingly, both the kinetic inductance fraction and the

gap energy at zero temperature increased after the optics reconfiguration. The kinetic inductance fraction α f

increased by ∼ 15% and the gap energy at zero temperature ∆0, f increased by ∼ 3%. The magnetic shielding

was improved during the optics reconfiguration. This change in the magnetic environment of the MKIDs may

be the cause of the observed changes in the dark behavior.

Figure 4.14 displays α f and ∆0, f as a function of resonant frequency for the detectors on the B2 array.

This can be directly compared to Figure 4.9. The patterns with resonant frequency are even more obvious

after the optics reconfiguration. In order to demonstrate that these patterns are the result of trends across the

focal plane, we plot α f as a function of the azimuth and elevation offset of the pixel from the center of the

focal plane in Figure 4.15. The azimuth and elevation offset of each pixel were obtained from beam maps of

Uranus collected during the subsequent optical run. We find that the kinetic inductance fraction is roughly

15% larger for pixels on the upper half-band (positive azimuth offset) than the lower half-band (negative

azimuth offset). We also find that there is a positive correlation between the kinetic inductance fraction and

the elevation offset of the pixel for both half-bands.

4.3.2 Hot/Cold

We collected hot/cold data for all of the B2 detectors on July 23, 2014. The dataset consists of IQ sweeps at

10 temperatures between 225 mK and 455 mK under both an ambient temperature and liquid nitrogen beam-

filling, blackbody load. The ambient temperature was Tamb = 287±1.5 K. The dataset is analyzed according

to the procedure outlined in Section 3.2.3. The results of the analysis are presented in Tables 4.9-4.10. These

tables can be compared directly to Tables 4.5-4.6, which display the results before the optics reconfiguration.

Figure 4.16 shows histograms of the measured optical efficiency ηant for each observing band both before

and after the optics reconfiguration. The optics reconfiguration did indeed result in a significant increase in

the optical efficiency of the detectors. On average, ηant improved by a factor of [1.50, 1.33, 1.33, 1.18] for the

four observing bands. However, this differs from the expected improvement factors of [2.0, 1.55, 1.25, 1.12],

particularly in Band 0 where we anticipated the largest gain. Table 4.11 compares the measured and expected



170

efficiency after the optics reconfiguration. In general, the measured efficiency is still in good agreement with

the expected efficiency.

Figure 4.17 shows histograms of the excess loading from the cryostat Pexc,ant for each observing band both

before and after the optics reconfiguration. We expect a small decrease in the excess loading after the optics

reconfiguration because less of the beam is coupled to the Lyot stop. The measurement uncertainty on Pexc,ant

is large, and — with the exception of Band 3 — it is difficult to say whether or not we actually observe a

decrease.

Unfortunately the small-signal response due to direct absorption increased by a factor of ' 2 after the

optics reconfiguration, as evidenced by the analysis of the dark resonators. This is likely because a significant

portion of the direct absorption beam was being terminated at the Lyot stop prior to the optics reconfigura-

tion. This brings the fractional small-signal response due to direct absorption to [12%, 8%, 12%,23%] of the

total small-signal response for the four observing bands (computed as C dark/C). Note that this is the response

to a beam-filling load at the cryostat window. Given our uncertainties, the excess loading due to direct ab-

sorption remains unchanged after the optics reconfiguration. The direct absorption contributes approximately

[50%, 30%, 40%, 75%] of the total excess loading for the four observing bands (computed as P dark
exc /Pexc).

Table 4.9: Hot/Cold results after the optics reconfiguration. The quoted values are the (median) ± (median
absolute deviation), calculated using the detectors of the specified band on the specified device half-band.

Band Device Nres ∆ν [GHz] Texc [K] Pexc [pW] Pexc,ant [pW] C [GHz/nm] Cant [GHz/nm] ηant

Dark B2L 15 – 76±17 0.3±0.1 – 0.006±0.001 – –
B2U 7 – 37±11 0.2±0.0 – 0.007±0.001 – –

0 B2L 13 17 16±7 0.5±0.3 0.3±0.3 0.055±0.004 0.049±0.004 0.123±0.009
B2U 8 19 16±5 0.6±0.2 0.4±0.2 0.059±0.005 0.052±0.005 0.120±0.011

1 B2L 19 22 17±8 1.0±0.5 0.7±0.5 0.088±0.004 0.082±0.004 0.167±0.008
B2U 6 23 23±3 1.4±0.4 1.2±0.4 0.099±0.010 0.092±0.010 0.173±0.019

2 B2L 21 16 20±2 0.7±0.1 0.4±0.1 0.056±0.004 0.050±0.004 0.140±0.010
B2U 19 15 17±6 0.6±0.3 0.5±0.3 0.060±0.004 0.052±0.004 0.151±0.012

3 B2L 17 13 25±5 0.5±0.1 0.2±0.1 0.031±0.002 0.025±0.002 0.085±0.008
B2U 9 10 18±3 0.4±0.1 0.2±0.1 0.032±0.002 0.025±0.002 0.107±0.007

Table 4.10: Hot/Cold results after the optics reconfiguration. The quoted values are the (median) ± (median
absolute deviation), calculated using all detectors of the specified band.

Band Nres ∆ν [GHz] Texc [K] Pexc [pW] Pexc,ant [pW] C [GHz/nm] Cant [GHz/nm] ηant

Dark 22 – 60±33 0.3±0.1 – 0.007±0.001 – –
0 21 17 16±7 0.6±0.3 0.4±0.3 0.057±0.005 0.050±0.005 0.123±0.011
1 25 22 19±9 1.1±0.6 0.8±0.6 0.089±0.006 0.082±0.006 0.167±0.016
2 40 16 19±4 0.7±0.2 0.4±0.2 0.058±0.006 0.051±0.005 0.144±0.017
3 26 13 21±6 0.4±0.1 0.2±0.1 0.031±0.002 0.025±0.002 0.087±0.013
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Figure 4.16: The measured optical efficiency ηant = ηphηopt,ant before (blue) and after (red) the optics reconfig-
uration. All detectors with well-behaved hot/cold data are included in the histograms. We include detectors
on the A2 and B2 arrays in the before histogram and detectors on the B2 array in the after histogram.

Figure 4.17: The measured excess loading Texc before (blue) and after (red) the optics reconfiguration.
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Table 4.11: Comparison of the expected and measured single-polarization optical efficiency. See Sec-
tion 4.2.5 for a description of how the different contributions to the expected efficiency are determined.
The optics reconfiguration altered the Lyot stop efficiency only, all other expected efficiencies are identical
to those presented in Table 4.7. The values quoted for the measured efficiency are the median and median
absolute deviations over resonators of the specified band on the B2 detector array.

Expected Efficiency Measured
Efficiency

(ηph ×ηopt,ant)

Measured /
Expected

Band Phonon Reflection Microstrip Antenna Lyot Stop Filters Total

0 0.60 0.88 0.88 0.74 0.56 0.74 0.142 0.123±0.011 0.86±0.08
1 0.50 0.88 0.83 0.70 0.79 0.76 0.153 0.167±0.016 1.09±0.10
2 0.46 0.88 0.79 0.78 0.84 0.69 0.145 0.144±0.017 1.00±0.12
3 0.43 0.88 0.75 0.71 0.85 0.61 0.104 0.087±0.013 0.83±0.12

4.3.3 Skydips

We collected skydip data for all of the detectors on the B2 array on the night of July 31, 2014. The dataset

consists of IQ sweeps collected with the dome open and the telescope pointed at 6 elevation angles between

20◦ and 70◦; specifically e = [20◦, 30◦, 40◦, 50◦, 60◦, 70◦]. The ambient temperature over the course of

the skydip measurement was Tamb = 275.2± 0.3 K. The CSO tipping radiometer measures the optical depth

at 225 GHz every 10 minutes. The tipping radiometer reported τ225 = 0.119± 0.008 over the course of the

skydip measurement (which corresponds to CPW = 2.25± 0.16 mm). The following morning the opening

in the hex plate of the telescope was covered with a large piece of Eccosorb R© and a final IQ sweep was

collected to act as the room-temperature load reference measurement. The ambient temperature during the

reference measurement was Tamb = 276.9 K. The dataset is analyzed according to the procedure outlined in

Section 3.2.5.

We find that the spillover fraction for the dark resonators is fspill,dir = 0.31 ± 0.02. We also measure

τdir = 0.24± 0.02. The mean value of these two quantities did not change appreciably with the optics re-

configuration. However, the scatter in these two quantities across the different dark resonators decreased

significantly and is now roughly consistent with the measurement uncertainty.

The best fit antenna spillover fractions fspill,ant are presented in Figure 4.18 as a function of the azimuthal

offset of the detector from the center of the focal plane. We no longer observe a large increase in spillover

at the edge of the focal plane. It appears that either the optics reconfiguration or the improved baffling at the

Lyot stop was successful in this regard. However, the spillover is still in excess of the expectation based on

the inefficiencies of the MUSIC optics. Indeed, the measured spillover fraction in the central region of the

focal plane is almost identical to the values measured before the optics reconfiguration.

Finally, Figure 4.19 compares the best-fit optical depth τant with our prediction based on the average

value of τ225 reported by the CSO over the course of the measurement, the ATM model, and the measured

bandpasses. The figure reconfirms that that we can reliably predict the optical depth for Band 0, 1, and 2. In

addition, the predictions for the Band 3 resonators are much closer to the measured values than was seen in
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Figure 4.18: Spillover fraction as a function of the azimuthal offset of the detector from the center of the
focal plane after the optics reconfiguration. Each panel corresponds to a different band. The black dashed
line denotes the expected spillover fraction based on the inefficiencies of the telescope.

Figure 4.19: Optical depth τ as a function of the azimuthal offset of the detector from the center of the focal
plane. Each panel corresponds to a different band. The black dashed line denotes the expected optical depth
based on the average τ225 = 0.119 reported by the CSO over the course of the skydip measurement, the ATM
model for the atmospheric transmission, and the measured detector bandpasses.
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Section 4.2.6.

4.3.4 Sleeve Test

We performed a calibration measurement that we call the sleeve test in order to determine the source of

the excess spillover discussed in Section 4.2.6 and Section 4.3.3. The measurement and analysis can be

summarized as follows:

• The cryostat is taken off the telescope/optics box. A LN2 load is placed in front of the cryostat window.

• A cylindrical sleeve (20 inches in diameter) is placed between the cryostat window and the LN2 load.

The interior of the sleeve is lined with Eccosorb R©. The sleeve sits at room temperature. An example

sleeve is pictured in Figure 4.20.

• IQ sweeps are collected with the cryostat at several heights. As the height increases, the solid angle of

the room temperature sleeve increases and the solid angle of the LN2 load decreases.

• The LN2 load is replaced with a room temperature, beam filling Eccosorb R© load. An IQ sweep is

collected. This acts as the reference measurement.

• The IQ sweeps are fit to Equation (3.2) and the resonant frequencies extracted. The quantity

∆ f sleeve
res (h) = fres(T base

bath , Tamb)− fres(T base
bath , Tload(h)) (4.10)

is constructed, which is the frequency shift between the room temperature reference measurement and

the sleeve measurement at height h. We fit this quantity to the model presented in Section 2.2. The

relevant equations are (2.59), (2.44), (2.37), (2.21), and (2.7). The load temperature is given by

Tload(h) = [CantTload,ant(h)+CdirTload,dir(h)]/C

=
Cant

C

[
fspill,ant(h)Tamb +(1− fspill,ant(h))TLN2

]
+

Cdir

C

[
fspill,dir(h)Tamb +(1− fspill,dir(h))TLN2

]
. (4.11)

The free parameters of the fit are

θsleeve = [ fspill,ant(h), fspill,dir(h), θhot/cold] . (4.12)

where θhot/cold is well constrained by the hot/cold data. Note that we do not assume a parametric model

for the spillover fractions; there is a separate direct absorption and antenna spillover fraction for each

height.

• Since Tload,ant(h) = 0 for the dark resonators, they are examined first and used to determine fspill,dir(h). All

of the parameters of the model other than fspill,dir(h) are well constrained by the hot/cold analysis. There
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Figure 4.20: Example of an Eccosorb R© sleeve. The white styrofoam container is filled with LN2 during
the measurement. The cryostat is lowered down into the sleeve. The sleeve pictured here was built for a
test dewar at Caltech. The actual sleeve used for the measurement described in this section is wider. It is
constructed out of a rubber trash can that has the bottom removed and the interior lined with a thin layer of
Eccosorb R©.

are Nh measurements ∆ f sleeve
res (h), but Nh unknowns fspill,dir(h). Thus, we are not truly performing a fit

but rather solving our model for the direct absorption spillover fraction. This is accomplished with a

root finding algorithm. The procedure is repeated many times. For each sample, ∆ f sleeve
res (h) is randomly

perturbed by its measurement error and θhot/cold is randomly drawn from the hot/cold joint posterior

distribution. This propagates the uncertainty on the measurement and the other model parameters to

the quantity of interest, fspill,dir(h).

• The procedure is repeated for the antenna coupled resonators to determine fspill,ant(h). The only dif-

ference is that for each sample we also draw fspill,dir(h) randomly from the joint posterior distribution

(determined in the previous step) of a random dark resonator.

The purpose of the sleeve test is to measure the fraction of the beam that is terminating on the room temper-

ature load as a function of distance from the cryostat window.

In total we collected IQ sweeps at 8 heights between 4 inches and 34 inches. Here we define h as the

distance between the cryostat window and the surface of the LN2 load. The temperature of the room drifted

from Tamb = 290 K to Tamb = 277 K over the course of the sleeve test. We record the temperature reported by
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the CSO throughout the sleeve test and use the appropriate temperature to model the frequency shift at each

height.

The direct absorption spillover fraction and antenna spillover fraction are plotted as a function of height

in Figure 4.21 and Figure 4.22, respectively. The behavior is fairly uniform for detectors of a given band.

There are several detectors that show a large increase in the antenna spillover fraction at large sleeve heights;

we have confirmed that these detectors are located near the edge of the focal plane. For the majority of the

detectors, the antenna spillover is less than 10% at all sleeve heights examined. The direct absorption, on the

other hand, has a broad beam and a significant fraction of it terminates on the sleeve.

When the sleeve has a height of ' 19 inches, the LN2 load occupies the same solid angle as the elliptical

mirror when the cryostat is on the optics box. Therefore, we can interpolate the fspill,ant(h) curve to 19 inches

to determine the fraction of the antenna beam that will exit the cryostat at large angles and terminate in the

optics box instead of reflecting off of the elliptical mirror. Note that this is only valid for detectors located

near the center of the focal plane. The large-angle spillover fraction is shown in Figure 4.23 as a function of

the radial offset of the detector from the center of the focal plane. We measure 4% for Band 0 and 1−2% for

Bands 1− 3. This will result in an additional 10 K of loading (referred to the cryostat window) for Band 0

and 2.5− 5 K of loading for Band 1− 3, which is a small fraction of the total loading. While it may be

possible to reduce the large-angle spillover with improved baffling, it is likely that we have reached the point

of diminishing returns.

We can subtract the large-angle spillover fraction measured with the sleeve test from the spillover fraction

fspill,ant measured with skydips in Section 4.3.3 to obtain an estimate of the spillover due to the optics, which

we call the CSO spillover fraction. This quantity is shown in Figure 4.24. Remember that our assumptions

are only valid for detectors near the center of the focal plane (small radial offset). For Band 0 and Band 1

the measured CSO spillover fraction is equal to our expectation assuming 1% absorption for each of the

five mirrors and Ruze scattering from the primary. For Band 2 and Band 3 there is an excess spillover of

approximately 3−5%.

4.3.5 Loading

Table 4.12 breaks down the total detector loading Tload into contributions from spillover onto the interior of

the cryostat Texc, spillover onto room temperature surfaces Tspill = fspillTamb, and emission from the atmosphere

Tsky = (1− e−τ/ sin e)Tatm. All temperatures are referred to the cryostat window so that they can be compared

directly. For Bands 0-2 spillover onto room temperature surfaces is the dominant contribution to the loading.

Spillover onto the interior of the cryostat is also appreciable, and is only slightly smaller than spillover

onto room temperature surfaces. The contribution from atmospheric emission increases with observing band

center frequency, such that it is negligible in Band 0 and dominates in Band 3. Note that the quoted numbers

include the contributions from both the antenna and direct absorption.
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Figure 4.21: Direct absorption spillover fraction as a function of sleeve height. Each line corresponds to a
different dark resonator on the B2 array. The gray circles denote the measured data points. The red line
denotes the median behavior.
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Figure 4.22: Antenna spillover fraction as a function of sleeve height. Each line corresponds to a different
resonator on the B2 array. Circles denote the measured data points. The black dashed lines denote the median
behavior.
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Figure 4.23: Antenna spillover fraction measured with the sleeve at a height of 19 inches as a function of the
radial offset of the detector from the center of the focal plane. At small radial offsets, the values shown are
equal to the fraction of the beam that exits the cryostat at large angle and terminates in the optics box prior to
reaching the elliptical mirror.
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Figure 4.24: CSO antenna spillover fraction as a function of the radial offset of the detector from the center
of the focal plane. The values shown are obtained by subtracting the 19 inch sleeve test spillover fraction
(see Figure 4.23) from the fspill,ant measured with skydips (see Figure 4.18). The black dashed line denotes
the expected value. The CSO antenna spillover fraction includes the loss due to absorption by the ambient
temperature mirrors in the MUSIC optical chain and the spillover past the elliptical mirror.
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Table 4.12: Median optical loading after optics reconfiguration, calculated using all detectors of the specified
band. Texc is determined from the hot/cold data. Tspill is determined from the skydip data. Tsky is determined by
convolving FTS measurements of the bandpass with the atmospheric transmission spectrum corresponding
to τ225.

Band Texc [K] Tspill [K] Tsky [K] Tload [K] Popt [pW]

0 15 40 10 70 3.5
1 20 35 25 80 7.8
2 20 35 35 90 5.6
3 20 55 95 165 5.4

4.3.6 Responsivity

We again test that the calibrated model describes the small-signal responsivity of our detectors by comparing

the measured and predicted response to Uranus. We employ 20 observations of Uranus that were collected

for flux calibration purposes over the course of our August/September 2014 observing run. The median value

of the column density of precipitable water vapor for this set of observations is CPW = 1.66 mm, which is

approximately equal to the historical median and the original analysis. We calculate the median ratio of

measured to predicted response for each resonator over the 20 observations. The analysis is identical to that

outlined in Section 4.2.8. The results are presented in Figure 4.25. There was some hope that the optics

reconfiguration — specifically the reduction in the amount of beam terminating on the Lyot stop and the

additional baffles — would reduce the (suspected) wide-angle beam response. We find that at low carrier

powers where our calibrated model is valid, the measured response to an unresolved astronomical source is

a factor of [0.48, 0.60, 0.55, 0.65] times the predicted response. Recall that before the optics reconfiguration

the measured response was a factor of [0.40, 0.50, 0.45, 0.40] times the predicted response, so there was a

slight improvement on the order of 10%. However, a significant fraction of our beam remains unaccounted

for.

Figure 4.25 also compares the measured and predicted response to small changes in elevation. The values

shown were determined from hundreds of observations of faint sources using the same technique outlined in

Section 4.2.8. We find that the measured small-signal response to a beam-filling calibrator is still approxi-

mately equal to the predicted response for the four observing bands. We carry out two tests to investigate the

source of the missing beam.

4.3.6.1 Secondary Collar Test

If the MUSIC optics are either misaligned or out of focus, then some fraction of the beam could bypass

the secondary mirror and spillover onto the sky. In order to test this hypothesis we collected skydips with

Eccosorb R© collars attached to the secondary mirror. The CSO staff constructed three Eccosorb R© collars of

increasing diameter. The intermediate collar is 33 inches in diameter and is pictured in Figure 4.26. The
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Figure 4.25: Response comparison after the optics reconfiguration. Light blue diamonds denote the ratio of
measured to predicted response to an unresolved astronomical source (in this case Uranus). Orange circles
denote the ratio of measured to predicted response to small changes in airmass. Blue and red lines are linear
fits to the data.
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Figure 4.26: Left: The intermediate size (100%) Eccosorb R© collar. Right: Steve Baca showing the Eccosorb R©

collar attached to the secondary mirror of the CSO. Photos taken by Simon Radford.

secondary mirror is 23 inches in diameter, so the area of the intermediate collar is approximately equal to the

area of the secondary. The other two collars are 28 inches and 40 inches in diameter, which correspond to

50% and 200% the area of the secondary, respectively.

Multiple skydips are collected:

1. Two redundant skydips without a collar attached to the secondary.

2. Skydips with the 50%, 100%, and 200% collar attached to the secondary.

3. Skydips with each of the four quadrants of the 200% collar attached to the secondary.

The entire dataset was collected on the night of January 23, 2015. Each skydip measurement consists of IQ

sweeps taken with the dome open and the telescope pointed at 6 elevation angles between 20◦ and 70◦. From

these sweeps we extract the resonant frequency as a function of elevation angle fres(e) and calculate the shift

relative to the resonant frequency under room-temperature loading. The room-temperature loading reference

measurement was obtained by placing a large piece of Eccosorb R© over the opening in the hex plate and was

collected on the same night as the skydips. The same room-temperature reference measurement was used for

all of the skydips.

The top panels of Figure 4.27 compare the skydips collected with the full collars of varying sizes. On the

left, we have a detector located towards the center of the focal plane. On the right, we have a detector located

towards the edge of the focal plane. Focusing first on the right, we find that the frequency shift relative to the
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[!Az, !El] = [-0.6, 1.1]  arcmin,   R = 1.2 arcmin [!Az, !El] = [-5.2, 6.1]  arcmin,   R = 8.0 arcmin 

Figure 4.27: Skydips collected with various secondary collar configurations. 01 and 02 refer to the two
redundant measurements without a collar. 50, 100, and 200 refer to the measurements with full collars
of increasing radial size. LL, LR, UL, and UL are the lower-left, lower-right, upper-left, and upper-right
quadrant measurements with the largest (200) collar. The left and right columns show two Band 1 detectors
on the lower half-band of the B2 array that are located near the center and edge of the focal plane, respectively.
The azimuthal, elevation, and radial offset of the detectors from the center of the focal plane are quoted in the
title.
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warm load is larger without a collar than with a collar of any size. The frequency shift either gets slightly

smaller or stays the same as you increase the collar size from 50% to 100% to 200%, suggesting that most of

the spillover occurs within a radius of 14 inches. The two redundant skydips without a collar were collected

four hours apart. They show similar results, suggesting that the systematics due to changing conditions

throughout the night are small. Now, focusing on the left, we find that the skydip is almost identical whether

or not we have a collar (of any size). This suggests that the detectors located in the center of the focal plane

do not see the secondary collar. We find that the majority of the resonators have behavior similar to that

shown on the left; it is only the detectors located at the edge of the focal plane that the collar has a noticeable

effect on the skydips. Since the large discrepancy in the measured and predicted response to an unresolved

astronomical source is observed in all detectors, secondary spillover cannot be the explanation.

The bottom panels of Figure 4.27 compare the skydips obtained with each of the four quadrants of the

200% collar attached to the secondary. The results corroborate the story presented in the previous paragraph.

The skydips are identical for detectors located in the center of the focal plane. For detectors located at the

edge, the spillover past the secondary is clearly localized to a specific quadrant.

Even for the detectors located at the edge, the frequency response between sky and room-temperature col-

lar is . 15% of the frequency response between sky and room-temperature beam-filling load. This suggests

that the secondary spillover is a small effect.

4.3.6.2 Large-Angle Beammaps

Knowledge of the effective area of the CSO is necessary to predict the response to an unresolved astronomical

source. We calculate Aeff using the throughput theorem: Aeff = λ 2/Ωbeam. The beam solid-angle Ωbeam is

determined by fitting a two-dimensional Gaussian to a beammap of Uranus, taking the average value of the

FWHM in the two directions, and employing the equation

Ωbeam =
π FWHM2

4ln(2)
. (4.13)

Note that the FWHM in the two directions are approximately equal and a Gaussian shape provides a good

fit to the main beam. If there is wide-angle response outside of the main beam, then this will result in an

underestimation of Ωbeam and overestimation of the response to an unresolved astronomical source. Hence,

wide-angle response is a possible explanation for the observed discrepancy between the measured and pre-

dicted response to Uranus. In order to test this hypothesis we have made precise measurements of the beams

of our detectors. This analysis is primarily the work of Jordan Wheeler; however, the results bring some

resolution to the aforementioned discrepancy, so we briefly summarize them in this section.

The flux density of Jupiter is two orders of magnitude larger than Uranus, and enables a study of the

beams at very large angles. It also drives the detectors into a nonlinear regime at small angles and distorts

the beammap within the central arcmin. We use Uranus to measure the beam at small angles and Jupiter
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to measure the beam and large angles. By splicing the Uranus and Jupiter beammaps together in this way

we are able to measure the beams out to approximately 10 arcmin. Multiple wide-angle beammaps of both

Uranus and Jupiter were collected. For each source we compute the inverse-variance weighted average of the

beammaps of all detectors of a given observing band. We find that indeed there are significant sidelobes and

diffuse wide angle response outside of the main beam. The fraction of the total power outside of the main

beam is [0.77, 0.75, 0.73, 0.52] for the four observing band. This explains more than half of the observed

discrepancy between our measured and predicted response to an unresolved astronomical source.

We have compiled a list of the wide-angle response of millimeter and submillimeter instruments that are

similar to MUSIC in order to determine if our measured values are reasonable. The Atacama Cosmology

Telescope (ACT) measures approximately 20% of the beam solid angle outside of a Gaussian fit to the main

beam at 148 and 218 GHz [169]. These measurements extend out to 15−20 arcmin. The APEX-SZ experi-

ment measures 30% of the beam solid angle outside of the main beam at 150 GHz [170]. This measurement

extends out to 4 arcmin. The SCUBA-2 instrument measures 24% of the beam solid angle outside of the

main beam at 350 GHz and 39% at 660 GHz [171]. These measurements extend out to 3.33 arcmin and

2.1 arcmin, respectively, but note that the SCUBA-2 beams are much smaller than the other experiments and

MUSIC. Finally, the South Pole Telescope (SPT) measures that 15% of the beam solid angle is outside of 15

arcmin at 150 and 220 GHz [172]. Our results are consistent with all of these measurements, and suggest

that millimeter and submillimeter instruments on ∼ 10 meter telescopes can expect to find 20−30% of their

beam solid angle outside of the main beam. We are unable to probe our beams beyond 10 arcmin due to

atmospheric noise combined with the relatively slow scan speed of the CSO. But if the measurements made

by SPT also hold for MUSIC, which is not unreasonable given the similarities between the two instruments,

then we can expect to find an additional 15% of the beam at these very large angles. This would bring the

measured and predicted response into agreement at the 10% level.

4.4 Conclusions

In this chapter we presented calibration results for the detectors on the science-grade arrays. These results

can be combined with the model outlined in Chapter 2 to understand the propagation of both signal and noise

throughout the instrument. To summarize:

• The measured optical efficiency of the detectors is in fairly good agreement with our expectations.

There is a slight band dependent discrepancy. Without independent measurements of the recombination

coefficient and Al thickness there is a systematic uncertainty of 50% on the overall normalization of

the band dependent optical efficiency.

• A small fraction of the beam exits the cryostat at large angles and terminates in the room temperature

optics box. This large angle spillover fraction is 4% for Band 0 and 1−2% for Band 1-3. It does not
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contribute significantly to the total loading.

• The spillover due to the MUSIC optics is equal to our expectation for Band 0 and Band 1, and slightly

larger than expected in Band 2 and Band 3.

• During observations there is 3− 8 pW of loading at the input to the MKID, depending on observing

band.

• The response to an unresolved astronomical source is approximately 40− 50% smaller than our ex-

pectation based on the calibrated model of our instrument or the measured response to a beam-filling

calibrator. Sidelobes and wide-angle diffuse response explain a large fraction of this discrepancy.
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Chapter 5

MUSIC Sensitivity

5.1 Introduction

We now examine the noise present in the MUSIC detector timestreams during science observations collected

in August and September of 2013. The algorithm used to remove the electronics and atmospheric noise is

described, and the quality of the removal quantified. The residual noise is compared to our expectations

based on the known sources of intrinsic detector noise, which were calibrated in Chapter 3. We quote the

MUSIC single detector sensitivity as a function of observing band and temporal frequency. We conclude by

comparing the measured sensitivity to background-limited sensitivity.

All of the data presented in this chapter was collected during the August/September 2013 observing run.

Note that this is before the optics reconfiguration. There was a small improvement in the detector sensitivity

after the optics reconfiguration, but we have chosen to focus on the pre-optics reconfiguration data because it

has been studied in much greater detail. For the most part, we focus on the noise in the frequency direction

and neglect the dissipation direction. Since the quasi-particle direction is rotated ' 6◦ from the frequency

direction for the MUSIC detectors, very little astronomical signal lies in the dissipation direction. As a result,

the sensitivity in the dissipation direction is comparatively poor.

5.2 Electronics Noise Removal

Approximately 40% of the carrier tones read out during observations are centered off-resonance. We use

the off-resonance carriers to monitor and correct for the 1/ f and drift type amplitude and phase fluctuations

sourced by the electronic components. We now describe this procedure in detail.

Consider the case where we have n off-resonance carriers and we sample the complex amplitude of

each m times at frequency fs = 100 Hz. The resulting data set is labeled {I,Q}i j, where i = 1, . . . , n and

j = 1, . . . , m. If we assume that the amplitude and phase fluctuations are multiplicative and coherent across

microwave frequency, then we obtain the following model for the in-phase and quadrature-phase components
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of carrier i at time sample j:

Îi j = Ai [(1+δA j)cosφi −δφ j sinφi]+δwI

Q̂i j = Ai [(1+δA j)sinφi +δφ j cosφi]+δwQ . (5.1)

These equations were originally presented in Section 2.3.1.2. Recall that A= gRFgBBA0 and φ = φ0−2π f τRF−

2π fBBτBB are the DC carrier amplitude and phase measured at the output of the system. The amplitude at the

output A is related to the amplitude at the input A0 by some overall voltage gain gRFgBB =
√

GRFGBB. Similarly

the phase φ at the output is related to the phase at the input φ0 by some overall baseband cable delay τBB

and RF cable delay τRF. The δw = δwI + jδwQ term denotes the additive white noise from the entire system

referred to the ADC. Finally, δA and δφ denote the amplitude and phase fluctuations, respectively. The

quantity δA is a linear combination of the amplitude fluctuations from the individual electronic components.

Likewise the quantity δφ is a linear combination of the phase fluctuations from the individual electronic

components.

We assume that the amplitude and phase fluctuations are common to all n resonators, and take δA and

δφ to be 2×m free parameters of our model. We take the amplitudes A and phases φ to be an additional

2×n free parameters. Here the amplitude fluctuations δA and phase fluctuations δφ vary with time but are

common to all carriers. The amplitudes A and phases φ are constant in time but vary between carriers; they

are the carrier dependent normalization to the common mode fluctuations. We denote the set of all model

parameters as

θ = [A, φ, δA, δφ]T . (5.2)

Given the measured data, our problem amounts to finding estimates θ̂=
[
Â, φ̂, δÂ, δφ̂

]T
of the (2×n+2×m)

model parameters that maximize the likelihood function, or equivalently minimize the negative log-likelihood

function

− log [L(θ|{I,Q})] =
1
2

n

∑
i=1

m

∑
j=1

1
σ2

i

[
(Ii j − Îi j(θ))

2 +(Qi j − Q̂i j(θ))
2
]
, (5.3)

where σ2
i is the variance of the additive white noise referred to the ADC for carrier i. This equation assumes

that the variance of the additive white noise is equal for the in-phase and quadrature-phase component of

each carrier, which we expect theoretically and have confirmed experimentally. By taking the derivative of

Equation (5.3) with respect to {δφ j, δA j, φi, Ai} and setting it equal to zero, one can derive the following

expressions for the maximum likelihood estimates:
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δ φ̂ j =

n
∑

i=1
σ
−2
i Âi

[
Qi j cos φ̂i − Ii j sin φ̂i

]
n
∑

i=1
σ
−2
i Â2

i

(5.4)

δ Â j =

n
∑

i=1
σ
−2
i Âi

[
Ii j cos φ̂i +Qi j sin φ̂i − Âi

]
n
∑

i=1
σ
−2
i Â2

i

(5.5)

φ̂i = arctan


m
∑
j=1

[
(1+δ Â j)Qi j −δ φ̂ jIi j

]
m
∑
j=1

[
(1+δ Â j)Ii j +δ φ̂ jQi j

]
 (5.6)

Âi =

cos φ̂i
m
∑
j=1

[
(1+δ Â j)Ii j +δ φ̂ jQi j

]
+ sin φ̂i

m
∑
j=1

[
(1+δ Â j)Qi j −δ φ̂ jIi j

]
m+

m
∑
j=1

(2δ Â j +δ Â2
j +δ φ̂ 2

j )
. (5.7)

Note that, given the carrier-specific normalizations Âi and φ̂i one can analytically calculate the maximum

likelihood estimates of the common mode fluctuations δ Â j and δ φ̂ j. Likewise, given δ Â j and δ φ̂ j, one can

calculate Âi and φ̂i. This naturally lends itself to an iterative method for finding the best solution. We start by

using the sample mean of the data to inform a guess at the amplitude and phase of the carriers

φ̂
(0)
i = arctan

(
Qi

Ii

)
(5.8)

Â(0)
i =

√
I2
i +Q2

i (5.9)

and then calculate δ φ̂ j and δ Â j using Equation (5.4) and Equation (5.5). We then re-calculate φ̂i and Âi using

Equation (5.6) and Equation (5.7). This process is repeated until the change in the negative log-likelihood

reaches some desired tolerance. Typically convergence occurs in 2− 3 iterations. We estimate the variance

σ2
i from the Allan variance of the residuals after the first iteration.

We find that δA and δφ have a mild dependence on microwave frequency, and that we improve the

removal by fitting local groups of 5− 10 carriers. The choice of the number of carriers to use in the fit is

a trade-off between improving sensitivity to possible decoherence of δA and δφ with microwave frequency

(fewer carriers), and averaging down on the additive white noise that is introduced in the δÂ and δφ̂ templates

(more carriers).
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Figure 5.1: Power spectral density of the amplitude (top) and phase (bottom) fluctuations of off-resonance
carriers probing Device A2 (left) and Device B2 (right). The black line, light grey contours, and dark grey
contours denote, respectively, the median, inner 68%, and inner 95% of the values measured by the off-
resonance carriers probing each device. The solid line denotes the raw data and the dashed line denotes the
residuals after applying the electronics noise removal algorithm. The median and inner 95% of values of the
additive electronics noise are denoted by the thick and thin solid red lines, respectively.
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We also find that we improve the removal by fitting blocks of time that are shorter than the 10−20 minute

long observation. This could be due to non-stationary drift noise from the room temperature electronics. We

calculate a different value Âi j and φ̂i j at each time sample j using the equivalent of a moving average with a

width of ∼ 100 seconds (still using Equation (5.6) and Equation (5.7)). This enables us to fit shorter blocks

of time while avoiding discontinuities in the residual timestreams.

The performance of the electronics noise removal algorithm is illustrated in Figure 5.1, where we plot

the power spectral density in the amplitude and phase direction before and after removal. The left column

shows off-resonance carriers probing Device A2 and the right column shows off-resonance carriers probing

Device B2. Recall that Device A2 was connected to the HEMT with the best 1/ f noise performance, whereas

Device B2 was connected to the HEMT with the second worst 1/ f noise performance (see Section 3.3.2).

In the case of Device A2, we are able to remove down to the additive white noise floor of the electronics at

frequencies above 1 Hz. In the case of Device B2, we are able to remove down to the additive white noise

floor at frequencies above 5 Hz. Even though we are unable to clean the multiplicative electronics noise

entirely from our timestreams, we do remove an impressive 30 dB of noise in the gain direction and 20 dB of

noise in the phase direction (in the case of Device B2).

5.3 On-Resonance Noise Removal

We now describe the algorithm used to remove electronics and atmospheric noise from the raw on-resonance

data. Note that prior to running this algorithm, we determine the electronics noise templates (δA and δφ)

from the off-resonance carriers using the algorithm described in the previous section.

1. For each on-resonance carrier we identify templates for the amplitude fluctuations δA and phase fluc-

tuations δφ. Recall that we have constructed many versions of these templates using groups of 5−10

off-resonance carriers with similar microwave frequencies. We associate to each on-resonance carrier

the templates constructed from the nearest (i.e., closest in microwave frequency on the same electronics

board) group of off-resonance carrier.

2. We subtract δA and δφ from each on-resonance carrier, scaling by the mean amplitude A and phase φ

of the on-resonance carrier in the way prescribed by Equation (5.1).

3. We create a template for the atmospheric fluctuations by averaging the frequency component of all

on-resonance carriers of a given observing band. We use the frequency component because it contains

the majority of the atmospheric signal and we are able to measure the frequency direction accurately

for each resonator using a pre-observation IQ sweep.

4. We iteratively re-calculate the correlation coefficient that scales the template to the individual on-

resonance carriers, using only temporal frequencies between 10− 100 mHz where the atmospheric

noise is found to dominate.
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Figure 5.2: Raw on-resonance IQ data from a raster scan observation of a faint source. The scattered points
show the data, with the colors indicating continuous 5 second long segments corresponding to scans across the
source. The data collected in between each scan as the telescope turns around is not shown. The mean of the
entire 20 minute long observation has been subtracted. The black dotted line denotes the amplitude direction
and the black dashed line denotes the phase direction, both of which are determined from the mean value of
the I and Q timestreams (approximately). The solid black line (top panel only) denotes the pre-observation
IQ sweep. The yellow dashed line denotes the frequency direction determined from the tangent to the IQ
sweep at the carrier frequency. The blue dashed line denotes the quasi-particle direction determined from
the long timescale (< 100 mHz) fluctuations in the data. Top: Zoom-out showing both the data and the
pre-observation IQ sweep. Note that the pre-observation IQ sweep was collected with a step size of 2.5 kHz,
which is large enough near the resonant frequency that the corresponding change in the complex transmission
is non-linear. As a result the measured IQ sweep does not appear smooth. Bottom: Zoom-in on the data.
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Figure 5.3: Illustration of the process of on-resonance noise removal. Top left: The same raw on-resonance
IQ data that was shown in Figure 5.2. See the caption of Figure 5.2 for the legend. Bottom left: The
model for the electronics noise, constructed from the off-resonance data using the algorithm described in
Section 5.2. Bottom right: The model for the atmospheric noise, constructed from the on-resonance data
using the algorithm described in Section 5.3. Top right: The residuals after subtracting the electronics and
atmospheric noise model from the data. Note that we have retained the mean value of each scan to better
illustrate the performance of the noise removal on all scans. In practice the mean value of each scan is
subtracted, resulting in a collapse of the individual noise ellipses to the origin.

5. Once we have converged on a atmospheric noise template, we calculate the correlation coefficient

between the template and the dissipation component, again using only temporal frequencies between

10−100 mHz.

6. We subtract the appropriately scaled template for the atmospheric fluctuations from the frequency and

dissipation component of each on-resonance carrier.

This process is illustrated in the time domain in Figure 5.3.

As mentioned above, we estimate the frequency direction for each resonator from a pre-observation IQ

sweep. These IQ sweeps are collected approximately once every hour or whenever there is a change in

astronomical source. We fit the IQ sweep to Equation (3.1). Note that the pre-observation IQ sweeps are

collected at the same high carrier powers that are employed during observations to improve sensitivity. We let

the nonlinearity parameter a float in the fit in order to describe the distortion of the IQ sweeps due to the high

carrier powers. Equation (3.1) provides a good fit in nearly all cases. We evaluate the analytical expression

for the derivative of this model at the resonant frequency to obtain an estimate of θfreq and |∂V/∂ (δ fres/ fres)|.

We use these quantities to rotate I and Q into the dissipation and frequency components and also to convert

from volts at the ADC to dissipation shift and fractional frequency shift (see Section 2.4 for more information

on this procedure). If desired, we can then use the model outlined in Chapter 2 and calibrated in Chapter 4
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Figure 5.4: NEP in the frequency direction, determined from a single observation. The values in the plot
are obtained by taking the median over all Band 1 resonators on the lower half-band of Device A2 (top) and
the upper half-band of Device B2 (bottom). The dashed black line denotes the raw data. The solid red line
denotes the model for the electronics noise. The solid blue line denotes the model for the atmospheric noise.
The solid black line denotes the cleaned data, obtained by subtracting the electronics and atmospheric noise
model from the raw data.
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to convert the timestreams into changes in the optical power incident on the MKID, source temperature, or

source flux.

Figure 5.4 shows the detector NEP in the frequency direction before and after noise removal. This figure

was produced from a 10 minute long observation of a faint source collected using a lissajous scan strategy.

The CPW at the time of the observation was 1.4 mm, which is close to the historical median at the CSO (1.68

mm). The quantities shown are obtained by taking the median over all of the Band 1 resonators on a given

device half-band; the top panel using the resonators between 3.0− 3.5 GHz on Device A2 and the bottom

panel using the resonators between 3.5−4.0 GHz on Device B2.

The electronics noise in the bottom panel (Device B2U) is much larger than the electronics noise in the

top panel (Device A2L); roughly 22 dB at 1 Hz. The majority of the electronics noise is due to fluctuations

in the gain and phase delay of the HEMT amplifier. We see substantial variation in the amplitude of these

gain fluctuations across the 8 HEMTs used in MUSIC, as discussed in detail in Section 3.3.2. The amplifier

connected to A2 has the best performance, while the amplifier connected to B2 has the second poorest per-

formance. The difference in the intrinsic amplitude of the gain fluctuations between the A2 and B2 HEMT

accounts for 14 dB. The other 8 dB is due to differences in the factor ∂S21/∂Popt, which converts between

complex transmission and optical power, primarily due to differences in the median resonator quality factor

of the two samples. For A2 the electronics noise is subdominant to other sources of noise intrinsic to the

detector, and the utility of the electronics noise removal algorithm is minimal. For B2 the electronics noise

is the dominant source of noise. In this case, the electronics noise removal algorithm is absolutely necessary

and results in significant improvements (> 10 dB) in detector sensitivity.

The atmospheric noise dominates at frequencies < 0.5−1.0 Hz and shows the expected NEP atm
∝ f−4/3

scaling. We construct a separate template for the atmospheric noise for each observing band by averaging over

all of the detectors of that band on the two detector arrays. A single template is able to describe the very low

frequency noise of all detectors of a given observing band reasonably well, suggesting that the atmospheric

noise is indeed a common mode signal across the focal plane. In addition, the templates obtained for the

different observing bands are highly correlated, and it may be possible to improve the performance of the

atmospheric noise removal by using the spectral information in more sophisticated algorithms (e.g., Adam

et al. [144]).

At frequencies & 2 Hz the raw data show a large number of lines and features above the continuum

level. The narrow spectral lines occur at harmonics of the pulse tube frequency fpt = 1.41 Hz. The wider

features are associated with the movement of the telescope; they are not observed when the telescope is idle,

only when it is scanning, and their amplitudes increase by up to an order of magnitude during lissajous scans

(compared to raster scans). The data from the off-resonance carriers is completely free of spectral lines, which

suggests that the features in the on-resonance data are not caused by electrical pick-up. Most mechanisms

by which the pulse tube cooler and the scanning of the telescope could influence the resonators are either

thermal or optical in nature (e.g., temperature of filter stack fluctuating and changing resonator loading, or
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mechanical vibrations producing thermal fluctuations that change resonator bath temperature). However, both

thermal and optical mechanisms would place the spectral lines in the quasi-particle direction. We find strong

evidence that the features are instead occurring in the frequency direction. This suggests that the underlying

mechanism is magnetic in nature [173]. Whatever the origin, the spectral lines and noncontinuum features

are highly correlated between detectors on a given device, as evidenced by the fact that they are “picked-up”

in the atmospheric template (as seen in Figure 5.4) and, for the most part, removed. Further improvement in

the removal of the spectral lines was obtained by correlating and regressing out the AZ and EL motion of the

telescope from the frequency direction data prior to atmospheric noise removal [174]

5.4 Residual Noise

5.4.1 Comparison to Calibrated Model Predictions

We subtract the electronics and atmospheric noise from the raw data using the procedure outlined in the

previous section. We then predict the residual or uncorrelated noise that we expect to see in each individual

detector timestream using the technique described in Section 3.3.1 for additive electronics noise, Section 3.3.4

for TLS noise, and Section 3.3.3 for the fundamental noise due to photon, generation, and recombination

noise. The measured noise is compared to the total predicted noise to determine how well we understand the

sensitivity of our detectors.

Figure 5.5 shows the measured NEP in the frequency direction after electronics and atmospheric noise

removal along with the predicted contribution from the various sources of intrinsic detector noise. This figure

is produced from the same 10 minute long lissajous observation and the same Band 1 detectors as Figure 5.4.

We see excellent agreement between the measured noise and the total predicted noise at frequencies & 2−

3 Hz. For now let’s focus on these frequencies where the data and calibrated model agree. We find that for

detectors in the upper half-bands the TLS noise dominates. For detectors in the lower half-bands the TLS

noise is less than or equal to the fundamental noise of the MKID (quadrature sum of the photon, generation,

and recombination noise). This is because the amplitude of the TLS noise is significantly larger for detectors

in the upper half-bands ( fres = 3.5−4.0 GHz) than for detectors in the lower half-bands ( fres = 3.0−3.5 GHz),

as discussed in Section 3.3.4. The contribution from the additive electronics noise is negligible.

Figure 5.5 is derived from a single observation using half of the Band 1 resonators. In order to form a more

comprehensive idea of how well the measured noise matches the predicted noise, we examined a sample of

11 observations representative of the observing conditions encountered during the August/September 2013

run. Figure 5.6 presents histograms of the ratio of measured to predicted NEP at 6.5 Hz and 1.0 Hz. For

reference, the half width at half maximum of the beams of our detectors correspond to [2.4, 3.4, 4.2, 4.6] Hz

for the four observing bands at the scan speeds achieved at the CSO. Thus, 6.5 Hz can be considered an

approximate upper bound on the temporal frequencies to which we are sensitive.
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Figure 5.5: NEP in the frequency direction, determined from a single observation. The lines and contours are
obtained by taking the median and inner 95% over all Band 1 resonators on the lower half-band of Device A2
(top) and the upper half-band of Device B2 (bottom). The solid black line denotes the cleaned data, obtained
by subtracting the electronics and atmospheric noise model from the raw data. The dash-dotted lines denote
predictions for the various uncorrelated noise sources that we expect in the cleaned data; additive electronics
noise is shown in green, the quadrature sum of the photon, generation, and recombination noise is shown in
light blue, TLS noise is shown in purple, and the total quadrature sum of all the noise sources is shown in
pink.
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On average we see excellent agreement between the measured and predicted noise at 6.5 Hz, with the

exception of Band 0 where the measured noise is 30% larger than predicted. Note that these histograms cover

all of the resonators on A2 and B2 over a wide range of loading conditions from 0.2 mm to 4.8 mm column

depth of precipitable water vapor (median CPW = 1.3 mm). This gives us confidence that the primary sources

of noise are well characterized, that we understand how they scale with background loading, and that we are

doing an effective job cleaning the atmospheric and electronics noise at high frequencies. The NEP due to

each source of intrinsic detector noise is quoted at 6.5 Hz in Tables 5.1 and 5.2.

We observe degradation in the measured NEP relative to predicted as we move to lower frequencies. In

Band 0 the measured NEP at 1.0 Hz is 60% larger than predicted, and in Bands 1, 2, and 3 it is 40% larger

than predicted. However, the model prediction for the TLS noise is based on measurements made at 6.5 Hz

and assumes the usual ν−1/2 scaling of Sδ fres/ fres
to extrapolate to 1.0 Hz. We presented strong evidence in

Section 3.3.4 that the TLS noise spectrum steepens at low frequency. In fact, Figure 3.15 shows that for

resonators on A2 and B2 the measured NEP due to TLS noise at 1.0 Hz is 30% larger than expected based

on the measurement at 6.5 Hz and assuming the usual dependence on temporal frequency. Since TLSs are

the dominant noise source at 1.0 Hz, this explains the majority of the discrepancy observed in Figure 5.6.

Thus, for Bands 1, 2, and 3, the measured and predicted NEP in on-sky, science observations are equal

at the 10% level at all frequencies & 1.0 Hz. The remaining 10% discrepancy at 1.0 Hz is likely due to

residual atmospheric or electronics noise. Band 0 detectors exhibit a 30% discrepancy between the measured

and predicted noise at both 6.5 and 1.0 Hz that is currently unexplained. The discrepancy can be traced to

detectors on the lower half-bands. The characteristics of this discrepancy suggest either a mischaracterization

of the TLS noise or some source of excess noise, although it is not clear why either would effect only the

Band 0 detectors on the lower half-band.

We present the measured NE(δ fres/ fres), NEP, NET, and NEFD in the frequency direction at 6.5 Hz in

Tables 5.3−5.4 and at 1.0 Hz in Tables 5.5−5.6. The quoted values are the median taken over various sub-

sets of detectors and over our representative sample of 11 observations from the August/September 2013

observing run. See Equations (2.210), (2.215), and (2.214) for definitions of the NEP, NET, and NEFD,

respectively. The NE(δ fres/ fres) is the noise equivalent fractional frequency fluctuation. This is just the

square root of the power spectral density converted to fractional frequency fluctuations of the resonator (i.e.,

NE(δ fres/ fres) =
√

Sδ fres/ fres
). Note that NEP is referred to the input of the MKID, while NET and NEFD are

referred above the atmosphere. The quoted NET and NEFD take into account the 40−60% unexplained loss

thought to be due to sidelobes and wide-angle diffuse response.

5.4.2 Comparison to Background-Limited Performance

One of the goals of the MUSIC instrument was to demonstrate near-background-limited sensitivity using

MKIDs in a large-format array [175]. Figure 5.7 compares the measured NEP to the model prediction for

the background-limited NEP. We define the background-limited NEP for MKIDs as that due to photon shot
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Figure 5.6: Ratio of measured to predicted NEP at 6.5 Hz (top four panels) and 1.0 Hz (bottom four panels).
The dashed black lines denote median values. Each count in the histogram is a single detector during a single
observation. All detectors on Devices A2 and B2 were used. In total 11 observations were used, spanning
CPW = 0.2−4.8 mm (median CPW = 1.3 mm).
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Table 5.1: NEP at 6.5 Hz in units of aW Hz−1/2. The values listed are the median over the given band/device,
calculated using the sample of 11 observations mentioned in the text. The “Fundamental” column is the
quadrature sum of the GR, shot, and Bose noise. The “Total Predicted” column is the quadrature sum of the
amplifier, fundamental, and TLS noise.

Predicted Measured

Band Device Amplifier GR Shot Bose Fundamental TLS Total Total Ratio

0

A2L 29 26 26 32 50 65 85 130 1.5
A2U 27 26 26 36 50 85 110 135 1.2
B2L 13 24 24 32 45 70 85 130 1.6
B2U 17 24 26 36 50 110 125 125 1.1

1

A2L 16 36 42 52 75 65 100 110 1.1
A2U 44 38 44 64 85 125 165 215 1.3
B2L 15 34 40 51 75 80 110 120 1.1
B2U 32 38 44 64 85 145 170 185 1.1

2

A2L 13 32 44 56 80 65 100 105 1.1
A2U 22 32 42 56 75 90 125 135 1.1
B2L 9 28 38 46 65 70 100 105 1.0
B2U 13 30 40 54 75 100 125 125 1.0

3

A2L 17 34 48 74 95 75 120 115 0.9
A2U 29 32 46 68 90 95 140 145 1.1
B2L 12 30 46 67 85 85 125 115 0.9
B2U 35 28 42 56 75 140 165 215 1.2

Table 5.2: NEP at 6.5 Hz in units of aW Hz−1/2. The values listed are the median over the given band/device,
calculated using the sample of 11 observations mentioned in the text.

Predicted Measured

Band Amplifier GR Shot Bose Fundamental TLS Total Total Ratio

0 20 26 26 34 50 85 100 130 1.3
1 22 36 42 56 80 90 125 150 1.1
2 13 30 40 52 70 75 110 115 1.1
3 17 32 46 70 90 85 130 125 1.0



200

Table 5.3: Measured noise at 6.5 Hz. The values listed are the median over the given band and device
half-band, calculated using the sample of 11 observations mentioned in the text.

Band Device NEDFF [Hz−1/2] NEP [aW Hz−1/2] NET [mK s1/2] NEFD [mJy s1/2]

0

A2L 4.0e-10 130 8 280
A2U 4.0e-10 135 7 250
B2L 4.1e-10 130 8 300
B2U 4.0e-10 125 6 230

1

A2L 2.1e-10 110 2 100
A2U 4.4e-10 215 4 165
B2L 2.5e-10 120 3 120
B2U 3.7e-10 185 4 160

2

A2L 2.2e-10 105 4 180
A2U 3.1e-10 135 5 220
B2L 2.4e-10 105 4 200
B2U 3.1e-10 125 5 230

3

A2L 2.3e-10 115 10 505
A2U 3.4e-10 145 13 650
B2L 2.6e-10 115 11 585
B2U 4.7e-10 215 14 710

Table 5.4: Measured noise at 6.5 Hz. The values listed are the median over the given band, calculated using
the sample of 11 observations mentioned in the text.

Band NEDFF [Hz−1/2] NEP [aW Hz−1/2] NET [mK s1/2] NEFD [mJy s1/2]

0 4.0e-10 130 7 250
1 2.9e-10 150 3 130
2 2.7e-10 115 5 210
3 2.8e-10 125 11 580
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Table 5.5: Measured noise at 1.0 Hz. The values listed are the median over the given band and device
half-band, calculated using the sample of 11 observations mentioned in the text.

Band Device NEDFF [Hz−1/2] NEP [aW Hz−1/2] NET [mK s1/2] NEFD [mJy s1/2]

0

A2L 7.9e-10 260 16 555
A2U 7.5e-10 245 13 480
B2L 8.5e-10 280 17 600
B2U 7.1e-10 215 11 410

1

A2L 3.6e-10 185 4 170
A2U 8.7e-10 432 8 340
B2L 4.3e-10 205 5 210
B2U 7.0e-10 345 7 270

2

A2L 4.0e-10 180 8 330
A2U 5.9e-10 260 11 450
B2L 4.5e-10 185 9 380
B2U 6.6e-10 250 11 470

3

A2L 4.2e-10 200 18 905
A2U 7.3e-10 290 27 1360
B2L 5.3e-10 245 25 1270
B2U 9.1e-10 390 29 1435

Table 5.6: Measured noise at 1.0 Hz. The values listed are the median over the given band, calculated using
the sample of 11 observations mentioned in the text.

Band NEDFF [Hz−1/2] NEP [aW Hz−1/2] NET [mK s1/2] NEFD [mJy s1/2]

0 7.6e-10 250 14 500
1 5.3e-10 270 6 230
2 5.3e-10 225 10 400
3 5.5e-10 245 24 1220
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noise, photon Bose noise, thermal generation noise, and recombination noise, which we have collectively

referred to as the fundamental noise throughout this thesis (see Section 2.3.2.1).

At 6.5 Hz, the median NEP is a factor of [2.6, 1.7, 1.5, 1.4] larger than NEPBLIP for the four observing

bands. The majority of the spread observed in these distributions is due to an increase in the amplitude of

the TLS noise with resonant frequency (see Section 3.3.4). The most sensitive detectors, or the detectors

with the lowest resonant frequencies, are approximately background-limited in Band 1, 2, and 3. The median

detectors have approximately equal contributions from TLS noise and fundamental noise in Band 1, 2, and

3. We measure noise in excess of our model prediction in Band 0, as discussed in the previous section. As a

result, the performance of the Band 0 detectors relative to BLIP is significantly worse compared to the other

three bands. The most sensitive Band 0 detectors are a factor of 1.4 above BLIP and the median Band 0

detectors are a factor of 2.6 above BLIP.

The fundamental noise is white, whereas the TLS noise is usually assumed to have a power spectral

density that scales as ν−1/2, and in the case of the MUSIC detectors has somewhere between a ν−1/2 and

ν−1 scaling. As a result, the measured NEP degrades significantly with respect to BLIP at 1.0 Hz. The median

NEP is a factor of [5.0, 3.0, 2.8, 2.7] larger than NEPBLIP for the four observing bands, with the most sensitive

detectors a factor of [2.0, 1.6, 1.3, 1.2] above BLIP. The resulting map space sensitivity lies in between the

1.0 Hz and 6.5 Hz timestream sensitivity, but tends to fall closer to the 1.0 Hz value.

5.5 Conclusions

We presented an analytical model for the responsivity and noise of microwave kinetic inductance detectors.

We calibrated this model for each MKID employed in MUSIC using a variety of in-lab and on-sky measure-

ments. We then compared the measured response of the detectors to a beam-filling calibrator to the model

prediction. We also compared the measured on-sky noise to the model prediction for intrinsic detector noise.

For the most part, we find excellent agreement for the majority of our detectors over a wide range of observ-

ing conditions. This gives us confidence that the model adequately describes the underlying physics. The

calibrated model provides insight into the performance of our instrument, and also enables predictions for

future instruments that employ MKIDs.

We did encounter a few discrepancies between the model and the measured detector properties. The

largest being that the measured response to an unresolved astronomical source is 50−60% smaller than either

the model prediction or the response to a beam-filling calibrator (40−50% after the optics reconfiguration).

We found that roughly half of the discrepancy is attributed to an underestimation of the beam solid angle

due to the presence of sidelobes and diffuse wide-angle response. Since we were only able to probe the

radial beam profile out to 10 arcmin, we may still be underestimating the beam solid angle. The South Pole

Telescope (SPT) — an instrument that shares many similarities with MUSIC — measured 15% of their beam

solid angle outside of 15 arcmin at similar wavelengths [172]. If this also holds for MUSIC, then it would
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Figure 5.7: Ratio of measured NEP to predicted background-limited performance NEP (photon shot noise,
photon Bose noise, thermal generation noise, and recombination noise) at 6.5 Hz (top four panels) and 1.0
Hz (bottom four panels). The dashed black lines denote median values. Each count in the histogram is a
single resonator during a single observation. All detectors on Devices A2 and B2 were used. In total 11
observations were used, spanning CPW = 0.2−4.8 mm (median CPW = 1.3 mm).
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bring the measured and predicted response to an unresolved astronomical source into rough agreement. The

fact that the measured response to a beam-filling calibrator roughly matches the model prediction further

supports the idea that the remaining discrepancy is sourced by the optics rather than the detectors.

We find that the power spectral density of the TLS noise steepens at low frequency from the often assumed

ν−1/2 scaling. This results in a fairly significant degradation in the final map space sensitivity. Future

instruments should be conservative in their predictions for the spectral shape of the TLS noise. This is

especially relevant for CMB polarization experiments concerned with signal on large angular scales.

We measure an increase in the overall amplitude of the TLS noise with resonant frequency. This is an

unintended consequence of the fact that the resonant frequency of the detectors was increased by decreasing

the size of the capacitor. It is easily remedied in future detector arrays by instead decreasing the length of

the inductor. This would significantly reduce the variability in detector sensitivity, and in principle bring the

majority of detectors in line with the best performing detectors. Recall that currently the best performing

detectors are approximately background limited at 6.5 Hz and have equal contributions from TLS noise and

fundamental noise at 1.0 Hz.

The theoretical advantage of MKIDs over well-established technologies such as Transition Edge Sensors

(TES) is the ease at which they are multiplexed in the frequency domain. However, in order for MKIDs to be

truly scalable their fabrication has to be cost efficient and reliable. The fabrication of the MUSIC detectors

proved challenging, so much so that we were only able to populate one quarter of the focal plane. Progress

will be made on this front with the gradual refinement of fabrication techniques and a move towards simpler

mask designs. Obtaining the full benefits of the impressive multiplexing factors that can be achieved with

MKIDs also requires background-limited pixels. The main impediment to achieving BLIP with MKIDs is

TLS noise, which was shown to be the limiting factor in the sensitivity of the MUSIC detectors. There are

a number of designs currently being pursued that are promising for reducing the TLS NEP. These include

operating at lower resonant frequencies [151, 152, 153] and employing high-resistivity superconducting thin

films such as titanium nitride [146, 147, 148, 149, 150].

To conclude, we list some of MUSIC’s achievements. MUSIC successfully demonstrated several new

detector technologies: MKIDs, phased-arrays of slot-dipole antennas, and lumped-element on-chip bandpass

filters. The flux calibration of the instrument is accurate to 5 − 10% RMS, which is comparable to the

best results obtained from similar instruments at millimeter and submillimeter wavelengths. The pointing is

accurate to 3 arcsec RMS, which is thought to be limited by the CSO itself [168]. The readout electronics

are capable of performing fast measurements of the complex transmission through thousands of MKIDs

[102]. The multiplicative noise sourced by these electronics can be adequately removed using off-resonance

carriers. Both the MUSIC readout electronics and cryostat are robust and efficient. This enabled a relatively

small team to observe with MUSIC at the CSO for a total of 210 nights between 2013 and 2015. One of the

science results that came out of these observations was a multi-band measurement of the Sunyaev-Zel’dovich

Effect towards the galaxy cluster RX J1347.5− 1145. This measurement is pictured in Figure 5.8 and was
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used to place a constraint on the peculiar velocity of the cluster [174]. The extended observing run also helped

to establish a comprehensive understanding of the instrument and its detectors, as demonstrated in this thesis.

6

Fig. 3.— From left to right the columns show thumbnails of the Bolocam+MUSIC data after subtracting the AGN and dusty star-forming
galaxy model, the best-fit model of the SZ e↵ect signal based on an elliptical gNFW model from Table 2 of Czakon et al. (2015), and the
residuals after subtracting the SZ e↵ect model. In all cases, the SZ e↵ect model provides a good fit to the data, and the residuals are
consistent with noise.

• Primary CMB fluctuations: A random sky realiza-
tion is generated based on the power spectrummea-
surements from Planck Collaboration et al. (2015b)
and is added to the noise realizations for each of
the five observing bands after correcting for each
band’s PSF and data-processing filter. As with
the sky realizations of the undetected dusty star-
forming galaxies, a single sky realization is used for
all five bands in order to preserve the correlations
between bands.

• Flux Calibration: The flux calibration uncertainty
includes two separate components. The overall
planetary brightness model has an uncertainty of
3.3%, and fluctuations based on this uncertainty
are assumed to be completely correlated between
all five observing bands. In addition, as described
in Section 3.1, there is an uncorrelated measure-
ment uncertainty on the flux calibration for each
observing band.

4. MODEL OF THE SZ EFFECT SIGNAL

Although RX J1347.5�1145 shows evidence for a shock
in the ICM to the SE of the cluster core (Mason et al.
2010; Johnson et al. 2012; Kreisch et al. 2014), its X-ray
morphology indicates that it is among the most relaxed
known clusters (Mantz et al. 2015). As a result, the
best-fit elliptical generalized Navarro, Frenk, and White
(gNFW, Nagai et al. 2007) profile from Table 2 of Cza-
kon et al. (2015), based on a fit to the Bolocam data,
was selected to model the spatial shape of the SZ e↵ect
signal. This spatial template was then convolved with
the PSF and data-processing filter specific to each of the
five observing bands. The normalization of the template
was varied as a free parameter separately for each ob-
serving band using all of the data within the overdensity
radius R500 published in Mantz et al. (2010). This model
produces a good fit quality in all five observing bands,
as quantified in Table 3 and shown in the thumbnails
in Figure 3. Based on these model fits, the average SZ

Figure 5.8: Five band measurement of the Sunyaev-Zel’dovich Effect towards the galaxy cluster
RX J1347.5 − 1145. The columns show from left to right the image measured with Bolocam (top row)
and MUSIC (bottom four rows), the best-fit model, and the residuals after subtracting the best-fit model from
the image. The model is an elliptical gNFW spatial profile taken from Czakon et al. [35] with the overall
normalization allowed to float independently for each band. The model provides a good fit in all cases. The
solid gray lines show positive S/N in steps of 1 and the dashed gray lines show negative S/N in steps of 1
(Bolocam is ±3). The solid black line corresponds to 0. All of the images have been filtered and models
for the central AGN and the brightest dusty star-forming galaxies have been subtracted. The high-pass filter
applied to the MUSIC images was more aggressive than that applied to the Bolocam image, resulting in a
more compact SZ signal. The lack of signal at 213 GHz is due to the fact that the band is near the null of the
thermal SZ spectrum. Taken from Sayers et al. [174].
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Appendix A

MCMC Fits to Calibration Data

In this appendix we describe the Markov Chain Monte Carlo (MCMC) algorithm used to fit the model de-

scribed in Chapter 2 to dark temperature sweep data, hot/cold data, skydip data, and a variety of other cali-

bration measurements. We present the algorithm in the context of fitting hot/cold data since it was originally

developed for this problem.

For a given detector, the hot/cold data consists of measurements of the resonant frequency fres(Tbath, Tload)

and the inverse internal quality factor Q−1
i (Tbath, Tload) at NT bath temperatures and Nload = 2 loading conditions

(liquid nitrogen and room temperature). Let us denote this data set as

y =
[
fres, Q

−1
i

]
, (A.1)

where y contains N = 2×NT ×Nload measurements total.

Denote the set of parameters describing the model as θ. We will partition these parameters into two

groups, θ= [θ1, θ2], where θ1 contains all parameters for which we have no prior information and θ2 contains

all parameters for which we have some prior information. The prior information might come from theoretical

considerations, direct measurement, or a previous analysis. For example, when fitting the hot/cold data we use

the results of Mattis-Bardeen fits to the dark temperature sweep data to place a prior on two of the parameters:

the kinetic inductance fraction α and gap energy at zero temperature ∆0.

We would like to implement a MCMC that – in the limit of a large number of iterations – draws samples

from the joint posterior distribution p(θ|y). The joint posterior distribution is the probability that the param-

eters take on a particular set of values given the known model and the measured data. According to Bayes’

theorem the posterior distribution is given by

p(θ|y) = L(y|θ)p(θ)
p(y)

. (A.2)

The likelihood function L(y|θ) is the probability of observing the measured data given the known model and

a particular set of model parameters. The prior distribution p(θ) is the probability that the model parameters
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take on a particular set of values. The marginal likelihood p(y) (also known as the evidence) is the probability

of observing the measured data; it is a normalization that ensures that the joint posterior distribution integrates

to 1.

Assume that our measurements have Gaussian errors so that

y j = h j(θ)+ ε j , (A.3)

where h j(θ) is the model prediction and ε j ∼ N(0,σ j) with the uncertainty σ j known from fits to the IQ

sweeps. Then the likelihood function is given by

L(y|θ) ∝ exp
(
−1

2
χ

2
)
, (A.4)

where

χ
2 = ∑

j

(y j −h j(θ))
2

σ2
j

. (A.5)

In order to sample from the joint posterior distribution we use the Metropolis-Hastings algorithm. In theory,

implementation of the Metropolis-Hastings algorithm is very simple, just follow these steps:

1. At iteration t randomly draw a set of parameters θ(t) from a proposal distribution g(θ(t)|θ(t−1)).

2. Evaluate the likelihood function L(y|θ(t)) and L(y|θ(t−1)).

3. Form the likelihood ratio r = L(y|θ(t))/L(y|θ(t−1)).

4. Draw a uniform random number u ∼ U [0,1]. If u < r, then accept the new set of parameters θ(t).

Otherwise reject the new set of parameters and keep θ(t−1). Therefore, the algorithm will always move

to regions in the parameter space with higher likelihood (or equivalently lower χ2), and will sometimes

move to regions with lower likelihood (higher χ2).

5. Repeat steps 1−4 many times.

In the limit that t → ∞ the chain will reach a stationary distribution that can be shown to be equivalent to the

joint posterior distribution, so long as the proposal distribution is symmetric or g(θ(t)|θ(t−1)) = g(θ(t−1)|θ(t)).

The Metropolis-Hasting’s algorithm enables one to draw samples from the joint posterior distribution without

knowing the overall normalization (the marginal likelihood p(y)). It is then trivial to obtain samples from

the marginal posterior distribution p(θi|y) for the i’th parameter of interest.

In practice, however, a number of complications immediately arise: What should we use for the proposal

distribution? How many iterations should we perform? How do we know if the Markov Chain has converged

to the stationary distribution? How do we determine parameter estimates from the set of samples drawn from
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the joint posterior distribution? The literature contains a wide variety of techniques that can be used to answer

these questions. Here we simply state what was found to work for our specific problem of fitting the MUSIC

detector calibration data.

Regarding the choice of a proposal distribution: Draw θ
(t)
1 from a Gaussian centered on θ

(t−1)
1 . As the

chain progresses, calibrate the covariance of this Gaussian. Draw θ
(t)
2 from the prior distribution.

Regarding the covariance of the proposal distribution: Every ncheck iterations, estimate the variance V̂ar

of each parameter using the last ncheck iterations. Update the variance of the proposal distribution for

each parameter using the weighted average σ2
new = wV̂ar+(1−w)σ2

old. In practice, we found ncheck =

10,000 and w = 0.15 worked well. In principle, one could also update the off-diagonal elements of the

covariance matrix to improve the efficiency with which the parameter space is sampled, however this

was not employed in our analysis (the off-diagonal elements were fixed at 0).

Regarding convergence to the stationary distribution: Perform M Markov Chains simultaneously (M =

10 for all of the analysis presented in this dissertation). Randomize the starting location of these

chains. For each parameter θ ∈ θ, calculate the within-chain variance W and between-chain variance

B every ncheck iterations. The within-chain variance is given by the set of equations

θ̄m =
1
n

n

∑
t=1

θmt (A.6)

s2
m =

1
n−1

n

∑
t=1

(
θmt − θ̄m

)2 (A.7)

W =
1
m

M

∑
m=1

s2
m , (A.8)

where θ̄m is the sample mean of chain m, s2
m is the sample variance of chain m, and W is the aver-

age value of the sample variance over all chains. The between-chain variance is given by the set of

equations

θ̄ =
1
m

m

∑
t=1

θ̄m (A.9)

B =
n

m−1

n

∑
t=1

(
θ̄m − θ̄

)2
, (A.10)

where θ̄ is the sample mean over all chains, and B is the sample variance of the sample means over all

chains multiplied by n. The variance of the stationary distribution is estimated as a weighted average

of W and B. Specifically

V̂ar =
(

1− 1
n

)
W +

1
n

B . (A.11)
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The R̂ estimator [176] is then defined as the ratio of the total variance to the within-chain variance

R̂ =

√
V̂ar
W

. (A.12)

At the beginning of the MCMC the chains are in random locations in parameter space, the between-

chain variance is significant, and the total variance is much larger than the within-chain variance, i.e.,

R̂ � 1. As the chains converge to the stationary distribution, the between-chain variance converges to

the within-chain variance. As a result, the total variance converges to the within-chain variance and

R̂ → 1. In practice, we iterate until the total number of iterations > 1,000,000 and R̂ < 1.1 for all

parameters. After convergence, a burn-in period is discarded for each of the M chains. The M chains

are then concatenated.

Regarding convergence to the stationary distribution: One common failure mode is that a chain becomes

trapped in a local minimum. In order to encourage the chains to explore the parameter space and find

the global minimum, we perform simulated annealing; a technique in which all uncertainties σ2
j are

multiplied by a factor T (
syst), which we refer to as the system temperature. At the beginning of the

MCMC, we “melt” the system by setting Tsys � 1. After this initial melting phase we “anneal” the

system by lowering Tsys from its initial value down to 1. Simulated annealing encourages the chains to

explore the parameter space during the melting phase and then freezes the chains at the global minimum

during the annealing phase. The process is illustrated in . We employ a slow, linear annealing schedule.

In our case, the melting phase lasts 100,000 iterations and the annealing phase lasts 400,000 iterations.

We discard these first 500,000 iterations as burn-in. This gives us at least 500,000 remaining iterations

for 10 chains, so more than 5 million draws from the joint posterior distribution in total.

Regarding boundaries: We enforce boundaries on the allowed values of θ1. We try to choose nonrestrictive

boundaries, i.e. the boundaries are placed where the likelihood function is already negligible. However,

this is not always possible, especially for nuisance parameters. In these cases we choose physically

motivated boundaries. During the MCMC, if a draw from the proposal distribution places a parameter

beyond either boundary, then we “reflect” off of the boundary back into the allowed region. This

ensures that the boundaries are equivalent to a uniform prior on the parameter.

Regarding parameter estimation: The final result is a chain containing draws from the joint posterior dis-

tribution. Each draw is a set of parameters θ. We can marginalize over the joint posterior distribution

by simply restricting our focus to a single parameter of interest. We use the median and median ab-

solute deviation of the draws from the marginalized posterior distribution as our best estimate of each

parameter and its uncertainty. We save the chain, and if we are using the results of the MCMC as a

prior in a future fit, then we draw a set of parameters randomly from the chains at each iteration of

the future fit. This ensures that the parameter-parameter correlations are properly accounted for in the
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propagation of uncertainty.

Figures A.2−A.3 show the Markov chains and posterior distributions for two model parameters, C =

η∆νmm/d and τmax, that result from fitting the hot/cold data for a typical detector. The hot/cold data provides

a fairly tight constraint on C. The nuisance parameter τmax, on the other hand, is not well constrained, but we

are able to place a lower bound on its value.
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Figure A.1: Top: Annealing schedule, or the system temperature as a function of iteration number. The
melting phase corresponds to the initial 100,000 iterations where Tsys = 24. The annealing phase corresponds
to the next 400,000 iterations where the system temperature decreases linearly from Tsys = 24 to Tsys = 1. The
initial 500,000 iterations are discarded as burn-in, and the remaining iterations where Tsys = 1 are assumed
to be draws from the joint posterior distribution. Bottom: The χ2 per degree of freedom as a function of
iteration number. Each color denotes one of the ten chains that were run simultaneously. During the melting
and annealing phases, the system is able to explore regions of parameter space with large χ2 per degree of
freedom and is unlikely to become trapped in local minima.
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Figure A.2: Result of performing an MCMC fit to the hot/cold data for a typical detector. Top: The parameter
C = ηd/∆νmm as a function of iteration number. Each color denotes one of the ten chains that were run
simultaneously. Bottom: The marginalized posterior distribution of C, obtained by concatenating the last
500,000 iterations of the ten chains shown above. The red-dashed line denotes the median value.
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Figure A.3: Result of performing an MCMC fit to the hot/cold data for a typical detector. Top: The parameter
τmax as a function of iteration number. Each color denotes one of the ten chains that were run simultaneously.
Bottom: The marginalized posterior distribution of τmax, obtained by concatenating the last 500,000 iterations
of the ten chains shown above. The red-dashed line denotes the median value.
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