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ABSTRACT 

The equatic;ms of motion for the flow of a mixture of liquid 

droplets, their vapor, and an inert gas through a normal shock wave 

are derived. A set of equations is obtained which is solved numeri­

cally for the equilibrium conditions far downstream of the shock. The 

equations describing the process of reaching equilibrium are also ob­

tained. This is a set of first-order nonlinear differential equations 

and must also be solved numerically. The detailed equilibration 

proce·ss is obtained for several cases and the results are discussed. 
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L INTRODUGT ION 

In recent years considerable attention has been focussed on 

flows of particle-laden fluids. This interest has been stumulated by 

the occurrence of many relevant physical situations, among which is 

the problem of solid particles in the exhaust of a metalized solid-

propellant rocket motor. 

One of the fundamental and tractable problems of high speed 

flow is the structure of the normal shock wave. Carrier
1 

undertook 

the original investigation of shock waves involving small particles, 

in which he solved the problem of the flow of a gas and a cloud of uni-

form sized solid particles through a normal shock wave. Since the 

problem was essentially nonlinear, a closed form solution was im-

possible and he illustrated the relaxation process by calculating a 

few sample cases. The physical phenomena, however, were neither 

clear nor were they examined thoroughly. 
2 

Marble expanded Car-

rier 1s work by extending and varying the range of the physical vari-

ables and interpreting the results in terms of a physical process re-

lated to certain characteristic parameters. Further extension of 

solutions to the shock wave problem was carried out by Rudinger
3

, 

in which he studied the structure of the relaxation zone for various 

shock strengths and the thermodynamic properties of the gas and 

solid. He also studied the effect of the particle drag law and found 

that the approach to equilibrium was highly dependent on this law. 

Variation in Nusselt number, however, was much less significant. 

For the limiting case of weak shock waves and a single particle size, 
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Kriebel 
4 

obtained the closed form solution and presented a technique 

for numerically integrating the equations for a discrete distribution 

of particle sizes. 

In spite of this interest. in shock structure for heterogeneous 

media, the same problem has not been investigated for volatile liquid 

particles. Ffows of this sort have for many years been known to oc­

cur in some stages of vapor cycle turbomachinery, in liquid metal 

loops, as well as in the early part of rocket nozzle flow. Knowledge 

of such flows also affords a possible means of measuring the quality 

of vapor-gas streams in general. 

It is the purpose of this thesis to investigate the approach to 

dynamic and thermodynamic equilibrium of liquid droplets passing 

through a shock wave, the gas consisting of vapor and inert gas. 

This problem is somewhat more difficult than the analogous problem 

for solid particles because another condition for equilibrium must be 

taken into account; equilibrium between the liqui d and its vapor 

phase· It will be a ssumed that upstream of the shock wave a uni-

form distribution of single size, spherical liquid droplets exists in 

the flow. The se droplets h a ve the same v e locity and t e mperature as 

the ga s-va por mixture. Furthermore, the concentra tion of vapor in 

the ga s i s s u ch tha t therm ody n a mic equilibrium e xists b e t w een the 

liquid and v a por phases; this will be designated an equilibrium state. 

Far downstre am, it i s assumed tha t another equilibrium state exists. 

It is a s s umed further that there are no interactions b e twee n 

the individual particles, that the wakes of particles do not a ffect the· 
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flow around nearby particles, and that Stokes drag law may be used 

in the momentum equation. Heat exchange between gas and liquid is 

by convection only; radiative transfer between particles or frqm 

particles to gas is neglected. The fluid is considered inviscid ex­

cept in the shock wave and the portion of the flow that :produces the 

particle drag. Finally, the liquid temperature in a particle is as':'· 

sumed uniform. The liquid mass. fractions are such that the vol time 

occupied by the particles 'is :pegligible, and any changes in density of 

the fluid do not affect the size of the droplets directly. Other ·as -

sumptions will be stated at the time they are required. · 

In order to avoid confusion in the. following wor~, a definite 

distinction has been made between the terms fluid, gas, and '{apor. 

The term 'fluid 1 will refer only to the mixture of two substances._ in 

which the particles flow. The term 1gas 1 will only be used for the 

inert component of the fluid, i. e ~ , the one which does not exchange 

mass with the droplets. Finally, the 'vapor' is the component of the 

fluid which_ exchanges mass with' the p _articles. 
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II. FORMULATION OF THE SHOCK-RELAXATION PROBLEM 

The equations describing the flow can be derived from two 

points of view. One concerns the overall conservation of mass, mo-

mentum, and energy between points separated by a finite distance. 

This leads to a set of algebraic equations which can be solved to yield 

the flow conditions far downstream of the shock. The other point of 

view is a more detailed one involving the interchange of mass, mo-

mentum, and energy between the particles and fluid. This leads to a 

set of differential equations which give the nature of the equilibration 

process. The former viewpoint will be employed firs.t. 

The Overall Conservation Relations 

Consider a control volume which extends between any two 

points in a flow. Since the flow is one-dimensional, steady, and 

without mass addition, continuity demands that the total flux of mass 

in the x-direction into the control volume be equal to the flux out, 

and both of the quantities are constant. Thus, 

pu + p u = constant. 
p p 

It is necessary to deal with the total mass because there is an ex-

change between the particles and fluid in the form of condensation or 

evaporation 9f vapor. If we evalua te the constant at a location where 

the particles and gas-vapor mixture are in equilibrium, we have 

(1) 

and if both states are equilibrium states, 

= 
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An equilibrium state is one for which the veloCity and temper-

ature of the particles are equal to those of the fluid, and the liquid of 

the particles is in thermodynamic equilibrium with its vapor in the 

mixture. The component of the mixture which plays no active role 

in the evaporation or condensation has an. equation of continuity of its 

own, which is 

Since 

we have 

or 

p u - const = 
g 

Considering this between states 1 and 3, we have 

= 
1-K 

vl 
1-K 

v-3 

(2) 

We define o as the ratio of mass flux of fluid far downstream of the 

shock to mass flux of fluid upstream, that is, 

An equation, 'similar to equation (2), expressing the particle 

mass flux in terms of the vapor concentration and known conditions. at 

another location can easily be obtained from ( 1) and (2). It is 
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The equilibrium value of the concentration will be of interest 

and can be determined from the Clausius-Clapeyron equation, 

~ 
dT 

Neglecting the specific volume of the liquid compared to that of the 

vapor and using the perfect gas law, this becomes 

Integration gives 

~ 
dT 

= e 

h ,f, 
- --+ c RT 

where the subscript indicates the saturation pressure, and c is a 

constant of integration. 

= 

Thus, 

Now 
p R 

s 
pR 

v 

(4) 

The law of conservation of momentum states that the net force 

on a control volume in the x-direction is equal to the rate of change of 

x momentum inside. The rate of change of momentum ins ide the 

control volume is the difference between the momentum leaving and 

entering. The net .force is just the difference in pressure. Hence, 

2 2 2 2 
P1-P = pu + ppup - plul - Pplul 

or 
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2 2 2 
pu + ppup + p = (pl+ Ppl)ul + P1 (5) 

wher.e use has been made of the fact that state 1 is an equilibrium 

state. 

In a similar manner the energy equation is found to be 

pu ( cp T + ht + iu 
2

) + pp up ( c T p + iu:) = p 1u 1 ( cp T 1 + ht + iu:) + 

(6) 

Here, the term puht accounts for the fact that energy is absorbed in 

the form of latent heat during vaporization. 

Upon the assumption that the gas -vapor mixture acts as a 

perfect gas, .we have the usual equation of state, 

p = pRT . (7) 

These seven equations are now sufficient to completely determine the 

equilibrium state far downstream of the shock. This will be done in 

Section III. 

Before going on to derive the differential equations which 

describe the equilibrati_on zone, it is convenient to derive an equation 

for the particle radius. The continuity equ~tion can be written as 

or 

= 

Hence 

1 +-1-
Kpl 

Now p = nm , and for spherical particles, 
p 
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= 

where it has been assumed that all the particles at any location have 

the same radius. It has been assumed that no particles are created 

or destroyed. This implies a conservation of number flux of parti-

cles, 

or 

Using the above gives finally, 

= (8) 

Relations Governing Relaxation Zone 

We now proceed to derive the differential equations describing 

the particle motion. Consider a control volume of length dx and of 

unit height and width sufficiently large that the assumption of a parti-

cle continuum is valid. The increase of the mass rate of flow of 

particles in the control volume is readily found to be dd (p u )dx , 
x p p 

This must be equal to the rate of mass absorbed by all the particles 

in the control volume. The number of particles in the control volume 

i s ndx, and if rn i ~ the rate of mass given off by e a ch, -rnndx is the 

rate of mass absorbed. · Thus, 

d
d (p u )dx = - rnndx . 
x pp 

w is defined as the rate of mass given off by all the particles per 

unit volume. Hence, 
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From continuity it is obvious that 

d 
dx (pu) = w 

(9) 

It will be more convenient later on to have K as the dependent vari­
v 

able rather than p u • 
p p 

We can write the above equation as 

d 
-(p u + p u) = dx g v 

Since p u = canst, this reduces to g 
d 

-d (puK ) = w • 
x v 

Expanding the derivative and rearranging gives 

dK 
pu --2 = (1 - K )w • 

dx v ( 10) 

The change of momentum of the particles in the control volume 

is e qual to the drag on the particles minus the amount of momentum 

that leaves the particles with the evaporating vapor. The change of 

momentum is simply dd (p u 
2

)dx . If the drag force on each particle x p p 

is given by Stokes law, then the momentum change due to drag on ·all 

the particles is 

-6irnµcr(u -u)dx . 
p 

The physical model under consideration assumes that, except 

very close to the particles, the fluid velocity is uniform. This means 

that the velocity of any evaporated vapor must change rapidly to that of 

the free stream. It will be assumed that the force necessary to 

change the velocity of the vapor to that of the free stream acts en-

tirely on the particles. Thus , the momentum taken away by the evap-

orating vapor in the control volume is nrnudx. Combining these terms 
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and simplifying gives 

d 2 
-d (p u ) = -wu - 6rrnµa(u -u) • x pp p 

After expanding the derivative, using equation (9) and simplifying the 

results, 

(11) 

In a similar manner, the energy equation for the particles is 

obtained. The rate of change of energy is equal to the rate of heat 

transferred from the gas to the particles minus the rate of energy 

transported away by the evaporating vapor. As with the momentum, 

it is assumed that when the vapor leaves the particles, it has the 

same temperature as the fluid and has gotten the necessary energy 

from the particles. Using these facts and simplifying the resulting 

equation in a similar fashion to what was done for the momentum 

equation gives 

where H is the total rate of heat transfer from the particles to the 

gas. Reference 2 points out that the Nusselt number, ah/k , is 

unity when Stokes drag law is a valid approxi'mation. Hence, the 

equation becomes 

dT 
ppupc -d! = -w[h,f,+c (T-T )] - 4nrrka(T -T) . p p . p 

From Frick's law, 

rn = -phDA (K -Ke) . 
s v v 

By the analogy betwee·n heat and mass transfer, 

(12) 
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Dh 
= T 

m = -4rrcrpD(K -Ke) 
v v 

e 
w = -4nrrapD(K -K ) • 

v v 
( 13) 

The characteristic time for changes in velocity, as shown ~n 

reference 2, is 

'!" = r 

m(u -u) 
p 

F 
m · = 6rrcrµ 

The velocity range, which is the characteristic length for 

changes in velocity, is found by reference 2 as 

A.-~ 
v ' - 6rrcrµ • (14) 

In a similar manner, the thermal range and diffusion range were 

found to be 

and 

mac 
= 4;rcrk 

A = ma 
D . 4rrcrpD 

( 15) 

( 16) 

respectively. The speed of sound varies as the one-half power of 

the temperature for a perfect gas~ and the viscosity goes as the 

three-fourths power. Thus, for· small changes in temperature, the 

ratio a/µ is almost constant. In this work it w~ll be assumed con-

stant. With this in mind, equation (14) becomes 

' ' t 2 f\. = cons O' , 
v 

or 
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= i: ' 

Likewise, (15) reduces to 

if, in addition to a/µ , the Prandtl number is constant. Finally, 

upon assuming the Schmidt number is also constant, (16) can be 

written as 

Using the definltions of Av, AT, and AD and equation (13), 

we obtain the follow ing set of differential equations: 

dT 
puc-E.= 
pp dx 

and 

dK 
v 

pu dx = 

du 
p u __E_ 
p p dx 

p a 
p (K -Ke) 

AD3 2: v v 

p a 
-~ (1-K )(K -Ke) 
AD3~ v v · v 

p a A 
= -~[l+~(K -Ke)J(u -u) 

Av3 Li AD3 v v P 

w = 

( 17) 

( 18) 

( 19) 

(21) 

Equations (17) or (18) and (19) and (20) fully describe the motion of 

the particles. The solution of these equations will be obtained in 

Section IV. A set similar but pertaining to the motion of the gas can 

be arrived at by differentiating the overall conservation equations 
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and eliminating the unwanted differential quantities with the aid of 

the above equations. 
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III. DOWNSTREAM EQUILIBRIUM CONDITIONS 

The normal shock relations for the conditions downstream of 

a shock wave in a perfect gas can be found in any text on gas dynam-

ics. In much the same way, the equilibrium conditions for state 3 

have been determined in this work. It will be seen that a difference 

exists between these two sets of equations, for in the present in-

stance an explicit solution is not possible. 

Formulation of the Downstream Conditions 

It is assumed that the physical properties of the gas (R, c , 
p 

etc. ) are constant and are equal to those of the vapor, and that the 

specific heat per unit mass of the liquid drops is equa l to the specific 

heat of the gas-vapor mixture. While this assumption simplifies the 

algebraic manipulations, it changes neither the fundamental mathe-

matics of the problem nor the physics of the situation. 

Writing the momentum equation between states 1 and 3, di-

viding by p 1 

By making use of the definition of the Ma'ch number, this can be 

written as 

= {22) 

Between these states the energy equation, equation (6), can be writ-

t en as 
h ,f, 

~..,,.,,_.- ( o - I ) . 
l+Kpl 
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Upon eliminating the temperature in terms of the press.ure and di­

viding by a:/{'{-1), there results 

2 
P3 u3 1 -1 2 u3 v-1 2 v-1 ht - - - + Y:..!:..M - = 1 + ...1---:..2 M 1 - ...1---:..2 l+K (o-1) 
P1 ul o 2 1 u~ al pl 

(23) 

The temperature ratio can be found in terms of the velocity 

ratio and o. From the perfect gas law, 

T 3 P3 p 1 
= --

T 1 p 1 P3 

or 

Hence, 

Utilizing the definition of o in equation (2), 
1-K 

0 = vl 
1-K . 

v3 

(24) 

there results 

Solving for p
3

/p
1 

in the equation directly above equation (24), and 

substituting this into equation (4) gives 
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Combining these two and solving for o results in 

(25) 

Equations (23 ), ( 24 ), and (25) are three algebraic equations in the 

three unknowns, u
3 

/u1 , T 
3 

/T 1 ·, and o. These three quantities are 

uniquely determined and with them, the equilibrium conditions down-

stream of the normal shock wave. Due to the occurrence of the ex-

ponential term in equation (25), it is not possible to solve the system 

of equations explicitly, and, in fact, it was not found to be worth-

while to simplify them further. 

Numerical Solution and Results 

Although the unknowns cannot be determined explicitly, their 

solution is quite easy to obtain. It was found that the nature of the 

equations in the region of interest is such that even the most mundane 

numerical technique rapidly converges to the solution. The region of 

interest in terms of o will later be shown to be 1-K l < o~ l+K l • 
. v . p 

Knowing these three qua ntities, the pressure ratio can be 

found from (22), the density ratio from 

the particle density ratio from 

1 + i-o 
E = ~1 
Ppl (u3/ul) 
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= 

The results of several calculations for various values of the 

Mach number, initial particle concentration, and non-dimensional 
h 

latent heat, R~ , are shown in Figures 1 through 9. 
1 

Inspection of these figures shows the somewhat surprising oc-

currence of o less than one. This essentially means that in certain 

cases some of the vapor condenses onto.the particles and that they 

grow in size as a result of the process of coming to equilibrium. 

Thus, the, situation is somewhat more complex than would be expected 

from just considering the fact that the ga..s temperature is increased 

by going through the shock wave. 

Discussion of the Results 

An explanation of what is happening will begin with a de scrip-

tion of the role of the parameter o. As mentioned earlier, o is the 

ratio of mass flow of fluid at state 3 to the mass flow of fluid at state 

1. If o is greater than one, mass had to be added ' to the gas-vapor 

stream. This mass could only have come from the particles, and it 

must have been in the form of evaporated vapor. Similarly, if o is 

less than one, it means that some of the vapor that was trav elling 

with the gas stream upstream of the shock must have been condensed 

onto the particles. Thus, o is the indicator of whether evaporation 

or condensation has taken place, and, to a certain extent, how much. 

There is a physical limit to how much vapor can evaporate or 
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condense. From this, it is a simple matter to put restrictions on the 

values of o. By proper rearranging of the continuity equation, it is 

possible to write 

0 = 
1-K 

vl 
1-K 

v3 
= 

l+K 1 p 

If we consider the case where the condensation is very great and no 

vapor remains in the flow at state 3, we have o= 1-Kvl • Since this 

corresponds to a condition where Kv3 = 0 , we see from equation (4), 

the expression determining the equilibrium concentration, that this is 

really impossible. It would require a zero temperature or an infinite 

pressure at state 3. Thus, it should be written as o > 1-Kvl • It is 

perfectly reasonable, however, to expec_t the final temperature to be 

so high that all of the liquid in the incoming particles evaporates. 

This, in fact, may actually happen, so o may be equal to l+Kpl • 

Putting these together, we have the limits .on o mentioned on page 16. 

There is one other special case involving o. That is when o 

has the value of unity. This means that the value of the final particle 

concentration is equal to the initial value, or that there is no net 

evaporation or condensation in the process. Since the re is no net 

change in particle size or vapor concentration, the results are iden-

tical to those of non-volatile solid particles. It should be kept in 

mind that this is an overall effect, not a local one, so that at any 

point downstream of the shock wave but upstream of where the mix-

ture reaches equilib r ium again, the value of K is probably not K 1 • 
v v 

The conditions which must be met in order for o to equal unity can be 

determined from equation {25). Inspection shows that for this to hold, 



-19-

the quantity in the brackets must be ze.ro, or 

From equations {23} and {24} it can be seen that when o equals 1, 

both u
3

/u1 and T
3

/T 1 depend only on M 1 and Kpl {for fixed y}. 

Thus, the expression can be solved explicitly for h,c,/{RT 1 } if de­

sired. But, in general, given two of the three quantities M 1 , Kpl , 

or h.r/{RT 1}, the above expression will determine the third, so that 

there is no difference in the particle concentration before and after 

the shock. It should be noted that this is independent of Kvl • 

Since o = 1 separates the region in which the re is vapor con-

densation from the region in which evaporation occurs, the value of 

the parameters which satisfy the above relationship is very import-

ant. These are the limiting values, with_ respect to condensation, of 

each parameter if the other two are held fixed. For example: the 

equation is satisfied by values of 1. 6, . 15, and 4. 88 for M 1 , KP 
1 

, 

and h.{, I {RT 1 }, respectively. At this Mach number and initial parti­

cle concentr ation, condensation will occur if h.{,/{RT 1 } is less than 

4. 88, and vapor will be evaporated if it is greater. 

Figure 1 is a plot of o versus Kvl for M 1 = 1. 6 , Kpl = • 15, 

and various values of h-e, /(RT 1 ). On it are curves for which the par­

ticles grow (h.{,/{RT 1 ) = 2 . 5 ), shrink (h,c,/{RT 1} = 10.15), or remain 

the same as a result of passing through the shock wave . It can be 

seen that the relationship between o and h.{,/{RT 1} is a complex one. 

It appears that for values of Kvl greater than . 2, o has a maximum 
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for a value of h-!/(RT 1 ) somewhere between 4. 88 and 15. This same 

phenomenon occurs for different values of the Mach number and ini-

tial particle concentration. 

There is no particularly significant reason for assigning the 

role of independent variable' in all these curves to Kvl. However, 

Kvl does have an important physical interpre tation. It is the quan­

tity that determines the magnitude of the equilibrium constant. Large 

values of Kv 1 imply a large equilibrium constant. Thus, the effects 

of condensation and evaporation are magnified by increasing Kv 1 • 

Later, a case will be discussed for which all the liquid in the particles 

vaporizes. This will only occur for values of Kvl above a certain 

value. This fact clearly shows the relationship between Kv 1 and the 

equilibrium constant. It is obvious that a zero value for Kvl cor­

responds to solid part.icles. 

The quantity which determines whether or not o will be great-

er or less than one is the final vapor concentration. If the ratio of 

this to the initial vapor concentration is greater than one, then o will 

be also. The ratio of Kv3 to Kvl is in turn determined by p 3 /p 1 

and T 
3

/T
1 

, as shown by equation (4). 

The relationship between T 3 /T 1 and Kvl, Kpl, h -l /(RT 1), 

and M
1 

can be seen from Figures 2 through 5. Figure 2 is a plot of 

T 3 /T 1 against Kv 1 for M 1 = 1. 6 , KP 1 = . 15, and various values of 

h-l/(RT
1

). It should be noticed from the figure that T 3 /T 1 is greater 

than one for all values of Kvl and h-l/(RT 1). This was found to hold 

true in all the other calculations made for varying Mach number, ini-
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tial particle concentration, and non-dimensional latent heat ratio. 

Forgetting for a moment that evaporation and condensation take 

place, this result is in line with intuitive feelings gained from a 

knowledge of normal shock waves in a perfect gas. The role that all 

the variables play in making this so is somewhat obscure, however. 

Just downstream of the shock the particles are still at T 1 , but' the 

fluid has been compressed to a higher temperature. If the final tem­

perature was determined from just these .two quantities, it would be 

obvious that T 
3 

should exceed T 
1 

• The effect of the difference in 

particle and fluid velocity after the shock is not so clear. It is clear 

that the particles exert a force on the fluid which increases the fluid 

velocity. This in turn lowers the velocity of the particles. Since 

the total energy is a constant, these changes in kinetic energy pro­

duce changes in particle and fluid temperatures. Coupled with this is 

the kinetic energy converted to heat through viscous dissipation. The 

interrelation between all these effects in this complicated situation 

has not been studied in the necessary detail to determine the circum-

stances under which each is dominant. 

The previous discussion pertains only to the line for which 

o = 1 or the point on the curves in the figures for which Kv 1 = 0 , 

since it is for only these points that no evaporation or condensation 

occurs. The effect of the non- dimensional latent heat ratio can read-

ily be seen from the other curves in the figure. If h,e/ (RT 1 ) is such 

tha t vapor condenses, then T 3 /T 1 will be greater than if the parti­

cles were non-volatile. The explanation of this is as follows. The 
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condensing vapor gives off its latent heat to the fluid stream. This 

extra heat eventually raises the temperature of the whole mixture. 

Thus, the more vapor condensed, the higher T 
3

/T 1 • Naturally, the 

opposite happens when vapor is evaporated from the particles. The 

heat necessary to change the phase of the liquid is no longer available 

to raise the final temperature. For the case of no condensation or 

e v aporation, the latent he a t has no effect. That is why the curve for 

h t /(RT 1 ) = 4. 88 (corresponding to a= 1) is a horizontal line in the 

figure. There is one slight correction to be made with what has been 

said thus far. From Figure 1 it can be seen that for Kvl greater 

than about . 2, · more mass is evaporated from the particles with a 

non-dimensional latent heat ratio of 10 than the particles with a ratio 

ofl5. Yet T 3 /T 1 islowerfortheparticleswithan h -e, /(RT 1 ) ofl5 

than 10. This is undoubtedly due to the fact that only a couple of per 

cent more mass is evaporated from the particles with a latent heat 

ratio of 10, while the difference in latent heat ratio for the two cases 

is 50 per cent. 

The same rela tionship between T
3

/T 1 and h t /{RT 1 ) is il­

lustrat ed in Figure 3. This curve is again for a n initial Mac h num-

ber of 1. 6, but now KP 1 is • 0 5 . The discontinuity in the slope of the 

curv e for ht/(RT 1 ) = 10 is caused by the complete eva poration of all 

the particles. For v alues of Kvl less than. 054, everything happens 

as it did in Figure 2. A value of Kvl equal to • 054 c orresponds to a 

sta te where all the liquid has been evaporated but the gas is fully 

saturated with the vapor. 
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For a ny value of Kvl greater than • 054, more vapor can be 

dissolved in the gas. However, there is no liquid left to vaporize, 

and the vapor becomes superheated. As long as all the liquid has 

been vaporized, · the amount of energy converted into latent heat is 

the same. Thus, no difference in T 3 /T 1 for two values of Kv 1 

greater than • 054 should be expected. This explains the zero slope 

for Kv 
1 

greater than • 054. Of course, the same result can be ob­

tained from the equations without this physical argument. For any 

value of Kvl greater than • 054, all the liquid is vaporized. This 

corresponds to o having its maximum value, l+Kpl • With o known 

and fixed, u
3 

/u1 is uniquely determined independent of Kvl by equa­

tion {23 ), and T 3 /T 1 by equation {24). It should be noted that equa­

tion {25 ), which insures the equilibrium between the liquid and vapor, 

is no longer pertinent. 

A better idea of how T 3 /T 1 varies with KP 1 can be obtained 

from Figure 4. In this plot, the conditions are such that o is always 

greater than one. If this were plotted for o less than one, the shape 

of the curves would be similar to those of Figures 2 and 3 for 

ht/{RT 1 ) = 2 . 5. In that case, T
3

/T 1 would also be greater ·for 

larger values of Kpl. It is believed that the increase of T
3
/T 1 · :with 

Kpl is due to greater dissipation caused by a larger mass of liquid in 

the flow, be it in the form of larger particles or a greater number of 

particles, or both. This is why the same result occurs when 

ht/{RT 1 ) is 2. 5 even though the vaporization process works in the 

opposite direction. Study of a curve of u 3 /u1 plotted against Kvl 
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for different values of Kvl bears this out. Here, u 3 /u1 is smaller 

for greater values of Kpl , even though the total momentum just past 

the shock is greater in the flow with more liquid mass. The calcula­

tions from which Figure 4 was obtained show an increase of o with 

This is the effect of the greater final temperature, not its 

cause. The break in the curve for Kpl = . 05 is again due to the 

complete vaporization of all the particles. 

The effect of the Mach number on T 3 /T 1 is shown in Figure 

5. The curves show that the final temperature increases with shock 

strength exactly as would be expected. They also show a greater 

tendency towards complete evaporation of the liquid in the stronger 

shocks. This is also to be expected, since the final equilibrium con­

centration increases with increasing final temperature. The same 

qualitative dependence of temperature on Mach number could also be 

seen in the case where h.e,/{RT 1 ) is such that condensation occurs. 

It has been noted earlier that the final temperature is higher 

for lower values of h.e,/{RT 1 ), and that these cases correspond to 

greater vapor condensation. It can be seen from equation {4) that the 

change of Kv3 with T 3 is positive. But if this is true, one :would ex­

pect that higher final temperatures correspond to greater vapor evap­

oration. This apparent paradox can be resolved by considering the 

pressure ratio, p 3 /p 1 • Figure 6 is a typical plot of p
3

/p 1 versus 

Kvl for several values of h.e, /(RT 1 ) • The conditions are the same as 

for Figure 2 • . An explanation of the variation of p 3 /p 1 with h.e,/(RT 1 ) 

will be postponed until after u
3
/u1 has been discussed. It can be seen 

immediately, though, that the final pressure is considerably greater 
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than the initial one. This has the result of reducing. Kv3 and count­

ering the effect of the temperature rise. Unless the multiplier in 

the exponential term, ht/ (RT 1 ) , is sufficiently large, the imp or-

tance of the temperature increase will be surpassed by the pressure 

rise and the equilibrium cqncentration will be reduced. 

It is of considerable interest to note that both condensation 

and evaporation of the liquid particle may occur. Condensation oc-

curs when the physical constants. of the system are such that the 

pressure rise after the shock has a greater effect on the equilibrium 

concentration than the temperature rise after the shock. Another, 

more formal, way of saying this is as follows. In certain cases, the 

shape of the saturation curve, which i s in part determined by 

ht/(RT 1), is such that state 3 is deeper inside the vapor dome than 

state 1. 

The ratio of the final velocity to the initial v elocity is shown 

plotted in Figures 7 and 8. Figure 7 is for the same condition as 

Figures 1, 2, and 6, and Figure 8 corresponds to the conditions of 

Figure 3. 

The energy equation can be written as 

where w is the total mass flow, (p 3+pp3 )u3 
Thus, once the varia-

tion of T 3 and o with Kpl and ht/(RT 1 ) has been dete r mined, the 

changes in u 3 with these quantities are fixed by the conserv ation of 

energy. Having been able to explain and understand Figures 1, 2, 

and 3, the v ariation of u 3 with ht/ (RT 1 ) and Kpl on Figure s 7 a nd 8 
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is a consequence of these facts and the energy equation. 

In a similar µianner, but using the momentum equation, the 

variation of the curves in Figure 6 can be explained from Figure 7. 

The momentum equation can be written as 

Since the momentum at state 1 is the same for all the cases on Fig-

ure 6, the constant on the right hand side is the same. Denoting dif-

ferent values of ht I {RT 1 ) by superscripts, the above expression 

can be written as 

Thus, given Figure 7, the variation of p 3 /p 1 with ht/{RT 1 ) on Fig­

ure 6 is fixed by the conservation of momentum. 
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VI. STRUCTURE OF THE EQUILIBRATION ZONE 

The differential equations derived in Section II describe the 

one-dimensional motion of a mixture of liquid particles, its vapor, 

and a gas. If these equations are integrated from state 2, just down-

stream of the shock, to state 3, the details of the equilibration pro-

cess will be known. 

The conditions at state 2 can be found quite readily. It is gen-

1-4 
erally accepted that the particles are not affected by the shock itself. 

This is . because the thickness of the shock is so much less than the 

velocity, temperature, and diffusion ranges of the particles. Hence, 

at _state 2 the properties of the particles are the same as they were at 

state 1. Since the thickness of the shock is such that the particles are 

not affected by the gas as they travel through the shock, it must also 

be that the particles do not affect the fluid. Thus, the changes in fluid 

properties are given by the conventional shock relations. 

U2 2 (l+Y::!.M 2 ) = 
ul 2 2 1 

(-y+ 1 )M1 

P2 
l + .l:::i_ (M 2 

- 1 ) - = 
P1 -y+ 1 . l 

[ l + .l:::i_ (M 2 -1) ] [ 1 
-y+l 1 

Formulation of the Mathematical Problem. 

2 
-y+l 

The structure of the equilibration zone, from state 2 to state 3 , 

involves three differential equations, equations (18), (19), and (20). 

fu.spection of these equations shows that the independent variable x is 
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not essential to the problem and that it can be eliminated quite easily. 

The role of independent variables can be delegated to any of the other 

variables. The particle velocity, u , was chosen for this position. 
p 

Dividing equations {18) and (20) by (19) eliminates the coordinate x 

and reduces by one .• · ';['he results are the number of equations 
I.. 

1 +~K -Ke) ·T . -T ' K -Ke dT I.. 
c --E.: c~ "-n3 v v P I\ -h ~ v v 

(26) 

du ;\T 
p 3 

A. -u~-u- t ;\ A 
l+ V3(K -Ke) p D3 [l+, V3 (K -Ke)](u -u) 

A.~ v v /\Da v v P 

and 

dK 
v 

du 
p 

I.. 1-K = V3 V 
A.n_ 1- K 

L-3 v3 

K (1-K )-(K · -K ) 
p3 v v v3 

I.. 
1 + ~K -Ke) 

\D
3 

v v 

K -Ke 
v v 

u - u 
p 

(27) 

These are now two equations in four unknowns; T , T , u, and K . p v 

However, equation (27) involves. only Kv apd u. Therefore, by 

eliminating T and T from equation (26), a system of two first-
p . 

order non-linear equations in two unknown results. The elimination 

of T and T can be accomplished by utilizing the overall mom·entum 
p 

and energy equations, equations (5) and (6 ). Upon doing this, there 

results 
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where E is the total ehergy flux and M 
0 

is the left hand side of the 
d(p u ) 

Pu p u K , and p P have momentum equation, equation (5). 
' p p ' p dup 

been left in simply for convenience in writing; they could be elimi-

nated in terms of K by use of equations (2) and (3). 
v 

Throughout this discuss ion, Ke has been regarded as a 
v 

known functiqn of up • This, of course, is not true. 
e 

K depends on 
v 

p and T , as given by equation (4). But in order to have T and p 
p . p 

as known functions of up , the momentum and energy equatioris must 

be solved. In order to solve these, the two continuity equations, (2) 

and (3 ), must also be solved. Thus, the problem is really not just 

one of integrating two simultaneous differential equations, but one of 

simultaneously solving five algebrai c equations and integrating two 

differential ones. Due to the obvious complexities, a Runge-Kutta 

formula for a numerical s elution was used. The method and program 

were both routine enough so their documentation was not warranted. 

The results of th~se calculations for three s ·ets of initial conditions 

are shown in Figu·res 9 through 20. The figures will be discussed 

later. 

Equations ( 19) can be rear ranged to 
u 

x = 
"-v3 JP ~~~u~p~~-d~u..,._~~~~~ 

. A. 
a(u -u)[l+, v3 (K -Ke)] 

p l\ D v v 
3 

(29) 

Hence, once the differential equations (27) and (28) have been inte-

grated so that all of the state variables are known as functions of u , 
p 

x/A 
3 

can be found as a function of u from the above quadrature. 
v p 
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Singularity Near the Equilibrium Point 

Inspection of equations (26) and. (27) reveals the fact that the 

point corresponding to state 3 is a singular point. This was to be ex-

pected since state 3 is an equilibrium state,and changes with respect 

to x of the particle variables should be zero. Indeed, this is exactly 

what equations (18) through (20) ten us. · Thus, when two of these 

equations are divided by the third, the result should be zero over 

zero at equilibrium. This indeterminate form could cause serious 

computational difficulty when the stepwise numerical integration gets 

close to the final point. Ther~ are two ways out of this dilemma. 

One is to ignore the problem completely; since the final point o f the 

solution is already known, the calculated points would be disregarded 

as soon as they started leading off in another direction. The other 

way out is to use a perturbation technique around the singularity to 

determine the limiting slope there. The latter approach was chosen 

as providing more information. 

Expanding 'the fluid and particle properties in a Taylor series 

about state 3 gives 

u = u 3 + e:(u-u3 ) + 

up = u 3 + E: (up -u3 ) + . . • 

T = T
3

+e:(T-T3 )+ ..• 

Tp = T 3 + e(Tp-T3 ) + ... 

etc. 

Introducing the se equa tions into equation (1) g ives to the first order 
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The first order momentum equation is 

and the energy equation becomes 

P3U3 . 
l-Kv3 (Kv-Kv3)h.e, + P3u3[cp(T-T3)+u3(u-u3)J + pp3u3[cp(Tp-T3) + 

u 3 (up - u 3 )] = 0 • 

Also, to first order, the difference between the equiHbrium concen-

tration and the concentration at point 3 can be written as 

Near state 3, the two differential equations, (26) and (27), can be 

written as 

and 

A 
v = AT 

. h A x:_!_ ,f, v 
- y RT3 AD 

(K -K
3

)-(Ke-K 3 ) 
v v v v 

u -u · u-u · 

( ~3 3) - ~ U3 3) 

A /...T e 
where , v (K -K e ) and ~ {K -K ) have been neglected compared to 

AD v v AD v v 

1. Since the perturba tion is only valid nea r state 3, the differentials 

cah be replaced by differences. The way the variables a re written, 

the differences can in turn be written as the variables themselves, be-

cause t hey all vanish at state 3. The result is two algebraic equations. 
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Using the linearized continuity, momentum, and energy equa­

tions and the expression for Ke -K 
3 

to eliminate all the unknowns 
v v 

except u and K , there results 
v 

3 2 
H(,t;:) + (C+F+EH)(,t;:) +·(A+.D-C+EF+G) A~u + EG-A+B = 0 (30) 

and 

p p p 

AK 
v 

Au p 
= 

aK 
3
[o+w+('y'+l-d(Au/Au )] 

v p 
(a.- a.{3K 

3 
- l) +(Au/Au ) 

v p 

where 

Au p 

Au = 

u -u = p 3 
u3 

AK = K -K 
v v v3 

/.. 
a = /..~ Kp3 (l-Kv3) 

/.. 
B = /.. v A [ l + Kp 3 

T 

(31) 
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Av 2 ht 2 
C = AD yKv3 [ M3 + ---=-z--(M3 -1) J 

a3 K 3 p 

It can be seen that equation (30} is a cubic and therefore has 

three roots. In calculating some examples, it was found that all three 

roots were real. There was no difficulty in deciding which root was 

relevant, though; the numerical integration proceeded far enough 

without difficulty so the choice was a clear one. 

Numerical Calculations 

Three sets of calculations were made to illustrate the three 

different cases possible; o less than one, greater than one, and 

complete vaporization of all the liquid at equilibrium. A description 

of the results will make the equilibration process clear. 

Figures 9 through 13 show the outcome of the first set of cal-

culations. The initial conditions are M 1 = 1. 6 , Kvl = • 2 , Kpl - . 1, 

and ht/(RT 1 ) = 10. o is approximately 1. 08. The first figure of 

the group shows u plotted against u • Both of these quantities are 
p 

non-dimensionalized by division by their equilibrium value, u
3

• This 

is also true of all the other variables in all the other figures except 
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for K • u was chosen as the independent variable in this and the 
v p 

other figures simply because it was used in that role in the calcula-

tions. The straight dashed line in the figure is the final slope as cal-

culated from equation (30 ). It has the value • 98. Thus, it can be 

seen that when up /u
3 

is less than about 1. 1, the particles and fluid 

are essentially travelling at the same speed. The hatch marks -along 

the curve represent the results of equation (29). The figure shows 

that the distance in which the velocities equalize is rather short. 

Theoretically, it takes an infinite distance for the system to reach 

full equilibrium~ The calculations we re not carried close enough to 

the singularity to determine the location of larger values of xt> .. v
3 

• 

If this were done, it would show that the distance in which the velocity 

equalized is followed by a much longer one in which the other proper-

ties attain their equilibrium values. 

Discussion of the Results 

The effect of vapor evaporation is very small in the initial 

period. This is shown in two ways. 
>:< 

First, a quantity u /u
3 

has 

been calculated and its value is indicated on the coordinate in Figure 

9. This is the ratio of the final velocity for solid particles to the 

final velocity in this case. It is seen that the curve heads toward 

this point until, at low values of up/u
3 

, it changes direction. Fur­

ther proof that initially the vaporization is not important can be seen 

clearly from Figure 10. This is a plot of K -K 
3 

against u /u
3 

• 
v v p 

Again, the dotted line indicates the limiting slope, which is -. 909 • 

It can be seen that there is almost no change· in the concentration 
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down to a value of 1. 4 for up/u3 , and very little down to values of 

1. 2 or even 1. 1. Then, after the particles have almost reached their 

final velocity and the relative speed between the fluid and particles is 

almost zero, most of the vaporization takes place. K is the ratio of 
v 

two quantities, both of which are changing. In order to avoid the am-

biguity caused by this, Figure 11 is a graph of (pp up}/ (p
3 

u
3

} plotted 

against up/u
3 

• This clearly shows little change in particle mass 

flow rate until up /u
3 

is close to unity. 

Both Figures 10 and 11 show that for values of up/u
3 

greater 

than about 2. 15, there is condensation of the v a por on the particles. 

This can be observed from the fact that K is decreasing when the 
v 

curve is read from right to left, the direction in which the process is 

proceeding. On Figure 11 the same thing is shown by the increase in 

particle mass flow rate initially. This is caused by the sudden change 

in the equilibrium constant across the shock. On the downstream 

side of the shock, the particle temperature is still very nearly T 1 , 

but the fluid pressure has risen sharply. This causes the equilibrium 

concentration to decrea se while the actual concentration is still Kv 1 • 

Thus, the condition exists in which the concentration is larger than 

the equilibrium concentration and vapor is forced to condens e . This 

always occurs. 

The fluid and particle t emperatures a r e shown in Figure 12. 

The particle tempera ture rises rapidly near the shock and then heads 

toward T 
3 

almost linearly with up • The fluid tempe r ature is fairly 

>l< >:C 
constant n e ar the shock, but heading toward T /T 3 , where T i s the 

value of T 
3 

if the particles were non-volatile. Then, as the e v apora-
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tion process becomes the dominant phenomenon, the temperature falls 

off rapidly to T 
3 

• It appears that at first the condensation of vapor 

and heat transfer from the fluid combine to quickly raise the particle 

temperature. Meanwhile, the heat lost by the fluid has been replaced 

by conversion of kinetic energy. Finally, when the majority of evap-

oration takes place, all of the necessary latent heat is supplied by the 

fluid. 

The next set of figures, 13 through 16, illustrates what the 

curves look like when o is less than one. Figure 13, which shows 

u/u
3 

plotted against up/u
3 

, is very similar to Figure 9. There are 

some differences, though. The curve approaches its final slope, 

• 82, in a much shorter distance in terms of x/">..v
3 

than did the curve 

m Figure 9. This is primarily caused by the difference in A.v
3 

due 

to L: being less than one for this figure and greater than one for Fig-

>!< 
ure 9. The tendency to head for u /u

3 
is not as obvious from this 

case as the previous one. 

The tendency for the vapor concentration to exceed the equi-

librium concentration immediately downstream of the shock has been 

explained above. The difference in the two cases, however, is that 

this tendency is not reversed in the present instance, while it was 

for the one before. This is illustrated in Figure 14, which is a plot 

of Kv -Kv
3 

against up/u
3

. Here, the concentration starts decreasing 

initially and continues to decrease, but with a much greater rate for 

small values of up/u
3 

• Again, it. should be noted that the slope is 

quite small for most values of up/u
3 

, indicating there is little con­

densation until the two velocities have almost equalized. The same 
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thing is shown in Figur_e l S, which _is a plot of (p u )/ (p
3

u
3

) • pp . 

Somewhat different results than were obtained before are 

shown in Figure 16. This figure shows the variation of Tp/T 3 and 

T/T
3 

with up/u3 • As in Figure 12, Tp/T
3 

starts l'.ising rapidly as 

soon as the shock is crossed, but now it col)tinues this rise all the 

way to T 3 . T behaves much the same way it did before, but now 

the fluid temperature is increased rather than decreased while the 

major portion of the change of phase is going on. Obviously, this is 

due to the fact that vapor is being condensed. At large values of 

u /u
3 

, when the temperature difference between the fluid and parti-
p . ' 

cles is large, Figures 14 and 15 show that the amount of vaporization 

is small. It is the sum of those two effects, heat transfer and he at 

addition, from vaporization, which accounts for the particle tempera-

ture rise. At moderate values of up/u3 the temperature difference 

is not nearly as large, but now the amount of condensation has in-

creased, providing about the same total amount of heat to the parti-

cles as before. The increasing rate of condensation continues to 

provide enough h eat for the particle temperature to rise even after 

the particles are hotter than the fluid. Finally, so much heat is 

given off that it strongly affects the fluid temperature. 

The final calculations were fo r the case where no p articles 

remain a t state 3. The conditions correspond to th~ point K v l = . 2 

on the h.f,/(RT 1 ) = 10 curve of Figure 3. This is well into the super­

heated region. 

Figures 17, 18, and 19 are very similar to their counter ­

parts from the .first · set of calculations, the other one involving 
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eventual vapor evaporation. There are some differences between 

Figures 12 and 20 which will be explained later. 

Neither the limiting slope nor the value of x/'>...v3 i s shown 

in Figure 17. The case is special enough to invalidate the equations 

used to calculate thos'e . quantities. In deriving equations (30) and 

e (31 ), the terms K -K 
3 

and K -K 
3 

were assumed to be of the 
v v v v 

same order. In this CCl.Se they are . not.! Actually, inspection of the 

differential equations yields the result that both slopes should be in-

finite at the origin. The reason why equation (29) cannot be used is 

that A.v3 is zero. 

Because of the model chosen, state 3 is reached as soon as 

all the particles have been evaporated. .This must be; when the 

particles are gone, there is nothing left to be out of equilibrium with 

the fluid. It was expected that this phenomenon could be shown more 

clearly· than it is. The fact th~t the velocities nearly equalize before 

the major portion of the evaporation takes place hides this. Only 

Figure 20 illustrates the phenomenon. For values of up/u
3 

greater 

than 1. 2, the figure is ve ry similar to Figure 12. However, on Fig-

ure 20, the slow linear climb to T 
3 

is interrupted by the evaporation 

process. This is why the temperature climbs so steeply for up/u
3 

less than about 1. 1 • 
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NOMENCLATURE 

surface area of particle 

local speed of sound 

specific heat of liquid in particles 

specific heat at constant pressure 

diffusion coefficient 

force · 

heat transfer coefficient 

mass transfer coefficient 

heat of vaporization of liquid 

concentration of vapor or particles in mixture, p / {p + p ) 
or p {p +p ) v v g 

p _v g 

thermal conductivity 

local Mach number 

mass of single particle 

rate of mass vaporized from each particle 

number of particles per unit volume 

fluid pres sure 

gas constant 

fluid temperature 

velocity 

specific volume 

rate of mass given off by all the particles per unit volume 

C a rtesian coordinate 

r a tio of specific heats 



µ 

T 

Subscripts 

1 

2 

3 

p 

v 

g 

,f., 

T 

D 
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ratio of mass rate of flow of fluid at state 3 to that at 
state 1 

characteristic length for equilibration of particles 

fluid viscosity 

fluid density 

2 (cr/cr
3

) 

characteristic time for equilibration of particle 

condition upstream of shock 

condition immediately downstream of shock 

equilibrium condition far downstream of shock 

particle 

vapor 

gas 

liquid 

temperature 

diffusion 

Superscripts 

e equilibrium 
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