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Abstract

The layout of a typical optical microscope has remained effectively unchanged over the past century.

Besides the widespread adoption of digital focal plane arrays, relatively few innovations have helped

improve standard imaging with bright-field microscopes. This thesis presents a new microscope

imaging method, termed Fourier ptychography, which uses an LED to provide variable sample

illumination and post-processing algorithms to recover useful sample information. Examples include

increasing the resolution of megapixel-scale images to one gigapixel, measuring quantitative phase,

achieving oil-immersion quality resolution without an immersion medium, and recovering complex

three dimensional sample structure.
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Chapter 1

Introduction

The microscope is an invaluable tool for scientific discovery. The fundamental aim of magnifying

small objects dates back at least several thousand years, to the invention of the simple lens [1]. The

finding that two lenses, when placed in sequence, can create an image with a very large magnification

likely dates to the 16th century. Early “compound” microscopes invented during this era truly

opened up a new visual world to the curious eye. Astonishing views of cells and bacteria were

achieved around the same time that the telescope was offering astronomers their first glimpses of

our neighboring planets.

Over the past century, a number of findings have pushed the microscope into new realms. Frits

Zernike’s insights during the 1930’s and 1940’s led both to the development of aberration theory [2],

as well as the creation of the phase contrast microscope [3, 4], for which he was awarded the Nobel

Prize. The concept that light travels as a wave, with a defined amplitude and phase, was well-

known for many years prior to Zernike’s work. However, the insight that it might be possible to

capture this phase information, within an intensity-only image, led to significant breakthroughs for

measurements in vivo. A related technique, termed differential interference contrast, was developed

around the same time by Nomarski [5]. Both methods effectively mix an optical field’s phase into

the field’s amplitude, which can suddenly reveal the three-dimensional structure of cells.

A decade later, Marvin Minsky’s invention of the confocal microscope [6] further transformed

imaging at the micro-scale, most notably within biology. The confocal microscope aims to improve

image contrast by removing the negative effects of scattered light. It applies a simple insight: all

rays that do not originate from a desired focal point of interest are blocked by a pinhole. As a

result, biological imaging could extend beyond imaging only the surface of organisms and materials,

and now could peer into them as well. Confocal microscopes resolve sharp features from below

the superficial layers of e.g., tissue, and from defined volumes within otherwise murky and opaque

samples that are up to hundreds of micrometers thick.

Finally, over the past several decades, three primary insights have kept the optical microscope

at the forefront of biological and chemical science. First, a large collection of recently developed
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Figure 1.1: (a) Diagram of a compound microscope. (b) Diagram of a “simple” microscope, offering
a mathematically simpler and effectively equivalent description of microscope image formation.

optical methods can now both probe and activate biochemical content with visible light. Example

applications include the photochemical activation of drugs [7], the photorelease of biomolecules [8],

stimulation of neural activity through optogenetic tags [9], and imaging with fluorescent markers [10].

Second, projectors and advanced optical sources now allow one to pattern the illumination incident

upon a microscope sample. Examples include using a digital projector or a pulsed laser to achieve

a desired illumination field shape (e.g., for stimulation emission-depletion microscopy [11]). Third,

and perhaps more importantly, digital detector arrays (i.e., the charged-coupled device [CCD] and

complementary metal-oxide semiconductor [CMOS] pixel arrays) now directly connect the micro-

scope to the computer. Acquired images no longer have to appear sharp and crisp, but instead can

be post-processed, while taking into account knowledge of the behavior of the optical system, to

extract additional information. The combination of designed illumination, fluorescent labeling and

computational recovery formed the basis for the 2015 Nobel Prize in Chemistry, this year.

This thesis focuses on a new microscope technique, termed Fourier ptychography (FP) [32], which

uses insights from both illumination design and computational post-processing to push microscopy to

new heights. Examples of what the FP microscope can achieve include transforming megapixel im-

ages into gigapixel maps, acquiring the surface profile of a sample to nanometer accuracy, resolving

sub-wavelength phenomena without the need for oil immersion, and producing volumetric tomo-

grams of thick samples. In the remainder of this section, we provide a quick review of background

information that is relevant to fully understanding the new capabilities of Fourier ptychography.
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1.1 The simple microscope

A schematic of a standard compound microscope is shown in Fig. 1.1(a). Here, light originates at

an illumination plane and propagates to a sample plane, where we place our object of interest for

inspection. The sample is imaged via a microscope objective lens to an intermediate plane. This

intermediate plane is subsequently imaged by an eyepiece lens to a digital detector. For the majority

of this thesis, we will neglect the effects of the microscope eyepiece lens, since it is rarely used in

digital microscope imaging. We will instead work with a simplified microscope setup, shown in

Fig. 1.1(b), which we term a “simple” microscope.

In practice, most microscopes in the lab use an infinity-corrected objective lens, along with a

tube lens of fixed focal length (180 mm), to form an image onto the detector. For diagrammatic

simplicity, we will summarize the effect of both these lenses during microscope image formation as

a single focusing element, as shown in the box in Fig. 1.1(b). In practice, the infinity-corrected

objective lens and tube lens form a modified 4f imaging system, whose Fourier plane is at the back

focal plane of the objective lens (Fig. 1.1(c)). In our simplified diagram, we will draw the Fourier

plane as a plane that is internal to our single focusing element. While this single-lens simplification

neglects various minor effects, like vignetting and possible aberrations (which might be specific to

the multi-lens diagram), we maintain that our simplification of the compound microscope into a

single-lens schematic offers a clear and mathematically accurate description of wave-based image

formation. Unless otherwise stated, this simplified picture will guide our primary mathematical

models of microscope operation in this thesis. Next, we examine in detail the four primary planes

of interest that compose our simple microscope.

1.1.1 The illumination plane

Illumination is a critical component of any microscope. The majority of current bright-field micro-

scopes use Kohler illumination, as diagrammed in Fig. 1.2(a). Here, we show a trans-illumination

Kohler scheme, where light passes through the sample to the image plane. However, the same princi-

ple also extends to epi-illumination. In either case, Kohler designs use a set of lenses (a collector and

condenser lens) to spread incoherent light as evenly as possible across the sample plane. Typically,

a thermal source, such as a light bulb, creates the incoherent light. The benefits of using incoherent

illumination in a microscope are two-fold. First, a wide range of optical frequencies (i.e., colors)

reach the sample and subsequently transmit information about possible absorption, excitation, and

fluorescence at different energy levels to the detector. Second, incoherent illumination offers a slight

benefit in terms of maximum achievable image resolution, as detailed later in this thesis.

An alternative illumination geometry using an incoherent source is shown in Fig. 1.2(b). Here,

a mask is placed between the collector and condenser lens to create a “dark-field” image. The mask
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Sample!
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Figure 1.2: Four different trans-illumination schemes that are common within microscopy. (a) Kohler
illumination provides even incoherent light across the sample. (b) Dark-field illumination blocks the
central rays in a Kohler setup before they reach the sample. (c) Coherent illumination is helpful,
e.g., in digital holographic microscopy. (d) An LED array provides a computationally addressable,
spatially coherent illumination source.

prevents all rays traveling at small angles with respect to the optical axis from reaching the sample.

As a result, only light traveling at large angles will hit the sample. This angled incident light will

not enter the objective lens unless it is diffracted by the sample. In other words, the incident light

is traveling at an angle that is too large to pass directly into the objective lens in the absence of

a sample, and must somehow interact with the sample to deflect into the lens acceptance angle.

Dark-field imaging is particularly helpful at highlighting fine sample features which diffract incident

light into a wide range of angles. We will return to this fundamental principle in Chapter 2 during

our explanation of Fourier ptychography.

Instead of using an incoherent light source, it is also possible to illuminate a sample of interest

with spatially and temporally coherent light, such as light from a laser. Spatially and temporally

coherent light can be modeled as a wave, with a defined amplitude and phase across space. Suffi-

ciently spatially coherent light helps to preserve any phase information contained within the optical

field exiting the surface of a sample (see Fig. 1.2(c)). It is possible to measure this exiting field’s

phase using digital holography or via alternative computational methods [13]. As we will detail,

knowledge of this phase is also helpful when reconstructing thick, three-dimensional samples during

tomographic measurements.

A final type of microscope illumination that will play a major role in this thesis originates from

an LED array (Figure 1.2(d)). Light from an LED lies somewhere between that originating from

a thermal bulb or a laser source. Typical LED sources emit a narrow range of wavelengths (5-10
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nm spectral bandwidth). Furthermore, the active area of an LED is quite compact, typically on

the order of several hundred microns in diameter. Thus, it is often possible to consider light from

one distant LED as originating from a small point source that is effectively spatially coherent and

quasi-monochromatic [23] (see definition below). An array of individually addressable LEDs allows

one to turn on multiple individually coherent, yet mutually incoherent sources at a time. Or, one

may effectively shift one coherent source to different spatial locations along the illumination plane.

Note that while certainly possible, this thesis does not consider placing any optics between the LED

array and sample, or curving the LED array plane.

This variable source of LED illumination is closely related to other “structured illumination”

techniques used in microscopy. Specifically, a structured illumination setup creates and shines a

specific pattern of optical intensity onto the sample. Examples include sinusoidal stripes [17, 18]

or random speckle [19, 20]. Since structured illumination is almost always used with the goal of

fluorescent imaging in mind, the phase of the illumination light is rarely manipulated. The LED

array in Fig. 1.2(d) can be thought of as a method to provide structured illumination with a uniform

intensity across the surface of the sample, but a spatially varying phase, whose profile depends upon

the distance of the activated LED from the optical axis.

1.1.2 The sample plane

The sample plane is located directly above the illumination plane. We denote its spatial coordinates

as (x, y), which are perpendicular to the axis of propagation, z (see labels in Fig. 1.1). For the

majority of this thesis, we will consider imaging thin samples. The thin sample condition holds if

the maximum sample thickness t obeys t << 4δ2
res/πλ, where δres is the sampling resolution and λ

is the illuminating light’s central wavelength [12]. If a sample satisfies this condition, then we may

completely summarize its interactions with light using a complex two-dimensional function, ψ(x, y).

Specifically, the amplitude of ψ(x, y) defines the amount of light absorbed by the sample at each

spatial location (x, y) when illuminated with a uniform plane wave. Likewise, the phase of ψ(x, y)

defines the spatially varying phase delay imparted by the sample to the incident plane wave. If the

sample does not strictly satisfy the above thickness condition, we often find that a 2D function still

offers a very useful sample description, up to a thickness of approximately 50 µm. Chapter 8 details

how FP operates with thick samples.

1.1.3 The aperture plane

Next, the optical field exiting the surface of the sample propagates into our microscope. Here,

we adopt the common convention of treating the microscope as a generalized “black box” imaging

system [10]. Under this interpretation, we may summarize all properties of the complicated system
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of microscope lenses using just an entrance pupil and an exit pupil, which are each images of the

same limiting aperture. This limiting aperture typically includes a physical stop within the system of

lenses to minimize the effect of aberrations, and to block any stray light. We define the plane of this

limiting aperture as our “aperture plane”. It may be described by an aperture function, a(x′, y′).

Here, we define (x′, y′) as the spatial coordinates at the aperture plane perpendicular to the optical

axis. Following the simple analysis in [10], it is direct to show that the coordinates (x′, y′) are the

Fourier conjugate coordinates of (x, y). In practice, when using an infinity-corrected objective lens

and tube lens to form an image, the Fourier conjugate aperture plane is located at the microscope

objective lens back focal plane.

Equivalent descriptions of microscopes sometimes rely upon the image of the aperture plane

from the point of view of the image plane (i.e., the exit pupil). We define the image of the aperture

function a(x′, y′) from the point of view of the image plane, as the pupil function, p(x′, y′). Typically,

p(x′, y′) is equivalent to or a scaled version of the aperture function, a(x′, y′). In this thesis, we treat

the aperture and pupil functions as equivalent. Both are Fourier conjugate to the sample and image

planes. However, care should be taken in actual system analysis to ensure equality when appropriate.

1.1.4 The image plane

After passing through the microscope, our optical field of interest will terminate at the image plane.

In all imaging setups considered here, our image plane contains a digital detector array with a finite

pixel size. Each pixel will sample the intensity of the incoming optical field. This sampling process

can be described as a convolution between the incident optical field, which is band-limited, and a

pixel sampling function [16]. Through Shannon’s sampling theorem, it is thus possible to exactly

describe the intensity of the incoming optical field with the set of discrete measurements from the

detector array. A detailed analysis of the effects of pixel sampling on image formation is given in

Chapter 7 of [16].

Typical CCD and CMOS detectors contain approximately 106-107 pixels, with pixel sizes that

are in the range of δx = 1.5− 10 µm. To avoid aliasing, we will always assume that the pixel size δx

exceeds the maximum spatial frequency of incoming (coherent) light. Unless otherwise mentioned,

our experiments use a 20 megapixel Kodak KAI-29050 CCD detector with a pixel size of 5.5 µm.

1.2 Relevant definitions

This thesis repeatedly characterizes the performance of microscope imaging using several related

parameters. In this section, we briefly define these common parameters for quick reference. Most of

these parameters are also diagrammed in Fig. 1.3.
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optics parameters. Within the framework of wave optics, we may define a coherence length for our
LED source, as well as a coherent transfer function (CTF) and point-spread function (PSF) for our
microscope system.
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• Magnification: In an infinity-corrected microscope setup, such as those considered in this

thesis, the image magnification M is typically defined as, M = fo/ft, where fo is the objective

lens focal length and ft = 180 mm is the tube lens focal length. To ensure that this standard is

followed by our simple microscope, and that the well-known single lens magnification definition

M = di/do also holds true, we simply set do = fo and di = fl = 180 mm. We maintain these

equalities for the entire thesis.

• Field number and field-of-view: The field number (FN) of a microscope is defined as

the diameter of the measured optical field at the intermediate image plane of a compound

microscope. In most stand-up microscopes, this corresponds to the plane of the digital detector.

We assume the optical field at the image plane extends a large distance along x and y, such

that the FN in our simple microscope is limited by the width of the digital detector. A typical

field number is FN= 26.5 mm. The field-of-view (FOV, also called field size) is the field number

de-magnified, which is its spatial extent at the image plane: FOV=FN/M .

• Numerical aperture (NA): The microscope objective numerical aperture is NA = n·sin(θa),

where n is the refractive index of the medium of propagation (n = 1 in air), and θa is the

maximum acceptance half-angle of the microscope objective. In our simple microscope, we

define the maximum lens acceptance half-angle θa along the optical axis. We note that our LED

array also has an effective illumination numerical aperture, NAi, defined using the maximum

possible angle θi of a plane wave generated by the most laterally displaced LED: NA = n·sin(θi)

• Impulse response and point-spread function: The impulse response of a coherent imaging

system, h(x, y), defines its complex response to an idealized point source placed along the

optical axis at the sample plane. In the absence of aberrations, the shape of h(x, y) remains

shift-invariant across the entire image plane. The function h(x, y) is given by the inverse

Fourier transform of the CTF, defined below. Typically, the CTF is a circular function in

two dimensions, and we find h(x, y) = Jinc(xλ/NA). Here, the “Jinc” function is defined as

Jinc(x) = J1(2πx)/x, where J1 is a Bessel function of the first kind, order-1. A good rule of

thumb is to assume the width of the impulse response as approximately λ/NA. As we detail

in Chapter 2, this width approximates the smallest resolvable sample feature when imaging

with a conventional microscope. Finally, the point-spread function of an imaging system is the

squared magnitude of the impulse response, |h(x, y)|2.

• Coherent transfer function (CTF): In a coherent imaging system, such as those con-

sidered in a large part of this thesis, the CTF defines the imaging system’s response in

the spatial frequency domain. Specifically, given a sample function ψ(x, y), we may de-

fine its spatial frequency domain representation as ψ̂(x′, y′), where again (x′, y′) are the
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Fourier conjugate variables of (x, y), and the hat denotes a two-dimensional Fourier trans-

form. Following principles from Fourier optics, the spatial frequency representation of the

optical field at the image plane (i.e., its Fourier transform, or spectrum), ĝ(x′, y′), is given

as, ĝ(x′, y′) = ψ̂(x′, y′)ĥ(x′, y′). Here, ĥ(x′, y′) is the imaging system CTF. A fundamental

insight from Fourier optics states that the CTF is simply a scaled version of the lens aperture

function: ĥ(x′, y′) = a(λdix
′, λdiy

′) [10]. Typically, we will ignore constant coordinate scaling

factors when examining the behavior of our Fourier ptychographic microscope, for simplicity.

This allows us to define the coordinates of the aperture plane as simply (x′, y′), the Fourier

conjugate variables of the coordinates at the sample plane. Furthermore, we’ll also ignore any

scaling effects between the sample and image plane and will label both using (x, y), as shown

if Fig. 1.3.

• Space-bandwidth product: The space-bandwidth product of an imaging system (SP) is the

total number of resolvable features it can capture. Mathematically, the SP is approximately

given by the imaging system field-of-view divided by the average width of its impulse response,

h(x, y). If the width of the impulse response varies across the image plane, as is typically the

case in most microscope objectives (due to the influence of aberrations), then this variation

must be taken into account when computing the SP. This thesis will also occasionally use a

related alternative definition of the SP of a band-limited optical system, given as the product

of the spatial extent and spatial frequency range that it can fully capture [22].

• Quasi-monochromatic: As first noted in [23], the quasi-monochromatic condition must be

met if one wishes to neglect the effect of the finite spectral bandwidth of an optical field.

Specifically, if we wish to accurately assume that an optical source used within an imaging

experiment is one frequency ν, then its spectral bandwidth ∆ν must satisfy the following

inequality: ν/∆ν > nx. Here, nx is the number of pixels along one axis of the digital detector.

If a source meets this condition, then one can neglect the effects of its spectral bandwidth on

the intensity values within each detected image. In our setup, a ∆ν of several nanometers is

required to fulfill the quasi-monochromatic condition, which a highly temporally coherent LED

may satisfy. Unless otherwise stated, this thesis treats each LED in our illumination array as

quasi-monochromatic.

• Coherence length: While the above quasi-monochromatic assumption offers an accurate

model for the spectral response of our LED array microscope, the assumption that each LED

is an ideal point source is not accurate, in practice. Instead, we must take into account the

finite width wl of each LED, which we treat as square light source that is fully incoherent

within its photon generating region. From the Van Cittert-Zernike theorem, a fully incoherent

source of finite width wl will emit a statistical field that will gain coherence upon propagation.
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Objective 
Magnification/NA/Field 

number 

Resolution  
532 nm incident 

wavelength (μm) 

Space-Bandwidth 
Product (SP) 

megapixels 

1.25X/0.04/26.5 8.12 21.5 MP 

2X/0.08/26.5 4.06 33.5 MP 

4X/0.16/26.5 2.03 33.5 MP 

10X/0.3/26.5 1.08 18.9 MP 

20X/0.5/26.5 0.65 13.1 MP 

40X/0.75/26.5 0.43 7.4 MP 

60X/0.9/26.5 0.36 4.7 MP 

100X/1.3/26.5 0.25 3.5 MP 

Space-bandwidth product, Olympus microscope objectives!

Figure 1.4: Space-bandwidth product (SP) of various microscope objectives. Although maximum
resolutions vary significantly, all lenses exhibit a SP less than 50 megapixels

It is useful to define a measure of the field’s coherence [24], given by the coherence length Lc

a distance z away from the LED, as Lc = λz/wl. Within this coherence length, a partially

spatially coherent field remains effectively correlated with itself, and can thus be approximated

as a coherent field. In other words, a two-slit experiment will produce visible fringes up to a

slit separation of approximately Lc, after which the resulting fringes will decrease in contrast

to zero.

1.3 Challenges for the standard microscope

To capture a standard microscope image, one selects any of the illumination schemes from Fig. 1.2,

illuminates the sample, forms an image of the illuminated sample on the detector, and records the

optical intensity for a finite exposure time. While commercial systems can form very sharp images

across a variety of magnifications, these snapshots still lack several key properties desired by the

experimentalist. Below, we outline several of these key properties that Fourier ptychography can

help solve, as well as some of the prior work that attempts to achieve a similar goal:

• A high space-bandwidth product (SP): As detailed in [2], the SP of an imaging system

is primarily influenced by two phenomena: diffraction and aberrations. Diffraction effects are

minimized by using a larger lens (i.e., the PSF width scales inversely with the lens diameter

and numerical aperture). Unfortunately, the size of aberrations also increase linearly with size

of the lens. Thus, a tradeoff space emerges, where lenses must be highly optimized to both

achieve a sharp PSF and also provide minimal aberrations across as large a FOV as possible.

This optimization process is the job of the lens designer, who combines up to 20 individual
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glass elements to form one microscope objective.

Due to this lens scaling law, a tradeoff space eventually emerges between image resolution

and field-of-view. Microscope objectives designed to capture very high resolution images suffer

from a narrow field-of-view, and objectives designed to image a wide field-of-view exhibit poor

resolution. Thus, all microscope systems are currently limited to a SP of approximately 50

megapixels (or less). Fig. 1.4 lists a variety of different objective lenses and the total number of

pixels (i.e., the SP) that each can capture [26]. As described in Chapter 2, Fourier ptychography

overcomes this tradeoff by first capturing a sequence of SP-limited images. Then, it fuses them

together to reconstruct an image with an effective SP of 1 gigapixel.

This lens scaling law is not limited to microscopes, but applies to all generalized imaging

systems. Several recent efforts use the principle of multi-scale lens design to overcome this

scaling law [27]. Unlike such prior work, Fourier ptychography requires variable illumination

to achieve its resolution gain, and is thus best suited to increase the SP within microscopes,

where one typically has control over the illumination source.

• Quantitative phase: Light, as an electromagnetic field, has both an amplitude and phase. All

optical detectors can only directly measure the amplitude of the field (specifically, the intensity)

and not the phase. As mentioned in the introduction, optical phase can be extremely helpful.

However, these phase-sensitive techniques from the early years of microscope design (e.g.,

phase contrast and differential interference contrast) do not offer quantitative measurements,

but instead provide indirect evidence of phase variation. Quantitative phase directly measures

variations in sample thickness and index of refraction. It also enables direct removal of system

aberrations, and the ability to digitally refocus an image formed with spatially coherent light

(see below).

Measuring quantitative phase has a long history. Holography inherently relies upon recording

information connected to the phase of the sample of interest. Digital holography, like well

known in-line phase shifting technique [28], allows exact recovery of quantitative phase (up to

a constant unknown phase offset) through a sequence of four images. Computational methods,

such as phase retrieval [2,4], offer a means to estimate the phase of a sample without requiring

a reference path and wavelength-precise shifting, but cannot always guarantee a completely

accurate solution. Finally, the transport of intensity equation (TIE) offers another useful

means to estimate phase [9, 31, 32]. However, TIE requires motion of the sample or within

the imaging system, and typically operates with transparent samples. As we show in Chap-

ters 2-4, Fourier ptychography acquires the quantitative phase of the optical field emerging

from a sample, simultaneous to improving the imaging system spatial resolution. It may also

simultaneously measure the quantitative phase deviations across the aperture plane (i.e., the
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microscope aberrations), which can be removed to form a much sharper image.

• Digital refocusing: In a standard microscope, focusing to the ideal plane of interest can be

a challenge. Often, the sample is not perfectly flat at different areas across the sample plane,

causing the image to come into focus at different depths along the optical axis, z. Frequent

users of microscopes, such as pathologists, are well aware of the challenges surrounding manual

focusing. One computational imaging technique, termed light field microscopy, replaces manual

refocusing with limited digital image refocusability, post-capture [5, 34]. However, light field

images offer a significantly limited resolution, and require the insertion of a microlens array

near the image plane, thus necessitating a customized microscope body.

Once one acquires both the amplitude and phase of the optical field at the detector, it is simple

to digitally refocus the field through a wide range of axial planes, by computational propagation

(e.g., using the angular spectrum method [10]). Computational propagation enables direct

refocusing of FP images while maintaining their sub-micron resolution. In addition, it is

common for a sample to occupy an unknown defocus plane, or perhaps lie at an unknown tilt.

During FP reconstruction, we can additionally solve for these unknown placements and tilts to

offer a sharp image across a significantly extended depth-of-field (up to 75 times a comparable

objective lens, as discussed in Chapter 3).

• Aberration removal: As noted above, all lenses exhibit aberrations, which deteriorate im-

age quality. Over the past half-century, many unique aberration characterization methods

have been reported [36–38]. These methods typically attempt to estimate the phase devia-

tions or the frequency response of the optical system under testing. Several relatively simple

noninterferometric procedures utilize a Shack-Hartmann wavefront sensor [38], consisting of

an array of microlenses that each focus light onto a detector. Despite offering high accuracy,

measuring aberrations with a Shack-Hartmann sensor often requires considerable modification

to an existing optical setup. Alternatively, wavefront aberrations can be inferred directly from

intensity measurements, by relying upon phase retrieval procedures [24]. Such computational

methods typically require capturing multiple images, while inducing some unknown change to

the optical system between each capture (i.e., while applying “measurement diversity” [24,40]).

As we will show in this thesis, Fourier ptychography provides a very useful form measure-

ment diversity through its variable illumination source. This enables robust computational

estimation of system aberrations and their subsequent removal, which significantly improves

the effective resolution of our final image reconstructions.

• 3D structural information: Typical microscope images are two-dimensional. As we detail

in Chapter 8, it is possible to computationally invert an FP dataset into a three dimensional
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representation of a thick sample. This inversion process closely resembles diffraction tomog-

raphy (DT) [14]. Unlike in all prior DT setups, FP does not measure the phase of the optical

field. This allows one to use a standard microscope, outfitted with an LED array and computer,

to computationally recover a quantitative measurement of the complex index of refraction of

a thick sample of interest (t > 100µm), from throughout its volume, at a micrometer-scale

resolution.

There is one key item that many current microscope experiments currently focus on that is

missing from the above list: improving fluorescent image capture. For example, recent fluorescent

particle localization techniques, such as PALM and STORM, can exceed standard microscope resolu-

tion limits [42]. Likewise, structured illumination methods may yield similarly unbounded resolution

gains [18]. Standard Fourier ptychography assumes all optical interactions are coherent (i.e., a phase

relationship is preserved, at least locally). Fluorescent excitation does not preserve phase and thus

will not obey the interactions FP predicts. While it is possible to adapt the principle of Fourier

ptychography to achieve fluorescent resolution enhancement [43], this thesis will not discuss in de-

tail this possible direction. We hope the reader keeps this important point in mind throughout the

following discussions.

Here is an outline for the rest of this thesis. In Chapter 2, we will overview the principle of

FP in an optical microscope, from a Fourier optics perspective. In Chapter 3, we will discuss the

process of Fourier ptychographic image reconstruction using a phase retrieval algorithm. In Chapter

4, we will examine the quantitative accuracy of Fourier ptychographic phase reconstruction. We also

briefly visit several applications of measuring high-resolution phase, including the ability to digitally

refocus images, remove aberrations, and determine structural information regarding biological tissue.

In Chapter 5, we will connect Fourier ptychography to its “standard” counterpart in X-ray imaging,

ptychography, using a unique mathematical phase-space model. This model highlights the role of

partial coherence during data acquisition and image reconstruction. In Chapter 6, we will present a

convex approach to process both standard and Fourier ptychographic data, which performs better

in the presence of noise than prior reconstruction techniques. In Chapter 7, we implement Fourier

ptychography within a conventional camera setup, which helps remove unknown aberrations from

a final reconstructed image. Finally, in Chapter 8, we apply the principle of ptychography to

reconstruct thick samples, using a process that resembles diffraction tomography but does not require

the measurement of optical phase.
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Chapter 2

Fourier ptychography for gigapixel
imaging

In this chapter, we use our model of a simple microscope from Chapter 1 to explain the principle of

Fourier ptychography (FP). The goal of FP is to computationally resolve an image containing one

billion pixels (i.e., a gigapixel) from a sequence of low-resolution measurements. To begin, we will

first motivate the concept of improving resolution by means of a shifting illumination source. Then

we will present a mathematical model to explain the process of Fourier ptychographic data capture.

We will limit our discussion here to a two-dimensional optical geometry (i.e., one spatial axis that is

orthogonal to the axis of optical propagation). At the end of this chapter, we will discuss extension

to a three-dimensional setup.

2.1 Resolution improvement through shifting illumination

As noted in Chapter 1, a microscope’s numerical aperture (NA) defines its resolution performance.

Specifically, the minimum resolvable feature within a standard microscope is approximated as

λ/NA = λ/ sin θ. Here, we assume the standard microscope is under coherent illumination (from

a distant point source) and operates within air, which sets the index of refraction term within the

NA equal to 1. As diagrammed in Fig.2.1(a), the half-angle θ denotes the largest cone of wavevec-

tors (i.e., rays) that can pass from the sample and into the imaging lens, and defines the system’s

maximum resolvable feature.

Most biological samples of interest contain many micrometer-scale features that diffract light

into a large cone of wavevectors. In Fig.2.1(a), this larger green cone subtends an angle ω > θ and

is thus not completely captured by the microscope. To resolve smaller features at the image plane,

we would ideally like to capture all of the rays within this large green cone. Specifically, we would

like to somehow keep the low-NA objective lens in Fig.2.1 for imaging, since it offers a very large

field of view (FOV), but still collect the entire green cone of rays, which will simultaneously offer us
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Figure 2.1: Capturing a wider cone of wavevectors. (a) A standard microscope with a limited
NA = n sin θ captures only the red cone of rays emerging at half-angle θ from the sample. An
ideal microscope can capture the wide green cone of rays emerging at angle ω. (b) By shifting the
illumination source, we can rotate the green cone of rays emerging from the thin sample surface.
Now, a different segment of the green cone will pass through the fixed “red” aperture. (c) FP uses
an array of n LEDs to shift the wide green cone of rays n times. Each time the cone is shifted, a
unique image is captured. From the set of n images, the computational goal of FP is to synthesize
an image with a larger NA, as if it originated from a lens that could originally capture the wide
green cone of rays.

high resolution. The combination of both a wide image FOV and high resolution will lead to a large

space-bandwidth product (SP) system.

To capture the large green cone of rays through our low-NA microscope objective lens, Fourier

ptychography shifts its illumination source, as diagrammed in Fig.2.1(b). A shifting illumination

source will illuminate the sample from a variable angle, φ. If the sample is thin, this will cause

the green cone of rays emerging from the sample surface to also rotate, by the same angle φ. At

the microscope lens, the green cone of rays will subsequently shift laterally by a finite distance. As

is clear in Fig.2.1(b), the shifted source will cause a different segment of the green cone to pass

through our fixed microscope objective lens (denoted by the red circle). As we shift the illumination

source across many different positions, then the entire green cone of rays, albeit at different points

in time, will pass through the fixed objective lens and subsequently propagate to the detector. If we

capture an image of the optical field that passes through the objective lens at each unique location

of the shifted optical source, then we have conceptually captured information corresponding to the

entire green cone of rays. The goal of Fourier ptychography is to use this set of captured images

to computationally recover a single image that appears to have passed through a “synthetic” lens,

whose effective size extends across the entire green cone of rays (i.e., a new lens with an acceptance

half-angle ω). This synthesized image will now have a much higher resolution – its smallest resolvable

element will now approach λ/ sinω.

Instead of actually shifting an illumination source laterally, Fourier ptychography typically uses

an LED to create its angular illumination (Fig.2.1(c)). Next, we develop a mathematical model to
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Figure 2.2: Optical diagram for our simple 2D FP setup, with (a) planes and distances of interest
labeled, and (b) wave optics descriptions of the resulting optical field at each plane of interest. The
final image is both a function of space (x) and incident illumination angle (pj). Each captured image
thus forms one column of our FP data matrix, g(x, pj).

solidify the above concept of Fourier ptychographic data capture, before explaining how we transform

the data into a high resolution image, in Chapter 3.

2.2 Mathematical model of Fourier ptychography

We mathematically model our microscope imaging system in two dimensions (x, z), for simplicity. We

assume that a distant plane L(x′) contains q different quasi-monochromatic optical sources (central

wavelength λ) evenly distributed along x′ with a spacing r. We assume each optical source acts as

an effective point emitter that illuminates a sample ψ(x) at a plane S(x) a large distance l away

from L(x′). Under this assumption, the jth source illuminates the sample with a spatially coherent

plane wave at angle θj = tan−1 (jr/l), where −q/2 ≤ j ≤ q/2. Next, we additionally assume the

sample ψ(x) is thin (see definition in Chapter 1). Under this assumption, we may express the optical
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field exiting the thin sample as the sample-plane wave product,

s(x, pj) = ψ(x)eikxpj , (2.1)

where the wavenumber k = 2π/λ and pj = sin θj describes the off-axis angle of the jth optical

source.

The jth illuminated sample field s(x, pj) then enters an imaging system with a low numerical

aperture (NA). Neglecting scaling factors and a quadratic phase factor for simplicity, Fourier optics

gives the field at the imaging system aperture plane, A(x′), as

F [s(x, pj)] = ψ̂(x′ − pj). (2.2)

Here, F represents the Fourier transform between conjugate variables x and x′, and ψ̂ is the Fourier

transform of ψ. Eq. 2.2 uses the Fourier shift property to show that the spectrum of a thin sample,

when illuminated by a plane wave at an angle given by the inverse sine of pj , will shift by pj laterally

across the imaging system’s aperture plane.

The shifted spectrum field ψ̂(x′− pj) is then modulated by the aperture function of the imaging

system, a(x′), which acts as a low-pass filter. As outlined in Chapter 1, the aperture function a(x′) is

typically a physical stop placed at the back focal plane of the microscope objective. It usually exhibits

a circular shape in two dimensions. In the conceptual schematic of FP in Fig. 2.2, a(x′) is the limited

width of the transparent lens area at the aperture plane, which may be mathematically expressed as

a rect function. The shape of a(x′) is directly proportional to the imaging system coherent transfer

function (CTF), which in turn defines the lens cutoff spatial frequency, its maximum acceptance

angle, and thus also its NA.

It is now useful to consider the sample spectrum ψ̂ discretized into n pixels with a maximum

spatial frequency k. Following the Nyquist-Shannon sampling theorem, since our optical signal is

now bandlimited to the aperture area a(x′), this discretization process is exact. We denote the

bandpass cutoff of the aperture function a as k · m/n, where m is an integer less than n. The

modulation of ψ̂ by a results in a field characterized by m discrete samples, which propagates to the

camera imaging plane, D(x). Here, the digital detector critically samples the incident field using an

m-pixel digital detector (e.g., a CCD or CMOS detector, which we assume has a perfect fill factor).

This forms a reduced-resolution intensity image, g(x, pj):

g(x, pj) =
∣∣∣F [a(x′)ψ̂(x′ − pj)

]∣∣∣2 . (2.3)

Here, we use the subscript j to denote that this image is formed by the jth LED. By turning on one

LED at a time and saving the resulting image, for −q/2 ≤ j ≤ q/2, we will compile an (m×q) Fourier
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Figure 2.3: Optical diagram for an example FP setup in three dimensions, including all of the same
parameters and planes as shown in Fig. 2.2. (bottom) Actual raw data and resulting reconstruction
of a resolution target, demonstrating a 25X increase in microscope resolution and the simultaneous
acquisition of the optical phase from the sample plane.

ptychography data matrix, g(x, pj). The jth column of this data matrix contains a low-resolution

image of the sample intensity while it is under illumination from the jth optical source.

The goal of Fourier ptychographic post-processing is to reconstruct a high-resolution (n-pixel)

complex spectrum, ψ̂(x′), from the multiple low-resolution (m-pixel) intensity measurements con-

tained within the data matrix g(x, pj). Once ψ̂ is found, an inverse-Fourier transform will yield the

desired complex sample reconstruction, ψ. As we will explain in the next chapter, most current

ptychography setups solve this inverse problem using an alternating projections (AP) algorithm: af-

ter initializing a complex sample estimate, ψ0, iterative constraints help force ψ0 to obey all known

physical conditions. First, its amplitude is forced to obey the set of measured intensities from the de-

tector plane (i.e., the values in g). Second, its spectrum ψ̂0 is forced to lie within a known support in

the plane that is Fourier conjugate to the detector. Different projection operators and update rules

are available, but are closely related [4, 5, 46]. It is also possible to solve the inverse ptychography

problem with a convex program, which this thesis examines in detail in Chapter 6.

Before examining possible methods to reconstruct the sample at high resolution from the data
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Figure 2.4: Conceptual outline of using a synthetic aperture to improve image resolution. If each
detected image in the sequence of low-resolution measurements also captures the phase of the optical
field, then reconstruction is direct. Each detected image is inverse Fourier transformed to the
aperture plane (to form the values of the optical field within each colored circle). These three Fourier
transforms are then stitched together, side-by-side (to form the large green circle). An inverse
Fourier transform of this synthesized spectrum yields the desired high-resolution complex image.
Unfortunately, the phase of light is not detected by standard optical pixel arrays, which requires us
to use a slightly more involved high-resolution image reconstruction procedure, as outlined in the
next chapter.

matrix in Eq. 6.2, we note that the above discussion easily generalizes to a three-dimensional geome-

try. This extension is diagrammed in Fig. 2.3, where all functions of x and x′ are now also functions

of y and y′, respectively. LED scanning is performed along two dimensions separately. Combined

with two-dimensional images, this creates a four-dimensional data matrix, g(x, y, pxj , p
y
j ), where now

r/2 ≤ jy ≤ r/2 is the counter for LEDs along the second axis, where a total of q × r LEDs are in

the possibly rectangular array.

2.3 Reconstruction goals and extensions

The goal of ptychographic recovery is to convert the acquired data matrix into a complex sample

reconstruction with improved resolution. It will be useful at several points throughout this thesis

to return to the above data matrix picture, as several different algorithms are discussed. Here, we

briefly outline one related strategy to help connect the above concepts to our final goal of resolution

improvement.

First, let us assume for simplicity that our digital detector can also detect the phase of incident

light (note this is typically not true in practice, especially within a standard microscope). However,
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if the phase were detected, then our data matrix would no longer be squared:

g′(x, pj) = F
[
a(x′)ψ̂(x′ − pj)

]
. (2.4)

Furthermore, let us assume that each captured image originated from a unique but adjacent (i.e., non-

overlapping) region of the spectrum, ψ̂(x′). In other words, we assume that our LEDs are arranged

such that the angular shift they impart to the spectrum at each step, pj − pj−1, is equal to the total

extent of the aperture in the Fourier domain, k ·m/n. This ideal condition is diagrammed in Fig. 2.4.

Under these two assumptions, the recovery of a high resolution image from our measurements in the

data matrix would require three straightforward steps:

• Inverse Fourier transform each image in the complex data matrix in Eq. 2.4 to recover each

associated spectrum “tile”, ĝ′(x, pj) = a(x′)ψ̂(x′ − pj).

• Form one long spectrum estimate vector, ψ̂0(x′), by arranging each spectrum tile from the

data matrix adjacent to one another. For all j, take the spectrum tile a(x′)ψ̂(x′ − pj), and

place it in ψ̂0 starting at entry (j− 1) · k ·m/n, and ending at entry j · k ·m/n. This spectrum

synthesis process is diagrammed in Fig. 2.4.

• After all spectrum tiles have been concatenated together to form ψ̂0(x′), take the inverse

Fourier transform of ψ̂0(x′) to recover the high resolution complex sample estimate, ψ0(x).

This simple inversion process, in the absence of noise, allows for exact recovery of a high resolution

image from a sequence of low-resolution complex image measurements. The entire process of low

resolution capture and high resolution synthesis is commonly referred to as “synthetic aperture”

imaging. Many examples of synthetic aperture imaging arise in the area of remote sensing, which

often operates within the microwave and radio regimes, where the phase of the incident field is easily

measured on a digital detector. It is also possible to implement the same concept in optical setups,

using holographic techniques to determine the phase of each individual low-resolution image [4,5,7,

8, 8–16].

Since it is not possible to directly measure phase within a standard microscope, synthetic aperture

imaging will not help us directly achieve our goal of gigapixel image formation. In the next chapter,

we detail how Fourier ptychography applies a phase retrieval algorithm to overcome this barrier and

offer high-resolution, complex sample maps from a series of low-resolution intensity measurements.
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Chapter 3

Fourier ptychographic image
reconstruction

In Chapter 2, we derived an expression for the data matrix in Fourier ptychography (see Eq. 6.2).

We also saw that if the phase of the data matrix elements is known, then a synthetic aperture tech-

nique can recover a high-resolution microscope image from its set of low-resolution measurements.

Since the phase of each low-resolution measurement is not known, the inverse problem of resolution

enhancement becomes more challenging. In this chapter, we detail how to use an iterative phase

retrieval algorithm to accurately solve this inverse problem.

3.1 The phase retrieval algorithm

The problem of recovering a discretized complex signal (i.e., its amplitudes and phases) from knowl-

edge of just its amplitudes has a long history. Within the context of optics, one of the first successful

attempts to solve this problem was initiated by Gerchburg and Saxton in the 1970’s [2]. In this sec-

tion, we outline their general computational strategy, described within the context of our microscope.

We refer to this general class of algorithm as a “phase retrieval” method.

Here, we explain the simple “error reduction” (ER) phase retrieval algorithm [4], although one

of many related strategies may also be used [46]. Phase retrieval often iteratively projects an initial

estimate of the unknown complex sample, which we will define as hk(x, y) = h0(x, y), onto two

constraints in two different domains. Here, the subscript k indicates the estimate is in the kth

iteration of our iterative solution process. One constraint is always the measured signal amplitudes,

which in the case of our microscope is at the image plane (i.e., the square root of the measured

intensities in the spatial domain). To begin, let us consider just one image from our microscope,

|g(x, y)|, which results from illuminating the sample from directly below with the centered LED.

To determine the sample’s unknown phase values, it is common in coherent imaging to use as

a second constraint the assumption of a finite sample spectrum support. This second constraint
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Figure 3.1: The ER phase retrieval algorithm for coherent imaging. Each step is detailed in the
text.

constitutes additional a-priori signal knowledge, and is needed for our algorithm to accurately solve

the inverse phase retrieval problem. When imaging, one often knows the shape and extent of

the imaging system aperture function, a(x′, y′), which is almost always zero past a certain cutoff

frequency. Thus, one has a-priori knowledge that the Fourier transform of the unknown signal

estimate, ĥk(x′, y′) must be zero outside a certain region, or in other words must be a band-limited

signal. Occasionally (but not always), knowledge of the signal amplitudes and the extent of its

band-limited support is sufficient to accurately recover the unknown optical phase at the image

plane.

ER phase retrieval uses both the first “amplitude” and the second “support” constraint to iter-

atively encourage an initial signal estimate to converge to a solution containing the correct phase

values (see diagram in Fig. 3.1). First, ER initializes an estimate of the complex sample spectrum,

ĥ0(x′, y′), at the aperture plane. Second, ER digitally propagates this estimate to the image plane.

Following the description of our microscope from Chapter 2, propagation to the image plane is given

by a Fourier transform: hk(x, y) = F [ĥk(x′, y′)]. Again, k here denotes the kth iterative loop, for

0 ≤ k ≤ n iterations, and we continue to use the “hat” to denote the signal spectrum at the aperture

plane. Next, ER enforces the amplitude constraint at the image plane. It replaces the amplitudes

of hk(x, y) with the experimentally measured amplitudes at the detector, |g(x, y)|:

h
′

k(x, y) = |g(x, y)| hk(x, y)

|hk(x, y)|
. (3.1)

We may equivalently write our estimate in terms of its amplitudes and phases, hk(x, y) = α(x, y)eiφ(x,y),
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and then represent the estimate update step in Eq. 3.1 as, h
′

k(x, y) = |g(x, y)| eiφk(x,y), which

makes clear that the original phase values of the estimate, φk(x, y), remain unchanged. Third, ER

propagates this amplitude-constrained hologram estimate back to the sample plane: ĥ
′

k(x′, y′) =

F−1
[
h
′

k(x, y)
]
. Fourth, ER applies the sample support constraint. It leaves unchanged all values

within a defined subset of pixels, A, representing the nonzero locations within the aperture function

bandpass, a(x′, y′). However, it assumes that outside of this area of interest the spectrum must be

zero:

ĥ
′

k+1(x, y) =

ĥ
′

k(x, y), (x, y) ∈ A

0, (x, y) /∈ S.
(3.2)

In this last step, ER also increments the iteration counter value, k, to begin the next iteration.

It again transforms the estimate to the image plane, constrain its amplitudes, etc. Typically, the

above alternating projection loop runs for a fixed number of iterations q, or until some convergence

criteria is satisfied. The complex algorithm output, hq(x, y), typically offers an accurate estimate of

the amplitude and phase of the original optical field at the image plane.

3.2 The Fourier ptychographic microscopy (FPM) algorithm

The reconstruction algorithm used by Fourier ptychographic microscopy (FPM) effectively combines

the synthetic aperture strategy outlined at the end of Chapter 2, with the phase retrieval algorithm

outlined above. A detailed presentation of this algorithm and its implementation within a microscope

is presented in [32]. Here, we offer an alternative summary, now examining just a one-dimensional

signal (along x) for simple notation. After capturing the data matrix in Eq. 6.2, we start the

FPM recovery algorithm by initiating a high-resolution complex spectrum estimate, ŝ(x′). Here,

the structure of ŝ(x′) is not critical: it may be all zeros, or proportional to the Fourier transform

of one of the raw images. The resolution of ŝ(x′) must match the final desired high-resolution after

reconstruction, n, which may be computed via knowledge of the number of LEDs and known discrete

distance of aperture shift between each LED. Specifically, if each low-resolution image contains m

pixels, then we may use the numerical aperture of the objective lens (NAo) and the illumination

(NAi) to find that,

n = m× NAo +NAi
NAo

. (3.3)

It is worth noting here that a critical component of the success of Fourier ptychography lies within

the correct selection of n with respect to the number of captured images, q. Unlike the synthetic

aperture scenario, FPM requires that the regions of the spectrum that correspond to each captured

image overlap to a certain extent in Fourier space. To understand this in a bit more detail, it is

helpful to rewrite the jth field at the aperture plane as a fixed spectrum, at full-resolution and
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Figure 3.2: The FPM algorithm. Each step is detailed in the text.

containing n pixels, windowed by a shifted aperture: a(x′ + pj)ψ̂(x′). Note this is equivalent to the

actual physical scenario of a shifted spectrum, reflected in Eq. 2.2. If the finite bandpass of a(x′) is

m pixels wide, then FPM requires that pj ≤ m/2, such that a(x′+pj−1) and a(x′+pj) each mask a

similar finite portion of ψ̂(x′), or in other words overlap with one another. We define the percentage

of aperture overlap as, ol = 1− (n−m)/qm, where one may interpret m as the width of a and n as

the width of ŝ. Typically, an overlap percentage of ol ≥ 60% is needed for successful FPM algorithm

convergence.

Given we satisfy the above overlap criterion, by carefully selecting the separation distance of our

LEDs, the first step of FPM recovery starts with j = 0 and runs until j = q (the total number of

captured images, see Fig. 3.2). We select the jth region of the spectrum, corresponding to the jth

image, by computing the product, ŝk(x′) × a(x′ + pj). Here, we have again shifted the aperture

function a across the spectrum by a distance pj from the origin, which is mathematically equivalent

to a shifted spectrum ŝ across a fixed aperture (i.e., what our FPM implements via the LED array).

Then, we Fourier transform this limited region of the spectrum to the image plane:

hk(x, j) = F [ŝk(x′)× a(x′ + pj)] . (3.4)

Eq. 3.4 uses our high-resolution estimate to simulate the formation of an microscope image under

illumination from the jth LED. We label hk also with the variable j to maintain its association with

the jth image. Second, we update the amplitude of this simulated image with the known amplitude

from the jth measured image, g(x, pj). This is the same as the amplitude constraint used in the ER
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intensities from the image corresponding to illumination from the jth LED. After update, it is inverse
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phase retrieval algorithm:

h
′

k(x, j) = |g(x, pj)|
hk(x, j)

|hk(x, j)|
. (3.5)

Here, the phase of hk is left unchanged. Third, we inverse Fourier transform this updated image

back to the aperture plane: ĥ
′

k(x′, j) = F−1
[
h
′

k(x, j)
]
. This forms an update of the local region of

the spectrum that we assume passed through the aperture when we turned on the jth LED.

Fourth, we locally update our spectrum estimate ŝk(x′) with the values in the jth updated

spectrum region, ĥ
′

k(x′, j). During this update, we only modify spectrum estimate values that lie

within the finite bandpass (that is, support) of the jth shifted aperture. Mathematically, this support

update takes the form,

ŝk(x′) = (1− a(x′ + pj))× ŝk(x′) + a(x′ + pj)× h
′

k(x′, j) (3.6)

We assume in Eq. 3.6 that a(x′ + pj) is 1 within its finite passband and 0 outside. If this is not the

case, a similar expression may still yield a correct update. Finally, we increment our counter j and

select a new spectrum region, corresponding to the values of the spectrum that passed through the

microscope aperture when illuminating the (j + 1)th LED. This begins our process of sub-spectrum

region update again, which proceeds until j = q. Then, we increment k, again looping through all

sub-spectrum regions and updating them with the amplitudes within each image. This process is

terminated typically after several iterations of k, or until reaching some threshold error metric value.

A diagram of this update process for a 2D spectrum is in Fig. 3.3.
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3.3 Experimental demonstration of FPM

To demonstrate FPM’s ability to improve microscope resolution beyond the standard cutoff fre-

quency, we construct the experimental microscope setup shown in Fig. 3.4 [32]. This FP microscope

is simply a conventional microscope body, modified by placing a 15 × 15 array of surface-mounted

LEDs (model SMD 3528, center wavelength λ = 632 nm, 4 mm LED pitch, 150 µm active area

diameter), which serve as our quasi-coherent optical sources. The array is placed l =80 mm beneath

the sample plane, and each LED has an approximate 20 nm spectral bandwidth. Prior work estab-

lishes that the impact of non-ideal source coherence is gradual [28], which we examine in further

detail in Chapter 5.

To quantitatively verify resolution improvement, we turn on each of the 15 × 15 LEDs beneath

a U.S. Air Force (USAF) resolution calibration target. A 2X Olympus microscope objective (apoc-

hromatic Plan APO, NAo = 0.08) transfers each resulting optical field to a CCD detector (Kodak

KAI-29050, 5.5 µm pixels), creating q = 137 low resolution images. Using this 0.08 NA microscope

objective (5◦ collection angle) and with illumination NAi = 0.35 illumination NA (20◦ maximum

illumination angle), our FP microscope offers a total complex field resolution gain of
√
n/m = 5

in one dimension, and n/m = 25 for both dimensions together, which follows from Eq. 3.3. Each

image spectrum overlaps by ol = 70% in area with each neighboring image spectrum.

For reconstruction, we select n = 25 × m and run the above FPM algorithm on our captured

data matrix. For computational efficiency, we sequentially process small tiles (500 × 500 pixels

per tile) of each image within the data matrix. That is, after capturing all 137 images, we first

consider the upper 5002 pixels in each image, and only process this limited image region. Then, we

shift our region of interest by 490 pixels to the right, and process a new but slightly overlapping

5002 pixel region of the image set. After processing these limited-FOV image regions, we tile the

resulting complex field solutions together, blending at the 10 pixel-wide borders, to form a full-FOV

high-resolution image output.

The results of our first validation experiment are in Fig. 3.4. Fig. 3.4(c) displays a single image

of an Air Force resolution target captured by our microscope under illumination from the central

LED using a 2X microscope objective. Here, the small aperture of the 2X objective lens limits

the image resolution to approximately 3.2 µm (half-pitch width, the width of one bar in Group 7

Element 3). In Fig. 3.4(d), we show the result of an FPM reconstruction of the same resolution

target after acquiring 137 different images, each under unique illumination from a single LED in the

array. Resolution improvement over a single image in Fig. 3.4(c) is clear (from 3.2 µm to 0.7 µm

half-pitch, now resolving Group 9 Element 3). Across the entire image FOV, FPM has increased the

total number of resolvable pixels (i.e., the SP) with respect to a single image from approximately

23 megapixels to 230 megapixels, which equates to 4.6× 108 individual measurements of amplitude
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Figure 3.4: The FPM setup (figure adapted from [32]). (a) An LED array sequentially illuminates
a sample from different directions, which is then imaged by a 2X microscope objective (MO) lens.
(b) The actual FPM setup, showing the LED array and an inset of a single color LED. (c) A single
image of a resolution target with this 2X objective offers a wide FOV, but cannot resolve group 8
(approximately 6 µm half-pitch resolution). (d) An FPM-reconstructed image resolves group 9 (
approximately 0.75 µm half-pitch resolution).
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Figure 3.5: FPM reconstruction of a single layer of stained human blood cells. (middle) Our full
image reconstruction, demonstrating the ability to see tens of thousands of individual cells across
our FPM setup’s 120 mm2 FOV. Enlarging just one small segment (200×200 pixels, shown in lower
right) of this final image (15000×15000 pixels) highlights our ability to clearly resolve each red and
white blood cell, whereas the individual cells are hardly resolved in the single raw image.

and phase. This enhancement in information throughput can come of great aid during acquisition

in many microscope imaging scenarios.

To demonstrate this benefit in a biological imaging scenario, we run the same procedure outlined

above while imaging a slide of red and white blood cells spread out into a single layer. The results

of this experiment are shown in Fig. 3.5. We again transform q = 137 low resolution images into a

0.23 gigapixel image reconstruction. Zooming into a small segment of this final image reconstruction

in the lower right of Fig. 3.5, we see that our FPM system clearly resolves each red blood cell, and

resolve the fine intercellular features of white blood cells. The raw image segment shown above,

which is what a conventional microscope system captures over the same image FOV, cannot clearly

resolve any of the cells.

Finally, we conclude this section by demonstrating how FPM can also improve the resolution of a

pathology slide, enabling whole-slide imaging at approximately 1 µm resolution without any moving

parts. In Fig. 3.6, we image a stained pathology sample of human breast tissue exhibiting adenocar-

cinoma (cancer).The FOV of each image captured by our microscope, based on a 2X objective lens,

is nearly as wide as the entire microscope slide. Note that unlike other whole-slide imaging setups

for digital pathology, FPM images the entire tissue section at high resolution (comparable to a 20X

objective lens) without physically scanning the lens or sample, but instead by simply illuminating

different LEDs. Fig. 3.6(b)-(d) zooms into different segments of this image to show our achievable

resolution is at the cellular level. We compare what our system can resolve in Fig. 3.6(c1) to the

resolution of a conventional microscope using a 20X objective lens in Fig. 3.6(c2), to see each offers

comparable performance. However, the FOV of the 20X objective lens setup is approximately 100

times less than our system’s FOV, as indicated by the blue circle marked in Fig. 3.6(a). Beyond
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20X FOV!

Figure 3.6: FPM reconstruction of a pathology slide (figure adapted from [32]). (a) Full color
reconstruction (0.23 gigapixels, 120 mm2 FOV). (b)-(d) Different regions of the reconstruction,
zoomed-in to highlight the FPM system resolution. Our reconstruction (c1) offers approximately
the same resolution as a 20X 0.5 NA objective lens, which we used to capture the same region as
shown in (c2). However, a 20X objective lens can only see the FOV denoted by the blue circle in
(a) and marked on the microscope slide inset. FPM increases the total number of resolved pixels by
approximately 25 in this example, seen by comparing our reconstruction in (c1) to the raw image
data in (c3).
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direct resolution improvement of intensity imagery, our FPM system may also capture quantitative

optical phase, extend the microscope depth-of-field, and help estimate and computationally remove

intrinsic system aberrations. We detail these extensions in the next chapter.
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Chapter 4

Fourier ptychography for
quantitative phase measurement

In Chapter 3, we experimentally verified that Fourier ptychographic microscopy (FPM) improves the

resolution of a standard microscope beyond its spatial frequency cutoff limit. In this chapter, we show

that FPM also accurately measures the optical phase emerging from thin samples. We demonstrate

that this phase information quantitatively measures of sample optical thickness, helps to determine

sample scattering properties, and also helps form sharper images through system aberration removal.

4.1 Quantitative phase for sample thickness

4.1.1 Background

There are many methods to measure optical phase. Examples include on and off-axis digital holog-

raphy and interferometry. These interference-based techniques require a highly coherent source and

a somewhat complicated optical setup, which is prone to alignment errors, the presence of speckle

noise, and must be phase-stable. As we saw in Chapter 3, FPM applies a phase retrieval algorithm

to transform optical intensities, from a conventional microscope, into amplitudes and phases. Here,

we show these measured phases are accurate and robust.

Other strategies exist to computationally determine optical phase without using interference.

The Gerchberg-Saxton (GS) algorithm [2], developed for electron microscopy in the 1960s, is one

of the earliest strategies for recovering the phase of a specimen from intensity measurements. As

outlined in Chapter 3, this iterative procedure alternatively constrains an initial complex estimate

to conform to the measured intensity data in the spatial domain, and to obey a known constraint

in the Fourier domain. It is closely related to the ER algorithm detailed previously [4]. While

proven to weakly converge, stagnation and local minima issues (especially in the presence of noise)

limit the applicability of the simple GS/ER algorithms [4, 8]. Gonsalves [4] and Fienup [4, 24] both

recognized that applying multiple unique intensity measurement constraints, as opposed to a single
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intensity constraint, helps prevent stagnation and greatly improves convergence speed. This type of

phase diversity procedure has branched into many forms over the past several years, and includes

variants based on translational diversity [6], defocus diversity [7], wavelength diversity [8, 9], and

sub-aperture piston diversity [10]. Each unique approach here relies on a different technique to vary

the experimental system between sequential image capture, before running a variant of the GS/ER

iterative algorithms across the entire captured data set.

Phase retrieval schemes based on translational-diversity (i.e., moving the sample laterally) are

the closest relative to FPM. Phase retrieval with translation diversity is also commonly referred

to as ptychography [8, 9, 11]. Ptychographic phase retrieval has found successful use in X-ray [3]

and electron microscopy [2]. While setups exist in many flavors [4, 12, 17, 18, 20, 21, 29], the general

ptychographic approach consists of three major steps: 1) illuminating a sample with a spatially

confined probe beam and capturing an image of its far-field diffraction pattern, 2) mechanically

translating the sample to multiple unique spatial locations (i.e., applying translational diversity)

while repeating step 1, and 3) using the set of captured images as constraints in an iterative phase

retrieval algorithm. While a useful review of details regarding ptychography’s operation are available

in [8, 12], it is important to note that the sample or the probe beam must be physically scanned

over the desired field-of-view, and the object support is imposed by the shifting probe in the spatial

domain. The ability of traditional ptychographic procedures to obtain quantitatively accurate phase

measurements has been demonstrated previously with both electron [2] and x-ray [4, 12, 17, 18, 20,

21,29] illumination, and recently extended to the optical regime [6, 6, 7].

FPM [32] requires no mechanical movement and facilitates microscopic imaging well beyond the

cutoff frequency defined by the employed imaging optics, as we saw in the previous chapter. However,

it is not directly obvious that FPM, like conventional ptychography, might also capture and post-

process data with its phase retrieval algorithm to construct an accurate solution of the optical phase

at the sample plane. Here, we show that although its multiple illumination sources offer a limited

spatial coherence and much of the images’ redundant information is utilized to improve spatial

resolution, the FPM algorithm also converges to an accurate phase measurement. More details

regarding this insight are available in [33].

4.1.2 Verification with microspheres

To verify that FPM measures quantitatively accurate phase, we use a similar experimental setup as

outlined in Chapter 3. Our microscope system consists of a conventional microscope with a 15×15

red LED matrix (center wavelength 633 nm, 12 nm spectrum bandwidth, approximately 150 µm

size) as the illumination source. This setup is diagrammed in Fig. 6.1, where we label the jth two-

dimensional illumination plane wavevector as (kxj , kyj). We have also labeled the two-dimensional

Fourier plane coordinates as wavevectors (kx, ky), which are directly proportional to the spatial
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Figure 4.1: FPM setup for quantitative phase measurement (figure adapted from [33]). (a) The full
setup, (b) diagram of capture at the aperture plane, (c) close up of plane wave illumination and (d)
LED scanning.
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Figure 4.2: Quantitative measurement of microsphere and red blood cell thickness (figure adapted
from [33]). Here, we also compare FPM phase reconstructions to digital holographic and theoretical
data. FPM transforms low-resolution intensity images from a 2X objective (a1) into a high-resolution
phase map (a2) of different-sized polystyrene microbeads, as compared with a DH reconstruction
(a3) using a 40X objective. (b) A similar image sequence highlights FPM phase imaging capabilities
on a human blood smear. (c) Line traces through the microspheres and a red blood cell demonstrate
quantitative agreement with expected phase performance.

frequencies (x′, y′) used in previous chapters. In this coordinate system, the center of each shifted

spectrum lies at (kxj , kyj) in the Fourier domain, as shown in Fig. 6.1(b).

We insert our sample at the focal plane of the microscope’s 2X, 0.08 NA objective lens. Then, we

collect a sequence of q = 225 low-resolution intensity images as the sample is successively illuminated

by each of the 225 LEDs in the array. These images are input to the FPM phase retrieval algorithm

from Chapter 3, which reconstructs a high-resolution map of the complex field at the sample plane,

ψ(x, y). For example, the 500×500 pixel quantitative phase map in Fig. 4.2(a2) is generated from a

sequence of 225 different 50×50 pixel cropped low-resolution images, an example of which is displayed

in Fig. 4.2(a1).

To first verify the accuracy of FPM phase measurement, we image a sample containing polystyrene

microspheres in oil (3 µm and 6.5 µm diameter, noil = 1.48, nsphere = 1.6). One raw intensity im-

age is shown in Fig. 4.2(a). It is challenging to resolve each sphere within this raw image data.
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After running the FPM phase retrieval process, we obtain the phase map in 4.2(a2). Besides clearly

resolving each sphere, we may also use this phase map to measure each sphere’s optical thick-

ness. Specifically, the measured phase at each pixel φ and the sample’s thickness t are related via

t = k∆φ(nsphere−noil)−1, where k is the average wavenumber and ∆φ = φ−φ0 is the reconstructed

phase minus a constant phase offset. Unwrapped line traces of the optical phase shift induced by two

different-sized spheres lead to estimated microsphere thickness curves in Fig. 4.2(c1)-(c2), exhibiting

close agreement with theory. The theoretical curves are defined as the length of the vertical chords

connecting the top and bottom arcs of a 3 and 6.5 µm circle, respectively (i.e., the diameter of each

sphere, which we know a-priori). The root mean-squared error (RMSE) between the experimentally

determined and theoretically calculated thickness is 0.25 µm for the 3 µm sphere and 0.33 µm for

the 6.5 µm sphere.

As a second verification, we also compare our FPM measured phase to that found using a phase-

shifting digital holographic (DH) microscope. This microscope consists of a 40X objective lens for

clear imaging of each bead. Our DH setup splits a solid-state 532 nm laser into a sample and

reference arm (both spatially filtered and collimated). The sample arm passes through the sample.

The reference arm passes through an electro-optic phase modulator (Thorlabs EO-PM-NR-C1).

Both beams are then recombined and imaged (Prosilica GX 1920, 4.54 µm pixels) via the 40X

objective lens (0.65 NA Nikon Plan N) and a tube lens. 4 images are captured with a π/2 phase

shift added to the reference between each image. Sample phase is calculated from the 4 images

via the phase recovery equation [28]. The resulting phase map is in Fig. 4.2(a3). A RMSE of 0.41

µm and 0.30 µm for the 3 µm and 6.5 µm line traces also offers close agreement between the DH

experimental measurements and theory (see Fig. 4.2(c1)-(c2)).

4.1.3 Verification with human blood cells

We additionally verify the accuracy of the optical phase measured through a biological sample, in

Fig. 4.2(b). Here, we image a human blood smear immersed in oil (noil = 1.51). While a theoretical

benchmark is not available, the FPM image in (b2) and the ground-truth DH phase map in (b3)

closely match. A trace through the phase of the same red blood cell, noted by the dotted line in

(b2) and (b3), is shown in Fig. 4.2(c3). Here, the MSE between the two phase measurements is 0.58

µm, but both closely match the average red blood cell thickness of approximately 2 µm.

Sources of error for the FPM setup include the inclusion of slight aberrations by the objective

lens, effects of a partially coherent illumination source, and the influence of noise within the iterative

reconstruction scheme. The primary source of error in the DH data is speckle noise caused by

a coherent illumination source. Artifacts also result from the removal of a global low-frequency

background phase fluctuation, caused by an imperfect reference arm. In general, the FPM data tends

towards a smoother phase profile, in part a consequence of its LEDs’ partially coherent illumination,
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Figure 4.3: Using the recovered sample phase, it is direct to simulate image formation under alter-
native microscope configurations. Here, we show computed phase gradient images in the x direction
(a) and y direction (b) from the human blood smear phase map in Fig. 4.2, as well as (c) the phase
gradient magnitude to highlight sample boundaries (figure adapted from [33]).

which avoids high-frequency spatial fluctuations (i.e., the coherent speckle artifacts). We examine

the effects of partially coherent illumination in more detail in the next chapter.

Finally, we highlight the benefits of measuring the quantitative phase of blood cells in Fig. 4.3.

Here, we use the measured phase to compute phase-gradient images along both the x and y directions.

The resulting gradient maps are similar in appearance to that which would be observed through a

differential-interference-contrast microscope, where edge-based features are more clearly visible than

within a conventional microscope. However, we note that such computational post-processing does

not produce new information about the sample beyond what is contained within the recovered

amplitude and phase.

4.2 FPM phase measurements for digital pathology

While currently of limited use in clinical pathology, quantitative phase measurement may play a

important role in future pathology systems that image with digital sensors. Accurately measured

phase can reveal both useful sample features and relax digital microscope design constraints. In this

section, we briefly outline possible applications of optical phase measurements to the pathologist. A

more detailed discussion of this topic may be found in [29].

First, an n-pixel complex image contains up to two times the amount of information than an n-

pixel intensity image. This additional information lies within the image’s complex phase. As is well

known with other phase imaging microscope setups (e.g., differential interference and phase contrast

microscopy), optical phase may be manipulated to improve the visibility of primarily transparent

samples, and provides a direct indication of the optical path length difference (i.e., optical thickness)

between adjacent sample regions, which we already demonstrated earlier in this chapter. This
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Figure 4.4: Segments of FPM intensity and phase images of a stained tissue (i.e., pathology) sample.
As indicated by the red arrow, some cell features are transparent in the intensity image, but clearly
visible in the phase image, indicating the utility of phase in revealing otherwise hidden features
(adapted from [33]).

additional information may help pathologists reach a diagnosis that was otherwise not possible with

intensity-only information. An example of this is shown in Fig. 4.4, where the FPM quantitative

phase image reveals an otherwise invisible structure contained within a pathology sample (e.g.,

see the red arrow, or bright highlights in phase where the intensity is low). Such a primarily

transparent sample region exhibits a varying thickness that would be quite challenging to detect via

direct intensity-only observation.

A phase map captured by FPM also contains embedded information about sample scattering

properties (e.g., scattering from a histological tissue section). The scattering properties of a sam-

ple of tissue are directly tied to its spatially varying refractive index profile. Such refractive index

maps can successfully distinguish between healthy and cancerous cells in digitized histology slide im-

ages [30]. Cancer can manifest itself within the cell nucleus as a slight index of refraction shift, which

is both difficult for the clinical pathologist to detect upon direct observation, and also difficult for a

computer algorithm to recognize from an intensity-only image. Furthermore, a phase-derived refrac-

tive index map maintains its utility even in the presence of uneven histology sample staining [31],

thus suggesting it as a robust computational aid that can fit within pathology’s well-established

clinical diagnostic workflow. Next, we briefly demonstrate how to transform an FPM phase image

into a spatial scattering coefficient map, which may in turn be used as an aid for diagnosis.

Recent work has revealed two close links between the statistics of a sample’s phase map and its

scattering parameters [32, 33]. First, the spatial variance across the phase map is linearly related

to the sample scattering coefficient, µs. Second, the variance of its phase gradient is related to the

reduced scattering coefficient of the sample, µ′s. Denoting the output phase map of FPM as φ(x, y),

we may follow the simple set of calculations in [32, 33] to transform φ(x, y) into an estimate of the
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Figure 4.5: (a) An FPM phase map of microspheres, allowing us to verify the accuracy of our
procedure to estimate tissue scattering parameters (figure adapted from [29]). (b) Cropped regions
of the phase image around two different-sized microspheres. (c) Gradient of the phase in (b).
Variances from the regions in (b) and (c) are used to determine the scattering and reduced scattering
coefficients of the microspheres following Eq. 4.1 and Eq. 4.2, respectively.

scattering and reduced scattering coefficients:

µs(x0, y0) =
1

L

〈
(φ(x, y)− µφ)

2
〉

∆x,∆y
(4.1)

µ′s(x0, y0) =
1

2k2L

〈
|∇φ(x, y)|2

〉
∆x,∆y

. (4.2)

In Eq. 4.1, L is the thickness of the sample, µφ = 〈φ(x, y)〉 is the mean of the phase map, and

〈·〉(∆x,∆y) denotes an expectation value over a finite spatial window, (∆x,∆y). In short, Eq. 4.1

indicates that the scattering coefficient at a particular location (x0, y0) is given by examining the

variance of the phase map φ(x, y) within a spatial window (∆x,∆y) centered on pixel (x0, y0). In

Eq. 4.2, ∇ represents the 2D gradient operator. It indicates that a spatial average over a similar

finite window of the square of the phase gradient yields the reduced scattering coefficient, µ′s. Both

above equations assume the sample under consideration is thin.

First, we may verify the accuracy of Eq. 4.1 and Eq. 4.2 through an experiment using a phase

map measured by FPM. Using the same experimental setup described above, we first image a slide of

microspheres. Given the known size and geometry of the microspheres, we may compute µs and µ′s

for direct comparison to our phase-derived expressions, offering a quantitative verification. Second,

we will apply the same computations to a histology slide with unknown µs and µ′s. Doing so, we

aim to demonstrate how FPM’s acquired quantitative phase map can offer extra information that is

otherwise missing from intensity-only imagery.

Fig. 4.5 displays an example 500×500 pixel FPM-recovered phase map of a monolayer of two
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Figure 4.6: Recovering a spatial map of tissue scattering parameters from a histology slide (figure
adapted from [29]). (a) Full color FPM gigapixel image of a histology slide. (b) The recovered phase
from a 0.2 mm2 region at the sample center. (c) The scattering coefficient µs for this area of tissue,
computed using Eq. 4.1. (d) The reduced scattering coefficient µ′s for the same area of tissue from
Eq. 4.2, here shown on log scale.

sizes of microspheres (r = 3 µm and 6.5 µm, n = 1.6) immersed in oil (n = 1.48). This limited

FOV image is one cropped area of a larger image. Selecting one 6.5 µm microsphere of interest,

as shown in (b) top, we first apply Eq. 4.1 to find that µs=0.696 µm−1 and Eq. 4.2 to find that

µ′s=0.0239 µm−1. Here, we have used λ = 632 nm and a sample thickness L = 6.5 µm. These two

values may be combined to find the anisotropy factor g = 1 − (µ′s)µs = 0.966. We can compare

these scattering coefficients to predictions from Mie theory code [34] for a sparse set of spheres of

similar size and refractive index, which yields µs=0.658 µm−1, µ′s=0.0241 µm−1, and g = 0.963.

These predicted values match our experimental measurements closely, thus confirming the accuracy

of our quantitative phase map as well as verifying the validity of Eq. 4.1 and Eq. 4.2. The same

set of calculations applied to one selected 3 µm microsphere (shown in Fig. 4.5, bottom row) offers

similarly accurate results.

Given a verifiably accurate process of measuring the scattering and reduced scattering coefficients

from the FPM phase map, we now test a biological sample. Fig. 4.6(a) includes an example FPM

histology slide image, shown here in color after combining three separate reconstructions under

illumination from a set of red, green, and blue LEDs. Fig. 4.6(b) displays the phase map of a

1200×1200 pixel area of interest, from which we calculate the phase and phase gradient variance

for each image pixel following Eq. 4.1 and Eq. 4.2. As with the microspheres, we again assume

(∆x,∆y) is a 22-pixel window and the sample thickness is 5 µm (an estimation). The result of

these calculations are the spatial maps of µs and µ′s shown in Fig. 4.6(c)-(d), where regions of

homogenous scattering and specific points of inhomogeneity are clearly observable. A pathologist

may find the larger µ′s in the upper left corner of the image segment a helpful indication of a different

tissue region. This type of sectioning is otherwise challenging to achieve with intensity-only imagery.

Alternatively, the large peaks in the µ′s map might indicate cells that exhibit unique (i.e., highly
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(a) Z = -150 microns! (b) Z = 0 microns! (c) Z = +150 microns! (d) Trace through Group 9 El. 3!

Figure 4.7: Example of digital refocusing with FPM data (figure adapted from [32]). (a) Raw image
recorded from the center LED at -150 µm defocus, showing clear defocus effects at top, and FPM
reconstruction after digital refocusing at bottom. (b) Same without defocus, and (c) same with
defocus +150 µm in the opposite direction. FPM reconstruction, after digital refocusing, maintains
resolution of Group 9, Element 3, thus offering a depth of field of approximately 300 µm, as compared
to the 80 µm depth of field of the 2X objective lens during standard operation.

scattering) structural properties. We hope that these initial findings encourage the future integration

of FPM into the diagnosis pipeline of digital pathology.

4.3 Improving reconstruction quality with FPM phase mea-

surements

Finally, we briefly note here two applications of FPM-derived phase that additionally improve the

resolution and fidelity of the reconstruction. These insights may also help relax current microscope

design constraints (e.g., increase the working distance, extend the depth of field, and/or reduce the

objective lens size and complexity). However, since they do not form the main focus of this thesis, we

only mention them here briefly, and point the interested reader to the relevant sections of Refs. [32]

and [35] for more details.

4.3.1 Digital refocusing for enhanced depth-of-field

The phase acquired by FPM can be used to digitally refocus images into sharp focus. We achieve

digital refocusing by propagating the complex field solution towards or away from the image plane

via a propagation simulator. Without an accurate measurement of sample phase at the image plane,

this type of digital propagation is not possible.

Since digital refocusing can be applied to FPM data at any point after image acquisition, we

anticipate that it may help improve the efficiency of a pathologist’s diagnosis pipeline. For example, a

slide that was originally slightly tilted or a histology sample that was not perfectly flattened between
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Figure 4.8: Removing aberrations from FPM (figure adapted from [35]). By slightly modifying
the FPM iterative phase retrieval procedure, it is possible to simultaneously update an estimate
of the complex sample as well as an estimate of the objective lens aberrations. This simultaneous
update effectively separates the effect of lens aberrations from the recovered sample image. (left)
An example recovered complex sample with aberrations removed. (a)-(c) Magnified views of labeled
regions, where column (2) shows the associated phase aberrations removed from the red color channel,
column (3) from the green color channel, and (4) from the blue color channel. It is clear this technique
can remove aberrations that are both a function of wavelength and spatial location.

its slide and cover glass will not have to be re-imaged. Instead, a technician can computationally

correct minor slide positioning errors at any later date using the acquired sample phase information.

Whats more, by digitally refocusing any sample region not in sharp focus to its correct focal

plane, FPM can significantly extend a microscope’s effective depth-of-field, e.g., from 80 µm to

300 µm for the setup demonstrated in [32, 33]. An example of using digital refocusing to bring a

resolution target axially offset from the focal plane by +/− 150 µm is in Fig. 4.7. One may either

use an a-priori estimate of the required defocus distance, as in the example in Fig. 4.7, or rely upon

an image sharpness metric, to establish an unknown defocus distance. Additional details regarding

FPM digital refocusing are available in [32].

4.3.2 Simultaneously removal of microscope aberrations

The FPM phase retrieval algorithm outlined in Chapter 3 is only a starting point for more involved

recovery procedures. As previously explored within the realm of conventional ptychography, more

advanced computational methods can simultaneously estimate any errors shared between captured

images of a sequentially illuminated sample. Typically, these fixed errors arise from a non-uniform

aperture function. For FPM, this corresponds to the optical aberration map of the microscope

objective lens (i.e., the phase deviations across the back focal plane).

As demonstrated in [35], it is possible to simultaneously estimate and remove this optical aberra-

tion map during FPM reconstruction. Iterative removal of the aberration map significantly sharpens
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the spatial resolution of the final FPM reconstruction, which is especially beneficial in off-axis re-

gions of the image plane (i.e., in the corners of the image). Because both the sample and aberration

estimates are complex (i.e., include optical phase), this removal is not ill-conditioned (e.g., like

point spread function deconvolution from intensity-only images). What’s more, it requires no initial

calibration data. An example of FPM aberration removal is included in Fig. 4.8. Further details

regarding this correction procedure may be found in [35].
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Chapter 5

Modeling ptychography in phase
space

In ptychographic imaging, also commonly referred to as scanning diffraction microscopy or more

broadly as coherent diffractive imaging, a sample is shifted across a narrow illumination beam and a

series of diffraction intensity patterns are recorded. The acquired image data is then computationally

processed into an improved-resolution estimate of the sample’s amplitude and phase transmittance.

The unique procedure of ptychography has recently lead to the generation of many impressive X-ray

and electron microscope images that defy the conventional resolution limitations of their detectors

and focusing elements [1–4,38]. Such resolution enhancement has also spread to optical imaging [6,7].

This multi-image procedure closely matches our description of FP thus far.

In this chapter, we first develop a mathematical model for “conventional” ptychography (CP)

based in phase space. Second, we use the same model to explain how Fourier ptychography (FP)

operates. We show how these two otherwise unique optical setups – one capturing the diffracted light

from a moving sample, and the other capturing microscope images of a fixed sample illuminated by

an array of sources – create nearly identical datasets. Finally, we derive how the partial coherence of

the optical sources in each experimental setup impact their measurements, and test this derivation

with a simple experiment.

By mathematically connecting FP with the well-established method CP, we hope to encourage

a cross-pollination of ideas between the two experimental disciplines. As we will see in the next

three chapters, many of our new insights concerning FP may port directly over to the discipline

of CP. While this has yet to be attempted, we believe that both our convex algorithm and unique

tomographic reconstruction technique (the subjects of the next two chapters) may be of significant

benefit to the X-ray and electron microscope communities.
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Figure 5.1: The optical setup for conventional ptychography (CP). A sample ψ (in green) is
shifted through many positions p as the intensity of the probe light it diffracts is recorded at a
far-field detector. In a typical visible light setup, the lens at planeA(x) is a multi-element system
containing the aperture stop function, a(x), at some intermediate plane, as diagrammed (figure
adapted from [28]).

5.1 The conventional ptychography (CP) setup

Our first steps toward a common mathematical framework are to outline the standard elements of a

CP setup, model how light passes through it, and then convert our findings into a suitable phase space

representation. The basic setup, notations, and derivations used here closely follow those previously

employed in [8, 9]. Unlike this prior work, our final expression demonstrates a unique convolution

relationship that helps directly connect the parameters in CP with FP. Reciprocal space coordinates

will be designated with a prime, and reciprocal space functions will include a tilde (e.g., the Fourier

transform of a(x) is ã(x′)). Note that in practice, both x and x′ will have units of meters, since

they represent the spatial axis of an imaging system’s two Fourier conjugate planes. A schematic

diagram of a scanning CP setup containing two sets of such planes is in Fig. 5.1. While deviations

exist, most recent ptychographic experiments generally follow the optical outline in Fig. 5.1. The

following analysis considers a two-dimensional imaging geometry, for simplicity. Extension to three

dimensions is direct.

A standard CP setup first focuses light from an illumination plane L(x′) onto a shifting sample

and records a series of far-field diffraction patterns. We assume L(x′) contains an ideal point light

source that produces a quasi-monochromatic plane wave (wavelength λ) propagating parallel to the

optical axis at a large distance `. The case of a non-ideal point source will be considered later, when

partial coherence is added. At distance ` is an aperture plane A(x) containing a lens of focal length

f . Immediately past this plane, the optical field may be described across all space simply as a(x),

the aperture transmission function.

This incident plane wave, confined to a(x), is focused by the lens to a small area at the sample

plane, S(x′). Note here the sample plane in conventional ptychography is considered as lying in
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reciprocal space coordinates, which will allow us to directly connect it to FP shortly. Under the

Fresnel approximation, the shape of the focal spot before hitting the sample is proportional to the

scaled Fourier transform of the field at aperture transmission function [10]:

s+(x′) =
exp

(
jk
2f x
′2
)

jλf

∫
a(x)exp

(
−jk
f
x′ · x

)
dx ≈ Fxx′ [a(x)] = ã(x′), (5.1)

where Fxx′ is the Fourier transform operator from x to x′, s+(x′) is the field directly before the

sample, and the approximation assumes the phase pre-factor is unity. All integrals are assumed to

extend from negative to positive infinity. The above expression ignores a constant coordinate scaling

factor: ã(x′) should actually be written as ã(x′/λf). For clarity, we will generally neglect constant

scaling factors. Details of scaling effects may be found in Appendix A of [28]. ã(x′) typically takes

the form of a sinc function, as shown in Fig. 5.2, but may be arbitrarily shaped in general.

Independent of its specific distribution, the confined beam ã(x′) then interacts with a shifted

sample ψ to produce an exiting optical field, s(x′). We assume the effect of sample thickness upon

diffraction is negligible, allowing us to define the optical field s(x′) directly past the sample as a

multiplication of ã(x′) and the sample transmission function ψ:

s(x′) = ã(x′)ψ(x′ − p). (5.2)

Here, p is the sample’s shift distance perpendicular to the optical axis. The thin object approxi-

mation holds if the maximum sample thickness t obeys t << 4δ2
res/πλ, where δres is the sampling

resolution [12]. s(x′) then propagates a large distance d to far-field detector plane D(x), where (as

a first approximation) the intensity of the Fourier transform of s(x′) is measured:

g(p, x) = |Fx′x [ã(x′)ψ(x′ − p)] |2. (5.3)

Here, g(p, x) is a two dimensional function of probe shift distance (p) and space (x), and comprises

our data matrix. In experiment, g(p, x) is filled up, column-by-column, with discretized diffraction

images captured at the detector for many shift distances p (see example in Fig. 5.2). For two-

dimensional images, g(p, x) is a four-dimensional function. Note that throughout the rest of this

chapter, we write the data matrix with images in its columns, instead of in its rows (i.e., as g(x, p),

which is the style used in previous chapters). We choose to follow this convention to keep with the

correct notation of phase space functions using primal variables along the horizontal axis, as will

become clear shortly.
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Figure 5.2: Conventional ptychography (CP) data acquisition. A chirped amplitude grating (400
µm wide, 4µm minimum pitch) serves as our sample ψ(x′). It is shifted and illuminated by a
probe function ã(x′), which is here a sinc function from a rectangular-shaped focusing element. At
detector plane D, the diffracted light’s intensity is recorded. (Bottom) Corresponding probe and
sample Wigner functions, whose two-dimensional convolution creates the CP data matrix, g(p, x)
(figure adapted from [28]).

5.1.1 Phase space representation of CP

The structure of CP’s data matrix, g(p, x), reveals information about the spatial frequency content

of the sample ψ along the x dimension, thanks to the Fourier transform in Eq. (5.3). Likewise, since

the probe only hits a narrow segment of the sample ψ at a given scan position, the spatial structure

of ψ is also partially resolved along the scanning dimension p. This joint preservation of both the

spatial and spatial frequency sample information within g is a property held by any optical phase

space function [13], as first explored early on in [8]. A clear connection between g(p, x) and optical

phase space is found by applying a few mathematical transformations to Eq. (5.3). First, expanding

it into integral form produces,

g(p, x) =

∫∫
ã(x′1)ã∗(x′2)ψ(x′1 − p)ψ∗(x′2 − p)exp [−jkx · (x′1 − x′2)] dx′1 dx

′
2, (5.4)

where the double integral over new spatial variables (x′1, x
′
2) results from measurement of intensity at

the detector, and ∗ denotes complex conjugate. From here, straightforward manipulations produce

an expression for the data matrix g as a convolution of two functions:

g(p, x) =

∫∫
Wψ(x′ − p, u)Wã(x′, x− u) dx′ du, (5.5)
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where constant pre-integral multipliers are neglected for clarity. The function W applied to ψ takes

the form,

Wψ(x′, u) =

∫ ∞
−∞

ψ
(
x′ +

y

2

)
ψ∗
(
x′ − y

2

)
exp(−jkyu) dy (5.6)

and is known as the Wigner distribution function (WDF) of ψ. Eq. (5.5) describes the set of

diffraction intensity images in CP as a convolution of two functions. Each function is solely related

to the shape of the sample and the probe beam, respectively (i.e., the WDF separates the sample

transmission function and probe beam into a linear expression). This is graphically depicted in

Fig. 5.2. Note that while not explicitly included in this paper, the interested reader is invited to use

the derivation steps in Appendix B of [28] to help create Eq. (5.5) from Eq. (5.4).

The WDF is a well-studied phase space distribution that is often used to analyze optical imaging

setups [13–15]. Like the Fourier transform, it transfers a function of one “primal” variable, here

x′, into a new space. Unlike the Fourier transform, which offers a one-to-one mapping between the

primal variable x′ and its conjugate u (here a mapping between the space and spatial frequency

coordinates at the sample plane S(x′)), this new space is two-dimensional. The WDF is a joint

function of both the primal spatial variable x′ and the conjugate spatial frequency variable u.

Although defined in a higher-dimensional space, Wψ maintains a one-to-one relationship with the

complex function ψ (apart from a constant phase shift). While not always exact, it is convenient to

connect the value of W (x′0, u0) to the amount of optical power at point x′0 propagating in direction

u0. However, while the WDF is real-valued it is not necessarily non-negative, which requires this

interpretation to be taken loosely.

The goal of ptychography’s many post-processing algorithms is to recover the complex sample

function ψ, which has a one-to-one relationship with Wψ, from its recorded dataset g. This goal is

computationally related to deconvolving the effect of the aperture a, described by Wã, from g(p, x)

in Eq. (5.5). After deconvolution, one has an estimate for Wψ, which can be converted into an

estimate for ψ. Deconvolution is often indirectly achieved through a phase retrieval algorithm [6],

very similar to the post-processing of FP, which we now summarize using the same mathematical

methods.

5.2 Mathematical representation of Fourier ptychography (FP)

FP also acquires a sequence of images that are compiled into a data matrix (here labeled gF ) but

does so using the unique optical setup in Fig. 5.3. Two primary experimental differences set FP apart

from the CP setup outlined above: an array of n LEDs now occupy the illumination plane L(x′),

and the locations of the sample and aperture planes are effectively switched. Instead of recording

the diffraction pattern from a small illuminated sample region, FP images the entire sample under

illumination from different directions.
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Figure 5.3: Fourier ptychography (FP) optical setup. An LED array replaces the single illumination
source for CP in Fig. 5.1, and planes S(x) and A(x′) have switched places along the optical axis.
Each LED sequentially illuminates the sample, now with coordinate x, from a different angle (figure
adapted from [28]).

Again, we begin by assuming each LED in the array at illumination plane L(x′) emits a quasi-

monochromatic and spatially coherent field at wavelength λ. Each LED sequentially illuminates the

entire sample plane S(x), a distance ` away with an angled plane wave. Next, the illuminated sample

is imaged by a lens of focal length f , which is located at the aperture plane A(x′). At detector plane

D(x), a pixel array samples the image intensity at spacing δx = λw/2f (to avoid aliasing issues).

From Eq. (5.1), we note that the optical field at A(x′) is proportional to the Fourier transform of

the field both at the sample plane S(x) and the image plane D(x), a feature that distinguishes FP

from CP and lends to its name.

Again applying the thin object approximation, the optical field s(x) directly past the sample

plane may be written as a multiplication between the incident field and the sample transmission

function ψ as,

s(x) = ψ(x)ejkxpj . (5.7)

Here, pj represents the sine of the plane wave generated by the jth LED, located a distance hj away

from the optical axis: pj = hj/
√
h2
j + `2, with ` the distance between the LED array and the sample.

The optical field s(x) continues to propagate to aperture plane A(x′), mathematically represented

through the scaled Fourier transform in Eq. (5.1). The field is attenuated at A(x′) by the aperture

transmittance function a(x′) (i.e., the shape of the MO pupil plane), creating the optical field,

Fxx′ [s(x)] a(x′) = s̃(x′)a(x′) = ψ̃(x′ − p)a(x′). (5.8)

Again, we’ve neglected coordinate scaling factors for clarity (see Appendix A). Finally, this atten-

uated field propagates to image plane D(x), represented through a scaled Fourier transform. At
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Figure 5.4: FP data acquisition diagram. (Top) The same grating sample ψ(x′) used in Fig. 5.2 is
sequentially illuminated by tilted plane waves, adding a different linear phase ∝ p to each image
(tilted green line). At plane A(x′), the aperture a(x′) limits the extent of the field before the
sample is imaged to detector plane D(x) at low resolution. (Bottom) Corresponding WDFs and
their convolution, representing the FP data matrix. Note each WDF here is rotated by 90 degrees
with respect to its typical orientation as well as the orientation in Fig. 5.2, due to the need to swap
x′ and u to correctly model FP. Color maps here follow those included in Fig. 5.2 (figure adapted
from [28]).
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D(x), the digital pixel array detects the field’s intensity gF (p, x):

gF (p, x) = |Fx′x
[
ψ̃(x′ − p)a(x′)

]
|2. (5.9)

As in Eq. (5.3), the p-variable in gF (p, x) also represents a shift parameter. Here, instead of describing

the sample’s lateral displacement, it connects each image to the jth illumination LED. Specifically,

it informs us how much the sample spectrum has shifted across our fixed imaging aperture. Each

column of FP’s data matrix in Eq. (5.9) contains a 1D image captured under a unique illumination

direction from one of the j ∈ {1, . . . , n} LEDs in the array, and thus a unique spectrum position.

The simulated FP data matrix in Fig. 5.4 is visually quite similar to CP’s, shown in Fig. 5.2. The

only mathematical difference between the two data matrices, expressed compactly in Eq. (5.3) and

Eq. (5.9), is whether the aperture function a or the sample function ψ is Fourier-transformed. To

more explicitly connect CP and FP, we can expand Eq. (5.9) into,

gF (p, x) =

∫∫
ψ̃(x′1 − p)ψ̃∗(x′2 − p)a(x′1)a∗(x′2)exp (−jkx · (x′1 − x′2)) dx′1dx

′
2. (5.10)

A straightforward derivation (detailed in Appendix B of [28]) leads to the more compact represen-

tation,

gF (p, x) =

∫∫
Wψ(−u− p, x′)Wã(u, x′ − x) du dx′. (5.11)

Here, the functions Wψ and Wã are again the WDF’s of the sample and the Fourier transform of the

aperture, respectively, as included in our phase space model for CP in Eq. (5.5). However, the u and

x′ variables within each Wigner function have traded places. This leads to a 90 degree rotation of

each phase space function. Directly comparing Eq. (5.5) and Eq. (5.11) yields the following simple

relationship between the data collected by CP and FP:

gF (p, x) = g(x,−p). (5.12)

Fourier ptychographic microscopy’s data matrix is simply a rotated version of the data recorded by

a conventional ptychography setup (i.e, trading the x and p variables is equivalent to a 90◦ matrix

rotation). Since the data collected by each procedure is related through an isomorphic transforma-

tion, various post-processing algorithms developed specifically for CP will, in theory, work equally

well with FP, and vice-versa. Besides allowing CP and FP to exchange data-processing techniques,

Eq. (5.12) also suggests that alternative optical setups can capture the data matrix g under differ-

ent linear transformations (e.g., a matrix rotation that is not 90◦, or another isomorphic transform

besides rotation). These alternative setups will most likely offer application-specific advantages. For

example, one could imagine jointly shifting the sample across a limited range and using a small
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number of illumination sources to increase collection efficiency of a setup that only tolerates mini-

mal movement. Of course, many practical considerations can influence a selection between different

optical setups that produce mathematically equivalent data. In the next section, we will examine

how such experimental requirements and practical sampling conditions manifest themselves within

our mathematical framework, before deriving a more detailed model including the effects of partially

coherent light.

5.3 Visualizing connections between both ptychographic do-

mains

The phase space model in the above section offers an excellent visualization of the close link be-

tween the data collected by CP and FP. This connection will prove highly advantageous as research

surrounding each setup continues to progress, because both systems may draw benefits from new

computational and experimental developments in either area. However, it is not correct to assume

the exact linear relationship in Eq. (5.12) implies that CP and FP are experimentally identical – a

number of system-specific factors may influence each data matrix uniquely. The first goal of this

section is to use our phase space model to visualize how experimental factors impact data collection,

as Fig. 5.5 outlines. This type of visualization can help inform future decisions about which optical

applications each setup is best suited for. At the same time, ensuring the two setups produce data

exactly following Eq. (5.12)’s rotation relationship is not particularly challenging. The second goal

of the following discussion is to identify a set of carefully chosen setup parameters that lead to such

an exact relationship, which we will use in a comparison in a subsequent section. Most experimen-

tal aspects of CP and FP fit nicely into one of four categories describing a particular data matrix

property:

1. Scaling along the optical axis: For both ptychographic procedures, distances between the

optical source, sample, detector, and the lens focal length will lead to constant scaling variations

along x and p in their respective data matrices. Details of these scaling relationships are presented

in Appendix A of [28].

2. Sampling along x: The digital detector’s sampling conditions for CP and FP both manifest

themselves along their corresponding data matrices’ x axis (Fig. 5.5, green text). For CP, the detector

width must match the aperture’s maximum transmitted spatial frequency. This width defines the

resolution limit of a final reconstructed image. The detector size and distance together define a

geometric NA, which much match the detector pixel size to avoid aliasing [9]. For FP, sampling

along the x axis follows a typical imaging setup: the detector width is paired to the imaging lens

FOV, and the detector pixel size matches the imaging optics’ point-spread function (PSF) width to
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Figure 5.5: The experimental factors influencing CP and FP data matrices. (top) Geometrical
factors define the data matrix scaling and sampling, while (bottom) parameters specific to the
focusing/imaging lens define the function responsible for data matrix blurring for both setups (figure
adapted from [28]).

avoid aliasing.

3. Scanning along p: Sampling along the data matrix p-dimension is tied to the operation of the

illumination in each setup (Fig. 5.5, blue text). In CP, the probe beam’s total scanning distance sets

the maximum extent along p, which also defines the final reconstructed image’s FOV. In FP, however,

the maximum extent along p is set by the maximum LED-sample illumination angle. This in turn

defines the final reconstructed image’s maximum resolution, as opposed to FOV. This outstanding

feature of FP allows for the extension of a lens’s typical resolution cutoff by simply illuminating the

sample from large off-axis angles. The sampling rate along the p-dimension of both data matrices

is set by the number of captured images. Our above model assumes the WDF is ideally discretized,

requiring the number of detector pixels along x to match the number of collected images along

p. In practice, accurate high-resolution sample reconstruction does not require full population of

g(p, x) or gF (p, x) along p over a fixed scanning range [50]. Under-sampling remains an effective

strategy because the WDF is a redundant 2D representation of a complex 1D signal. Phase retrieval

algorithms exploit this redundancy to arrive at accurate sample and probe reconstructions, as shown

in [18].

4. Data matrix blur kernel: The finite probe width in CP causes blurring between images,

and the finite extent of its aperture will typically define the maximum spatial frequency cutoff for
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each image. These limiting effects manifest themselves, respectfully, along the x′ and u dimensions

of CP’s aperture WDF, Wã(x′, u), shown in the bottom of Fig. 5.5. Convolution with Wã(x′, u)

in Eq. (5.5) describes how sample information is blurred during the detection process. Since it is

zero beyond a certain cutoff value along u, Wã(x′, u) removes from the data matrix any sample

information above this associated spatial frequency range. FP’s rotated blur kernel Wã(u, x′) is

defined by its imaging aperture. It also blurs and cutoffs sample information from the data matrix

in a similar manner as CP’s blur kernel.

The simulations presented later in this chapter use a fixed set of example setup parameters, to

ensure that the data matrices from the example CP and FP setups only vary by a rotation. For CP,

we assume a lens (diameter w = 37.5 mm, focal length f = 105 mm) creates a sinc of estimated

width 18 µm (peak-to-zero) at the sample from an LED located ` = 300 mm away. The sample plane

contains a grating with 4 µm minimum feature size that is shifted in 4 µm steps. In Fig. 5.2 and

Fig. 5.4, we simulate a grating that is 0.4 mm wide. We assume a 4 mm-wide detector, containing

4 µm pixels and with full factor, captures its diffraction pattern, which approximately requires d

= 30 mm assuming free space propagation. For FP, we assume a similar lens (diameter w = 37.5

mm, do = 300 mm and di = 105 mm) images the sample onto an identical detector. FP’s LED

array is fixed at a distance l = 100 mm and illuminates the same sample. The array extends across

a total distance h = 24 mm perpendicular to the optical axis, yielding a 240 µm pitch for Fig. 5.2

and Fig. 5.4. One important parameter still missing from the above analysis is the light’s coherence

state, connected to the active area of each optical source. We will now extend our phase space model

to account for this critical effect.

5.4 A complete statistical model with partially coherent light

In practice, the illumination sources used by each form of ptychography exhibit a limited spatial

and temporal coherence. The rarity of ideally coherent electron and X-ray sources has led to the

theoretical and experimental examination of coherence effects in CP setups [19, 29]. Here, we re-

examine the impact of partial coherence in CP, and introduce for the first time a thorough analysis

of partial coherence for FP. We use our phase space model to show that in either optical setup,

partially coherent illumination does not limit the ability to recover an exact sample amplitude

and phase estimate. We conclude that while partial coherence impacts CP and FP performance

differently, it remains a mathematical separable expression that can be removed by computational

post-processing. This finding motivates future investigations to examine the potential for a variety of

limited-coherence, high-throughput sources to improve the acquisition rates and noise performance

for both CP and FP.
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5.4.1 Partially coherent source description

To accurately model experimentally realistic optical sources, we must introduce a statistical measure

of spatial coherence into our phase space descriptions of CP in Eq. (5.5) and FP in Eq. (5.11). We

achieve this by treating the field emitted by the optical source, U(x′, t), as a temporally stationary

stochastic process and examining its correlation across space and time: 〈U(x′1, t1)U∗(x′2, t2)〉 =

Γ̃(x′1, x
′
2, τ). Here, Γ̃ is the light’s mutual coherence, τ = t2 − t1 is a constant time difference, and

the expectation value is performed over time. Furthermore, we model the source using the conjugate

coordinate x′, since this is the plane where we expect to find the illumination source.

From the Weiner-Khinchine theorem, the cross-spectral density (CSD) of this stochastic process is

defined through a Fourier transform of the mutual coherence, Γ(x′1, x
′
2, ω) =

∫
Γ̃(x′1, x

′
2, τ)e−jωτ dτ .

The spectral density C(x′, ω) = Γ(x′, x′, ω) represents the intensity of light at location x′ at a

certain frequency ω. We will assume our illumination sources are fully spatially incoherent within

their photon-generating area, leading to a CSD function at source plane L,

ΓL(x′1, x
′
2, ω) = γ2C(x′1, ω)δ(x′1 − x′2), (5.13)

where C represents the geometric shape of the source intensity for each frequency ω (typically a circ-

function in two dimensions), γ is its spatial coherence cross section, and δ is a Dirac delta function.

For the remainder of this section, we will drop our interest in the spectral variable ω for simplicity,

assuming a notch filter is used in the experiment to effectively isolate a narrow spectrum from

the source. Although not detailed here, effects of a spectrally broad (i.e., temporally incoherent)

source are an important consideration and may be included through incoherent superposition of

the following equations. The Van Cittert-Zernike theorem relates the CSD of the source, ΓL in

Eq. (5.13), to the CSD a distance z away, Γz:

Γz(∆x) = e
−jkq
2z

∫
C(x′)e

jk
z (x′∆x)dx′ ≈ C̃(x′), (5.14)

where a constant multiplier is neglected for simplicity, ∆x = x1 − x2 and q = x2
1 − x2

2. Assuming

(x2
1−x2

2)/λz << 1 allows us to neglect the phase factor up front. With this assumption, we arrive at

an approximate scaled Fourier relationship between the shape of an incoherent illumination source,

C, and the CSD function, Γz, at any subsequent plane a large distance z from this source.

5.4.2 CP with partially coherent light

In conventional ptychography, the first distant plane the source’s light interacts with is the aperture

plane A(x). Here, the light’s CSD function Γ`(x1 − x2) is given by Eq. (5.14), with z = `. The

aperture a(x) then modulates Γ`(x1−x2) before the light is focused by the lens to the sample plane.
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As developed in [28], it is direct to show that the CSD at the sample plane, ΓãS , is given by,

ΓãS(x′1, x
′
2) =

∫
C(q)ã (x′1 − q) ã∗ (x′2 − q) dq. (5.15)

Here, we used the variable replacement q = x′ for notational clarity.

We can update our original expression for the intensity at the detector g(p, x) in Eq. (5.4) to

reflect our new partially coherent probe beam with a simple replacement. Instead of multiplying the

sample ψ with coherent probe wave ã, we multiply ψ with the probe wave CSD in Eq. (5.15):

g(p, x) =

∫∫
ΓãS(x′1, x

′
2)ψ(x′1 − p)ψ∗(x′2 − p)exp [−jkx · (x′1 − x′2)] dx′1 dx

′
2. (5.16)

Plugging Eq. (5.15) into Eq. (5.16) and performing several straightforward manipulations (outlined

in Appendix C of [28]) produces the following mathematical description of the CP data matrix

g(p, x) in terms of the aperture’s WDF, the sample’s WDF, and the illumination source’s geometric

shape C:

g(p, x) =

∫∫∫
C(q)Wψ(x′ − p, u)Wã(x′ − q, x− u) dx′ du dq. (5.17)

Partially coherent light alters CP’s data matrix with an additional convolution along the scan vari-

able p (Fig. 5.6(a)). The goal of ptychographic data post-processing under partially coherent illu-

mination is to recover a complex description of the sample Wψ from data matrix g(p, x). This is

achieved by deconvolving the effect of both Wã and C(q). This is identical to the coherent case, but

with an additional (yet still separable) blurring term.

5.4.3 FP with partially coherent light

Unlike CP, FP uses an array of spatially offset and partially coherent LEDs at its illumination plane.

We now use p, our shift variable, to represent the distance from a given LED to the optical axis.

The CSD of one LED may be expressed by modifying Eq. (5.13) to incorporate a spatial offset by

p: ΓL(x′1, x
′
2) = γ2C(x′1 − p)δ(x′1 − x′2). This LED’s shifted source light first illuminates the sample

at plane S(x). We can write the CSD at the sample plane, ΓS , in terms of ΓL as,

ΓS(ρ1 − ρ2) =

∫
C(x′ − p)ejkx

′(ρ1−ρ2)dx′ = C̃(ρ1 − ρ2)exp(−jkp(ρ1 − ρ2)), (5.18)

where (ρ1, ρ2) replace (x1, x2) as the spatial coordinates at the sample plane S(x), for notational

clarity. As developed in [28], we may transform this CSD through the imaging lens to the detector

plane to write,

ΓD(x1, x2) =

∫∫
ΓS(ρ1 − ρ2)ψ(ρ1)ψ∗(ρ2)ã(ρ1 − x1)ã∗(ρ2 − x2) dρ1 dρ2, (5.19)
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Figure 5.6: Partially coherent light manifests itself as an additional convolution along the data matrix
scan dimension p for both (a) CP and (b) FP. The convolution is one-dimensional, as indicated by
the vertical bar. With matrices rotated by 90◦ with respect to one another, this convolution will
mix the data from each respective setup in a unique manner. For this simulation, we used the same
setup parameters as for Fig. 5.2 and Fig. 5.4, but assumed each illumination source C(q) (i.e., LED)
is a square with a width of 200 µm (figure adapted from [28]).

where ΓD(x1, x2) is the CSD of partially coherent light at the detector. Finally, we may express

the measured data matrix in FP in terms of the aperture WDF, sample WDF, and LED source

geometry now with,

gF (p, x) =

∫∫∫
C(q)Wψ(q − u− p, x′)Wã(u, x′ − x) dx′ du dq. (5.20)

Details of this last step are in Appendix D of [28]. Comparing Eq. (5.20) to Eq. (5.11)’s coherent

description of FP, we see that partial coherence manifests itself again as an additional convolution

along the data matrix p-dimension (Fig. 5.6(b)). Practically, this indicates that each FP image,

captured from a different LED and compiled along p, will begin to look increasingly similar with

increasingly incoherent illumination. In the limit of a completely incoherent source, spatial shifting

will leave all image features nearly unchanged. Since this blur remains a separable function, it is

still possible to deconvolve the effects of both C and Wa to obtain an accurate sample estimate

Wψ. Put simply, using a partially coherent source in a CP setup blurs together the sample’s spatial

information within its recorded data matrix. In FP, using an array of partially coherent sources

instead blurs the sample’s spatial frequency content, as Fig. 5.6 clearly depicts.
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Figure 5.7: Simulation of partially coherent effects produce blurred (a) CP and (b) FP data matrices
of an example grating. A Wiener filter can approximately recover the coherent data matrix for
each setup, from which an accurate sample reconstruction is direct. (c) Reconstruction error as a
function of LED diameter (i.e., blur kernel width) increases for both CP and FP, although FP’s
error is consistently lower. (d) The chirped grating sample and its coherent CP data matrix, for
comparison (figure adapted from [28]).

5.5 Case study: CP and FP under partially coherent illumi-

nation

To briefly demonstrate the validity and utility of our phase space model, we now attempt to measure

and remove the effects of partial coherence with example CP and FP data matrices. We attempt this

both in simulation and experiment. This exercise will allow us to verify the accuracy of Eq. (5.17)

and Eq. (5.20). Additionally, it will demonstrate how both setups can successfully operate with

low-coherence illumination, assuming that accurate coherence function characterization is possible

and minimal noise is introduced.

For both simulation and experiment, we carefully designed the scaling and distance parameters

to match those listed at the end of Section 3 for three purposes. First, these optimized parameters

ensure both data matrices g and gF match, after a rotation. Second, the listed parameters require

both setups to use the same lens numerical aperture, detector pixel size and count, and nearly the

same total optical path length, offering as even a comparison as possible. Third, the parameters

correspond closely with previous optical CP [6, 7] and FP experimental testing platforms. One

exception to this close match is the width of the CP’s probe beam at the sample plane, which is

typically allowed to be several times wider than what we simulate to allow for under-sampling along

p by a similar factor.
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5.5.1 Simulation

In our first investigation, we simulate the partially coherent imaging performance of CP and FP

as a function of LED size. Both systems capture 350 one-dimensional images containing 103 pixels

each, which combine to form each data matrix. Note that all figures display the central 350-pixel

area of each captured image to aid in visualization. As in Fig. 5.2 and Fig. 5.4, our sample here

is a chirped grating with minimum feature size of 4 µm. Unlike previous simulations, the grating

is now 1.33 mm-wide and is of a slightly different structure to match our experimental sample (see

Fig. 5.7(d)). We first apply a Fresnel-based propagation simulation to create this grating’s CP and

FP data matrices under partially coherent illumination, as in Fig. 5.7(a)-(b). We then numerically

compute Eq. (5.17) and Eq. (5.20) using the same grating function, ψ. In doing so, we find agreement

up to an average error of < 1% caused by numerical approximation, which verifies our phase space

formulation.

Given a valid model, we next test if partial coherence effects can be effectively removed from CP

and FP. Successful digital removal of the blurring effects caused by a finite source shape C will allow

both setups to maintain high-resolution imaging performance using larger, brighter optical sources

(i.e., with higher photon throughput). As a standard benchmark, we apply the well-known Wiener

filter in our deconvolution attempt. Previously used to recover complex sample data in [8,9], it has

since been replaced by more advanced phase retrieval-based algorithms [6, 29].

The example blurred CP and FP data matrix inputs in the left of Fig. 5.7(a)-(b) assume quasi-

monochromatic illumination from sources with 100 µm-diameter active area (0.11◦ angular extent).

The associated Wiener deconvolution outputs are shown directly to the right. Gaussian noise (nor-

malized variance of 10−3) was added to the data before deconvolution. Noise variance and source

size were assumed as prior knowledge to assure optimal filter performance. Fig. 5.7(c) plots the av-

erage root-mean-squared error (RMSE) of recovered data matrices as a function of source diameter

after Wiener deconvolution. Each point in this plot is an average over 10 experiments with noise

variances ranging evenly from 10−2 to 10−4. The linear process of recovering a sample estimate from

its coherent data matrix ensures sample reconstruction RMSE will follow a similar curve.

Three important trends are worth noting. First, RMSE increases as a function of LED diameter,

but accurate sample recovery is still possible up to quite large-diameter sources. In the tested

setup, an angular source extending up to a 0.5◦ maintained manageable error after deconvolution

(under realistic noise assumptions). Second, it is easier to globally remove the effects of partial

coherence from FP’s data matrix than from CP’s. This key conclusion is a result of the direction

of features within the data matrix for this particular simulated object. Blurring occurs along the

chirped grating ridges for FP, while it blurs the ridges together for CP, which is harder to invert.

Since we expect intensities will vary more quickly along a biological sample’s spatial dimension as

opposed to its spatial frequency, the trend of superior FP performance should hold for most samples
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Figure 5.8: (a) Simulated and (b) experimental FP data matrices with varying degrees of par-
tially coherent illumination. The experimental sample closely matches the distribution of ψ(x′) in
Fig. 5.7(d). C at top indicates the LED active area diameter used in each experiment (figure adapted
from [28]).

of interest (biological samples tend towards sparse spatial distributions). Third, the blurring induced

here by conventional LEDs assumes a rectangularly shaped blur kernel. Due to zeros in its transfer

function, this blur kernel is quite challenging to computationally remove. As is well-known within

linear filter design, modifying the LED shape and/or apodizing its emission area can remove zeros

from its filter and improve deconvolution performance. In general, a broad range of computational

imaging systems using either coherent or incoherent active illumination may draw common benefits

from considering how coherence alters acquired data, with many computational techniques more

advanced than the Wiener filter currently available to improve system design and performance.

5.5.2 Experiment

To experimentally verify the findings of the simulation in Fig. 5.7, we constructed a simplified FP

setup with an illumination system to scan along one dimension. Experimental parameters closely

match the parameters used in simulation (see Section 5.3). Our experimental setup exhibits two

primary differences from the diagram in Fig. 5.3. First, a single LED on a motorized linear stage

(Newport ESP301) was used instead of a fixed LED array at illumination plane L to facilitate

easy variation of LED coherence area. This variation was achieved by placing pinholes of different

diameter (100 µm-1000 µm) directly in front of the active area of a 532 nm central-wavelength diode.

Second, an f = 50 mm, w = 50 mm collection lens was inserted 50 mm in front of the LED source

to assure uniform illumination of the sample. We experimentally determined this lens has minimal

effect on the coherence area at the detector plane. Our imaging setup used an f = 105 mm, w = 37.5

mm compound lens (Nikon Micro-Nikkor f/2.8G) positioned do = 300 mm from the sample that
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imaged onto a 4.54µm pixel CMOS array (Prosilica-GX 1920).

Fig. 5.8 displays an example set of simulated and experimental data matrices of the same chirped

grating sample in Fig. 5.7 under three different illumination coherence states. Each data matrix was

compiled by scanning the LED-pinhole unit at 250 µm steps across 25 mm, capturing an image of

the linear grating at each step p, and selecting a single row of the CMOS detector array to form

data matrix column p. Each image’s maximum pixel value is scaled to 1 (i.e., each data matrix

column in Fig. 5.8 is normalized to it’s maximum value), which enhances the appearance of noise in

low-intensity areas but aids with visualization of coherence effects.

Fig. 5.8 highlights three primary effects of illumination coherence on FP data. First, the striped

“diffraction cone” within each matrix gF (p, x) broadens along the x-dimension when using a larger-

diameter source, as the convolution relationship in Eq. (5.20) predicts. Conceptually, an increasingly

incoherent source will extend the lens’s coherent spatial frequency cutoff at, k·NA, to its incoherent

spatial frequency cutoff at 2k·NA, hence broadening what is captured along p. Second, Eq. (5.20)’s

convolution also predicts features along p to blur with increased incoherence, which is clearly observed

at the edge of the diffraction cone. Finally, increasingly incoherent illumination still allows the FP

setup to acquire high-frequency sample information that otherwise would not be captured by a

conventional imaging setup. This is indicated by the dark “tails” at the bottom of each data

matrix, which represent the high-frequency grating information that is diffracted into the imaging

lens from an off-axis LED, which would otherwise be cutoff from a single image. The density of

this high-frequency information tail decreases with increasingly incoherent illumination. However,

it is still clearly present with a low-coherence source, thus allowing computational improvement of a

reconstructed image’s resolution beyond the conventional imaging lens NA cutoff. This information-

preserving feature of ptychography in the presence of incoherent light is a very powerful tool that

has yet to be studied in full, and is the main conclusion of this experiment.
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Chapter 6

Solving ptychography with a
convex relaxation

As we have demonstrated in the past several chapters, ptychography is a powerful computational

imaging technique for transforming a collection of low-resolution images into a high-resolution recon-

struction. Unfortunately, algorithms that currently solve this reconstruction problem lack stability,

robustness, and theoretical guarantees. In this chapter, we present a convex formulation of the

ptychography problem. This formulation has no local minima, it can be solved using a wide range

of algorithms, it can incorporate appropriate noise models, and it can include multiple a priori

constraints. As also detailed in [1], the new algorithm developed in this chapter relies upon low-

rank factorization. Experiments demonstrate that this approach offers a near-linear runtime, linear

memory usage and a 25% lower background variance on average than alternating projections, the

ptychographic reconstruction algorithm that is currently in widespread use.

6.1 Introduction

As we saw in the previous chapter, standard and Fourier ptychography both avoid the need for

a large, well-corrected lens to image at the diffraction-limit. Instead, they shift the majority of

resolution-limiting factors into the computational realm. Unfortunately, an accurate and reliable

solver does not yet exist. As we learned in Chapter 3 for Fourier ptychography, and Chapter 5

for conventional ptychography, high-resolution reconstruction is only achieved if the phase of the

scattered field is also determined. Given that both techniques only measure intensity, this presents

a challenging problem.

To date, most ptychography algorithms recover the unknown phase (i.e., solve the “phase re-

trieval” problem) by applying known constraints in an iterative manner. We categorize this class

of algorithm as an “alternating projection” (AP) strategy. The simplest examples of AP strategies

are the Gerchburg-Saxton and error reduction algorithms [2, 4], as reviewed in Chapter 3. Our AP
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category also includes the iterative projection and gradient search techniques reviewed by Fienup [4]

and Marchesini [46], which map to analogous procedures in ptychography [5]. All AP strategies,

including several related variants [6,7], often converge to incorrect local minima or can stagnate [8].

Few guarantees exist regarding convergence, let alone convergence to a reasonable solution. De-

spite these shortcomings, many authors have pushed beyond the basic algorithms [6] to account

for unknown system parameters [22, 52], improve outcomes by careful initialization [12], perform

multiplexed acquisition [13], and attempt three-dimensional imaging [34, 36]. Indeed, the images

included thus far in this thesis have all resulted from an AP-based recovery scheme.

In this chapter, we formulate a convex program for the ptychography problem, which offers an

alternative approach to obtain a reliable image reconstruction using efficient computational methods.

Convex optimization has recently matured into a powerful computational tool that now solves a

variety of challenging problems [16]. However, many sub-disciplines of imaging, especially those

involving phase retrieval, have been slow to reap its transformative benefits. Several prior works [17–

21] have connected convex optimization with abstract phase retrieval problems. Here, we consider

how convex optimization may improve the quickly growing field of high-resolution ptychography.

While it is possible in some experiments to improve reconstruction performance using prior sam-

ple knowledge or an appropriate heuristic, we consider here the general case of unaided recovery,

which is especially relevant in biological imaging. Under these circumstances, we will show that

our convex optimization approach to ptychographic reconstruction has many advantages over AP.

Our formulation has no local minima, so we can always obtain a solution with minimum cost. The

methodology is significantly more noise-tolerant than AP, and the results are more reproducible.

There are also opportunities to establish theoretical guarantees using machinery from convex anal-

ysis.

Furthermore, there are many efficient algorithms for our convex formulation of the ptychography

problem. To obtain solutions at scale, we apply a factorization method due to Burer and Mon-

teiro [22, 23]. This method avoids the limitations of earlier convex algorithms for abstract phase

retrieval, whose storage and complexity scale cubically in the number of reconstructed pixels [21].

Moreover, recent results establish that this factorization technique converges globally under certain

conditions [24], offering a promising theoretical guarantee. The end result is a new, noise-tolerant

algorithm for ptychographic reconstruction that is efficient enough to process the multi-gigapixel

images that future applications will demand.

Here is an outline for this chapter. First, we manipulate a linear algebra framework for pty-

chography to pose its sample recovery problem as a convex program. This initial algorithm, termed

“convex lifted ptychography” (CLP), supports a-priori knowledge of noise statistics to significantly

increase the accuracy of image reconstruction in the presence of noise. Second, we build upon

research in low-rank semidefinite programming [22, 23] to develop a second non-convex algorithm,
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Figure 6.1: Diagram of the Fourier ptychography setup (top), where we use an LED array to
illuminate a sample from different directions and acquire an image set g (bottom). This chapter
introduces a convex phase retrieval algorithm to transform this image set into a high-resolution
complex sample estimate, ψ. Included image set and reconstructed resolution target are experimental
results (figure adapted from [1]).

called “low-rank ptychography” (LRP), which improves on the computational profile of CLP. Fi-

nally, we explore the performance of LRP in both simulation and experiment to demonstrate how

it may be of great use in reducing the image capture time of Fourier ptychography.

6.2 Convex Lifted Ptychography (CLP)

6.2.1 Mathematical fundamentals

We derived the Fourier ptychography data matrix in Chapter 2. Here, we present a brief review of

this model, which we then convert into a new framework using linear algebra. Following Fig. 6.1,

but restricting our attention to just the x dimension to start (extension to two dimensions is direct),

we assume that each LED is an effective point emitter that illuminates a sample ψ(x) at a plane

S(x) a large distance l away. The jth source illuminates the sample with a spatially coherent plane

wave at angle θj = tan−1 (jr/l), where −q/2 ≤ j ≤ q/2. Additionally assuming the sample ψ(x) is
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thin, we may express the optical field exiting the thin sample as the product,

s(x, pj) = ψ(x)eikxpj . (6.1)

Here, the wavenumber k = 2π/λ and pj = sin θj describes the off-axis angle of the jth optical source.

This pjth field at the sample plane is then transformed through the microscope to the detector plane,

where its intensity is recorded on the digital detector containing m pixels. As we showed in Chapter

2, the resulting image captured at the detector plane can be expressed as,

g(x, pj) =
∣∣∣F [a(x′)ψ̂(x′ − pj)

]∣∣∣2 . (6.2)

Here, a(x′) is the imaging system aperture function, ψ̂(x′) is the Fourier transform of ψ(x), and

g(x, pj) is the (m× q) Fourier ptychography data matrix.

The goal of Fourier ptychographic post-processing is to reconstruct a high-resolution (n-pixel)

complex spectrum ψ̂(x′), from the multiple low-resolution (m-pixel) intensity measurements con-

tained within the data matrix g. Once ψ̂ is found, an inverse-Fourier transform will yield the desired

complex sample reconstruction, ψ. As discussed in Chapter 3, most current ptychography setups

solve this inverse problem using alternating projections (AP): after initializing a complex sample

estimate, ψ0, iterative constraints help force ψ0 to obey all known physical conditions. First, its

amplitude is forced to obey the measured intensity set from the detector plane (i.e., the values in

g). Second, its spectrum ψ̂0 is forced to lie within a known support in the plane that is Fourier con-

jugate to the detector. Different projection operators and update rules are available, but are closely

related [4,5,46]. While these projection strategies are known to converge when each constraint set is

convex, the intensity constraint applied at the detector plane is not convex [25], leading to erroneous

solutions [26] and possible stagnation [8].

6.2.2 The CLP solver

We begin the process of solving equation 6.2 as a convex program by expressing it in matrix form.

First, we represent the unknown sample spectrum ψ̂ as an (n × 1) vector. Again, n is the known

sample resolution before it is reduced by the finite bandpass of the lens aperture. Second, the

jth detected image becomes an (m × 1) vector gj , where again m is the number of pixels in each

low-resolution image. The ratio n/m defines the ptychographic resolution improvement factor. It is

equivalent to the largest angle of incidence from an off-axis optical source, divided by the acceptance

angle of the imaging lens. Third, we express each lens aperture function a(x + pj) as an (n × 1)

discrete aperture vector aj , which modulates the unknown sample spectrum ψ̂. Note we now shift

a by pj , as opposed to ψ by −pj , as the two are mathematically equivalent.
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Figure 6.2: A set of images captured by Fourier ptychography stack together into a long data
vector, b. Each associated matrix transform is similarly stacked and combined to form our final
measurement matrix, D = FA. Here, we show stacking of just two images for simplicity. Typically,
over 200 images are stacked (figure adapted from [1]).

To rewrite equation 6.2 as a matrix product, we define {Aj}qj=1 to be the sequence of (m × n)

rectangular matrices that contain a deterministic aperture function aj along a diagonal. For an

aberration-free rectangular aperture, each matrix Aj has a diagonal of ones originating at (0, p′j)

and terminating at (m, p′j + m − 1), where p′j is now a discretized version of our shift variable pj .

Finally, we introduce an m×m discrete Fourier transform matrix F(m) to express the transformation

of the low-pass filtered sample spectrum through our fixed imaging system for each low-resolution

image gj :

gj =
∣∣∣F(m)Ajψ̂

∣∣∣2 , 1 ≤ j ≤ q. (6.3)

Ptychography acquires a series of q images, {gj}qj=1. We combine this image set into a single

vector by “stacking” all images in equation 6.3:

b =
∣∣∣FAψ̂

∣∣∣2 =
∣∣∣Dψ̂∣∣∣2 . (6.4)

Here, b is {g} expressed as a (q ·m× 1) stacked image vector (see Fig. 6.2). In addition, we define

D = FA, where F is a (q ·m× q ·m) block diagonal matrix containing q copies of the low-resolution

DFT matrices F(m) in its diagonal blocks, and A has size (q ·m × n) and is formed by vertically

stacking each aperture matrix Aj :

F =


F(m) · · · 0

...
. . .

...

0 · · · F(m)

 , A =


A1

...

Aq

 . (6.5)

We denote the transpose of the ith row of D as di, which is a column vector. The set {di} forms

our measurement vectors. The measured intensity in the ith pixel is the square of the inner product
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between di and the spectrum ψ̂: bi = |
〈
di, ψ̂

〉
|2. Next, we “lift” the solution ψ̂ out of the quadratic

relationship in equation 6.4. As suggested in [19], we may instead express it in the space of (n× n)

positive-semidefinite matrices:

bi = Tr
(
ψ̂∗did

∗
i ψ̂
)

= Tr
(
did

∗
i ψ̂ψ̂

∗
)

= Tr (DiX) , (6.6)

where Di = did
∗
i is a rank-1 measurement matrix constructed from the ith measurement vector

di, X = ψ̂ψ̂∗ is an (n × n) rank-1 outer product, and 1 ≤ i ≤ q ·m. Equation 6.6 states that our

quadratic image measurements {bi}q·mi=1 are linear transforms of ψ̂ in a higher dimensional space.

We may combine these q · m linear transforms into a single linear operator A to summarize the

relationship between the stacked image vector b and the matrix X as, A (X) = b.

One can now pose the phase retrieval problem in ptychography as a rank minimization procedure:

minimize rank(X)

subject to A (X) = b,

X � 0,

(6.7)

where X � 0 denotes X is positive-semidefinite. This rank minimization problem is not convex

and is a computational challenge. Instead, adapting ideas from [18], we form a convex relaxation of

equation 6.7 by replacing the rank of matrix X with its trace. This creates a convex semidefinite

program:

minimize Tr(X)

subject to A (X) = b,

X � 0.

(6.8)

Several recent results establish that the relaxation in equation 6.8 is equivalent to equation 6.7

under certain conditions on the operator A [27,28]. Although not necessarily equivalent in general,

this relaxation consistently offers us highly accurate experimental performance. To account for the

presence of noise, we may reform equation 6.8 such that the measured intensities in b are no longer

strictly enforced constraints, but instead appear in the objective function:

minimize αTr(X) +
1

2
‖A (X)− b‖

subject to X � 0.

(6.9)

Here, α is a scalar regularization variable that directly trades off goodness for complexity of fit. Its

optimal value depends upon the assumed noise level. Equation 6.9 forms our final convex problem

to recover a resolution-improved complex sample ψ from a set of obliquely illuminated images in b.

Many standard tools are available to solve this semidefinite program (see Appendix A). Its solution
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Figure 6.3: Simulation of the CLP algorithm. (a) An n = 36× 36 pixel complex sample (simulated)
consisting of absorptive microspheres modulated with an independent quadratic phase envelope. (b)
Sequence of low-resolution simulated intensity measurements (m = 12× 12 pixels each), serving as
algorithm input. (c)-(d) Example CLP and AP reconstructions, where CLP is successful but AP
converges to an incorrect local minimum. Here we use q = 82 images to achieve a resolution gain of
3 along each spatial dimension and simultaneously acquire phase (figure adapted from [1]).

defines our Convex Lifted Ptychography (CLP) approach.

In practice, CLP returns a low-rank matrix X, with a rapidly decaying spectrum, as the optimal

solution of equation 6.9. The trace term in the CLP objective function is primarily responsible for

enforcing the low-rank structure of X. While this trace term also appears like an alternative method

to minimize the unknown signal energy, we caution that a fair interpretation must consider its effect

in a lifted (n×n) solution space. We obtain our final complex image estimate ψ by first performing

a singular value decomposition of X. Given low-noise imaging conditions and spatially coherent

illumination, we set ψ to the Fourier transform of the largest resulting singular vector. Viewed as

an autocorrelation matrix, we may also find useful statistical measurements within the remaining

smaller singular vectors of X. We note that one may also identify X as the discrete mutual intensity

matrix of a partially coherent optical field: X =
〈
ψ̂ψ̂∗

〉
, where 〈〉 denotes an ensemble average [29].

Under this interpretation, equation 6.9 becomes an alternative solver for the stationary mixed states

of a ptychography setup [29].

Without any further modification, three points distinguish equation 6.9 from existing AP-based

ptychography solvers. First, the convex solver has a larger search space. If AP is used to iteratively

update an n-pixel estimate, equation 6.9 must solve for an n× n positive-semidefinite matrix. Sec-

ond, this boost in the solution space dimension guarantees the convex program may find its global

optimum with tractable computation. This allows CLP to avoid AP’s frequent convergence to local
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minima (i.e., failure to approach the true image). Unlike prior solvers for the ptychography problem,

no local minima exist in the CLP approach. However, CLP cannot yet claim a single global mini-

mum, since it is not necessarily a strictly convex program. Finally, equation 6.9 implicitly considers

the presence of noise by offering a parameter (α) to tune with an assumed noise level. AP-based

solvers lack this parameter and can be easily led into incorrect local minima by even low noise levels,

which we demonstrate next.

6.2.3 CLP simulations and noise performance

We simulate Fourier ptychography following the setup in Fig. 6.1. We capture multiple two-

dimensional images in (x, y) from a three-dimensional optical geometry. The simulated FP setup

contains a detector with m = 122 pixels that are each 4 µm wide, a 0.1 NA lens at plane A(x′, y′)

(6◦ collection angle, unity magnification), and an array of spatially coherent optical sources at plane

L(x′, y′) (632 nm center wavelength, 10 nm spectral bandwidth). The array is designed to offer an

illumination NA of 0.2 (θmax = 11.5◦ maximum illumination angle). Together, the lens and illumi-

nation NAs define the reconstructed resolution of our complex sample as n = 362 pixels, increasing

the pixel count of one raw image by a factor n/m = 9.

Figure 6.3(b) shows example simulated raw images from a sample of absorptive microspheres

modulated by a quadratic phase envelope. Within each raw image, the set of microspheres is not

clearly resolved. Here, we simulate the capture of q = 82 low resolution images, each uniquely

illuminated from one of q = 82 optical sources in the square array. We then input this image set

into both the standard AP algorithm (i.e., the PIE strategy) [6], as well as CLP in equation 6.9,

to recover a high resolution (36 × 36 pixel) complex sample. Here, we select the PIE strategy as

our comparison benchmark for two reasons. First, it is one of the most widely used ptychography

algorithms. Second, similar to CLP, its structure implicitly assumes a Gaussian noise model [5].

Even in the noiseless case, five iterations of nonlinear AP introduces unpredictable artifacts to both

the recovered amplitude and phase (Fig. 6.3(d)), while CLP offers near perfect recovery (Fig. 6.3(c)).

A constant phase offset is subtracted from both reconstructions for fair comparison, and we selected

α = .001.

Next, we quantify AP and CLP performance. We repeat the reconstructions in Fig. 6.3, again

setting α = .001 in equation 6.9 while varying two relevant parameters: the number of captured im-

ages q, and their signal-to-noise ratio (SNR). We define the SNR as, SNR = 10 log10(
〈
|ψ|2

〉
/
〈
|N2|

〉
),

where
〈
|ψ|2

〉
is the mean sample intensity and

〈
|N2|

〉
is the mean intensity of uniform Gaussian

noise added to each simulated raw image. To account for the unknown constant phase offset in all

phase retrieval reconstructions, we follow [52] and define our reconstruction mean-squared error as

MSE =
∑
x |ψ(x)− ρs(x)|2 /

∑
x |ψ(x)|2, where ρ =

∑
x ψ(x)s∗(x)/

∑
x |s(x)|2 is a constant phase

factor shifting our reconstructed phase to optimally match the known phase of the ground truth
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Figure 6.4: Reconstruction MSE versus signal to noise ratio (SNR) of CLP and AP (log scale, dB).
Each curve represents reconstruction with a different number of captured images, q, corresponding
to a different percentage of spectrum overlap (ol, noted in legend). Each point is an average over five
independent algorithm runs with unique additive noise. Also included is the average performance of
our LRP algorithm over the same three spectrum overlap settings (see Section 6.4, figure adapted
from [1]).

sample.

Figure 6.4 plots MSE as a function of SNR for this large set of CLP and AP reconstructions. Each

of the algorithms’ 3 independent curves simulates reconstruction using a different number of captured

images, q. We summarize q by defining a Fourier spectrum overlap percentage: ol = 1−(n−m)/qm.

Each of the 6 points within one curve simulates a different level of additive measurement noise. Each

point is an average over 5 independent trials. Since AP tends not to converge in the presence of noise,

we represent each AP trial with the reconstruction that offers the lowest MSE across all iteration

steps (up to 20 iterations). All CLP reconstructions improve linearly as SNR increases, while AP

performance fluctuates unpredictably. For both algorithms, performance improves with increased

spectrum overlap ol, and reconstruction fidelity quickly deteriorates and then effectively fails when

ol drops below ∼60%.

6.3 Factorization for Low-Rank Ptychography (LRP)

Posing the inverse problem of ptychography as a semidefinite program (equation 6.9) is a good first

step towards a more tractable solver. However, the constraint that X remain positive-semidefinite

is computationally demanding: each iteration typically requires a full eigenvalue decomposition of

X. As the size of X scales with n2, processable image sizes are limited to an order of 104 pixels
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on current desktop machines. This scaling limit does not prevent large-scale CLP processing of

ptychography data. It is common practice to segment each detected image into as few as 103 pixels,

process each segment separately, and then “tile” the resulting reconstructions back together into a

final full-resolution solution [32]. CLP may also parallelize its computation with this strategy.

6.3.1 The LRP solver

While such tiling parallelization offers significant speedup, a simple observation helps avoid the poor

scaling of CLP altogether: the desired solution of the ptychography problem in equation 6.7 is low-

rank. Instead of solving for an n × n matrix X, it is thus natural to adopt a low-rank ansatz and

factorize the matrix X as X = RRT , where our decision variable R is now an n×r rectangular matrix

containing complex entries, with r < n [22, 23]. Inserting this factorization into our optimization

problem in equation 6.8 and writing the constraints in terms of the measurement matrix Di = did
T
i

creates the non-convex program,

minimize Tr(RRT )

subject to Tr(DiRRT ) = bi for all i.
(6.10)

Besides removing the positive semidefinite constraint in equation 6.8, the factored form of equa-

tion 6.10 presents two more key adjustments to our original convex formulation. First, using the

relationship Tr(RRT ) = ‖R‖2F , where F denotes a Frobenius norm, it is direct to rewrite the ob-

jective function and each constraint in equation 6.10 with just one n × r decision matrix, R. Now

instead of storing an n×n matrix like CLP, LRP must only store an n× r matrix. Since most prac-

tical applications of ptychography require coherent optics, the desired solution rank r will typically

be close to 1, thus significantly relaxing storage requirements (i.e., coherent light satisfies X = ψ̂ψ̂∗,

so we expect R as a column vector and RRT a rank-1 outer product). Fixing r at a small value,

LRP memory usage now scales linearly instead of quadratically with the number of reconstructed

pixels, n.

Second, the feasible set of equation 6.10 is no longer convex. We thus must shift our solution

strategy away from a simple semidefinite program. Prior work in [22, 23] suggests that an efficient

and practically successful method of solving equation 6.10 is to minimize the following augmented

Lagrangian function:

L(R,y, σ) = Tr(RRT )−
∑

i
yi ·
(
Tr(DiRRT )− bi

)
+
σ

2
·
∑

i

(
Tr(DiRRT )− bi

)2
, (6.11)

where R ∈ Cn×r is the unknown decision variable and the two variables y ∈ Rq·m and σ ∈ R+ are new

parameters to help guide our algorithm to its final reconstruction. The first term in equation 6.11

is the objective function from equation 6.10, indirectly encouraging a low-rank factorized product.
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This tracks our original assumption of a rank-1 solution within a “lifted” solution space. The second

term contains the known equality constraints in equation 6.10 (i.e., the measured intensities), each

assigned a weight yi. The third term is a penalized fitting error that we abbreviate with label v. It

is weighted by one penalty parameter σ, mimicking the role of a Lagrangian multiplier.

With an appropriate fixed selection of yi’s and σ, the minimization of L(R,y, σ) with respect to R

identifies our desired optimum of equation 6.10. Specifically, if a local minimum of L is identified each

iteration (which is nearly always the case in practice), then the minimization sequence accumulation

point is a guaranteed solution [23]. As an unconstrained function, the minimum of L is quickly found

via standard tools (e.g., a quasi-Newton approach such as the LBFGS algorithm [32]), as previously

demonstrated across a wide range of applications and experiments [22].

The goal of our low-rank ptychography (LRP) algorithm thus reduces to the following task:

determine a suitable set of (yi, σ) such that we may minimize equation 6.11 with respect to R,

which leads to our desired solution. We use the iterative algorithm suggested in [22] to sequentially

minimize L with respect to Rk at iteration k, and then update a new parameter set (yk+1, σk+1) at

iteration k + 1. We update parameters (yk+1, σk+1) to ensure their associated term’s contribution

to the summation forming L is relatively small. This suggests Rk+1 is proceeding to a more feasible

solution. The relative permissible size of the second and third terms in L are controlled by two

important parameters, η < 1 and γ > 1: if the third term v sufficiently decreases such that vk+1 ≤

ηvk, then we hold its multiplier σ fixed and update the equality constraint multipliers, yi. Otherwise,

we increase σ by a factor γ such that σk+1 = γσk. A detailed discussion of these algorithmic steps

is in [22,23].

We initialize the LRP algorithm with an estimate of the unknown high-resolution complex sample

function ψ0, contained within a low-rank matrix R0. We terminate the algorithm either if it reaches

a sufficient number of iterations, or if the minimizer fulfills some convergence criterion. We form

R0 using a spectral method, which can help increase solver accuracy and decrease computation

time [31]. Specifically, we select the r columns of R0 as the leading r eigenvectors of D∗diag[b]D,

where D is the measurement matrix in equation 6.4. While this spectral approach works quite well

in practice, a random initialization of R0 also often produces an accurate reconstruction.

6.3.2 LRP simulations and noise performance

Following the same procedure used to simulate the CLP algorithm, we test the MSE performance of

the LRP algorithm as a function of SNR in Fig. 6.5. We again add different amounts of uncorrelated

Gaussian noise to each simulated raw image set and compare the LRP reconstruction with ground

truth. This simulated sample is the experimentally obtained amplitude and phase of a human blood

smear. It is qualitatively similar to the sample used in Fig. 6.3. Unlike with the simulations in

Figs. 6.3–6.4, the AP algorithm no longer malfunctions at lower spectrum overlap percentages (i.e.,
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Figure 6.5: Simulation of the LRP and AP algorithms using the same parameters as for Figs. 6.3–6.4,
but now with a different “red blood cell” sample. (a) Using 82 simulated intensity measurements
as input (SNR=19, 122 pixels each), both algorithms successfully recover each cell’s phase, but AP
is less accurate. (b) MSE versus SNR plot with varying amounts of noise added to the same data
set. The MSE for LRP is ∼5-10 dB lower than for AP across all noise levels and aperture overlap
settings (each point from 5 independent trials, figure adapted from [1]).

lower values of ol). Despite this apparent success, the MSE of the LRP minimizer is still ∼5-10 dB

better than the MSE of the AP minimizer, across all levels of SNR. This reduced LRP reconstruction

error follows without any parameter optimization or explicit noise modeling.

In these simulations, we somewhat arbitrarily fix η and γ at 0.5 and 1.5, respectively, and set

the desired rank of the solution, r, to 1. In practice, these free variables offer significant freedom to

tune the response of LRP to noise. For example, similar to the noise parameter α in equation 6.9,

the multiplier σ (controlled via γ) in equation 6.11 helps trade off complexity for goodness of fit by

re-weighting the quadratic fitting error term.

In addition to reducing required memory, the LRP algorithm also improves upon the computa-

tional cost of CLP. For an n-pixel sample reconstruction, the per iteration cost of the CLP algorithm
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Figure 6.6: Experimental reconstruction of a USAF target, where the number of resolved pixels is
increased by a factor of 25. We test two different ptychography algorithms: (a) AP and (b) LRP.
Here we only show reconstructed intensity. LRP avoids artifacts (e.g., boxed in green) commonly
encountered in the AP approach. Cited variances are measured in blue boxes (top). (c) Same
cropped region of one low-resolution raw image, for comparison (figure adapted from [1]).

is currently O(n3), using big-O notation. The positive-semidefinite constraint in equation 6.9, which

requires a full eigenvalue decomposition, defines this behavior limit. The per-iteration cost of the

LRP algorithm, on the other hand, is O(n log n). This large per-iteration cost reduction is the

primary source of LRP speedup. For example, LRP required ∼21 seconds to complete an average

simulation of the example in Fig. 6.3, while CLP required ∼170 minutes and AP required 1 second

on the same desktop machine.

6.4 Experiments

We experimentally verify how LRP improves the accuracy and noise stability of ptychographic

reconstruction using a Fourier ptychographic (FP) microscope. Our experimental procedure closely

follows the protocol in [32]. While we demonstrate at optical wavelengths, it is straightforward to

acquire a Fourier ptychographic data set in an X-ray or electron microscope (e.g., with a tilting

source [34]). Alternatively, two trivial changes within equation 6.10 directly prepares standard

ptychographic data for LRP processing (see end of section 2). Given its removal of local minima and

improved treatment of noise, we expect our strategy will benefit both experimental arrangements.

In this section, we first quantitatively verify that LRP accurately measures high resolution and

sample phase. Compared with AP reconstructions, our LRP algorithm generates fewer undesirable

artifacts in experiment. Second, we will compare the AP and LRP reconstructions of a biological
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sample, which establishes the improved noise stability of our new algorithm.

6.4.1 Quantitative performance

Our FP microscope consists of a 15×15 array of surface-mounted LEDs (model SMD 3528, center

wavelength λ=632 nm, 4 mm LED pitch, 150 µm active area diameter), which serve as our quasi-

coherent optical sources. The array is placed l=80 mm beneath the sample plane, and each LED

has an approximate 20 nm spectral bandwidth. Prior work establishes that the impact of non-ideal

source coherence is gradual [33]. While negligible in these experiments, we may eventually account

for source statistics in the multi-rank structure of the LRP optimizer R.

To quantitatively verify resolution improvement, we turn on each of the 15 × 15 LEDs beneath

a U.S. Air Force (USAF) resolution calibration target. A 2X Olympus microscope objective (apoc-

hromatic Plan APO 0.08 NA) transfers each resulting optical field to a CCD detector (Kodak

KAI-29050, 5.5 µm pixels), creating 225 low resolution images. Using this 0.08 NA microscope

objective (5◦ collection angle) and a 0.35 illumination NA (θmax = 20◦ illumination angle), our FP

microscope offers a total complex field resolution gain of n/m = 25. Each image spectrum overlaps

by ol ≈ 70% in area with each neighboring image spectrum.

For reconstruction, we select n = 25 ·m and use the same aperture parameters with AP and LRP

to create the high-resolution images in Fig. 6.6. For computational efficiency, we segment each low-

resolution image into 3×3 tiles (n=4802 per tile) and process the tiles in parallel, as performed in [32].

We determine the optimal number of AP and LRP algorithm iterations as 6 and 15, respectively,

and fixed this for each tile (and all subsequent reconstructions). We typically initialize LRP with

the following parameters: γ=1.5, η=0.3, y0=10 and σ0=10. We determine the microscope aperture

function with an iterative procedure [30] before each experiment and fix it for each algorithm trial.

Both ∼1 megapixel reconstructions achieve their maximum expected resolving power (Group 9,

Element 3: 1.56 µm line pair spacing). This is approximately 5 times sharper than the smallest

resolved feature in one raw image (Group 7, Element 2 in Fig. 6.6(c)). Our new LRP algorithm

avoids certain artifacts that are commonly observed during the nonlinear descent of AP (boxed in

green). Both reconstructions slowly fluctuate in background areas that we expect to be uniformly

bright or dark. These fluctuations are caused in part by experimental noise, an imperfect aperture

function estimate, and possible misalignments in the LED shift values, pj . In a representative

background area marked by a 402 pixel blue box in Fig. 6.6, AP and LRP exhibit normalized

background amplitude variances of σ2
A = 5.4× 10−4 and σ2

L = 5.0× 10−4, respectively. Accounting

for experimental uncertainty in the aperture function a and shifts pj (e.g., following [30, 33]) may

reduce this error in both algorithms.

To verify that our LRP solver reconstructs quantitatively accurate phase, we next image a mono-

layer of polystyrene microspheres (index of refraction nm = 1.587) immersed in oil (no = 1.515, both
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Figure 6.7: Experimental measurement of the quantitative optical phase emerging from two
polystyrene microspheres. Both (a) AP and (b) LRP reconstruct phase maps that appear qual-
itatively similar, although the AP phase map flattens at the sphere’s center. Variances measured
in red boxes. (c) Plot of microsphere thickness from a trace through the center of the large sphere
(dashed line) demonstrates close agreement between LRP and ground truth (GT). Figure adapted
from [1].

indexes for λ = 632 nm light). To demonstrate the LRP algorithm easily generalizes to any ptycho-

graphic arrangement, we perform this experiment on a new “high-NA” FP microscope. The high-NA

setup uses a larger 0.5 NA microscope objective lens with a 30◦ collection angle (20X Olympus 0.5

NA UPLFLN). For sample illumination, we now arrange 28 LEDs into three concentric rings of 8, 8,

and 12 evenly spaced light sources (ring radii=16, 32 and 40 mm, respectively). We place this new

light source array 40 mm beneath the sample to create a 0.7 illumination NA with a θmax = 45◦

illumination angle. The synthesized numerical aperture of this new FP microscope, computed as

the sum of the illumination NA and objective lens NA, is NAs = 1.2. With a greater-than-unity

synthetic NA, our reconstructions can offer oil-immersion quality resolution (∼385 nm smallest re-

solvable feature spacing [36]), without requiring any immersion medium between the sample and

objective lens.

Using the same data and parameters for AP and LRP input, we obtain the high-resolution phase

reconstructions of two adjacent microspheres in Fig. 6.7 (3 µm and 6 µm diameters). For this

reconstruction, we set m=1602 and n=3202. We have subtracted a constant phase offset from the

LRP solution in (b) to allow for direct comparison to the AP solution in (a). The two reconstructions

appear qualitatively similar except at the center of the 6 µm sphere, where the AP phase profile

unexpectedly flattens. We highlight this flattening by selecting phase values along each marked

dashed line to plot the resulting sample thickness in Fig. 6.7(c). Phase φ and sample thickness t

are related via t = k∆φ(nm − no)−1, where k is the average wavenumber and ∆φ = φ − φ0 is the

reconstructed phase minus a constant offset. LRP closely matches the optical thickness of a ground-

truth sphere (GT, black curve): the length of the vertical chord connecting the top and bottom arcs

of a 6 µm diameter circle. The normalized amplitude variances from a 402-pixel background area
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Figure 6.8: Experimental reconstructions of a resolution target imaged by our high-NA FP micro-
scope. Results from three different exposure times are shown. (lower left) Plot of the normalized
background variance of the intensity of our reconstructed image, as a function of exposure time for
5 different data sets. The background variance of the LRP reconstruction is consistently lower than
the variance of the AP reconstruction. The difference between the background variance from each
algorithm increases at shorter exposure times, where LRP outperforms AP by roughly a factor of 2.

are σ2
A = 9.2 × 10−4 and σ2

L = 5.8 × 10−4, respectively. This again supports our observation that

the high resolution reconstructions formed by LRP are more accurate than those formed by AP.

For a third quantitative experiment, we use the same high-NA FP setup (collection angle= 30◦,

θmax = 45◦) to image a resolution target with varying exposure times. The resulting reconstructions

are shown in Fig. 6.8. We assume a shorter exposure time implies increased noise within each raw

image. We include reconstructions from three data sets: images captured with a 1 second exposure

(top), a 0.25 second exposure (middle), and 0.1 second exposure (bottom). It is clear that the

LRP solver maintains a smoother solution as additional noise is introduced. This observation is

quantitatively verified by selecting a 20 by 20 pixel background area where the resolution target

should be a constant value, and computing the normalized variance for reconstructions based on 5

different exposure times, ranging from 0.05 to 1 second. The results are plotted in the lower left.

Here, we see that LRP maintains a consistently lower background variance, which becomes much

lower than the result of AP (roughly a factor of 2) at low exposure times (high noise). However, we

note that the LRP result still maintains a slowly varying, uneven background intensity. The source
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Figure 6.9: Experimental reconstruction of malaria-infected human red blood cells. (a) Oil immer-
sion microscope image (1.25 NA) identifies two infected cells of interest (marked with arrows). (b)
Example LRP reconstruction (area of interest in red box). (c) One example raw image used for AP
and LRP algorithm input. (d) AP-reconstructed amplitude and phase from three different 29-image
data sets, using 1 sec (top), 0.25 sec (middle) and 0.1 sec (bottom) exposure times for all images
in each set. Variances measured within green boxes. Increased noise within short-exposure images
deteriorates reconstruction quality until both parasites are not resolved. (e) LRP reconstructions
using the same three data sets. Both parasites are clearly resolved in the reconstructed phase for all
three exposure levels (figure adapted from [1]).

of this background term is the result of error in reconstructing lower image spatial frequencies.

6.4.2 Biological sample reconstruction

Our fourth imaging example uses our high-NA FP configuration to resolve a biological phenomenon:

the infectious spread of malaria in human blood. The early stages of a Plasmodium falciparum

infection in erythrocytes (i.e., red blood cells) includes the formation of small parasitic “rings”. It is

challenging to resolve these parasites under a microscope without using an immersion medium, even

after appropriate staining. Oil-immersion is required for an accurate diagnosis of infection [37].

We use FP to resolve Plasmodium falciparum-infected cells with a 0.5 NA objective lens and

using no oil in Fig. 6.9. We first prepare an infected blood sample following the protocol in [38]: we
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maintain erythrocyte asexual stage cultures of the P. falciparum strain 3D7 in culture medium, then

we smear, fix with methanol and apply a Hema 3 stain. An example sample region containing two

infected cells, imaged with a conventional high-NA oil-immersion microscope (NA = 1.25) under

Kohler illumination, is in Fig. 6.9(a).

Next, we capture 28 uniquely illuminated images of these two infected cells using our high-NA

FP microscope. Figure 6.9(c) contains an example normally illuminated raw image, which does not

clearly resolve the parasite infection. Figure 6.9(d) presents phase retrieval reconstructions using

the standard AP algorithm, where we set m=1202, n=2402, run six iterations, and again subtract

a constant phase offset. We include reconstructions from three data sets: images captured with a

1 second exposure (top), a 0.25 second exposure (middle), and 0.1 second exposure (bottom). As

with our third example, a shorter exposure time implies increased noise within each raw image.

While the 1 sec exposure-based AP reconstruction resolves each parasite, blurred cell boundaries

and non-uniform fluctuations in amplitude suggest an inaccurate AP convergence. However, both

parasite infections remain visible within the reconstructed phase. The parasites become challenging

to resolve within the phase from 0.25 sec exposure data, and are not resolved within the phase from

the 0.1 sec exposure data, due to increased image noise. The normalized background variance of

each AP amplitude reconstruction, from a representative 402-pixel window (marked blue square), is

σ2
A = .0020, .0027, and .0059 for the 1 sec, 0.25 sec, and 0.1 sec exposure reconstructions, respectively.

For comparison, reconstructions using our LRP algorithm are shown in Fig. 6.9(e) (sharpest

solutions after 15 iterations). For each reconstructed amplitude, we set the desired solution rank

to r = 3. We add the 3 modes of the resulting reconstruction in an intensity basis to create the

displayed amplitude images. For each reconstructed phase, we set the desired solution matrix rank

to r = 1 and leave all other parameters unchanged. For all three exposure levels, the amplitude of

the cell boundaries remains sharper than in the AP images. Both parasite infections are resolvable in

either the reconstructed amplitude or phase, or both, for all three exposure levels. The normalized

amplitude variances from the same background window are now σ2
L = .0016 (1 sec), .0022 (0.25

sec), and .0035 (0.1 sec), an average reduction (i.e., improvement) of 26% with respect to the AP

results. While not observed within our previous simulations or experiments, the AP reconstructions

here offer a generally flatter background phase profile than LRP (i.e., less variation at low spatial

frequencies). Without additional filtering or post-processing, the AP algorithm here might offer

superior quantitative analysis during, e.g., tomographic cell reconstruction, where low-order phase

variations must remain accurate. However, it is clear within Fig. 6.9 that LRP better resolves the

fine structure of each infection, which is critical during malaria diagnosis. A shorter image exposure

time (i.e., up to 10 times shorter) may still enable accurate infection diagnosis when using LRP, as

opposed to the standard AP approach.
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6.5 Discussion and Conclusion

Through the relaxation in equation 6.8, we first transform the traditionally nonlinear phase retrieval

process for ptychography into a convex program. We may now use well-established optimization

tools to find the ptychography problem’s global minimum. Then, we suggest a practically efficient

algorithm to solve the resulting semidefinite program with an appropriate factorization. The result is

a new ptychographic image recovery algorithm that is robust to noise. We demonstrate its successful

performance in three unique experiments, concluding with a practical biological imaging scenario:

the identification of malaria infection without using an oil immersion medium and under short-

exposure imaging conditions.

Much future work remains to fully explore the specific benefits of our problem reformulation.

Besides removing local minima from the recovery process, perhaps the most significant departure

from prior phase retrieval solvers is a tunable solution rank, r. As noted earlier, r connects to

statistical features of the ptychographic experiment, typically arising from the partial coherence of

the illuminating field. Coherence effects are significant at third-generation X-ray synchrotron sources

and within electron microscopes. An appropriately selected r may eventually help LRP measure the

partial coherence of such sources, as outlined in [29]. The solution rank may also help identify setup

vibrations, sample auto-fluorescence, or even 3D sample structure. As in prior work with low-rank

matrix optimization, we may also artificially enlarge our solution rank to encourage the transfer of

experimental noise into its smaller singular vectors.

Other extensions of LRP include simultaneously solving for unknown aberrations (i.e., the shape

of the probe in standard ptychography), systematic setup errors, and inserting additional sample

priors such as sparsity. These refinements are currently a critical component of ptychographic

recovery in the fields of X-ray and electron microscopy, and will also improve our optical results.

Along with algorithm refinement, a detailed comparison between LRP and various other recovery

methods, especially under different sources of noise and error, will help identify the experimental

conditions under which our strategy is of greatest benefit. What’s more, as a particular solution

to the general problem of phaseless measurement, our findings can also inform a wide variety of

coherent diffractive imaging techniques. Regardless of the specific experimental application, convex

analysis will continue to provide useful theoretical guarantees regarding phase retrieval algorithm

performance, a crucial feature missing from current nonlinear solvers.

Appendix A. Computational specifics

We performed all processing on a high-end desktop containing two Intel Xeon 2.0 GHz CPUs and

two 3GB GeForce GTX GPUs. Code was written in Matlab with built-in GPU acceleration. We
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solved our CLP semidefinite program using the TFOCS code package [39]. Our LRP algorithm

borrows concepts from the LBFGS solver in [32] for one specific minimization step. LRP’s total

recovery time for the 1 megapixel example in Fig. 6.6 was approximately 130 seconds, while AP

completed in approximately 15 seconds on the same desktop.
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Chapter 7

Fourier ptychography in a
conventional camera

So far, our various investigations with Fourier ptychography have used a microscope. In this chapter,

we implement Fourier ptychography within a conventional camera. This shift from a microscope to

a conventional camera requires both new hardware and post-processing software. This alternative

computational imaging technique is termed “overlapped Fourier coding” [1]. We use it to estimate

and remove the intrinsic aberrations and misalignments within an imaging system.

7.1 Introduction and Background

As we have seen, the space-bandwidth product of a standard microscope is limited to approximately

10 megapixels. Through the use of active illumination, Fourier ptychography can improve this limit

to hundreds of megapixels. Besides microscopes, standard cameras, ranging from cell phone-sized

cameras to large satellite based imagers, are also limited in the total number of features they can

resolve. This physical resolution limit scales with the dimensions of the lens, but is often on the

order of 10-100 megapixels for most applications. As detailed in [2], the unavoidable influence of

lens aberrations is the root cause of this upper limit.

Often, additional optical elements are used to correct for the aberrations that limit a camera’s

space-bandwidth product (SP). These extra elements simultaneously increase the size, weight, and

complexity of the physical setup. In this chapter, we explore an alternative approach to improv-

ing a camera’s resolution performance. Instead of adding optical components, we instead use a

computationally based capture and post-processing scheme to remove aberrations. This procedure,

termed overlapped Fourier coding (OFC), relaxes the complexity of the optics and digital sensor

while maintaining a large SBP. Our correction scheme also acquires the phase of the optical field

exiting the sample plane, which may in turn be used to digitally refocus the sample post-capture to

ensure all image segments are in sharp focus.
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Figure 7.1: Outline of the OFC procedure. (a) We place a transmissive SLM in the Fourier plane of a
4f system to digitally create different sub-aperture functions. (b) We capture a sequence of aberrated
images while the SLM displays a sub-aperture shifted to a unique location between each snapshot.
(c) We computationally transform the captured image set into a high-resolution amplitude and phase
map, as well as an estimation of the camera’s low-order aberrations (figure adapted from [1]).
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Just like Fourier ptychography, OFC first acquires a sequence of images. Instead of using active

illumination via an LED array, it modulates the camera’s Fourier plane with a shifting aperture

function between each snapshot. Here, the shifting aperture function we use is a small square pupil

generated on an amplitude-modulating spatial light modulator (SLM), although other aperture func-

tion types, including phase-only modulation, may benefit alternative applications. It is important

that the shifted sub-apertures spatially overlap with one another in the pupil plane by a certain

degree. Second, OFC uses a unique algorithm to digitally synthesize the sub-aperture images into a

high-resolution estimate of the complex optical field at the image plane. This algorithm extends prior

work with FP [32], so it is also directly related to the well-known methods of phase-retrieval [4, 5]

and ptychography [6, 52].

Unlike other holographic [8,9] or non-holographic [10–12,32] resolution-enhancing optical setups

that measure phase, this work does not use external illumination. So while OFC cannot extend an

optical system’s resolution beyond its aperture-defined cutoff, it can increase its SBP via removal

of undesired aberrations and misalignments. This sets our goal as distinct from prior methods

employing SLM modulation to acquire phase [13–16] or the related incoherent light field [17, 18].

Since the sample’s complex field is simultaneously acquired, removal of aberrative effects is not an

ill-posed intensity PSF deconvolution as employed in fluorescent [19] or light-field [6] microscopy.

Our procedure relies upon simulated annealing to iteratively reduce discrepancies between the

image’s digital Fourier representation and the camera system’s physical Fourier plane. Annealing is

a well-studied optimization procedure [21] that has been previously applied within the area of X-

ray ptychography to correct for an optical probe’s unknown shifted location [22, 23]. The proposed

algorithm is closely related to this prior work, but instead searches over either a set of unknown

Zernike modes, or a space of Fourier plane misalignments, or both, to increase a camera’s SBP.

While many previous systems [24–26] can pre-calibrate for optical aberrations for later removal

(assuming they also obtain a measure of the sample’s quantitative phase), OFC can continually

update an improved estimate of a system’s imperfections from each image it captures. This may

prove especially important in microscopy applications where objective lenses are often shifted or

replaced, or in conventional cameras where aberrations are a function of object depth and zoom

lens position, for example. In a broader sense, this situates the OFC scheme close to the realm of

adaptive optics, which utilizes correction schemes targeting and removing optical distortions that

can change with each acquired image.

The remainder of this chapter is outlined as follows. First, we present the OFC imaging strategy

and discuss its recovery algorithm in the context of an aberration-free setup. Second, we introduce

the experimentally realistic situation of a camera containing low-order Zernike aberrations. We also

demonstrate how OFC uses simulated annealing to estimate and remove these aberrations from

its final reconstruction. Third, we show how the simulated annealing approach may additionally
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account for aberrations that do not fall within the typical Zernike model, such as distortion and

lens misalignment. Finally, we experimentally demonstrate OFC with an SLM-based shifting sub-

aperture to recover a sample’s image and phase with resolution at the camera’s maximum cutoff

spatial frequency. Our annealing algorithm likewise helps remove included aberrations to increase

the setup’s SBP.

7.2 Principle of operation

In this section, we first develop a mathematical model of OFC’s imaging routine. Then, we detail

OFC’s reconstruction algorithm to recover a sample’s amplitude and phase at high-resolution from

a series of low-resolution measurements, assuming aberration-free optics.

7.2.1 Image acquisition

As diagrammed in Fig. 8.1, OFC is implemented in a conventional 4f imaging system with a simple

modification: a transmissive amplitude SLM inserted into the camera’s Fourier plane (i.e., aperture

plane). A 4f imaging system is not a requirement for effective operation – placing the SLM at

any plane conjugate to the sample plane (i.e., the aperture plane of a compound lens system, or

the back-focal plane of a microscope objective) will function similarly. We will assume the sample

s(x, y) at the object plane is illuminated with spatially coherent, quasi-monochromatic light. OFC

directly extends to operate with partially coherent illumination. We also assume that our imaging

setup contains pixels that are matched to the maximum cutoff frequency of its unmodulated Fourier

plane (i.e., each pixel matches the system’s minimum PSF width). This enables us to effectively

verify the accuracy of our reconstruction through a direct comparison with an unmodulated image.

A more practical OFC setup should match the pixel size to the NA of a single sub-aperture image,

which will lead to a final reconstructed resolution that surpasses the detector pixel count.

The square SLM of width L is configured to display a small square sub-aperture (i.e., optically

transparent area) of width and height `. This sub-aperture is shifted to n2 different equally spaced

locations arranged on a 2D rectilinear grid. The jth sub-aperture will be displaced from the origin

by a two-dimensional vector cj = (cxj , cyj ) for 1 ≤ j < n2. By setting n > L/`, we ensure that

each sub-aperture overlaps partially with its neighboring sub-apertures. In practice, it is useful

to select n such that the sub-aperture images overlap by approximately 70%, following a similar

parameter optimized for ptychographic imaging [50]. All simulations and experiments in this work

use n = 9, requiring a total of n2 = 81 images per capture sequence. We set L/` = 2.5 to ensure

each sub-aperture window overlaps with its neighbors by 75%.

An ideal binary amplitude SLM will completely block light when its pixels are switched to

opaque and pass 100% of any incident light when switched to transparent. In a practical setup, a
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Figure 7.2: One stage of the basic OFC algorithm. For each window position Wj , a segment of the

spectrum estimate Ŝ0(kx, ky) is extracted (corresponding to the jth position of the SLM’s shifting
sub-aperture). In the spatial domain, the amplitude associated with this windowed spectrum is
constrained with the measured image Ij(x, y) to form p′(x, y). Example measured images are in
(d). The result is Fourier transformed back to the aperture plane, where it is used to update the
spectrum estimate, Ŝ0(kx, ky). Figure adapted from [1].

transmissive SLM will have a finite optical density b, which we include in our model by defining the

jth SLM sub-aperture’s transmission function Wj as,

Wj(kx − cxj
, ky − cyj ) =

1, |kx| ≤ `
2 and |ky| ≤ `

2

b, otherwise,

(7.1)

where (kx, ky) represent spatial frequencies, the spatial coordinates at the aperture plane. Note

that we use (kx, ky) here to label to aperture plane, instead of (x′, y′) as in previous chapters, to

distinguish this system from the microscope case. Eq. (7.1) states the SLM’s modulation is a biased

rect function of width ` and center cj in the Fourier plane.

Modeling the optical field emerging from the sample surface as s(x, y), we can write the complex

field directly before the aperture (i.e., SLM) plane as F [s(x, y)] = Ŝ(kx, ky), where F is the Fourier

transform operation, and we will refer to Ŝ as the sample’s spectrum. After passing through the jth

sub-aperture window, Wj , the exiting field is the product Ŝ(kx, ky)Wj(kx, ky) assuming the SLM is

thin. This modulated field then propagates to a detector at the image plane, where to a first-order

approximation the jth image measures

Ij(x, y) = |F [Wj(kx, ky)Ŝ(kx, ky))]|2 (7.2)

for 1 ≤ j ≤ n2. The first goal of OFC post-processing is to recover a high-resolution complex estimate

of the sample S from the above set of n2 intensity measurements, before attempting aberration

estimation and removal.
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7.2.2 Aberration-free OFC reconstruction

The basic OFC post-processing algorithm employs the well-known strategy of alternating projec-

tions, similar to FP and other prior phase retrieval methods [4, 5]. Our measured images constrain

our sample estimate to a known set of amplitudes in the spatial domain, while our shifting SLM

sub-aperture uniquely constrains its support in the Fourier domain. Assuming an aberration-free

setup, the OFC algorithm outputs a reconstruction of the complex field exiting the sample plane at

the employed imaging system’s maximum resolution. Unlike prior formulations of the related FP

procedure in previous chapters [32], the sample here may be thick, optically reflective, and under

arbitrary quasi-coherent illumination. The aperture scanning procedure detailed in [16] also fol-

lows similar steps to both FP and OFC, and the interested reader should refer to this related work

for a comparison of aperture scanning versus full camera translation for ptychographic resolution

improvement. OFC’s SLM modulator requires a modified algorithm in comparison to these other

techniques.

The following explains one iteration of the OFC process. Before initiating the loop, we generate a

first guess of a high-resolution complex sample spectrum, Ŝ0(kx, ky), as shown in Fig. 7.2(a). A good

starting point is an up-sampled version of the low-resolution image recorded with a centered scanning

aperture, modulated by a randomly assigned phase. First, we compute a masked spectrum estimate

by modulating Ŝ0 with one of our SLM’s sub-apertures, from Eq. (7.1). Starting with j = 0 and

continuing until j = n2 − 1, we compute the spectrum product P̂j(kx, ky) = Ŝ0(kx, ky)Wj(kx, ky).

For an SLM with perfect contrast, this corresponds to selecting a windowed region of Ŝ0, as in

Fig. 7.2(b). Second, we compute the Fourier transform of this spectrum product to simulate light’s

propagation to the image plane: pj(x, y) = F [Pj((kx, ky)]. Third, we replace the amplitude of the

resulting Fourier transform pj with the known amplitude from the jth detected image
√
Ij to form

p′j :

p′j(x, y) =
√
Ij(x, y)

pj(x, y)

|pj(x, y)|
. (7.3)

Like other phase retrieval strategies, this leaves the estimated field’s phase unchanged. Fourth, we

inverse-Fourier transform p′j to create a new spectrum: P̂ ′j(kx, ky) = F−1
[
p′j(x, y)

]
.

Finally, we update our sample spectrum estimate with P̂ ′j . While we accounted for the SLM’s

imperfect modulation when extracting P̂j from Ŝ0, we do not use the same support function when

re-inserting P̂ ′j in this update. Instead, we only update the aperture area that in an ideal case is

optically transparent, leaving all other areas unchanged:

Ŝ0(kx − cjx , ky − cjy ) =

P̂
′
j(kx − cjx , ky − cjy ), |kx| ≤ `

2 and |ky| ≤ `
2

Ŝ0(kx − cjx , ky − cjy ), otherwise.

(7.4)
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Figure 7.3: OFC Simulation for an aberration-free noisy imaging system. Both the sample amplitude
and phase are well-reconstructed. Reconstruction error grows linearly with system noise while the
OFC algorithm continues to converge (figure adapted from [1]).

This selective support constraint is unique to OFC. However, it shares close parallels with the

methods of hybrid input-output [4] and iterated projections [5] that do not strictly enforce an

optical system’s support constraint every iteration. While alternative update strategies are certainly

possible, we empirically determined that Eq. (7.4) leads to quick and accurate algorithm convergence.

After updating all n2 overlapping sub-aperture areas of Ŝ0, we proceed to a second iteration by

advancing our spectrum estimate: Ŝ1 ← Ŝ0 and resetting j = 0. After q iterations, we inverse

Fourier transform the final recovered spectrum Ŝq(kx, ky) to recover our high-resolution sample

estimate, sq(x, y).

7.2.3 Aberration-free OFC simulation

Fig. 7.3 demonstrates the OFC algorithm’s successful convergence to an accurate amplitude and

phase image in simulation. With an ideal camera (no aberrations or misalignments, but including

Gaussian noise), recovery at the system’s native resolution proceeds directly following the five update

steps in Section 7.2.2. Our ideal simulated 4f camera has a maximum F-number of 7.5 (PSF width=

5µm width at the detector assuming λ = 632 nm illumination), and its detector pixels are 5 µm to

match this unmodulated PSF. We shift a square sub-aperture that is ` = 4 mm wide across a total

distance of L = 10 mm, where each shift is ∆c = 1 mm along one dimension. In two dimensions,

this leads to a total of 81 images and an aperture overlap percentage of 75%. Simulated intensity

images are N = 10002 pixels and have a 12-bit well depth. These setup parameters closely match

our experimental setup (see Section 7.5) and are used for all subsequent simulations.

The unknown complex sample U(x, y) in Fig. 7.3 is an Air Force resolution target with a 2.5

µm minimum feature size (i.e., half a pixel) with a multiplied cubic phase function: ∠U(x, y) =

α(x3 + y3), where ∠ indicates phase and α = 20π. We add 2% random Gaussian noise to each sub-

image after detection of its intensity to simulate detector-induced noise. Note that the reconstructed
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image is at the full resolution of aberration-free imaging system – approximately three times larger

than the resolution of each single sub-aperture image (e.g., compare Fig. 7.3 and Fig. 7.2(d)). This

resolution increase follows expectations, as our final synthesized aperture is roughly three times

wider than a single sub-aperture. The reconstructed phase closely matches the target phase but is

impacted in quality more than the target amplitude, especially at lower spatial frequencies, and is

offset by a constant global phase shift.

The normalized mean-squared error (NMSE) Eq between the amplitude of the target sample

U(x, y) and reconstruction sq(x, y) offers a useful metric to examine algorithm performance:

Eq =

√∑
x

∑
y

(|sq(x, y)| − |U(x, y)|)2/N. (7.5)

This metric is also used in [4]. Here N is the total number of image pixels and q indicates iteration

number. In simulation, the original input amplitude |U(x, y)| is known a-priori. Fig. 7.3 plots

the NMSE as a function of 15 iterations, where in one iteration we update all 9 x 9 overlapping

sub-aperture regions. Here, each curve represents a different amount of zero-mean Gaussian noise:

no noise, with variance σ2 = 0.5%, and with variance σ2 = 2% of the maximum signal value. As

expected, the algorithm is error-reducing and convergence accuracy decreases with increased noise.

A perfect optical system is never experimentally realizable. Inherent aberrations eventually limit

the performance of all lenses. Next, we modify the OFC approach to account for and computation-

ally remove aberrations. First, we show how to correct for an imaging setup’s unknown low-order

aberrations. Second, we demonstrate removal of geometric distortions. Both of these steps increase

the SBP of simple imaging lenses.

7.3 OFC with simulated annealing

By repeatedly taking pictures through an overlapping sub-aperture, OFC captures slightly redun-

dant data. This redundancy not only allows us to accurately extract sample phase, but also helps

us compute a low number of unknown variables that influence the imaging process. A well-known

method of searching over a space of unknown variables, to maximize or minimize a particular function

of merit (i.e., error function), is termed simulated annealing (SA). Instead of exhaustively searching

through all possible unknown variable configurations, SA takes an iterative approach. At one itera-

tion, annealing first randomly searches through a small number of different configurations and selects

the configuration that minimizes its error function. Then, it uses this configuration as starting point

for the search during the next iteration. As iteration continues, the algorithm slowly reduces the

range over which it randomly searches for error-minimizing states. For many problems, this type of

iterative local search is very efficient at seeking out global minima of nonlinear functions [21].
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Figure 7.4: Schematic of the OFC algorithm with simulated annealing (SA-OFC). We use the same
PR loop outlined in Fig. 7.2 with three additions. First, an estimate of the systems aberrations at
the Fourier plane Aj is now multiplied with the spectrum estimate Ŝ at each PR loop. Second, SA is
used to compare T different perturbed versions of the jth windowed spectrum with the jth intensity
measurement. Third, the error-minimizing aberration perturbation Atmin

j and corresponding sample

estimate ψtmin
j are calculated through Eq. (7.9)–Eq. (7.10), which then update Aj+1 and Ŝj+1 via

Eq. (7.11). Figure adapted from [1].

OFC’s space of unknown variables includes any aberrations or misalignments within the optical

system. At each sub-aperture location, our function to minimize is the mean-squared error difference

between the recorded intensity image, Ij(x, y), and the corresponding image that would result from

detecting our complex windowed spectrum estimate, P̂ (kx, ky). For each iteration, we make several

guesses about how the optical system might be aberrated or misaligned, compute the resulting image

captured through each imperfect camera, and then select the imperfections that yield the closest

image to our observed data as the starting point for the next iteration. As we will demonstrate,

this process is both effective at recovering the correct imperfections and robustly removing these

imperfections from a final sample solution. However, we must assume a-priori knowledge about which

subspace of imperfections to search through, as search time will scale linearly with the dimensions

of this search space.

7.3.1 Characterization and removal of low-order aberrations

We may account for the wavefront-based aberrations of our camera system using a multiplicative

phase function, A(kx, ky), at its Fourier plane. It is common to decompose A into a sum of weighted

Zernike polynomials on the unit disk: A(ρ, θ) = exp (2πi
∑
l alWl(ρ, θ)), where Wl are the orthogonal

Zernike polynomials and al are the associated weights. We will begin our explanation by only consid-

ering the most significant single Zernike phase aberration, defocus, which in Cartesian coordinates
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takes the form,

A(kx, ky) = e(id(k2x+k2y)), (7.6)

where d is a defocus aberration weight. Selecting Eq. (7.6) here as our aberration model calls upon

prior knowledge that this simple example system is primarily susceptible to defocus. In the following

section, we discuss how to correct for multiple higher-order Zernike aberrations.

In addition to an estimated spectrum Ŝ0, simulated annealing OFC (SA-OFC) also initializes an

estimated aberration map A0, as shown in Fig. 7.4. In all tests here, we initialize with A0(kx, ky) = 1.

SA-OFC begins with j = 1 and computes T different candidate aberration functions at the jth loop:

Atj(kx, ky) = Aj(kx, ky)e(i∆t(k
2
x+k2y)) (7.7)

for 1 ≤ t ≤ T . Here, ∆t is a number selected randomly from a uniform distribution on (−ra, ra),

where ra is the annealing search radius. Each candidate Atj can be thought of as a random per-

turbation of the current iteration’s estimated aberration function, which is restricted to a limited

search distance, ra. Next, we compute T candidate aberrated spectra, Ψ̂t
j = ŜjA

t
j . We then window

these spectra with the sub-aperture function Wj and Fourier transform the result to form a set of

T uniquely aberrated low-resolution image fields:

ψtj(x, y) = F [Wj(kx, ky)Ψ̂t
j(kx, ky)], (7.8)

The annealing ends with identification of the candidate aberration perturbation Atmin
j (kx, ky) that

minimizes the MSE between the set of candidate images ψtj(x, y) and our measured image through

the jth sub-aperture, Ij(x, y):

tmin = arg min
t

(∑
x

∑
y

(
|ψtj(x, y)| −

√
Ij(x, y)

)2
)
. (7.9)

Note that since we only measure intensity, the merit function in Eq. (7.9) only considers the am-

plitude of each ψtj . We use the error-minimizing aberration perturbation, Atmin
j , as our annealing

search’s starting point for the next (j + 1)th sub-aperture image:

Aj+1(kx, ky) = Atmin
j (kx, ky). (7.10)

We also re-insert Atmin
j into Eq. (7.8) to find ψtmin

j , our optimal aberrated image field estimate.

We then constrain ψtmin
j with our measured intensities following Eq. (7.3): ψ

′

j =
√
Ij

ψ
tmin
j

|ψtmin
j |

. After

Fourier transforming ψ
′

j into Ψ
′

j , we are then ready to update our unaberrated sample spectrum

estimate, Ŝj . To remove the effects of aberrations, we adopt a strategy common to prior algorithms
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Figure 7.5: Simulation results of the SA-OFC algorithm. (a) Without simulated annealing, OFC
cannot combine a set of aberrated sub-images into an accurate full-resolution complex field estimate.
The induced defocus aberration is show to right. (b) The annealing OFC algorithm accurately
recovers both the sample’s amplitude and phase and the 4f setup’s aberration map Aq(kx, ky).
Here, q = 20. (c)-(d) Example low-resolution sub-aperture images, for comparison (figure adapted
from [1]).

like ePIE [52] and EPRY [30] and effectively divide out the aberration function estimate Aj from

Ψ
′

j :

Ŝj+1(0) = Ŝj(0) +
A∗j
|Aj |

(Ψ̂
′

j − Ψ̂j). (7.11)

Here, we have modified our notation to include the iteration number in parenthesis and indicate

update by the jth sub-image with a subscript. This random search and update process is repeated

for all 0 ≤ j ≤ n2−1 sub-apertures to complete one iteration. To encourage the SA-OFC algorithm’s

convergence, we linearly reduce the search radius ra at the completion of each iteration: ra ← ra−αa,

where typically αa ≈ ra/q. Iteration continues for q loops to form our final camera aberration map,

A(q), and sample spectrum solution, Ŝ(q).

Fig. 7.5 presents an example simulation of the SA-OFC algorithm using the same 4f setup

from Section 7.2. The target sample matches Fig. 7.3(a)’s, but now with α = 5 defining its cubic

phase envelope. We add defocus aberration by setting d = 200 in Eq. (7.6) and multiplying the

resulting A(kx, ky) with each sub-aperture spectrum during image simulation. To first test the effect

of aberrations without simulated annealing, we run the basic OFC algorithm from Section 7.2 to

recover the amplitude and phase maps shown in Fig. 7.5(a). Because the algorithm incorrectly

updates our sample estimate with aberrated low-resolution intensity images, the final solution does
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not closely resemble the target sample. Switching to the SA-OFC algorithm in Section 7.3.1 enables

simultaneous aberration map estimation and removal, as shown in Fig. 7.5(b). For this example, we

use the same initial conditions and noise as Section 7.2, setting T = 8, q = 20, ra = d/2, and the

initial aberration estimate to a constant function: A0(x, y) = 1. The recovered aberration map’s

defocus coefficient, dq, differs from ground truth by ∆d = (dq − d)2 = 25.71. Annealing generally

performs better with more candidate search functions (i.e., a larger value of T ), but will require

linearly more computation [22]. The algorithm is also sensitive to the selected search radius ra.

While all simulations here used ra = d/2 and linearly decreased it to zero by the qth iteration by

setting αa = ra/(q + 1), it may prove useful to additionally optimize over this free parameter.

We plot the SA-OFC algorithm’s error reduction versus iteration number, using the error met-

ric from Eq. (7.5), in Fig. 7.6(a). Here, we compare simulated annealing (blue curve) with two

alternative post-processing options. All parameters here match those for the data in Fig. 7.5 (here

now each curve is averaged over 5 runs with σ2 = 2% noise). First, no annealing (“no SA”, red)

leads to a significantly higher sample recovery error (see Fig. 7.5(a)) but continues to offer error-

decreasing performance, demonstrating algorithm stability. Second, we assume a-priori knowledge

of the 4f setup’s aberration map A0(kx, ky) (“known”, green) to recover an almost exact solution.

Here, instead of following Eq. (7.10) to estimate the aberration function each iteration, we simply

set Aj+1(kx, ky) = A0(kx, ky), the actual aberration map in Eq. (7.6), for all j. The SA-OFC al-

gorithm’s error falls somewhere between. While recovery is not perfect, there is certainly enough

redundancy within the captured dataset to significantly improve an image’s SBP via removal of the

negative defocus aberrations.

In Fig. 7.6(b), we again repeat Fig. 7.5’s simulation, but now vary the amount of defocus aber-

ration d in the ground-truth aberration, A(kx, ky). Again, each plot point is an average over five

independent tests with σ2 = 2% noise. As expected, SA-OFC remains bounded below by the case of

knowing and directly accounting for a complex aberration map within this redundant dataset. How-

ever, it achieves much lower error than an annealing-free algorithm, even for significantly defocused

image sets.

7.3.2 Characterization and removal of geometric distortion

A number of camera imperfections that negatively impact image fidelity cannot be summarized

as a phase-only modification to the Fourier plane (i.e., a Zernike aberration). Examples of such

imperfections include unknown changes in magnification, image distortion, and vignetting caused

by system misalignment. In this section, we explore how to computationally correct for these

undesirable effects. We focus our attention on one specific form of misalignment that significantly

impacts our experiments–the displacement of the Fourier plane from its assumed location, which is

directly connected to image distortion. We outline how the SA-OFC algorithm accounts for this
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Figure 7.6: (a) SA-OFC is error reducing (blue) and exhibits much lower error than the regular
OFC algorithm (red) in the presence of aberrations (assuming defocus d = 200). The ideal case
of performing SA-OFC with an a-priori known aberration, initialized and enforced each iteration,
is plotted in green. (b) As the aberration size increases, SA-OFC, OFC, and the ideal case all
slowly decrease in MSE performance. SA-OFC exhibits an aberration recovery mean-square error
∆d scaling roughly as 10-15% of d, which may be improved with additional fine-tuning of annealing
parameters (figure adapted from [1]).

type of unknown parameter by updating the estimated size and location of each SLM sub-aperture,

leading to an improved-resolution complex sample reconstruction.

It is challenging to construct an imaging system with a perfectly flat, centered Fourier conjugate

plane (i.e., aperture plane or back focal plane). Slight curvature across the plane is often encountered,

even with the aid of advanced lens design software [31]. Element misalignment during system

assembly will additionally shift the Fourier plane away from its ideal location. Misalignments may

point perpendicular to the optical axis, which will cause the Fourier plane to laterally shift and add

a linear phase ramp across the image plane. Or, they may point axially, which will primarily cause

the Fourier plane to scale in magnification. Depending upon the size and linearity of this scaling,

the field at the image plane can become magnified, geometrically distorted, and also defocused.

The SA-OFC algorithm can help measure and remove this type of misalignment. First, let us

assume that the location of each SLM pixel is known a-priori and we can accurately measure the

optical field associated with one sub-aperture image, Ij(x, y). This field’s digital inverse Fourier

transform should create a masked spectrum with a clearly visible window function, Wj(kx, ky),

modulating the sample spectrum via Eq. (7.2). Any deviation in the position and size of the

computed windowWj(kx, ky) from the known SLM pixel map will inform us of how the optical setup’s

Fourier transformation differs from an exact digital computation. We may computationally account

for any such deviation (i.e., system misalignment) by digitally updating the window’s assumed

position and size with a more accurate reflection of the imperfect optical setup.

In practice, although we assume accurate knowledge of each sub-aperture’s centered location(
cxj

, cyj
)

and size `j when we extract and insert the updated spectra (e.g., Eq. (7.4)), these variables

are not known a-priori. Moreover, each sub-aperture image only measures the amplitude of the
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Figure 7.7: SA-OFC removes geometric distortions from within a camera. (a) SLM sub-aperture
centers at the Fourier plane (blue dots) may be distorted by optical misalignments to unknown
positions. During algorithm iteration, each estimated center is randomly perturbed by vector (δx, δy)
as we generate and compare trial images to measured data. (b) Ground-truth sub-aperture centers
from the simulation in Fig. 7.5 are here radially offset, which simulates a Fourier plane displaced by
100 µm axially. The actual center of each displaced sub-aperture is marked with an ‘x’. Initializing
each sub-aperture center on an assumed rectilinear grid (blue dots), the simulated annealing process
draws these estimates close to the actual centers after 10 iterations. (c) Error decreases with iteration,
similar to Fig. 7.6(a). Figure adapted from [1].

complex field, thus preventing us from adopting the above simple misalignment correction scheme.

However, just like the determination of the unknown aberration function A(kx, ky) in the last section,

we can determine the 3 · n representative variables cjx , cjy and `j from our intensity measurements

using a simulated annealing algorithm. Our “geometric distortion” annealing process proceeds as

follows. At the jth iteration, we construct T candidate window functions W t
j , defined for 1 ≤ t ≤ T

as,

W t
j (kx − cjx − δtx, ky − cjy − δty) =

1, |kx| ≤ δta`
2 and |ky| ≤ δta`

2

b, otherwise.

(7.12)

Here, (δtx, δ
t
y) are random perturbations selected from the uniform distribution [−rx, rx] that modify

each window function’s center, and δta is a random perturbation from the uniform distribution

[−rw, rw] that randomly scales the aperture size. Just like ra, rx and rw are annealing search radii

that we reduce by an α factor each iteration, again using αx = rx/(q+ 1) and αw = rw/(q+ 1) in all

demonstrations. Next, we create T different windowed spectra, each of which we Fourier transform

into a simulated image:

ψtj(x, y) = F [W t
j (kx, ky)Ŝj(kx, ky)], (7.13)

As with the aberration annealing process, we compare each simulated image ψtj with the jth measured

image Ij to find the error-minimizing perturbed window function, following Eq. (7.9). We save a

map of all updated centers, which serve as the starting window positions and sizes during the next
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cycle through all n windowed images (i.e., as the algorithm proceeds from the 1st to qth iteration).

Fig. 7.7 presents a simulation of the geometric distortion SA-OFC process. Here, we again use our

familiar noisy optical system, now free of Zernike aberrations but geometrically distorted in a radial

manner. Each sub-aperture center is displaced from its original location by δcj = 0.05cj, suggesting

a Fourier plane that is axially offset from its true location by 250 µm. Fig. 7.7(b) illustrates this

distortion, where the blue circles denote the distortion-free rectilinear centers cj (i.e., the algorithm’s

assumed centers) and the x’s mark their actual locations, cj + δcj.

Iterating q = 20 times accurately identifies the unknown misaligned sub-aperture centers. Using

parameters T = 8, rx = 10 pixels and rw = 0 pixels, we reduce an initial average center offset

from 125 µm to 14 µm. Removal of these geometric effects qualitatively improves the final image

similar to Fig. 7.5. As with using SA to correct for misalignments in ptychography [22], we also

empirically find that holding (δtx, δ
t
Y ) to zero for the first few iterations helps improve convergence.

The simulation in Fig. 7.7 holds the search radius to 0 for the first 5 iterations, as the blue error

curve for SA indicates in Fig. 7.7(c). As with our Zernike aberration example’s error in Fig. 7.6,

this curve’s final error is much lower than OFC without simulated annealing (red) and is bounded

below by running OFC with the correct geometric distortions known a-priori (green).

7.3.3 The complete OFC algorithm

We may also simultaneously determine and remove low-order Zernike aberrations and geometric

misalignments in one SA loop. By searching over both candidate aberrations with Eq. (7.7) and

sub-aperture positions with Eq. (7.12) in a parallel manner, we may use the simulated annealing

process summarized in Eq. (7.7) – (7.11) to search over a larger sub-space of unknown camera

configurations. However, as we increase the dimension of this parameter search space, computation

time will grow exponentially. For example, to search over both T different possible defocus settings

and T different sub-aperture positions with the same amount of coverage, each loop must now test

T 2 candidate states. If we would also like to search for the effects of x and y astigmatism, the

number of candidate tests jumps to T 4. For a p-dimensional parameter search space, the number

of candidate tests becomes T p. As our constructed optical setup was primarily influenced by sub-

aperture position shift and low-order aberrations, this exponential scaling does not become a major

concern, as we experimentally demonstrate in the following section. However, for systems suffering

from many possible equally-weighted aberrations and geometric imperfections, alternative iterative

strategies, such as conjugate gradient descent [23], will prove more efficient than simulated annealing.
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Figure 7.8: Experimental results from an OFC setup. We first image an Air Force resolution target
to test the algorithm’s spatial resolution performance. (a) A single sub-aperture image exhibits low
spatial resolution. (b) The OFC algorithm without annealing recovers a sharper image, but still
contains artifacts. (c) The SA-OFC algorithm further improves the output field sq(x, y)’s spatial
resolution (see text for algorithm parameters), as highlighted by traces in (d). Figure adapted
from [1].

7.4 Experimental results

Our experimental OFC setup closely matches the optical conditions used for the simulations thus far.

We created a 4f camera using two bi-convex lenses (diameter= 25.4 mm, f= 75 mm, Thorlabs AC254-

075). Without any additional corrective elements, it is easy to confirm that such a single-element

large F-number lens (˜F/3) exhibits significant off-axis aberrations. We use an amplitude-modulating

SLM (Epson HDTV LCD, BBS Bildsysteme 1920×1080 pixels placed between two crossed polarizers)

to create the Fourier plane’s shifting sub-aperture masks. The SLM pixel size is 23 µm. Only the

central 1202 pixels of the SLM are varied, defining the camera’s full aperture width as 2.76 mm.

Outside of this finite aperture range, significant aberrations from each singlet lens proved challenging

to correct for accurately and were thus blocked. At the image plane, we place a CMOS detector

(Prosilica GX-1920 with 4.54 µm pixels).

We illuminate our sample with a collimated 632 nm laser beam (no spatial filtering used). Unlike

FP, the illumination field’s specific shape and phase is not critical and can remain unknown. The

spatial coherence length of the illuminating beam must be as wide as the sample at the object

plane, and it should be relatively narrow-band (≤ 20 nm spectral bandwidth [16, 28]). This may

be achieved with an LED placed sufficient far behind the sample. Alternative algorithms exist to

additionally incorporate the effects of a partially coherent source to further reduce these illumination

requirements [29].
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The sub-aperture displayed on the SLM is a square with side length ` = 0.92 mm, which we

sequentially shift laterally n = 9 times in x and y across an L × L =2.76 mm× 2.76 mm square

Fourier plane area. In each step, we shift the aperture by 0.28 mm, raster scanning it until it

passes through all n2 = 81 unique aperture locations. This leads to a sub-aperture overlap of

approximately 70% and an expected resolution gain of 3. To ensure that each of the 81 captured

images is properly exposed, we take 3 snapshots at each sub-aperture position with an exposure

sequence of .01, .1 and 1 second, and combine these three images via high-dynamic range (HDR)

processing [32]. The HDR process may be omitted by using a high bit-depth detector or if larger

sub-apertures are utilized. Finally, we experimentally measure the optical density of the SLM as 22

(i.e., the central sub-aperture region is 22 times as bright as the outer apodizing region), making

b = 0.045 in Eq. (7.1).

Fig. 7.8(a) displays an example sub-aperture image captured with the aperture centered on the

optical axis (i.e., cj = 0). First, we attempt OFC reconstruction without simulated annealing as

outlined in Section 7.2. The reconstructed image intensity after q = 20 iterations is in Fig. 7.8(b).

Note the resolution is improved significantly as compared to that of a single sub-aperture image,

but artifacts remain primarily due to a misaligned Fourier plane. To correct these misalignments,

we then implement OFC with simulated annealing. We use Section 7.3.3’s “complete” SA-OFC

algorithm to jointly search over aberrations and geometric misalignments. We adopt an aberration

model that contains the first five primary aberrations beyond linear tilt in x and y – defocus, x/y

astigmatism and x/y coma: A(ρ, θ) = exp
(

2πi
∑8
l=4 alWl(ρ, θ)

)
. We apply Eq. (7.7) to search now

over these 5 orthogonal aberration modes, in addition to Eq. (7.12) to correct geometric sub-aperture

errors. This creates a total search space dimension of p = 6 (T 6 candidate tests).

Setting the SA-OFC algorithm parameters to q = 20 iterations, T = 2, ra = 10, rx = 8, rw = 1,

and with linearly reducing α’s, we obtain the intensity image in Fig. 7.8(c). Feature sharpness

increases most notably along the vertical direction. Fig. 7.8(d) plots a line trace through each

image’s group 4, element 6. Both the sub-aperture image (a) and uncorrected output (b) fail to

resolve this feature (17.54 µm-width). The aberration-corrected image (expected spatial frequency

cutoff at 17.2 µm−1) does resolve this group, confirming the ability to restore a potentially misaligned

camera system close to its native resolution with SA-OFC. More advanced models, which account

for increasingly complex optical aberrations and misalignments, may achieve a sharper resolution,

but will require additional computation.

The experimental system aberration map Aq(kx, ky) and Fourier plane misalignments, simulta-

neously recovered with the image in Fig. 7.8(c), are shown in Fig. 7.9(a) and Fig. 7.9(b), respectively.

We note the modal weights of the final aberration function decrease with mode number, as expected

for most lens systems. Linear x and y-tilt aberrations are partially corrected for by the geometric

Fourier plane realignments and are thus left out of Aq(kx, ky) for computational efficiency. Fig. 7.9(b)
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Figure 7.9: (a) OFC-computed aberration map, recovered simultaneously with the image in
Fig. 7.8(c). (b) Geometric misalignments of our 4f setup’s Fourier plane also simultaneously re-
covered by the SA-OFC algorithm. Average shifts for each row/column are plotted on the side/top.
(c) Plot demonstrating the algorithm’s error reduction with iteration. After 10 iterations, SA-OFC’s
NMSE is 3 times lower than the direct OFC algorithm without annealing (figure adapted from [1]).

shows that geometric realignments are primarily a linear function along the vertical direction, as

highlighted by its plots of average shift along kx and ky (average δcx and δcy). This matches the

significantly sharpened vertical image features in Fig. 7.8(c). Finally, we plot the algorithm’s NMSE,

Eq, in Fig. 7.9(c) (calculated via Eq. (7.5)). The addition of annealing (SA-OFC) brings our im-

age much closer to expected measured intensities. We also plot Eq after reducing the geometric

misalignment search radius to rx = 4, offering an idea of algorithm sensitivity to this type of free

parameter.

Next, to demonstrate that the OFC procedure can also acquire quantitative phase, we image a

monolayer of polystyrene microspheres (diameter = 117 µm, index nsphere = 1.594 at λ = 632 nm)

coated on a microscope slide and immersed in oil (index noil = 1.5915). Using the same SA-OFC

algorithm parameters outlined above, we converge upon a high-resolution sample amplitude and

phase reconstruction. A phase map containing five microspheres is in Fig. 7.10(a). We take a line

trace through one microsphere’s phase (dashed line) and plot its optical thickness h, computed from

the measured phase map ∆φ(x) via the following equation: h = λ
2π∆φ(nsphere−noil)−1. This curve

in Fig. 7.10(b) closely matches the shape and optical thickness of a perfect sphere. Fig. 7.10(d)

includes the microsphere slide’s computed aberration map, indicating successful convergence follow-

ing two observations. First, the aberration map exhibits a quite similar structure to that for the

resolution target shown in Fig. 7.9(a), apart from a constant phase offset. Second, microspheres

recovered without aberration correction in Fig. 7.9(e) do not closely match the expected thickness

profile, thus pointing towards the necessity of an aberration and misalignment correction strategy

to ensure ptychography-based recovery schemes like OFC remain quantitatively accurate.
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ture as Fig. 7.9(a), as expected for the same optical setup. (e) Phase map recovered by the OFC
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the reconstructed phase map (figure adapted from [1]).
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7.5 Discussion and Conclusion

We have demonstrated how a sequence of low-resolution images can be computationally processed

into a full-resolution amplitude and phase image, while simultaneously extracting camera aberra-

tions. While our experimental imaging setup offers proof-of-concept aberration removal from a series

of simple lenses, several steps may help move the OFC concept towards a more practical device.

First, the transmissive SLM used by this setup exhibits an imperfect pixel fill-factor, which diffracts

light incident upon the Fourier plane. An alternative optical modulator such as liquid crystal-on-

silicon can help avoid this undesired effect. Second, due to the limited sub-aperture size, required

exposure times were quite long. Moving to an alternative aperture coding strategy to increase light

throughput, while maintaining sufficient overlap, can immediately address this shortcoming. Adopt-

ing a phase-only modulation strategy is another possible direction to decrease total capture time.

Third, this work does not consider the effects of a pixel-limited optical system. A fully optimized

OFC setup will match each sub-aperture image PSF to the detector pixel size, leading to a 3X

resolution improvement above the sensor pixel count with a very simple modification to our current

hardware.

Furthermore, two primary shortcomings currently limit SA-OFC algorithm performance. First,

as already noted above, computational scaling issues require the annealing search to consider only

a small number of aberrations (i.e., Zernike coefficients) and misalignment parameters. Second,

instabilities are introduced when solving for multiple modes that may not be orthogonal. Although

each Zernike mode is mutually orthogonal and thus does not confuse the annealing’s movement

towards minimal error, the geometric alignments and aberrations are not necessarily orthogonal,

which might lead to algorithm stagnation. Future work will examine more robust methods to

search within a high-dimensional unknown parameter space. Possibilities include gradient descent

or a maximum likelihood-based solver, where the log of the aberration function presents itself as a

simple linear sum. These alternative strategies may additionally benefit from a modified aperture

coding strategy.
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Chapter 8

Diffraction tomography with
Fourier ptychography

In this chapter, we modify the Fourier ptychography reconstruction algorithm to determine the

complex index of refraction, across a three-dimensional volume, of a thick sample. We term this

procedure Fourier ptychographic tomography (FPT), which conceptually shares the sample goal as

diffraction tomography (DT). In DT, one typically illuminates a sample from a variety of direc-

tions, captures each resulting complex diffracted field with holographic techniques, and applies a

computational procedure to reconstruct the three-dimensional sample structure, assuming minimal

inter-sample scattering. With FPT, we no longer need to measure both the amplitude and phase of

the diffracted fields, but instead only their intensity. Thus, holography is not needed, and we can

now obtain limited-angle complex tomographic reconstructions with micrometer-scale resolution,

using a standard microscope.

8.1 Introduction

It is challenging to image thick samples with a standard microscope. High-resolution objective lenses

offer a shallow depth-of-field, which require one to axially scan through the sample to visualize

three-dimensional shape. Unfortunately, refocusing does not remove light from areas above and

below the plane of interest. This longstanding problem has inspired a number of solutions, the

most widespread being confocal designs, two-photon excitation methods, light sheet microscopy,

and optical coherence tomography. These above methods “gate out” light from sample areas away

from the point of interest. They offer excellent signal enhancement, especially for thick, fluorescent

samples [1].

Such gating techniques also encounter several problems. First, they typically must scan out each

image, which might require physical movement, and can be time consuming. Second, the available

signal (i.e., the number of ballistic photons) decreases exponentially with depth. To overcome this
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limit, one must use a high NA lens, which provides a proportionally smaller image field-of-view

(FOV). Finally, little light is backscattered when imaging non-fluorescent samples that are primarily

transparent, such as commonly seen in embryology, in model organisms such as zebrafish, and after

the application of recent tissue-clearing [2] and expansion [3] techniques.

Instead of capturing just the ballistic photons emerging from the sample, one might instead image

the entire optical field, including the scattered components. This avoids point scanning, and allows

one to record a very wide image FOV in a single snapshot. Several techniques have been proposed

to enable depth selectivity after full-field capture. First, one might perform optical sectioning by

capturing a focal stack, and then attempting digital deconvolution [4]. A second related example is

light-field imaging [5,6]. Point-spread function engineering is a third possibility [7], but this typically

requires a sparse sample. All three of these methods primarily operate with incoherent light, e.g.

from fluorescent samples. They are thus not ideal tools for obtaining the complex refractive index

distribution of a primarily transparent medium.

To do so, it is useful to use coherent illumination. For example, the amplitude and phase of

a digital hologram may be computationally propagated to different depths within a thick sample,

much like refocusing a microscope. However, it is still influenced by the field at out-of-focus planes.

Several techniques have improved upon depth selectivity with quasi-coherent illumination, based

upon the acquisition of multiple images [8–12].

A very useful framework to summarize how coherent light scatters through thick samples is

diffraction tomography (DT) [13]. This framework connects the optical fields that diffract from a

sample, under arbitrary illumination, to its 3D complex refractive index. In a typical DT experiment,

one illuminates a sample of interest with a series of tilted plane waves and measures the resulting

complex diffraction patterns in the far field. These measurements may then be combined with a

suitable algorithm into a tomographic reconstruction. As a synthetic aperture technique, DT comes

with the additional benefit of improving the limited resolution of an imaging element beyond its

traditional diffraction cutoff [14]. Thus, it appears a well-suited method for the study of thick,

transparent samples at high resolution.

However, as a technique that models both amplitude and phase of a coherent field, nearly all

prior implementations of DT required a reference beam and holographic measurement, or some

sort of phase-stable interference (including SLM coding strategies, e.g. as in [22]). Reference fields

require sub-micrometer stability in terms of both motion and phase drift, which has thus far limited

DT to well-controlled, customized setups. While several prior works have considered solving the

DT problem from intensity-only measurements from a theoretical perspective [23–27], none have

implemented a DT system within a standard microscope, or connected their reconstruction attempts

to ptychography.

Here, we perform DT based upon intensity images from variable LED illumination with an
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Figure 8.1: Fourier ptychographic tomography (FPT) setup. (a) A labeled diagram of the FPT
microscope, with optical fields of interest labeled. (b) Multiple images are acquired under varied
LED illumination. (c) A ptychography-inspired algorithm combines these images within a 3D k-
space representation of the complex sample of interest. (d) FPT outputs a 3D tomographic map
of the complex index of refraction of the sample. Included images are experimental measurements
(starfish embryo).

array source. Our technique, termed Fourier ptychographic tomography (FPT), captures a sequence

of images while changing the light pattern displayed on the LED array. Then, it combines these

images using a phase retrieval-based ptychographic reconstruction algorithm, which computationally

(as opposed to physically) rejects light from all areas above and below each plane of interest. FPT

also improves the lateral image resolution beyond the standard cutoff of the objective lens used for

imaging. The end result is a quantitatively accurate three-dimensional map of the complex index of

refraction of a volumetric sample, obtained directly from a sequence of standard microscope images.

8.2 Related Work

The theoretical foundations of DT were first developed by Wolf [13]. A number of implementations

based upon holography have followed. An early demonstration by Lauer is a good example [14].

Prior methods have also implemented tomography within a microscope-like setup, but required

the addition of a phase-stable reference beam. The first results operated under the projection

approximation, which models light as a ray [15]. Subsequent work has taken the effects of diffraction

into account [16–18].
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Instead of relying upon holography, this work measures intensity images and computationally

recovers the missing phase. As mentioned above, a few prior works consider the reconstruction prob-

lem from detected optical intensities, but must either move the focal plane between measurements,

or assume a sample support constraint. They do not attempt ptychographic phase retrieval. Tomo-

graphic phase retrieval based on lifting [19] is another related strategy. The connection between the

first Born approximation and phase retrieval has also been explored within the context of volume

hologram design [20].

Related efforts to reconstruct volumetric samples from wide-field intensity-only measurements

outside of the realm of DT include lensless on-chip setups [28, 29], lensless techniques that assume

an appropriate linearization [30], and methods relying upon effects like defocus (e.g., the transport

of intensity equation [31]) or spectral variations [21]. None of these techniques fit within a standard

microscope setup, nor offer the ability to simultaneously improve spatial resolution.

Using very similar hardware, Fourier ptychography (FP) [32] can simultaneously improve image

resolution and measure quantitative phase [33]. However, it is restricted to thin samples. FPT effec-

tively extends prior developments of FP into the third dimension. One recent work also examined

the problem of 3D imaging from intensities in an LED microscope [34]. This recent example borrows

its 3D reconstruction technique from the related field of 3D ptychography [35,36], where the sample

under examination is split up into a specified number of infinitesimally thin slices, and the beam

propagation method (i.e., multi-slice approximation) is used [37]. Unlike the multi-slice approach,

which works well with distinctly separated absorbing layers, FPT is best suited for continuous,

primarily transparent samples. A number of related methods to perform 3D X-ray ptychography

have also been proposed [38–40]. However, none seem to apply DT under the first Born or Ry-

tov approximation, to the best of our knowledge. A popular technique appears to use standard

2D ptychographic solvers to determine the complex field for individual projections of a slowly ro-

tated sample, which are subsequently combined using standard DT techniques, as shown with both

crystallographic [41] and unordered specimens [42].

Here, we first outline a solid foundation for the application of ptychographic phase retrieval to DT.

Unlike approaching the problem from a projection-based or multi-slice perspective, the framework

of DT (under the first Born approximation) follows directly from the scalar wave equation. It offers

a clear picture of achievable resolution in 3D, spells out sampling and data redundancy requirements

for an accurate reconstruction, and presents a clear path forward for future extensions to account

for multiple scattering [43]. Furthermore, our method does not require the arbitrary assignment

of the number slices in the 3D volume, or their location, or for us to select a particular order in

which to address each slice as iterations proceed. Instead, it simply inserts the measured 3D data

into its appropriate location in Fourier space and ensures phase consistency between each measured

image, given a sufficient amount of data redundancy (just like ptychography). From the initial
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Figure 8.2: Mathematical summary of FPT. (a) Diagram of the FPT setup in 2D. The field from the
jth LED scatters through the sample and exits its top surface as Uj(x

′). This field then propagates

to form Ûj(kx) at the microscope back focal plane, where it is band-limited by the finite microscope
aperture, a(kx). This band-limited field then propagates to the image plane, where its intensity is
sampled to form the jth image. (b) Under the first Born approximation, each detected image is the
squared magnitude of the Fourier transform of one ”shell” in (kx, kz) space. (c) By filling in this
space with a ptychographic phase retrieval algorithm, FPT reconstructs the complex values within
the finite bandpass volume. The Fourier transform of this reconstruction yields our complex sample
index of refraction map.

starting point of solving for the first term in the Born expansion, we aim this approach as a general

framework to eventually solve the challenging problem of forming tomographic maps of volumetric

samples, at sub-micrometer resolution, in the presence of significant scattering.

8.3 Methods

In this section, we develop a mathematical expression for our image measurements using the FPT

framework, and then summarize our reconstruction algorithm. We describe our setup and recon-

struction in 3D with the vector r = (rx, ry, rz) defining the sample coordinates and the vector

k = (kx, ky, kz) defining the k-space (wavevector) coordinates (see Fig. 8.1).
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8.3.1 Image formation in FPT

It is helpful to begin our discussion by introducing a quantity termed the scattering potential, which

contains the complex index of refraction of an arbitrarily thick volumetric sample:

V (r) =
k

4π

(
n2(r)− n2

b

)
. (8.1)

Here, n(r) is the spatially varying and complex refractive index profile of the sample, nb is the index

of refraction of the background (which we assume is constant), and k = 2π/λ is the wavenumber

in vaccuum. It is informative to point out that n(r) = nr(r) + ini(r), where nr is associated with

the sample’s refractive index and ni is associated with its absorptivity. We typically neglect the

dependence of n on λ since we illuminate with quasi-monochromatic light. This dependence cannot

be neglected when imaging with polychromatic light.

Next, to understand what happens to light when it passes through this volumetric sample, we

define the complex field that results from illuminating the thick sample, U(r), as a sum of two

fields: U(r) = Ui(r) + Us(r). Here, Ui(r) is the field incident upon the sample (i.e., from one LED)

and Us(r) is the resulting field that scatters off of the sample. As detailed in [13], we may insert

this decomposition into the scalar wave equation for light propagating through an inhomogeneous

medium. Using Green’s theorem, we may determine the total field scattered by the medium as,

U(r′) = Ui(r
′) +

∫
G(|r′ − r|)V (r)U(r)dr. (8.2)

Here, G(|r′ − r|) is the Green’s function connecting light scattered from various sample locations,

denoted by r, to an arbitrary location r′. V (r) is the scattering potential from Eq. 8.1. Since U(r)

is unknown at all sample locations, it is challenging to solve Eq. 8.2. Instead, it is helpful to apply

the first Born approximation, which replaces U(r) in the integrand with Ui(r). This approximation

assumes that Ui(r)� Us(r). It is the first term in the Born expansion that describes the scattering

response of an arbitrary sample [13].

Our system sequentially illuminates the sample with an LED array, which contains q = qx × qy
sources positioned a large distance l from the sample (in a uniform grid, with inter-LED spacing c, see

Fig. 8.1). It is helpful to label each LED with a 2D counter variable (jx, jy), where−qx/2 ≤ jx ≤ qx/2

and −qy/2 ≤ jy ≤ qy/2, as well as a single counter variable 1 ≤ j ≤ q. Assuming each LED acts

as a spatially coherent and quasi-monochromatic source (central wavelength λ), the incident field

takes the form of a plane wave traveling at a variable angle such that θjx = tan−1(jx · c/l) and

θjy = tan−1(jy · c/l) with respect to the x and y axes, respectively. We may express the jth field

incident upon the sample as,

U
(j)
i (r) = exp(ikj · r), (8.3)
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where kj =

(
k sin θjx, k sin θjy, k

√
1− sin2 θjx − sin2 θjy

)
is the wavevector of the jth LED plane

wave. As θjx and θjy vary, kj will always assume values along a spherical shell in 3D (kx, ky, kz)

space (i.e., the Ewald sphere), since the value of kz is a deterministic function of kx and ky.

After replacing U(r) in Eq. 8.2 with U
(j)
i (r) in Eq. 8.3, and additionally approximating the

Green’s function G as a far field response, the following relationship emerges between the scattering

potential V and the jth scattered field, Û (j)(r′), in the far field [13]:

Û (j)(r′) = exp(ikj · r′) + V̂ (k− kj) (8.4)

Here, V̂ (k) is the three-dimensional Fourier transform of V (r), which we refer to as the k-space

scattering potential, and k denotes the scattered wavevector. The total field scattered through the

sample and viewed at a distant plane, Û (j)(r′), is given as the original incident LED plane wave plus

the values along a specific manifold, or spherical “shell”, of the k-space scattering potential, here

written as V̂ (k − kj). We illustrate the geometric connection between V̂ (k) and Û (j)(r′) for a 2D

optical geometry in Fig. 8.2(b). The center of the jth shell is defined by the incident wavevector,

kj . For a given shell center, the radial distance to each value of interest is given by |k| = k (see

multi-colored arcs in Fig. 8.2(b)). As kj varies with the changing LED illumination, the shell center

shifts along a second shell with similar radius (since kj is itself constrained to lie on an Ewald sphere,

see gray circle in Fig. 8.2(b)).

The goal of DT is to determine all complex values within the volume V̂ , from a set of q scattered

fields, {Û}qj=1. It is common to measure these scattered fields holographically [14, 18]. Each 2D

holographic measurement maps to the complex values of V̂ that lie along one 2D shell. Values from

multiple measurements (i.e., the multiple shells in Fig. 8.2(b)) can be combined to form a k-space

scattering potential estimate, V̂e [44]. Nearly all stationary optical setups will yield only an estimate,

since it is challenging to measure data from the entire k-space scattering potential without rotating

the sample. Fig. 8.1(c) and Fig. 8.2(c) each display a typical measurable volume, also termed

a bandpass, from a limited-angle illumination and detection setup. Once sampled, an inverse 3D

Fourier transform of the band-limited V̂e(k) yields the desired complex scattering potential estimate,

Ve(r), from which the quantitative index of refraction is directly obtained.

In FPT, we do not measure the scattered fields holographically. Instead, we use a standard

microscope to detect image intensities and apply a ptychographic phase retrieval algorithm to solve

for the unknown complex potential. The scattered fields in Eq. 8.4 are defined at the microscope

objective back focal plane (i.e., its Fourier plane), where the coordinate r′ is conjugate to the sample

plane coordinate r. We may thus replace r′ with the 2D k-space coordinate system k2D = (kx, ky)

of the back focal plane. After neglecting the effect of the background plane wave term, jth shifted

field at our microscope back focal plane is simply Û (j)(k2D) = V̂ (k− kj).
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Each shifted scattered field is then bandlimited by the microscope aperture function, a(k2D),

before propagating to the image plane. The limited extent of a(k2D) (defined by the imaging system

NA) sets the maximum extent of each shell along kx and ky. The jth intensity image acquired by

the detector is given by the squared Fourier transform of the bandlimited field at the microscope

back focal plane:

g(x, y, j) =
∣∣∣F [V̂ (k− kj) · a(k2D)

]∣∣∣2 . (8.5)

Here, F denotes a 2D Fourier transform and we neglect the effects of magnification, for simplicity,

by assuming the image plane coordinates match the (x, y) coordinates at the sample plane. The goal

of FPT is to determine the complex 3D function V̂ (k) from the real, positive data matrix, g(x, y, j).

A final 3D Fourier transform of V̂ (k) yields the desired scattering potential, and subsequently the

refractive index distribution, of the thick sample.

8.3.2 FPT reconstruction algorithm

Eq. 8.5 closely resembles the data matrix measured by Fourier ptychography (FP). Now, however,

intensities are sampled from a volumetric function along shells in a 3D space (i.e., the curves in

Fig. 8.2). We use an iterative reconstruction procedure, mirroring that from FP [32], to “fill in”

the k-space scattering potential with data from each recorded intensity image. Just like FP needs a

certain amount of data redundancy (i.e., overlap in k-space) to recover the unknown optical phase,

FPT also requires overlap between shell regions in 3D k-space. Since our discretized k-space now has

an extra dimension, overlap is less frequent and more images are required for successful algorithm

convergence. We may encourage overlap with increased discretization, a smaller LED array pitch

and/or a larger array-sample distance along z. As we demonstrate experimentally, several hundred

images are sufficient for a complex reconstruction that offers approximately 35 unique slices along

the axial dimension.

It is important to select the correct limits and discretization of 3D k-space (i.e., the FOV and

resolution of the complex sample reconstruction). The maximum resolvable wavevector along kx

and ky is proportional to k(NAo + NAi), where NAo is the objective NA and NAi is maximum NA

of LED illumination. This lateral spatial resolution limit matches FP [45]. The maximum resolvable

wavevector range along kz is also determined as a function of the objective and illumination NA

as, kmax
z = k

(
2−

√
1−NA2

o −
√

1−NA2
i

)
. This relationship is easily derived from the geometry

of the k-space bandpass volume in Fig. 8.2, as shown in [14]. We typically specify the maximum

imaging range along the axial dimension, zmax, to equal approximately twice the expected sample

thickness. This then sets the discretization level along kz: ∆kz = 2π/zmax. The total number of

resolved slices along z is set by the ratio kmax
z /∆kz.

We now summarize the FPT reconstruction algorithm in the following 5 steps:
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1. Initialize a discrete estimate of the unknown k-space scattering potential, V̂e(r
′), selecting the

appropriate 3D array size following the discussion above. Either a single raw image may be

padded along all three dimensions and then Fourier transformed for this initialization, or the

raw intensity imagery may be used to form a refocused light field [34]. A constant matrix is

also often an adequate initialization.

2. For j = 1 to q images, compute the center coordinate, kj , and select its associated shell (radius

k, maximum width 2k ·NAo). This selection process samples a discrete 2D function, d̂j(kx, ky)

from the 3D k-space volume. The selected voxels must partially overlap with voxels from

adjacent shells. Currently, no interpolation is used to map voxels from the discrete shell to

pixels within d̂j(kx, ky).

3. Fourier transform d̂j(kx, ky) to the image plane, and constraint its amplitudes to match the

measured amplitudes from the jth image. For example, the update may take the simple form,

d′j(x, y) =
√
g(x, y, j) ·dj(x, y)/|dj(x, y)|. More advanced alternating projection-based updates

are also available [46].

4. Inverse 2D Fourier transform the image plane update, d′j(x, y), back to 2D k-space to form

d̂′j(kx, ky). Replace the voxel values of V̂e(r
′) at locations where voxel values were extracted

in step 2. Use the values of d̂′j(kx, ky) for replacement.

5. Repeat this select, update and replace process for all j = 1 to q images. This completes one

iteration of the FPT algorithm. Continue for a fixed number of iterations, or until satisfying

some error metric. At the end, 3D inverse Fourier transform V̂e(k) to recover the complex

scattering potential, Ve(r).

In practice, we also implement a pupil function recovery procedure [47] as we update each ex-

tracted shell from k-space. This allows us to simultaneously estimate and remove possible aberrations

present in the microscope back focal plane.

8.4 Results

We experimentally verify our reconstruction technique using a standard microscope outfitted with an

LED array. The microscope uses an infinity corrected objective lens (NAo = 0.4, Olympus MPLN,

20X), to image onto a digital detector containing 4.54 µm pixels (Prosilica GX 1920, 1936×1456

pixel count). The LED array contains 31 × 31 surface-mounted elements (model SMD3528, center

wavelength λ =632 nm, 4 mm LED pitch, 150 µm active area diameter). For this first demonstra-

tion, we position the LED array approximately 135 mm beneath the sample to create a maximum

illumination NA of NAi =0.41. This leads to an effective lateral NA of NAo + NAi = 0.81, and a
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Figure 8.3: FPT improves the lateral resolution of a standard microscope. (a) A single raw image of
a layer of 0.8 µm microspheres immersed in oil, where beads within each cluster are not resolved. (b)
The real component of the index of refraction from one slice out of thirty for our FPT reconstruction
(∆z = 0 slice), which clearly resolves each microsphere.

lateral resolution gain along (x, y) of slightly over a factor of 2 (from a 1.6 µm minimum resolved

spatial period in the raw images to a 0.78 µm minimum resolved spatial period in the reconstruc-

tion). The associated axial resolution is computed at 3.7 µm, and we reconstruct quantitative sample

information across a depth range of approximately zmax =110 µm (approximately 20 times larger

than the stated objective lens DOF of 5.8 µm).

For most of the reconstructions presented below, we capture n = 675 images from the same

fixed pattern of LEDs, which are then input into the FPT algorithm. We typically use the following

parameters for reconstruction: each raw image is cropped to 1000 × 1000 pixels, the reconstruction

voxel size is set at 0.39 × 0.39 × 3.7 µm3 for sampling at the Nyquist-Shannon rate, the recon-

struction array contains approximately 2100 × 2100 × 30 voxels, and the algorithm runs for 5

iterations.

8.4.1 Quantitative verification

We include three different quantitative verifications of FPT performance using polystyrene micro-

spheres as reference targets. First, we verify the ability of FPT to improve lateral image resolution.

This matches the goal of FP for thin 2D samples. Here, our sample consists of 800 nm diameter

microspheres (index of refraction ns = 1.59) immersed in oil (index of refraction no = 1.515). We

highlight a small group of these microspheres in Fig. 8.3. First, we show a single raw image in (a)

(generated from the center LED), where the individual spheres, gathered in small clusters, are not

resolved at all. Based upon the coherent Sparrow limit for resolving two points (0.68λ/NAo) this

raw image cannot resolve points that are closer than 1.1 µm. After FPT reconstruction, we obtain

the complex index of refraction in Fig. 8.3(b), where here we show the real component of the recov-

ered index. The FPT reconstruction along the z = 0 plane clearly resolves the spheres within each

cluster. This distance is close to the new expected Sparrow limit of 0.68λ/ (NAo + NAi) = 0.54µm,

thereby verifying lateral resolution performance close to, but not exactly at, the theoretical limit.
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Figure 8.4: FPT quantitatively measures the complex index of refraction of samples in 3D. (a)
Tomographic reconstruction of 12 µm microspheres immersed in oil, where we show a lateral (∆z = 0)
slice on the left, an axial (∆y = 25 µm) slice on the right, and 1D plots of the index shift along
both x and z, demonstrating quantitative performance. (b) We use the same dataset to obtain an
FP reconstruction and propagate the result along z (middle), and also perform light field refocusing
(right). Our FPT reconstruction (left) offers the closest match to the expected axial profile of a
spherical bead.
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Second, we check the quantitative accuracy of FPT by imaging microspheres that extend across

more than just a few reconstruction voxels. Fig. 8.4 displays a reconstruction of 12 µm diameter

microspheres (index of refraction ns = 1.59) immersed in oil (index of refraction no = 1.58). We use

the same data capture and post-processing steps as in Fig. 8.3. The full reconstructed scattering

potential, cropped to 200×200×15 voxels, is shown in Fig. 8.4. We again display the real (non-

absorptive) component of the recovered index across both a lateral slice (along the z = 0 plane),

a vertical slice (along the y = 25 µm plane). Detailed 1D traces along the center of both of these

slices are also included.

Three observations are noteworthy regarding this experiment. First, the measured index shift

approximately matches the expected shift of ∆n = ns − no = 0.01 across the entire bead, thus

demonstrating quantitatively accurate performance. Second, for each 1D trace through the center

of each microsphere, we would ideally expect a perfect rect function (from ∆n = 0 to ∆n = 0.01

and then back down). This is unlike 2D FP, which reconstructs the phase delay though each

sphere, leading to a parabolic function (due their varying thickness along the optical axis). While

the system can resolve an approximate step function through the center of the sphere along the

lateral (x) dimension, it is not a step function function along the axial (z) direction. This is caused

by the limited extent of the measurable volume of 3D k-space (i.e., the limited bandpass). The

“missing cone” of information, primarily surrounding the kz axis, creates a noticeably wide point-

spread function along z, which leads to its distinct sinc shape. Various methods are available to

computationally fill in the missing cone using prior sample information [48,49].

For our third observation, we compare FPT with two alternative techniques for 3D imaging in

Fig. 8.4(c). First, we use the same dataset to perform 2D FP, and then attempt to holographically

refocus its complex 2D solution. We obtain this solution using the same number of images (q =

675), with the procedure in [32], after focusing the objective lens at the axial center of the 12 µm

microspheres. The “out of focus noise” above and below the plane of the microsphere, created by

digital propagation of the complex field via the angular spectrum method, quite noticeably hides

its spherical shape. Second, we interpret the same raw image set as a light field and perform light

field refocusing [5]. While the refocused light field clearly resolves the outline of microsphere along

the z-dimension, it does not offer a quantitative picture of the sample interior, nor a measure of

its complex index of refraction. The areas above the microsphere are very bright due to its lensing

effect (i.e., the light field displays the optical intensity at each plane, and thus displays high energy

where the microsphere focuses light). Compared to these two alternatives, FPT more accurately

measures the microsphere’s ground-truth 3D shape.

For our third and final quantitative test, we verify the axial resolution of FPT along z. Here, we

prepare a sample containing two closely separated layers. Each layer contains 2 µm microspheres

(ns = 1.59) distributed across the surface of a glass slide, which we sandwich together, with oil
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Figure 8.5: Experimentally measuring the axial resolution of FPT. (a) The reconstructed sample
contains two layers of microspheres separated by a thin layer of oil. Raw images (b) focused at the
center of the two layers and (c) on the top layer do not clearly resolve overlapping microspheres (e.g.,
in red box). (d)-(e) Slices of the FPT tomographic reconstruction, showing |∆n|, clearly resolve the
two individual sphere layers.
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between (no = 1.515). The separation between the two microsphere layers, measured from the

center of each sphere along z, is 3.9 µm (i.e., the separation between the microscope slide surfaces is

5.9 µm, as diagrammed in Fig. 8.5(a)). The 3.9 µm center-to-center distance is close to the expected

axial resolution limit of 3.7 µm for the FPT microscope.

Conventional microscope images of the sample, using the center LED for illumination, are in

Fig. 8.5(b)-(c), where we focus to the center of the two layers (∆z = 0) and the top layer (∆z = 1.9

µm), in an attempt to distinguish each microsphere layer. At the top of each image, where two layers

of microspheres overlap, it is especially hard to resolve each sphere, or determine which sphere is in

a particular layer.

Next, we return the focus to the ∆z = 0 plane and implement FPT. We display three slices of

our reconstructed scattering potential in Fig. 8.5(d)-(f). Here, we show the absolute value of the

potential near the plane of the top layer, at the center, and near the plane of the bottom layer.

The originally indistinguishable spheres within the top and bottom layers are now clearly resolved

in each z-plane. Due to the system’s limited axial resolution, the reconstruction at the middle plane

(∆z = 0) still shows the presence of spheres from both the top and bottom layers. Comparing

Fig. 8.5(b)-(c) with Fig. 8.5(e)-(f) clearly maintains that the axial resolution of FPT is sharper than

manual refocusing. Not only is each layer clearly distinguishable (as predicted theoretically), but

we now also have quantitative information about the complex refractive index.

8.4.2 Biological experiments

Next, we use FPT to reconstruct the 3D complex refractive index distribution of two different thick,

biological specimens. First, we tomographically reconstruct a 3D volume containing a trichinella

spiralis parasite (Fig. 8.6). Here, since the worm extends along a larger distance than the width of

our detector, we performed FPT twice, shifting the FOV between to capture the left and right side

of the worm with 10% overlap between. We then merged each tomographic reconstruction together

with a simple averaging operation (matching that from FP [32]). The total imaging volume here is

0.8 mm×0.4 mm×110 µm. Note that if we were to replace our current digital detector with one that

occupied the entire microscope FOV, we would increase our fixed imaging volume to 2.2 mm×2.2

mm×110 µm, and form tomograms that each contain approximately 109 voxels.

We display a thresholded 3D scattering potential reconstruction of the parasite at the top of

Fig. 8.6 (real component, threshold applied at Re[∆n] > 0.7 after |∆n| normalized to 1, under-

sampled for clarity). Its 3D curved trajectory is especially clear in the 3 separate z-slices of the

reconstructed tomogram in Fig. 8.6(a). The two downward bends in the parasite body are lower

than the upward bend in the middle, as well as at its front and back ends. It is very challenging to re-

solve these depth-dependent sample features by simply refocusing a standard microscope. Fig. 8.6(b)

displays such an attempt, where the same three z planes are brought into focus manually. Since
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Figure 8.6: Tomographic reconstruction of a trichinella spiralis parasite. (a) The worm’s curved
trajectory is clearly resolved within the various z-planes. (b) Refocusing the same distance to each
respective plane does not clearly distinguish each in-focus worm segment (marked by white arrows).
Since the worm is primarily transparent, in-focus worm sections exhibit minimal intensity contrast,
presenting significant challenges for segmentation. FPT, on the other hand, exhibits maximal con-
trast at each voxel containing the worm.
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the sample is primarily transparent, in-focus areas in each standard image actually exhibit minimal

contrast (see marked arrows in Fig. 8.6(b)), making any attempt at depth segmentation (e.g., de-

convolution of a focal stack [4]) nearly impossible. Since FPT is a phase contrast technique, points

along the parasite offer maximal contrast in each respective voxel, enabling direct segmentation via

thresholding, as achieved in the top plot.

For our second 3D biological example, we tomographically reconstruct a starfish embryo at its

larvae stage (Fig. 8.7). Here, we again show three different closely spaced z-slices of the reconstructed

scattering potential (Re(∆n), no thresholding applied). Each z-slice contains sample features that

are not present in the adjacent z-slices. For example, the large oval structure in the upper left of the

∆z = 0 plane, which is a developing stomach, nearly completely disappears in the ∆z = −3.3 µm

plane. Now at this z-slice, however, small developmental structures appear in the lower right (marked

as feature 1). Both the particular plane of the developing stomach and even the presence of feature

1 are completely missing from the refocused images. This is due to the inability of the standard

microscope to segment each particular plane of interest, the inability to accurately reconstruct

transparent structures without a phase contrast mechanism, and an inferior lateral (x, y) resolution

with respect to FPT.

8.5 Conclusion

The FPT method performs diffraction tomography using intensity measurements, captured with a

standard microscope and an LED illuminator. Its reconstruction algorithm extends previous work

with FP to now operate in 3D. The current system offers a lateral resolution of approximately 400

nm (550 nm at the Sparrow limit, 800 nm full period) and an axial resolution of 3.7 µm at the

Nyquist-Shannon sampling limit. The maximum axial extent attempted thus far was 110 µm along

z, which leads to approximately one giga-voxel of complex sampling points per acquisition if imaging

over the total microscope FOV (2.2 × 2.2 mm). We demonstrated quantitative measurement of the

real and imaginary terms of the complex index of refraction within thick biological specimens.

We believe that FPT can be significantly improved with additional experimental development.

First, an improved LED array geometry will enable a higher angle of illumination to improve res-

olution. Second, we set the number of captured images here to match previously determined data

redundancy requirements [50]. However, we have observed that reconstructions are successful with

much fewer images than otherwise expected. Along with using a multiplexed illumination strat-

egy [51], this may help significantly speed up tomogram capture time. Third, we set our reconstruc-

tion range along the z-axis somewhat arbitrarily at 110 µm. We expect the ability to further extend

this axial range in future setups.

Alternative computational approaches may also improve FPT. Here, we list a number of possible
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Figure 8.7: 3D reconstruction of a starfish embryo at the larvae stage. (a) Three different axial
planes of the FPT tomogram show significantly different features within the larvae. For example,
the protocoel is completely missing from the ∆z = −3.7 µm plane. Likewise, the developmental
“feature 1” (see lower right) is only visible in the ∆z = −3.7 µm plane. (b) This type of axial
information, and even certain structures (like feature 1 and feature 2, marked in (a)) are completely
missing from standard microscope images after manually refocusing to each plane of interest.
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directions. First, we adopted the well-known alternating projections method (i.e., the ePIE algo-

rithm [52]) for ptychographic update. Other methods, such as convex-based approaches [53], offer

better performance in the presence of noise. Second, alternative approximations are also available

to solve the first Born approximation [54]. Third, a big detriment to resolution is currently the

missing cone in 3D k-space, and various methods are available to fill this cone in, e.g., by assuming

the sample is positive-only, sparse, or of a finite spatial support [48, 49]. Finally, there are already

suggested methods to solve for the full Born series, which take into account the effects of multiple

scattering [43]. Connections between this type of multiple scattering solver, recent methods applying

the multi-slice approximation [34,55], and FPT may lead to successful reconstruction of increasingly

turbid samples.
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