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Abstract

This thesis discusses the application of phase diagrams and the associated thermodynamics to

semiconductor materials through theoretical computational calculations. The majority of work is

focused on thermoelectric semiconducting materials that enable direct inter-conversion between

electrical and thermal energy. First, one of the most efficient thermoelectric material, PbTe, is

picked to demonstrate the assessment of unknown phase diagrams by combining two methods -

DFT and CALPHAD. Since there had been no previous investigations of defect stability in this

material using computations, DFT is used to deduce the stability of various intrinsic point defects,

and in turn attribute origins of n- and p-type conductivity to the most stable defects. Then, the

calculated defect formation energies are used in the Pb-Te thermodynamic model built using the

CALPHAD method to compare the estimated solubility lines and non-stoichiometric range of the

PbTe phase with experimental data. Next, another lead chalcogenide, PbSe, is picked to explore

the phase stability of the PbSe phase upon the addition of dopants (Br, Cl, I, Na, Sb, Bi, In),

which is a common strategy to make thermoelectric materials and devices more efficient. The

range of efficiencies and thermoelectric properties as functions of composition and temperature

that can be achieved depends on the amount of dopant that can be added without precipitating

secondary phases. Also, depending on the system and its phase diagram, there can be more than

one way of doping a material. To help detail which method(s) of doping into PbSe will result in

maximum dopant solubility, a procedure similar to the above for PbTe is followed by using DFT

in combination with Boltzmann statistics to map solvus boundaries of the PbSe phase, but now in

the ternary phase space of composition and temperature. This method also helps predict electrical

conductivity, n- or p-type, in each region of the phase diagrams that represent different doping

methods.

Lastly, the role of surface energy contributions in changing phase stability at nano-dimensions
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is explored. The CALPHAD approach is employed to investigate these changes in three systems by

calculating their phase diagrams at nano dimensions and comparing them with their bulk counter-

parts.
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Chapter 1

Introduction

1.1 Thermoelectric effect and applications

The effect of climate change and global warming in raising earth’s average temperature is undeni-

able considering the available evidence [1, 2]. The rise in temperature will have detrimental effects

on the current state of social and economic life. There have been several cycles of glacial advance

and retreat in this time period; however, the current trend of glacial melting due to the highest

levels of carbon dioxide in the atmosphere in 650,000 years is unprecedented. More importantly,

97% of the scientific community is in robust consensus that this effect is anthropogenic-based [3–5].

Thus, the need for renewable energy technologies such as wind, solar, etc. that do not release

greenhouse gases to the atmosphere is urgent, and it is widely agreed that the energy source portfo-

lio of the future will be a mix of these technologies rather than being dominated by one single source.

Waste heat recovery using thermoelectric generators is one such technology that is expected to

play an important role in the formation of an energy portfolio, especially considering that some-

where between 20 to 50% of industrial energy input is lost as waste heat in the form of hot exhaust

gases, cooling water, and heat lost from hot equipment surfaces and heated products [6]. Ther-

moelectric materials have already found applications in a wide variety of applications, such as a

replacement of alternators in automobiles to directly convert waste exhaust heat to electric power

[7, 8], and in radioisotope thermoelectric generator to power space rovers [9, 10], etc. Thermo-

electric devices have many advantages over heat engines, such as having spot temperature control

and being low maintenance, and, as they are solid-state devices, they have no moving parts, thus
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making their operation quiet and vibration free. These advantages enable its application for remote

sensing, such as in the Voyager spacecrafts of NASA-JPL, which has been one of its most prolific

and successful applications [11]. These deep space probes, after a journey of more than 37 years,

have reached interstellar space, the furthest point any man-made object has reached, which proves

power stability of thermoelectric devices over extended periods of time.

To be able to convert energy from heat into electrical voltage and vice-versa, the material needs

to contain free charge carriers to make this energy transfer possible. It is also desirable that it have

high electrical conductivity while maintaining a low thermal conductivity so that charge carriers

can be transported without compromising temperature gradient. These characteristics are inter-

dependent on each other and on carrier concentrations, as can be seen from Fig. 1.1.

Figure 1.1: Contradictory nature of material properties that contribute to efficiency of thermoelec-
tric materials plotted as functions of carrier concentrations.

The efficiency of thermoelectric materials is measured by the figure of merit zT , which is given

by,
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zT =
S2σT

(κL + κe)
, (1.1)

where, S is the Seebeck coefficient, σ is the electrical conductivity, T is the absolute temperature,

and κL and κe are the lattice and electronic thermal conductivities, respectively. To maximize zT ,

a large Seebeck coefficient is needed, which is ensured when only a single type of carrier (electrons

or holes) is present in the material, while also maximizing electrical conductivity and minimizing

thermal conductivity. As can be seen from Fig. 1.1, zT commonly peaks at carrier concentrations

of 1018 to 1021 carriers/cm3. Such carrier concentrations are typical of low band gap heavily doped

semiconductor materials that fall in a domain between metals and conventional semiconductors.

The thermoelectric effect is based on three correlated effects: the Seebeck effect, the Peltier effect

and the Thomson effect. The Seebeck effect, named after Thomas Johann Seebeck who discovered

it in 1822, is most often discussed when characterizing thermoelectric performances, as in practice,

the Seebeck effect is most convenient with respect to lab measurements of voltage generated per

degree of temperature difference. According to this effect, when one side of the material is heated

while the other side is kept cooler, electrons diffuse to the cold side of the material. This phe-

nomenon is schematically shown in Fig. 1.2 in a thermoelectric module consisting of one n-type

and one p-type leg that are electrically connected in series and thermally in parallel. To balance this

chemical diffusive driving force created by a temperature gradient, a stable electric field/voltage is

generated across the material to drive a current I through the resistance R.

1.2 Motivation behind and organization of this thesis

The stumbling block that has kept thermoelectric devices out of widespread commercial applica-

tions is their low Carnot efficiency compared with heat engines and their economic evaluations [12].

One of the factors contributing to these low efficiencies occurs at the contacts between source and

device in maintaining a steady thermal transfer, but another major contributing factor arises from

the efficiency of the material itself. The latter has been subject of the majority of thermoelectric

materials research.

The lead chalcogenides (PbQ, Q = Te, Se, S) crystalize in a cubic rock salt structure with space
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Cold side

Figure 1.2: Schematic of a thermoelectric module with n-type and p-type legs connected electrically
in series and thermally in parallel. As shown, the charge carriers travel from the hot side to the
cold side, which drives a current I through the resistance R.

group Fm3m (no. 225), and are one of the most well studied class of thermoelectric materials

due to their highly symmetric structure, relatively simple defect chemistry, and ease of synthesis

without competing phases. They also have the advantages of have narrow band gaps with fairly

high carrier mobilities, and their carrier densities are easily tunable between the ranges of 1016 to

1021 carriers/cm3 for both n- and p-type operation, thus making them ideal for thermoelectric and

optoelectronic applications. PbTe based alloys used in thermoelectric generators have a peak zT of

around 0.8 for both n- and p-type operation [13]. The bulk of the work in this thesis is focused on

two such lead chalcogenides, PbTe, and its less studied analog, PbSe.

Defect control is critical in semiconductors and a prerequisite to optimize zT not only because

intrinsic defects and intentional doping is a primary means of controlling the majority carrier type

for charge transport, but also because defects can significantly alter properties of semiconductors.

This is challenging and in many cases has impeded the realization of the best zT as predicted. Thus,

first in Chapter 3, the stability of intrinsic point defects in PbTe, one of the most widely studied

and efficient thermoelectric material, is explored by means of Ab initio based Density Functional

Theory (DFT) [14, 15], a method that is described in detail in Chapter 2. Prior to this work, to

the author’s knowledge, there was no study on intrinsic point defects in PbTe, making this work
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even more critical. These calculations could prove to be very helpful in determining the defect

thermodynamics of various defects in this system. The origin of n- and p-type conductivity in

PbTe is attributed to particular intrinsic charged defects by calculating their formation energies.

These DFT calculated defect formation energies are then used in the Gibbs free energy description

of this phase as part of the Pb-Te thermodynamic model built using the CALPHAD (CALculation

of PHAse Diagrams) approach [16] (also described in detail in Chapter 2), and in the resulting

phase diagram it is found that its solubility lines and non-stoichiometric range agree very well with

experimental data. Such an approach of using DFT in conjunction with CALPHAD for compound

semiconductor phases that exhibit very small ranges of non-stoichiometry does not only make the

process of calculating phase diagrams for such systems more physical, but is necessary and critical

for the assessment of unknown phase diagrams. A CALPHAD type thermodynamic model is nec-

essary to improve our understanding of phase stability, phase equilibrium, and thermodynamics for

a system. Chapter 3 presents the methodology and approach of the CALPHAD technique which

involves the modeling of Gibbs energies of all the phases taking part in equilibrium through reliable

and consistent experimental data. Such a model offers many advantages: (i) it can be extrapolated

to regions of temperatures and compositions which are not easily accessible by experiments, (ii)

and it provides an easy way to study how equilibria and reactions are affected by various external

factors. The use of such techniques plays an even more important role since experiments are chal-

lenging and expensive for this class of systems.

For additional control over the performance of a semiconductor for a specific application, an

external dopant is usually added to it which allows for precise control over electron and hole den-

sities, which in turn is directly related to the dopant concentration. It is an essential strategy

to improve the efficiency of thermoelectric materials and devices. Thermoelectric semiconductors

are so heavily doped that their transport properties mimic properties of metals more than semi-

conductors. The doping levels in these materials are orders of magnitude higher than in other

semiconductors, making intrinsic impurities or self-doping less important than extrinsic impurities.

To estimate the amount of dopant that can be added to a semiconductor without precipitating

secondary phases, a detailed phase diagram is needed. Calculated phase diagrams could be very

helpful when time-consuming experimental ones are not available. In Chapter 4, we have calcu-

lated dopant solubilities of Br and Na in the thermoelectric material PbSe by mapping its solvus
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boundaries in different regions of the respective ternary phase diagrams using DFT defect energy

calculations. The narrow gap PbSe provides an example where most defects with charge state as

expected from electron count are properly localized, whereas other charge states of defects lead to

charge delocalization, which, in effect, alter their charge state to those of localized defects. The

equilibrium electron chemical potential is positioned where the defect landscape is dominated by

delocalized defects that, from the view of defect thermodynamics, are not expected to be stable or

play a role in controlling the majority carrier type or concentration, resulting in unexpected dopant

concentrations and solubilities. Experimentally measured doping efficiencies for these systems in-

dicate much higher formation energies for these defects, beyond the inaccuracies of the calculations

due to any known reason. Performing thermodynamic calculations using only the expected charge

states, precluding others, enables accurate prediction of experimentally measured doping efficiencies

and phase diagrams. Utilizing such a method in related semiconductors containing only localized

defects will expedite the use of such calculations by experimentalists in understanding phase dia-

grams and devising effective doping strategies.

Cl, Br, I, Sb, Bi, and In are popular n-type and p-type dopants in PbSe and other chalcogenides.

The range of thermoelectric properties as a function of carrier concentration and temperature, such

as Seebeck coefficient and electrical conductivity, that can be achieved depends on the amount of

dopant that can be added to it without precipitating secondary phases. This requires a mapping

of solvus boundaries of the thermoelectric phase in composition and temperature space upon the

addition of a dopant. In Chapter 5, we employ density functional theory (DFT) calculations to

predict the most stable defects in different regions of thermodynamic phase stability between the

PbSe phase and these dopants. When this information is used as input to a statistical mechanics

model, we determine the dilute-limit single-phase boundary of PbSe in each ternary system contain-

ing the dopant. This enables the calculation of dopant solubility and carrier concentration in PbSe

in the ternary composition space as a function of temperature, which helps detail which method(s)

of doping into PbSe will result in maximum dopant solubility without precipitating second phases.

As will be shown in this chapter, it also helps predict electrical conductivity behavior, electron or

hole type, in each phase region representing the different doping methods.

Lastly, in Chapter 6, the effect of grain size of material alloys on their phase stability and phase
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diagrams is explored. Phase diagrams of multi-component systems are critical for the develop-

ment and engineering of material alloys for all technological applications. At nano dimensions,

surfaces (and interfaces) play a significant role in changing equilibrium thermodynamics and phase

stability. In this work, it is shown that these surfaces at small dimensions affect the relative equi-

librium thermodynamics of the different phases. The CALPHAD approach for material surfaces

(also termed “nano-CALPHAD”) is employed to investigate these changes in three binary systems

by calculating their phase diagrams at nano dimensions and comparing them with their bulk coun-

terparts. The surface energy contribution, which is the dominant factor in causing these changes,

is evaluated using the spherical particle approximation. Butler’s equations are used to calculate

alloy surface tensions, which along with bulk thermodynamic models, are used to calculate interac-

tion parameters to develop thermodynamic models. It is first validated with the Au-Si system for

which experimental data on phase stability of spherical nano-sized particles is available, and then

extended to calculate phase diagrams of similarly sized particles of Ge-Si and Al-Cu. Additionally,

the surface energies of the associated compounds are calculated using DFT, and integrated into the

thermodynamic model of the respective binary systems. Computed data on melting points of pure

components, and alloy surface tensions are compared and agree well with available experimental

data. In this work we found changes in miscibilities, reaction compositions of about 5 at.%, and

solubility temperatures ranging from 100-200 K for particles of sizes 5 nm, indicating the impor-

tance of phase equilibrium analysis at nano dimensions.

Finally, a summary of the thesis is provided in Chapter 7, where it is explained how the results

of this work on defect thermodynamics fit within the larger context of determining phase equilibria

in binary and ternary multi-component thermoelectric alloys, and directions on future work that

can be undertaken to achieve the objective of devising effective doping strategies will be briefly

discussed.
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Chapter 2

Computational Methodology

2.1 Electronic structure calculations

2.1.1 Introduction

Density Functional Theory (DFT) has been one the most important breakthroughs in the physical

sciences in the last 50 years, and is a popular method for the quantum mechanical solution of pe-

riodic systems to compute the electronic structure of matter. It has proven to be a very successful

approach for the description of ground-state properties of metals, semiconductors, and insulators,

and thus its application to study a large number of properties of real materials has seen an explosive

growth over the last couple of decades, especially considering the exponential increase in supercom-

puting power. It is partly a parameterless method, which is why it is sometimes referred to as an ab

inito method, and so its results are considered fundamental in a physical sense. The fundamental

principle of DFT is that any property of a system consisting of many-body interactions can be

viewed as a functional of the ground state density, which in principle, determines all information

on the ground state. In this section, a succinct description of the formulation is described. A good

exposition of the method can be found in Ref. [17].

Consider a solid of atomic number Z, and composed of N number of nuclei. These nuclei are

positively charged particles and heavier than the negatively charged electrons. The total number of

interacting particles in such a solid becomes (N + Z.N), thus making this a many-body problem.

The Hamiltonian for a solid is given by,
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(2.1)

where the nuclei are of mass Mi and at
−→
Ri, and the electrons are of mass me and at positions −→ri .

The charge of the electron is e. The first two terms are the kinetic energy operators of the nuclei

and electrons, respectively. The last three terms describe the Coulombic interactions between a

nucleus and an electron, between two electrons, and between two nuclei, respectively.

Even for the modern-day computers, it is extremely challenging to solve Eqn. (2.1) exactly

for elements with more than a few electrons. Thus, several approximations are made to ease the

calculations. These are briefly described in the following subsections.

2.1.2 The Born-Oppenheimer Approximation

This approximation, also known as the adiabatic approximation, assumes the nuclei to be “frozen”

due to their heavier masses. Thus, the kinetic energy term of the nuclei is eliminated, and the

potential term now becomes a constant. Thus, only electrons are left as interacting particles in this

many-body problem, and Eqn. (2.1) reduces to

Ĥ = T̂ + V̂ + V̂ext, (2.2)

where the first term (T̂ ) is the kinetic energy operator for the electrons, the second term (V̂ )

describes the potential energy between the electrons, and the last term (V̂ext) is the potential

energy of the electrons in the external potential of nuclei.
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2.1.3 Density Functional Theory

After the first level of approximation, the problem becomes simpler, but still remains difficult to

solve; the solution of Ĥ is still intractable for systems with more than a few dozen atoms because

the many-body wave function depends on at least 3N variables for a system with N interacting

electrons. Thus, the so-called Density Functional Theory (DFT) is used to simplify the problem

further and this method relies on two important theorems by Hohenberg and Kohn [14]. The first

theorem states that there is a one-to-one relationship between the external potential Vext and the

ground-state density ρ(−→r ) of a many-electron system. The Hamiltonian is determined by Vext,

so all the properties of the many particle system follow from a specification of ρ(−→r ). The second

theorem states that the lowest energy is obtained if and only if the ground state density ρ0(−→r ) is

used in the energy functional. It establishes a variational principle for the ground-state total energy

functional H[ρ] ≡ EVext
[ρ] as,

EVext [ρ] = < ψ|T̂ + V̂ |ψ >︸ ︷︷ ︸
FHK [ρ]

+ < ψ|V̂ext|ψ >, (2.3)

where the Hohenberg-Kohn density functional FHK [ρ] is universal for many-electron systems as it

contains information regarding only electrons and not protons. It is postulated in this theorem that

at the ground-state density Vext, the ground-state energy functional EVext
[ρ] reaches its minimum

value.

2.1.4 Kohn-Sham equations

The Kohn-Sham equations helped turn DFT into a usable and practical tool. The first formulation

is defined for the correlation energy, which is the part of the total energy present in the exact

solution, but absent in the Hartree-Fock solution, and is given by,

Vc = T − T0, (2.4)

where T is the exact kinetic energy functional for the electrons, and T0 is the kinetic energy func-

tional for a non-interacting electron gas. The second formulation defines the exchange contribution

to the total energy that is present in the Hartree-Fock solution, and absent in the Hartree solution.

Thus, it is given by,
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Vx = V − VH , (2.5)

where V is the exact electron-electron potential energy functional, and VH is the Hartree contribu-

tion. Thus, the Hohenberg-Kohn functional, from Eqn. (2.3) is written in the following way:

FHK = T0 + V + (T − T0)

= T0 + V + Vc from (2.4)

= T0 + VH + Vc + Vx from (2.5),

where Vxc is the exchange-correlation energy functional. The energy functional is thus written as,

EVext
[ρ] = T0[ρ] + VH [ρ] + Vxc[ρ] + Vext[ρ]. (2.6)

The corresponding Kohn-Sham Hamiltonian is given by,

ĤKS = T̂0 + V̂H + V̂xc + V̂ext. (2.7)

For a system with N particles, the Hamiltonian is solved as a one particle system in its N lowest

eigenstates φi, usually referred to as the Kohn-Sham orbitals. The eigenstates are then determined

by solving a Schrödinger-like non-interacting single-particle equation given by,

ĤKSφi = εiφi. (2.8)

These N equations are the Kohn-Sham equations, and are at the heart of DFT. They can be

solved by expanding the single electron wave functions in a basis and diagonalizing the Hamiltonian

matrix. Since both VH and Vxc depend on the electron density ρ(−→r ), which in turn depends on

the wavefunctions φi being calculated, this problem becomes self-consistent. In the first step, an

initial guess of the electron density density ρ0 is made. With this value, the Hartree operator VH

and exchange-correlation operator Vxc, both of which depend on ρ0, are calculated. Thus, the

Hamiltonian HKS is constructed, and the eigenvalue problem is solved to obtain φi which in turn

leads to the calculation of a new density ρ1. This new density is then compared with the starting
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guess ρ0, and the procedure is repeated again until both become equal.

2.1.5 Generalized Gradient Approximation

This approximation method for the exchange-correlation functional is used for the work presented

in this thesis. In this method, the exchange-correlation contribution of every infinitesimal volume

not only depends on that volume, but also on the density in neighboring volumes [18]. Thus, the

gradient in density between different volumes is also taken into account, and thus it is termed as

Generalized Gradient Approximation (GGA).

2.1.6 Solving the Kohn-Sham equations

The single-electron equations to solve are infinite and similar to Eqn. (2.8) irrespective of the

method of approximation chosen for the exchange-correlation functional. The wave functions are

expressed as,

φm =

P∑
p=1

cmp φ
b
p, (2.9)

where cmp are the coefficients to be calculated, and φbp is a basis set. The dimensions of the function

space in which the wave functions φm are being searched, are infinite, thus making P infinite.

However, it is impossible to work with an infinite basis set, and thus its selection is made in such

a way that the resulting functions are close to φm. The larger the value of P , the more accurate

the wave functions, but more time consuming the calculations. Once the selection of a basis set

is made, solving Eqn. (2.8) becomes an eigenvalue problem. The choice of a basis set is made

in such a way that it is both efficient, i.e., it represents the wave functions as closely as possible,

thus requiring lower values of P , and unbiased, i.e., its properties are not influenced by the wave

functions. One such basis set that satisfies both of these requirements quite well is the plane wave

basis set, which is briefly described in the following section.

2.1.7 Pseudo-potential method

Blöch’s theorem defines an eigenfunction as,
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ψn−→
k

(−→r ) =
∑
−→
K

cn,
−→
k

−→
K

ei
−→
k .−→r , (2.10)

where cn,
−→
k

−→
K

are coefficients to be determined, ei
−→
k .−→r is a plane wave that contains the periodicity

of the lattice, and
−→
k is a vector in the first Brillouin zone. Comparing Eqns. (2.9) and (2.10), we

thus obtain that m represents (n,
−→
k ), and p represents (

−→
k +

−→
K). However, such a basis set is also

almost impossible to calculate accurately. Thus, the potential in regions close to the nuclei, which

is its most fluctuating part, is replaced by a pseudo-potential that yields smooth wavefunctions near

the atomic nucleus as this part of the solid behaves similarly to free atom electrons. This makes the

basis set manageable to calculate for a system. Older pseudopotentials, such as norm-conserving

[19] (where electron charge within the core part is equal to that of the actual atom) and ultrasoft

[20, 21] pseudopotentials (do not conserve charge but reduce the heights of the peak in the potential

that reduces the number of necessary plane waves) can be quite fast and accurate in some cases,

and are still in use. The more recent projector augmented wave (PAW) method [18, 22–24] was

used for the work presented in this thesis. Ref. [25] presents a comparison of the constructions and

performances of these pseudopotentials methods. The PAW method involves the expansion of the

wave functions in a plane wave basis set. It retains the full all-electron wave function and charge

density while still being computationally efficient. Also, for plane waves, the cut-off can be easily

set by limiting the set to k with k < Kmax.

2.2 The CALPHAD method

The thermodynamics of solution phases is first described here as it forms the fundamental basis of

the CALPHAD method. Solution is a term referred to a system in a solid, liquid or gaseous state,

which exhibits solubility between the various components that make up the system. With relevance

to the present work, thermodynamics of two-component systems or binary solutions will be dealt

with in the following, noting that the formulation can be extended in a straightforward manner to

ternary and higher-order systems.
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2.2.1 Ideal mixing

Ideal mixing represents an ideal case of no mixing or interactions in solutions. Statistical ther-

modynamics defines entropy in terms of disorder in the system. Kelvin and Boltzmann gave a

mathematical formulation of this definition as:

S = k logeW, (2.11)

where k is Boltzmann’s constant and W is a measure of disorder in the system. If in a binary

solution, out of a total of N sites n sites are occupied by A-type of atoms and the rest, (N − n)

sites, by B-type atoms as shown in Fig. 2.1.

Figure 2.1: Schematic representation of random mixing of A and B atoms/molecules in a binary
solution (adapted from Ref. [16]).

The disorder or probability of distribution in this case is given by,

W =
N !

n!(N − n)!
. (2.12)

The entropy of this solution is then given by,

S = k loge
N !

n!(N − n)!
. (2.13)

After applying Stirling’s approximation and subsequent simplifications, the entropy change for ideal

mixing is given by,

S = −R(xalogexa + xblogexb). (2.14)

Thus, the Gibbs energy of mixing in case of no interactions between constitutive elements is given

by,
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Gidealmix = RT (xalogexa + xblogexb). (2.15)

2.2.2 Non-ideal mixing

In reality, there is always some kind of interactions between different atom types in a solution.

These interactions can either be attractive or repulsive in nature. The effects of such interactions

are incorporated via the excess mixing energy term, Gxs
mix, which is modeled in the simplest way

according to the regular solution model:

Gxsmix = Ω xaxb, (2.16)

where Ω is a regular solution parameter, and its sign depends on the nature of chemical interactions,

positive for repulsive and negative for attractive interactions. The tendency to form a miscibility

gap or two-phase structures in binary solution phases increases with an increase in magnitude of

this regular solution parameter. In the case of attractive interactions or negative values of the

regular solution parameter, the tendency is to form continuous solid solutions. Equations (2.15)

and (2.16) combine to give the Gibbs energy of solution,

Gmix = RT (xalogexb + xblogexb) + Ω xaxb. (2.17)

However, in the presence of crystallographically distinct phases, the Gibbs energy at end-points of

the mixing curve have to be calculated, thus requiring that reference states be defined for the pure

components. The Gibbs energy is then written as,

G = Gref + Gidealmix + Gxsmix, (2.18)

where Gref is given by,

Gref =
∑
i

xiG
o
i , (2.19)

where xi is the mole fraction of component i, and Go
i is the Gibbs energy of the phase for pure

component i.
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2.2.3 Thermodynamic models

Solution phases are modeled via various methods, two of which are described here.

2.2.3.1 Random substitutional model

In this model, the components occupy crystal sites in a random manner rather than in an ordered

manner, as shown in Fig. 2.2. Thus, gases, liquids and some metallic solid solutions are represented

very well by this model.

Figure 2.2: Random occupation of sites on a bcc structure (adapted from Ref. [16]).

In the present work, the liquid, and solid solution phases (that are non-stoichiometric) phases are

modeled in this manner. One of the simplest non-ideal models is the regular solution model which

considers no dependence of the nature of interactions between the components on the composition

of the solution. The Gibbs free energy expression of such a model is given similar to Eqn. (2.18),

Gφm =
∑
i=A,B

xi
oGφi + RT

∑
i=A,B

xilogexi + xAxBL
φ
A,B , (2.20)

where Gφm denotes the Gibbs energy of phase φ, xi is the mole fraction of component i, oGφi defines

the Gibbs energy of the phase containing the pure component i obtained from the SGTE database

[26], and LφA,B is an interaction parameter that incorporates the effects of non-ideal mixing. To

account for dependencies on changes in composition, this parameter is expanded using Redlich-

Kister formalism [27] as,

LφA,B =
∑
v

LφA,B(xA − xB)v. (2.21)
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The above equation for Gxsmix is considered a regular solution when v = 0 and non-regular solution

when v > 1. Th binary interaction parameter is made temperature-dependent using,

vLφA,B = vA + vBT, (2.22)

where vA and vB are model parameters to be optimized.

2.2.3.2 Sublattice model

This method of modeling phases can be applied to a variety of phase types such as interstitial and

solution phases. The sublattice model can be visualized as consisting of interlocking sublattices as

shown in Fig. 2.3.

Figure 2.3: A bcc structure shown with preferential occupation of sites by atoms on the two simple
cubic sublattices (adapted from Ref. [16]).

Its crystalline nature does not particularly represent a crystal structure within its general defi-

nition; however, certain external terms and conditions can be imposed to simulate special structure

types. In this method it is necessary to define the fractional site occupation of each component in

all the sublattices, which is given by,

syi =
nsi
Ns

, (2.23)

where nsi is the number of atoms of component i on sublattice s. In many cases, when vacancies

are involved and become important to model a phase, such as an intermetallic phase, the site

occupation is modified as,
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syi =
nsi

nsV a +
∑
i

nsi
, (2.24)

where nsV a gives the number of vacancies on sublattice s. The Gibbs energy reference state is

obtained when only pure components can be considered as existing on each sublattice, and is given

by,

Grefm =
∑
I0

PI0(Y )oGφI0, (2.25)

where PI0 represents the corresponding product of site fractions when each sublattice is occupied

by only one component. In general, PIZ is the site fraction product when only one sublattice

contains Z components and the remaining sublattices are occupied by one component. GφI0 is the

Gibbs energy of the compound defined by I in phase φ. For example, if a two-sublattice phase

is modeled as (A,B)1(C,D)2, where A, B, C and D are the components of this phase, the Gibbs

energy reference state is written as,

Grefm = yAyCG
o
AC + yAyDG

o
AD + yByCG

o
BC + yByDG

o
BD. (2.26)

The ideal entropy of mixing in this case is given by,

Gidealmix = RT
∑
s

Ns
∑
i

ysi logey
s
i . (2.27)

Vacancies are included in the fractional site occupation term, ysi . The ideal entropy term in the

above expression includes all possible configuration contributions by all components mixing in each

sublattice. The Gibbs excess energy of mixing for the two-sublattice system described previously

as (A,B)1(C,D)2, is given by,

Gxsmix = y1
Ay

1
BL

0
A,B:∗ + y1

Cy
1
DL

0
∗:C,D. (2.28)

The above equation represents the regular solution format, and L0
A,B:∗ and L0

∗:C,D are the regular

solution mixing parameters for each sublattice that are independent of the site occupation on the

other sublattice. The sub-regular format includes the site occupation on the other sublattice as,
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Gxsmix = y1
Ay

1
By

2
CL

0
A,B:C + y1

Ay
1
By

2
DL

0
A,B:D + y1

Cy
1
Dy

2
AL

0
A:C,D + y1

Cy
1
Dy

2
BL

0
B:C,D. (2.29)

Similar to the formalism in the case of the random solution model, the parameters are made

composition dependent as,

L0
A,B:C = y1

Ay
1
By

2
C

∑
v

LvA,B:C(y1
A − y1

B)v. (2.30)

The other parameters are modeled in a similar manner. The final Gibbs excess energy of mixing is

given by,

Gxsmix =
∑
Z>0

∑
IZ

PIZ(Y )LφIZ . (2.31)

Thus, the total Gibbs energy of this phase is obtained by combining the reference energy, ideal

entropy contribution and excess energy contribution from Eqns. (2.25), (2.27), and (2.31), respec-

tively, which is then given by,

Gφm =
∑
I0

PI0(Y )oGφI0 + RT
∑
s

Ns
∑
i

syiloge
syi +

∑
Z>0

∑
IZ

PIZ(Y )LφIZ . (2.32)

2.2.4 Evaluation of Gibbs energy parameters

After having made a decision of the model for the Gibbs energy of each phase to be considered for a

given system, and entering all experimentally measured quantities and data from DFT calculations

in an input file (.POP), the next step in the CALPHAD method is the evaluation of the param-

eters. This is carried out using an optimizer code that essentially revolves around Gibbs energy

minimization. This type of code is based on the aim of reducing the statistical error between the

experimental data and the calculated phase equilibria as much as possible.
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2.2.4.1 Minimization procedure for single-phase equilibria

In the case of solution phases where enthalpies and entropies are temperature dependent, the Gibbs

energy minimization is carried out by minimizing the function,

∆G1φ =
∑
i

xφi G
φ

i − Gφ = 0 (2.33)

A Newton-Raphson method is used for rapid convergence. An initial temperature is chosen and

both ∆G1φ and ∆G1φ/dT are calculated and then used to estimate a new temperature where ∆G1φ

is expected to be equal to zero as shown in Fig. 2.4. If this new temperature does not satisfy the

convergence condition, a new temperature is chosen. This process is repeated until ∆G1φ=0.

Figure 2.4: Schematic diagram showing the process of calculating the temperature at which ∆G1φ=0
(adapted from Ref. [16]).

2.2.4.2 Minimization procedure for two-phase equilibria

The following mass balance equations will be utilized in the calculation of a two-phase equilibria,
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Ni =
∑
φ

Nφ
i (2.34)

and,

∑
i

N i = M, (2.35)

where Ni is the total number of mole of component i in the system, Nφ
i is the number of moles of

component i in phase φ, and M is the total number of moles in the system.

The following is a brief description of the general minimization procedure: at first, the phase

equilibrium is assumed to be single-phase. Then, an arbitrary amount of the second phase is

introduced in the system, and in accordance with the mass balance equations a corresponding

change is made in the composition of the first phase followed by the calculation of the Gibbs

energy. The composition of this phase is then kept constant and the amount of the second phase is

then varied with a corresponding change in its composition, to maintain mass balance, so that the

Gibbs energy is minimized, as shown in Fig. 2.5.

Figure 2.5: First stage in the iteration process of Gibbs energy minimization of a Cu-Ni alloy at
composition x0 in Cu, and at 1523 K (adapted from Ref. [16]).
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The selection of the amount of the second phase to be varied can be made by calculating the second

derivative of G with respect to Nliq to obtain the composition at which dG/dNliq=0, as shown in

Figs. 2.6 and 2.7.

Figure 2.6: Gibbs energy versus N liq in an alloy shown schematically (adapted from Ref. [16]).

This process is repeated until the Gibbs energy is minimized. The same procedure is then applied

by varying the amount and composition of the first phase as shown in Fig. 2.8(a). This cycle is

repeated as shown in Fig. 2.8(b) and 2.8(c) until a minimum is obtained in the Gibbs energy and

the convergence criteria is satisfied.

2.2.4.3 Stepping and mapping

The previous procedures are for the calculation of equilibrium points at specific composition, tem-

perature and pressure. However, for phase diagram calculations when changing a particular con-

dition, such as composition or temperature in the present case, a procedure known as stepping is

employed. In this process, a property is increased in small amounts or steps, and then the stability

of the phase is checked at this step. If the phase is stable at that particular step, it is used as

a starting point for the next step. This process is repeated until the conditions are not satisfied.

Mapping is the process by which a phase diagram is plotted and employs the calculated results of

the stepping code to map a phase boundary. Binary phase diagrams have two degrees of freedom

that are most commonly represented by the temperature and composition.
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Figure 2.7: Calculation of the second derivative of G with respect to N liq to obtain the minimum
in Gibbs energy (adapted from Ref. [16]).

The requirements from a calculation method must be to reduce the degrees of freedom, calculate

the Gibbs energy of the system, and use some iterative technique to minimize the Gibbs energy.

Also, the robustness and the speed of the calculations depend heavily on the choice of starting

guesses for the model parameters. Even though the calculation methods being used might be

global minimization programs, there is always a possibility for the calculation to get stuck at a

local minimum, thus giving an incorrect equilibrium result. Therefore, it is always recommended

to have some prior knowledge of the phase diagram equilibria. This problem is most evident in

the case of phases that have a miscibility gap. In case of availability of prior information on the

miscibility information, such a phase is then given start points for both #1 and #2 phases (that

form the miscibility gap) by the program and it ensures the convergence accounts for both minima.

However, in a generalized environment, this method would fail if unknown miscibility gaps were

present or if there was an order/disorder transition associated with the phase. Thus, some prior

knowledge of miscibility gap or ordering is necessary to obtain reasonable accuracy and speed of

execution.
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(a) (b)

(c)

Figure 2.8: Second, third, and fourth stage in the iteration process of Gibbs energy minimization
of a Cu-Ni alloy with composition x0 in Cu, and at 1523 K (adapted from Ref. [16]).

2.2.4.4 The PARROT programme

The PARROT module [28] is integrated with the Thermo-Calc package [29] and is essentially based

on the following governing principles:

- Establish a criterion for best fit: This criterion is based on a maximum likelihood principle

where a likelihood function is chosen and must be maximized to obtain the best estimates of the

model parameters. Simplification of this process is made by assuming that the joint probability

density function of all the experimental data is Gaussian in form, and that there is no dependence

or coupling between different experimental measurements.
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- Data separation based on accuracies: The PARROT module allows the user to input exper-

imental data that are significantly inaccurate compared with their true values in addition to the

data which are free from such inaccuracies. Dependent and independent variables: Both types of

variables can be used in the optimization process of the PARROT module. Dependent variables are

those that describe the responses of the system to prescribed conditions, whereas independent vari-

ables define the equilibrium conditions. The calculation of the Gibbs energies for different phases

and the determination of equilibria are then performed by the Poly-3 module of the Thermo-Calc

software that is coupled with PARROT. State variables such as temperature, pressure, and chem-

ical potentials are treated as independent variables and are preselected to define the equilibrium

conditions. Dependent variables, or responses of the system, are then written as functions of the

independent variables and the model parameters. This makes it possible to use almost any type

of experimental information in the evaluation of the model parameters. A significant advantage of

using the CALPHAD method is that various other properties can be automatically obtained after

the calculation procedure and can also be plotted as functions of the state variables.

In developing the thermodynamic model of the PbTe phase in the Pb-Te system (Chapter 3), the

optimization process was started with a small number of iterations and very low statistical weights

assigned to experimental and calculated data. The liquid and the PbTe phases were first entered in

the optimization process. The weights were increased appropriately during the optimization process

to be within an acceptable range of the input data. To aid in the calculation of a global equilibrium,

another constraint that was used was the driving force for the formation of a particular phase.

Driving force is defined as the affinity between reacting chemical species, and its magnitude gives

the equilibrium of a phase at particular composition and temperature. At particular temperature

and composition it is negative for the stable phase, and positive for the phases that are not at

equilibrium under those conditions. Also, the optimization was carried out until a balance was

achieved between different sets of input data, which in the present work are the solidus, liquidus

equilibrium lines, the formation enthalpies of the liquid and PbTe phases, and the defect formation

energies.
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Chapter 3

Ab initio study of intrinsic point
defects in PbTe: an insight into
phase stability through defect
thermodynamics

Adapted from Ref. [30] with permission from Elsevier.

3.1 Introduction

One solution to the rapidly changing climate and global warming is to extract the available energy

(or exergy) from waste heat, and convert it to electricity. Devices that perform such an operation

are called thermoelectric generators, and materials used in these devices are known as thermoelec-

tric (TE) materials. The lead chalcogenide salt PbTe, one of the most widely studied TE materials,

is a IV-VI semiconductor with a small band-gap and is the best performing TE material for mid-

temperature power generation (200-6000C) [13]. It exhibits both types of conductivity depending

on the growth conditions- n-type (electrons) in a Pb-rich environment and p-type (holes) in a Te-

rich environment [31–37], which makes it particularly advantageous since TE devices consist of

both n- and p-type legs coupled together. Furthermore, tuning the carrier densities by adjusting

the defect/dopant concentrations not only maximizes zT , but also gives control over where its peak

occurs in the temperature space [13]. This coupling between carrier concentration, defects/dopants,

and zT makes it important to understand the defect chemistry of a material for its application as
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a thermoelectric material.

In a previous study by Ahmad et al [38], the physics and electronic structure of vacancy and im-

purity induced deep defect states in PbTe was investigated by ab initio calculations. Another study

by Xiong et al [39] investigated the impact of dopants on the density of states (DOS) and band

structures between pure and extrinsically doped PbTe. Both these works have not investigated the

energetics of different types of point defects in intrinsic PbTe. In a recent publication by Wang et

al [40], spin-orbit coupling (SOC) calculations were performed that result in a band gap of 0.11 eV,

which is in better agreement with the room temperature experimental band gap of 0.31 eV. How-

ever, it was found that the fermi level is positioned where Te vacancy V +2
Te donor defects for Pb-rich

and Te substitutional Te+2
Pb donor defects for Te-rich conditions are most stable, thus leading to

n-type conductivity for both growth conditions. p-type/hole conductivity for Te-rich conditions was

found to only occur for a limited set of Te chemical potential. This result is inconsistent with the

well-known observance of both electron and hole conductivity in PbTe from numerous experimental

works. Additionally, no comparison with experimental results on carrier concentrations is made.

Thus, in this work, we investigate the role of intrinsic point defects in the conductivity and doping

behavior of PbTe within the framework of Density Functional Theory (DFT). Specifically, we study

the stability of vacancy, anti-site, and interstitial defects by calculating their formation energies for

both Pb-rich and Te-rich growth conditions. Defects with the lowest formation energies will help

us attribute the origins of n-type and p-type conductivity in PbTe to that specific type of point

defect type.

The phase diagram of Pb-Te exhibits a very small range of non-stoichiometry in the PbTe phase

to the order of x = 10−4 on both sides of the stoichiometric line at x = 0.50 [31–37] due to the

presence of defects, which in turn leads to the n- and p-type conductivity in this phase. A previously

developed thermodynamic model of this system by Gierlotka et al [41] describes the Gibbs energy

of this compound using the Wagner-Schottky defect model [42] that assumes anti-site defects - (Pb,

Te)1:(Te, Pb)1 to cause the very small non-homogeneity range. However, as we shall see later,

it is actually the vacancy defects that have the lowest formation energy and hence are the most

stable among the different types of defects. Thus, in this work, we use the CALculation of PHAse

Diagrams (CALPHAD) method [16] to modify the description of the PbTe phase, and then use the
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DFT vacancy formation energy values in its Gibbs free energy expressions, which result in solubility

lines that agree very well with experimental data. This approach of using information from DFT

to select a particular type of phase model and use the DFT calculated defect formation energies in

the Gibbs free energy descriptions to calculate a phase diagram makes the process of building ther-

modynamic models more physical. More importantly, in the field of TE materials where dopants

are added in small concentrations to fine tune TE properties, this methodology helps determine the

solubility ranges of those dopants in the base material, and is critical to the future development of

unexplored phase diagram databases.

In the next section we first discuss the method used to calculate defect formation energies, and

the correction schemes employed to account for using finite-sized supercells with periodic boundary

conditions to model dilute defects. We also briefly describe the CALPHAD method, and the

vacancy defect model used to model the PbTe phase in this section. The results obtained for both

Pb-rich and Te-rich conditions are shown and discussed in Section 3.3 along with the calculated

carrier concentrations that are compared with experimental data. The thermodynamic model for

the PbTe system and the resulting thermodynamic data are compared with that from literature in

the same section. Finally, concluding remarks are presented in Section 3.4.

3.2 Methodology

3.2.1 Defect thermodynamics

The stability of a defect is determined by its formation energy which, according to the Zhang-

Northrup supercell formalism [43] for a defect D of charge q, is given by

∆Hd,q = [Ed,q − EH ] +
∑
α

nα(µ0
α + ∆µα) + q(EV BM + ∆VPA + µe) + ∆EIC , (3.1)

where Ed,q and EH are the total energies of the defect containing supercell and the ideal supercell,

respectively, and represent the bond energy cost due to the creation of a defect. The atomic

chemical potentials µα is the energy of the atomic reservoir of the atoms either removed (nα = +1)

or added (nα = -1) to the host supercell in the formation of a defect. It reflects the crystal growth
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conditions as µα = µ0
α + ∆µα, where µ0

α is the chemical potential of an element in its standard

reference state (the phase in equilibrium at conditions of room temperature and pressure, T = 298

K and P = 1 atm), and ∆µα is the change in chemical potential of an element with reference to its

standard state. For a maximally rich growth environment of an element, ∆µα = 0. For example,

Pb-rich/Te-poor growth environment in PbTe is represented by µPb = µ0
Pb (∆µPb = 0). In these

conditions, the chemical potential of Te is reduced to below the value for its standard reference

state value, i.e., µTe < µ0
Te (∆µTe < 0). Its exact value is given by the condition that correlates

the elemental chemical potential for the stability of this phase,

µPb + µTe = µPbTe, (3.2)

where µPbTe is the chemical potential of the defect-free PbTe compound. The above condition is

true in the case of PbTe since there are no other competing phases in the phase stability regions

between the elemental reference phases and the PbTe phase.

For charged defects (q 6= 0), the second to last term in Eqn. (3.1), i.e., q(EV BM + ∆VPA + µe),

represents the energy cost of exchanging electrons with the electron reservoir. EV BM , the valence

band maximum (VBM) energy corresponds to the energy of the highest occupied level. It is the

cost of removing an electron from the top of the valence band, and in this work the energy difference

between a neutral defect-free supercell and the supercell with a hole is used to approximate the

value of EV BM .

The creation of a neutral defect in a supercell causes the band energy levels to shift relative

to the levels in the defect-free supercell. Furthermore, in the case of creation of a charged defect,

the charge neutrality condition is violated, which causes the Coulomb potential to diverge. This is

avoided by setting Vel(G = 0) = 0, which is equivalent to introducing a compensating uniform

background charge, and only affects the potential but not the charge density in the calculation.

Thus, the energy levels of the charged defect cell do not reference to the potential of the host

cell, and the defect energy levels need to be re-aligned to the host energy levels using a potential

alignment (PA) term ∆VPA that is added to the defect formation energy (in Eqn. (3.1) above) and

is calculated as [44],
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∆EPA = q.∆VPA = q.(V rd,q − V rH), (3.3)

where ∆VPA is the potential alignment between the spherically-averaged electrostatic potentials

of the defect (V rd,q) and the host (V rH) cells far from the defect site so as to avoid including any

spurious chemical interactions with the defect. In this work, it is found that ∆EPA ranges between

0.25 eV to 0.05 eV for the various defects. Finally, the electron chemical potential µe term in Eqn.

(3.1) is the additional energy of electrons in our system, and is set to range between the VBM and

CBM (conduction band minimum) for plots showing the variation of defect formation energies as

functions of electron chemical potential. Its value is fixed as a function of temperature by solving

the charge neutrality condition, as explained later in Section 3.1.

The use of periodic boundary conditions in DFT causes charged defects to be periodically and

infinitely repeated in neighboring supercells. These periodic images of defects result in electrostatic

interactions between the charges, and defect concentrations in the order of tenths of a percent, which

is significantly higher than that found in semiconductors (parts-per-million). Also, the computing

demands posed by DFT limits the size of supercells that can be used to perform calculations on.

Thus, in order to model a true isolated charge defect in a size limited supercell in non-degenerate

conditions, an image charge correction energy term ∆EIC is added to the defect formation energy

in Eqn. (3.1) above. It is typically written in the form of a multipole expansion given by Makov

and Payne [45],

∆EIC =
q2α

2εL
+

2πqQr
3εL3

+ O(L−5). (3.4)

The first two terms are the monopole and quadrupole corrections where α is the Madelung constant

of the supercell lattice (1.75 for the rock salt NaCl structure of PbTe), L is distance between defects,

ε is the static dielectric constant which is calculated to be equal to 397 (including ionic contribu-

tions) for PbTe using density functional perturbation theory as implemented in VASP [46–48], and

is in good agreement with available experimental data (412 ± 40) [49]. Qr is the second radial

moment of the charge density, and it has been found [44] that the quadrupole term is typically ≈

-35% of the monopole term which is implemented here. It is also found from Ref. [44] that these

terms are not affected by the choice of the exchange-correlation functional. Higher order terms
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O(L−5) are neglected due to their minimal contributions. Altogether, the image charge correction

term is calculated to have a maximum value of ≈ 0.01 eV in this work for q ± 2 charges.

3.2.2 Computational details

DFT calculations are performed with the Vienna Ab-initio Simulation Package (VASP) [50–53] using

the Projector Augmented Wave (PAW) method [22–24] and generalized gradient approximation

(GGA) with the exchange-correlation functional of Perdew, Burke, and Ernzerhof (PBE) [18]. The

5d106s26p2 electrons of Pb and 5s25p4 electrons of Te were treated as valence states to generate the

PAW potentials. The primitive cell of PbTe contains 2 atoms, and all calculations are performed

on a 5 x 5 x 5 supercell of the primitive cell that contains 250 atoms. , and is shown in Fig. ??

The cutoff energy of plane wave basis was set to 400 eV, and integrations over the first Brillouin

zone were made using a k-point grid set of 2 x 2 x 2 generated according to the Monkhorst-Pack

scheme [54]. Unit cell parameters and atomic positions were relaxed based on an energy convergence

criteria of 10−4 eV, and a final static calculation was performed for an accurate total energy.

3.2.3 Thermodynamic models for the CALPHAD method

The thermodynamic models employed in this work are based on previous assessments by Gierlotka

et al [41, 55] on the Pb-Te system. In these expressions, the Gibbs energies Gφm of each phase φ

taking part in the equilibria are defined using the models described below. xi is the molar fraction

of component i, and oGφi is the reference Gibbs energy of the component i making up the phase at

298 K and 1 atm that is obtained from the Scientific Group Thermodata Europe (SGTE) database

[26].

3.2.3.1 Liquid

The liquid phase of the Pb-Te system exhibits a sharp minimum versus composition in its enthalpy

of mixing near the PbTe stoichiometry that indicates strong short-range order interactions [56],

which has also been seen in experimental measurements on its conductivity [57] and viscosity [58].

Thus, following Ref. [55], in this work we have also used the associate model [59] to describe this

phase. In CALPHAD terminology, the term “associate” is used to denote an association between
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unlike atoms when the attractive forces between the atoms are not strong enough to form a stable

chemical molecule. According to this model, the Gibbs energy per mole of atoms of such a phase

is given by,

GLiqm = Gref + ∆Gidealmix + ∆Gxsmix

=

[
∑
i

xi
oGLiqi + RT

∑
i

xi lnxi +
∑
i

∑
j>1

xixj
∑
v

vLLiqi,j (xi − xj)
v]

(1 + xPbTe)
,

(3.5)

where i, j = Pb, Te, and PbTe, R is the gas constant, and T is the temperature. vLLiqi,j is called the

non-ideal interaction parameter, and is part of the excess Gibbs energy of mixing term ∆Gxsmix, which

includes temperature dependency of sources of entropy (non-ideal configurational, vibrational, and

electronic) apart from the ideal configurational entropy ∆Gidealmix . The temperature dependency in

these parameters is included by expanding them to be,

vLLiqi,j = vALiqi,j + vBLiqi,j .T, (3.6)

where vALiqi,j and vBLiqi,j , the only unknowns in Eqn. (3.5) above, are user-defined parameters that are

fitted in the CALPHAD method to experimental and/or ab initio data on phase equilibria/diagram

and thermodynamic properties.

3.2.3.2 PbTe

The PbTe structure is of rock salt NaCl structure with space group Fm3m (no. 225). As mentioned

earlier in the Introduction, the small non-stoichiometry in the PbTe phase that is caused by defects

is modeled using the Wagner-Schottky sublattice model [42], but now using vacancies as defects,

i.e., (Pb, Va)1:(Te, Va)1 instead of anti-site defects assumed before [41]. The Gibbs energy of this

phase is given by,

GPbTem =
∑
I0

PI0(y)oGφI0 + RT
∑
s

Ns
∑
i

syi ln syi +
∑
Z>0

∑
IZ

PIZ(y)LφIZ , (3.7)

where PI0 is a product of sublattice site fractions when each of them is occupied by only one

component, Ns is the number of sites on sublattice s, PIZ is also a product of sublattice site
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fractions but when only one sublattice contains Z components and the remaining are occupied by

one component, and syi is called the site fraction defined by,

syi =
nsi
Ns

, (3.8)

where nsi is the number of atoms of component i on sublattice s. For the vacancy model of the

PbTe phase, this simplifies to,

GPbTem = yIPby
II
Te

0GPbTePb:Te + yIPby
II
V a

0GPbTePb:V a + yIV ay
II
Te

0GPbTeV a:Te + yIV ay
II
V a

0GPbTeV a:V a

+ 0.5RT (yIPb ln yIPb + yIV a ln yIV a) + 0.5RT (yIITe ln yIITe + yIIV a ln yIIV a) + ∆Gxsmix, (3.9)

where it is assumed 0GPbTeV a:V a = 0 due to the unphysical character of having vacancies completely

occupy both the sublattices. 0GPbTePb:Te,
0GPbTePb:V a, and 0GPbTeV a:Te are given by,

0GPbTePb:Te = oGfccPb + oGhexTe + X1 + Y1.T

0GPbTePb:V a = oGfccPb + X2 + Y2.T

0GPbTeV a:Te = oGhexTe + X3 + Y3.T.

(3.10)

Xi and Yi are user-defined parameters, that along with vALiqi,j and vBLiqi,j in the expansion of the

excess Gibbs energy term ∆Gxsmix (similar to as in Eqn. (3.6)), are the only unknowns. 0GPbTePb:V a and

0GPbTeV a:Te are related to the vacancy formation energies on the Te and Pb sublattices, respectively,

and the temperature-independent parameters X2 and X3 in these expressions are fixed to the

vacancy defect formation energies calculated from DFT. The rest of the parameters in Eqn. (3.10)

are fitted to experimental data on the phase diagram and thermodynamic data.

3.2.3.3 Fcc A1, Hexagonal A8

The standard reference phases of Pb and Te, fcc and hexagonal, respectively, have been modeled

with no solubilities as previous experimental results indicate. Thus, the Gibbs energies of these

phases are described by the reference energies oGfccPb and oGhexTe .
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3.3 Results and Discussion

3.3.1 Defect stability

The calculated lattice constant of 6.559 Å and formation enthalpy of -0.406 eV/atom of PbTe are

in good agreement with the experimental values of 6.462 Å [60], and ≈ -0.36 eV/atom [61, 62],

respectively. However, the calculated direct band gap of 0.82 eV at the L point using GGA over-

estimates the value of 0.31 eV obtained from recent experiments [63]. On the other hand, our

calculations show that the hybrid HSE functional coupled with SOC leads to an upward shift of the

topmost valence band and a downward shift of the lowest conduction band, leading to a reduction

in the gap to 0.28 eV (for a 0.3 Å−1 screening length and 25% Hartree Fock exchange mixing),

whereas just including SOC effects results in a gap of 0.08 eV. Both these methods are computa-

tionally prohibitive with current supercomputers to be applied to the 250 atom defect supercells

used in this work. HSE calculations on smaller supercells would be plausible (but still very ex-

pensive); however, the effect of approximations in image-charge and potential alignment correction

schemes would then become more pronounced due to the relatively small size of these supercells,

thus negating the beneficial effect of using an accurate band gap. This is why a vast majority of

defect calculations still employ PBE (or other semi-local or local) functionals coupled with band

gap correction schemes, as well documented in the literature [64, 65]. Thus, we have just resorted

to a well-documented methodology of using GGA for defect calculations together with a band-gap

correction scheme that is discussed later in this section.

Three types of point defects are considered in this work on each of the Pb and Te sublattices

that make up the PbTe rock salt structure: vacancies (VPb, VTe), anti-sites (PbTe, TePb), and

interstitials (Pbi, Tei), all in neutral and charged states ranging from -2 to +2. Formation energies

of every defect in each charge state ∆Hd,q are calculated using Eqn. (3.1), taking into account the

image charge and potential alignment corrections that are calculated using methods explained in

Section 2. Their concave hulls are plotted in Fig. 3.1 for both Pb-rich and Te-rich growth conditions

so as to show only the lowest energy defect as a function of electron chemical potential or Fermi

level µe.

The charge state of the defect corresponds to the slope of these lines. As seen in this figure, the

most stable defects with the lowest formation energy for Pb-rich conditions are Pb and Te vacancies
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Figure 3.1: (Color online) Calculated defect formation energies, ∆Hd,q in PbTe as a function of
Fermi level, µe in Pb-rich and Te-rich conditions. Slope of lines corresponds to the charge state of
the defect, and shaded areas represent the range of calculated equilibrium Fermi levels shown in
Fig. 3.2.

(V −2
Pb , V +2

Te ), and for Te-rich conditions are Pb vacancy and Te anti-site defects (V −2
Pb , Te+2

Pb). The

most dominant defect is determined by the position of the Fermi level, which in turn is calculated

as a function of temperature by solving the charge neutrality condition. Under the assumption

of dilute limit of defect concentrations, the number of free charge carriers in the compound is

controlled by the number of electrons charged defects that can either donate to or accept from the

bands. The conservation of charge neutrality condition requires,

n − p =
∑
d

qdcd,q, (3.11)

where n and p are the free carrier concentrations of electrons and holes given by,

n =

∫ +∞

ECBM

n(E)f(E;µe, T )dE

p =

∫ EV BM

−∞
n(E)[1 − f(E;µe, T )]dE,

(3.12)

where n(E) is the density of states of the defect-free crystal, and f(E;µe, T ) is the Fermi-Dirac

distribution. In the non-degenerate limit, when Fermi levels are more than several kT below ECBM

and above EV BM , the carrier concentrations simplify to [66],
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n = NC exp(−ECBM − µe
kT

)

p = NV exp(−µe − EV BM
kT

),

(3.13)

where k is the Boltzmann constant, and NC and NV are the effective density of states in the

conduction and valence bands, respectively, given by,

NC = 2(
2πmekT

h2
)3/2

NV = 2(
2πmhkT

h2
)3/2,

(3.14)

where h is the Planck’s constant, and me and mh are the effective masses for the electrons and

holes, and are equal to 0.17m0 and 0.20m0, respectively, for PbTe [66] where m0 is the mass of

an electron. In Eqn. (3.11) above, qd is the charge of the defect d with concentration cd,q. In the

dilute limit of defect concentrations, the concentration cd,q of a particular defect in the structure is

given by the Botlzmann distribution,

cd,q = c0e
−∆Hd,q/kT , (3.15)

where c0 is the concentration of possible defect sites in the supercell.

Band-gap correction scheme: The GGA functional used in this work results in an erroneous

band gap of 0.82 eV because of which we need to correct our defect formation energies. Without

doing more computationally expensive hybrid functional or SOC calculations, we have employed a

simple projection scheme for this. According to this scheme, the electron chemical potential µe is

mapped between the carrier concentrations (n and p in Eqn. (3.13)) and defect concentrations (cd,q

in Eqn. (3.15)) that assume different band gaps. This mapping is accomplished by turning µe into

a fractional quantity of the band gaps as,

x =
µe,exp
Eg,exp

=
µe,theo
Eg,theo

, (3.16)

where µe,exp is used in Eqn. (3.13), Eg,exp is the temperature dependent experimental band gap
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from Ref. [63] used in this equation for the calculation of n and p, and µe,theo is used in Eqn.

(3.1) and (3.15) for the calculation of defect energies ∆Hd,q and concentrations cd,q that use the

theoretical GGA band gap of Eg,theo = 0.82 eV. The fractional quantity x can be solved for self-

consistently from the charge neutrality condition in Eqn. (3.11), which becomes,

NC exp(−ECBM − µe,exp
kT

) − NV exp(−µe,exp − EV BM
kT

) =
∑
d

qdc0e
−∆Hd,q(µe,theo)/kT , (3.17)

where ∆Hd,q is a function of µe,theo as in Eqn. (3.1). Solving this equation for x gives us µe,exp

and µe,theo from Eqn. (3.16) above. It is µe,theo that is used to represent the electron chemical

potential or Fermi level µe mentioned in the text of this work, and used in the figures.

The position of the Fermi level as a function of temperature is determined by numerically solving

the charge neutrality condition in Eqn. (3.11) at a range of temperatures, the results of which are

shown in Fig. 3.2 for both Pb-rich and Te-rich growth conditions. This range of Fermi level results

in electrons being the dominant carrier for Pb-rich conditions and holes for Te-rich conditions, thus

correctly predicting n-type behavior on the Pb-rich side and p-type behavior on the Te-rich side

as observed in various experiments [31–37]. The calculated net carrier concentrations are plotted

in Fig. 3.3, and also agree well with these experimental data. The position of Fermi levels leads

to vacancies being the most dominant defects for both Pb-rich and Te-rich conditions. Donor

defects V +2
Te for Pb-rich conditions and acceptor defects V −2

Pb for Te-rich conditions are the highest

concentration defects that lead to the observed n-type and p-type behavior, respectively. Table 3.1

shows the defect formation energies of all defects calculated at the equilibrium value of the Fermi

level at 300 K. Experimental evidence of Pb and Te vacancies being the primary point defects in

PbTe has been shown through experiments by Brebrick and Grubner [32]. The proposition of Pb

interstitials being the dominant defect over Te vacancies for Pb-rich conditions had been suggested

earlier by Brebrick and Allgaier [31] due to the instability of Pb-saturated crystals, and Schenk et

al [67] due to the increase of lattice parameter with carrier concentration. However, Brebrick and

Grubner [32] later did not see the crystal instability in Pb-rich samples attributing it to impurities,

and based on the increasing order of mobility of Te vacancy, Pb vacancy, and Pb interstitial, they

implied that Pb and Te vacancies were indeed the predominant point defects. Thus, as has been
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confirmed by the DFT calculations in this work, Pb and Te vacancies are the primary defects in

PbTe, and this result along with their formation energies shown in Table 3.1 has been used in the

thermodynamic CALPHAD model of the PbTe phase as discussed in the following section.
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Figure 3.2: (Color online) Equilibrium positions of the Fermi level, µe for Pb-rich and Te-rich
conditions obtained from solving the charge neutrality equation.

Table 3.1: Defect formation energies ∆Hd,q (eV/defect) calculated for each point defect considered
in the PbTe system for chemical potentials corresponding to Pb-rich and Te-rich conditions. Values
are determined at µe = 0.42 eV for Pb-rich and µe = 0.31 eV for Te-rich conditions, which are
the equilibrium Fermi levels (relative to the VBM) obtained at T = 300 K by solving the charge
neutrality equation, as shown in Fig. 3.2. Only the lowest energy charge state for each defect at
this Fermi level, corresponding to Fig. 3.1, is shown.

Pb-rich Te-rich
Defect ∆Hd,q (eV/defect) Defect ∆Hd,q (eV/defect)

V +2
Te 0.72 V −2

Pb 0.35
V −2
Pb 0.95 Te+2

Pb 0.87
Pb+2

i 1.44 V +2
Te 1.32

Pb−2
Te 1.49 Pb+2

i 2.04
Te+2

Pb 2.71 Te+2
i 2.78

Te+2
i 3.73 Pb−1

Te 3.29
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Figure 3.3: (Color online) Calculated concentrations of electrons and holes for Pb-rich and Te-rich
growth conditions, respectively, compared with experimental data from Refs. [31–35].

3.3.2 Modification and assessment of the CALPHAD model

The thermodynamic model of the binary Pb-Te system was last calculated and developed by Gier-

lotka et al [41] in which the small non-stoichiometry of the PbTe phase was modeled using the

Wagner-Schottky defect model [42] for anti-site defects, i.e., (Pb, Te)1:(Te, Pb)1. In a later pub-

lication [55], the PbTe phase was assumed to be an ideal defect-free compound. From our DFT

calculations in this work, we found that the Fermi level is positioned where vacancy defects have

the lowest formation energy, and are thus more stable than the anti-site defects on both the Pb

and Te sublattices, i.e., in Pb-rich and Te-rich crystal growth conditions, respectively. Thus, in

this work, we have changed the PbTe phase model to instead consist of vacancies - (Pb, Va)1:(Te,
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Va)1, used the defect formation energies calculated from DFT in its Gibbs energy description, and

reassessed the entire Pb-Te thermodynamic model.

The evaluation and optimization of the thermodynamic model was performed using the PARROT

module of Thermo-Calc [29] package for the calculation of phase diagrams. The Gibbs free energy

Gφm of each phase expected to participate in the equilibrium phase diagram of the system was

defined using models as described in Section 2. Parameters X2 and X3 in the Gibbs free energy

expansion of the PbTe phase shown in Eqn. (3.10) are fixed to the DFT defect formation energies

of V +2
Te and V −2

Pb defects, respectively, shown in Table 3.1 and as explained earlier in Section 2.3.2.

Thus, X2 = 0.72 eV/defect = 69,469 J/mol, and X3 = 0.35 eV/defect = 33770 J/mol, as listed

in Table 3.2. The rest of the parameters entering these models were fitted to available experimen-

tal data on the positions of various solubility lines in the phase diagram. The liquidus line was

fitted to data determined by DTA and thermal analysis in Refs. [68–72]. The position of the equi-

librium lines of the PbTe phase determined through carrier concentration measurements in Refs.

[31–34, 36, 37] were used to fit the rest of the user-defined parameters shown in Eqn. (3.10). Exper-

imental measurements of thermodynamic data on this system are also used to optimize parameters

of this system. This additional set of experimental data helps impose restrictions to the optimiza-

tion process by reducing the degrees of freedom, and thus results in a thermodynamically consistent

model [73]. The first set of thermodynamic data used is the enthalpy of mixing of the liquid phase

that has been measured using the calorimetric method in Refs. [69, 74–76]. The second set of ther-

modynamic data used is the chemical potential of Te in the liquid phase that was determined using

partial pressure measurements made in Refs. [77, 78] assuming the gaseous phase only contains Te2.

The set of optimized thermodynamic parameters of the model that form part of the Gibbs free

energy functions are listed in Table 3.2 along with the phase models used. The resulting phase

diagram is shown in Fig. 3.4. The solubility lines of the PbTe phase are shown in Fig. 3.5 along

with solubility lines obtained using defect concentrations calculated using DFT in this work. Both

sets of data agree reasonably well with experimental data, and that the solubility on the Pb-rich

side is lower than that on the Te-rich side of the stoichiometric line at x = 0.50. As is the case with

the experimental and CALPHAD-calculated solubility lines, the DFT solubility lines do not meet at

the invariant melting point of the phase mainly because the DFT phase boundaries are calculated
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Table 3.2: Model description and parameters for phases in the Pb-Te system. The functions
GHSERPB, GHSERTE, GLIQPB, and GLIQTE are obtained from the SGTE database [26]. Pa-
rameters X2 and X3 in the Gibbs free energy expansion of the PbTe phase shown in Eqn. (3.10) are
fixed to the DFT defect formation energies of V +2

Te and V −2
Pb defects, respectively, shown in Table

3.1 and as explained in Section 3.3.2. Thus, X2 = 0.72 eV/defect = 69,469 J/mol, and X3 = 0.35
eV/defect = 33770 J/mol, as listed below.
Phase Model Model parameters (J/mol)

Fcc A1 Sublattice model (Pb, Va)1 GfccPb:V a = oGfccPb = GHSERPB
Hexagonal A8 Random solution (Te)1 GhexTe = oGhexTe = GHSERTE

Liquid Associate model (Pb, Te, PbTe)1 GLiqPb = GLIQPB

GLiqTe = GLIQTE

GLiqPbTe = GLIQPB + GLIQTE - 60870.3
+ 18.1×T
0LLiqPb,PbTe = 20634.8 - 9.7×T
1LLiqPb,PbTe = 7.9
0LLiqTe,PbTe = -4167.5 - 2.7×T
1LLiqTe,PbTe = 3500.9

PbTe Sublattice model (Pb, Va)1:(Te, Va)1 GPbTePb:Te = GHSERPB + GHSERTE - 128362.3
+ 432.9*T - 52.9×T×LN(T)
GPbTePb:V a = GHSERPB + 69469 + 18×T
GPbTeV a:Te = GHSERTE + 33770 + 25×T
GPbTeV a:V a = 0
0LPbTePb,V a:Te = 20621.9 - 35.7×T

without considering the liquid phase. If considered, the free energy of the liquid phase will most

likely fall below that of the PbTe phase above its melting point, thus closing the phase boundaries

of the PbTe phase at high enough temperatures by making it more stable. But below the melting

points, the agreement is fairly good. Figs. 3.6 and 3.7 show the resulting thermodynamic data from

the CALPHAD model on the enthalpy of mixing of the liquid phase and chemical potential of Te

in the liquid phase at 1200 K, respectively, which agree well with experimental literature.

3.4 Conclusions and outlook

In this work, first principles calculations of defect energetics are used to understand the thermo-

dynamic stability of different types of point defects in PbTe. For Pb-rich chemical potentials and

crystal growth conditions, we find that the most stable defects with the lowest formation energy

are Te vacancies V +2
Te and Pb vacancies V −2

Pb , whereas those for Te-rich growth conditions are Te
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Figure 3.4: (Color online) Pb-Te phase diagram calculated with the CALPHAD method and com-
pared with experimental data.

anti-sites Te+2
Pb and Pb vacancies V −2

Pb . The Fermi level is determined at various temperatures by

numerically solving the charge neutrality equation, which tells us the equilibrium defect and carrier

concentrations for various defects in each charged state for both growth conditions. It is found that

the electron donating Te vacancies V +2
Te are the highest concentration defects for Pb-rich conditions,

which are the cause of its n-type conductivity, whereas it is the electron accepting Pb vacancies V −2
Pb

that are the cause of p-type conductivity in PbTe for Te-rich growth conditions. This result, along

with calculated electron and hole concentrations, agrees well with data from previous experimental

works.

This information is then used to modify and re-develop the thermodynamic model of the Pb-Te

system using the CALPHAD method. A previous thermodynamic model of this system assumed an

anti-site defect model for the PbTe phase, i.e., (Pb, Te)1:(Te, Pb)1. However, from our calculations

we found that it is actually the vacancy defects that predominate in this phase over anti-site or

interstitial defects. Accordingly, the defect model for this phase was changed to (Pb, Va)1:(Te,

Va)1. In addition to this, the defect formation energies calculated from DFT were used in the

parameters of the Gibbs free energy expression of this phase and the resulting non-stoichiometric
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range was in very good agreement with experimental data. The entire system was then re-assessed

based on experimental information on the phase diagram and thermodynamic data on the mixing

enthalpy of the liquid phase and chemical potential of Te in the liquid phase. Thus, in this work,

we have demonstrated the use of DFT in conjunction with the CALPHAD method by calculating

defect formation energies of various intrinsic point defects in PbTe using DFT, and then using those

numbers as input to the thermodynamic model of the technologically important PbTe phase, which

resulted in solubilities in excellent agreement with experiments. Such a methodology is important

for the computation of solubility/stability ranges of dopants in TE materials in different regions of

the phase diagrams, which is critical to the fine tuning of TE properties.
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Figure 3.6: (Color online) Enthalpy of mixing of the liquid phase calculated at T = 1200 K with
reference to the liquid phase states of Pb and Te, and compared with experimental data.
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Chapter 4

Calculation of dopant solubilities
and phase diagrams of X-Pb-Se
(X = Br, Na) limited to defects
with localized charge

4.1 Introduction

Impurity dopants are key to unlocking the potential of semiconductors for a variety of applications.

Impurities act as extrinsic dopants that allow for precise control over charge carrier sign and densi-

ties. In a semiconductor with an ideal dopant, the excess charge supplied is directly related to the

dopant concentration. In PbSe, for example, the substitution of a Br atom for a Se atom should

make an ideal n-type dopant because each Br brings one extra electron even though the electronic

states of Br are essentially the same as those of Se. Similarly the substitution of Na for Pb should

be ideal for p-type PbSe. In many applications, the performance of a semiconductor is limited

by the dopant solubility, which is the amount of dopant that can be incorporated [79] before a

dopant-rich secondary phase precipitates from the semiconductor (known as dopant precipitation).

Such formation and evolution of unwanted secondary phases often harms lifetime performance, or

even the stability and integrity of the material. A phase diagram provides essential information for

material design to address these challenges. However, experimental phase diagrams are not always

available, or available without enough detail in the region of interest. In such cases, calculated

phase diagrams could provide alternative guidelines and help in the development new materials.
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Density functional theory (DFT) [14, 15] based defect energy calculations provide powerful

insights for understanding properties of lightly doped semiconductors used as photovoltaics or op-

toelectronics (see, for example Ref. [80]) that have band gaps of nearly 1 eV or greater. Such

studies have been particularly helpful in identifying charge state transitions of deep defects, states

that form well inside the forbidden energy gap.

In this study, we use DFT methods to investigate the defect thermodynamics of ideal dopants

in the narrow band gap (≈ 0.3 eV) semiconductor PbSe. Experiments performed for this work

show that Br is indeed an ideal donor dopant and Na is an ideal acceptor dopant with essentially

100% doping effectiveness, indicating that one charge carrier is measured for each impurity atom.

Doping effectiveness is defined as the ratio of carrier concentration of the sample to the amount of

dopant added to it and is given by,

η =
n− p∑
d,q

c
′

d,q

or
p− n∑
d,q

c
′

d,q

, (4.1)

where the numerator is electron concentration (n−p) in the case of Br-Pb-Se and (p−n) in the case

of Na-Pb-Se, and
∑
d,q

c
′

d,q is the total atom concentration of the dopant in the PbSe phase found

by summing over all the dopant containing defects. PbSe is chosen because the lead chalcogenides

(PbQ, Q = Te, Se, S) with the rock-salt structure are excellent thermoelectric materials [13, 81–88]

for applications between 600 K and 900 K [89], where its zT exceeds 1 [88] for both p-type [82]

and n-type [84] materials. Br is chosen due to its comparable size and electronic structure to Se,

and reported zT = 1.1 ± 0.1 at 850 K [84]. Similarly, Na provides fine control over hole carrier

concentration [81, 90] that leads to zT close to 1 at 850 K in PbSe [82, 91].

Despite the frequent use of these impurity dopants, no experimental literature is available (to

the authors′ knowledge) on the phase diagrams of Br-Pb-Se or Na-Pb-Se, which is unsurprising

due to the complexity of the experiments required to determine a ternary phase diagram. Accu-

rate calculations of dopant solubilities could supplant tiresome experiments in the search for new

semiconductors.
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4.2 Methodology

The solubility limits of dopants in the PbSe phase in the ternary phase spaces of the Br-Pb-Se

and Na-Pb-Se systems are determined by first using DFT to calculate the defect formation energies

of intrinsic and extrinsic defects consisting of vacancies (VPb, VSe), substitutions (PbSe, SePb),

interstitials (Pbi, Sei), and dopant-containing defects consisting of Br and Na substitutions on Pb

or Se (BrPb, BrSe, NaPb, NaSe), as well as interstitial Br and Na (Bri, Nai), all in neutral and

charged states ranging from -2 to +2. The defect formation energy of a defect d of charge q is given

by [43],

∆Ed,q = [Ed,q − EH ] +
∑
α

ndα(µ0
α + ∆µα) + q(EV BM + ∆VPA + µe) + ∆EIC , (4.2)

where Ed,q and EH are the DFT total energies of the defect containing PbSe supercell and the pure

PbSe supercell, respectively, ndα is the number of atoms added (ndα = -1) or removed (ndα = +1)

from the pure supercell to form the defect, µ0
α is the chemical potential of element α in its ground

state or standard metallic state, and ∆µα is the change in the chemical potential of α corresponding

to a particular phase equilibrium between PbSe and other compounds in the X-Pb-Se systems. µ0
α

and ∆µα are calculated using elemental ground state energies and compound formation energies

taken from the Materials Project [92–94] (the calculation settings used by the Materials Project are

verified to be the same as those used in the calculation of defect energies in this work so as to avoid

any errors in the formation energies). EV BM is the energy of the valence band maximum (VBM)

and corresponds to the energy of the highest occupied level. ∆VPA is the potential alignment (PA)

correction term used to re-align defect energy levels with energy levels of the host supercell, and

is calculated using ∆VPA = (V rd,q − V rH) [44], where V rd,q and V rH are the spherically-averaged

electrostatic potentials of the defect and host supercells, respectively, far from the defect site so as

to avoid including any spurious chemical interactions with it. The potential alignment correction

term ranges from +0.08 eV to -0.13 eV for various charged defects. ∆EIC is the image charge

correction energy term that is added to the defect formation energy in order to model a true isolated

charge defect in a size-limited supercell in non-degenerate conditions, and is calculated using the

Makov-Payne expansion [45]. The dielectric constant ε used in this expansion is calculated to be

equal to 594 (including both ion-clamped and ionic contributions) for PbSe using density functional
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perturbation theory as implemented in the Vienna Ab-initio Simulation Package (VASP) [46–48].

Due to the high dielectric constant of PbSe, ∆EIC has a maximum value of ≈ 7 meV in this work

for q ± 2 charges, and thus has a minimal effect on defect formation energies. Finally, µe in Eqn.

(4.2) is the electron chemical potential that is the additional energy of electrons in our system, and

is set to range in values around the energies of the VBM and CBM (conduction band minimum) for

plots showing the variation of defect formation energies as functions of electron chemical potential.

µe is calculated as a function of temperature T and sets of chemical potentials µα by solving the

charge-neutrality condition,

n − p =
∑
d

qdcd,q, (4.3)

where n and p are the free carrier concentrations of electrons and holes given by [95],

n =

∫ +∞

ECBM

n(E)f(E;µe, T )dE,

p =

∫ EV BM

−∞
n(E)[1 − f(E;µe, T )]dE,

(4.4)

where n(E) is the density of states of the defect-free crystal, and f(E;µe, T ) is the Fermi-Dirac

distribution. cd,q is the defect concentration, and in the dilute limit is given by [95],

cd,q = Nd,q
siteN

d,q
syme

−∆Ed,q/kT , (4.5)

where Nd,q
site is the number of defect sites per formula unit of PbSe and Nd,q

sym is the number of geo-

metrically distinct but symmetrically equivalent ways of adding defect d with charge state q to a site.

The solvus boundaries of PbSe in the X-Pb-Se systems are calculated by summing over concen-

trations of each defect d, weighted by −ndα, which is the change in composition of the XPbSe phase

due to that defect, and is given by [96],

nα =
∑
d

−ndαcd,q. (4.6)

When calculated under different sets of chemical potentials µα, which represent different phase
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equilibrium regions between PbSe and other compounds in the phase diagram, and at a particular

temperature T, we obtain an isothermal section of the phase boundaries of PbSe in the system

X-Pb-Se. Further details of this methodology can be found in the next chapter.

4.2.1 Computational details

DFT calculations in this work for the calculation of energies of the defect and host supercells

are performed using VASP [50–53]. Ion-electron interactions were described using the Projec-

tor Augmented Wave (PAW) potentials [22–24] utilizing the generalized gradient approximation

(GGA) with the exchange-correlation functional of Perdew, Burke, and Ernzerhof (PBE) [18]. The

5d106s26p2 electrons of Pb, 4s24p4 electrons of Se, 4s24p5 electrons of Br, and 2p63s1 electrons of

Na are treated as valence states in the PAW potentials. All supercell calculations are performed on

a 5 x 5 x 5 supercell of the primitive cell and contain 250 atoms. The cutoff energy of plane wave

basis was set to 400 eV, a Gaussian smearing width of 0.1 eV is used to smear electron occupations,

and integrations over the first Brillouin zone are made using a 2 x 2 x 2 Monkhorst-Pack k-point

grid [54]. Unit cell parameters and atomic positions are relaxed based on an energy convergence

criteria of 10−4 eV, and a final static calculation is performed for each defect to obtain accurate

total energies.

4.3 Results and Discussion

Figs. 4.1 and 4.2 show the defect formation energies of the lowest energy defects in the Br-Pb-Se

and Na-Pb-Se systems, respectively, plotted as a function of electron chemical potential or Fermi

level µe for different regions of three-phase equilibrium that contain the PbSe phase. The dominant

defects (defects with highest concentrations) of a system are determined by the equilibrium µe

calculated as a function of temperature and atomic chemical potentials by numerically solving the

charge neutrality condition in Eqn. 4.3. In the case of Br-Pb-Se, the equilibrium µe is positioned

where, from Fig. 4.1, the lowest energy defects are Br+1
Se and V −2

Pb in the Se-rich PbSe-Se-PbBr2

region and Br+1
Se and Br0

Se in the Pb-rich Pb-PbSe-PbBr2 region. In Na-Pb-Se, from Fig. 4.2, the

defect energy landscape in three out of the four regions of three-phase equilibria is dominated by

the Na+2
Pb , Na

+1
Pb , Na

0
Pb, and Na−1

Pb defects. Whereas Na−1
Pb is an acceptor defect that tends to

dope PbSe p-type, the Na+2
Pb and Na+1

Pb defects are donor defects that tend to dope PbSe n-type.
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However, it is well-known that Na is a p-type dopant in PbQ systems [13, 81, 82, 84, 89] with Na

substitution on the Pb+2 sublattice producing one conducting hole for each substitution. Thus, the

Na+2
Pb and Na+1

Pb defects would not be expected to be present in notable concentrations, and this

discrepancy will be addressed below. The unexpected acceptor defects Br−1
Se and Br−2

Se do not pose

an immediate problem as they are higher in energy than the defects shown in Fig. 4.1.

0.0 0.1 0.2 0.3 0.4

-0.5

0.0

0.5

1.0

Μe HeVL

D
E

d
,q

HeV
�de

fe
ct

L
A: Pb-PbSe-PbBr2

BrSe
+1

BrSe
+2

VSe
+2

VSe
+1

BrSe
-1

BrSe
0

VPb
-2

0.0 0.1 0.2 0.3 0.4

-0.5

0.0

0.5

1.0

Μe HeVL

D
E

d
,q

HeV
�de

fe
ct

L

B: PbSe-Se-PbBr2

BrSe
+1

BrSe
+2

VPb
0

VPb
-2

VPb
-1

BrSe
0

VBM CBM

Figure 4.1: (Color online) Defect formation energies, ∆Ed,q of the lowest energy intrinsic and Br-
containing defects in PbSe as a function of Fermi level, µe (relative to VBM) in different three phase
equilibrium regions of PbSe in the Br-Pb-Se phase diagram. Solid lines indicate defects included in
the calculation of the Br-Pb-Se phase diagram, whereas dashed lines indicate excluded defects.
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Figure 4.2: (Color online) Defect formation energies, ∆Ed,q of the lowest energy intrinsic and Na-
containing defects in PbSe as a function of Fermi level, µe (relative to VBM) in different three phase
equilibrium regions of PbSe in the Na-Pb-Se phase diagram. Solid lines indicate defects included
in the calculation of the Na-Pb-Se phase diagram, whereas dashed lines indicate excluded defects.

The remaining neutral defects, Br0
Se in Br-Pb-Se and Na0

Pb in Na-Pb-Se, would, according to

the low energies calculated, appear to play a dominant role in determining the dopant concentra-

tions and effectiveness. The formation energy of the Br0
Se defect in the Pb-rich Pb-PbSe-PbBr2

region is slightly negative at about -8.8 meV (independent of Fermi level), and the equilibrium Fermi

level in these conditions is positioned where the formation energies of these defects are negative. A

similar issue is seen in Na-Pb-Se (Fig. 4.2): the defect formation energy of Na0
Pb is negative, with

a minimum of -0.171 eV, in three out of four regions of three-phase equilibria: PbSe-Na2Se-NaSe,

PbSe-NaSe-NaSe2, and Se-PbSe-NaSe2. This issue is however not seen in the Na-Pb-Te system in

which, from Ref. [96], the Na0
Pb defect is higher in energy and lower in concentration than the

Na−1
Pb defect at equilibrium Fermi levels in all regions of the phase diagram.
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Negative defect formation energies (of neutral defects, which do not depend on µe) lead to unre-

alistic values for defect concentrations (> 100 %) under the dilute limit approximation, and thus

low (essentially zero) dopant effectivity. If true, such defect formation energies would indicate non-

equilibrium conditions or disorder at 0 K, in violation of the third law of thermodynamics, and

so we must conclude that these calculations are either inaccurate or do not represent the intended

defect.

There are several frequently suspected causes for inaccurate defect formation energies, which

are listed below. For each of them we provide a rational argument for its insufficient impact on the

results,

- First, unknown ternary compounds in the Br-Pb-Se and Na-Pb-Se systems could change the

chemical potential map and hence the defect energies:

The relative energy difference between defects of the same element type but different charge state

(e.g., Br+1
Se vs Br0

Se) does not depend on the chemical potential. Thus the low doping effectiveness

calculated due to neutral defects will not be affected by the presence of unknown ternary phases.

- Second, inaccuracy of correction methods, such as image charge, potential alignment, band-

filling corrections (not incl here):

Because the image charge and potential alignment corrections terms only affect charged defects,

they cannot influence the neutral Br0
Se and Na0

Pb defects (q = 0 in Eqn. 4.2). Additionally, the

magnitude of band-filling corrections [65] are not expected to be significant enough to resolve the

issues discussed here.

- Third, non-convergence of formation energies at employed supercell size:

The formation energies of the defects in question appear to be converged within 0.1 eV, while,

as we shall see below, the defect energies are at least 0.5 eV too low. Furthermore, in this work,

these energies are found to decrease with an increasing supercell size, which follows a trend opposite

to what may resolve the issue of unexpectedly low formation energies.

- Fourth, an incorrect determination of defect energies due to the DFT method employed as

evidenced by an incorrect band gap that does not include spin-orbit coupling (SOC) effects, the

use of hybrid functionals, or employment of the GW approach, etc.:

The calculated direct band gap of 0.41 eV at the L point using GGA over-estimates but is

in fairly good agreement with the experimentally obtained value of 0.28 eV at room temperature
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[63, 97, 98]. Previous calculations in Refs. [99–101] show that including SOC effects reduces the

gap to near zero or negative values, representative of a metal, whereas the GW method or the use

of hybrid HSE03 functionals, with and without SOC, leads to band gaps of ≈ 0.13 eV and 0.58

eV, respectively, which are both less accurate than just PBE-GGA. Also note that even in cases of

materials with better agreement, the employment of these methods to defect supercells of size in the

order used in this work (250 atoms) is computationally impractical. Although such calculations are

plausible on smaller supercells, the image charge and potential alignment correction terms become

very large, making any errors in these terms more pronounced, potentially negating the beneficial

effect of using an accurate band gap.

In order to quantify the magnitude that the calculated Br0
Se defect formation energy must be

underestimated we calculate the doping effectiveness using Eqn. 4.1 at 973 K in the Pb-PbSe-

PbBr2 region of Br-Pb-Se and PbSe-Na2Se-NaSe region of Na-Pb-Se as shown in Fig. 4.3. While

Br+1
Se produces one electron in the conduction band per Br atom, the extra electron in Br0

Se is

delocalized around the Br defect without adding electrons to the conduction band. Thus, Br0
Se

serves only to reduce the doping effectiveness. We know from extensive studies on polycrystalline

PbSe doped with Br or Na that Pb1.002Se0.992Br0.002 has nearly 100% doping effectiveness and

Pb0.9875Na0.0125Se has 90% [82, 84, 89] indicating that the formation energy of Br0
Se and Na0

Pb

must be underestimated by at least 0.5 eV. These results are from samples made by first melting

nominal compositions of Pb1.002Se1−xBrx, or Pb1−yNaySe. The ingots were annealed at 973 K for

72 hours, followed by consolidation of crushed powder by hot pressing, after which their Hall effect

carrier densities were measured.

The severe underestimation of the Br0
Se formation energy using DFT can be traced to delocal-

ization of the extra Br electron in the DFT calculation, which leads us to conclude these do not

represent the intended defects. Thus, in essence, this energy does not reflect the energy of the neu-

tral defect with a localized charge, but instead the energy of a donor defect where the electron has

formed a large polaronic state at the bottom of the conduction band. Such large polarons, which are

essentially electrons in hydrogen atom like states around a central, charged (but screened) defect

are expected from shallow defects [64]. In Fig. 4.4 we plot the partial charge density of the highest

occupied state calculated for PbSe with the neutral Br0
Se defect. These electrons are clearly not



54

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

20

40

60

80

100

DE - DEd,q
DFT HeV�defectL

D
o
p
in

g
E

ff
ec

ti
v
en

es
s,

Η
H%

L

Br-Pb-Se

Na-Pb-Se

Figure 4.3: (Color online) Doping effectiveness of the shown defects at 973 K in the Pb-PbSe-PbBr2

region of Br-Pb-Se and PbSe-Na2Se-NaSe region of Na-Pb-Se calculated by varying the formation
energies of the neutral Br0

Se and Na0
Pb defects (x-axis), respectively. ∆E - ∆EDFTd,q indicates the

change from the true DFT calculated formation energy. Dashed lines mark the experimentally
measured values of doping effectiveness for each system.

localized around the Br defect but delocalized as part of the conduction band.

We also notice that the +/0 donor transition level for the BrSe defect (0/- acceptor transition

level in case of NaPb) is close to the CBM (VBM for NaPb), as seen in Fig. 4.1, consistent with

these neutral defects being shallow defects. The transitions are close to the band edge because the

doped electron from the Br+1
Se defect is located in a state that looks similar to and is close in energy

to the CB, as evident from Fig. 4.4. The calculated neutral defect Br0
Se is thus effectively the

same as the charged defect Br+1
Se with the Fermi level located near the CBM. The defect formation

energy calculated for the neutral case instead becomes correlated with the formation energy of the

charged defect at the band edges. Thus, the defect energy for Br0
Se calculated by DFT (and most

likely other defects with unexpected charge states as well) does not, in fact, have the charge state

intended. Instead the charge has been delocalized, altering the charge state of the defect.

Excluding the defects Br0
Se, Na

0
Pb, and others marked with dashed lines in Figs. 4.1 and 4.2,

for phase diagram calculations, we can calculate realistic isothermal sections of solvus boundaries

of the PbSe phase at 973 K in the Br-Pb-Se and Na-Pb-Se ternary phase diagrams, as shown in

Figs. 4.5 and 4.6, respectively. From Fig. 4.5 it is evident that peak Br solubility in PbSe occurs
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Figure 4.4: (Color online) Partial charge density plot of the highest energy electrons in the supercell
(of the PbSe primitive cell) containing the Br0

Se defect (at the center of the supercell) showing charge
delocalization that makes this defect equivalent to the case of the charged defect Br+1

Se with the
Fermi level located at or near the CBM. Pb atoms are shown in dark grey, Se atoms in light grey,
and Br atom in green.

in a direction slightly Br-rich and Pb-deficient of the PbSe-PbBr line - the line for 1:1 substitution

of Se with Br. Fig. 4.6 shows that the PbSe single-phase region is very narraow and has maximum

Na solubility along the PbSe-NaSe line, similar to the solubility of Na predicted in PbTe in Ref. [96].

For accurate phase diagrams and dopant effectiveness that matches experiment, we suggest

using only the expected charge states for each defect (here: Br+1
Se , Na−1

Pb , V
−2
Pb , V +2

Se , as marked

with solid lines in Figs. 4.1 and 4.2) in calculations of phase diagrams and doping effectiveness.

We suspect this is widespread in calculations on easily doped, low band-gap semiconductors with

high dielectric constants. Although this problem is understood by the defect calculation community

[64], it is not frequently described as the method that was primarily developed to understand deep

defects in large band-gap semiconductors or insulators.
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Figure 4.5: (Color online) (a) Isothermal section of the Br-Pb-Se phase diagram calculated at
T = 973 K showing the single-phase region of PbSe in blue, and green tie-lines representing two-
phase regions between it and other compounds that are shown in the full isothermal section plot
in (b). Sample composition at which doping effectiveness measurements were made is shown as
a closed blue circle in (a). Dashed line represents a path between PbSe and a hypothetical PbBr
compound for one-to-one replacement of Se with Br, i.e., as PbBrxSe1−x.

4.4 Conclusions

In summary, we performed standard defect energy calculations on PbSe with a n-type dopant Br

and a p-type dopant Na, and found that defects with unexpected charge states result in unexpect-

edly low formation energies that would not agree with experimentally observed phase diagrams or

dopant efficiencies. This has been traced to the delocalization of charge, which alters the charge

state of the calculated defect. Thus, these defects were excluded from calculations of the phase

diagrams giving results that appear accurate. Similar consideration is surely relevant to many de-

fect calculations, particularly in narrow band gap semiconductors. Refining a procedure to identify

delocalized charge and eliminating unnecessary calculations will expedite the use of such calcula-

tions by experimentalists in understanding phase diagrams and devising effective doping strategies.

Figures in this chapter have been created using the LevelScheme scientific figure preparation system

[102].
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in (b). Sample composition at which doping effectiveness measurements were made is shown as a
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58

Chapter 5

Phase diagrams and defect
thermodynamics to devise doping
strategies in the thermoelectric
material PbSe

5.1 Introduction

Thermoelectric generators are devices that are of considerable interest to the automobile, space,

and other types of industries [103] as they help recover available energy (or exergy) from waste heat

and convert it into electricity. Typical thermoelectric materials that enable the direct conversion

between heat and electricity are compound semiconductors. The control of free carrier concentra-

tion and improvement of their mobility are at the core of essentially all materials engineering of

semiconductors. In order to have desired properties for a specific application, semiconductors need

to be doped, which is accomplished by substituting atoms with a different element, i.e., a dopant.

Optimal thermoelectric performance requires materials with well-defined electrical and thermal

conductivities, thermoelectric power, and high mobility of free charge carriers. These properties

are also influenced by the presence of impurities/dopants and their interaction with native point

defects, all of which cause deviations from stoichiometry for the semiconductor compound. With re-

newed interests in developing defect-tolerant electronic materials to meet the current technological,

environmental, and energy challenges, the importance of defect studies only increases. Therefore,

the investigation of the nature of point defects, both intrinsic and extrinsic, is vital both for an un-
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derstanding of the role these defects play in variation of the thermoelectric properties and for their

optimal use in practical devices. In particular, the nature of the carrier type is strongly dependent

on intrinsic and extrinsic point defects, leading to intensive efforts to understand the role of these

defects in variation of the thermoelectric properties.

The range of carrier concentration is usually set by the solubility of a certain dopant, whereas

the dominance of an electronically preferred defect leads to either electron or hole conductivity,

fine carrier concentration tuning, and high doping efficiency, as well as higher mobilities due to the

absence of compensation. On the other hand, for applications under harsh conditions, for example,

thermoelectric modules for heat recovery, the formation and evolution of unwanted secondary phases

often harms lifetime performance, or even the stability and integrity of devices. Phase diagrams

provide useful information in such aspects. However, aside from few extensively studied systems,

experimental phase diagrams usually are not available, and even less for ternary systems than binary

systems. When available, they lack enough detail in the composition ranges of interest. In such

cases, calculated phase diagrams could provide alternative guideline for optimized doping strategies.

The rock-salt lead chalcogenides (PbQ, Q = Te, Se, S) are a popular class of TE materials that,

due to their superior properties [13], have been the subject of significant TE materials research

[81–84]. The material system we studied is PbSe, which has received great interest as a material

for thermoelectric power generation [82, 85–88] at high temperatures (600 - 900K) [89] where its

zT exceeds 1 [88] for both p-type [82] and n-type [84] samples. In comparison with PbTe, one

of the most widely studied TE materials, PbSe is advantageous, as Se is less expensive and more

abundant than Te. The amount of dopant governs the carrier concentration in PbSe, and the

maximum concentration of dopant that can be added to it without precipitating secondary phases

can be determined by calculating the solvus boundary of the PbSe single phase in the ternary system

X-Pb-Se, where X is a dopant. With monovalent atoms substituting on the anion Se−2 sublattice,

PbSe is doped n-type with one conducting electron produced for each substituted Se atom, whereas

substitutions on the Pb+2 sublattice dopes PbSe p-type with one conducting hole produced for

each substituted Pb atom. In this work, using a large set of defect energies calculated using density

functional theory (DFT) [14, 15], and a ternary statistical mechanics model we investigate the

influence on the single phase boundary of PbSe in the cases of addition of Cl, I, Sb, Bi, and In.
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Through the calculated solvus boundaries, it will become possible to determine dopant solubilities

and electrical conductivity properties in different regions of the phase diagram, which will help

devise the most effective synthesis routes for adding dopants to PbSe.

5.2 Methodology

5.2.1 Defect thermodynamics

To determine the solvus boundaries of the PbSe phase in the phase spaces of the ternary system

X-Pb-Se (the Cl-Pb-Se, I-Pb-Se, Sb-Pb-Se, Bi-Pb-Se and In-Pb-Se systems in this work), first we

calculate the defect formation energies of intrinsic defects consisting of vacancies (VPb, VSe), substi-

tutions (PbSe, SePb), interstitials (Pbi, Sei), and extrinsic defects consisting of dopant substitutions

on Pb or Se (ClPb, ClSe, IPb, ISe, SbPb, SbSe, BiPb, BiSe, InPb, InSe), as well as interstitials (Cli,

Ii, Sbi, Bii, Ini), all in neutral and charge states ranging from q = -2 to +2. All sites in the PbSe

supercell are symmetrically equivalent for the defect to be positioned. The defect formation energy

of a defect d of charge q of a solute in the PbSe compound is given according to the Zhang-Northrup

supercell formalism [43] by,

∆Ed,q = [Ed,q − EH ] +
∑
α

ndα(µ0
α + ∆µα) + q(EV BM + ∆VPA + µe) + ∆EIC , (5.1)

where Ed,q and EH are the DFT total energies of the defect containing PbSe supercell and the pure

PbSe supercell, respectively, ndα is the number of atoms added (nα = -1) or removed (nα = +1) from

the pure supercell to form the defect, µ0
α is the chemical potential of an element in its ground state

or standard metallic state, and ∆µα is the change in the chemical potential of α with reference

to its standard state corresponding to a particular three-phase equilibrium between PbSe and

other compounds in the X-Pb-Se systems. µ0
α and ∆µα are calculated using elemental ground state

energies and compound formation energies taken from the Materials Project [92–94] (the calculation

settings used by the Materials Project are verified to be the same as those used in the calculation

of defect energies in this work so as to avoid any errors in the formation energies). For a maximally

rich growth environment of an element, ∆µα = 0. In these conditions, the chemical potential of the

other elements are reduced to below their standard reference state values, i.e., µα < µ0
α (∆µα < 0).
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Their exact values are calculated using compound formation energies in equilibrium for a particular

phase region. For example, the three-phase region Pb-PbSe-PbCl2 of the Cl-Pb-Se ternary phase

diagram is represented by,

µPb = µ0
Pb(∆µPb = 0)

µSe = µPbSe − µPb

µCl =
µPbCl2 − µPb

2
,

(5.2)

where µPbSe and µPbCl2 are the formation energies of the defect-free PbSe and PbCl2 compounds.

The second to last term in Eqn. (5.1), i.e., q(EV BM + ∆VPA + µe), represents the energy

cost of exchanging electrons with the electron reservoir for charged defects (q 6= 0). The valence

band maximum (VBM) energy, EV BM , corresponds to the energy of the highest occupied level.

It represents the cost of removing an electron from the top of the valence band, and in this work

is evaluated by calculating the energy difference between a neutral defect-free supercell and the

supercell with a hole. The creation of a neutral defect in a supercell causes the band energy levels

to shift relative to the levels in the defect-free supercell. Furthermore, in the case of creation of

a charged defect, the charge neutrality condition is violated, causing the Coulomb potential to

diverge. This is avoided by setting Vel(G = 0) = 0, which is equivalent to introducing a

compensating uniform background charge that only affects the potential and not the charge density

in the calculation. Thus, the energy levels of the charged defect cell do not reference to the potential

of the host cell, needing a re-alignment of the defect energy levels to the host energy levels. This is

achieved using a potential alignment (PA) term ∆VPA that is added to the defect formation energy

(in Eqn. (5.1) above) and is calculated as [44],

∆EPA = q.∆VPA = q.(V rd,q − V rH), (5.3)

where ∆VPA is the potential alignment between the spherically-averaged electrostatic potentials of

the defect (V rd,q) and the host (V rH) cells far from the defect site so as to avoid including any spurious

chemical interactions with the defect. The potential alignment correction term ranges from +0.08

eV to -0.13 eV for various charged defects. Due to the periodic boundary conditions employed by
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DFT, charged defects are periodically and infinitely repeated in neighboring supercells, resulting

in defect concentrations in the order of tenths of a percent, which is significantly higher than

that found in semiconductors (parts-per-million). These periodic images of defects electrostatically

interact with each other. Thus, in order to model a truly isolated charge defect in a size-limited

supercell, an image charge correction energy term ∆EIC is added to the defect formation energy in

Eqn. (5.1). It is typically written in the form of a multipole expansion given by Makov and Payne

[45],

∆EIC =
q2α

2εL
+

2πqQr
3εL3

+ O(L−5), (5.4)

where α is the Madelung constant of the supercell lattice (1.75 for the rock salt NaCl structure

of PbSe), L is distance between defects, and ε is the dielectric constant which is calculated to be

equal to 594 (including both ion-clamped ion-clamped and ionic contributions) for PbSe using den-

sity functional perturbation theory as implemented in VASP [46–48]. The first two terms are the

monopole and quadrupole corrections, where Qr is the second radial moment of the charge density.

In Ref. [44] it is found that these terms are not affected by the choice of the exchange-correlation

functional. Higher order terms O(L−5) are neglected due to their minimal contributions. All to-

gether, the image charge correction term is calculated to have a maximum value of ≈ 7 meV in this

work for q ± 2 charges, which is low due to the high dielectric constant of PbSe.

5.2.2 Calculation of isothermal solvus boundaries

The most dominant defect is determined by the position of the electron chemical potential, µe in

Eqn. (5.1). It is the additional energy of electrons in our system, and is set to range in values around

the energies of the VBM and CBM (conduction band minimum) for plots showing the variation

of defect formation energies as functions of electron chemical potential. Under the assumption of

dilute limit of defect concentrations, the number of free charge carriers in the compound is controlled

by the number of electrons charged defects can either donate to or accept from the bands. It is

calculated as a function of temperature T and sets of chemical potentials µα, representing different

regions of phase equilibrium involving the PbSe phase, by numerically solving the charge-neutrality

condition,
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n − p =
∑
d

qdcd,q, (5.5)

where n and p are the free carrier concentrations of electrons and holes given by [95],

n =

∫ +∞

ECBM

n(E)f(E;µe, T )dE,

p =

∫ EV BM

−∞
n(E)[1 − f(E;µe, T )]dE,

(5.6)

where n(E) is the density of states of the defect-free crystal that is calculated using DFT (with a

high k-point mesh) in this work, and f(E;µe, T ) is the Fermi-Dirac distribution. In the dilute limit

of defect concentrations, the concentration cd,q of a particular defect in the structure is given by

the Botlzmann distribution as in Ref. [95],

cd,q = Nd,q
siteN

d,q
syme

−∆Ed,q/kT , (5.7)

where Nd,q
site is the number of defect sites per formula unit of PbSe and Nd,q

sym is the number of geo-

metrically distinct but symmetrically equivalent ways of adding defect d with charge state q to a site.

The solvus boundaries of PbSe in the X-Pb-Se systems are calculated by summing over concen-

trations of each defect d, weighted by −ndα, which is the change in composition of the XPbSe phase

due to that defect, and is given by [96],

nα =
∑
d

−ndαcd,q. (5.8)

When calculated under different sets of chemical potentials µα, which represent different phase

equilibrium regions between PbSe and other compounds in the phase diagram, and at a particular

temperature T, we obtain one data point of the solvus boundary for each phase equilibrium region.

For example, at a fixed temperature T the set of chemical potentials corresponding to the three-

phase equilibrium between PbSe, Pb, and PbCl2 in the Cl-Pb-Se phase diagram gives one data point:

the composition of the PbSe single phase boundary that is connected to both the PbCl2 and Pb

phases. Similarly, the set of chemical potentials corresponding to three-phase equilibrium between
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PbSe, Se, and PbCl2 gives one data point: the composition of the PbSe single phase boundary

that is connected to both the PbCl2 and Se phases. To determine the behavior of the PbSe solvus

boundary between these 2 data points, it is first noted that there is one linear combination of

chemical potentials that differ between neighboring three-phase equilibria (because only one phase

is different between the two set of equilibria). Based on this, the chemical potentials between

the neighboring three-phase equilibria are interpolated to get several sets of chemical potentials,

with each set corresponding to a two-phase equilibria between the two phases in common between

the two sets of three-phase equilibria (in the example above, this would be PbSe and PbCl2).

Determining the composition of PbSe at each of these two-phase equilibria chemical potentials fills

in the PbSe single phase boundary curve. An additional complication occurs when we go from

a three-phase region (such as PbSe-Pb-PbCl2 in Cl-Pb-Se) to a two-phase region (PbSe-Pb) on

the binary boundary of the phase diagram since, according to the example above, the Cl chemical

potential is not well defined there. This is dealt with as follows: starting with the chemical potentials

of the PbSe-Pb-PbCl2 phase region, we sequentially subtract from them the chemical potential of Cl.

Since there is technically no lower bound for the chemical potential of Cl in PbSe-Pb, the variables

of the employed interpolation scheme are varied until the single phase boundary approached the

binary edge of the plot and the choice of these variables no longer affected the resulting solvus

boundaries.

5.2.3 Computational details

We use DFT as implemented in the Vienna Ab-initio Simulation Package (VASP) [50–53] to cal-

culate energies of the defect and host supercells. Ion-electron interactions were described using the

Projector Augmented Wave (PAW) potentials [22–24] utilizing the generalized gradient approxima-

tion (GGA) with the exchange-correlation functional of Perdew, Burke, and Ernzerhof (PBE) [18].

The 5d106s26p2 electrons of Pb, 4s24p4 electrons of Se, 3s23p5 electrons of Cl, 5s25p5 electrons of

I, 5s25p3 electrons of Sb, 5d106s26p3 electrons of Bi, and 4d105s25p1 electrons of In are treated

as valence states in the PAW potentials. All supercell calculations are performed on a 5 x 5 x 5

supercell of the primitive cell and contain 250 atoms. The cutoff energy of plane wave basis was

set to 400 eV, a Gaussian smearing width of 0.05 eV is used to smear electron occupations, and

integrations over the first Brillouin zone are made using a 2 x 2 x 2 Monkhorst-Pack k-point grid

set [54]. Unit cell parameters and atomic positions are relaxed based on an energy convergence
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criteria of 10−4 eV, and a final static calculation is performed for each defect to obtain accurate

total energies.

5.3 Results and Discussion

Using GGA for exchange-correlation results in a calculated direct band gap of 0.41 eV at the L point,

which over-estimates but is in fairly good agreement with the experimentally obtained value of 0.28

eV at room temperature [63, 97, 98]. Previous calculations in Refs. [99–101] show that including

spin-orbit coupling (SOC) effects reduces the gap to near zero or negative values, representative of

a metal, whereas the GW method, or the use of hybrid HSE03 functionals, with and without SOC,

leads to band gaps of ≈ 0.13 eV and 0.58 eV, respectively, which are both less accurate than just

PBE-GGA. Thus, GGA gives a fairly accurate band gap without any underestimation, which is

why hybrid functionals or SOC were not considered in our calculations.

5.3.1 Cl, Br, and I in PbSe

Defect formation energies of the various point defects, as mentioned in the previous section, in the

Br-Pb-Se and Na-Pb-Se systems are shown in Figs. 5.1 and 5.2, respectively. They are plotted

as a function of electron chemical potential or Fermi level µe for different regions of three-phase

equilibrium (listed above each plot) that contain the PbSe phase in these systems. The slope of

the line corresponds to the charge state. According to the methodology presented in the previous

chapter, shallow defects with delocalized charge that are shown with dashed lines in these figures

(and the rest) are precluded from the calculation, whereas those shown with solid lines that are

deep localized charged defects are included in the calculation of isothermal solvus boundaries in

these systems. As described in Section 2.2, the dominant defects (defects with highest concentra-

tions) of a system are determined by calculating the equilibrium µe as a function of temperature

and atomic chemical potentials by numerically solving the charge neutrality condition in Eqn. 5.5.

With an increase in temperature, µe is expected to equilibrate closer to transition points between

donor defects and acceptor defects to satisfy charge balancing. In cases of both the Cl-Pb-Se and

I-Pb-Se systems, the equilibrium µe is positioned where, from Figs. 5.1 and 5.2, the lowest energy

defects are donor defects Cl+1
Se and I+1

Se in the Pb-rich regions (points A) of Pb-PbSe-PbCl2 and



66

Pb-PbSe-PbI2 regions, respectively. These defects are expected to be most stable due to the -1

valence charge state exhibited by these halogens which when substituted on a Se atom with a -2

valence charge lead to a net charge of +1. The Se-rich regions (points B) in these systems are

dominated by acceptor V −2
Pb defects in addition to the above mentioned defects.
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Figure 5.1: (Color online) Defect formation energies, ∆Ed,q of the lowest energy intrinsic and Cl-
containing defects in PbSe as a function of Fermi level, µe (relative to VBM) in different three phase
equilibrium regions of PbSe in the Cl-Pb-Se phase diagram. Solid lines indicate defects included in
the calculation of the Cl-Pb-Se phase diagram, whereas dashed lines indicate excluded defects.

Continuing to follow the methodology of calculating defect concentrations detailed in Section

2.2 enables the mapping of solvus boundaries of the PbSe phase as a function of temperature. Figs.

5.3 and 5.4 show the calculated isothermal sections of the PbSe solvus boundaries upon the addi-
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Figure 5.2: (Color online) Defect formation energies, ∆Ed,q of the lowest energy intrinsic and I-
containing defects in PbSe as a function of Fermi level, µe (relative to VBM) in different three phase
equilibrium regions of PbSe in the I-Pb-Se phase diagram. Solid lines indicate defects included in
the calculation of the I-Pb-Se phase diagram, whereas dashed lines indicate excluded defects.

tion of Cl and I, respectively, at 573 K. This temperature was chosen as it falls within the range

of operating temperatures for many thermoelectric applications. Red boxes in these figures show

the expanded views of the isothermal section, next to which are the full ternary phase diagrams.

In addition to the above diagrams, we have also plotted the solvus boundary of the PbSe phase

in the Br-Pb-Se system at 573 K in Fig. 5.5 for comparison since Cl, Br, and I are all halogens

falling in the same s2p5 column of the periodic table (refer to the previous chapter for a plot of

defect formation energies in Br-Pb-Se). In all three figures, we have marked with dashed lines a

path for one-to-one replacement of Se with the dopant, i.e., as PbXxSe1−x (where X = Cl, Br, I).
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This makes it evident from all three phase diagrams that a greater amount of dopant can be added

by atomic fraction to PbSe when they are added as a one-to-one replacement for Pb in a Pb-rich

environment (chemical potentials at points A representing region Pb-PbSe-PbX2) than when they

are added to PbSe in a Se-rich environment, i.e., chemical potentials at points B representing the

region PbSe-Se-PbX2. In fact, the amount of dopant that can be added in a Pb-rich environment,

without precipitating secondary phases, is about a factor of 4 (for Cl and Br) or 14 (for I) greater

(at 573 K) than the amount of dopant that can be added to PbSe is a Se-rich environment. This can

be explained by the magnitude of defect formation energies at the positions of equilibrium Fermi

level µe at 573 K near the transition points between donor and acceptor defects: defect formation

energies at or near equilibrium Fermi level µe are lower in Pb-rich regions than in Se-rich regions

leading to higher defect concentrations and thus higher dopant solubilities in Pb-rich regions. It

can also be seen by comparing the three phase diagrams that dopant solubilities in these systems

follow the order x(Br) > x(Cl) > x(I). This is expected if we compare the atomic radii of Se to

these dopants: Br (94 pm) is closer in size to Se (103 pm) than Cl (79 pm), which is in turn closer

in size to Se than I (115 pm) [104, 105].

There is also a significant effect observed on calculated electrical properties of doped samples in

these systems based on growth conditions. Samples prepared in a Pb-rich environment at chemical

potentials of points A are predicted to be n-type, whereas those prepared in a Se-rich environment

at chemical potentials of points B are predicted to be p-type due to the dominance of donor defects

in the former and acceptor defects in the latter regions of the phase diagram (see Figs. 5.1 and 5.2).

As can be seen from Figs. 5.3, 5.4, and 5.5, even a slight change in synthesis routes in the order of

hundredths of atomic percent can lead to stabilization in a different region of phase diagram that

can drastically change the electrical properties of a thermoelectric material. Carrier concentrations

of electrons in Pb-rich regions of these systems at 573 K follow the order of dopant solubilities:

2.8 x 1020 electrons/cm3 for Br, 2.3 x 1020 electrons/cm3 for Cl, and 5.4 x 1019 electrons/cm3 for

I, whereas hole concentrations follow exactly a reverse order: 2.3 x 1019 holes/cm3 for Br, 2.6 x

1020 holes/cm3 for Cl, and 3.7 x 1019 holes/cm3 for I. The reason for this trend reversal in Se-

rich regions from Pb-rich regions is that the transition points of charge neutrality between X+1
Se

and V −2
Pb in these systems shifts further towards the VBM from I to Cl to Br, thus leading to

the equilibrium Fermi level µe being positioned closer to the middle of band gap where the defect
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Figure 5.3: (Color online) (a) Isothermal section of the Cl-Pb-Se phase diagram calculated at
T = 573 K showing the single-phase region of PbSe in blue, and green tie-lines representing two-
phase regions between it and other compounds that are shown in the full isothermal section plot in
(b). Dashed line represents a path between PbSe and a hypothetical PbCl compound for one-to-one
replacement of Se with Cl, i.e., as PbClxSe1−x. Point A (blue circle) marks the point of maximum
Cl solubility in the three-phase region Pb-PbSe-PbCl2 where a sample is predicted to exhibit n-type
conductivity, whereas point B (red circle) marks the point of Cl solubility in the three-phase region
PbSe-Se-PbCl2 where a sample is predicted to exhibit p-type conductivity.

formation energies of V −2
Pb are lower, leading to higher hole concentrations, in the order mentioned

above. Hall measurements in Ref. [106] measured a monotonically increasing electron concentration

beyond 3.8 x 1020 electrons/cm3 of Cl doped PbSe samples with amount of Cl, which agrees with

our prediction of a higher concentration at the solubility limit of Cl in PbSe at 573 K.

5.3.2 Sb and Bi in PbSe

Figs. 5.6 and 5.7 show the defect formation energies of point defects in PbSe upon the addition

of Sb and Bi as dopants, respectively. Looking at the atomic radii of these elements from Refs.

[104, 105], we note their order as r(Se) (103 pm) < r(Sb) (133 pm) < r(Bi) (143 pm) < r(Pb) (154

pm). The atomic size of Sb falls closer to the size of Pb than to that of Se making its substitution

on a Pb site more likely than on a Se site. This is confirmed in our defect calculations in Fig. 5.6

where we see the defect formation energy of Sb as a single hole Sb−1
Se acceptor defect in the Pb-rich

Pb+PbSe+Sb region (point A) higher in energy than as a single electron Sb+1
Pb donor defect in the
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Figure 5.4: (Color online) (a) Isothermal section of the I-Pb-Se phase diagram calculated at T = 573
K showing the single-phase region of PbSe in blue, and green tie-lines representing two-phase regions
between it and other compounds that are shown in the full isothermal section plot in (b). Dashed
line represents a path between PbSe and a hypothetical PbI compound for one-to-one replacement
of Se with I, i.e., as PbIxSe1−x. Point A (blue circle) marks the point of maximum I solubility in
the three-phase region Pb-PbSe-PbI2 where a sample is predicted to exhibit n-type conductivity,
whereas point B (red circle) marks the point of I solubility in the three-phase region PbSe-Se-PbI2

where a sample is predicted to exhibit p-type conductivity.

Se-rich regions of PbSe+Sb+Sb2Se3 region (point B) and PbSe+Sb2Se3+Se region (point C), thus

resulting in low dopant solubilities in the Pb-rich region. Sb exhibits single electron donor and

single hole acceptor properties since it has three electrons in its valence 5p3 orbital, causing it to

exhibit a valence of -3 and +3. Similar is the case with Bi, which has three electrons in its valence

6p3 orbital. Its size is much closer to that of Pb than Se, which makes its substitution on a Pb site

even more likely than on a Se site. This is verified from the defect energy plots in Fig. 5.7. The

Pb-rich region (point A), similar to the case of Sb as a dopant, is dominated by V +2
Se and Bi−1

Se

defects (Sb−1
Se in case of Sb), but now in the case of Bi is also dominated by the Bi+1

Pb defect, which

is much lower in energy compared to the Sb+1
Pb defect. This is a consequence of the atomic size of

Bi being closer to that of Pb than that of Sb to Pb, making its substitution on a Pb site more

energetically favorable. It is also a reason for the transition point of charge balance between donor

defects (V +2
Se in case of Sb and Bi+1

Pb in case of Bi) and acceptor defects (Sb−1
Se in case of Sb and

Bi−1
Se in case of Bi) to be shifted from closer to VBM in the case of Sb to almost at the CBM in

the case of Bi when chemical potentials represent their respective Pb-rich regions. This causes the
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Figure 5.5: (Color online) (a) Isothermal section of the Br-Pb-Se phase diagram calculated at
T = 573 K showing the single-phase region of PbSe in blue, and green tie-lines representing two-
phase regions between it and other compounds that are shown in the full isothermal section plot
in (b). Dashed line represents a path between PbSe and a hypothetical PbBr compound for one-
to-one replacement of Se with Br, i.e., as PbBrxSe1−x. Point A (blue circle) marks the point of
maximum Br solubility in the three-phase region Pb-PbSe-PbBr2 where a sample is predicted to
exhibit n-type conductivity, whereas point B (red circle) marks the point of Br solubility in the
three-phase region PbSe-Se-PbBr2 where a sample is predicted to exhibit p-type conductivity.

calculated Fermi level µe at 573 K to equilibrate closer to the middle of the gap in case of Sb at

point A where where the acceptor Sb−1
Se defects are stable, causing samples prepared in a Pb-rich

growth environment to be p-type with a hole concentration of 8.2 x 1017 holes/cm3, which is low

for thermoelectric applications due to high formation energies. In a Pb-rich environment with Bi

as a dopant, it equilibrates closer to the CBM, but now since the donor Bi+1
Pb defect dominates ma-

jority of the low energy region, these samples are expected to exhibit n-type electrical conduction

properties with a carrier concentration of 1.1 x 1018 electrons/cm3.

When samples are prepared at chemical potentials representing the dopant-rich regions (points

B) of both Sb-Pb-Se and Bi-Pb-Se phase diagrams, the Fermi level is at equilibrium where dopant

substitutions on the Pb site, donating one electron to the lattice, become the prominent defect,

thus causing n-type conduction in both samples. Since the atomic size of Bi is more similar to Pb

than the atomic size of Sb, the defect formation energy of the Bi+1
Pb defect is lower compared to

the Sb+1
Pb defect, causing the charge balance transition point and the equilibrium Fermi level in this
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Figure 5.6: (Color online) Defect formation energies, ∆Ed,q of the lowest energy intrinsic and Sb-
containing defects in PbSe as a function of Fermi level, µe (relative to VBM) in different three phase
equilibrium regions of PbSe in the Sb-Pb-Se phase diagram. Solid lines indicate defects included in
the calculation of the Sb-Pb-Se phase diagram, whereas dashed lines indicate excluded defects.

region to be slightly above mid-gap in case of Sb and near the CBM in case of Bi (see Figs. 5.6

and 5.7). At these points, the lower defect formation energy of Bi+1
Pb results in a higher carrier

concentration of 4.0 x 1019 electrons/cm3 compared to 2.5 x 1018 electrons/cm3 in case of Sb. This

is the same reason for the higher hole concentration of 1.9 x 1019 holes/cm3 in the case of Sb than

1.1 x 1019 holes/cm3 in case of Bi in the Se-rich regions (points C) of these systems. Samples

prepared at chemical potentials of these regions are dominated by the V −2
Pb defects, thus exhibiting

p-type electrical conduction properties.

The two dopants, Sb and Bi, when added to PbSe exhibit electrical conduction properties of
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Figure 5.7: (Color online) Defect formation energies, ∆Ed,q of the lowest energy intrinsic and Bi-
containing defects in PbSe as a function of Fermi level, µe (relative to VBM) in different three phase
equilibrium regions of PbSe in the Bi-Pb-Se phase diagram. Solid lines indicate defects included in
the calculation of the Bi-Pb-Se phase diagram, whereas dashed lines indicate excluded defects.

both type: n-type at dopant-rich regions (points B) of the phase diagrams, and p-type at Se-rich

regions (points C) of the phase diagrams. This makes both Sb and Bi amphoteric dopants in PbSe,

and not just n-type carriers as assumed by many studies [107]. The amphoteric nature of Sb in

PbTe was confirmed by nuclear magnetic resonance (NMR) spectroscopy experiments in Ref. [108]

and Mössbauer spectroscopy in Ref. [109]. Thus, in this work, since both the Sb donor and acceptor

defects dominate the defect energy landscape in PbSe, we predict an amphoteric behavior of Sb

also in PbSe. The amphoteric nature of Bi in PbSe has been evidenced in a study of electrical

properties of Bi-doped PbSe films in Ref. [110], thus verifying our calculations in this work.
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Figs. 5.8 and 5.9 show the resulting solvus boundaries of the PbSe phase at 573 K upon the

addition of dopants Sb and Bi, respectively. As discussed above, formation energies of defects in

Pb-rich regions of both systems are higher (at equilibrium Fermi levels) relative to those in the other

two regions (points B and C) leading to lower carrier concentrations. This also leads to low dopant

solubilities in these regions as seen from the calculated phase boundaries at point A. However,

dopant solubilities are much higher in both the dopant-rich (point B) and Se-rich (point C) regions

of the phase diagram since at 573 K the Fermi level equilibrates where defect formation energies are

lower, which also lead to higher carrier concentrations. Without precipitating secondary phases,

the amount of Bi that can be added to PbSe in Bi-rich and Se-rich regions of the phase diagram are

more than a factor of 3 higher than those of Sb, which is in agreement with room temperature Hall

carrier-concentration measurements in Ref. [107] that suggest a significantly higher solubility of Bi

in PbSe than Sb. For reasons discussed above, this is expected as the atomic size of Bi is closer to

that of Pb than that of Sb, making its substitution on a Pb-site more energetically favorable, thus

explaining its higher solubility. In both phase diagrams, we have again marked with dashed lines

a path for one-to-one replacement of Pb with a dopant, i.e., as Pb1−xXxSe (where X = Sb, Bi).

It can be seen from both the diagrams that the largest atomic fraction of dopant can be obtained

by adding the dopant to PbSe in a ratio of two dopant atomic substitutions for three Pb atoms,

i.e., in a ratio less than one-to-one, which leaves one Pb vacancy, the defect formation energy of

which (as seen from Figs. 5.6 and 5.7) dominates the chemical potential regions of points B and

C. From Figs. 5.8 and 5.9, it is evident that points B and C are within ≈ 0.001 at.% and less

of each other in composition space, and as shown above, represent samples of opposite electrical

conduction properties: n-type at point B and p-type at point C. This shows the importance of

having information on phase solvus boundaries of a thermoelectric material being synthesized since

even a change of 0.001 at.% in sample composition can significantly affect its electrical properties.

5.3.3 In in PbSe

In our final case study of In as a dopant in PbSe, defect formation energies of defects in this system

are plotted in Fig. 5.10, and the resulting solvus boundaries of the InPbSe phase at 573 K are

shown in Fig. 5.11. The atomic size of In is 156 pm [104, 105], which is very close to that of Pb

at 154 pm, making it energetically favorable for substitution on a Pb site with a +1 net charge by

losing its three valence electrons in its 5s and 5p orbitals. This is confirmed from our results in
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Figure 5.8: (Color online) (a) Isothermal section of the Sb-Pb-Se phase diagram calculated at
T = 573 K showing the single-phase region of PbSe in blue, and green tie-lines representing two-
phase regions between it and other compounds that are shown in the full isothermal section plot in
(b). Dashed line represents a path between PbSe and a hypothetical SbSe compound for one-to-one
replacement of Pb with Sb, i.e., as Pb1−xSbxSe. Point B (blue circle) marks the point of maximum
Sb solubility in the three-phase region PbSe-Sb-Sb2Se3 where a sample is predicted to exhibit n-
type conductivity, whereas point C (red circle) marks the point of Sb solubility in the three-phase
region PbSe-Sb2Se3-Se where a sample is predicted to exhibit p-type conductivity.

Fig. 5.10 where In+1
Pb defects dominate the energy landscape in three out of the four regions (points

A, B, and C), thus resulting in n-type behavior in these regions. The maximum calculated carrier

concentration is 2.4 x 1018 electrons/cm3 at 573 K (which is lower than those measured in Refs.

[111, 112]) at point B of the phase diagram in a direction that suggests a one-to-one replacement of

Pb with In. It is also the direction along which, from Fig. 5.11, we obtain the peak solubility of In

at 573 K and thus is the most efficient doping strategy for doping PbSe samples with In. Samples

prepared in a Se-rich growth environment exhibit p-type conductivity with a concentration of 3.6

x 1019 holes/cm3, due to the dominance of V−2
Pb defects.

5.4 Conclusions and outlook

To summarize, we have used DFT calculations on a large number of neutral and charged supercells

of PbSe containing intrinsic and extrinsic point defects with Cl, Br, I, Sb, Bi, and In as dopants.

These results were used as input to a dilute-limit approximation based ternary statistics mechanics
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Figure 5.9: (Color online) (a) Isothermal section of the Bi-Pb-Se phase diagram calculated at
T = 573 K showing the single-phase region of PbSe in blue, and green tie-lines representing two-
phase regions between it and other compounds that are shown in the full isothermal section plot in
(b). Dashed line represents a path between PbSe and a hypothetical BiSe compound for one-to-one
replacement of Pb with Bi, i.e., as Pb1−xBixSe. Point B (blue circle) marks the point of maximum
Bi solubility in the three-phase region PbSe-Bi-Bi2Se3 where a sample is predicted to exhibit n-type
conductivity, whereas point C (red circle) marks the point of Bi solubility in the three-phase region
PbSe-Bi2Se3-Se where a sample is predicted to exhibit p-type conductivity.

model to obtain carrier and defect concentrations, and ultimately solvus boundaries of the PbSe

phase in the respective ternary systems.

Dopants Cl, Br, and I are known to be anion dopants in PbSe with dopants substitutions on

the Se site, and this is confirmed from our calculated defect formation energies where we find X+1
Se

(X = Cl, Br, I) donor defects to be the dominant defects in Pb-rich regions of these systems. These

are also the regions of maximum observed solubility in each system, with one-to-one replacement of

Se with the dopant, and predicted n-type conductivity. Dopant solubilities follow the order: Br >

Cl > I, which is explained in terms of atomic sizes, with the atomic size of Br being closest to that

of Se, making its substitution on the anion site energetically favorable. On the other hand, dopants

Sb and Bi are predicted to be amphoteric in PbSe with substitutions on both the cation and anion

site, as observed from experiments. The dopant-rich regions of their phase diagrams are found to

be dominated by cation site donor dopants X+1
Pb (X = Sb, Bi) leading to n-type conductivity. A

slight change of composition leads to stabilization in the Se-rich regions of these phase diagrams
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which are dominated by V−2
Pb defects, and thus p-type conductivity.

To conclude, results here show the importance of having information on phase stability of doped

semiconductors or thermoelectric materials. Calculations in this work enable the estimation of

dopant solubilities and carrier concentrations, which are strongly varying functions of temperature

and alloy composition, and an understanding of these dependencies allows for finer control over

the electronic properties of a thermoelectric material. Even a slight change in alloy composition or

synthesis route to sample preparation can result in drastically different dopant concentrations and

electrical conductivity behavior. Figures in this chapter have been created using the LevelScheme

scientific figure preparation system [102].
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Figure 5.10: (Color online) Defect formation energies, ∆Ed,q of the lowest energy intrinsic and In-
containing defects in PbSe as a function of Fermi level, µe (relative to VBM) in different three phase
equilibrium regions of PbSe in the In-Pb-Se phase diagram. Solid lines indicate defects included in
the calculation of the In-Pb-Se phase diagram, whereas dashed lines indicate excluded defects.
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Figure 5.11: (Color online) (a) Isothermal section of the In-Pb-Se phase diagram calculated at
T = 573 K showing the single-phase region of PbSe in blue, and green tie-lines representing two-
phase regions between it and other compounds that are shown in the full isothermal section plot
in (b). Point C (blue circle) marks the point of maximum In solubility in the three-phase region
PbSe-InSe-In2Se3 where a sample is predicted to exhibit n-type conductivity, whereas point D (red
circle) marks the point of In solubility in the three-phase region PbSe-In2Se3-Se where a sample is
predicted to exhibit p-type conductivity.
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Chapter 6

Phase stability in nanoscale
material systems: Extension from
bulk phase diagrams

Adapted from Ref. [113] with permission from The Royal Society of Chemistry.

6.1 Introduction

Traditional phase diagrams show equilibrium solubility lines determined for a bulk system, which as

defined in Ref. [114], consist of phases and interface layers with all of their dimensions greater than

100 nm such that the material resembles the bulk. However, when the dimensions of a significant

fraction of particles is reduced to approximately below 100 nm, it has been observed in many exper-

imental works, including and not limited to Refs. [115–120], that these equilibrium lines are shifted

from their original positions in the bulk phase diagram with the amount of shift depending on par-

ticle size, surface to volume ratio, and the material system. This not only changes the solubilities

[121], and temperature and compositions of the invariant reactions [122] of the phase diagram, but

also affects material properties such as electronic [123], magnetic [124], optical [125], and catalytic

[126] properties. Additionally, the stabilization of phases that might otherwise be metastable with

respect to the bulk ground state may also be promoted. These changes are attributed to the size

effect caused due to the larger energies associated with surfaces.

The phenomenon of suppression of melting points in pure elements with a decrease in particle
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size was first experimentally shown about 60 years ago [127]. Recently, it was shown by Chen et

al in Ref. [128] that the melting points of Bi-Sn, In-Sn, and Pb-Sn alloys decreased more rapidly

as a function of particle radius than those of the constituent metals. Additionally, in the work by

Jesser et al [129] on the GaAs-GaSb pseudo-binary system, complete solid solubility was observed

for particles of sizes 10-50 nm in regions of the phase diagram where a miscibility gap was expected

from its bulk phase diagram. In the electronics industry, transistor sizes continue to pursue Moore’s

law [130] from current commercially used node sizes of 22 nm and below. It is important to note

that even at the 22 nm technology node there are dimensions in the technology roadmap already

less than 22 nm. At these sizes, we show that the change in alloy thermodynamic and phase sta-

bility from bulk will be pronounced. This makes the development of a thermodynamic model at

these dimensions critical. Phase diagrams exhibited by materials used in devices are expected to

be considerably different from their bulk counterparts. In compound semiconductors for example,

samples are prepared with small particle sizes when one may not be able to achieve the target band

gap due to changing miscibility. Thus, the evaluation of phase diagrams for systems containing

particles of nanoscale dimensions is valuable to the process of selection of material alloys and fine-

tuning of their composition in order to achieve the desired properties.

As materials/grain sizes are made smaller, surface to volume ratio increases. This leads to a

much greater contribution of surface energy to the total Gibbs free energy of the material, and

must be included in the calculation of phase equilibria. In this work, we have evaluated the phase

diagrams for one semiconductor and two metallic systems at dimensions of several tens of nanome-

ters (termed as nano dimensions): Au-Si, Ge-Si, and Al-Cu using the CALPHAD method [16] by

adding a surface energy term to the excess Gibbs free energy, which makes it a function of parti-

cle size in addition to composition and temperature [131]. For the initial model development, an

isolated particle-in-melt based surface energy formalism is presented to test against a wide range

of experimental data. The first system Au-Si was chosen because it is one of the few systems for

which the amount of shift in equilibrium lines in the phase diagram was experimentally estimated

based on phase transitions observed using in-situ microscopy of spherical nano-sized particles [132].

This is one of the reasons for the selection of the spherical particle model in this work as it makes

possible a direct comparison between the calculated Au-Si phase diagram and experimental data.

In addition, since spheres have the minimum surface area to volume ratio, particles with this shape
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will be the lower bound of effects. In other words, the shift of phase equilibrium due to spherical

particles will be the minimum compared to particles with other shapes (as shown in Table 6.1). We

then proceed on to test extending the model on particle and non-particle based experimental data

sets, and calculate the phase diagram at nano dimensions of Ge-Si, one of the most widely used

and technologically important semiconductor alloy. Lastly, the phase diagram of Al-Cu nano-sized

particles is also calculated. A comparison is made against measured experimental data on surface

tension of spherically shaped alloy samples, and melting points of Al and Cu nano-particles. Un-

like the first two systems, the bulk Al-Cu phase diagram exhibits numerous intermetallic phases,

and thus its phase diagram at nanoscale dimensions should incorporate surface energies of all the

equilibrium phases. However, such data is usually unavailable for phases other than the liquid and

ground-state phases of the pure elements. Thus, we resort to using Density Functional Theory

(DFT) [14, 15] to calculate the surface energy for one of the intermetallic phases Al2Cu, which is

then used in its thermodynamic model to calculate the phase diagram at these small dimensions.

In our study we also identified areas for future model development that were beyond the current

scope of our work, and point in the directions for future enhancements of the model in cases of thin

films and dimensions below 5 nm.

Table 6.1: Surface area to volume ratio of different shapes of nano-particles.
Geometrical Size Surface Area Volume Ratio of Coefficient of ratio

nanostructure (a or r) Surface Area/Volume
Cube a 6a2 a3 6

a 6

Regular Tetrahedron a
√

3a2 a3

6
√

2
6
√

6
a 14.7

Hexahedron a,L; a/L = 1 (6a2 + 3
√

3a2) 3
√

3a3

2
4√
3a

(1+
√

3
2 ) 4.3

Regular icosahedron a 5
√

3a2 5(3+
√

5)a3

12
12
√

3
(3+
√

5)a
3.97

Sphere r 4πr2 4πr3

3
3
r 3

Cylinder r,H; r/H = 1 4πr2 πr3 4
r 4



83

6.2 Method and computational details

6.2.1 The CALPHAD method

The method of CALculation of PHAse Diagrams (or CALPHAD for short) has been widely uti-

lized to calculate bulk phase diagrams and thermodynamic properties of multi-component systems

[16]. It involves the use of Gibbs free energy models developed for various types of phases, such as

random solutions (gases, liquids, and solids), sublattice phases, ionic phases, etc. Variables used in

these models are calculated by fitting either to experimental data or ab initio calculations.

The CALPHAD method [16] is well established for calculating bulk phase diagrams, and is a

good starting point for calculating phase equilibria in nanoscale systems. In this work, since we

have considered surface effects on binary solution phases, thermodynamic models for only these

types of phases will be described. The Gibbs free energy of a bulk random solution phase φ is given

by,

Gφ,bulkm = Gref + ∆Gidealmix + ∆Gxsmix, (6.1)

where Gref is the sum of standard Gibbs energies of each component, ∆Gidealmix is the ideal mixing

configurational entropy contribution to the Gibbs free energy of the solution phases, and ∆Gxsmix,

called the excess energy of mixing, takes into account all the non-ideal temperature dependent

effects such as interaction between components, non-ideal configurational entropy, vibrational and

electronic entropy, etc. Expanding each term, Eqn. (6.1) becomes,

Gφ,bulkm =
∑
i=A,B

xi
oGbulki + RT

∑
i=A,B

xilogexi + ∆Gxsmix

= xA
oGbulkA + xB

oGbulkB +RT (xAlogexA + xBlogexB) + ∆Gxsmix,

(6.2)

where xA and xB are mole fractions of components A and B of the phase, respectively, and oGφ,bulkA

and oGφ,bulkB are the standard Gibbs energies of the phase containing only the pure component A

and B, respectively. These are obtained from the Scientific Group Thermodata Europe (SGTE)

database [26]. Functions in this database are based on measurements of heat capacity of single
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element materials and alloys, which may or may not be accurate depending on the chosen material.

An alternative way of obtaining these functions would be to use state-of-the-art methods to calculate

configurational entropy by sampling the space of different atomic arrangements of an alloy, and also

calculate vibrational entropy by computing its phonon spectrum. R is the gas constant, and T is

the temperature. The excess Gibbs free energy of mixing ∆Gxsmix is expanded according to the

Redlich-Kister formalism [27] as,

∆Gxsmix = xAxB
∑
v

Lφv (xA − xB)v, (6.3)

where v is the order of expansion (v = 0 for regular solution phases and v = 1 or above for

non-regular solution phases), and Lφv is called the non-ideal interaction parameter. As the excess

Gibbs free energy of mixing must include temperature dependency of other sources of entropy

(non-ideal configurational, vibrational, and electronic) apart from ideal configurational entropy,

these parameters are further expanded as,

Lφv = Aφv + Bφv .T, (6.4)

where Aφv and Bφv are user-defined parameters that are calculated and optimized in the CALPHAD

method with available experimental data on positions of equilibrium lines in the phase diagram,

phase thermodynamic properties such as enthalpy and entropy of mixing, etc., and/or similar data

calculated from ab initio calculations, which is particularly useful in cases where no experimental

data is available.

6.2.2 Extension of the CALPHAD method to nanoscale systems

The CALPHAD method is extended to nanoscale systems as explained by Park et al [131], where

the total Gibbs free energy of a phase Gφ,totalm includes the dominant surface energy term, and is

given by,

Gφ,totalm = Gφ,bulkm + ∆Gφ,surfacem , (6.5)

where Gφ,bulkm is given by Eqn. (6.2). According to Gibbs [133], the molar surface Gibbs free energy

is given by,
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∆Gφ,surfacem = Aφ,spec.V φ.σφs , (6.6)

where Aφ,spec is the specific area of the phase φ given by a ratio of its absolute surface area to

absolute volume, V φ is its molar volume, and σφs is the interfacial/surface tension between the

phase and its surroundings. In this work, the particles are assumed to be spherical in shape of

radius r for reasons explained in the previous section, including the availability of experimental

data [132]. The specific area of such a phase is given by,

Aφ,spec =
Aφ,abs

V φ,abs
=

4πr2

4
3πr

3
=

3

r
. (6.7)

By inserting appropriate expressions in the equation above, this methodology can be extended to

any geometrical shape, such as thin films or 3D structures. In the work by Eichhammer et al [134],

a solid nanowire in contact with a hemispherical alloy nano-particle of different sizes was modeled

to calculate its corresponding phase equilibria. As mentioned earlier, for more complicated particle

shapes that are multi-facetted, the specific area above (or the surface area to volume ratio) is even

higher than that for a sphere. For example in the case of an icosahedron, a regular polyhedron with

20 equilateral triangular faces, the specific area is Aφ,spec = 3.970
r [135, 136]. This is slightly higher

than that for a sphere, causing a shift in the phase equilibria in a direction such that the shift in

phase equilibria due to spherical particles still remain at the minimum. Fig. 6.1 shows this effect

in the case of the Ge-Si system, which will be discussed in detail in the subsequent section. This

makes it more likely that particles form in the spherical shape than any other shape so as to obtain

the lowest molar surface Gibbs free energy and total Gibbs free energy. Thus the phase diagrams

calculated for spherical particle systems represent the lowest energy and most stable configuration

for nano-particles.

Inserting Eqn. (6.7) into (Eqn. (6.6)) above, we get,

∆Gφ,surfacem =
3.V φ.σφs

r
. (6.8)

For some systems, information on grain-size distribution is available from experiments, in which

case their weighted averages could be used to calculate the surface Gibbs energy. The corresponding

Kelvin equation given by,
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Figure 6.1: (Color online) Phase diagram of the Ge-Si alloy system calculated for two particle
shapes - sphere and a regular icosahedron, both for a particle size of 5 nm, and compared with the
bulk phase diagram.

∆Gφ,surfacem =
2.V φ.σφs

r
(6.9)

is most often used in literature [116, 131, 137, 138], and its incorrectness, as explained by Kaptay

in Ref. [114], is mainly due to the fact that the Kelvin equation is derived from substituting inner

pressure for outer pressure. A correction factor C is commonly introduced in the equation above

to take into account the effects from shape, surface strain due to non-uniformity, and uncertainty

in surface tension measurements [137], and is estimated to be 1.00 for liquids and 1.05 for solids.

Thus, Eqn. (6.8) becomes

∆Gφ,surfacem =
3.C.V φ.σφs

r
. (6.10)

The molar volume V of the phase, assuming an ideal solution with no excess volume of mixing, is

given by a fractional contribution of each of its pure components,

V φ = xAV
φ
A + xBV

φ
B . (6.11)
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The surface tension of alloy solution phases is calculated for liquids using Butler’s model [139]

that assumes that the surface can be modeled as a single close-packed monolayer. The monolayer

layer is treated as an independent thermodynamic phase in equilibrium with the bulk phase. This

model has been verified with experimental data [140–144], and according to this model, binary alloy

surface tension is given by,

σφs = σφA +
RT

AφA
loge(

xsurfaceA

xbulkA

) +
1

AφA
[Gxs,surfaceA − Gxs,bulkA ]

= σφB +
RT

AφB
loge(

xsurfaceB

xbulkB

) +
1

AφB
[Gxs,surfaceB − Gxs,bulkB ],

(6.12)

where σφA (σφB) is the surface tension of pure component A (B) in the phase φ, R is the gas constant,

T is the temperature, and AA (AB) is the molar surface area of component A (B), which is related

to molar volumes through Avogadro’s number N0,

AφA = 1.091N
1
3

0 (V φA )
2
3

AφB = 1.091N
1
3

0 (V φB )
2
3 ,

(6.13)

where xsurfaceA (xsurfaceB ) and xbulkA (xbulkB ) are the concentrations of A (B) in the surface and bulk

phases, respectively. Gxs,bulkA (Gxs,bulkB ) is the excess Gibbs free energy of A (B) in the bulk phase,

similar to Eqn. (6.3), and Gxs,surfaceA (Gxs,surfaceB ) is the partial excess Gibbs free energy of A (B)

in the surface and is a function of T and xsurfaceA (xsurfaceB ). According to Yeum’s model [145],

Gxs,surfaceA = βmixGxs,bulkA

Gxs,surfaceB = βmixGxs,bulkB ,
(6.14)

where βmix is a parameter corresponding to the ratio of the coordination number in the surface

to that of the bulk. Tanaka et al [141, 146, 147] showed that βmix is not surface concentration

dependent for many liquid alloys, and that it can be assumed that βmix is the same as βpure. Due to

surface relaxation and surface atomic rearrangements, βpure is estimated to be 0.83 [131, 140]. For
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solid metals too, βpure is found to have the same value as liquid metals [131]. Thus, if differences in

shape and surface strains as a function of composition are ignored, surface tensions of solid alloys

can be calculated using Butler’s model in a similar way as for liquid alloys [131].

Combining Gφ,bulkm (from Eqns. (6.2) and (6.3)) and ∆Gφ,surfacem (from Eqn. (6.10)) in Eqn.

(6.5), the total Gibbs free energy of a phase Gφ,totalm consisting of particles of nanoscale dimensions

is obtained,

Gφ,totalm = xA
oGbulkA + xB

oGbulkB +RT (xAlogexA + xBlogexB) + xAxB
∑
v

Lφv (xA − xB)v +
3.C.V φ.σφs

r
.

(6.15)

Now, the total Gibbs free energy of this phase can also be defined similar to that of the bulk

phase in Eqn. (6.2) above as,

Gφ,totalm = xA
oGnanoA + xB

oGnanoB +RT (xAlogexA + xBlogexB) + xAxB
∑
v

Lφ,nanov (xA − xB)v,

(6.16)

where for nanoscale systems, the standard Gibbs free energy of pure components is redefined in

terms of particle size r [131] using the same spherical particle approximation as discussed earlier,

and is given by,

oGnanoA = oGbulkA +
3.C.V φA .σ

φ
A

r

oGnanoB = oGbulkB +
3.C.V φB .σ

φ
B

r
.

(6.17)

Following the work by Park et al [131], the non-ideal interaction parameter of a phase Lφ,nanov is not

only temperature dependent as for a bulk phase in Eqn. (6.4), but is now also made size-dependent

by expanding it as,

Lφ,nanov = (Aφv +

′
Aφv
r

) + (Bφv +

′
Bφv
r

).T, (6.18)
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where
′
Aφv and

′
Bφv are also user-defined parameters in addition to Aφv and Bφv . Using Eqns. (6.17)

and (6.18) in Eqn. (6.16), and then comparing it to Eqn. (6.15), on re-arrangement, it is finally

obtained,

xAxB
∑
v

(
′
Aφv +

′
Bφv .T )(xA − xB)v = 3.C(V φ.σφs − xAV

φ
Aσ

φ
A − xBV

φ
Bσ

φ
B). (6.19)

This equation is used to solve for the unknown parameters
′
Aφv and

′
Bφv as described in the

following subsection on the assessment methodology followed in this work.

Similar to the case of a bulk phase as described in the previous section, the parameters Lφ,nanov

as part of the excess Gibbs free energy of mixing also describe the temperature dependency of non-

ideal configurational, vibrational, and electronic sources of entropy of the nano phase. As described

in Ref. [148] (and references therein), moving from a bulk material to a nanocrystalline material

can cause a larger change in vibrational entropy than configurational entropy. The source of this

increase in vibrational entropy has been attributed to an enhancement of the phonon density of

states at low energies (< 20 meV) which results from an increase in the number of degrees of freedom

in nanocrystals that scales inversely with particle size. This could have a significant impact on the

phase stability of nano-materials, although, due to the lack of inclusion of particle interactions or

the effects of grain boundaries and disclocations on the phase stability of materials, nano particles

in this work are, in effect, modeled as isolated particles. Thus, the above effect of phonon DOS

enhancement at nanoscale particle sizes would not play a role in changing the phase stability of

systems discussed in this work.

6.2.3 Assessment methodology

In this work, we have used the Thermo-Calc [29] package for the calculation of phase diagrams. To

calculate a phase diagram, the first step is to determine the bulk Gibbs free energies Gφ,bulkm (in

Eqns. (6.1) and (6.2)) for each phase expected to participate in the bulk equilibrium phase diagram.

For the binary systems studied in this work, bulk thermodynamic models have in the past been

assessed and developed by various authors. This served as a starting point for the calculation of

phase diagrams of nanoscale systems in this work. In cases where bulk models are not available,



90

parameters can be optimized and fitted to either experimental or ab initio data [16] using parameter

optimization tools implemented in CALPHAD software (PARROT module in Thermo-Calc).

The next step involves the calculation of alloy surface tensions, which are functions of tem-

perature and composition of the components, using Butlers model in Eqn. (6.12). This requires

temperature-dependent surface tensions and molar volumes of each pure component in the phase

for which alloy surface tension is being calculated, and is collected from literature and shown in

Table 6.2. Then Butler’s equations are solved for alloy surface tension as follows: (i) a temper-

ature T and bulk composition xbulkA is selected, (ii) σφA, σφB , AφA, and AφB are inserted into Eqn.

(6.12), (iii) using the condition for equilibrium: Gxs,surfaceA = Gxs,surfaceB , Eqn. (6.12) is solved by

the Newton-Raphson method for σφs and xsurfaceA ( = 1-xsurfaceB ) as functions of temperature and

bulk compositions. This procedure is repeated at different temperatures, preferably in the range

of stability of the phase, and the resulting data is inserted into Eqn. (6.19) to obtain the fitted

parameters
′
Aφv and

′
Bφv . In this work, surface tensions of liquid alloys in all three binary systems

studied here are calculated using the above model, whereas in only the Ge-Si system, surface tension

of the solid (diamond) phase is also calculated as it is the only system for which the ground state

phase of both the pure element constituents Ge and Si exhibit continuous solid solubility across the

entire composition space.

6.2.4 DFT calculations of surface energy

As stated in the Introduction section, no compound phases exist in the bulk equilibria of the Au-

Si and Ge-Si systems (metastable phases are not considered in this work). However, the Al-Cu

bulk phase diagram has numerous intermetallic phases in equilibrium [163, 164]. In this work we

have followed the methodology presented by Kroupa et al in Ref. [165] by calculating the surface

energy of one such compound Al2Cu from ab initio DFT calculations [17], which is then used in

the CALPHAD model. A slab model with two surfaces of the same type is created by inserting

a vacuum. The surface tension σφs of such a model is then obtained by subtracting the cohesive

energy of the bulk structure Ecoh from the energy of the slab structure Eslab,

σφs =
1

2.A
(Eslab − N.Ecoh), (6.20)
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Table 6.2: Thermodynamic and physical properties used in the calculation of alloy surface tensions
and phase diagrams of the Au-Si, Ge-Si, and Al-Cu nanoscale systems (L: Liquid, S: Solid)
Variable Function Reference
Surface tension (J/m2) σLAu = 1.33 - 1.4 x 10−4T [149]

σSAu = 1.947 - 4.3 x 10−4T [150]
σLSi = 0.732 - 8.6 x 10−5(T - 1687.15) [151]
σSSi = 1.510 - 1.589 x 10−4(T - 298.2) [152]
σLGe = 0.621 - 2.6 x 10−4(T - 1211.4) [153]
σSGe = 1.32 - 2.531 x 10−4(T - 298.2) [154]
σLAl = 0.871 - 1.55 x 10−4(T - 933) [155, 156]
σSAl = 1.143 - 1.946 x 10−4T [157, 158]
σLCu = 1.615 - 2.3 x 10−4T [153]
σSCu = 2.1585 - 4 x 10−4T [159]

Molar volume (m3/mol) V LAu = 1.02582 x 10−5 + 7.797 x 10−10T [153]
V SAu = 1.07109 x 10−5 [153]
V LSi = 11.1 x 10−6[1 + 1.4 x 10−4(T - 1687.15) [153]
V SSi = 1.206 x 10−5 [154]
V LGe = 13.2 x 10−6[1 + 8 x 10−5(T - 1211.4) [153]
V SGe = 1.365 x 10−5 [154]
V LAl = 11.491 x 10−6[1 + 9 x 10−5(T - 933) [160]
V SAl = 10.797 x 10−6[1 + 1.29 x 10−4(T - 933) [161]
V LCu = 7.94 x 10−6[1 + 1 x 10−4(T - 1356.15) [153]
V SCu = 7.01 x 10−6 + 2.92 x 10−10T + 1.02 x 10−13T2 [159]
V SAl2Cu = 9 x 10−6 [162]

where N is the number of atoms in the slab structure, and A is the area of the surface being

considered. Cohesive energy is calculated using the following equation,

Ecoh(Al2Cu) =
1

3
[Etot(Al2Cu) − 2.Eatomtot (Al) − Eatomtot (Cu)], (6.21)

where Etot(Al2Cu) represents the total energy per formula unit of Al2Cu, and Eatomtot (Al) and

Eatomtot (Cu) are the total energies of Al and Cu, respectively. The surface tension is then used to

calculate the surface energy using the spherical particle approximation in a similar way as discussed

in the previous section (see Eqn. (6.10)),

∆Gφ,surfacem =
3.C.V φ.σφs

r
. (6.22)

The surface energies of the (100), (110), and (111) planes of Al2Cu are calculated, and the

minimum is included in the model of the Al-Cu system. This method is advantageous as, in prin-
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ciple, the surface energy contribution of all elements, compounds, and metastable phases can be

calculated. The Al-Cu system is complex with many intermetallic phases participating in phase

equilibria, so a logical extension of our current work is to perform surface energy calculations for

all such structures and compare the impacts on the model predictions. It should be noted here

that the larger the number of phases for which surface energies are calculated and included in the

thermodynamic model, larger will be the difference in phase diagrams (melting points, reaction

temperatures, etc.) between the nano and bulk systems.

The Al2Cu compound is of tetragonal tI12 symmetry with space group I4/mcm (no. 140). The

unit cell has the dimensions a=6.067 Å and c=4.877 Å [166]. DFT calculations were performed

using the Vienna Ab-initio Simulation Package (VASP) [50–53], and ion-electron interactions were

described using the Projector Augmented Wave (PAW) method [22–24]. The 3s22p1 orbitals of Al

and 3d104s1 orbitals of Cu were treated as valence states to generate the PAW potentials. Non

spin-polarized Local Density Approximation (LDA) [167] was used to approximate the exchange-

correlation functional. The cutoff energy of plane wave basis was set to 500 eV, and integrations over

the first Brillouin zone were made using a k-point grid set of 8 x 8 x 10 (and scaled appropriately

for slab structures), generated according to the Γ-centered MonkhorstPack scheme [54]. Unit cell

parameters and atomic positions were relaxed based on an energy convergence criteria of 10−4

eV/atom, and a final static calculation was performed for an accurate total energy.

6.3 Results and Discussion

6.3.1 Au-Si

There are very few experimental results that allow a direct comparison with theoretical results, and

the work by Kim et al [132] on the Au-Si system is one of the few. In their study, spherical Au

nano-particles ≈35 nm in diameter were continuously exposed to disilane (Si2H6) gas, and imaged

with a transmission electron microscope. It was observed that with time, solid Au shrinks and the

added Si forms a liquid AuSi shell on its surface, which grows until no solid Au remains. Thus, the

transition from the two-phase sol-Au + liq-AuSi region of the phase diagram to the single-phase

liq-AuSi is recorded. It was concluded that at 500-5250C the liquidus is shifted in composition by
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∆x = 3.5 at.% more Au-rich, and that the transition temperature is lowered by ≈ 2400C. The use

of sphere-shaped particles in this study, and the fact that the above experimental data was used to

make a direct correlation to a shift in the liquidus line, made the Au-Si system a perfect candidate

to verify the spherical particle approximation employed in the thermodynamic models shown in the

Method section.

Table 6.2 shows surface tensions and molar volumes of Au and Si, in the liquid and solid phases,

as functions of temperature that are employed in this work. These functions lead to calculated

melting points of Au and Si shown in Figs. 6.2 and 6.3, respectively, along with experimental data

from literature which they are in fair agreement with. As expected from Eqn. (6.17), they vary

inversely as a function of particle radius r. The surface tension data of liquid Si from literature

shows considerable scatter as discussed in Ref. [168], and ranges anywhere between the so-called

“high” and “low” values of σ = 0.86 J/m−2 and σ = 0.74 J/m−2, respectively. The resulting value

is debated to depend on the measurement method (sessile drop, large drop, levitation techniques,

oscillating drop method), the crucible/substrate material, and oxygen contamination [169]. In this

work we have chosen the “low” value from Ref. [151], i.e., σLSi = 0.732 - 8.6 x 10−5(T - 1687.15),

because when combined with surface tension of solid Si: σSSi = 1.510 - 1.589 x 10−4(T - 298.2) [152],

the resulting melting points of Si lie within the upper and lower limits defined by Couchman et al

[170]. Results from the study on isolated Si particles of sizes ≤ 6 nm by Goldstein Ref. [171] show

a much more significant drop in melting points. Due to the previously mentioned size limitations

in the CALPHAD model, the applicability of the spherical particle approximation in this current

method is limited to radius exceeding 5 nm. Curve (a) in Fig. 6.3 is calculated using surface ten-

sion data of liquid and solid Si from Refs. [153] and [158], respectively, and is in worse agreement

with literature data. Discrepancies in melting temperatures can be attributed to several reasons:

due to the fact that experimental melting temperatures are not defined by the equality of Gibbs

energy of the solid and liquid phases; nanoparticles are prone to defects and impurities especially

due to their relatively large surface areas; although phase-field theory has its own limitations, it has

been demonstrated using phase-field approach [172, 173] that surface melting can begin at lower

temperatures than complete melting and that complete melting occurs when the interface between

the surface melt and solid core loses its stability as the surface melt propagates towards the center,

which is determined by local equilibrium conditions at the interface; due to kinetics and thermal
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Figure 6.2: (Color online) Calculated melting points of Au as a function of particle size compared
with experimental data from Ref. [179].

fluctuations, melting may start when the kinetic nucleation criterion is satisfied.

Following the methodology explained in the Method section, we first start with bulk thermody-

namic data of Au-Si which is obtained from the work by Meng et al [174]. His model was optimized

with measured data on mixing enthalpies of the liquid phase and activities of Au and Si. Then, us-

ing the surface tension and volumetric data of Au and Si, Butler’s equations are solved to calculate

alloy surface tension of the liquid phase of Au-Si as a function of temperature and composition.

Parameters
′
Aφv and

′
Bφv are then fitted to this data using Eqn. (6.19). Increasing the order param-

eters v was found to have no significant effect on the phase diagrams, and thus its maximum value

was kept the same between nano and bulk systems. Resulting non-ideal interaction parameters,

combined with bulk parameters, are shown in Table 6.3 along with the modified standard Gibbs

energies of pure components. This completes the thermodynamic model for nano-sized particles,

and the resulting phase diagrams can be calculated for different particle sizes by changing r.

Fig. 6.4a shows the calculated Au-Si phase diagram at r = 7 nm. Fig. 6.4b shows the same

phase diagram, but now plotted to compare with the experimental data from Ref. [132]. The

amount of shift of the liquidus solubility line and the drop in transition temperature agree very

well with the predicted amounts in Ref. [132]. As discussed earlier, the use of spherical particles in

Ref. [132] serves as a direct validation of the spherical particle model used in this study to calculate
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Figure 6.3: (Color online) Calculated melting points of Si, using surface tension data from Mallot
et al [151] for liquid and from Jaccodine et al [152] for the solid phase, as a function of particle
size compared with experimental data from Iida & Guthrie [153], Mezey et al [158], Couchman &
Jesser [170], Buffat & Borell [180], and Goldstein [171].

surface energies. Table 6.4 shows the drop in eutectic temperatures and its compositional shifts in

the Au-Si system as a function of particle size.

6.3.2 Ge-Si

Semiconductors based on GeSi are used in electronic devices for a wide variety of applications,

making it of great industrial and technological importance. The above validated model is applied

to the Ge-Si system following the same methodology, but this time alloy surface tension of the solid

diamond phase is also calculated in addition to that of the liquid phase. This is possible because

the solid diamond phase in the Ge-Si system exhibits continuous solid solubility between its pure

components Ge and Si up to very high temperatures in the order of 1200 K, as shown in Fig. 6.5a.

This phase also exhibits a low-temperature symmetrical miscibility gap with its highest point at ≈

226.5 K. The bulk thermodynamic data of the liquid and diamond phases is extracted from Refs.

[175] and [176], respectively. Fig. 6.6 shows the calculated surface tensions of the liquid phase

at various compositions and temperatures, and agrees very well with experimental data on Si and
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Figure 6.4: (Color online) Au-Si phase diagram. (a) Phase diagram of the Au-Si alloy system
calculated for particles of radius, r = 7 nm, and compared with the bulk phase diagram from Ref.
[174]. (b) Part of Au-Si phase diagram showing the amounts of shift in solubility lines which agrees
well with experimental results from Ref. [132] shown in parentheses.

Ge melts from Ref. [177]. Complete thermodynamic functions of the model are listed in Table

6.3. The functions for Ge lead to melting points shown in Fig. 6.7 compared with experimental

data on Ge nanocrystals. The calculated phase diagram at particle radius r = 22 nm is shown in

Fig. 6.5b, and as expected, equilibrium lines are lowered in temperature from their positions in the

bulk phase diagram. At the suggested lowest particle size of r = 5 nm for the nano-CALPHAD

method, the peak temperature of the solid phase miscibility gap is reduced to 68.1 K as shown in

Fig. 6.5b. Table 6.4 lists the calculated peak temperatures of the miscibility gap. The depression

of the miscibility gap at small particle sizes due to larger contributions of surface energy terms

could have significant implications for engineering alloy design and fabrication which rely on phase
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diagram to tune thermodynamic, electrical, and transport properties.
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Figure 6.5: (Color online) Ge-Si phase diagram. (a) Bulk Ge-Si phase diagram calculated using
data from Refs. [26, 175, 176]. (b) Phase diagram of the Ge-Si alloy system calculated for varying
radii particles, and compared with the bulk phase diagram. With decreasing particle radii, the
peak temperature of the miscibility gap decreases from ≈ 226 K for bulk particles to ≈ 68 K for
particles of radii, r = 5 nm.

6.3.3 Al-Cu

The Al-Cu system is different from the Au-Si and Ge-Si systems in that there are a number of inter-

metallic compounds, totaling to 13, both stoichiometric and non-stoichiometric, that participate in

the equilibrium phase diagram [163, 164], as shown in Fig. 6.8a. In principle, the thermodynamic

model of Al-Cu must include surface energies of all these compounds in addition to those of the
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Figure 6.6: (Color online) Calculated surface tension of the liquid phase in the Ge-Si system com-
pared with experimental data from Ref. [177]. Dashed line only serves as a guide to the eye.

liquid and room-temperature solid phases. Since such data is largely unavailable for most systems

from literature, one can resort to DFT to calculate the surface tension of each phase. However,

calculating the surface tension of different planes in each of the 13 compounds is computationally

expensive. For the purpose of demonstration, in this work we have calculated the surface energy

of only one such compound Al2Cu from DFT, and included that in the thermodynamic model to

calculate the phase diagram of Al-Cu.

Details of the calculation methods used, and structural information about the Al2Cu compound

are mentioned earlier in Section 6.2.4. Its unit cell is shown in Fig. 6.9. The calculated struc-

tural and cohesive energies of the compound, along with those of Al and Cu, are compared with

experimental data in Table 6.5. These results are in accordance with the observation of under-

estimation of lattice constants and over-estimation of cohesive energies by the LDA approximation

to the exchange-correlation functional [178]. Slab models were created for the (100), (110), and

(111) surfaces as shown in Fig. 6.10. Both the height of the vacuum, and number of atomic layers

were varied in each model so as to obtain converged surface tension values. Table 6.6 shows the

resulting surface tensions of each surface as a function of vacuum height and number of atomic

layers calculated using Eqn. (6.20). Since the surface tension of the (111) plane is the lowest, its

surface energy calculated using Eqn. (6.22) is inserted into the thermodynamic model. Thermo-

dynamic functions for this phase, along with non-ideal interaction parameters computed for the
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Figure 6.7: (Color online) Calculated melting points of Ge as a function of particle size compared
with experimental data from Ref. [181].

liquid phase, and standard Gibbs energies of Al and Cu are listed in Table 6.3. Melting points of Al

and Cu calculated using these functions as a function of particle size agree with experimental data

on synthesized nano-particles as shown in Figs. 6.11 and 6.12, respectively, and so does the liquid

phase surface tensions calculated using Butler’s equations at T = 1375 K as shown in Fig. 6.13.

The good agreement of the model predictions and experimental data suggest that even for complex

systems with many intermetallics such as Al-Cu, rigorous calculations of surface and phase data

for a single or a limited number of critical compositions may be sufficient to eliminate the need for

wide-ranging calculations for all intermetallics. The Al-Cu phase diagram calculated at r = 10 nm

is shown in Fig. 6.8b. Only Al-rich compositions are shown in this figure as the surface tension

of only one of several intermetallic compounds, Al2Cu, is calculated in this work. Table 6.4 shows

the drop in temperature and shift in composition of the eutectic reaction: Liq → fcc-Al + Al2Cu

as particle sizes are decreased.

6.4 Conclusions and outlook

In this work, by calculating phase diagrams at varying particle radii, we have shown the consider-

able changes in equilibrium thermodynamics resulting from decreasing particle sizes to nanoscale

dimensions. At these particle sizes, the surface to volume ratio is drastically increased, and so is
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Figure 6.8: (Color online) Al-Cu phase diagram. (a) Bulk Al-Cu phase diagram according to Refs.
[163, 164]. (b) Phase diagram of the Al-Cu alloy system calculated for particles of radius r = 10 nm,
compared with the bulk phase diagram at Al-rich/Cu-poor compositions. The eutectic temperature
drops from ≈ 821 K for bulk particles to ≈ 695 K for particles of radii, r = 5 nm.

the contribution of surface energy to the Gibbs free energies of the phases. This dominant surface

energy term is calculated using the spherical particle approximation that assumes particles to be

spherical in shape. In a similar way, this methodology can be extended to non-spherical particles

using a non-ideality factor in the Gibbs surface energy term.

The Au-Si system was first chosen as it is one of the few systems for which experimental data

that estimates shift in equilibrium lines for spherical nano-particles was available. This allowed

for a direct verification of the surface energy models that assume sphere-shaped particles, and the

resulting phase diagram was in good agreement. Phase diagrams of Ge-Si particles were computed
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Figure 6.9: (Color online) Unit cell of the Al2Cu compound.

in a similar way, and a considerable depression of the miscibility gap was noted. This is vital when,

for example, alloys are designed to achieve compositions that do not lie in the miscibility gap to

achieve a desired band gap value. Finally, DFT was used to compute the surface energy of one of

the many intermetallic compounds in the Al-Cu system. This was then added to its thermodynamic

model, and a drop in the eutectic temperature in its phase diagram was tabulated.

To conclude, due to surfaces (and interfaces) materials can have considerably different thermo-

dynamic and phase stability behavior from bulk systems, and as transistor and devices continue

to be scaled down in sizes, the study of their phase stability becomes necessary. This is critical

not only for designing semiconductor alloys and compounds, but also for tuning their electrical,

thermodynamic, and transport properties in order to achieve optimum device performance.
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Figure 6.10: (Color online) Slab models created for the calculation of surface energies of the (100),
(110), and (111) planes in the Al2Cu compound. These surface energies can then be used to calculate
the surface energy contribution to the total Gibbs free energy of this phase, which will lead to the
estimation of the change in phase stability of this compound in the phase diagram as a function
of particle radii. Since the surface energy can theoretically be calculated for any compound using
DFT, this method can be applied to all the phases in a system including equilibrium, metastable,
and unstable phases.
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Figure 6.11: (Color online) Calculated melting points of Al as a function of particle size compared
with experimental data from Ref. [185].
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Table 6.3: Thermodynamic functions used in the calculation of phase diagrams in this work (in
J mol−1 and K). All bulk and size-independent functions are obtained from (a) Au-Si: SGTE
database [26] and Ref. [174], (b) Ge-Si: SGTE database [26] and Refs. [175] and [176] for the liquid
and diamond phases, respectively, and (c) Al-Cu: Ref. [164] for the liquid and γD83 phases, and
the COST-507 database [163] for the rest of the phases.

Standard element reference Gibbs energies
oGfcc,nanoAu = oGfcc,bulkAu + 6.569×10−5

r − 1.4508×10−8

r .T
oGdia,nanoSi = oGdia,bulkSi + 5.916×10−5

r − 6.0365×10−9

r .T
oGdia,nanoGe = oGdia,bulkGe + 6.000×10−5

r − 1.0883×10−8

r .T
oGfcc,nanoAl = oGfcc,bulkAl + 3.419×10−5

r − 8.07×10−10

r .T − 8.539×10−13

r .T2

oGfcc,nanoCu = oGfcc,bulkCu + 4.767×10−5

r − 6.847×10−9

r .T + 3.257×10−13

r .T2

Liquid phases

Gliq,nanoAu = Gliq,bulkAu + 4.093×10−5

r − 1.197×10−9

r .T − 3.2747×10−13

r .T2

Gliq,nanoSi = Gliq,bulkSi + 2.231×10−5

r + 1.9013×10−9

r .T − 4.009×10−13

r .T2

Gliq,nanoGe = Gliq,bulkGe + 3.347×10−5

r − 6.3326×10−9

r .T − 8.2368×10−13

r .T2

Gliq,nanoAl = Gliq,bulkAl + 3.207×10−5

r − 1.745×10−9

r .T − 4.809×10−13

r .T2

Gliq,nanoCu = Gliq,bulkCu + 3.325×10−5

r − 8.880×10−10

r .T − 5.478×10−13

r .T2

Intermetallic compounds

GAl2Cu,nanoAl:Cu = 2 ∗o Gfcc,nanoAl + oGfcc,nanoCu + (−47406 + 3.479×10−5

r ) + (6.75).T
Interaction parameters
1. Au-Si

Lliq,nano0 = (−24103.3028 − 1.5445×10−5

r ) + (−15.13883 + 7.4895×10−9

r ).T

Lliq,nano1 = (−29375.2777 + 5.200×10−6

r ) + (1.1065 + 1.0399×10−9

r ).T

Lliq,nano2 = (−13032.2412 + 1.5498×10−5

r ) − ( 4.469×10−9

r ).T
2. Ge-Si

Lliq,nano0 = (+6610 + 2.362×10−6

r ) + (−0.354 − 3.596×10−9

r ).T

Ldia,nano0 = (+3765.6 − 1.3823×10−5

r ) + ( 9.6134×10−9

r ).T
3. Al-Cu

Lliq,nano0 = (−67094 − 9.379×10−6

r ) + (8.555 + 4.642×10−9

r ).T

Lliq,nano1 = (32148 − 1.785×10−6

r ) + (−7.118 − 5.667×10−10

r ).T

Lliq,nano2 = (5915 + 6.445×10−6

r ) + (−5.889 − 1.89×10−9

r ).T

Lliq,nano3 = − 8175 + 6.049.T
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Table 6.4: Change in points on the phase diagram for particles from bulk to nanoscale dimensions.
Au-Si: temperature and composition of the eutectic point - Liq → fcc-Au + dia-Si, Ge-Si: peak
temperature of the miscibility gap in the diamond phase, and Al-Cu: temperature and composition
of the eutectic point - Liq → fcc-Al + Al2Cu.

Au-Si: Liq→fcc-Au+dia-Si Ge-Si: Peak miscibility gap Al-Cu: Liq→fcc-Al+Al2Cu
Radius (nm) x(Si) (at.%) T (oC) T (K) x(Cu) (at.%) T (K)

Bulk 20.6 364.2 226.5 17.5 821
90 20.6 353.1 218.6 18.2 812.5
65 20.6 348.8 215.6 18.4 810
45 20.5 341.8 210.5 18.7 805
32 20.5 332.6 204.2 19.3 799
22 20.3 317.7 193.7 20.2 787.5
14 20.1 289.9 174.3 21.8 767.5
10 19.8 257.9 152.1 23.5 744
7 19.4 207.4 117.5 25.1 717
5 18.6 134.2 68.1 25.8 695

Table 6.5: Calculated lattice constants (in Å) and cohesive energy, Ecoh (in eV/atom) of Al, Cu,
and the Al2Cu phase from DFT using the LDA approximation. Experimental data are shown in
parentheses.
Phase Space group Pearson symbol Lattice constants Ecoh (eV/atom)
Al Fm3̄m (no. 225) cF4 a = 3.9793 (4.047a) 4.133 (3.39c)
Cu Fm3̄m (no. 225) cF4 a = 3.5246 (3.6536b) 4.703 (3.49c)
Al2Cu I4/mcm (no. 140) tI12 a = 5.943 (6.063d) -4.506

c = 4.781 (4.872d)
a: Ref. [182]
b: Ref. [183]
c: Ref. [184]
d: Ref. [166]

Table 6.6: Converged surface tension values of different planes in the Al2Cu intermetallic compound
calculated from DFT using the LDA approximation.

Plane Surface tension, σAl2Cus

meV/Å2 J/m2

(100) 0.079 1.275
(110) 0.099 1.586
(111) 0.077 1.227
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Figure 6.12: (Color online) Calculated melting points of Cu as a function of particle size compared
with experimental data from Ref. [186].
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Figure 6.13: (Color online) Calculated surface tension of the liquid phase in the Al-Cu system
compared with experimental data from Refs. [156, 187].
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Chapter 7

Conclusions and summary

In the majority of the work in this thesis, the theories of computational thermodynamics and phase

stability have been applied to the field of thermoelectric materials research. The electrical prop-

erties exhibited by a particular thermoelectric alloy stems from the defects present in the system.

DFT has frequently been used to understand the defect physics of a semiconducting material, and

in Chapter 3, we use it to study the thermodynamics of intrinsic point defects in a popular and one

of the most efficient thermoelectric material, PbTe. Using the principle of charge balance, equilib-

rium Fermi levels in the system are calculated as a function of temperature, that helps attribute

the origins of n-type and p-type conductivity in PbTe to V +2
Te defects in Pb-rich and V −2

Pb defects in

Te-rich growth conditions, respectively. The resulting equilibrium carrier concentrations as func-

tions of temperature agree fairly well with experimental measurements. In order to couple these

DFT results with the CALPHAD method, the calculated defect formation energies of the vacancy

defects above at the equilibrium Fermi level are used as input to optimize the thermodynamic model

of the Pb-Te phase diagram system. The resulting phase solubility of the PbTe phase agrees well

with experimental results and DFT calculations. This work paves a way to couple the DFT and

CALPHAD methods (details of which are discussed in Chapter 2), which is essential to predict-

ing phase solubilities of thermoelectric materials in cases when no experimental data is available.

Knowing such solubility limits is critical to the field of thermoelectrics since it gives information on

the extent of obtainable carrier concentrations and other thermoelectric properties.

Doping a thermoelectric, or a semiconducting material in general, with impurity atoms is a com-

mon strategy to unlock its potential for higher performance efficiencies. It allows for precise control
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over carrier concentrations and other electronic properties that are important for thermoelectric

materials. In Chapters 4 and 5, changes in phase stability upon doping another lead chalcogenide

PbSe is explored. Specifically in Chapter 4, two dopants, Na and Br, are picked for doping on the

cation and anion sites of PbSe, respectively. Defect formation energy calculations on intrinsic and

extrinsic point defects in these systems show unusually low formation energies for neutral defects.

Further investigating the charge density of supercells containing these defects, it is found that there

is significant delocalization of charge indicating that their energies are not representative of their

true neutral states, but actually of charged defects in polaronic states. Without any physical cor-

rection method available to treat such defects, experimental results on doping efficiencies are used

to correct their energies, thus providing a way to calculate phase boundaries of the PbSe phase

upon the addition of dopants.

In Chapter 5, phase diagrams of the PbSe phase upon the addition of Cl, I, Sb, Bi, and In

as dopants are calculated. This is important to know the range of efficiencies and thermoelectric

properties as functions of composition and temperature that can be achieved without precipitat-

ing secondary phases. Depending on the phase diagram, there is usually more than one method

of doping. The calculated phase boundaries and solubilities help illustrate which doping method

would be the most effective in doping a material without precipitating secondary phases. Results

on defect formation energies at solubility points of different regions of phase diagram also help pre-

dict electrical properties that would be exhibited by samples prepared using these doping methods,

demonstrating the importance of such a study in the field of thermoelectric materials research.

With reduction in material grain sizes for nano-engineering of materials becoming more popular,

knowing whether a material exhibits the same phase stability at nano grain sizes as for bulk sizes

becomes important. In Chapter 6, the effect of reduction in grain sizes on phase diagrams is

explored in three binary alloys popular in the electronic industry: Au-Si, Ge-Si, and Al-Cu. At

nanoscale, the significant difference in material structure from bulk sizes originates from enhanced

surface areas. Energy contributions from surfaces is modeled assuming spherical particles, and then

added to bulk Gibbs free energy models from the CALPHAD method to obtain phase diagrams as

functions of grain sizes. For intermetallic phases, surface energies are calculated using DFT on slab

structures as illustrated for the Al2Cu phase in the Al-Cu system. Using this procedure, it is found
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that changes from bulk diagrams upon reduction in particle sizes can be significant, thus making

such determination of nano phase diagrams critical.
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[29] J-O Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, CALPHAD 26 (2002) 273-312.

[30] S. Bajaj, G.S. Pomrehn, J.W. Doak, W. Gierlotka, H. Wu, S.W. Chen, C. Wolverton, W.A.

Goddard, G.J. Snyder, Acta Mater. 92 (2015) 72-80.

[31] R.F. Brebrick, R.S. Allgaier, J. Chem. Phys. 32 (1960) 18261831.

[32] R.F. Brebrick, E. Grubner, J. Chem. Phys. 36 (1962) 12831289.



111

[33] C.R. Hewes, M.S. Adler, S.D. Senturia, J. Appl. Phys. 44 (1973) 13271332.

[34] B.J. Sealy, A.J. Krocker, J. Mater. Sci. 8 (1973) 17371743.

[35] H. Maier, J. Hesse, Org. Cryst. Germanates Semicond. 4 (1980) 145-219.

[36] W.W. Scanlon, Phys. Rev. 126 (1962) 509513.

[37] N. Chou, K. Komarek, E. Miller, Trans. AIME 245 (1969) 15531560.

[38] S. Ahmad, S.D. Mahanti, K. Hoang, M.G. Kanatzidis, Phys. Rev. B 74 (2006) 155205-1-13.

[39] K. Xiong, G. Lee, R.P. Gupta, W. Wang, B.E. Gnade, K. Cho, J. Phys. D: Appl. Phys. 43

(2010) 405403-1-8.

[40] N. Wang, D. West, J. Liu, J. Li, Q. Yan, B.-L. Gu, S. B. Zhang, W. Duan, Phys. Rev. B 89

(2014) 045142-1-6.

[41] W. Gierlotka, J. Lapsa, D. Jendrzejczyk-Handzlik, J. Alloys Compd. 479 (2009) 152-156.

[42] C. Wagner, W. Schottky, Z. Phys. Chem. 11 (1930) 163-171.

[43] S.B. Zhang, J.E. Northrup, Phys. Rev. Lett. 67 (1991) 2339-2342.

[44] S. Lany, A. Zunger, Model. Simul. Mater. Sci. 17 (2009) 084002-1-14.

[45] G. Makov, M. Payne, Phys. Rev. B 51 (1995) 4014-4022.
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