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Abstract.

A. G. Vulih has shown how an essentially unique intri;sic mlti-
plication can be defined in certain types of Riessz spaces (vector lattices)
L. In general, the multiplication is not universally defiﬁed in L,
but L can always be imbedded in a larger space If in which multi-
plication is universally defined.

If @ 1is & normal integral on L, then ¢ can be extended to a

normal integral on a larger space Ll(qa) in #

» and I-]_(CP) may be
regarded as an abstract integral space. A very general form of the
Radon-Nikodym theorem can be proved in Ll(q:), and this can be used to
give a relatively simple proof of a theorem of Segal giving a necessary
and sufficient condition that the Radon-Nikodym theorem hold in a measure
space.

In another application, the multiplication is used to give a re-
presentation of certain Riesz spaces as rings of operators on a Hilbert

space.
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Introduction.

A Riesz space (or, vector lattice) is a real linear space L
(with elements x, ¥, Z,...) partially ordered by < such that

(i) x<y implies x+2<y+2 forall zel,

(11) x> 0 implies ax > O for every real number a= 0.

(1i1) L 4is a lattice under < .
For the basic properties of Riesz spaces we refer to N. Bourbaki ( {2,
Ch.II), H. Nakano ( [10],[11]), or W. A. J. luxemburg and A. C. Zasnen
(8], Note VI). 1In particular we recall that the linear structure of
L forces the lattice structure to be distributive, i.e. if x, € L,
s} » and sup(x,) existe in L, then forany y 1L we have
inf(sup(x.), ¥) = sup inf(xe ¥).

We recall the usual notations s L' = Slx € L t x> 07;,
x, = sup(x, 0) € LY, x_ = sup(-x, 0) € tt, x| = sup(x, =x). If
inf(ixi, |yl) = 0, then x and y are said to be disjoint, and this
is denoted by =x .l y. |

The sequence ixn s n e H} of elements of L is increasing if
x, £ X, & +os, and this is denoted by M If x b end
X = sup(xn) exists in L, we write xn’r x. An indexed set {x,{ :oce{e(}}
in L 4s said to be directed upwards if for every pair &, &' €{«}
there exists o" €{x} such that x, qup(xq, x,,)s Again this is
denoted by x, 1T , and if z= sup(x,) exists in L we write x, % x.

A linear subspace K of L is called an (order) ideal if x € K

and |yl < {x! implies y € K. K is called a normal subspace if in



addition xq'l‘ x and x € K implies x € K.

A Riesz space L is called Dedekind complete if every non-empty
subset of 1 which is bounded above has a supremum. L is called
o =Dedekind complete if every countable subset of L which is bounded
above has a supremum, L is called Archimedean if 0 < x, y € L,
O<nx<y forall ne N implies that x = 0. A property implied by
o =Dedekind completeness and which implies the Archimedean property is
that for all 0 <x, y €L the element sup inf(y, nx) exist in L-

(c.tf. [8], example 29.11 in Note IX

In a Riesz space L there is no a priori method of multiplying
elements together, but it is well known that there exist many represen~
tatipns of various types of Riesz spaces as function spaces (c.f.

D. G. Jommson and J.E. Kist, [6] ), and so it is natural to ask if a
multiplication can be introduced into a Riesgz space corresponding to
pointwise multiplication of functions. The answer, as given by

B. Z. Vulih ‘[19], is that this can indeed be done for Dedekind complete
spaces with a weak order unit, and in addition such a multiplication is
unique up to a scale factor (determined by the choice of unit). (c.f.
also E, Hewitt [51; here will be found references to earlier notes of
Vulih.) It cannot be ex’pecﬁd that such a multiplication will in
general be universally defined in L (indeed, this is not even true for
pointwise multiplication in 1.1(0, 1) ), but Vulih shows that by a
construction due to A. G. Pinsker L may be imbedded as an order

dense ideal in a larger space I.#. and that multiplication may be
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universally defined in #. The imbedding of L in L# is in many
ways analogous to the imbedding of a space of integrable functions, say,

in the space of measurable functions.

Most of the results in part I, dealing with the definition and
basic properties of multiplication in Riesz spaces, are due to Vulih,
and specific references are not usually given. Many of the proofs,
however, have been revised and shortened; in particular, theorem 4.2,
which is new, allows a considerable simplification of theorem 4.3.

Vulih considers only Dedekind complete spaces, but it is seen in
section §1 that the basic properties of unitary elements (including
Freudenthal's important theorem 1.5) depend only on the existence of
projections into normal subspaces. In addition, theorem 1.6 (a
strengthened form of the corresponding theorem of Vulih which is
essentially contained in corollary 1.6.1) allows some remarks about
multiplication in o ~-Dedekind complete spaces.

| Finally, Vulih shows that in a Riesz space L every element has
an inverse if and only if L = L#, but he does not isolate the implicit
necessary and sufficient condition Pz. which (in its various equivalent
forms) plays an important role in parts II, III, IV, and V.

In these later parts | II, III, IV, and V, we include references
in every case (hopefully) where the result is not new. In part II we
discuss the definition and properties of #. It turns out that any

positive linear functional defined on all of lf must have a very



simple nature, and so a normal integral @ on L cannot in general
be extended to a normal integral on all of ﬂ#. However, in part III
we see that ¢ can always be exten&ed to a certain space 'L1(¢’)
between L and #. and Ll(tp) is very similar to the usual L,
integration spaces. In part IV we prove a strong form of the Radon-
Nikodym theorem for Riesz spaces, vand in part V we apply it to prove
Segal's theorem giving a necessary and sufficient condition for the
Radon-Nikodym theorem to hold in a measure space. Also in part V

we include a discussion of rings of bounded self-adjoint operators on

a Hilbert space, viewing the rings of operators as Riesz spaces.
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I MULTIPLICATION IN RIESZ SPACES.

§1. Units and unitary elements.

Iet L be a Riesz space which has the property that for O < x,y € L,
sup inf(nx, y) exists in L. We further suppose that L | has a (weak
order) unit, i.e. an element 1 € L such that inf(x, 1) > 0 whenever x>0.

An element e € L is called unitary (with respect 1':0 1) if
inf(e, 1 - @) = 0. We will denote by U(L, 1) = U(L) the sat of all
unitary elements. We agree that e will always denote a unitary elememt.

The following theorem shows, among other things, that if L happens

to be Dedekind complete then U(L) is a complete Boolean algebra.

Theorem 1,1 (i) If B is an arbitrary set of unitary elements, then
E is bounded; and if sup(B) or inf(E) exist then they are unitary.
(11) If inf(e, e') = O, then e # e' ¢ U(L). |

(iii) If e >e', then e - o' e U(L).
(iv) If a and a' are real numbers > O, then inf(ae, a'e') =

win(a, a').inf(e, e').

Proof (1) If e e U(L), then clearly O<e <1; hence E is bounded.
Suppose sup(E) exists. Now, inf(sup(B), 1 - sup(E) ) =
= sup inf(e, 1 - sup(E)) < sup inf(e, 1 = @) = O; hence sup(E) € U(L).
e€cE ecE
The fact that inf(E) is unitary (if it exists) follows by considering
the set {l-etee!}}.
(11) If inf(e, ') = 0, then e + e' = sup(e, ') € U(L).

(111) 0 < inf(e', 1 - o) < inf(e', 1 -~ ¢') = 0, so inf(e', 1 - &) = O.
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Therefore e - o' = e - o' + inf(e', 1 -~ ) = inf(e, 1 - e') € U(L).

(iv) lLet e" = inf(e, e'). e", ¢ - e", and &' ~ e" are pairwise
disjoint; hence inf(ae, a'e') = inf(as" + a(e-e"), a'e" s a'(e'-e")) =
= inf(ae", a'e") + inf(ae", a'(e'—-e")) + inf(a(e-e"), a'e") +

+ inf(a(e-e"), a'(e'~e")) = min(a, a')e".

Definition For any x € L we define the characteristic element of _x

(or, support of x) to be s8(x) = sup inf(nixl, 1).

We note that s(x) is always a unitary element. Indeed, sup inf(nixi, 1)
is the projection of 1 into (x| , the normal subspace of L generated
by x, so that e(x)_l (1 - s(x)) (c.f. (8], Corollary 29.7).
Alternatively, we may observe that 2s(x) = sup inf(n x , 2¢1), so that
inf (2s8(x), 1) = sup inf(n x , 1) = s(x), and hence that inf(s(x), 1~s(x))
= inf(28(x), 1) = s(x) = 0. It is clear that s(x) = 0 if and only if

XSOI

Note Vulih [19] defines the characteristic element of x to be the
smallest unitary element e for which inf( x , 1 - e) = O, and then
proves that this is o;quivalent )'to the definition given above. In the
course of this he also shows that s(x) is the smallest unitary element
e satisfying e >inf( x , 1). However, we will not require either of

these characterizations. .

Theorem 1.2 Let x,>0, aef~}, x = sup(x,), y = inf(x.). Then



(1) s(x) = sup s(x,).
(11) a(y) < inf s(x,), and equality holds if {x.\ is a finite eet.

Hoof (1) s(x) = sup inf (nx, 1) = sup inf(sup nx_, 1) =

sup sup inf(nx., 1) = sup sup inf(nx,, 1) = sup s(x.).

(11) Since O0<y <x, we have 8(y) < s(x ) for each wefa} ,
and hence 8(y) < inf s(x,). For the remaining part, it is sufficient
to consider the case where {x\ = {x;, x\. In this case s(y) =
sup inf(ny, 1) = syp inf(nx), nx,, 1) = eyp inf[inf(nx 1), mf(nxz.l)}
But O inf(nx,, 1)/, n=1,2; hence it follows that s(y) =

= inf[egp 1nf(nxl, 1), sup :lnt(nxa. IH- inf(a(xl). 3(22))-

Theorem 1.3 (i) For arbitrary x,y € L, inf(|x|,|y|) = O if and only
if inf(s(x), s(y)) = 0.
(11) For arbitrary x,y € L, s(x +y) < sup(s(x), =(y)). Equality

holds if x,y = 0.

Proof (i) This follows immediately from theorem 1.2(ii) since for
any x€L x=0 if and only if s(x) = 0.
(11) First of all, if 0< x <y, then s(y) < s(x +y) < 8(2y) =
= 8(y), so that s(x +y) = s(y). Then for any X,y > 0, write x +y =
inf(x, y) + sup(x, y), and the preceeding implies that ‘Vs(x +y) =
= atsup(x; y)j = sup(a(x), 8(y)). 1In general then s(x +y) = a(ls + y|)<

< slixt + Iy1) = sup(s(xl), s(iy()).



The next theorem, which will turn out to be very important, is due
to Freudenthal [4]. The proof given below (a modification of one due

to Vulih [19] ) depends on the following lemma.

Lemma 1.4 let 0<x€elL, a>0, and e-[(x-al):]. Then ae < x.

1
Proof Since ’[(" - ‘”;J"v’[(“ x - 1)3 , it is sufficient to

consider the case where a = 1. let x' = inf(x, 1). Then inf(x', 1) =

=x', end x'-1=1nf(x, 1) =1 =inf(x -1, 0) = =(x - 1) . Tms
inf(x', ) = e = (x' = 1) - El.nf(x', lee)- (1= e)]s ~(x-1) =

- [inf(x', 1-0)- (1~ e)—_l. But the support of the left side of this
equation is < e, while the support of the right side is < (1 - e).
Hence each side is zero, and in particular e = inf(x', ) < x'< x

a8 required.

Theorem 1,5 If O0< x € L, then there exists a number a >0 and a

unitary element e > O such that 0 < ae < x,

Proof Since L is Archimedean, inf (al) = O, snd so there is some
. a>0
a>0 such that x4 a.jl. Thus (x = a1)+> O; hence e = s[(x - u)a>o

and the preceeding lemma implies immediately that ae < x.

For any real number a, we define s_(x) to be s[(x - °1):l° Note

that sa(x) = al(a';x). As a first important application of theorem 1.5



we have the following theorem.

Theorem 1.6 If 0<xeL, then x= aup{rar(x) t0 r= mtional\.

Proof As a preliminary, we prove that if O< be < x and O0< c <b,
then e < sb_c(x). First of all, if a>1 and e> 0O, then
(ae-1)+= sup(ae, 1) = 1 = ae + 1 ~ inf(ae, 1) ~ 1 = ae - e =(a - 1)e,
and hence s[(ae - 1)3: e. Next, if O< e<x &and a>1, then |
sl(ax) = a[(ax - 1)3 % sEae - 1):3 = e, Finally, if O< be< x and

-] b b
0< e <b, then e.s'bxandb_c Ty

o l;!:o-c:(x)'

Now, by lemma 1.4, asa(x)S x forall a> 0. If x is not the

bﬂlx) =

>1, 80 e< ul(

required supremum, then there exists z < x such that rar(x) <z for
all r> 0. But then, by theorem 1.5, there exists r >0 and e>0
such that 2 + 3re<x. let a= sup{a' ] Oé a'e -‘E—x}?_ 3r, and let
r' be such that a~r<r'<a. Then 0< r'e<x and 0< r ',

r(x). and hence (r' -r)e

80 by the previous paragraph we have e < .°r'-

L (r - r)ar,_r(x) €z, But then (a ¥ r)e = (a = 2r)e + 3re <

L(r' = r)e + 3re < % + 3re < x, contradicting the maximality of a.

For most of our worik we will not need the full strength of theorem 1.6,

but only the following immediate corollary...

Corollary 1.6,1 If 0<x €L, then x= sup{ae t0< ae < x}.



 Note Corollary 1.6.1 1is equivalent to the statement that 0< x el
can be attained as the supremum of those finite positive linear combinas
tions of unitary elements which are < x, i.e. x =

= sup {x' 1 0 x' = i 8,0, L x}. This follows from the fact that
Z a;e, may be assumedi:i have disjoint summands (in which case

Zaiei = sup(aiei) ), and the fact that if a set of elements in a Riesz
space is enlarged by including supremums of finite subsets then the two

sets have the same supremum (if any).

§2. Definition and properties of mmltiplication in spaces with a unit.

We now suppose that L 1is a Dedekind complete Riesz apace with a

weak order unit 1.

Definition (i) If e, e'cU(L), the product ee' is defined by
ee' = inf(e, o'). |

(i1) If x>0 and y > O, the product xy is defined by
Xy = sup {abee' t0<ae<x, 0L be'<s y} if this supremum exists.
xy 1is not defined if the supremum does not exist.

(1i1) In general, the product xy is defined by

y=xy ~Xy =-XJ & +Xy_ if all the products on the right exist.

Note In Vulih's original notes (see references in (19 or [5]), he
bases the multiplication on a representation of positive elements as
transfinite linear coabinations of unitary elements. In [19] he



changes the definition to mske it depend on a representation of positive
" elements as supremums of finite linear combinations of unitary elements
(c.f. Note after Corollary 1.6.1). More precisely, for x, y > O,
if 0< x' =) aye, < x and 0Sy' =5 b, <y are two finite
sums, he defines x'y' to be ; ajbuepe.. He then defines xy to be
sup {x'y' 1 0<sx*'<$x,0L8y9'% ;} if this supremum exists. He shows
that the particular representation of x' as a finite sum does not
affect the product x'y'; and with this observation it is easy to see
that his definition of xy coincides with the definition given above,
for we may write x' and y' in such a way that they have disjoint
sumands, So that > ayb.ee, hes disjoint summands and hence equals
T,’]B iakbﬂe)@} .

In a more recent note \-_20] Vulih apparently describes a simplifi-
cation of the multiplication give in [19] » but I have been unable as

yet to obtain a copy of this uote.‘

The following properties of the miltiplication are obvious:

(1) If xy exists, then yx exists and yx = xy.

(i1) If x>0 and y > O and xy exists, then xy > O.

(i41) If xy exists and a is a x'éal number, then (ax)y exists
and (ax)y = a(xy).

(iv) If 0<x<y, '0}5 g, and yz exists, then xz exists and

Xz < Y2

Theorem 2,1 let x3 0, y,> 0, da€{a} , y = sup(y,). If xy, exists
for each « and the set {xy.t} is bounded, then xy exists and xy =



= sup(xyy ).

Proof First consider the'special case where each y, 1is of the form
Yo = bueu. Suppose O<ame'< x and 0 < be <y, Then be = inf(be, y) =
= inf(be, sgp(bdeq)) = sup inf(be, be,) = sgp(min(b, by)ee«); hence
e = sup(min(1, b/by)eey). Therefore abee' = ab inf(e', e) =
= ab inf(e’, s&p(min(l, b/bo)ees)) = ab s&p(min(l, b/by)e'eey) =
= sgp(min(b, bo)ee (ae')) £ Sgp(bde«x). Thus xy exists and xy <
< sup(xb,ey).
Now consider the general case. y = sup {be: 0 £be <y, for some c«};
hence, by the preceeding, there exists xy <
< sup sup {xbe t 0< be £ y_ff < sgp(xv,t)- But clearly qu(xv.() < xy;

hence xy = sup(xy,).

Corollary 2.1,1 let x,>0, y,> 0, a€f}, x = sup(xy), y = sup(y.).
If X Y5 exists for every o, B € {0%} and the set { x,srg} is bounded,

t i d .
hen xy exists an wxqfu(f(x‘*yp)

The above theorem shows that mltiplication is, in sense, continuous.
We will see later (c.f. theorem 10.3) that in fact it enjoys a very
strong order~continuity property.

Theorem 2.2 If xy exists, then s(xy) = inf(s(x), s(y)).

Proof First suppose x, y 3 0. Then e(xy) =



“ 18w

s[sup(abee' 10 ae<x,0<be'<y)l=

sup(s(abee') : 0 < @e< x, 0 < be'< y) =

sup(inf(e, ') 1 0 < se< x, 0< be' L y) =

= inftaup(e t 0< ae < x), sup(e' t O < be'< y)] = inf(s(x), s(y)).
In general, xy = Xy, =Xy, -X +y_ + x y_. By the preceeding,
the summands are disjoint; hence (xy) L=Xy, +xy_, and (xy)_=
=xy_+xy. Then, by theorem 1.3(i1), s(xy) = s(lxyl) =
=o((xy), + () ) =o(xy ) +e(xy)+slxy) +slxy)=

= s(x,)sly,) + o(x_)s(y_) + 8(x )e(y]) + 8(x )s(3,): you s¢ 1ne(er, o) =

= 0, then ee' + ee" = sup(ee', ee") = sup(inf(e, e¢'), inf(e, ")) =
= inf(e, sup(a'; e")) = e(e' + e"). Hence it follows that s(xy) =
= s(x )(a(y,) + 8(y_)) + s(x_)(a(y,) +8(y))) = (a(x) + e(x_))s(z) =

= s(x)s(y).

In the following straightforward but rather long theorem we gather

together the basic properties of the multiplication.

Theorem 2.3 (i) xe always exists, aend xl = x and x0 = O,
(i1) If xy exists, and |x'| < x end ly'l £ y, then x'y' exists.
(1i1) If xy and =xz exist, then x(y + £) exists, and

x(y + 2) = xy + xz. | .
(iv) xe = x if and only if e > s(x).
(v) Ifxy=0 then xly, and if x 1l y then xy exists and

xy = Q. ‘ |
(vi) If xy, yz, end (sy)z all exist, then x(yz) exists and
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x(yz) = (xy)s.
(vii) |xy! = Ixliyl.

Proof (i) Clearly we may suppose x >0. Then x = sup{ae': 0< ae'< x}
> sup{ae'e : 0<ae'< x} = xe by theorem 2.1. The rest is clear.

(i1) If O0< ae< x; £ix'|< x and 0 S bpe'S y_;.Sy, then
abee' < xy. Thus sup{aboe' t 0<Seae< z;_, 0=<be'Ss yl} exists,
and hence, by definition, x‘;y:_ exists, Similarly x.:_y_:, x_'.y‘:_. and
x'y' all exist, so x'y' exists by definition.

(11i) First suppose that x, y, 2 > O. We can see immediately
that x(y + £) exists; for y + z < 2sup(y, 2), and x-sup(y, z) exists
(in fact equals sup(xy, xz) by theorem 2.1), so by part (ii) x(y + z)
exists, In order to prove x(y + z) = xy + xz we first prove
x(ae + be') = xae + xbe'. Since ae + be' may be written as a disjoint
sum (nsmely ae + be' = (a + b)ee' + a(e ~ ee') + b(e' -~ ee') ), we
may suppose without restriotion of generality that e_| e'. In this case
x(ae + be') = x-sup(ae, be') = sup(xae, xbe') = xae + xbe' (since
xae | xbe' by theorem 2.2). Then for any x, ¥y, 2 > 0 we have
x(y + z) = xesup(ae + be' :t 0< ae <y, 0<be'< z)=
= sup(xae + xbe' s 0 < me<y, 0O< be'< g) = |
= sup(xae : 0 <ae < y) + sup(xbe' : O S be'< z) = xy + x2.

For general x, ¥, z, let OSu=y +58 - (v + z)+=
=y_+2_~(y+3). (uis > O because of the minimality of the Jordan
decomposition of an element into its positive and negative parts.) Then

by the preceeding we have xy + 12 =



=x(y, +2)=-x(_+2)-x(y, +2)+x(G_+2) =
- x((y+2) +w)-z((+2)_+w)-x(y+s) +uw)+x((y+2)+u)=
= x(y+2) -x(y+2)_-x(y+s2) +x(y+2)_ = x(y +8) by

definition.

(iv) If e = a(x), then e> a(x+). Thus if O < ae'< x,, then
e'< s(x+)s e, and hence x e = sup(ae'e : 0 < me' < x+) =
= Bup(ae' 1t 0< me'< x+) = x+. Similarly xe=x, and hence
Xe =X e~-Xe=X =X =X

Conversely, if xe = x, then =(x) = s(xe) = inf(s(x), e) < e.

(v) If xy =0, then O = s(xy) = inf(s(x), s(y)), and hence
x.ly by theorem 1.3(i). Conversely, suppose x L y. Then x+_L 0
so O = sup(abee' : 0 < ae < x,, 0<be's< y+) = xy. Similarly
x +y__, xy + and xy_ all exist and equal O; hence xy exists and
equals O.

(vi) In view of part (iii), we may suppose without restriction of
generality that x, y >0. The result then follows immediai'ely, in view
of the fact that, by theorem 2.1, (xy)z
= sup(abcee'e" : 0 < ae<x, 0< be'< y, 0 < ce" < z),

(vii) This follows immediately from parts (ii) end (1ii), in view

of the fact that (xy)+ =xy +xy_ oand (xy)_ = Iy +Ty,.

Corollary 2.3.1 If x4y, then there exist e >0 and a > 0 such

that =xe > ye + ae.



Proof First note that for any z € L, zou(z+) - z+s(z+) - z_a(z*) =3,

‘Now, if x4y, then (x - y)_._ 0, and hence e = e{(x d y);] > 0.
Then xe - ye = (x = y)e =(x = y)+ > 0, and the result nm_g' follows immedi-
ately from theorem 1l.5.

Corollary 2.3.2 =xe is the projection of x into [e].

Proof It is sufficient to consider the case where x > 0. DBut then

the projection of x into [e] equals sup inf(x, ne) =
= snglnf(xe, ne) + inf(x(1 - e), ne)] = sup inf(xe, ne) =

= sup inf(xe, n+l) = xe.

Remark Hewitt has suggested (in [5]) that one might try to weaken the
condition of Dedekind completeness. The definition of multiplication
makes sense, of course, in any space with a unit, but for the multiplica-
tion to enjoy reasonable properties (such as those expressed in theorems
2.1, 2.2, and 2.3), it seems that some sort of lattice-completeness is
necessary. However, in view of the fact (c.f. theorem 1.6) that every
positive element can be achieved as a supemum of a countable set of
multiples of unitary elements, it can be seen that in a o -Dedekind
complete space the results of section §2 continue to hold (with some
modificationa, rmainly the replacing of some sets of elements by appropriate

countable sets - for example, in theorem 2.1). (c.f. also [21] ).



§3. Powers and roots.

It is easy to see that in general not every element ih L has a

square. Indeed, if for x, y€ L x2 and y2 exist, then xy exists;

for (supposing x, y >0) if O<ae<x and O<be'<y, then abee'<
< i—(az + b)ee! < i—aze + %bze' ] -3-12 + -&»ya. 80 that xy exists.

It is also easy to see (e.g. by induction) that if x" does exist,
then (x +)n and (x__)n also exist and x" = (x +)n + (-1)“(:_)“..

In the other ﬁmcﬁon we have the following theorem, (An element

y€L is called en n'™® root of x if ¥y = x.)

Theorem 3.1 For any element x >0 and any integer n >0 there

1/n

exists a unique positive nth root x 7,

Proof We will prove the theorem for n = 2, and it will be seen that

the proof easily extends to any n. We have x = sup (asa(x)); and for
a=0
any real number a > O, a%s mex(a, 1); hence we may define

y = sup (a Sa(x))S sup(x, 1) Then x = sup (aaa(x)) -

a=20 a=>0 _
= sup (b'}c{’s (x) : a = max(b, ¢) }) = suwp (b%c%sb(x)s (x) ) (since
b,c 20 x b,e =0 -

a = max(b, ¢) implies sa(x) = inf(sb(x), sc(x)), and this equals y2 by
corcllary 2.1.1.

Suppose there also exists O <z £y Quch that 2° = x, Ve may
suppose for definiteness that 2 ;{a ¥+ Then there exists e >0 and
a >0 such that gze + ae £ ye. But then =xe -yze>,(ze +aa)2 =

= zze + 2aze + aze > zze,- a contradiction. |
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§4. Inverse elements.

Definition Let x € L. If there exists y € L such that s(y) < s(x),

and xy exists and equals s(x), then y 1is the inverse of x, denoted

by x.l.

We note immediately that the inverse, if it exists, is unique. For
suppose also y'x = s(x) and s(y') < s(x); then s(y - y') < s(x),
so s(y -y') =inf(s(y - y'), 8(x) } =8((y -~ y')x) =0; {.es y~y' = 0.~
We also note that s(x’l) = inf(s(x"l), s(x) ) = s(x'lx) = 8(x).

The following remarks are obvious:

1

(1) If xy = 8(x), then x =~ exiets and o ys(x).

(i1) 1f ! exists, and a ¥ 0, then (ax)™? exists and equals
il ol
a X o

(144) If xy, =L, y1, = ly! a1l extst, then (xy)™ exists and

equals x”ly-l.

(iv) 1f x 1 exists, and e € U(L), then (xe)"l exists and

equals e,

Theorem 4,1 (i) If x >0 and xl exists, then x L3 0.

1 1

exists, then y‘ and

P Conversely, if y'l‘ and =z 1 exist,

(i) Let x=y + 2z, where y 1l z. If x

=1 1

£ exist, amd xr =y

then x* exists.

1

(1i1) If X exists, then (x)™!, ()™}, ana \xl™! extst, and

equal (x’l)_P, (x']‘)__, and \x‘ll respectively. Conversely, if (x+)-1



~ 1

and (x_)-l exist, or if |x\‘1 exists, then £ exists.

Proof (i) s(x) = =" = x(<""), - x(s™")_. Thus s(x) has been written
as the difference of two disjoint positive elements, and so x(x"1)_=o.
But, since s[(x-l)_jé a(x}) < e(x), this implies s (x‘l)_] "
- s[%(x-l);] =0, f.e. (1) _=0. Tus x> o0.

(i1) Note that s(y) = s(x)s(y) = x"xs(y) = x (v + =)s(y)) =
«xMya(y)) = xly. Tus 5 existe (squal to X~ Yaly) ). Similarly
£l exists. It is clear that s(y " + 2 1) = s(x) eand that

-1

(v = + z-l)(y + z) = s(x). The converse part is clear.

(41i) Thie follows immediately from (i) and (ii).

In general, not every element will have an inverse., However, we do

have the following useful criterion. (c.f. also §7.)

Theorem 4.2 For x>0, let S= {y 0 8(y) < s(x), and xy £ a(x)} .
Then x 1 exists if and only if sup(S) exists, and in this case

-1

r = ﬂup(S) .

Proof First note that S im not empty, since always O € S. If e

exists, then y € S implies y = ys(y) = yn-ls_ s(x)x ! = x-l, 8o
sup(S) exists. v

Conversely, suppose there exists sup(S) = g. Clearly s(z) < s(x),
and by theorem 2.1 the product xz exists and xz < s(x). Suppose
xz < 8(x). Then by theorem 1.5 there exists 0 < e <s(x) and

1>a >0 such that xs + 2se < s(x), i.e. xze < (1 - 2a)e. Now, .



- 20 =

since 0< e < s8(x), there exists 0<e'< e and b'> O such that
ble' < x. Let b= sup(b" : b"e' < x)=Db'>0. Lot c = ab(l - a) 1> 0,
and note that b(b + c)-l =1=-a. Now (b+ c)e’ £ x so: by

corollary 2.3.1 there exists O < e"< e' euch that (b + c)e" > xe".
Therefore (b + ¢) Te"x <e" < 8(x), s0 (b+ e) ten ¢ 8, i.e.

(v + .c)-le" < ze". But then (xe")(ze") = (be")((b +. c)‘le") =

(1 =a)e" > (1 -2a)e" > xze", a contradiction. Hence xz = s(x), and

80 s=x as required.
As an immediate application of this theorem we have the following.

Theorem 4.3 Suppose <1 exists, ly!> )x|, and s(y) = 8(x). Then

y“l exists, and \y\-lé_lxl_lo

Proof In view of theorem 4.1, we mey suppose y 2 x>=0. Ilet

s zgz >0 s8(z) < s(y), and gy < s(y)\g. If z €8, then =zx exists,

since zy exists, so 2z = zs(x) = gxx L s'zyx-l < s(y)x-l = x"l. Thus

sup(S) exists, and hence y-l exists by theorem 4.2.
1 --14

~—

To complete the theorem, we observe that y'l = 7 la(x) = vy
¥y yx =X

§5. Unigueness of the product.

The main theorem in this section shows that, once a unit 1 is
fixed in the Dedekind complete Riesz space L, +then any multiplication

with certain natural pro;iertiés is uniquely determined by the Riesz



space structure.

Theorem 5.1 Let xy denote (as usual) the product of x and y as
defined in §2. Suppose in L another multiplication x#y is defined
for some pairs x, y, such thats

(1) x»1 always exists and equals x.

(i1) If =x»y exists, then y»x exists and equals xxy.

(1i1) If x»y, (xxy)*s, and y#z all exist, then x=(yxz) exists
and equals (x#y)«s.

(iv) If =xxy and x#z exist, then xx(y + z) exists and equals
Iy + XZ.

(v) If x»y exists, and a is real, then (ax)sy exists and
equals a(xxy).

(vi) If x, y >0 and x»y exists, then xsy > O.

(vi1) If xuy exists, and |x'|< x end |y'|< y, then x'wy'
exists. |

(viii) If x Ly, then xxy exists and equals 0; and if x*y = O
then x-ly.

Then x%y exists if and only xy exists, and xxy = xy.

Proof First, for any e € U(L), ewe exists since 0 < e < 1; and

oxe = exe + ex(l -~ e) = ex(e + (1L = e¢)) = oxl = e. Next, if e" = inf(e, e')
then ege' = [e“ 4+ (e = o"j}r[e" + (o' = e")] =
»o'se" + oo’ -=e") ¢+ (e =-e")re" + (o~ e")u(e' ~0") =

= e"xe" = inf(e, e'). Now let x >0; xwe exists since lel < 1, and
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x#e = (xe)xe + [-x(l - ei}*e = (xe)re = (xe)re + (x0)x(l -e) =
= (xe)*l = xe.

Now suppose x, y >0 and xxy exists. Then, if 0< se < x and
0<be'<y, abee' = (ae)u(be') xxy. Hence there exists xy =
= sup(abee' t 0< ae < x, 0< be' < y) < x»y. Suppose xy < xxy. Then
there exists ae > 0 such that x»y > xy + 2ae. Since L is
Archimedean, thereexists ¢ such that ce ;,{ xe, and hence there exists
0<Le'< e such that ce'>1xe'. ILet d=a/c>0, and let
b=sup(b' :t 0<b'e'< y). Then be'< y; but (b+d)e'sfy, =0
there exists O < e" < e' such that (b + d)e” > ye". But then
x(b + d)e" = x»(b + d)e" > xsye" > xye" + 2ae" > xbe" + 2ae", and
hence xde" > 2ae". But xe" < ce", so this implies 2ae" < dxe" <
X dce" = me", a contradiction. Thus if x, y >0 and =x«y exists,
then xy exists and xy = x»*y.

Conversely, suppose X, ¥y >0 and xy exists. let z = x + s(x),
so that z > s(x), and hence there exists a"ls s(x). Clearly yz
exists; and since 0 < et < s(x), thereA exists (yz)*z-l = (yz)z‘l -
= ys(x) = y»s(x). Also zlez exists, and equals 1z = s(x), so
(ye)#(z"l%z) exists. But then there exists ((yz)ezL)xz = (yxs(x))sz =
= yu(8(x)sz) = y»z. Thus, since 0<x <3z, ysx exists.

The theorem now follows immediately.

The uniqueness of multiplication in the theorem above depends
critically on the unit chosen. In general, two elements which have a
certain product with respect to one unit will have a different product
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(or none at all) with respect to another unit. The next theorem relates
‘multiplication with respect to different units. In the course of it

we will use the following lemma.

Lemma 5,2 Let 1 and 1' be two units of L. Then U(L, 1') =
- {l'e : e € U(L, 1)} (where multiplication is with respect to 1).

Proof e and e' will denote elements of U(L, 1) and U(L, 1')
respectively. First we show that any element of the fom l'e is
unitary with respect to 1Y. This is immediate, since inf(l'e, 1' = 1'e) =
= 1'inf(e, 1 - e) = 0. Conversely, suppose e' € U(L, 1'). Ilet
e =s(e') e U(L, 1) e' is disjoint from 1' - e'; hence l'e =

= 1'8(e') = Ea' + (1 - e'ﬂa(o') = e's(e') = o' as required.
Theorem 5.3 ILet 1 and 1' be units of L. Denote the product of
x and y with respect to 1 by xy, and the product with respect to

1' by x#y. If xy and xxy exist, then 1'(x«y) = xy.

Proof First note that 1'(eiwé) = 1'(1'91*1'02) = 1'-inf(1'el, 1'32) -

- 1'1'-1nf(el. 92) = (l'el)(l'ez) = eje). Now suppose x, y>O. Then
by corollary l.6.1 x = sup(aoi : 0 aey < x) and

y = sup(beé 3 0 < be) <y)s hence, by corollary 2.1.1, xy =

= sup(abeieé 1 0F ae] € 1, OSbeéSy) =
= sup(l'(abei.eé) t 0<ae]<x, 0<be)<y) = 1'(xvy).

The proof for general x, y now follows immediately.
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In this section we discuss a certain property which aVRiesz space
may possess. We will see later (c.f. section §7) that a Dedekind complete
Riesz space has this property if and only if every two elements have a
product and every element has an inverse. We will also see (c.f. section §8)
that every Dedekind complete Riesz space can be imbedded as an order -

dense ideal in a space having this property.

Definition We list below three properties (called Pl' Pz, P3) which a

Riesz space may have:

Pl ¢ There exists a unit 1€ L; and a subset ge ot has a
supremum if for every 0< e € U(L) there exists 0 <e'< e and a real
number b such that xe' < be' for all x € S.

P.: A subset scL' has a supremum if for every 0 < y € L there

2
exists a real number b such that sup inf(by, x) £ by.
x€8
P3 s If the elements of the subset S < L are mitually disjoint,

then sup(S) exists.

Theorem 6.1 In a Dedekind complete Riesz space L, Pl’ 5 s and P3 are

matually equivalent. '

Proof We will prove P = Pz = P3 = Pl’

(1) Suppose P, holds, and suppose SC LY s such that for

every 0< y € L there exists b such that sup inf(by, x) ¥ by. In
. x€8
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particular if e > O, there exists b such that sup inf(be, x) < be,
- end hence, by theorem 1.5, there exist O0<e'< ex ini ¢> 0 such
that sup inf(be, x) < be = ce'. Then it follows that xe' < be' for
every x:s S; for if xe' § be', then there exists O < e"< e' such
that xe" > be", and then be" > (b - c)e" > inf(be", xe") m be", a

contradiction. Hence, by Pl' sup(S) exists, and so P2 holds.

(i1) Suppose P. holds, and suppose that S C L is a set of

2
mutually disjoint elements. For O< y € L, we want to find b such
that sup inf(by, x) £ by. If y is disjoint from every x € S, then
b=1 x\we:i.fl do, 80 suppose that for some 2 € S, y' = inf(y, 2z) > 0.
Then there exists b such that by's z, i.e. inf(by', z) £ by',

and since y' is disjoint from every other x € S, sup inf(by', x) < by'.
But then, since y 2 y', sup inf(by, x) < by (for i:i!‘eezuality held, then
syp inf(by', x) = sypp mf(zye'? by, x) = inf(vy', sup inf(vy, x)) =

= inf(by', by) = by', a contradiction). Hence, by P, sup(S) exists,

and 80 P3 helds.

(1i1) Suppose that P, holds. We first show that L then has a
unit. In fact, let { xd} be a collection of positive elements, maximal
with respect to the property that its elements are mutually disjoint. By
property P, it follows immediately that 1 = sup(x,) exists, and it
is clear that 1 is a weak order unit (for otherwise there would exist
x >0 such that x.l x, for all &, and then {xd} could be enlarged).

Now let SC L' be such that for every 0 < e € U(L) there exists
0<e'< e and b such that xe' < be' for all x< S. We shall say
(for the moment) that a mset E of unitary elements is gdmissible if

its elements are mutually disjoint and for each e € E +there exists a,



such that xe < a e for every x€ S. let A be the collection of
admissible sets. A is inductively ordered by inclusion, Bo there is

a maximal admissible set Eo. and we can see, by the aeMption on 8,
that sup(e t e € Eo) = 1. Now, since E is admissible, its elements
are mutually disjoint, so by property P3 there exists y = sup(aee: e EEO).
We can see that y 18 an upper bound for S; for if not, then there is
an x€ S such that x4y, 8o there exists e' >0 and b >0 such
that xe' > ye' + be'. But since sup(e : e € Eo) = 1, there exists

@ € E such that e" = ee' £ 0, and then ye" = yece' = aece’ > xeve' =
= xe" > ye" + be", a contradiction. Thus y is an upper bound for
S, and so, since L is Dedekind complete, sup(S) exists. Hence

Pl holds.

By virtue of this theorem, we may refer to any of the properties
Pl’ P2, P3 as simply property P, 80 long as we are working in a
Dedekind complete space.

§7. Perfect rings snd fields,

We again suppose that L is a Dedekind complete Riesz space and
has a unit 1. L 1is called a perfect ring if the product xy exists
for every x, y€ L. L 1is called a field if it is a perfect ring

and, in addition, every element has an inverse.
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Theorem 7.1 L is a field if every element has an inversg.

Proof Given x, y € L, we must show xy exists. Let e = s[(l - \xl);l.
Then |xe| = |xle < e, =and hence (xe)y exists. On the other hand,
Ixl[(1-e)=>1~e, 80 le"'l(l ~e)<1-e6, and hence x-l(l - e)y'l
exists, which implies that xy(1 - e) -[x‘ly"l(l - eﬂ'l exists. But

then xy = xye + xy{l = e) exists.
Theorem 7.2 L is a field if and only if it has property P.

Proof Suppose L 1a a field. Let S C I."' be a set whose elements

are mutually disjoint. For each x € S, (x + a(x))'ls_ 1; hence there
exists y = sup((x + s(x))-l :t x€ 8). Now, since each x €S 1is
disjoint from all the other elements of S, we have ys(x) = (x + s(x))'l,
and hence y-l;. y"ls(x) =x + 8(x) > x. Thus y-l is an upper

bound for S, so sup(S) exists. Hence property P. holds.

3
Conversely, suppose L has property .P « By theorem 7.1 it is

|
sufficient to show that every x € L. has an inverse., Clearly it is
sufficient to show this for every x >0. Ilet
S -_-{y >0: s(y)<s(x), and xy < a(x)}C LY, and let 0 < e € U(L).
We want to show that there exists O<e'< e and b such that ye'< be’
for all y € S. Clearly it is sufﬁc:l.ent to consider e such that
es(x) > 0. Then, by theorem 1.5 there exists O < e'< es(x) and ¢ >0
such that ce'< xe'. ILet b = ¢l. Then for al1 y€S, ye'=hbcye' =

= b(ce')y < b(xe')y = b(xy)e' < bs(x)e’ = be'. Therefore, by property P,
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sup(S) exists, and hence, by theorem 4.2, L exists.

Since property P, does not refer to any particular unit of L,
theorem 7.2 implies that if L has property P, then it is a perfect
ring under multiplication with respect to any unit of L. On the other
hand, it is not true that if L 1is a perfect ring under multiplication
with respect to some particular unit then L necesearily has property P

(c.f. theorem 7.4 below). However, we do have the following theorem.

Theorem 7.3 L 1is a perfect ring under multiplication with respect to

every unit in L if and only if L has property P.

Proof It is sufficient to prove the "only if" part, and to do this

it is sufficient, by theorem 7.2, to prove that every element 0 < x € L
has an inverse with respect to 1. ILet 1' = x 4+ (1 - s(x)). Clearly

1' is a unit of L, 80, denoting multiplication with respect to 1' by
x*y, and taking x =y = 1 in theorem 5.3, we have 1'(1#l) = 1. Thus

1' has en inverse 1#1 with respect to 1, and so, since x .l (1 - s(x)),

1 oxists by theorem 4.1(ii).

In order to state the following simple result, we recall that an
element 1 € L is called a strong order unit if for every x € L there
exists a number a such that |x| £ a*l; clearly any strong order unit
is a weak order unit, '



Theorem 7.4 Suppose 1 is a strong order unit of L. Then
(1) L is a perfect ring under multiplication with respect to 1.
(14) L 4is a field if and only if it is isomorphic to Rn (where

R is the direct sum of n copies of the real numbers R).

Proof (i) This follows immediately from theorem 2.3(ii).

(11) It is easy to see that R = n@-"“?‘.'a R is a field with
(1, 1, «eey 1) as a strong order unit, and that every element in R,
is bounded with respect to (1, 1, «cep 1).

Conversely, suppose L is a field. We can see that there are at
most a finite number of disjoint unitary elements. For if there is an
infinite sequence {e, } of disjoint unitary elements then there exists
in L an element y = g k-lak = aﬁp(el 4 o0 4 k"]'ek) £1, but
y does not have an inverse which is bounded with respect to 1. Thus
the boolean algebra U(L, 1) consists of just a finite number n of

n
atoms, and hence L = R@---@R.

Note For any Riesz space L with unit 1, the ideal I‘o is defined
by I‘o = {x EL: |x|< a*l for some ag. Theorem T.4(1) then says

that I‘o' considered as a space in itself, is a perfect ring. -
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IT EXTENSIONS OF RIESZ SPACES.

§8. Pinsker's extension to spaces with property P.

let L be a Dedekind complete Riesz space, not necessarily having
a unit. In this section we discuse a construction (due to A. G. Pinsker
[12], [13]) of a space L# which will turn out to have property P, and
into which L may be imbedded as an order dense ideal. Essentially,
the extension consists in adjoining to L the formal supremums of
subsets S C Lt satisfying the conditions of property Pz. However,
it is technically easier to proceed somewhat differently.

+

We will call a subset X L a psection if y € X whenever

OSysx€X andif X is closed in the sense that {x,JC X and

x, S x €L for all o implies sup(x,) € X. Let L be the collection
of sections of L. Define an order in L by X£Y if X CY. Denote
0={0}, so always X>0. Every collection {X,} of elements of

L has an inf and a sup, namely, inf(X,) = MNX, and seup(X,) =

the smallest section containing UXs. For two elements X, Y € L, we
can see that sup(X, Y) = {sup(x, y) 1 xeX, ye Y}. For a2 0

we may define aX= fex: x€ X}, and X+ T is defined by

X+Y = {1+y 1 x€ X, er}o (It is easy to see that these sets are

indeed sections.) We note that X > Y implies X +2 =Y + 2.

Lemma 8,1 sup(X + 2, Y + Z) = sup(X, Y) + Z.
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Proof Firstly, sup(X, Y) +2 > X + 2, and similarly =Y + 2, so

sup(X, Y) +2 > sup(X + Z, Y + 2). On the other hand; sup(X + 2, Y + 2Z) =

-~
{sup(x+z,y+z‘):xe'x,ye!, Z, ' € z} >
Z{mp(x-f-z,‘y-rz):xex,er,zé_Z}a

= {sup(x,y)+:xex,ye‘!,zez}a sup(X, Y) + 2.

Imbed L*—T by 0< x—> Jy: os.ny}. Thus we may
consider -I-+ a subset of L. It is easy to see that the imbedding
preserves lattice and vector operations.

For X, Y, Z €L, itis not necessarily true that X + 2 =Y + Z
implies X = Y. (e.g. consider Z = L'.) However, this is true if we
restrict ourselves to an appropriate subspace of L as follows.

We say that X €L is finite if for every O < x € L there exists
b such that bx4 X (i.e. bx ¢ X). Let I'* be the set of finite
sections. We note that

(1) xs Y€ o implies X € L#+;

#+

(11) © is closed under vector and finite lattice operations;

(114) ¥, $n olosed under boundsd suprexime (i.s. (x4 < i,
X,< X¢€ f* for a1l « implies sup(X,) € #+).

Lemma 8,2 If X, Y, Z € L#+ end X +Z=Y + 32, then X =Y,

roof Since, by lemma 8.1, sup(X, YY)+ 2= sup(X + 2, Y 4+ 2) =

o

= X + Z, we may suppose (by replacing Y with sup(X, Y) ) that Y >X,

Suppose Y > X Then there exists y € T such that y¢ X. But then,



letting y* = sup inf(y, x) € X, we have y*< y. Then, for any x€ X,
“we have x + yxj;{* = sup(x, y) + inf(x, y) - y* < eup(x, y) € Y, and
hence, forany element x +2 € X+2Z wehave X +Z2 +yYy~=-Y*EY +Z =
X + Z. But then, by 1ndhct10n. x+z+n(y-y*) € X+Y for all n,
and this a contradiction since X + Z2 1is a finite section.

Definition Tor Y< Z € #*, define (Z = Y) to be the smallest

section containing {z -y*: g€ 2Z, y* = sup inf(z, y)} %
yeyxY

Lemma 8.3 If x.r,zen#* and X+Y =2, then X = (2 = Y).

Proof By the previous lemma, it is sufficient to show that (2 « Y) + Y =
=%, Now, any z € Z can be written z = (z = y*) +y* € (Z~Y) + T3
hence 2 < (2 - 1Y) +Y. Conversely, if z-y*e€ (Z-Y) and ye¥,
then, as before, 2z = y* + y = sup(z, y) + inf(z,y) - y* < sup(z, y) € Z.
But then, since any x € (Z = Y) is a supremum of elements of the form

2 ~ y*, it follows that x + yc 2 forany xe¢ (Z-7Y) and y € Y.

We now want to show that L#+

Riesz space L#. H’e'define L#

is actually the positive part of a
to be the set of ordered pairs (X, Y)
of finite sections, with the usual condition tha.t‘ (xy Y) = (X*, Y*) if
X+Y = X' 4 Y. Vector operations are defined componentwise, and
order is defined by (X, ¥)>0 if X>Y. Since Y<Xe€ # implies
(X, Y) = (X = Y, 0); we may write without confusion (X, Y) =X~ Y for
every X, Y€ L#"'.
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We will use f, g, h, to denote elements of L#.

Theorem 8.4 (i) L#

(1) L 4is an order - dense ideal in #.

is a Dedekind complete Riesz space with property P.

(i41) If L has a unit 1, then 1 is also a unit for L#. and
U(L#. 1) = Uu(L, 1).

Proof (i) To show that i# ie a Riess space, we only have to show that

for f, g € #, sup(f, g) exists. But for f € e

fxe Al X>f} ed fYE radi Y> -£} are non-empty (since, by
definition f can be written f=X-Y with X>0, Y= 0). and hence
we may write f = sup(f, 0) = inf(X : X= 0, X=f) € L#+, and
£ = sup(~f, 0) = inf(Y : Y20, Y2 -f) € ™. mhan, 1n s tssel
way, we have sup(f, g) =3(f + g+ |f - g|), where |f| = £, + 1.

The fact that L# is Dedkind complete follows from the fact that
L#"' is closed under bounded supremums, and the fact that it has property P
follows immediately from the definition of finite section.

The remaining parts (ii) and (iii) are clear.
The next theorem shows that Io# is, in a sense, a maximal extension.

Theorem 8.5 lLet L be a Dedekind complete Riesz space. Then
(1) If L has property P, and is an order dense ideal in an
Archimedean Riesz space E, then L= E, In particular L = L# if

L has property P.



(11) o = (1),

(111) If L is an order dense ideal in a Dedekind complete Riesz
space E with property P, then L# =8 In parf;icmlar,'i if Lcﬁ C L#,
then L# = E if E has property P.

-,
Proof (i) let O0<=x € B. The fact that x is then in L follows
immediately by applying property P2 to the set { YeEL:1 O0Osys< x} .

(11) ¥ollows immediately from (i) since ¥ hes property P.

(14i) LCE implies decd. E; hence Lcifc B Bat since
L is order dense in E, if is also ordar dense in E, and hence, by (i),
L# = B,

§9. Definition of multiplication in spaces without unit,

Iet L be a Dedekind complete Riesz space, not necessarily having a

unit. Its extension L#

does have a unit however, and in fact, by
theorem 7.2, multiplication in L# with respect to this unit is universally
defined. We can use this to induce a multiplication in L by saying:
for x, y€ L, if xy (which exists in i ) is in L, then the
product of x and y is defined and equals xy. ‘

It is easy to verify that the multiplication thus defined in L
satisfies all the properties described in theorem 5.) (except, of course,
part (1) ). In particﬁlar, part (vii) is satisfied since L is an |

ideal in Io#.
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Remark The same multiplication could be defined in L without reference
. to L# by considering L as the Riesz direct sum of the\c‘l:‘l.s:joint normal
subspaces [xd]. where {x;& is a collection of positive élements of L
maximal with respect to the property of having its I a—— mtually
disjoint (c.f. (8], p. 111 in Note VIII ). Each component [xd:(
has a unit (namely :Q, so multiplication can be defined in each (xJ,

and then mmltiplication can be defined in L componentwise.

§10. Order-continuity of the product.

Let L be a Dedekind complete Riesz space with a unit. Recall
that if {x%, o Ef"‘} » is a net in L, then {‘q} is said to
order converge to x (written (o) - lim{x ) =x ) if igf :\;g(xd) =
= sup e:tlgg(xu) = X, Vulih {19] derives the following criterion for
convergence to O from the work of Steen {18].

Theorem 10.1 (o)-lim(x,) = O if and only if there exists z € L and
y € {o} such that |x <z for all 2 ¥ , and for every a >0 and
0< e € U(L) there exists 0 < e'< e and p G{d} such that

') £ ge' forall =2 3
e 3

Proof Suppose (B)nlim(xu) = 0. Then, firstly, for some ¥y, sup(|x,l)
o= Y
must exist;y and secondly, for any a >0 and e >0 there must exist

B such that sgg(lxdn%,ae. But then there exists O < e'< e such
o .
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that (sup(ix,)e' < me', and so sup(|x,e'l ) < ae', since sup(|x,el) =
a3 el o 2
=3:£(qu|e) = (.?gg(\x,‘l)e, by theorem 2.1.

Conversely, suppose |x,|< z for all <=2 ¥, tut {x,] does
not converge to O. Then 1(;‘1f°‘s,ug(\x,‘l) > 0, 80 there exists a> 0 and
e >0 such that 1},“.,?;}3“‘-“); 2ae, Hence for any O < e'< e and
any £, sug(\x‘e'\) = S(s:{g(\xdl)e' > 2ae' > me', contradicting the

L&
second part of the criterion.
(Note ¢ The uniform boundedness part of the above crierion is

necessary to insure the existence of iélf ds:g(\xdl).)

In the next theorem we demonstrate a continuity property in L#, and
deduce as a corollary a similar continuity property in L. The theorem
depends on the following lemma.

Lemma 10.2 Suppose {fd} is & ot in I¥ ani (0)-1im(£,) = 0. Then

for any g € L#. (o)=lim(f,g) = O.

Proof We apply the criterion of the preceeding theorem. TFor the
uniform boundedness we simply note that da:’g(h;lgl) = (::g(lf,‘l Jgl.
Next, for a >0 and e >0 there exists 0<e'< e and b >0 such
that |ge'| < be’, and then there exists O < e"< e' and (3 such
that \fde"[ < ab~le" for o2 A+ But then, for o >3 we have

\f,ge" | = | £ e" | go"| < se", a8 required.

Theorem 10,3 1let {f,} and {gd} be tws nets in I indexed by the



- 3T -

same directed set {a] . If (o)-lim(fy) = £ and (o)-lim(g,) = g,

“then (o)-lim(f, g, ) = fg.

Proof |f,g, - fe|=|f8 - fe+ fe- fg| <

Lt \le, - el + \ellt, - £l < (sup(\ful)ley - &l + 8lity - £l.

Now, each term of the right side converges to O by the preceeding lemma,
and henée their sum does; 80 the left side also converges to 0O as

required.

Corollary 10.3.1 lLet {x,| and {y4} Dbe two nets in L indexed
by the same directed set. Suppose (o)-lim(x;) = x, (o)-lim(yy) =y,
x,y, exists for each o , and there exists 2 € L such that lxux,(\ £ g

for all o . Then the product xy exists in L, and (o)-lim(x,y,) = xy.

Proof The fact that the products x,y, are uniformly bounded implies
that iﬁf :g%(xdyd) and sgp gg(xdyd) b-oth exist in L. The theorem
implies that they are both equal to xy ( e L#), which must then also

be in L.

Remark Corollary 10.3.1 can be proved directly without referring to
' (indeed Vulih does this in [19]). However, technical difficulties
then are encountered since many of the products used in the proofs of

lemma 10.2 and theorem 10.3 may not exist in L.
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§11. Positive linear functionals on spaces with property P.

In this section we will see that many spaces with property P have
positive linear functionals of only very special types. In this respect
they behave very much like spaces of all real-valued functions on a
given set (c.f. [8], example 20.8 in Note VI, and example 27.3(ifi)
in Note VIII ).

Recall that a positive linear mnctional‘ @ on L is called an
integral if 0< znir O implies @(x ) —=>0 (c.f. [8], §20. in
Kote VI ).

Theorem 11,1 Let L be a Dedekind complete Riesz space with property P.

Then any positive linear functional ﬁo on L is an integral.

Proof By normalization we may suppose that @(1) <1 (it may be zero).
let 0< znlf 0, and suppose cp(xn)—/>o. By multiplying each x by
a suitable fixed constant, we may assume that ?)(x n) 22 for all n.
Define y_ = (xn - 1)+, and note that yn~lf 0 and fp(yn) > ?(xn -1l)=
=@x)-¢p(1)z22-1=1.

Now, for every e > QO there exists, by theorem 10.1, O < e'< ¢
and N such that x e'< 4e' for all n = N; hence yne"- 0 for

n

n 2z N. But then, letting S = {zn 10z = gyk, n=1, 2, ...} .
we can see (taking account of property Pl) that sup(S) exists. It then

follows that for every n ?(mp(S)) =z Q’(tn) = Q(é ¥y )=
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n
- E : @ (yk) > n, a contradiction since @ (sup(S)) must be finite.
k=1 :

Lemmg 11.2 Let L be a Dedekind complete Riesz space with a unit 1,
and @ a non-negative integral on 1 which is not identically zero.
Then @(1) >o0.

Proof For some O<x € L we have @(x) >0. By corollary 1.6.2,
inf(x, n.1) "‘n x; 8o for some n (@(inf(x, n-1)) >0. Then @(1) =
=0 1o ( 1) 2 o o (inf(x, ne1)) > O.

If L is a Riesz space with a unit 1, then by a decomposition of
e € U(L) we mean a collection {e,&, o € {d} , of unitary elements
such that e,> 0 forall ef{«} , e, es for o #(3, and
sup(e,) = e. The cardinal of the index set -[c% is called the caxﬂinal‘
of the decomposition.

Recall that a set X is said to have a measurable cardinal if
there exists a countably additive measure 'V on the collection of all
subsets of X such that V(X) =1 and ~N(F) = 0 for every finite
subset F of X. If such a measure Vv does not exist, then X is
said to have a non-measurable cardinal {c.f. [8], p.697 in Note VII ).

Recall that a positive linear functional ¢ on L is said to be
a normal inte if 0<% x_plr O implies inf tp(x,,) = O for every

set {x,] directed downwards to zero (c.f. [8|, §27. in Note VIII ).

Theorem 11,7 ILet L be a Dedekind complete Riesz space with property P,
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and suppose that every decomposition of 1 has a non-measurable cardinal.
- Then every poeitive linear functional ¢ on L is concentrated on a

finite number of atoms of U(L, 1), and consequently is a normal integral.

Proof By theorem 1l.1 we may assume that ¢ is an integral; and we
may as well assume that ¢ is not identically zero, so that by lemma 11.2
@ (1) > o.

Let A be the family of collections jey} of mutually disjoint unitary
elements such that @(eq) = 0. A is inductively ordered by inclusion,
so there is a maximal such collection D. Let e' = sup(e t e € D).
We can see that @ (e') = 0, for otherwise ¢ would induce a non-zero
measure on the cardinal of D which is zero on finite subsets, whereas
by assumption D has non-measurable cardinal. It follows, by lemma 11.2,
that P is zero on the normal subspace generated by e'.

Thue @ (1 - e') = (p(l) >0, 80 1- e" >0 and ¢ is concentrated
on El - o'] e« If 1~e' is an atom we are done; if it is not, then
it can be decomposed into two parts, and . @ must be greater than zero
on each of them or else D could be enlarged. If one of these parts
is not an atom then it can be further decomposed, and again ® must be
greater than zero on each of the parts; etc. This process of decom-
position must stop after a finite number of steps, for property P3
makes it impossible to have an infinite number of mutually disjoint
elements on each of which P is greater than zero.

Thus 1 ~ e' decomposes into a finite number of atoms, and ¢ is

concentrated on them.



III ABSTRACT INTEGRAL SPACES.

§12. Extension of @ to I:#"'=

Let L be Riesz space (Dedekind complete), not necessarily having
a unit. ILet ¢ be a non-negative normal integral on L. (Hereafter,

- all integrals will be non-negative, 80 we will not always mention this
explicitly in the future.) As usual, x, Y, 2, will denote elements of
L and f, g, h, will denote elements of #.

We define a new functional (p# on. #+ as follows: for
0Lrfe 1"* define q;#(f) = sup(qo(x) tx€Ll, O0<sx=<Tf). cp#(f) may

‘equal +00, but for 0< xe€ L q,#{x)sgo(x).

Theorem 12.1 (c.f. [8], theorem 30.6 in Note IX ) If 0< £,/ f e 1,
then J(f) sup (P#(fa)o

Toof Assume first that qa#(f) < oo. Then, given € > 0, there exists

g

x € L such that q;#(f) < @flx) +€, let x,=inf(f,, x)<f,. x,€L
end x, 1 x, s0o ¢(x,) A @(x). Then sup (P#(f"‘) + &> ?#(f).

1f 7(f) m 0, then for any N there exists x < f such that
@(x) > N. Now, :Lnf(xl, £.)" x, so sup q#(fd)?, @{x) > N. Hence
gp#(ﬂ,c)lr‘”-
Theorem 12,2 qz# is a positive linear functional on L#+. and is
strictly positive if ¢ is strictly positive.
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Proof We only need to verify that go# is additive, let f, g € #+.
Bvery zeL', s<f+g canbewritten z=x+y with £>xe L'
and gzye L', end so cp#(f+g)sup(@(x+y):,0.<.xsf.05ys g) =

= sup(p(x) : 0< x< ) + suplp(y) : 0sy<g) = (P#(f) + qf(s)-

#

Since @ is an extension of ¢, we may (when confusion does not

result) write ¢ for q;#.

815, L@, L) end L(g,L).

We continue to suppose that L is a Dedekind complete Riesz space
with a normal integral ¢. Ilet us suppose for the moment that ¢ is

strictly positive.

Definition (i) If ¢ is strictly positive, then Ii(q) , L) = Ll(cp) =
L = jfe i+ @ (1£]) <} (where we are writing o for ¢f).

(11) A norm is defined on L () vy lfl, = @(if]). (This is a
norm rather than a seminorm since (p 1is strictly positive.)

(1i1) @ is extended to all of Ll(qa) by defining @ (f) =
p(e,) - o(f ).

We note that Ll is an ideal in L#, and that, by theorems 12,1
and 12.2, ¢ (i.e. cp#) is a strictly positive normal integral on Ll.

The next theorem is the key to showing that LI(CP) (and later
Lz(cp) ) is complete. '
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Theorem 13.1 If 0< £,/ € L(¢) end supligll <o, then there
. exists Bup(f:,g)ﬁ' I.l(qa).

Broof Pirst we use property P, to show that there exists sup(f,) € £,
let 0< g e #, and suppose that for every b sup inf(bg, £f,) = dg.
Then b¢(g) = P(vg) = ¢(sup inf(ve, £,)) = sup g(inf(bg, fq)) £
< sup ¢(f,)< oo« But since @(g) >0, this cannot be true for every
b, i.e. there must exist b such that sup inf(bg, fy) £ bg. But then
aincs I has property P,, there exists f = sup(fy) € i |

Then to show f € Ii(qv). we only have to notice that, by theorem 12,1,

¢(f) = sup@(fu) <o
Corollary 13.1.1 I.l( @) is complete (in the norm \\-\ll).

Proof Suppose 0 < fn'\‘ € Ll, and snp“fn“lém « Then the theorem
implies that sup(fn) exists in L. But this is exactly the criterion
of Amemiya [1] that a normed Riesz space be complete. (c.f. also |8

theorem 5.3 in Note II, and theorem 26.3 in Note VIII.)

Suppose now that P is not strictly positive. Decompose
L= Cq, @ NP (where N? is the null ideal of @, and Cq = Nif is the
carrier or support of ¢ ; c.f. [8]. pp 107 = 108 in Note VIII.) This
decomposition induces a decomposition L# = cﬁ @ Nﬁ; for Cﬁ and Nﬁ,
are disjoint normal subspaces of -L#, and since cf + Nﬁ has property P.

. 3
and LaC,+X,C chenf c1¥, theorem8.5(111) impries 1f « cf 4 of.
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@ is strictly positive on Cq,, 80 we may define I.l(cp s L) 4in general
to be Ll(q? . C?). By an abuse of language we will scmetimes say that
fe Ll(cp, L) if the component of f in c‘fp is in Ll(q?. Cq )+

Definition  Ly(@,L) = Ly(@, Gp) = L(@) = Ly ={re cht gD <],

It is easy to see that L2 is an ideal in I.#; for

(1) re L, implies af € L

(11) (£+e)P =12 +8%+ 2t < 2(£% + g2), s0 @((f+¢)?) <
sz(q>(f2) + qa(gz)), and hence f, g €L, implies (f+g) e L

(111) \fl1< |g| and ge L, imlies P(r7) < @le’)<os , so that

fELZ.

Now, fg < 4(f% + %), s for f, g € L, \@(fe)l < i—(q)(fz) +q>(g2))
and.thj.s ia < 0o , Hence we may define in L2 an inner product
(f, g) = ¢(fg), and a porm “f“2 = (1, f)i‘ =[q>(f2)]% = \\fZHJ{-
(\\-“2 is a norm rather than a seminorm since ||fl[2 =0 implies C?(fz) = 0,
so that fz = 0 and hence f = 0.) Note that f € L2 if and only if
8 Ly

For the proof of the next theorem we will use the following lemma.
Lemua 13,2 If OSf € ¥ ena fg’i‘ & then 0< fn’i‘ & e if.
Proof f, < mip(fi, 1) < sup(g, 1); hence there exists 0< h = sup(fn).

Then g = sup(fi) - h2, by theorem 10.3, 80 by the uniqueness of positive
square roots we have h = é as required.
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Theorem 13.3 L,(¢) is a Hilbert space.

Proof We only have to prove that L2 is complete in the nom “'“2’

<
Suppose 0 < fn't & Lz and sup“fn\\aéeo. Then 0 fi he I‘l and
sup\\fi“l = sup“fn“g <00, 8o by thoerem 13.1 there exists g = sup(fi) €L.
But then, by the preceeding lemma, there exists sup(fn) = gi- -

2
Thus, by Amemiya's theorem [1], L, is complete.

The next theorem will be useful later on (c.f. theorem 17.3).

Recall that if L has a unit 1, then I'o = {x €Lt |x|< asl for some a}.

Theorem 13.4 If L hes a unit, then L  is norm dense in L (¢) and
Lz(q:).

Proof Conmsider first Lz(cp). Since I‘o contains all elements 6f the
L#.

form ae, Lo is order dense in Suppose f € L.. Given £>0

2

we want to find x € L such that £ - x“zé €., It is sufficient to con=-
sider the case where f >0. Then f = sup(x t X E Lo' O<x < f), and
hence f2 = sup(x2 $t X€E Lo’ O0<x< f). But then, by theorem 12.1,

CP(fz) = sup(cp(xz) tx€L,0SxS f), and hence there exists x ¢ L,
O=x=<f, such that ¢ (7)< g(x®) +€%/2, .. fitll3 - Ix|3 < &/2.
Now, £2x20 imlies f£+x>2r, so If+xl5>4lxf. Then, by tne

parallelogram law, \\f - x\\g = 2“1‘“2 * 2“1‘“2 - lir + !“g =

£ 20l + 2xlZ - alxlZ = 2(lell = Nalf) < & ms required.
The fact that Lo is norm dense in Ll féllows by a eimilar but

easier argument.
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IV THE RADON-NIKODYM THEOREM.

§14. Absolute continuity.

Let P be a normal integral on the Dedekind complete Riesz sapce L,
and let ¥ be a normal integral on some Riesz subspace E C L#. Then
Yy is said to be absolutely continuous with respect to P if
I.l(lp) ® Ny is order dense in L#. and, for 0< f € L#. p(f) =0

implies Y (f) = O.

Note Requiring that Ll(q/) @ Ny, be dense in i is equivalent to
the more usual condition (c.f. _ [23]. p.134 ) that P and ¢ be
initially defined on the same space, for we may regard
(Ll(cp)@n,)ﬂ(nl(qz)@nw ) as the initial domsin of @ and y ,

and this is order dense in L#.

Theorem 14.1 Let ¢ be a normal integral on L, and let 0< g ¢ .
Define Y on il by y(f) = @(fg) forall O<fe #*.  and then
on some Riesz subspace E C L# by Y(f) = Ly(f_'_) - Y(£_) whenever

y(f,) and ¢(f ) are finite. Then Y is a normal integral absolutely

continuous with respect to P .

Proof Since ¢ is normal end mltiplication is (o)-continuous, y is

& normal integral on Ll(tp)Gll,p- {fE L# H q/(lfl)<°°} .
Next, if ¢@(f) =0 then fe€ Nf- (cf)l. and hence fg ¢ (cf)l‘-
i.e. y(f) = ¢ (fg) = O.

4

vl
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Finally, we must show that, given 0< f € #, there exists
-o<he1.1(q:)mn.,, such that h< f, But if f > O, then there exist
e>0, a>0, and 0sb<° such that O0< ae < f and ge < be. It
follows that Y (ae) = ¢ (aeg) < P(abe)< bp(f)<o°, and hence ae
is the required element in Ll( Y) @ Ny,

The converse of this theorem will be the subject of the next section.

§15. The Radon-Nikodym theorem.

In this section we prove a very general form of the Radon-Nikodym
theorem (c.f. theorem 15.2). But first we prove a special case. (The

proof parallels very closely that given in [23] for measure spaces.)

Theorem 15.1 Iet L be a Dedekind complete Rieasz space with a unit 1.
Let ¢ be a strictly positive normal integral on L, and let 0 < ¥

be any normal integral on L. Then there exists a unique 0< g ¢ I.l(cp)
such that f € L (y) if and only if fg € L(p), and ¢(f) = ¢p(ts)
for every f € Ll(tp).

Proof (i) Define w on L by w= P+« w is clearly a strictly

positive normal integral on L. We must verify that w# = qa# + qa#.
For 0<tet, (p+y)e)=eup(o +¢y)Nx)10sx< ) =

= sup(p(x) + Y(x) 1 0sxs )< q;#(f) + qz#(r), On the other hand,
0Sx,y<f implies 5= sup(x, y) < f3 tms @ (x) + w(y)s' (p+¢)(s),
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o t(f) +yf(£) = sup(p (x) +4(y) 105 x, y< 1) <
oup((p+y)(e) s0szsf)=(@+ tg)#(f). Since, then,

:f = cp# + l{J#, we will henceforth omit the #

on @, VY, W,

(11) Consider the Hilbert space Lz(w). For f € Lz(w) we have
W)l < y(igl) < w(igl) = (12, 1) s Iell i, by the Schwarz inequality.
Thus VY is a bounded linear functional on I'z(w)' and so there exists
he Lz(cu) such that Y(f) = (f, h) = w(fh) for all f e Lz(w).

(1ii) We prove now several facts about h. First of all, h >0
(for, taking f = s(h_) in the above we have 0 < Y(s(h )) = Co(n(h_)h) =
= wW(~h )< 0, and hence h_ = 0).

Secondly, '5[(1 - h)_:j = 1, For if not, then there exists e > O
such that oL s[(1 - h);j, and then e - he = (1 ~ h)e < 0, 4i.e.
he > e. But then (o) = w(eh) =w(e) = ple) + W(e)= ¢ (e);
hence equality holds throughout, and so ((e) = 0, a contradiction since

% is strictly positive. Note that it follows immediately from
of2- h)a =1 that 1=h=(1-h) 20, ice. h<1; but thisisa
weaker statement. -

Next we use préperty Pl to show that there exists in I.o#

O< g= f W o sgp(pq- s +hn). For e> 0 we have e < s{(l-h)_;]
by the pr::ieding; hence there exists 0<e'< e and 1>a>0 such
that ae'< (1 -h)e' = (1-h)e' =e' -he', i.e. O<he'= (1-a)e'.
Then, for every n, h"e! =(1- a)ne', and hence he' + <+« + hle' < Ke',
where K = f: (1~ a)k. Therefors sgp(h + +so + h%)e' < Ke', and
hence, by prlg;irty P, there exists g = Z‘ " e I.#"'. Note that the

preceeding implies n® ¢ o.
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(iv) Forany 0< f e I.#, the preceeding shows that f i w4 fe,
80 r]i:gmwcp(f x% ) = @ (fg); and also mt ! o, so %gww(hf:&) =0
for every O0< f € Ll(qJ). Now, we have Y(f) = w(fh) for all
fe L2( w ); but since I.z(w) is order dense in I and h=> 0, this
implies that in fact W(£) = cw(fh) forall 0<fe LF*. Thus for
every 0<fe Ll(&(l). we have U (f) = w(fh) = ¢ (fh) + ¢ (fr) =
@(m) + w(m?®) = p(m) + @(m®) + Y(m?) =...=
= p(f i e ) + U((fhn) —_ (p(fg). Therefore Y(f) = @(fg) for
every 1;-;1 fe Ll( ¢ ), end hence the same equation holds for every
0=fe L#.

' The equation also shows that f € Ll(w) if and only if fg € Ll(cp ),

and in particular, taking f = 1, we see that g ¢ Ll(qa).

(v) Finally, we show that g is unique. Suppose there also exists
g' such that Y(f) = @(fg') for feL(y). et e= ng " g');].
Then @ (eg') = Y(e) = @(eg), 80 0= P(ge = g'e) = P ((g - g')e) =
p((g =~ g )+), and hence (g - g')+ =0, i.e. g<g'. Similarly

g'< g, and hence g' = g.

Theorem 15.2 Let L be a Dedekind complete Riesz space, ¢ a (non-

negative) normal integral on L, and ¢ a (non-negative) normal integral

absolutely continuous with respect to ¢ . Fix a unit le #. Then

#

there exists an element 0< g e L' such that rer.l(q;) if and only
if fge Ll(qa), and Y(f) = ¢(fg) for every fec I.i(qﬂ). g 1is

unique in the sense that its component in Cﬁ is uniquely determined.
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Proof Write L = Cq, & Nq»' ¢ 1is zero on Nq, 80 by absolute continuity
¢ is also zero on NP’ i.e. we may consider Y simply as a normal
integral on Cy. And @ is strictly positive on Cq. !

The element g that we require depends on the particular unit
chosen for L#, but theorem 5.3 (giving the formula for change of units)
shows that if the theorem is true for any unit then it is true for every
unit. Consequently we may let {xd} be a maximal collection of mutually
disjoint positive elements of Cp, and take sup(x,) as a unit for C#.
We have Cp = U® [x;_\‘ end Cﬁ = U@[xd]# (where  U® [x,]
denotes the Riess direct sum of the [x,], i.e. the smallest normal sub-
space of C, containing all the [x. c.f. (8], p.111 in Note VIII.)

For each o, [X4] 1is a Dedekind complete Riesz space with a unit x,,
and on [x;] ¢ acts as a strictly positive normal integral. Thus, by
theorem 15.1 there exists a unique 0< g, € [_'x,a# such that Y (fy) =
= @p(f,g) forevery 0SfE€ [x,a#.

Let 0<g=sup(gy) € cg. (Such an element exists since Cg has
property P3.) Forany O<Tf ¢ Cﬁ (whose component in [x;] is Q),
the component of fg in [(xa] is f,8, for (fe)y = fexy = (fxi)(exy) =
= e Bt then Y(H)= S¥(%) = Folge) = Hole)] =
= ¢(fg). The theorem now follows immediately; in particular the

uniqueness of g follows from the uniqueness of each gu. -
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V APPLICATICONS

§16. Segal's theorem,

It is intereating to note that in theorem 15.2 no condition such as
g =finiteness is required. In this section we use this fact to examine
the Radon-Nikodym theorem for measure spaces. In particular we give a
relatively simple proof of the theorem of Segal [1‘7] which gives a
necessary and sufficient condition that the Radon-Nikodym :hold in a given
measure space. (The Radon-Nikodym theorem is said to hold in a given
measure space (X, S, 4) if. for any integral  absolutely continuous
with respect to the integral f-d/l there exists a M=-unique measurable
function g such that l!l(f) = gfg gu for every ¢ -integrable f.)

Briefly, our proof will proceed in the following steps 3

(1) Given the measure space (X, S, # ) with no purely infinite
sets, | consider the measure algebra (B, /4) of measurable sets modulo
null sets. M is said to be locglingle' if B is complete as a lattice.

(i1) The space L = Ll(x, S, 4) of integrable functions modulo null
functione is a Dedekind complete Riesz space with a strictly positive
normal integral ¢ (f%) = Sf du (where f* denotes the class of
functions equivalent to f a.e. ).

(1i1) Imbed LC L#, and pick a unit 1 € il corresponding to 'Y,x.
Consider the complete Boolean algebra U(L#, 1). |

(iv) There exists a measure-preserving Boolean-algebra-isomorphism
of B into U(L#), which is onto if and only if i 1is localizable.
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(v) The isomorphism of (iv) generates an isomorphism p* of
‘M (equivalence classes of measurable functions) into ¥ which maps
Ll(x, S,u) onto Ll( @, L). p* preserves the multiplicative structure.
(vi) p* maps M onto e and only if u is localizable.
(vii) It follows from (vi) that the Radon-Nikodym theorem holds
in (X, S,m) if and only if 4 is localizable. This is Segal's theorem.
We now give the details g
(1) Let (X, S, 4 ) be a measure space, i.e. S a G -ring of
subsets of‘ X, and A& & (not necessarily finite) countably additive
measure on S. We may suppose that s is already extended by the
Carathéodory procedure, 8o that S is the d-algebra of measurable sets.
Let So be the subring of measurable sets with finite measure. We will
assume that there are no purely infinite sets, 1i.e. if E is a measurable
set with /A(E) > 0 then there exists a measurable set K C E such that
0< p(K)<oo. It follows immediately from this that if F C X is
such that H(FMNK) =0 for all K€ S, then FesS end u(F) = 0.
Two sets E, F& 5 are said to be eqﬁivalent if their symmetric
difference (E - ¥) U (F - E) is & null set. We will denote by E* the
equivalence class of sets equivalent to E, and by B the collection of
equivalence classes. It is easy to see that B is & g-algebra and
that the mapping E — E¥ is a J-algebra homomorphism. « may be
considered as a measure on B by setting m(E*) = w(E). The system
(B, #) is called the measure algebra of the measure space (X, S, u ).
We repeat that  is called lécalizable if B is complete as a lattice.

Let Bo be the subalgebra of B consisting of those elements
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which have finite measure. Since X has no purely infinite sets, we

_can see that for any E* € B, E* = sup(K* 3 K* € B, K*< E*); indeed,

E* 1is certainly an upper bound for all such K*, and if F* is also an
upper bound then P* 2 EXN\ K* for all K*& B, so that (E% - P)NEK* =
(E#{\K*) = F* =0 for all K* ¢ B, and hence E* - F* =0, di.e.

E¥ £ F* as required. Thus Bo is order-dense in B.

(11) let L = Ll(-x, S, M ) = equivalence classes of integrable
functions module null functions. Denote by f* the equivalence class of
functions equal to f a.e.. L is a (¢=Dedekind complete Riesz space
with an integral ¢ defined by Cp(!‘*) = (f du for f* ¢ L. P is
strictly positive on L, hence L is Dedekind complete (in fact, super-
Dedekind complete), and ¢ is a normal integral (c.f. [8], theorem 27.16
in Note VIII).

(i11) Imbed L C S ——— x.#, let 1 = sup(es), where
e, 1is the element of L determined by the characteristic function of
Eq for E4€S,. Recall that u(zf, 1) 1s a complete Boolean algebra
(theorem 1.1). '

(iv) We want to define a measure-preserving isomorphism f of B
into U(L#). For E*€ B, define {(E*) to be the element in L
determined by Xs' Iet U(L#)o = {o €U(L#) s qp(e)cao} « We now
show that ¢ maps B onto U(L#)o. Let eeU(L#)o. Now,
e=sup(x t OSx=e, xe L), and for any such x we have 0< x < s(x)s<
< e, and also s(x) € L since qo(s(x))s @ (e)<eoo 3 hence |
e=sup(e' 1t 0S e ' <e, 0'c LﬂU(L#) ). Since @(e)<® and ¢

is strictly poeitive, it follows that there exists a sequence {e!'l} in
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LN U(L") such that e! T e. Since each e! is determined by the

. characteristic function of some measurable set, it follows that e is
also determined by the characteristic function of some measurable set E,
i.e. pP(E*) = e. Finally, since cp(e)<o-= » m(E¥)<o , 80

e € F(Bo). Thus indeed P(Bo) = U(L#)o.

Since B is order dense in the Boolean algebra B, and U(L#)o is
order dense in the complete Boolean algebra U(L#), P can be extended
uniquely to an (algebraic) isomorphism of B into U(L#), and the
extension (again denoted by ¢ ) maps B onto U(L#)' if and only if
B is complete. (c.f. [17], lemma 3.3.2.)

It is easy to see that { is measure-preserving, i.e. @ ( F(E*)) =
= ju(E*) for all B*¢ B, Thus P isa mea.sure-preasrving algebraic
isomorphism of B into U(L#), and p maps B onto U(L#) if and
only if s is localizable.

(v) let M = equivalence classes of measurable functions modulo
null functions. We cen see that p: B—> U(L#) induces in a natural
way an algebraic isomorphism F* of M into L#. Indeed, for every
measurable function f >0 we have f* = sup(a)2:0s aﬂ(ﬁ < ),

The collection %a f(m*) 1 0< a’)(ﬁ < f*} - i satisfies the conditions
of property Pz, 80 we may define, for 0 < f* € N, P*(r*) o
= sup(a p(B*) : O < a'XP*: S f*) € . general, we define

5;*(1‘*) = f*(f_’;) - f*(f‘:)o

It is clear that P* is measure-preserving in the sense that, for
osmred, @)= ff du. In fact, p* is an extension of the

identity map of L — L. We cen even see that P* maps Ll(x. S, #)

v
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onto Ll(qa, L); for, given 0 =< I#e Ll(q:. L), we have

. sup(rosr(f#) t 0< r = rational) by theorem 1l.6. But cp(sr(i#))s
< r_lqo(f#)< >, 80 there exists E* € B  such that P(E*) = sr(f#),
and hence F*(r'XE) = r-sr(f#). The set {r-ar(f#) $10< = rational-}
is countable, so there exists f* = sup { F*-l[r-ar(f#)]} € M, and
f’*(f*) = 1#. In addition, If*d}-. = cp(f#)coa , 80 f*Eg Ll(x, S, M)

Thus Ll(x, S, p) and Ll(qz » L) are identical, so integrals can
be considered as exactly the same on either space, and in particular
there is no confusion in saying that one integral is absolutely continuous
with respect to another without specifying which space is being considered.

Note that F(x*) =1, end hence p* 1is also an isomorphism of the
multiplicative structure (since, by theorem 5.1, multiplication is
determined by the linear and order structure).

(vi) We have in general P*(“) < L#. ol w8 waed e show that
equality holds if and only if x is locauzaﬁle. In one direction this
is clear, for if p* maps M onto i then P maps B onto U(L#)
and hence (« is localizable. V

Conversely, suppose K is localizable, 8o that f maps B onto
o(f). Mes for oy sc B(1F) there exiota p~l(e) =E*e B, =0
for any element of the form ae ¢ L# there exists p*‘l(ae) = a'Xﬁ € M.
Now suppose 0 < #e iF, Again we have & - sup(r.sr(f#) 1 0< 1)
and the collection {r-ar(f# ) :0< = rational} is countable, so
there exists f* = sup{ P*-l[r'sr(f#)]}e M, and ?'(f*) - t#. Thus
P* maps M onto L# as required.

(vii) Now suppose j is localizable. Then M is isomorphic
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to L#. But the Radon=Nikodym theorem holds for L#, and therefore it
holds for M (i.e. it holds in the original measure space),

Conversely, suppose the Radon-Nikodym theorem holds in the measure
space. For any O < g#e. I.# we want to find g* € M such that
P*(g*) = g# . To do this, define the normal integral { by (P(f# ) =
- cp(f#g# )« Y is absolutely continuous with respect to ® , end so,
considering y and ¢ as integrals on I.l(x. S, u ), the Radon-Nikodym
theorem implies that there exists g* €& M such that ((f*) = 9o(f*g*)
for all f* & 1.1(1:, S, p ). Then, considering ¢ and ¢ as integrals
on Ll(?’ L) again, we have Ly(t‘#) = tp(f#- F*(g*)) for all
T e I.l(cp s L), and hence, by the uniqueness of the Radon-Nikodym derivative
F*(g*) = f as required. Thus p* maps M onto L#, and hence,

by (vi), i is localizable.

Note For a discussion of Segal's theorem along somewhat different lines,
see Zaanen [24] « Here is also found a generalization of Segal's theorem
to the case where there may exist purely infinite sets. It turns out
(c.f. [24], theorem 10.2) that the Radon-Nikodym theorem holds if and

only if the contracted measure is localizable.

§17. Rings of operators on a Hilbert space.

Let H be a Hilbert space, and let B(H) be the set of bounded

self-adjoint operators on H. B(H) is (partially) ordered by 3
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O<AeB(H) if (Ah, h) >0 for all he H. In general, two elements

A, B € B(H) will not have a supremum or infimum; in fact (c.f. Kadison
[7] ) sup(A, B) exists in B(H) if and only if A>B or B> A.
However, it is known that certain subsets of B(H) are isomorphic in
themselves to Riesz spaces; indeed we have the following theorem. (Recall
that the sequence A 1is said to converge strongly to A if “(An - A)nl

converges to zero for every h € H.

Theorem 17,1 (c.f. Vulik ([22] ) Every strongly closed ring L of
bounded self-adjoint operators is isomorphic to a Dedekind complete Riesz

space.

Proof The proof consists mainly in collecting the appropriate facts from
Riesz - Nagy (15]. First of all we observe that L must be commutative
since the product of self-adjoint operators is self-adjoint only if the
operators commte. (This follows immediately from the formula (AB)* =

= B¥A*.,) Next we see that A € L implies A% € L since A% is the
strong limit of a sequence of polynomials in A (c.f. [15], p.265; note
that the use of I, which may not be in L, can be avoided by using for
successive approximations to A% X=X+ +(A - Xﬁ ).) From this it
follows that, for A, BEL, sup(A, B) =4(A +B+|a-Bl) eL (c.£f.15],
p+-279). Finally, any set of elements of L directed upwards and bounded
has a supremum (c.f. EIS], p+263; here this is proved only for monotone
increasing sequences, but the same proof holds for directed sets. It is
also shown here that the directed set actually converges strongly to its

supremum) .
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Recall that the pricipal identity of S B(H) is the projection
onto HON, where N = ﬂ{N(A) t N(A) = the mull space of 4, A € s}
(c.f. Naimark [9], p.445). A strongly closed ring L may not contain
the identity operator I, but we can use theorem 17.1 to show that L
does contain its principal identity E (c.f. Vulih [22]). First we

prove the following lemma.

Lemma 17.2 let A €B(H), 0< A<1I, and let P =P, be the pro-

jection onto H@N(A) = R(A) (where R(A) = the range of A). Let

R |

B n> 0. Then Bn’f‘ P.

Proof It ie easy to see that 0 < Bn't < I, and hence there exists

2 2

B = sup(Bn) € L. B is self-adjoint, and since Bn =B B = B,

n+l’
Hence B is & projection, and we will show B = P by showing that
N(B) = N(a). |

On the one hand, if h & N(4), then l|31h||2 = (A’}h, A%h) = (A, h) =

= 0, 80 that B,h = 0, which implies, by induction, that Bnh =0 for

1
all n. Hence Bh =0, i.e. h € N(B).
On the other hand, since 0< A=B.< B, he N(B) implies

0 < (Ah, h) < (Bh, h) = 0, so that Ah = 0, i.e. h € N(A).

Theorem 17.3 L contains its principal identity E. E acts as a

strong order unit in L (considered as a Riesz space), and U(L, B) =

% {pAuex}.
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Proof It follows immediately from the lemma that for any A € L we
_also have PA € L. To show E € L it is thus sufficient to show

E= mp{?A tA€L}. Since 0< P, <I forall A€L, there exists
‘P=sup{P, 1 A€ L} € L, and it is sufficient to show that P is a
projection (for clearly N(P) = ﬂ{ N(P,) + A€ L} = N(E) ).

Now, for any two projections P' and P", it is easy to verify
that sup(P', P") = (P' + P" + |P' = P"|) = P*' 4+ P" = P'P", and from
this it follows immediately thatEmp(P'. P")]Z = sup(P', P"), 4i.e. that
sup(P', P") is a projection. Thus the sup of any finite collection of
projections is again a projection, and so, by adding to the set {Ph} |
the supremums of all finite subsets, we may suppose that we have a set

{R;} of projections which is directed upwards and hence approaches P
strongly. But then, since Rf =P,y Wwe have Pz a-P, i.e P isa
projection as required, .and hence E € L.

The rest of the theorem is clear.

A strongly closed ring L has its usual operator multiplication, but
considering it as a Dedekind complete Riesz space we may also introduce
the abstract multiplication with respect to the strong order unit E.
Happily it turns out that these two multiplications are identical. Indeed,
it is clear that operator multiplication satisfies conditions (1),...,(vii)
of theorem 5.1 {on the uniqueness of multiplication); and we show in

the following lemms that it alsc satisfies the remaining condition (viii).’

lemma 17.4 Iet A, B € L. Then their operator product AB equals O
if and only if inf(|Al, |B|) = O.
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Proof Since ]A|2 = A%, we may conclude, by the uniqueness of positive
‘square roots (c.f. [15], pe265), that |Al|Bl = |AB[. Also, A =0 if
and only if |A| = O. Hence it is sufficient to consider the case where
A2 0 eand B2 0.

Suppose inf(A, B) = 0. Let m = max(l/all, IBl[). Then
0S$ABS (mI)B=mB, and O< ABS mA, 80 O < AB < m.inf(A, B) = O,
i.e. AB = 0.

Conversely, suppose AB = 0. Decompose H = N(A) @ R(A), and let
0<C = inf(A, B). Then for h € N(A), O < (Ch, h) < (Ah, h) = 0, so
Ch=0. PFor he R(A), h=Ag, O0=< (Ch, h) < (Bh, h) = (BAg, h) = O,
80 Ch =0, and hence Ch =0 for all hem. Thus C =0 as

required.
Thus we have

Theorem 17.5 1In a strongly closed ring L < B(H), operator multiplica~
tion coincides with the abstract multiplication determined by considering

L as a Riesz space with unit E.

We can use theorem 17.5 to prove the following variation of the

Radon-Nikodym theorem.

Theorem 17.6 Iet L be a strﬁngly closed ring of bounded self-adjoint
operators. Ilet @@ and (Y be two normal intégrals on L such that

¢ € ¢ . Then there exists A€ L, O<ASE, such that Y(B) =
= @(AB) for all B € L.



Proof Taking account of the previous theorems of this section, we may
immediately apply theorem 15.2 and conclude that there exists A= 0
in the extension I' such that  (B) @(AB) for all Be L. To
conclude that in fact A€ L, we observe that y< ¢ impliee A< E

(and recall that L is an ideal in #).
Note The above theorem is a special case of a theorem of S. Sakai [16].

Let S C B(H). We define S' to be the set of bounded self-adjoint -
operators which commute with every operator in S, and define S" = (S')'.
We will say that a set S < B(H) is of the type S" if S =S". As

usual we have SiC Sé if SIDS and S8' = S"', From this it

09
follows that if S is commutative then S' ©> 8, 80 S" C S' = S"',
and hence S" is also commutative. In this case 5" is a ring, since
the product of commuting self-adjoint operators is again self-adjoint.
Conversely, if S" is a ring then, as above, S" is commutative.

It is clear that a ring S of the type S" is strongly closed, and
hence is isomorphic to a Dedekind complete Riesz space, with the princi-
pal identity E acting as a strong unit. It is also true that for every
O#AesS there is a normal integral ¢ on S such that ¢ (A) £ 0;
this follows from the fact (c.f. Dixmier { 3], p.54) that for he H
the functional ¢ defined by (p(A) = (Ah, h) is a normal integral. In

the next theorem we prove the converse.

Theorem 17.7 (c.f. Pinsker [14]) Iet L be a Dedekind complete
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Riesz space with a strong order unit 1, and suppose that for every
04 xe L there is a normal integral ¢ such that @ (x) £ 0. Then L

is isomorphic to a ring of operatora of the type S".

Proof Since there are a sufficient number of normal integrals, L can
be written as the Riesz direct sum \J® L, of normal subspaces Lg
each of which posseeses a strictly positive normal integral (c.f. [8],
theorem 27.17 in Note VIII). If each L, can be represented as a ring
S, of the type 5" on some Hilbert space H,, then it is easy to see
that L may be represented as a ring of the type S" on the direct sum
@Hd (e.f. [14]). Thus it is sufficient to consider the case where L
possesses a strictly positive normal integral CP o

" Let H be the Hilbert space Lz(cp. L). For every x € L define
the operator A on H by Ax(f) =xf for all f € H. It is easy to
see that Ax is bounded and self-adjoint (bounded since 1 is a strong
unit), and that the mapping x — Ax iz a Rieaz—space-j.somorphism of
L onto S = %AxstL}a
| To complete the proof we must show that S = S". let B e S5', Then
for y& L we have B(y) = B(yl) = B(Ay(l)) = Ay(B(l)) = y+B(1). Now,
IB(1)l s WBll1, for if B(1) 4 B|1 then there exists e >0 and a> 0
such that B(1)e = (IBll + a)e, and then (taking y = e in the above)
B(e) = e+B(1) = (IBll + a)e, so that “B(e)“z z (8l + a)“e“z. a con~
tradiction. Hence B(1) € L, and so the above shows that B(y) =
= AB(I)(y) for all y & L. But by theorem 13.4 L =L is norm-dense
in E=L(@), so B =Ap(;) € 8. Tus S'C S; end since S is



m: B

commutative S C S'. Therefore S =S5S', and s0 S = S",

Note The above proof follows Pinsker's proof in [14__‘ » except that
he considers a representation of L as a function space with ¢ acting
as an integral on it, and uses as his Hilbert space the‘ 1'2 space
determined by ® in this function space.
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