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ABSTRACT

The use of transmission matrices and lumped parameter models
for descri;bing continuous systems is the subject of this study. Non-
uniform continuous systems which play important roles in practical
vibration problems, e.g., torsional oscillations in Bars, transverse
‘bending vibrations of beams, etc., are of primary importance.

A new approach for deriving closed form transmission matrices
is applied to several classes of non-uniform continuous segments of
one dimensional and beam systems. A power series expansion method
is presented for determining approximate transmission matrices of
any order for segments of non-uniform systems whose solutionls can
not be found in closed form. This direct series method is shown to
give results comparable to those of the improved lumped parameter
models for one dimensional systems.

Four types of lumped parameter models are evaluated on the
basis of the uniform continuous one dimensional system by comparing
the behavior of the fréquency root errors. The lumped parameter
models which are based upon a close fit to the low frequency approxima-
tion of thé exact transmission matrix, at the segment level, are shown’
to be superior. On this basis an improved lumped parameter model is

) recommended for approximatiné non-uniform segments. This new

- model is- compared to a uniform segment approximation and error
curves are presented for systems whose areas vary quadratically and
lineafly. The effect of vé.rying segment lengths is investigated for one

dimensional systems and results indicate very little improvement in
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comparison to the use of equal length segments. For purposes of
completeness, a brief summary of various lumped parameter models
and other techniques which have préviously been used to approximate

the uniform Bernoulli-Euler beam is given.
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NOMENCLATURE

matrix (n X n) which characterizes a system
cross sectional area expressed as a function of x

cross sectional area at the input end of a segment

cross sectional area at the output end of a segment

Np -
width of a rectangular cross section

variable used to control segment lengths

constants in the transmission matrix for a beam
i, k=1,2,3;4

velocity of sound

ith differential operator with the independent variable x

transmission matrix (n X n) for a uniform continuous system
Young's modulus
beam bending stiffness expressed as a function of x

beam bending stiffness at the input end of a segment

non-dimensional frequency root error for the vth mode with
N segments

force

1/¢

Ik

shearing modulus

height of a rectangular cross section

=y
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Y (x)

€..
1)
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modified Bessel function of the first kind, of order =n
Bessel function of the first kind, or order n
modified Bessel function of the second kind, of order n
Jth 4 ;
i spring constant

transmission matrix (n X n) for lumped parameter models
iength of an element composéd of N segments
length of one segment (or increment)

transmission matrix (n X n) derived by power series expan-~
sion method '

point mass (except where noted in Appendix D)

number of segments

constant for controlling cross sectional variation of beams
constant for controlling cross sectional area variation

radius qf circular cross sections

radius of gyration

‘transmission matrix (n X n) for non-uniform continuous systems
rectilinear displacement

rectilinear velocity

Bessel functions of the second kind, of order n

admittance type element in the [A] matrix expressed as
function of x

B
w V p/E
matrix norm

error term for matrix norm
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subdividing parameter for lumped parameter models
slope parameter

mass density

stress (force/area)

Bl

s rpA
2[£)l8) [ er]
mode number

state vector (column vector)

circular frequency
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CHAPTER 1

INTRODUCTION

A general theory for vibration problems involving continuous
systems has existed for many years. However, the number of prob-
lems which are exactly solvable analytically is very small, e.g.,
uniform and some simple non-uniform systems. Therefore, other
techniques, which give approximate solutions to continuous systems,
have been extensively investigated. These methods provide solutions
to many practical vibration problems which do not fit into the category
of being exactly solvable,.

One method, which has been especially emphasized since the
advent of large computers, is the lumped parameter approximation
whereby the continuum is replaced by a finite N degree of freedom
system composed of lumped elements, i.e., massless springs, point
masses, etc. This technique was first applied by Lagrange[ 1] and

[2] [3]

Rayleigh in studying the vibrating string. Duncan"™’, using a
lumped parameter model attributed to Lagrange, was one of the first
to study the behavior of errors resulting from lumped parameter ap-

proximations. Livesley[ 4], Gladwell[ 5] » and others[ 6,7,8]

have
evaluated lumped parameter approximations of uniform continuous
beams using many different models.

Transmission matrices, which have been applied to mechani-
cal vibration problems only in recent years, provide another approach

for describing continuous systems in either an exact or approximate

manner. The earliest application of this method was the steady state
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description of four terminal electrical netwérks in which case the
method is commonly designated "four pole parameters". Molloy[g]
was one of the first to systematically apply four pole parameters to .
acoustical, mechanical, and electromechanical vibration problems.
Pestel and Leckie[ 10] have catalogﬁed transmission matrices for
uniform elastomechanical elements up to twelfth order. Rubin[ 11]
has extended the application of transmission matrices through a

completely general treatment.

1.1 Contents of Thesis

The objective of the present study is to investigate more
thoroughly several aspects of the application of lumped parameter
and transmission matrix approaches to vibration problems, in par-
ticular, those problems which involve no'n-unifo‘rm continuous
systems., |

In Chapter II transmission matrices é.nd their derivati;)n are
briefly discussed.

One dimensional systems are treated in Chapter III. Results
from this chapter can be applied to the following practical problems:
.a.coustical oscillations in air conditioning ducts, torsional oscilla-
tions in gear trains, propagating wave effects in vibration isolators,
and longitudinal vibration of shell sections in missilés. A recent
example of the last problem is the unstable oscillation resulting from
interaction between a longitudinal structure mode of vibration and

the propulsion system which occurred in several Gemini missile
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ﬂi‘ghts[ 121, Models based on the one dimensional wave equation
similar to those to be treated in Chapter IIIl were used to describe
structural components and fluid lines in the analysis of this missile
vibration problem: '

Chapter III also contains a presentation of transmission
matrices for three classes of non-uniform continuous cross sections
and the transmission matrix technique is used to evaluate the error
behavior of four types of lumped lparameter models used tlo approxi-
mate the urﬁform continuous system. A new lumped parameter model
is proposed for non-uniform systems and for one particular cése,
the linear taper model, the lumped parameters are defined. In addi-
tion, the effect of varying segment lengths is studied.

Chapter IV includes a summary of various lumped parameter
models which have beenJused to approximate uniform beams. Trans-
mission matrices for three groups of non-uniform continuous beams
are dlerived.'

A power series expansion method for obtaining transmission
matrices which are low frequency approximations for non-uniform
continuous systems of any order is presented in Chapter V,

Finally a sumfnary' of the work presented herein, and appro-

priate conclusions are contained in Chapter VI,



CHAPTER II

TRANSMISSION MATRICES

2.1 Description

The transmission matrix describes the manner in which
siﬁusoidal forces and motions are transmitted through a linear elastic
element dﬁring steady state conditions. All consideration of the dif-
ferential equations describing the element is contained within the
derivation of the transmission matrix and the approach is equally
applicable to lumped parameter or continuous systéms.

A general transmission element is shown in Fig. 2.1.1. The
state vector, denoted by {, is a column véctor consisting of forces
and velocities or displacements. The transmission matrix relates
the state vector at the input to that at the output of the element. The

form of the transmission matrix which will be used herein is:

{W)

input = (£.1.1)

[T1{4},

utput

where [T] is commonly designated the "forward transmission
matrix",. The sign convention to be used, see arrows in Fig., £&,1.1,
has positive directions for forces applied by the output the same as
those for forces applied to the input.

When a line of elements or segments are-in an end-to-end or
chain like arrangement, which is the situation for which this approach
is best suited, the transmission matrices for the individual segment

are:
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W =176
fp r=10T,1{4}

NS B & NS R
and for the total chain of segments:

W=l T] .o s Ty M) (2.1.2

This simple result is obtained because the state vector at the input of
any given segment is equal 1;0 the state vector delivered by the output
of the preceding segment. This result will be used in the following
chapters to obtain the overall transmission matrix for a system com-
posed of N segments. |
Another way to write the state Vectovr and transmis sibn matrix

is in partitioned form where the state vector becomes:

F
W} ={_EF (2.1.3)

and the transmission matrix is:

[T] = [—‘}LP-J (2.1.4)
« | G | D : :
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For one dimensional systems, e.g., the longitudinally vibrating rod,
Fp is the force, Vp is the velocity, and the submatrices in
Eq. (2.1.4) reduce to scalar quantities. For the simple transverse

bending beam, however, the transmission matrix is fourth-order,

JV shear force

)=
2" \M bending moment
[ »
W rectilinear velocity
)= |
\c[) rotational velocity 5

and the submatrices in Eq. (2.1.4) are 2 X 2 ﬁatrices. Pestel and
Leckie[ 9] have catalogued transmission matrices for various uni-
form elastomechanical elements which have transmission matrices
up to twelfth-order (12 X 12).

The eiements of the transmission matrix are not independent ’
and as a consequence of reciprocity it has been shown[ 11] that the

square submatrices of Eq. (2.1.4) must satisfy:

[A]'[D]- [c]"[B]=[1] (2.1.5)

where:
: \
[I] = the identity matrix, and

& |

[A = the matrix transpose of [A]

Equation (2.1.5) provides an excellent means of checking the validity
of derivations of transmission matrices.

Normal mode frequencies, which will be used to evaluate
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lumped Vpa.rameter models in Chapter III, are important character-
istics of undamped linear elastic systems which can be obtained
through the use of transmission matrices. . The transmission matrix,
by definition, is independent of boundary conditions and is a function
of fréquenéy, w. Upon substituting the appropriate boundary con-
ditions for a system into the input and output state vectors of Eq.
(2.1.1), a frequency determinant can be obtained. A simply sup~
ported bea;m, for example, ‘With the boundary conditions included in

the state vectors is described by:

Vv [ i L'
1 (o]

§ Y| &, 0

0 \ 1 0

qSl L A ¢0

which gives:

" y %% 1.

o=V, T qSOTM 4 , ( 6)
= y ‘ " y Z 3

0 v,T, + <;SOT34 (2: 1.7

For a nontrivial solution of Egs. (2. 1.6) and (2.1.7) the determinant

of the Tij coefficients must be zero, that is,

Other boundary conditions give similar second-order determinants
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which define the natural frequencies. To obtain normal mode fre-
quencies of one dimensional systems which are described by second-
order (2 X 2) ltransmission matrices the above process reduces to
finding zeros of single Tij elements, e.g., the natural frequencies
of a free-free rod are given by the zeros of the le term.

Having determined the natural frequencies, the corresponding
normal mode shapes can also be obtained. This is accomplished by
relating the nonzero components of the input state vector to one
reference component. Then the state vectors are determined at
other points- through the system, in terms: of the one _referenc‘e com-
ponent, by applying the transmission matrix which relates the input
‘to the point in question. The determination of normal mode fréquen-.
cies and mode shapes in this manner has been demonstrated by
Molloy[g] ,7 Pestel and Leckie[ 10] " Rubin[ 13] , and others in thei.r
application of transmission matrices to mechanical vibration prc:;b- '

‘lems.

2.2 Direct Derivation of Transmission Matrices

Méthods used in finding transmission matrices, in the past,
have varied according to the preferences of the users. These meth-
ods have proven satisfactory for simple lumped parameter or lower-
order uniforin continuous systems, but become cumbersome when
used for non-uﬁiform and higher-order systems because of the
[14]

required algebraic manipulations. Recertly, however, Rubin

has formulated a systematic approach which eliminates much of the
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‘algebra and results directly in differential equations for the elements
of the transmission matrix. This approach will be summarized in
this section and its application demonstrated in Appendices A, B,

and D,
[10]

In general, the state vector is usually known to satisfy

a differential equation of the form:
o W= [AG) {6} . * {2,2,1)

The [A(x)] matrix is entirely determined by the differential equa-
' tions which govern a dx increment of the system (see Appendix A

or D). By definition of the forward transmission matrix:
W)} = [TG) I {wi=)} . (2.2.2)
Differen;ciating ‘Eq_. (2. 2. 2) with respect to x gives:
0= [T )W} + [T6)] Wi} . (2.2.3)

S ! ‘
However, '{q,t(x)} can be replaced using Eq. (2.2.1); hence, reduc-
irng Eq. (2.2.3) to:

0 = [T'6) 1Ly} + [ T6e) I AGx) () )

which upon elimination of {{(x)} gives:

= [Te)] = -[TEI[AG)] . (2.2.4)

Therefore, the transmission matrix is given directly by Eq. (2. 2.4).

By shrinking Ax — 0 in Eq. (2.2.2) the first initial condition
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becomes:

[T(0)] =I , the identity matrix. _{2.2.5)
Substituting this result into Eq. (2.2.4) gives:
) ]
[T (0)] = ~[A(O)] . : (2.2.6)

D'J'.ffere‘ntiakting Eq. (2.2.4) with respect to x and using Egs. (2.2.5)
and (2. 2. 6) results in [T”(O)]. This proéess can be continued to
obtain as many initial conditions as required to ‘evaluatga constants
which arise in solving Eq. (2.2.4); hence, the formulation of the

derivation is complete.
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CHAPTER III
SYSTEMS GOVERNED BY THE

ONE DIMENSIONAL WAVE EQUATION

3.1 Comparison of the Different Physical Systems

The one-dimensional wave equation mathematiéally describes
a group of uniform continuous systems. The following three vibra-
tion problems have this identical mathematical formulation with
suitable interpretation of properties.

1. longitudinal vibration of rods,

2. £orsional vibration of bars, and

3. 'acoustical vibrations in tubes.

Anothe.r system belonging to this category is the electrical
transmission line, which has been treated rather extensively by

Pipes [15,16,17].

The transmission line will not be specifically in-
cluded herein, but some of the resulting transmission matrices and
lumped parametez.c' models could be directly applied to this prqbl'em.
When considering the cross sectional properties of the above
-systems to be non-uniformly distributed, the governing differential
equations in each case are all similar; and each system under steady-

state sinusodial conditions is described by a similar second-order

(2X 2) transmission matrix of the following form.

i i
11 12

v = ¥ | (3.1.1)

z iy
21 22
input output
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In each case the transmission matrix is determined by the same

governing fnatrix, [A], as follows:

dtE] .
= == [T][A] | (B 1 2)
where
0 -Z(x)
[A] =

~Y(x) 0

Table (3.1.A) compares the Z(x) and the Y(x) functions and the
non-dimensional frequency constant for the systems of interest. The
differential equationé used to formulate the governing matrix, [A],
are given in Appendix A. For conciseness 6nly the case of the longi-
tudinal rod will be used throughout this work. However, the other
cases follow immediately by interchanging the symbols as shown in
Table (3.1.4A); thqs, rendering the transmission matrices and lumpéd
parameter models to follow to be applicable in describing all three
systems. |
Attention should be given to the assumptions used in deriving
the governing [A] matrix. These are listed for each case in Ap-
pendix A, and in general are those used in the most elementary
theory; i.e., pla.ne. sections remain ‘plane, density and .elastic_
properties remain constant, etc. Transmission matrices can be
used equally well with higher order theory. The intent here is to

present some new transmission matrices of general value for



TABLE 3.1.A

Comparison of Physical Properties for One Dimensional Systems

) Non-Dimensional - @
Vibrating System Freq. Parameter State Vector Z(x) Y (%)
F| Force
3 : _ = s iw
Longitudinal Bar B = wL \/p/E i = iwp A(x) EAG)
v | Velocity
(rectilinear) -
T| Torque
Torsional Rod B =wL \/p/G e , iwpT2 A(x) ____12‘*’___._
: 0| Velocity GroA(x)
(angular)
F}l Force
Acoustical Tube = —O%J y = ‘ iwp A(x) ——1:3—
» v | Velocity Po© Azl
(particle)

e
>

See Appendix A for details of formulation,
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des cribing non-uniform systems and in particular to use them to
improve lumped parameter modeling of continuous systems. These

principles can be sufficiently demonstrated using the elementary theory.

3.2 Transmission Matrices for Continuous Systems

The parameter describing the spatial dependence in the
governing matrix, [A], is the area, A(x). Toobtain a transmis-
sion matrix useful for describing many non-uniform systems requires
selection of a general function to represent the variable area. This
function must be general to represent many useful cases but of a

form which will lead to clo'sed form solutions. One such function is:
2p-1
A(x) = A_(1+ax) P (3.2.1)
where

some suitable constant and

1"

a

1

P = an integer or non-integer.

Another useful function for exponentially tapered sections is:

z(xfxo)
Ax) = Aoe (3, 2. 2)

- where

X = some suitable constant.

Equation (3. 2.1) with a convenient coordinate transformation
leads to differential equations for the transmission matrix elements

of the following form:
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P il b il 4 R BD. = )
dx? dx 1]

It is well known that this equation with variable coefficients has solu-
tions in terms of Bessel functions. The exponential taper leads to

second-order differential equations with constaht coefficients of the

form:
A= 4T, , '
—l b g 2 4+ pT,. =0
dxc? dx ij

which can be easily solved.

Using the two area functions given in Eq. (3.2.1) and (3. 2. 2)
and following the basic approach outlined in Section 2.2, general
| transmission matrices can be derived for a broad group of non-
uniform continuous elements. The derivation of the general matrix 7 )
elements for three specific cases (p = an integer, p # an integer, and
the exponential taper) is given in Appendix B. The reéulting trans- :

mission matrices for these three cases are given below:

Case I Alx) = Ao(l-i-ax)z e p =0 or an integer
T =[5 T Ly (BT (ep)-T_ (BT _(gh)
11 £ X -p 1-P -p 1=P g
EA
_ B o 2 3
L e m[—z——}(—%—) = {YP(fB)Jp(gB)-Jp(fﬁ)Yp(gﬁ)}
"

11

iw | 2 P '
T, () = - —B—[Tof](%) 5 O UPT,_ (2B oY, (s}

EERR

T, W p_l(

H-.[qq

1
i

£0)7(gP)-T_ (EBY_(gF))
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X = 2/7wfp independent of ''p'" in this case.

Case II A(x) = Ao(1+a.:»c)?'p"1 P # 0 or an integer

1-p .
. _gf) )ic bptey _(eP+_ (GBI (gh))

‘ B E.Ao g_p.l{
T 5 )~ &) S U UPI_(eh-3_ (07 (eP))

e T 2 Y ,
T (2) = - ‘E[KDTJ 4 IR G LN L)

P g

= B (gP+T,_ (BT (g6)}

o o~ -T—r-fz—ﬁ- sin (p)

In Cases I and II the following definitions are appropriate (see Fig.

8: 2. 1)
' \/AE =/ AO
£ = a slope parameter = ——————
AO
Ao = area at the input end of the element
A, = area at the output end of the element
f=1f ; a=§/1 ; g=£+41 ; and Powlyp/B .

For systems with circular cross sections:
G 5 (ri- I-o)/ro
and r, are the radii at the input and output ends,

where 1
le}

respectively.
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2(x/x )
Case III Alx) = A e &
-2/x
T ({)=e ° (cos('y.ﬂ) + sin(y4).
11 . n
. ﬂlxo 2
T (4) =- lz (AOE)(_YI_) sin{y?)
-0 /XO 2
T, £y = - em pA;v ) sin(y{)
L/x
T22 (£) = e ~ ( cos(yL) - _ leco sin(yﬂ))
where

vy =\/B% = 1/x

2
1 o]
and the other terms are identical to those used in Cases II and III.

This element exhibits a cut-off frequency, ﬁlz - l/xoz. When

}32< 1/x§ , oscillations do not occur in the element; and when
1 :

B2> 1/xoz, mechanical oscillations do exist. Thus, this element be-
4

haves as a high pass mechanical filter.

3.3 Investigation of LLumped Parameter Models

The determination of eigenvalues and eigenfunctions for con-
tinuous systems is generally a difficult problem. The approach of
using transmission matrices to piécewise describe a continuous
system has been previousls} discﬁssed in Section 2.1, and a general

group of transmission matrices for the non-uniform, one dimensional
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systems has been given in Section 3.2. Another more commonly used'
approach is to replace the continuum by a discre;ce N degree of free-
dom system composed of lumped parameters. It has been ShOWn[ z]
that the ‘behavior of the discrete N degree system approaches that of
the continuous system in the limit as N — «, and it is on this basis
that this method is justified. ﬁowever, the degrée to which the finite-
system approximates the continuous is often uncertain even though this
technique is widely used, The main goal in this and the following
sections is to formulate some generalizations as to which lumped
parameter models- should be used, how they should be employed, and
what accuracies can be expected'upon ﬁsing the mo&els.

Three models that have been used previously are gi\}én in
Fig. (3.3.1). In the first model, which was firstusedby Rayieigh[ 2],
the total mass.of each of the N increments into which the rod has
been segmented is further divided into two equal masses concentrated
at each end c;f a spring which represents the stiffiness of the increment.
The second model, which has been attributed in the literature[ls] to
Lagrange, has been investigated to some extent by Duncan[ 2] and is
some times referred to as Duncan's model. This model has the mass
of the iﬁcrement concentrated at the center a1_;1d equal springs on each
side. The third model, which is used to a large extent in practice, has
the mass conéentratgd at one end of a spring.

To critically examine the usefulness of these models requires
a mathematical approach which allows the formulation of the problem

on the incremental level and provides a means of evaluating the ove ]l
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system representation as a function of the number of increments., A
method commonly used by some is the finite difference approach. The
approach used herein is that> of the transmission matri#, which was
chosen for the following feasons:
1. This method allows corﬁplete freedom to choose
incremental models in any form.
2, This method provides a means of determining
how well the models rep}_resen’c the continuum at
the incremental level. Also, the accuracy of
representing a total element by N increments
of a given model can be evaluated.
3. The method allows for an analytic treatment of
uniform systems and is easily extended to include

non-uniform systems.

3.3.1 Model Comparison on the Incremental Level

The first comparison for the mod.els shown in Fig., (3.3.1) is
to determine how well fhe transmission matrix for each agrees with
that of the continuous uniform system for one increment of length 2
This should give some insight into what model will best describe an
overall continuous uniform element composed of N increments.
Using the sta;‘.e vector forﬁ involving force and displacement, the
transmission matrix for the continuous uniform rod is (see

Appendix B): -



P

A E
cos(p) - 3 Bsin(p)
[E]= ’ | » B8 1)
‘A,(Z o SIﬁn(ﬁ) cos (B)
L o ' .

This represents the exact description cf a uniform continuous incre-
mental element of length £ (considering the elementary theory being
used). The transmission matrices for the three lumped parameter

models are:

2 2 4
. - Mo+ T
[Ll] = - : - (8.3.3
: 1 1 - Mw?
_ 4 .
1w E - Ma?
2k
[LZJ = (3.3.3)
I Mw? 1 - Muw
k 4?2 2k
L., -t
1 -Mw?
[1,]= , ‘ ; - (3.3.4)
_l_ 1 - Mw
k k
L i

where [Li] is the matrix for the { model (see Fig. 3.3.1).
Using the relationships k = AE/Z, B = wly\/ p/E, B = {AE/28 and

.M =Apl, expressions (3.3.2), (3.3.3), and (3. 3.4) can be written in
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terms of the constant z and the frequency parameter f.

1-prr2 -z (et g4
[z 1= . - {3.3,5)
1
] P 1 @2
1-p*/2 -z B*
[L1=] (3.3.6)
Lo-pya 1-pyz |
b 0 =
1 —zoﬁz _
(L 1= | ; {3.3,7)
L
= O et

To facilitate a comparison between the elements of the lumped para-
meter matrices and those of the matrix for the continuous element,
series expansions for the trigonometric functions are used. The Ei'

elements from Eq. (3.3.1) then become:

E_ =1- g2+ Bt - 0P e & m =

2 .4 6 |
E_=-z (8" - g%6+0(p% - - - -}
B =1/z,{1 - p/6+B*120 - o) - - - )
B =1 w824 B928 - 0% e wn

22

A comparison of matrix terms indicates that the L;. terms of model
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(a) match the Eij terms to almost the same degree as those of model
(b). With models (a) and (b) the Ln and Lzz elements are identical-
ly equal to the first two terms in the series for E11 and Ezz' In
model (a) the le term is almost the same as the two first terms in
E12 , and L21 is equal only to the order unity term of Ezl' the term
of O(P*) is not present in ]'_,21 . In model (b).‘nearly the reverse of
rhodel {a) is true. The L21 term of model (b) is nearly equal to the
first two terms of Ez1 ,. but the le term includes only the first
term of the series for E1z’ le in model (b) does not have any O(p%)
te;‘m; Model (c) displays each of the deficiencies shown by models (a)
and (b) when it is compared to Eij . Also Ln of the mat_rix for
model (c) has only the first term of the.series for Eu and no O(p?)
term. From this comparison at the incremental level it appears
natural thé.t model (c¢) would be inferior to models (a) and (b) when N
increments are used to approximate a continuous element. This con-
clusion does hold true in most cases and some illustrative results are
shown in Figs. (3. 3. 3) and (3. 3.4). '
The comparison between the Lij and Eij elements indicates.
why the finite lumped parameter system is dnly a low frequency ap-
proximation to the continuous system. | The Lij expressions,
particularly for models (a) and (B), are similar to the first two terms
of the series representations of the Eij elements. If B, which is
proportional to the product of frequency and length of the increment,

is small, then these first two terms are good approximations to the

trigonometric functions. This then implies that for good épproxima-—

tion the frequency must be small or the length of the increment short.
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This same argument remains true when describing the tofal element
because the transmission matrix for the total element is just the
product of N incremental matrices. Although it is arbitrary how
small P must be to achieve good approximations from a few terms of
the trigonometric éeries, it follows directly that the approximations
become poorer as the value of § increases; assuming the ﬁumber of
increments and the length remain constant. Thus, 1ﬁmped parameter

approximations are best for small values of 3 or low frequencies.

3.3.2 Model Comparison on the Basis of Total Element Representation

The conclusion obtained above in the incremental comparison
was that models (a) and (b) should be superior to model {c} in describ- |
ing an element c;)mposed of N such increments. The three models
will now be compared on the basis of representing an entire uniform
element. Figure (3.3, 2) depicts an element subdivided into N equal
length increments, each of which will be described by the appropriate
transmission matrix aé ‘given in Egs. (3.3.2), (3.3.3), or (3.3.4).
ﬁowever, to determine which model best approximates the dynamic
behavior of the total element requires the adoption of some Qualitative
basis of comparison. Two criteria which are motivated by the method
used herein and the classical method of superposition of normal modes
are:

1. Compare the overall transmission matrix,

which represents the N cascaded incremental

matrices, to that for the continuous element.
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The model whose matrix best approximates the
matrix of the continuum is the better model.

2, The model that produces eigenvalues (natural

frequencies) clésest to those of the continuous

elemenf with specific boundary conditipns of

free or fixed ends is the better model.
In -the fcl)llowing it will be shown that the second choice is the more
acceptable criterion.

The first step in evaluating the overall element representation
by any of the models with either of the above ériterion is to obtain the
transmission matrix for the total element. For the uniform system
this matrix is given by the product of N equal incremental trans-

mission matrices.

or

A square matrix can be raised to the Nth power by employing the

[19]

Cayley Hamilton theorem which states that any square matrix

[M] satisfies its own characteristic equation. A direct result of this

is that [M]N for any (n Xn) matrix can be expressed as a polynomi-

al P(M) of order n-1.
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In this case the matrix [M] is the transmission matrix [L]

and the order is two (n = 2). Therefore

-[L]N=CO[I]+CI[L] (3.3.8)
. . o .

N =G, +C A (3.3.9)

AL =G +C M (3.3.10)
2 o 1 2

where -7\1 and XZ' are the characteristic values of [L]. Solving

Egs. (3.3.9) and (3.3.10) for the constants Cé and "’ C1 gives:

55 b
G, =gt £ (8.3.11)
2 .1
and
gk %
C = e i (3.3.12)
1 2

The characteristic values of the incremental transmission matrix are

defined by:

(L -\) L
11 12

Det. =0 or

L 5 PR U
21 22

A= -kl 2L 940 L -0 L. 3eD
11 22 11 22 12 21

It is well known that the second-order transmission matrix has the

following property (see Eq. 2.1, 5):
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L L -L L =Det. [L. =1
11 22 12 21 1)

Thefefore,

i %%} T 41, T8 '
\ = ooz 1 22f 4
1,2 2 2

From Egs. (3.3.5), (3.3.6) and (3. 3.7):

- 2
('L“+Lza)/2 =1-p%/2

for all three models; hence,

b =D +iD
1,2 1 2

where
D = (1-p?/2) and D2=~-\/(i3?‘-[34‘/4) for 0<PBg2

Writing N in polar form gives

A =?\'e_le and )\Z ='7\\’e

. (3.3.13)

where
N = Df+ D; =1 and

:tan—l(D 7
_ 2

By combining Eqgs. (3.3.11), (3.3.12), and (3. 3.13) constants CO and
C1 can be determined, whereby [L ] is known. Denoting the ele-

ments from the transmission matzix to the N power as L.. gives:
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Lll sin(N@)-sin(N-1)6

Lu: T (3.3.14)
_ lesin(NO)
le e (3.3.15)
_ L“si (N6)
LZl = '—"""'m—"—”" ‘ (3. 3. 16)
L sin(NO)-sin(N-1)6 '
B = k= g ‘ ; (3.3 1%
22 sin 0

At the outset of the investigation the first criterion based on
the matrix comparison appeared to offer attractive possibilities,
First, the transmission matrix was available because it was the basic
technique being used. Secondly, the matrix is independent of any
boundary conditions on the element. However, this criterion is still
not completely defined because there are several ways of comparing
matrices. One possibility, which seems meaningful here, is to com-

pare matrix norms. The definition of matrix norm used is,

Matrix Norm = e(L) = E o s il
N
1]

which is a measure of the total absolute difference between the ele-

ments of the two matrices being coﬁpared. The norm does have the
advantage of independence of boundary conditions, but it also has the
disadvantage of not being independent of cross sectional properties of

the increment. Note that in Eqs.(3.3.15) and (3. 3. 16) E1z and TJZI
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are directly proportional to le and L21- » respectively. These
terms, however, are directly and inversely proportional to (AE/%),
respecfively. Therefore, the mégnitude of (AE/Z) will govern to
some degree the importance of the ’1’712 and I_:ZI terms in the norm.
Because of this difficulty the norm criterion was discarded; more-
over, no other suitable matrix comparison was found and the second
criterion of the non-dimensional frequency root comparison, which is
independent of (AE/{), was uséd.

| T'o complete the three model comparison, the behavior of
the non-dimensional frequency root errors was determined for each
model. This was done for four sets of boundary conditions; fixed-
fixed, free-free,. fixed-fr‘ee, and free-fixed.,

The frequency roots for the free-free and fixed-fixed

boundary conditions are determined by the zeros of the L_1z and
f:“ _terms, respectively. By inspection of Eq. (3.3.15) and -(37. 3.16)
it is apparent that L]‘2 y Lz; , or sin(NO) must then be zero as sin 6
is a bounded fgnction. Re‘—e‘xamining the le and Lu terms for all
models shows that the le term in models (b) and (c) is the same .-
and, sih}ilarly, the LZ]. term is the same in models (a) and (c).
Equating these expressions to zero gives only the rigid body mode,
B=0, for le = 0 and in the c')thevr case Lzl is a constant. In fhe
le and L21 terms of models (a) and (b), respectively, there is an
additional 1 - p?/4 factor. This factor contributes the non-rigid

mode for model (a) and the free-free case when N =1, ‘and the

first mode for the fixed-fixed case with model (b) when N =1 where
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siriNG/sin 6 cannot be equal to zero. Consequently, the major term

of interest for these two boundary conditions is sin(N6),

The zeros

of this function give the non-dimensional frequency roots for the

lumped system. From the discussion above and the fact that sin(IN8)

is identical for all three models it bécomes obvious that all three

models 'must give the same frequency roots for the specific cases of

free-free and fixed-fixed boundary conditions. Equating sin(N8) to

zero then gives:

sin(N@) = 0 or = XL

where v=1,2,3, .. . N
‘ . l1-a
boey G = sin 6 - 1
cos 6 a
1
where
L +L
ai = 112 22.: 1_[32/2 .

L = N£ (length of total element), and

wL p/E = NB

Solving for the frequency roots of the total element gives:

2= 2NP(1 - cos VT
BVN—ZN (1 cos N)

where

v=(1,2,3, . . N} mode number and

£ 5. 1v8) ? e
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N = number of increments

The frequency roots for the other two boundary conditions, fixed-

free and free-fixed, are the same for models (2) and (b), but they

are different than the ones for model (c). For models (a) and (b)
B2

= = = = e 3 ]_ ;
(Ln-)a (L”)b . (Lzz)a (Lzz)b 1 e consequently, the

frequency roots for these two models are given by:

(1-B2/2N2)sin(i\re) -s5in(N-1)6 = 0

or
B = 2N [1 . cosLZ—lZ)‘—l—_\T}-—)—H—] 3 (3.3, 19)

. For model (c) similar expressions can be obtained and are given by:

B‘:‘)N = 2N? [1 - cos %:il%f_] (3. 3. 20)

where
| (2N+1) Nfixed-fr‘ee boundarie-‘s, and
(2N-1) ~free-fixed boundaries,
The behavior of tl’lle error in the frequency roots is obtained
by subtracting Eqs. (3.3.18), (3.3.19), and (3. 3. 20) from the exact
roots which are denoted as Bve" For all three models with bound-

ary conditions being free-free or fixed-fixed:

B . th _

e N (error in the v mode) = Bve- BVN
_ _ .oy

evN = Vv 2N sin ?N'
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Expanding sin(vw/2N) and retaining only the lower order terms for
large N givés:

L (vm?

(3.3.21)
24N?% -

evN

The errors which occur when using models (2) or (b) with boundary

conditions of fixed-free or free~fixed ends are:

_J(2v-1){ . (2v-1)w
‘-evN-—li——Z— m = 2N sin '——m—

or for large N:

» (2v-1) 7w
192N?

e (3.3.22)

vIN

For model (c) the results are:

o [ (2v=-1) . (2v=-1)w
LN —[—-———2 m - 2N sin FZN=T)

Expanding the sin term .gives:

_ [(21;2.1)] __ N(2v-1)m

e N = TED + higher order terms,
or
2v-1
e N T 4N(1:Z1 )ZTlr\T * higher order terms.

Thus, for large N ther error behaves as:

7 ~ (2v-1)7 .
eN~F TN — : (3.3, 23)

In retrospect, two significant conclusions can be stated

about the representation of the uniform system by the three models
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used above. For reasonably large N the frequency root error is
proportional to 1/N?2 , except for the cases of fixed-free and free-
fixed rods when approximatéd by model (c). In these cases, the error
is proportional to 1/N. Duncan[ 3]has examined several of the cases
described above. Using Rayleigh's principle, Duncan established a
. general invérse équare law for\model (b) which states that the error
in the freciueﬁcy of any normal mode of oscillation varies inversely
as the square of the number of segments. The results presented
here for model (b) agree with those of Duncan. Duncan also inves-
tigated briefly the case where the mass is moved away from the
center of the'in-crement and concluded that this always results in
frequency rooterrors which behave as\ 1/N for large N. Model (c)
is an example of this case and the results presented here verify
Duncan's conclusion in part; however, they show that this conclusion
does not hold true in every case, and in pa,rtic_ular not for the free-
free and fixed-~fixed cases. Figure (3.3.3) and (3.3.4) show the non-
dimensional frequency root erro:l*s for all three models with the four
boundaryr conditions. Figure (3.3.4) gives the errors for only ti_me ‘
fixed-free boundary condition. However, for models (a) and (b)
these errors are identical to those for the free-fixed case. For
model (c) the errors are of the same magnitude but negative becausé
this model always gives frequency roots which are too large for the
free-fixed condition.

Another interesting technique of modeling was also investi-
gated for the two cases of fixed-fixed and free-free boundary condi-

tions. The element was divided into N equal masses which
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represent the total mass and N+ 1 or N -1 equal springs which
represent the total stiffness. If the boundary conditions are fixed-
fixed, then N + 1 springs are used; in the other case only N -1
springs are used. The motivation for this type of modeling comes
from the following feasoning. When using models (a) or (b) the
results for these two boundary conditions are the same. Moreover,
if model (a) is used for the free-free case and model (b) is uséd for
the fixed-fixed case, then the total mass and total stiffness of the
element are always active in the models, In contrast to this, model
(c) does not reflect the total mass of the element in the fixed-fixed
. case because the last mass is always inactivated by the boundary
condition. Likewise, in the free~free case the total stiffness is not
reflected by use of model (¢). To determine if these deficiencies
cause model (c) to be less effective than possible, the modeling
technique described above was inveétigated.

To avoid confusion with models (a), (b), and (c¢), the model-
ing technique described above will be designated as model (d). Model
(d) can be analyzed by the previou_s methods and the frequency roots
gags e owsd T the sanne ameier. The [L] matrix for the free-

free case is:

e
) 4 N
1 o B2 B? (EA)
, N(N+I T NFDY T _
[T] = (3.3.24)
%% 3 :
L N r

and for the case of fixed-fixed ends:
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g B2 BZ(AE)
T N(N+I) N
[L] = | | (3. 3. 25)

L 1
N+I

e

where

N =N+1
Using Egs. (3.3.15) and (3.3.16) to determine Elz and Ezl in-
dicates that the frequency roots for both cases are determined by the

3%
zeros of sin(IN 8); therefore, the frequency roots are given by:

_ / 5 v :
BVNA— 2 N(N+1) Sin m & (3. 3. 26)

The frequency root error is:

= Pu) [1 _ _N ] & VN(N+L) v

e -
vN N+1 _24 | (N+1)3

+higher orderterms.

Expanding this expression for large N and retaining the lowest

order term gives:

~{rm 1 .

N (——2—) N for large N . (3.3.27)
The result, therefore, is that the erlrors, in the frequency roots de-
crease as 1/N for large N. This is the same behavior as displayed
in Fig. (3.3.4) for model (c). Figure (3. 3.5) shows, in particular,
how many increments are required by both models (d) and model (a)

or (b) to achieve a specific percentage error in the non-dimensional

frequency roots for the first three normal modes. For example, to
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achieve a frequency root error of 5 per cent or less in the first
normal mode three increments of model (_a) or (b) and eleven incre-
ments of model (d) are required.

In summary, if has been shown that models (a) and (b) give
consistent results when used to approximate the uniform system.
The errors il';. the non-dimensional frequency roots for these two
models decrease as l/NZ for large N. Models (c) and (d) are less
consistent in that for some boundary conditions their frequency root
errors decrease as 1/N for large N; hence, mbdel (d) has not, in
general, shown any improvement over model (c). When considering
the higher modes two additional trends are apparent (see Figs. 3,3.4
and 3.3.5). First, the overall error level increases as expected
with higher modes for all models; and, second, the advantage of
models (a) and (b) with respect to model (c) decreases in higher
modes. The fact that the differences between these models decreases
for higher modes is not surprising, sincé the higher modes are less
sensitive to boundary conditions which is the main difference between
model (a) or (b) and model (c). Model (b) is slightly more efficient
than model (a) because it achieves the same accuracy in frequency
roots with one less mass, which in turn means that the number of |

differential equations is, in general, one less when using model (b).

3.4 Linear Taper Model

Exact solutions for non-uniform one dimensional systems

are available when the system is made up of segments which can be
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described by exact transmission matrices (see Section 3.2), Systems
which are not susceptible to exact solution can be treated in several

[10]

alternative ways. A commonly recommended approach is to use
a piecewise uniform segment representation as shown in Fig, (3.4.1)
A second approach, which should obviously be Better, is to approxi-
mate each ‘segment by some best fit non-uniform segment for which
the exact transmission matrix is known. Approximate transmission
matrices can also be obtained more directly as discussed in Chapter
V. A third approach is to subdivide the continuous system into N
segments apd then represent each of these segments by lumped para-
meters. In this section the lumped parameter approach will be of
primary concern. |

The standard way of representing the N non-uniform seg- '
ments by lumped parameters is to base the parameters on some
mean or average uniform section for that particulaf segment, which
is a further approximation to the first case mentioned above, (see
g, 15.4:1). Duncan[ 3] derived a general error law for a particular
model, which is éimilar to the mo‘del in Fig.(3.4. 3)except 11 always‘
equals JZZ , that is used with equal segment lengths ‘to approximate
linear non-uniform systems. The goal here is to investigate the
lumped parameter representation of a non-uniform segment in a
more general manner in an attempt to improve upon Duncan's Vmodel
and to determine if other models are more appropriate. The work
herein will be compared to Duncan's model and the uniform segment

approximation.
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From the investigation of the uniform s‘ystem, motdel (b) and

‘model (a) of Fig.(3.3.1)were found to be about equivalent with rﬁodel
(b) being slightly more effic-:ientj therefore, a model similar to model
(b) y;/'ill be employed in this section. When considering -how to improve
the standard 1umpéd parameter approximation based upon uniform
equivalent segments, a natural extension would be to use variable
segments of prescribed variation for which _simple and accurate
lﬁmped parameters are known. For example, in one dimenéional non-
uniform systems where cross sections are circular the variable radius
could be best fitted on a piecewise basis with segment's that have a
linearly varying radius. Once a general segment with a linearly
varying radius is well approximated in terms of lumped parametei‘s,
this model could be applied just as the uniform segments are used and
-impro{red results would be anticipated. Figure(3.4.2) indicates how
the piecewise linear approximation can be employed geometri‘cally for
the case of non-uniform, circular cross sectional systems. For con-
venience the following development treats specifically circular cross
sectional systems, but it will be emphasizedlater thatthe results a..pply‘
to much more general systems.

Figure (3.4.3) shows how a linearly tapered increment will Ee
represented by a spring—mass-spriug model, This lumped parametef
model is essentially the same as model (b), but for the non-uniform
segment the springs. are not equal; k1 and kz represent thé stiffness
of the portions of length ﬂl énd JZZ, respectively. The transmission

matrix for this lumped model is:
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M(J.)Z 2
| - kz - Mw
[L] = ' . (3.4.1)
I S (% L. Me?
i k k Kk k
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It will be shown that the le term and the first part of sz "

(1/% + 1/1{2), are fixed for any given increment.- The Lx and Lzz
1

1
terms are functions of .@1 and .EZ, however, and they.can be adjusted
by the choice of these lengths. To define a criterion for choosing ,@1
and EZ,' the lumped parameter matrix will be compared'and adjusted
to approximat‘e the exact transmission matrix for a continuous linearly
tapered segment,

Several types of tapered systems commonly encountered in
practical vibration problems can be included in the two following
groups:

- Group It Cross sectional area‘,vwhich varies
quadratically with the spatial variable.
A Co‘mmon example is the solid circular
cross section with a linearly varying
radius. Another is the solid rectangular
cross section where height and width both
_ vary linearly. . |

Group II: Cross sectional area which varies

linearly with the spatial variable.

Examples are: circular, thin wall,
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cross sections 'wh‘ere radius varies
linearly, and solid or thin wall
rectangular cross sections where
one lateral dimension remains
constant and the other varies

linearly.
Recalling that the area function was given in Section 3.2 as:
2p=1
" £x ) °F
A(x)—AAO(I + 7?»

it can be observed that Group I is characterized by p = 1.5 and

Group-II by p =1.0 where the definition of § was given as:

£ =
A
¥ o
where:
AJZ = area at the output end of a segment
Ao = area at the endput end of a segment.

As mentioned above the following development is specifically for
circular cross sectional systems, but with the above definition of §£
there is no loss of generality and the results apply equally well to ‘all
other systems belonging to Groups I or II. The name *linear tapef
model® comes only from the geomefrical fact that the radius does
vary linearly for circular cross sectional systems of the two groups

to be considered.
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Group I is defined by p = 3/2; therefore, the exact transmis-
sion matrix can be obtained from Case II in Section 3.2. Using the

following relationships:

3 i
_;1/2(Y) - \/?r—f R

I Ay) =y =2

_1/2 iy = W cosy
iV [22 - o]
J'_B/Z(y‘) —% /—ﬂ% lic—;iz + Siny]

and the Tij expressions from Case II, the transmission matrix terms
for the continuous, linearly tapered element for Group I can be writ-

ten in terms of trigonometric functions as:

_f [sinB

T (2) = g.(—;g—- + cos B (3.4.2)
-_lg . sin B (f-g) -

T, ) (flzo(ﬁ) (sm.6+ e + 2Bl cosp (3.4, 3)
_1fy1 [sinB
_le sin P ‘

TZZ(E) —(—f)(cos B - B : _ (3.4.5)

The transmission matrix which describes Group II, p =1, is
obtained from Case I in Section 3.2. The terms for this matrix

remain in Bessel function form.

T, () = BIY () (19 (RT (g} (3.4.6)
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T =z, (£ Y (BT (eP)-Y (BT (1))} (3.4.7)
T == 2 5] (BT (eB)-Y (ghT 0} (3.4.8)
T, =(F) BLY (BT (gB)-Y (BT (R} . (3.4.9)

Equations (3.4. 2) through (3.4.9) must be expanded in series
form to be compared to the matrix elements in expression (3.4.1).
For the first group the trigonometric series can be used which im-

mediately gives:

_ 2 | (E+3) 4
T {8y & = AoF {1+g+§3/3}52 + O(p*) | (3.4.11
L= N
T (f) = 2 (~~--—-1 | {1-82/6} + o(p*) - (k. 12
- A E |THE S
- 5 | BE+S g
T (£) = 1-p {—g—] + O(pt) . (3.4.13)

To expand the second group for lower order terms in B is

somewhat more difficult because of the behavior of YO(B). For small

arguments YO(,B) ~ -?'T'- 2n(B); therefore, Yo(ﬁ) —~w as B+ 0 and

YO(B) . can not be expanded directly in a power series of the form:
atax+ax?+,......+ax
o 1 2

The approach used to obtain a converging power series, valid for
small B, is to expand the Tij functions directly in a Maclaurin's

series. This may, in general, be done for any continuous function
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that possesses finite derivatives.

Applying the Maclaurin series:

N
le (q) + RN

A%

v l 2 "
Ty (B = Ty (o) + m: o) + Ez._!. Togloh # ¢ o o 4

and using 1'Hospital's rule to evaluate indeterminate forms gives:

TH(I) =1+ 5—2-[15——15— + f?‘ln(g/f)] + O(B‘*) (3.4.14)

T (9) = [[‘32) -_-L] + O(p*) (3.4.15)

i _ i |BZ f2+ 2

T (2) = @af In(g/f) [1 - (—2—-) __%#] + O(p*) (3.4.16)
2 : | '

T ) =1- Ez_l:ff_g_g.z_ + gzﬂn(gff)] + O(p*) . (3.4.17)

To check the validity of the series expansions in Eq. (3.4.10) through
(3.4.17) the condition that £ =+ 0, which is the uniform rod in the
1im:"lt, can be imposed. Completing this for both groups above gives
ex;ﬁressions which agree‘with the lower order terms in the series for
the - Eij elements which were given in Section 3.2,1.

As menﬁioned earlier the ‘le term and the first paft of the
L‘21 term, (1./k1 + l/kz), from expression (3.4.1) are fixed for any
given increment. This can be illustrated by using the appropriate
relationships for M and " which shows that the lower order terms
inEgs.(3.4.11) and {(3.4.15) are always identical to’ le' Likewise,
by using the appropriate k1 and kz expressions from Aprpendix C,

it can be shown that the order unity term in Eqsl'. (3.4.12) and

(3.4.16) is always equal to (llk1 + llkz). The two remaining terms
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which can be used to define the subdivision of a segment are L and
11

L " The choice of £ and Iz is based upon minimizing the dif-
2 1

ference between the lower order terms in T1 and TZz and those in '

1

expressions for L11 and Lzz’ respectively., Proceeding in this

manner gives:
n:ﬂl/i and L +24 =1

For Group It

g 0]
k =(1+En) 7—1—

AOE
kz = (1+§)(1+§1’]) T:_

A E
o

Mo? = —p— {1 +¢&+£%/3}p°

Therefore,
- Mow? (1-n) 2 2
=1 = =1- 1+E+E
L =1 X e (1vEm) (e3P
" Mo?®  _ n % PVl
L, =1- Sl - T {1+E+£2/3}p
Consequehtly, for e and € (where e€..=T.. - L..):
11 22 1) 1] 1)
¢ o|U=mi4e+e?/3)  E43 |
11 (I+E)(1+Em) 6(1+E)

Then setting eij = 0 to equate the coefficient of the O(p? term in

i and L to that in T and T  respectively, gives. the follow-
11 22 11 22 :

ing expression in both cases.
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2643

Wy = 3(EF2) (3.4.18)

For Group II:

o " e ng
1 T Ta(l+ng)

k = EAO 5(1‘1'1)

2~ X Ta[(T+E)/(T#nE)]
A E

Mw? = —— (1+E/2)p?

Setting g, and € equal to zero as before gives an expression,
; L ‘

which is the same in both cases, for Nyge

nyy = é.[((1+gybe“°)1/a-l ] . (3.4.19)
where: |

b = 2(1+£)*

c = €(2+é)

a = 2E(2+E)

A check on both N1 and N1 for £ — 0, which again is the uniform
case, shows that o 1/2 as & = 0 in the limit. This is
exactly the condition used for model (b) in representing the uniform
system. Figure (3.4.4) shows how N1 and My Vary as a function
of £, the slope parameter for a given linearly tapered segment.
Having defined a basic procedure for determining the lumped
parameters of the linear taper model, the second step is to evaluate

this model. This was accomplished by comparing the non-dimensional
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frequency root errors obtained by this model with those of Duncan's
model and those from the piecewise uniform approximation.. A con-
tinuous linearly tapered system with various boundary conditions as
‘used in Section 3.3 was used as a basis for this comparison.
Duncan's model uses m = 1/2 independent of the slope parameter but
is otherwise similar to the linear taper model. Model (b), as
described in Section 3.3, was used to describe the parameters in the
piecewise uniform approximation, and the mean area of each segment
was used in expressions involving area. The first two normal modes
for all four boundary conditions of various linearly ’c.apéred elements
subdivided into N equal length segments were used in the compari-
son of the frequency root errors. This comparison was accomplished
numerically because the incremental transmission matriceé are not
functionally interrelated so that a single expression could be form-
. ﬁlated for the product of N such matrices. An investigation into the
use of unequal length segments is presented in Section 3.5,

The basic recurrence relationships that follow apply to
Fig. (3.4.5) which depicts a general linearly tapered element
divided into N segments. The ith segment is further subdivided as
shown in Fig. (3.4. 3) and the parameters are calculated on the basis
of Egs. (3.4.18) and (3.4.19) for cases in Group I or Groﬁp 1L,

respectively. If the following recurrence relationships are.used:

_ . _ : BY 5
ﬂi—L/N 3 ri—r0{1+1—N]1—1,;,3,...N—l
_ 7 15 Ll _ N " "
Ai_Ao(l..}._N_) ; g_._T__ : pi_B/N 3
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_ 71 Tn=y > _ . -
B, = et pog=ltE 'and fi—llgi

then for Group I the lumped parameters for the ith segment are:

A E :
Ty SADEEM) gt
11
: Ai-lE o
k= (146 )(1+E; ;) ———-—-—ziz i S (3.4.20)
2 Ai'lE giz 5
Mim =—Ti——- 1+gi+ —3—-)[31 ’
For Group II the lumped parameters for the ith segment become:
. o Nemy Ay B , Y
iy T To(lFnE) i
&(1-m,) EA, : : :
1 i-3
o T : > (3.4.21
iz~ In[(I+E)/(TinE) T L, (. )
2 EAi-l gl 2
e = e AR T)ﬁi )

For both Group I and Group Il the following relationships with appro-
priate terms from expressions (3.4.20) and (3. 4. 21) become applic-
able for the Lij terms of the incremental transmission matrices.

w?

L (2. =1 s s L (L) = 2 :
B a0 0 TE : 12( i) - _Miw
1z
1 1 M; o |
Lol ® o b e o pelpeee § And : ¢ (3.4.22)
1) 12 11 12
Miwz
L (£)=1-




BB

The numerical procedure used to evaluate the frequency root
errors was sirﬁilar to that used in Section 3.3 for the uniform system.
Using the recurrence relationships in (3.4. 20) or (3.4. 21) and, sub-
séquently, those in (3.4. 22), the overall lumped parameter trans-
mission matrix for the element was. determined. The frequency
roots for the four various boundary conditions were founditeratively
and substracted from the roots obtained using Eqgs. (3.4.2) through
(3.4.5) or Egs. (3.4.6) through (3.4.9), which represent the con-
tinuous linearly tapered syét_ems for Group I and II, respectively.
The round-off error which occurs when N incremental transmission
matrices are numerically multiplied together was also determined.
This was accomplished by using the Tij matrix for the cqntinuous
system at the incremental level, numerically multiplying these N
"matrices, and comparing the elements of the resulting matrix to
those of the T:’Lj matrix as §Xpressed for the total element. This °
evaluation indicated a negligible difference between the elements of
the réspective matrices, In the iterative solution for the frequency

[20]

roots the Aitken algorithm was used for interpolatiofx of the zeros.
Three points about the zero crossings were used in conjunction with
this interpolationralgorithm and the increments in the independent
variable, [, were chosen to obtain good resolution within the
region containing the zero.

The results for the frequency root evaluation are shown in
Figs. (3.4, 6) through (3.4.12)., When plottirig the errors (evN)

directly as functions of N, the behavior was found to be similar to
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model (b) in the uniform case. For large N the error decreases as
a/N?, where a is some constant. To compress the data into a more
usable form the constant «, which has been designated the error
constant, is plotted as a function of § which is the slope parameter
for the overall element. To find the percentage error of any given
frequency root the following relationship applies to these figures:
100
- a(error constant) X e~ = percentage error. (3.4. 23)
: ; N ‘
To use Figs. (3.4.6) through (3.4.12) in determining the percentage

error in the non-dimensional frequency root, one proceeds as follows:

1. Determine §£ for the overall element,
2, from the figures obtain the error constant, and |

3. use Eq. (3.4.23) to calculate the percentége error.

These figures apply to any‘system belonging to Groups I or II which are
subdivided into N equal length segments which are, in turn, describ-
ed by the various lumped parameter models. Results for Duncan's
model and the piecewise uniform model are given only in Figs. (3.4.6)
through (3.4.10)for comparison with the linearly tapered model in
Group I. It should be emphasized that all three models have the same
error constant in the limit where § = 0. Because o‘f its definite im-
provement, only the resuits for the linearly tapered model are shown
for Group II in Figs. (3.4.11) and (3.4.12). The error constants in
these figures are based on large N. When using these figures for

small N (N = 4 or 5) the error constant will differ from the correct
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value by‘as much as one to five per cent.

Several geﬁeral conclusions can be reached after reviewing
the results on the linearly tapered model. In the first mode, ‘the
linearly ta.iaered model is better than Duncan's model except in the
fixed-free condition, and it is considerably better than the piecewise
uniform approximation in all instancés except the free~free condition,
A comparison of these three approaches for the second normal mode
shows similar résults. In addition, the error constant for the linear
taper 1;nod¢1 varies much less than the other two models as §, the
slope parameter, changes. Although the error level still varies
somewhat between the various boundary conditions used, the linear
taper model minimizes these variations for any given £ value, pro-
viding some assurance of better results with this model under arbitrary
boundary conditions. Table (3. 4. A), which shows the number of ség-—
ments required by each model to insure an error equal to or less than
one per cent for the first model with the four boundary conditions;, |
clearly shows the efficiency of the linearly tapered model in compari-
son to the other models. For this illustration, a slope parameter of

four (&€ = 4.0) was chosen.
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TABLE 3.4. A

% o Number of Segments Required

. Piecewise

Duncan's | Uniform

Boundary Conditions Linear Taper Model Model Model

Fixed-Free 4 T 11
Free-Free 8 9. 12
Free-Fixed 7 8 5
Fixed-Fixed 2 2 14

The basic idea involved in defining the lumped parameters for
the linearlyv tapered segment can be extended further to describe seg-
ments with other area variations. It is anticipated that this idea would
continue to produce improved lumped parameter models. Moreover,
using the linearly ta;péred model to describe noﬁ«uniform elements on
a best fi"c basis should always be superior to the piecewisle uniform ap-

proximation.

” ‘
Based on a non-dimensional frequency root error < 1.0% in the
first model and a slope parameter of 4.0 for the element.
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3.5 Optimum Segmenting with the Linear Taper Model

The conventional manner in which elements are segmented is to
choose N equal length segments. Intuitively, it seems that this may
not constitute the most efficient employment of N segments. ’I‘hﬁs,
the effect of the segment length should be examined.

Atthe outset, it was hypothesized that there are three other
approaches which might yield better results when approximating a
linearly tapered continuous element by N segments of the linear taper
model. These three approaches correspond to segment lengths, £,

1

established on the basis of:

1. Equal segment mass,
2, equal segment stiffness, and
3. linear variation of li with respect to position

along the element.

The first a.ppr'oa.ch causes segment lengths to decrease as the radius
increases, and the second has the opposife effect.

Further investigation of the numerical calculations required
for comparing all three approaches indicated that the third hypothesis
could be described by recurrence relationships more easily than
either the first or second one. Therefore, an investigation based upon
the linear variation was completed first with the thought that if defin-
ite improv.ement could be shown by either increasing or decreasing
the segment lengths linearly, then further investigation into the effect

of the other approaches would be justified.
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To evaluate the linear variation in segment lengths a numeri-
cal approach similar to that of Section 3.4 was used. A systematic
means was devised for selecting the lengths of the N segments being
used to approximate a linearly tapered continuous element with a
given slope parameter, g The relationships used in determining

these segment lengths are (see Fig. 3.4.5):

1. _C
P 1+E
N N-1
N-2
(N-1)C ; -
j=1
dpg = Byl
, (3.5.1)
L = {1-(N-1)AN]I.N
. C )
s (_g‘l_+ In
/
where:
N = number of segments
r -1
€ = nr 2 for the total element, and
0 .
C = a control constant which determines the

linear variation of the segment lengths.
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When C = (1+§) the segment lengths are equal which is equivalent to
the case investigated in Section 3.4. When C < (1+£) the lengths
decrease linearly as the radius increases, and for C > (1+£) the
lengths increase linearly as the radius increases. In addition, it can
be seen that C < (1+£) tends in the direction of equal mass segments,
and C > (1+£) tends to selection of segments with equal stiffnesses.

After determining the segment lengths, li, for any particular
case, expressions (3.4.20), (3.4.21), and (3.4.22) are used to, deter-
mine the lumped parameters and thé incremental transmission
matrices, The final step is determining the non-dimensional frequency
root errors as a function of lengfh variation.

The frequency root errors again behaved as «/N?, and the
data can be presented in a form similar to that uséd previously,
Figures(3.5.1) through{?a. 5. 8)illustrate how the error constants vary
as segment lengths change. These figures describe the error constants
for the first and second normal modes of cases included previously in
Groups I and II of Section 3.4 for all four boundary conditions., The
solid lines in the figures represent the error constants for equal
length segments. To determine if the equal segment length approach
is nearly optimum the minimum error constants obtainable through
the use of the linear variation process were determined for specific
£ values of 1,2,5,8, and 10, These minimum C values are shown
as points in each of the following figures and they are labeled ap-
propriately.

Upon reviewing Figs. (3.5.1) through (3.5. 8),several con-

clusions can be formulated. For the linearly varying Segmeﬁt lengths,



s

there is a definite trend which minimizes the error constants in most
casés. This trend is caused by linearly increasing the segment length
as the radius increases, C > (1+£). The two main exceptions are the
first mode error constants for the fixed-free and the free~fixed
boundary conditions. For the free-fixed case, the error constant
decreases as C >(1+£) and in the other case, fixed-free, the error
constant decreases for C < (1+£). Although the values of C which
minimize the error constants appear in some cases to be appreciably
greater than those for the equal length cases, the error constant in
‘these instances is really not greatly improved. In most instaﬁces the
minimum error constants deviate from those for the equal length seg-
ments by an amount of six per cent or less which corresponds to a
very small improvement in the frequency root. In one instance, the
‘first molde for the fixed-fixed rod, the error constant could be im-
proved by fifteen per cent by using unequal length segments. In addi-
tion, the second mode error constants appear to be less affected than
those of the first mode, and Group II is much less affected than
Group I by the change to unequal segment lengths.

The basic conc-l;lsion or generé.lization to be made.from this
investigation is that some improvement can be made by use of unequal
segment lengths. When considering the ease and mechanical advant-
ages of using equal length segments, however, as co:l(npared to the

| small gain in improvement with other techniques, it seems that the
usé of equal length segments is quite satisfactory. If for geometrical

or other reasons it is advantageous in some particular instances with
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specific boﬁhdary conditions to use unequal segment lengths, then

these figures are appropriate, and the basic rule of using C >(1+§),
with an increasing radius, sh_ould be observed. In retrospect, it seems
that a physical explanation for the behavior of equal lehgth segments
could be that the governing relationship for varying cross sections is to
keep the mass to stiffness ratio constant as opposed to the suppositions

proposed earlier.
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CHAPTER IV

BEAM ELEMENTS

4.1 Lumped Parameter Models for Uniform Continuous Beams

Because beams are the primary elements used in forming
structures, evaluation of lumped parameter approximations for the
uniform Bernoulli-Euler beam has received much more attention than
the one dimensional systems previously discussed. It is, therelfore,
appropriate that a summary of this work be given in this section be-
fore extending the theory to non-uniform beams.

One of the first investigators to record his findings was

[3]

Duncan who studied the lumped parameter representation of a
uniform cantilever beam using the spring-mass-~spring model and
numerical techniques, see Fig. (4.1.1). Later, Livesley[4] formed
an exact expression for the frequency root error involved when rep-
reéenting a simply supported (i.e. pinned-pinned) beam by the Rayleigh
model, see Fig. (4.1. _1). Glald.vifell[51 has found analytical expressions
for the errors in the natural frequencies with other end conditions
using both the Duncan and Rayleigh model, and he established two
classifications for frequency root errors in uniform beam approxima-
tions.

1. If neither end is free the errors are proportional

to 1/N* for large N, and for both models the

errors are given by:



I R | =Ltz —

| |
| i ,
@ 1%1- o —(m ) |
- EI 2El N~ 2EI
* POINT MASSES —
' M=pAl '
RAYLEIGH'S MODEL . : DUNCAN'S MODEL

LUMPED PARAMETER 'MODELS FOR UNIFORM BEAMS
FIG. 4.1.1

4.((""8-



W - (Qv)4

v 1440N%

where Qv denotes the exact Vth mode frequency
root. Note thatlthe error is positive which means
the approximate freq{lem:y roots are always less
than the exact ones.

2. In cases where one or both ends are free the errors
are proportional to 1/Nz for large N, and Rayleigh's
model always gives errors which are positive. For
Rayleigh's mo&el with one eﬁd free the errors are:

(£2,)

3N2

e ~

vIN

and the error is twice this value when both ends
are free. Moreover, for this category the errors
associated with Duncan's model are always

negative and given by:

1 _ .
evN(Duncan) L eVN(Raylelgh).

Lindberg and Leck_ie[ 6 have extended the study by using
several other types of models (see Fig, 4.1.2). They refer to model
 (b) as the Myklestad model instead of Duncan's model as denoted here.
Usiﬁg finite difference equations for model (b} they confirm the results.
of Gladwell for three specific boundary conditions: pinned;pinned,
cl amped-clamped, and free-free. In addition, they have determined .

that the other models in Fig. (4.1.2) give larger errors than Duncan's
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model. Becaulse the error behaves as 1/N* for some boundary con-
ditions ‘and only 1 /Nz for others, Lindberg and Leckie have attempt-
ed to derivé a new model which will give more consistent results.
They have succeeded in finding an improved model which does

exhibit frequency root errors proportional to 1/N*, for large N,
with all boundary conditions. To achieve this resuit, théy have elimin-
ated the concentrated mass points and have distributed the inertia
force of the mass along the increment in proportion to the static
deflection shape for a massless beam. By using the principle of
wvirtual work they have obtained a stiffness matrix relating forces to
displacements which is a function of frequency, , and has been
designated a ''dynamic stiffness' matrix. Lindberg[ 2] has also ap-
plied this model to a group of linearly tapered beam eleménts which
have exhibitéd the same error behavior, eN "~ 1/N%,

Archer[ =] has also modeled continuous beams using a first
order approximation for the distributed inertia forces as does the
dynamic stiffness matrix used byv Lindberg and Leckie. The matrix
formulation of the general structural dynamic response problem results

in the equation:
[ong s 10 b+ [ 1o 3 = {0} (4.1.1)

in which kij is a stiffness matrix whose coefficients represent the
elastic restraining force at coordinate i developed by a unit displace-~
ment xj =1 with other coordinate displacements zero. When using

lumped parameter models, such as those in Fig. (4.1.1), the mass
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matrix in Eq.(4.1.1) becomes a simple diagonal rﬁa.trix as all mass is-
lumped at the coordinate points. Archer uses a technique whereby the
mass is not lumped and inertia force is distributed according to the
. static deflection shapes of massless beams similar to the method used
by Lindberg and Leckie. This produces a noﬁ—diagonal mass matrix
which is design;ted a '"consistent mass'" matrix where T is the
mass inertia force effective at point i resulting from a unif accelera-
tion of coordinate j. This mass matrix is then used in conjunction
with the standard stiffness matrix. Using this approach to model
uniform beams, Archer has shown that it does give improved results
which are consisteﬁt with those of Lindberg and Leckie previously dis-
cussed. In Chaiater V another method is given for obtaining a con-
sistent mass matrix.

A dynamic stiffness matrix, because of its frequency depend-
ence, is essentially the éame type oflmatrix as the transmission
matrix. The equations which define a dynamic stiffness matrix for a

beam element can be written in partitioned matrix form as:

/-V. A i o ] W \
1 I 1
A I B
- M, ! ¢,
¢ R oy 7 (4.1.2)
V. : W,
1-31 | 1~3
C | D
\ Mi-1/ L ! . ¢i-1 /

where [A], [B], [C], and [D] are (2 X 2) submatrices. These

equations can be rearranged and cast into the same form as the
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transmission matrix which is:

v 1 : v
-DB , -DBA™' tC
I S P M§ (4.1.3)
Sl |
W . | l _1 W
-B I -BA
|
\(f) i-1 L | ! Ji

In other words, a \comparable dynamic .stiffness matrix contains thé
same information as a transmission matrix and eigenvalue solutions
utilizing this stiffness matrix must yield equivalent results, and will
require a similar iterative procedure. Because the static deflection
shape for a massless beam was used in its derivation, the dynamic
stiffness matﬁx of Lindberg and Leckie can not give exact representa-
tion of the continuous beam. It does, however, give betiter results
than the 1umped parameter models because a first order approxima-
tion of distributed mass is used. A transmission matrix can, how-
ever, give exact representation of a continuous beam element within
the limitations of the theory, i.e. Bernoulli-Euler, used inits deriva-
tion. Consequently, the transmission matrix provides the more

| favorable basis for this type of approach. The goal in the next section
is to derive traﬁsmission matrices for a group of commonly used non-

uniform beam elements using the Bernoulli-Euler theory.

4,2 Transmission Matrices for Non~uniform Continuous Beams

The transmission matrix for a simple transverse bending

beam is a fourth order (4 X 4) matrix, When using the Bernoulli-
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Euler elementary theory, the governing [A] matrix can be shown to

be (see Appendix ﬁ):

0 0 W?pA(x) 0 :
: -1 0 0 0
[A]= {(4.2.1)
1 o 0 0 1
0 ; 0 0
T El(x)

In deriving the Tij elements for the transmission matrix, four,
similar, fourth-order, variable coefficient, differential equations

must be solved. These equations are of the form:

e (EIR)) M, (BI) ) o pAGD W o
Til+2_—IETGErTi1+_E_I'(}_c)_Ti1_P_E)T}(££(YU_Til"O (4.2.2)

where
i=1,2,3,4
and

(') denotes a('i;z

The twelve remaining Tij(x) terms can be obtained by using the fol-

lowing expressions once the solutions for T, (x) are available.
1

N

Til(x) = - Tiz(x)

T, 60 = Ty 60 g . S 42.3)

T, (x) =T, (x)

14 13

Il
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Equation (4. 2. 2) and expressions (4. 2. 3) are obtained directly from:

d
- [T]=- [T][A]

which is the differential equation that defines the transmission matrix,
see Apﬁend_ix D,

From inspection of Eq. (4. 2.2) it is not obvious what types of
functions can be chosen to describe Ap(x) and EI(x) and still obtain
closed form solutions. Cranch and Adler[ 23], however, simplified
problems of this type when studying the following fourth-order differ-
ential equation:

2 2 ‘
d d ;N:’ -pA(x)w*W = 0 (4.2.4)

dxc?

[EI(X)

where
W(x) = mode shape, and
wix,t) = W(x)eiwt
This equation describes the ﬁormal modes of a simplé non-uniform
bendingl beam and in expanded form it is identical to Egq, '(4. 2, 2) when
Wi(x) is replaced by Til(x). By reducing this fourth-order equation
to a simpler form which has been more thoroughly studied, Cranch
and Adler have determined several suitable functions for Ap(x) and
- EI(x) which do result in closed formed solutions. Consequently, the
procedures used by Cranch and Adler can be a.p?iied here to obtain-
solutions for T'i1 (x) from Eq. (4. 2.2) which ultimately determinles
the entire transmission matrix. -

To simplify Eq. (4.2.2) Cranch and Adler have shown that
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this type of fourth-order differential equation can be written as the

product of two second-order linear differential operators as follows:

1 d d 1 d ( d ) _ ‘
[R = (5 =)+ Q:”-R =5 =]- Q] T, =0 . (4. 2. 5)
Expanding Eq. (4. 2, 5) and equating the coefficients of the same order

terms with those of Eq. (4.2, 2) gives the following relationships:

e el (4. 2. 6)
5% = [pA(x) [ EI(x)] (4.2.7)
g% = B %Xsi;éo‘ | (4. 2. 8)
S =C when %% =0 | (4. 2,9)

where C is a constant. The expressions above give the important
and necessary relationships which must exist between pA(x) and
El(x) if Eq. (4.2.2) is to be written in the form of Eq. (4. 2.5).

These relationships in a more explicit form are:
2

EI(x) =[5 SPA('X)dx]

SR when ij% £0 (4.2.10)
=2
B = FEBET b %f? =0 . (4.2.11)

Consequently, if pA(x) and EI(x) are related by Eqs. (4,2.10) or

(4.2.11) then the differential equation for Til(x) can be written as:
D T. =0 : 4., 2,12},
[D ()] [D )] T, | @212

where:



..

D (x) :LFKI(EY -C—i(i—{-(\/(pA)(EI)a%)+ w] (4.2.13)
D) = |y e | VPANED) &) - w:] : (4.2.14)

Since the four-order differential equation has been rewritten as the
repeated operation of two commutable, second-order operators, the
total solution to Eq. (4. 2. 2) will be the sum ‘of the solutions, which are
assumed to be independent, to the two second-order operators given in
expreséions (4.2.13) and (4. 2.14).

It héus been shovvn[ 24] that operators D.1 {(x) and Dz(x) have
Bessel function solutions if R ~x" and S ~x"" where m#n + 2.
In the case of m =n +2, Eq. (4.2.5) reduces to a differential equation

with constant coefficients if a suitable change in variable is used. For

Il “ &
R ~ x. the variable area can be written as:

n p
A = poA (] (4.2.15)

and the required EI(x) as determined by Eq. (4.2.10) is:

n+z ' : ;
El(x) = EOIO[ %f-) ) (4.2.16)

To define a genéra.l beam element as shown in Fig. (4. 2.1) where the
area at the input end is not zero Egs. (4.2.15) and (4. 2.16) must be

changed to the following form:

EAG) = o A, [1+ E£]° (4.2.17)
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Ex n+2
El(x) = E016(1 & T) ) (4.2.18)

Setting =z = (1+£x/4), and using the above expressions, Eqs. (4.2.13)

and (4. 2.14) when set equal to zero become:

Dl(z)- :d"‘/.dzé + (n;“ ai \/ ° g ('g‘) w=0 (4.2.19)
D (2) = 4%/az? + (n;l) 2 \/ oo (-g-) w=0 .. (4.2.20)

In Appendix D the solutions to Eqgs. (4.2.19) and (4. 2. 20) and sub-

sequently to Eq. (4. 2.2) for 'I‘il are given for the two cases where:

1. n=0 or an integer, and

2. n7 an integer.

Through the use of appropriate initial conditions and expressions
(4.2.3) the solution for the entire transmission matrix for case one
has been completed in Appendix D,

Case one, n = an integer, describes several interesting and
useful cross‘ sectional variations. Considering E and p to be con-
stant and using Egs. (4.2.17) and (4. 2.18) three specific groups of

non-uniform cross sections can be defined as follows:

Group I Rectangular Cross Sections
b=b z" | (4.2.21)
h=h z (4.2, 22)



O

where
A =b h
o oo
. 3
™ IE boho
b = width and
h = height
Group II , Elliptical Cross Sections
b = bozn“ (4.2.23)
h = hoz . (4. 2. 24)
where
5 o
Ao ! boho
™ 3
s = 51 955
b = width and
h = height
Group III Circular Cross Sections
r=r oz - (4. 2. 25) -
.Where
n =1 only
A =1r z’ and
o} o g

r = radius,

The following two expressions apply to all three .groups (see Fig.4.2.1): -



Bl

In Groups I and II the height of the cross section varies linear-
ly and by chosing n properly several choices of width variation are
available, i.e. constant width with n =1, linear width variation with
n = 2, etc. Group IIl is actually only one single case where the radius
of a circular cross section varies linearly. The Ti' elements of the
transmission matrix for beam segments of length £ whose cross

sections are described by these three groups are:

. b g & @ &
Til (E). =a {ClJn(p,)+CzYn(p)+CB In(“)+C4Kn(“)} | (4, 2. 26)
N i & o3 A .. W A
Tiz(l) = -az{cl:rnJrl (;u)+czYnJrl (;u)-c;3 In+1(u)+C4Kn+l(u)} (4. 2.27)
_ i 2 A | e ol B -
T,, (£) = [aL3 {ClJn+3 (“)+CzYn+3 w)-C.I .. (u)+C4Kn+3(u)}
i 2N U . s acal e |
-a, {Cljn+z,(“)+chn+z(“)+c3 I+, (,u)+C4Kn+Z(p,) }] (4.2, 28)

_ i ~ T T 4 \
T, W =a {C T  (W+C Y  W+C L (W+C K (W}  (4.2.29)

where:

i =1;2, 3 and 4

(me
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(n+l)

. -[4) =2 (9
:, =e2) ——— (ﬁé)z ()™
| EI (n+2.

_ 2
asz(%é] 92 (f)

= (1+€)
ooolfil =]

¥

u\Veglf and

=
1

the constants Ci1 i Ci, Ci , and Ci are given by Eqs. (D.11) and
(D.14) in Appendix D. The validity of the Tij(ﬁ.) expressions has been
checked by examining the limiting case of the uniform beam, § = 0.
As £ = 0 inthe limit p \,/-g—/f_-*oo and the asymptotic expaﬁsiOns for
Bessel a.nd modified Bessel functions of large arguments can be used
in Eqs. (4.2.26) tarough (4.2.29). The expansion of Eq. (4.2.28) for
the particular term T&3 (£) has been completed in Appendix D for this
limiting case. '

To utilize these groups of transmission matrices the recom-
mendation made previously for the one dimensional systems in
Section 3.4 is again applicable. To represent non-uniform cohtinuous

beams, exact or best fitting variable cross sectional segments which

have transmission .matri‘ces defined by Groups I, II, or III should
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be employed. The product of the tra.nsmission matrices for the seg-
ments is the transmission matrix for the total non-uniform beam from
which normal mode frequencies and mode shapes can be determined.

It is anticipated that the use of best fitting linear taper segments will
give greatly improved results as compafed to the piecewise uniform
segment approximation which is commonly used to represent non-
uniform beams. Although the types of cross sectional variations
available from Grbups I, II, and III are still very limited others can be
‘derived. In addition to case two, n # integer, which was not complet-
ed herein, several other forms of sectional variation which can be

[23]

solved in closed form are outlined by Cranch and Adler
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CHAPTER V

POWER SERIES EXPANSION OF TRANSMISSION MATRICES

5.1 Method Description

In previous chapters transmission In'atrices'ha've been derived
in closed form: for various non-uniform systems, i.e., rods and
béams. In addition, there are several ways to obtain approximate
transmission matrices to describe non-uniform systems which can not
be solved in closed form. The first, which has been mentioned pre-
viously is to use best fitting variable cross section segments which
are described by transmission n;xatrices belonging to the groups
derived in Chapters III and IV. The second is to obtain approximate
transmission matrices directly. Pestel and Leckie[ 18] briefly des~
cribe how the Runge-Kutta and Picard Iteration methods can be ‘employ-
ed fo numerically integrate the following differential equation for the
state vector,

dy _
dx ~ [A(X)]\P s J (5-1-1)

which results in a transmission matrix. Another suggested method[ 1]

is to use a Maclaurin series expansion which utilizes the following dif-

ferential equation: . |
£ M) =-[M[AG)] . -  (5.1.2)

This approach appears attractive as it utilizes the known variables
pA(x), EI(x), etc. which appear in the governing [A] matrix and it

eliminates the need to make equivalent uniform cross sections which
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are required in the more standard methods of piecewise uniform seg-
menting or lumped‘parameter approximations. It can also be organized
into a very simple, straightforward form which is easy to apply and one -
which is independent of‘matrix size, These attributes will be demon-
strated in the following section by an illustrative example.

| Expanding [M(x)] in a Maclaurin series about the origin of

the segment gives:

| t ' 2 " 3 1y
[MGx)] = [M(O)] +x[M (0)] + Zr [M (0)] + Zp [M (0)]+. ..
higher order terms 0

where:

(') denotes d/dx .

The condition for the Maclaurin series that the function be piecewise
analytic in this case requires through Eq. (5.1.2) that the variables in
[A(x)] be pie-ce_wise analytic. In pa_rtim-ﬂar they must be analytic in
the region between po.ints i and i+ 1 for which the transmission

ma.tri.x is desired. .By definition:
[M(0)] =1 , the identity matrix. (5.1.4)

Using Eqgs. (5.1.4) and (5.1. 2) the first three derivatives of [M(x)]

evaluated at the origin are found to be:

o (4 )
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[M(0)] = -[A(0)]

[M'(0)] = [A(0)]% - [A'(0)] , (5.1. 5)

[M'”(O)]l _ -['A(O)‘]:‘ & [A'(o)][A(O)] +2 [A(O)][A'(Q)] 4 [A"(O)-]

7/

Using the above expressions, the series faw [M(x)] becomes:
[Mx)] = [1]-=[A(0)] + 2 {[A(0)]? - [A'(0)])
3 1 1 1
+ 31 {-[a(@ PHlAa(0)][A(0) ]+2[A(0)][A (O)]-[A (O)]}H+ . . . (5.1.6)

It can be noted that if [A] is a constant matrix then Eq. (5.1.6)

reduces to:

[Mx)]=[1] -x[A(0)] + iﬂ%@l}i i {x[AQO)]}? ¥o 0. OF
[M(x)] = e [A1%
[10]

which is the known solution for a uniform system.

The transmission matrix obtained from Eq. (5.1.6) is a low
frequency approximation for the system. For a segment of 1e-ngth £
the variable x is replaced by £ in Eq. (5.1.6) and the parameter of
interest in each of the terms of the series becomes p or some power
of PB. The condition discussed earlier in Section 3. 3.1 which leads to
good low frequency approximations applies hére also; B must be

small, which means the product of w! must be small. The results

found in Chapters III and IV can serve as general guide lines for the
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magnitude of error to be expected for any given N, the number of
segments used to represent the system, and the transmission
matrices can be obtained for each of the N segments using the

series expansion method,

5.2 Illustration

Tlo illustrate the series expansion method, the transmission
matrix will be found for one non-uniform Segment of a rod for which
the g;:losed form solution has been givén previously in Section 3, 2. Iﬁ
general, a non-uniform system will be described by pieceﬁisg analytic
functions for the spatial variables occurring in ‘the [A] matrix, -
When several variables are required to describe a system, e.g.,
Ap(x) and EI(x) in the beam, it will be assumed for simplicity that 7
these functions 'become.non-analytic at the same position in the system.
'The number of segments used to represent the system will be deter-
mined by the number of non-analytic points in these functions. This
insures that [A(x)] is analytic in the segment being described bg} a
transmission matrix. The final transmission matrix for the overall
system is the product of the transmission matrices for the segments.

If greater accuracy is desired, the segments can be subdivided fur-

ther to increase N.

A linearly tapered segment of a solid, circular, cross
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sectional rod will be used for this example. The transmission
matrix describing this segment in closed form is given in Section
3.4 and the T’ij(ﬂ.) elements of this matrix are gix}en in series
form in Eqs. (3.4.10) through (3.4.13). The [A] matrix for this
segment, given in the form where the accompanying state vector is

defined by force and displacement, is given by:

0 -Z(x) 0 pszo(1+ax)"‘
[A(x)]= | | = & (5.2.1)
~Tix) 0 " i%’ﬂ_ 0 |
C

Forms of [A(0)] required by the first few terms of the series for

[M(x)] in Eq. (5.1.6) are:

Z(0)¥(0) 0 |
[A(0)]% = 5 (5.2.2)

0 Z(0)T(0)

£ -
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™ P ]
. 0 -Z°(0)Y (0) .
[A(0)]® = |
' -Z(0)T? 0
Z' (0)¥(0) 0
[A'(O)][A(O)] = . 5 (5.2.2)
‘ 0 Z(0)T (0) |
_ ' 2
Z(0)Y (0) 0
[A(0)][A'(0)] =
0 Z' (0)T(0)
] J
where:
Zi(x) = -pmon(1+aX)z y ]
L (5.2.3)
T(x) = (1+ax)™ JEA_

and

a =g/l

Substituting expressions (5. 2.2) into Eq. (5.1.6) and writing the

matrix elements Mij(x) separately results in:
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2 3 ' ' o .
M (x) =1+ 5 {Z(O)T(0)} + ‘Xe‘ {2Z(0)¥ (0) + Z (0)T(0)}

+O(x*)y + . .. .

2 1 3 1 - -
M (x) =% {Z(0)}+ S {Z(0)}+ Z {Z (0) + ZX0)T(0)}

+O(=*)+. ...

. i 2 ' 3 " -
M, (x) = x{T(0)} + S AT (0)} + S {T (0) + Z(0)T?(0)}
FOFY # ¢ ¢«

2 3. 1 = — ]
M (x) =1+ 5 {Z(0)T(0)} + T {2Z(0)F(0)+Z(0)T(0)}

+O(x*) +. . .

Rewriting these expressions for a segment of length £ using Z{(0),

Y (0),and derivatives of these functions evaluated from expressions
(5.2.3) gives:

M () :1-[.12_ .%_]p’- +Ofxt) + . . . (5.2.4)
0 = " ﬁz] 2 4 Ot
Mlz()-—- T‘[1+§+—3- ﬁ o (X)"‘. (5,2.5)
M21(1)=E-é[1-g+gz- El+omty+. .. (5. 2. 6)
_ 1 £ 4
Mzz(z)_l-[-z +§] B: + O(x*) +. . {5.2.7)

Comparing the above expressions for Mij(ﬂ) to those for

Tij(}l), which are given in Eqgs. (3.4.10) through (3.4.13), indicates
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close agreemént for the first few terms in each series. Through the
O(B?) term Mlz(i) is the same as TIZ(E) and Mzz(ﬂ.) is the same as
TZZ(JZ). In both the Mlz(l[) and Mzz'(z) expressions,the O(x4) term
reduces to O(p* only. In comparing M“(.ﬂ) to Tn(ﬂ) and leu)
to 'I‘Zl (£), however, there is a consistent discrepancy as the O(Bz)
terms in these expreslsions do not appear equal. By inspection of
Eqs. {3.4.10) and (3.4.12) it can be seen that a factor of (1/I1+£) ap-

. pears in both Tl;('e) and Tz.l (£). From expressions (5. 2. 3) it can be
seen that in evaluating Z(0), ¥(0), and derivatives of these functions
£ will never appear in the denominator of any Mij(ﬂ) expression as.
it does for Tu(l) and T21 (£). If, however, the _O(ﬁz) term in 'I‘11 (2)
and T21 (£) is expanded by using the Binomial expansion for (1/1+§)

with the assumption that § «1, then Tn(l) and T21 (£) become:

T {2}

11

1-[.;_-%+§;_+0(g3)+. . ] B + O(p*) " (5.2.8)

2
T (&) A—{E— [(1-g+g_z+0(g3)+ v o) - (1-EHEROE I . . ) B ]
21 o

-+ O(p*) : (5.2.9)

With the assumption that & is small for the segment and of the same
order of magnitude as [, then TZl(.ﬁ) and MZI(E) are the same
through the O(B?) term when given by Egs. (5.2.6) and (5. 2.9).
Likewise, T11(£) and 1\/I11 (£) agree in the O(B? term within
this same level of accuracy. Evéluation of the O(x*) term in Egs.

(5.2.4) and (5. 2.6) gives terms of £?p*/6 in Mu(ﬂ),



L

£ fepel . 4 y
-erE—[T) in Mu(ﬂ), and O(ﬁ) ‘terms in both Mn(ﬁ) and Muu)'

Moreover, it is expected that higher orders of (B%) are contributed
throﬁghout the series for M“(.Q) and MZl(l) by O(x®) and higher
order terms in Eq. (5.1.6). The transmission matrix for another
case of the non-uniform rod, p =1.0, has also been obtained using
the Maclaurin series expansion and the same difference occurs be-
tween the Mij('e)“ and Tij(£)~ expreésions where (1/1+£) is a factor
in the closed form solution. With the assumption that £ €1 for any
given segmgnt,l however, exact agreement between the Mij(ﬂ) and
Tij(ﬂ) expressions through O(B?) can be achieved for this case also.
| The example outlined in this section indicates the simplicity of
the Maclaurin series expansion method. The application is straight -
forward utilizing the governing [A] matrix for any order system
directly, i.e., rods, beams, etc. In the example of the linearly
tapered rod with £ « 1 for any given segment all elements of the
approximite transmission matrix agree with the Tij(l) elements
within O(p"g)' which is approximately the same as the governing
criterion for selecting the parameters in the linear taper lumped
parameter model derived in Section 3.4. This assumption, § «1
for the segments, is not very resf.rictive when considering the number
of segments required to give a reasonable error of 2 - 5% for the
first and second normal mode frequencies. Hence, by using the first
four terms of the power series in Eq. (5.1.6), which only requires
the values for [A(0)], [AT(O)], and [A"(O)] for the segment, a

transmission matrix comparable to that for the improved lumped
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parameter model of Section 3.4 can be found directly without any
calculation of mass or stiffness of the segﬁent. It is anticipated that
the advantages of this method will become even more attractive in
obtainiﬁg low frequency approximations for more complicated, higher-
order, non-uniform systems, i.e., Bernoulli-Euler beam,
Timoshenko beam, etc., where closed form solutions are very dif-
ficult to find and standard approximations are still uncertain. In

[

addition, it has been shown 14] for the uniform Bernoulli-'Euler
beam that this method can be used to obtain the consistent mass matrix

which was previously discussed in Section 4.1.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The objective of this‘-study has be‘en to evaluate the use of
transmission matrices and lumped parameter models in describing
continuous systems. These a.pproaches‘ have been applied to individual
segments which constitute an entire system. This type of representa-
tion can be exact or .ap.proxima.te.

In Chapter II a description of transmission matrices and a new
systematic approach for their derivationare presented. In Chapter III
the physical properties of vibration systems‘ obeying the one diinen-
sional wave equation are presented., Transmission matrices exact
within the as sumptions‘ of the elementary theory used are given for
three classes of non-uniform continuous one dimensional systems.
These matrices can be emploryed at the segment level to describe a
system composed of N segments. This type of representation will
be exact or approximate depending upon whether the individual segments
can be matched exactly or whe:ther they must be approximated on a
best fit basis by the segments which are described in closed form. The
latter process is expected to give muc‘h better results than the ‘usual
recomn‘iendation of using a pie-cewise uniform segment approximation.

Three types of lumped parameter models (see Fig. 3.3.1)
were evaluated in Chapter III on the basis of the uniform one dimen-
sional system. On the basis of this investigation several conclusions

are drawn concerning uniform one dimensional models:
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Model (a) (mass-spring-mass) and model (b)

- (spring-mass-spring) produce essentially

equivalent frequency root errors. For large

N the errors behave as 1/N? for all four

combinations of fixed and free boundary

conditions.
Model (c)'(spring—mass) is' less consistent than

models (a) and (b) under the same comparison.

 For free-free or fixed-fixed ends the error

behélvior isl 1/N? for large N. However, for
free-fixedor fixed-free boundary conditions the
error behaves as 1/N.

Model (d), N equallmaSSGS and N-1 or N +1

equal springs, produces errors which behave as

. 1/N for large N with boundary conditions of

" free-free and fixed-fixed ends.

Because models (a) and (b) diéplay more con-
sistent error behavior for all of the elementary i

boundary conditions used, it is expected that

.they would be better for arbitrary boundary

conditions also.

The models whose transmission matrices
best fit the exact transmission matrix for the
uniform increment were found to be superior

in representing the entire uniform system.



-111-

The abové results led to the formation of a new lumped parameter
model (see Fig. 3.4, 3) for representation of non-uniform segments,
‘This model is defined on the basis of achieving a best low frequency
appi'oximation to the exact transmission matrix. In addition, the
effect of unequal segment lengths was investigated. Conclusions from
this part of the stﬁdy are:
‘ 1. Evaluation of the non-uniform model for

systems with quadratic and linear area

variation indicates the error behavior when

N is large-; to be 1/N? for all boundary

conditions used. This model shows im-

proved results when compared to Duncan's

;nodel and the uniform segment approxima-

tion, Also evidence suggests better error

behaviof under arbitrary boundary conditions

whén this model is used. |

2. From a study of variation of segment lengths

it was found that equal leﬁgth segments give

errors which are not much larger than the

best obtainable by linear variations.

In Chapter IV a brief summary of various approaches which
have been used to model uniform Bernoulli-Euler beéms has been
given. Most models are inconsistent in that the frequency root errors
‘behave.as 1/N? for some béundary conditions and as 1/N* for

others when N is large. In an attempt to eliminate this inconsistency
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several investigators have used an approximate dynamic stiffness
matrix which is based upon a first order approximation of the inertia
forces. A dynamic stiffness matrix contains the same type of informa-
tion and can be transformed into the same form as the transmission
matrix. Exact transmission matrices for several types of non-
uniform Bernoulli- Euler beam elements are derived. These trans-
mission matrices can be applied on an exact or best {it piecewise

basis for describing compound tapered beams. This can be viewed

as an extension to the previously used'dynamic stiffness matrix
approach.

A power series expansion method has been presented in
Chapter V for‘determining approximate transmission matrices for
segments of non-uniform systems independently of the availability of
closed form soltitions. The method holds for any order transmission
matrix. The following two conclusions have been formed:

71. The method is direct requiring only the values

of the functions and derivatives of the functions
contained in the [A] matrix, which character-
izes the system, evaluated at the origin oif the
segment. Calculations of mass, equivalent cross
sections, stiffnesses, etc. are eliminated.

2, B.;_a.sed on a comparison with the closed form

solution for a linearly tapered segment of a
one dimensional system, the series method was

found to produce a low frequency approximation
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comparable to the best lumped parameter
model when g, ‘the slope parameter, is
small and the first four terms of thé series,
which require the values of [A(0)], [A'(0)],
and [A”(O)], are used.

The work presented here has‘ by no means completed th'e étudy
of lumped parameter models or e.xhausted the possibilities of trans-
mission matrices for non-uniform continuous systems which could be
applied in practical vibration préblems . One area stemming from
this work which needs further ihvestigation is the application of the
power series method to beams, inr p#rticular non-~uniform beams.
Another important problem, which is a natural continuation of this
study, is the efficient mo&eling of structures which are composed of
many elements like those treated hereih, i.ﬁe. , rods, beams, etc.
Because of the different mass and stif'fnes‘_s distributions .among the
elements in the structure, some elements should be represented by
more segments than others in order to best approximate the overall
structure. Efficient usage of a minimum number of segments for
this préblem_requi_res guide 1in§s. which have not been completely

established.
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APPENDIX A
DERIVATION OF THE GOVERNING [A] MATRIX

FOR SEVERAL ONE DIMENSIONAL SYSTEMS

A.l Longitudinal Rod -

Assumptions (see Figure A.1):
1. p and E are assumed to be constants.
2. Area, A(x), is variable.
3. Plane sections remain plane.
Summing forces on the dx element gives (see Figure ALT):

z forces = mass =+ acceleration, or

OF | d
= S dx = pA(x)(—-V—-)dx

For sinusodial, steady state motion:

.a_v = Jie
ot Y
. dEF _ .
') E{.— = —1pr(x)V

Using Hooke's law gives:

ou

Force = -gA(x) = - e EA(x) , and
v

T i e
1w

iw

b e

(A, 1)

(A, 2)

Casting Eq. (A.1l) and (A. 2) into the state vector form to determine

the [A] matrix gives:



-115-

Iad; {F;;}: [A] {I::} | (A.3)

where:

A.2 Torsional Bar

Assumptions (see Figure A. 2):

1. p and G are assumed to be constants.
- 2, Area, A(x), is variable.
3. Each section rotates about its center of
gravity and plane sections remain plane.
4, The shape of a general cross section does
not depart greatly from a circle.

Summing moments on the dx element gives (see Figure A, 2):
8T . _=z_ 26

For sinusodial, steady state motion:

'?a"g = 1wl
L S = -lepTRAME . - (AL 4)
From elastic properties:
80 ~—2

TR e Gr°A(x) , and
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e o
1w
. ae
i e _ (A.5)
o (Gr A(x))

Casting Eqs. {(A.4) and (A.5) into the matrix form to determine the

[A] matrix gives:

-~ -1

0 -iwpr? A(x)
4 IE T
=80 ‘ . T« LA.B)
_ 7] __ iw 0 g
GT?A(x)

A.3 Acoustical Tube

Aséumptions {see Figure A, 3):

1. Vibfatiﬁg rﬁediunl is ahomogeneous, isotropic,
ideal gas.

2. Plane waves exist or plane sections remain
plane,

3. Container walls are perfectly rigid.

4, Areas, A(x), are slowly varying functions
of the spatial variable.

(25),

From the continuity equation

AV _ 9§
vV T ex

where:

V = volume
£ = particle displacement

v = particle velocity



For the ideal gas(25):
where:
y ~EE .
. dX = ; CZ
Po
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p =F/Alx) =‘pressure.

iw

Summing forces on a dx element gives (see Figure A. 3):

PR ———— F (A.7)
PoC A(x)
dF . .
e -1mp0A(x)v (A. 8)

Putting Eqs. (A.7) and (A.8) into matrix form gives the following

result for the [A] matrix:

0 ~iwp A() |
{f:} (4.9)
iw 0
pocaA(x)' ]
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APPENDIX B
DERIVATION OF TRANSMISSION MATRICES

(ONE DIMENSIONAL SYSTEMS)

The differential equation defining the transmission matrix is

(see Section 2. 2):

a| T] .
N £ 1 7Y ) I (2.2.4)
where:
0 -Z{x)
[A] =
-Y (x) 0
Consequently:
I 1 o o
i s i T Yix) T L(x)
11 L2 12 1
: S 4 T T(x) T Zix)
21 22 22 21
where: _
! dT..
T.. denotes —-
ij dx
Expanding the above gives:
5 _ .
it = T ¥i=x) (B.1)
11 12 :
1
T, =T“Z(x) (B.2)
T =T T(x) (B.3)
21 22
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TZZ = TZI Z(x) (B.4)
and the necessary initial conditions are:
[(Ty] =41] , the identity matrix
[T(0)] = -[A{0)]
Using Eqs. (B.1) and (B. 2) gives,
" () -| T T’ (%) - TRZET (x) = 0 (B. 5)
11 Y(X.) 11 11
From Egs. (B.3) and (B.4) results:

(B.6)

T ) [2@] T (x) - TZEIT, () = 0

2 Z(x)
Providing solutions can be found for T1 . (x) and Tzz(x)’ the deter-

mination of [T(x)] can be completed by using the initial conditions and

Egs. (B.1) and (B.4).

Case I
p =0 or an integer

Ax) = A0(1+ax)zp'1

Z(x) = iwpA (l+ax)?P-!
o

iw 1-2p
A (14ax)
o

Tix)

For this case Egs. (B.5) and (B. 6) become:
(1+a.x)'_I‘|;1(x)+(2p—l)aTll(x)+ﬁ21(1+ax)'1;1(x) = (B.T) .
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(L+ax) T (x)-(2p-1)aT, _(x)+6? (1+ax)T_(x) = 0 (B.8)

where

B = p/L
1
A convenient coordinate transformation is:

0 = a(l+tax) ,

where:

As a result of this change in variables, Eqs. (B.7) and (B. 8) become:

, dZTH(G) dTl 1(6?) "
’ 4 — +(2p-1)6 —35— + 6 T”(e) =0 (B.9)
’ dszz(e) dTZZ'{G) .
(2] __E.ez_... - (Zp_l)e w——— + 6 TZZ(B) =0 . (B‘ 10)

Equations (B.9) and (B.10) are of the standard form whose
solutions are Bessel functions, Also (B.10) follows from (B.9) if

f (i-p); hence,
=6 PH I B
Tu(@) 6 {D1 1_‘p(e)+1:>2Y1_p(e)} _ (B.11)

_gP T
T (0)=6 {DIJP(B)+D2YP(6)} " | (B.12)
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The initial conditions are:

T il =T iy =T fe)=1
11 <=0 11 9:& 11
dT (%) dT (6)
11 i 11 =
dx d0 '
= 9=Q’
Likewise, for T -l
22
T x| =T (0] =1
22 S 22 .-
dT (x) dT (6)
22 — 22 =0
ax _ do -
X =0 O=«

Using the above initial conditions with Eqgs. (B.11l) and (B.12) gives:.

(p-1)-
5 o NY_p(a)
4 X
- a(p_l).]' (@)
D == — =
& X

~where:

X=J (@)Y P plal el

- < . 2
The form of X is commonly called the Wronskian determlnant[ 6] and

X =WJ a), Y @)y = 2/"0-'

Likewise,



where:

o _ 2
X = Jp(a)Yp_l(a)-Yp(a')Jp_l(a') -

Therefore, the solutions for Tu(G) and TZZ(G‘) ‘become:
.(9 = Ta
— 1l ot 5 6
T“(G) a) (_2_) {Y_p(a)Jl_P(B) J_P(a)Yl_p( )}

0\P
T, =] (%] v, @i @-1,_ @1 0}

(B, 13}

(B.14)7

To determine the two remaining matrix terms, T B and T , requires
‘ 1 21

using Eqs. (B.1) and (B.4) as follows:

dT (x) 1 1 dIT (6)
T {x) = dl}i or T (6) = aw dlgl
12 Y'(X) 12 -Y'(G)
dT (x) dT (6)
T (x)=_1 _dﬁé_x_ or T {0) = —— ag —2
21 Z(X) ‘X 21 Z( 9)

Completing these operations gives;

EA
T (0) =
12 ;

i )(glp(ﬁ%) {Y-p(a)J_p<9)~J_p<a)Y_yp(e)}

]
1w

m, 0= - 5 () (2) I

and when x— £; 6-—~gp and a — fp

7] UL ey (00 (BT MY

(B.15)

A8}
1 B

(B.16)
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where:

; \/Al -VAO
g:f+1 e f:l/g » §=——-—,-,and a=§/£
Vv A

o

To check the validity of the above expressions, the limiting
"case of a uniform rod is useful. For the uniform rod,

V A_Q ~JA
o b
R ——
\/ A
o

Therefore, the arguments of the Bessel functions, which are all {f

0 o £~+0ow @nd g o

or gP, all become infinitely large as the uniform case is approached
in the limit. The common Bessel function expansions for large agru-

ments are:

3 (8) ~ \/1—&% cos(fs - G BZE)

oo~ - )

2
Yp(fﬁ) B
1so f = an int Y _=(-1PY_and 7 _=(-1)PJ_. Using th
also for p = an integer - (-1) p B - (-1) B Jsing the

above expansions and checking the 'rlz(e) term in the limit requires

the following expansion.

'y B
Y BT (gB)-T_(BY_ (gP)) -

£ 1l |+a +a +a +a
(-l)zp i 1 Y= 1 2 3 4

O 'rrB

. f
g +a.5ji-a6+a7+a8

‘-sin(gﬁ)cos(fﬁ)cosz(e)

)
—t
i

=sin{fP)sin(gP)cos(e)sin(e)

fl
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a, = cos(fp)cos(gP)cos(e)sin(e)
‘a, = sin(fp)cos(gP)sin® (e)

a, = cos(gP)sin(fp)cos®(e)

a, = sin(fp)sin(gP)cos(e)sin(e)
a. = -cos(fB)cos(gP)sin(e)cos(e)
ag = -sin(gP)cos(fp)sin® (¢

. T
¢« = z (1-2p)

In the above, the a, and a, terms and the ay and ay terms cancel.
Then by using the trigonometric identity cos?¢ + sin®e¢=1 and the fact
that (-1)?P is always equal to +1 for p = an integer, the above
expression reduces to:

W ( A

P Vet

which is independent of p. Further reduction gives:

{sin(gB)cos(fp)- cos(gP)sin{fp)}

—n

2
- B

J—)sin(g-f)ﬁ
| Vet
: 3
‘But (g-f) =f+1-f =1 and {g/f) = 14£ e 1 . Therefore, TIZ(E)

goes in the limit to:

g EA P '
iy P olfg\* wfp | 2 1 _,
R —‘( )(f *2““‘1: Ny Smﬁ]

1 iw 1
£ 1 EAO
le-—; = g ‘|B sinf8 . ' (B.17)

"For the sign Vconvention and form of state vector used here, Pestel[ 10]
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gives for the uniform rod:

EA

L _ﬂ_o) B sin P

T (uniform rod) = - —
12 ‘, iw
which agrees exactly with the limiting value obtained above. The same
procedure has been used to extend T11 (), T21 (£), and Tzz (£} to the
limiting case which also resulted in expressions identical to those for

the uniform rod.

€
'I'u(l) > cos B

£ 4 sin B
T21 i3 Rl TOE) =

T (2}~ cos B
22 o
Case II

Ax) = Ao(l-{-ax)zp- ! p# 0 or aninteger

Equations (B.9) and (B.10) apply here just as in Case I. How-

ever, the solutions for TH(B) and TZZ(B) now become:

s a2

T (6) =6 {C;Jl o0+ CZJP_I(B)}_ (B.18)
B ‘

T (6) =6 {CIJP(G) § c.ZJ_p(e)}_ - (B.19)

Imposing the same initial conditions as before gives:

2 p'lJ
E :"f__._.__Ef.f_).
1 ~

8)



a'-len (o)
C = -
« P1 (a)
C = —EB1
2 U
where:
T3 @l (4 (@I (@) |
and

= + Ji
U Jp(a’)..T1 _p(a) Jp- (a) P(a)
It can also be shdwn that
~ 2 y
U=U = (-ﬁ) Sln(P'\T) HE

and if

Therefore, the solutions for ’I‘11 (6) and TR(B) become:

see BT TR L B 4
T“(e) _(EJ i {Jp(a)Jl_p( }+ _p(a)Jpﬂ(e)} (B. 20)
T () ={2 =2 (J (@I (8+T_ (a)T _(6)} ‘ (B. 21)
22 afl TY,-p""p P-1 -p )

Following- the same approach as in Case I using Egs. (B.1) and (B.4)

gives:



o1 aT (6)
Tla( ) B ?‘(6) S de
’ aT_(6)
TZI(B) - Z(e) e do |
Hence,
‘ EA P | >
T (6) = TET( 2 =] -lﬁ T @I (0-7_ (@3 (0} (B.22)
T -- 2 LN T e e, (@16
21 -7 B AR o U Pyap™ P-1 _p-1a 1-P

(B.23)

Using the large agrument expansions, as in Case I, in Egs. (B. 20),
(B.21), (B.22), and (B.23) for the limiting case again gives the uni-

form rod expressions for the Tij elements in the limit.

Case III
2(x/x )
Ax) = Aoe @

Equations (B.5) and (B. 6) reduce in this case to the following second

order differential equation with constant coefficients.
i 2 1 2 '
T (x)+(—) T (x)+P*T (x) =0 (B. 24)
11 = 11 11 :

' lelz(x) - (5’22;] T'zz(x) ¥ ﬁ'lz Tzz(x) L (B 25)

Assuming exponential solutions gives:



d ==-x % i\/ﬁ"‘l - 1/x0z

1,2 o
Two solutions are possible from Eq. (B.26):

i 9 }3‘?‘1 < llxoZ ~ ndn-oscillatory hyperbolic functions

Z. B » llxg ~ oscillatory trigonometric functions.
1

The solution of interest here is the second; hence,

-x/x ‘
'I‘11 (x) =e 0{E1 cos yx + Ezsin vx }

X/X ~ ~
T (x) =e °{E cosyx + E sinyx}
22 1 2 _
Using the same initial conditions as before gives:

E =1 , Ezzl/xoy 5

E =1 , d E =-1
: an 1 /xoy

(B.26)

Usiﬁg the above constants and Egs. (B.1) and (B.4), all four Tij

elements can be determined.

-x/x
Tn(x) = e = (cos(yx) + -ﬁi—g sin(yx)
T (%) = oo WP
- X) = - T(EAO)(_%[ sin(yx)
-x/xo 2
T“(x) N — (pA 1Y ) sin(yx)

o

(B.27)

(B. 28)

(B. 29)
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x/xo
Tzz(x) =e cos(yx) -

sin (yx) ) (B.30)
(6]

v=\/5"‘1 - 1/x2 .

To take this system to the limiting case of the uniform rod

where

requires X, o Imposing this limit gives,
Xs T B Y"Bl! A(X)=Ao )

and

5 1 AOE
le(l)-——* == ) B sin B

"

e £ sin
T21 (£) o iw (—TAO ) 5

x

o

Tzzu) o Ccos 6]

These expressions also agree with those for the Uniform rod. |
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APPENDIX C
DERIVATION OF SPRING CONSTANTS FOR
LINEARLY TAPERED SEGMENTS

(ONE DIMENSIONAL SYSTEMS)

In the following, spring constants are found for the linearly
tapered segments belonging to Groups I and II which are described in
Chapter III.

Summing forces on the dx element in Fig. C.1 gives:

9 du _ .
where:
Ax) = A0(1+ax)2 for Group I ,
A(x) = A0(1+ax) for Group II, and
u = displacement,
B d A(x) f ti 1 T X y =K - d
ecause U an x) are functions only o 5= I an

Eq. (C.1) becomes:

du _
> EA(x) = Cl- (a constant)

Using the coordinate transformation Z = (1+ax) gives:

4, 4
dx dZ

Q

du 1

3z ~ -ETA-O— for Group I | (C. 2)
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du

azZ a—z—

c
ET-IIXO for GroupIII ‘ (C. 3)

Solving Egs. (C. 2) and {C. 3) for u(Z) gi\}es:

C
1 )
wZ) = - (EAO) 37‘1- + C2 for Group I (C.4)
and
. £ 5 14 o |
wZzZ) = A —EL in{Z) + C for Group II . (C.5)-
o ‘ o o

For a force, Fo’ applied to an element of length £, appropriate

boundary conditions at x =0 and x =1 are:

’ _E(_Q EA :Fl
(o]

dx o 7 (C.6)

u () =0

Applying the boundary conditions to Eqs. (C.4) and (C.5) and ﬁnding

the displacement u(0) at x = 0 gives:

= 1B = N B ' | |
6. =u(0) = FO(EAO TTE for Group I (C.7).
= 2
6 =ul) = _gi 5| {n(1+£)  for Group II . (C.8)
: o
Hence, the spring constants, k = FOIS, are:
A E
& = ﬂo (1+£) for Group I ' (C.9)
AOE £ . _
K =|— To(1TE) for Group IIL. (C. 1.0)
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APPENDIX D
DERIVATION OF TRANSMISSION MATRICES
FOR NON-UNIFORM CONTINUOUS BEAMS

Assumptions (see Figure D.1):

1.. Shear deflection and rotatory inertia effects
are small and negligible, i.e., Bernoulli-

Euler beam.

2, p and E are assumed to be constants.

3. Area, A(x), and stiffness, EI(x), are

variables.

The differential equation for the state vector is:

= W} = [A WY . . (D.1)

Summing forces on the dx increment gives(see Figure D.1):

G G 1 N %\i— dax + pA(x)w?‘wdx =0
%‘% = pA(x)w®w

Summing moments on the increment gives:

M + pAx)e? wax () M- B gt vax + . (ax)?= 0

and neglecting O(dx)?® terms reduces this to:

By definition:



w
V+ -Q-y-dx

P VE——

ELASTIC BEAM INCREMENT

FIG. D.I

o



i d
A = ¢ s \: = a?é‘ »  EI(x) d____w =~-M
dx dx
.odé _ M
* dx EL(x)

Casting these terms into the form of Eq. (D.1) gives:

[ 0 tpAlx)? O |
a -1 0 0 0 '
o e 3= . ; o g | el
0 -1/EI(x) 0 0
where: ] )
-
{$(x)} = <M>
. w
¢

Using the notation Z(x) = pA(x)w® and Y(x) = 1/EI(x) reduces the

governing [A] matrix for the beam to:

0 0 Z(x) 0
-1 0 0 0
[A] = ' ' . (D.2)
. 0 0 0 1
0 -T(x) 0 0

Expanding the differential equation which defines the transmission
matrix, Ei—— [T] =-[T][A(x)], gives four sets of equations of the

following form:
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Tgy = =gy \ ]
' e
Tiz = —Ti4Y(X) L
(D. 3)
, ‘
Tis = TiIZ(x)
1
T, =1,
14 13 /
dT,.

-
where i =1,2,3,4 and Tij denotes Ti—-)—?— . The necessary initial

conditions are:
[P0l =1 7, the unity matrix : | ]
[T (0)] = -[A(0)]

) 1 k(D'4)
[T (0)] =-[A()]* - [A(0)]

[T"'©0)] = -[4O)] +[a'©)][AO)]+2[A0)][4(0]-[4"0)]

Using higher derivatives and rearranging terms in expressions

(D. 3) gives:

[RE 1]
3|

S

- o

Substituting for Y(x) and Z(x) gives one general fourth-order differ-
ential equation for ’I’i1 (x) as follows:

1t

n2(BI(x)) M, (EIx)) " pA(x) e _ |
Li¥ Shes — Wn® TEgs TuC TEo T I 79 - 0.8

In Chapter IV Eq. (D.5) has been rewritten as a produét of two

second-order differential operators with a coordinate transformation.
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These operators are given in Egs, (4.2.19) and (4. 2. 20) and the result-

ing solutions for Til (z) are:
Case 1 n =0 or an integer

T @) - ?-n/z{cf;;fn(,c)ﬁuciyn(x) % ci In(K)+CiKn(I€)]: . (D.6)

Case 2 n # an integer
S VP | i i el -
T, (%) = = {ClJn(K)+CzJ_n(K)+C3In(K)+C4I_n(K)}: (D.7)

where:

- n
pA = pAO(z)

£l = Bt ()%

(]

i 1y [pPA -

z o

l{:uz -—20.) (E-)—E—ir—— z

(o]

_ Ex d . & 4d

Z"(“T) el = W 5 e

The transmission matrix will be derived only for Case One in the fol-

lowing; however, Case Two follows by using the same procedures. An
) additionai coordinate transformation, y = z%,, is required to make ]

the variable in the arguments of the Bessel functions in Eq. | (D. 6) be

of the first power; thus, allowing standard recurrence relationships to

be used in taking derivatives of T,,. Changing Eq. (D.6) gives:
_ o =ngpai i i i
T, ) = yTHE T )G Y, (4G ()G, ()} (D. 8)

- Taking derivatives of Til for application of initial conditions gives:
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2
Tuo o T 104
dy diz 2 Zy | dy
3 2
&’ T, 1]a i
dz? 2y |y gg2

Applying these to Eq. (D.8) gives:

1 s i i i
T, (1) = C I (WHC) Y (WHC] T (HC K (1)

> dTil(l)
T-L- dz
( 2 )z dZTil(l)‘ _
# dz ?
B dz?

i

c'J

1 nt2

(w+C

n+1

i

|

2y

_ i i . i

=- {Cl7 , WC Y (u)-C31n+1(u)+C4Kn+l(M)}'
i i

zYn+z(u)+CBIn+z (p)+C4 Kn+z (H)]:

o i i T,
- {Ci Jn+3,(u)+CzYn+3 (“)_cs In+3 (“)‘+C4 Kn-{—

1 dTil)

\ (D.9)

()

3 e’

The initial conditions for ".[‘il (z) and derivatives of Til (z)

at z =1 or x =0 are evaluated by using expressions (D.4) and the

values of [A(0)], [A(0)]?, [A(0)]?, a%‘ [A(0)], and

dz
dz?

[A(0)]

which are obtained from expression (D.2). Upon elvaluation, the

initial conditions become:
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N ’ \
1 0
0 E‘ .
iy _ L ) pE
{V}: 21" {VZ% = ¢ " by
0 0
/ L )
¢ 0 \ 4 0 N
: 0
{v3}= Joag | = { } ?
22| = £1272¢3 .
=, L1 o,
where:
— 1
Yo S EI g
o
and
( A
Til(l)
Z dTll(l)
_ u - dz :
g ;
{v'} = < &1, () , | (D.10)
12—
(Ela d3T (1)
\ H dz ? ;

Equating expressions (D.9) for the derivatives of Til(;) to the above

expressions for {vl} determines the 16 constants
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(Ci(; i,k =1,2,3,4) required to define Ti1 (y). Abbreviating the

above process by using matrix notation gives:

('} = [B1{c}} (D.11)

Inspection of expression (D.9) shows:

J (k) Y (W) I (k) Kn(u)
=T (W) -Y (W) I, (W) -K ()
[B] = i e wn o . (D.12)
Jn+z (PL)‘ Yn-i-z. (k) In-l—é. (‘u) Kn+z (1)
B e L S j

Consequently, the constants’ Ci{ are given by:

{cpr=[B1"" ('} (D.13)
or
B & Vl . . B
11 L 14
Ck = Det. : . 8 B (D.14)
B - . Vi . - B
41 4 44

where the determinant in Eq. (D. 14) has the s column replaced by
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the column vector {v'} and B =1/det ||B]|.
Having determined the CL constants, the remaining Tij

elements can be determined by using expressions (D. 3) and Eq. (D, 8)

as follows:

ORI WP | 4 N 0 it
s dn i1 Il dz “iv T T \Zyl Tdy

i

STyly) = - (%)(%)Y-(ml) {C,ilJn_i_l(uy)*%Ciz“Yn_l_l(uy)-C3In+l(,uy)

3
+64Kn+1(uy)}_ | (D.15)

b el B
v Tw) T 20 g D a2 g U S| E

¥ z - i
(SRS ety )

o T R mmaatas
ig (y) ?‘(y) 3 n+g
1 i
TCL Wy IFC K (k) ¥ (D.16)
3 T
T_dT_(g)3 1 9Ty 1 av 9T
i3 ~ dx Tis V¥ = 3 R dz 2
Y(Z) dz Y (Z) dz
where:
2
a1 i( 1 dTn)]
" az? Zy Ay | &y Tay
and
3 2 2
a4 Ty a [1 97,
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Hence, the final expression for Tia(y) becomes:

= - 2 (g1 g o1
(o]

where:

- i i ' i :
A1 Cl Jn+3 (uy)+C2Yn+3(},Ly) —C3 In+3(y,y)+c4 Kn+3 (1y)

i <1 i i
A; = C'-1 Jn_|_2 (y) l-(JZYn_I_2 (uy)+C3In+z(uy)+C4 Kn+z(uy)

The complete transmission matrix for the transverse bending beam
element.ié given by the above expressions for Tij(y) and C?I where
igj = 1,2,3,4.

To check the validity of the Tij(Y) expressions the limiting
condition of the uniform beam can be employed. For an element of

length £:
z = (1 + €) =(gff)

= (1+§) =g/t

Consequently, when £ — 0 in the limit, which describes the

uniform beam, the argument [y —c0 as:

e

My

g 1 = pA
bt )5

1
A 4
O]
—_— 0
(o]

y =4

Likewise,

€ . _12,( g) P
Fom ““ Bl | =
The fact that 4 and Wy both tend to infinity as £ — 0 justifies the

- use of the following ésymptotic expansions for Jn’ Yn, In’ and Kn
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which appear in the Tij(y) and C; ekpressions.

Jn(x)z’\/Té— COS(X—‘IT/‘]:--H—;.)
Y (x) = 23 sin(x- T
n \/ ™=

bl
I{x)= 2 and K_=\for &%
n \/‘E‘E n 2x

Using the above expressions and checking T3 (£) from Eq.
4
(D.17), which checks all the basic steps in the derivation because of

the ordering in expression (D.3), as £ — 0 gives:

b J o+

5
i 4 ’
T43 (£) 0 cl{b1Jn+3 2 ntz

5

4 ?
O {blYn+3 B, Yot

(D.18)

4
(::3{1:»11rl+3 +b21n+2} +

4
e .,
C4 {bl n+s3 szn-i-z}

where:

L TU I

o

and the undesignated argument of theé Bessel functions in Eq. (D.18)

is:

B

pA
Bl

Ef 2;_.)%(1+§)—12' (-é)[ ] " | (D.19)
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The constants C::( are evaluated from Eq. (D.14) andas £ — 0

they reduce to:

s . B ] |
Cl TR {al(Yn'i'a Yn+1) @ az(Yn+z+Yn)}

4
€=~ {al(Jn+3 T ot,) +a2(Jn+z-Jn)}
i 2B
G, = e {al(Kn i +Kn+l) +az(Kn +2+Kn)}
s _ 2B _
C4 = - W {al( n+3 +In+1) aZ(In+In+z)}
where:
B‘i . _(‘“)2? i é)(”1)3(+2)?
g "8 WU s v By FYTIHE M o

and the undesignated argument in the Bessel functions for the con-

stants C'i‘{ igE

ISES

po= zm%[é) [%:l ) (D. 20)

Substituting the expressions for constants C‘f{ into Eq. (D.18) gives

the following:
£ 16
B gy = Z 5
g 43 0 m
m=1

where:
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1 allen-i-z. (E) {Yn+3—Yn+1 }

a B
1"

o}
1

2 azb1Jn+3® {Yn+z_ Y;’l}

}

d3 - -alszn+z (m{Yn+3 -Yn-h 7

d4 - uazszn-l‘z(m {Yn+z HYn} _
dy = —alrbl Y hts () {Jn+3 _Jn-l-l}

d6 - -azbl Yn+3 () {Jn+2 —Jn'}

[oF}
1

T a1szn+2 (m {Jn+3 —Jn'i‘]_ }

o,
1}

8 azszn‘*'z(m {Jn'l'z-Jn}

_ 2
d9 = a1b11n+3 (1) {1&<n+3 +Kn+l}

2
dm = azb11n+3 () {Kn+2+Kn}

Z : '
dl 1~ a1b31n+z (m {Kn+3 +Kn+1}

2
R azbzln—l-z (W) {Kn+z+Kn}

; 2
d13 T albl Kn-h () {In+3+1n+1}

2
d14 T aaszn—l*s (m _{In+z+ In} :

2
dijg =5 ab K @ )

i

=
d16 - HE azszn-}-z(m {In+2+1n}

and the undesignated arguments are Wk. From the asymptotic expansions
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for I and K :
n 2o

g -
Ko T + 10} 5> = JHu-m
oY
and
£ o
Lo K ) + X)) 5~ _mt_ o~ (=10

These results are independent of the dummy subscripts i, j, and k.
Therefore the last 8 terms in the previous expression for T 3(.2) can be
4

reduced to :

A = %
T

] sinhﬂ) . (D. 21)

)] 2
\/_..=— T

HH
Expanding the first 8 terms of T‘&3 (2) into trigonometric terms by

using the asymptotic expansions for Jn and Yn and reducing for

g =+ 0 gives:

& 1 (n )
N O (R B (-
= £
3 ™ [‘M'“"
Hence, the final result is:
T(f)iﬁ'[A+A1m~+ lg[s'hﬂ inQ ] {D,22
. 7 T 3 -5 7 in - sin . . 22)

For the uniform beam with the sign convention used herein, the trans-

[13],

mission matrix is known to be
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Co 7 Ca g3 l.YoC £ OCz
one Q
« Cl Co —(T ocz 7 C3Yo
[E]= ' ' | (D.23
‘ c .
P 9 {z 5 Ry 2
_('ﬁ) :—'[-“ cs N 5_2) Y__ S Y’ cl
o o
L Le L5 8¢ :
?2 — 2 _S?—- T 3 o
- Yo Yo o
where:
(G 1 ‘
= —Z[cosﬂ+coshﬂ]
1 & 4 o
g - > [sinQ + sinh Q]
Cz = —%—[coshﬂ - cos 2]
C = 3 [sinh@ - sin®]
and

frs

| A 3
El,

Therefore, the E43 (£} term for the uniform beam agrees' exactly with

the limiting case of T43 (£) -as given in Eq. (D.22). Other terms,

E€>o

- not recorded here, have been reduced and they also check with the
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uniform case in the limit.
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