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ABSTRACT 

* The problem of two channels, NN and NN , coupled through uni-

tarity, is studied to see whether sizable peaks can be produced in 

elastic nucleon-nucleon scattering due to the opening ~f a strongly 

coupled inelastic channel. One-pion-exchange (OPE) interactions are 

* * * calculated to estimate the NN ~ NN and NN ~ NN amplitudes. The 

· OPE production amplitudes are used as the sole dynamical input to 

-1 
drive the multichannel ND equations in the determinental approxima-

tion , and the effect on the J = 2+ (
1

D
2

) elastic NN scattering ampli­

* tude is studied as the width of the unstable N and strength of coupling 

to the inelastic channel are varied. A cusp-type enhancement appears in 

* the NN channel near the NN threshold but for the known value of the 

* N width the cusp · is so "wooly" that any resulting elastic peak is 

likely to be too broad and diminished in height to be experimentally 

prominent. A brief survey of current experimental knowledge of the 

1 * real part of the D
2 

NN phase shift near the NN threshold is given, 

and the values are found to be much smaller than the nearly "resonant" 

phase shifts predicted by the coupled channel model. 

- --·--------- ---- - - -- ·-·-·---· - - - -- - . 
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I. · INTRODUCTION 

After much work in single channel dynamical calculations, 

there has been increasing effort within the last four years to study 

the effects of higher channels which are coupled through unitarity 

to the lower energy elastic scattering processes. The most ambit ious 

attempts have been in the nN problem where the nnN channel has been 

included, usually in some approximate way via a pseudo-two-particle 

pN or nN* channell-B). Although the calculations are not quanti-

tatively convincing it does seem clear that inclusion of these higher 

channels may help to explain the second and third pion-nucleon 

resonances. From this work and other simple models which have been 

studied it is evident that the existence of such inelastic channels 

may act to produce an enhancement in the elastic scattering amplitudes 

(and cross-section) at energies near and even below the threshold 

where the inelastic scattering can physically occur. Experimentally, 

many resonances are found to lie close to the threshold for an inelastic 

process. Even if this association with thresholds proves accidental, 

one can speculate that the succession of resonances seen in the nN 

and nn systems as higher energies are explored can be explained by 

includ ing more and more of the i!lelastic ·Channels which becomes 

accessible as the energy is increased. 

Let us list briefly some of the ways a higher e.nergy channel can 

cause an enhancement in a lower coupled channel
9

) : 

1. 
. 3 4 10 11 12) 

Threshold Effects (Cusps,Ball-Fra zer mechanism) ' ' ' Here 
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the effect is primarily kinematical and occurs very near to the 

energy where the inelastic channel opens up. If the inelastic channel 

contains an unstable particle (and thus the channel is really a 

three- or more-particle channel, the cusp can become Founded (a so-

called "wooly" cusp) and the enhancement smeared over a broader region. 

Cusps are most prominent when the particles in the inelastic channel 

* are produced in a low orbital angular momentum state (viz. £ = O). 

The prominence of the cusp (i.e.'· .whether it is observable or not) 

is also dependent on the strength of the coupling between the elastic 

and inelastic channels. The Ball-Frazer peak is associated with . the 

rapid rise of an inelastic cross-section to its unitarity limit. 

2. Strong Ine lastic Forces (Cook-Lee Mechanism) P If the c;oupling 

between channels is strong enough a resonance may appear in the lower 

elastic channel below the inelastic threshold. Loosely speaking, 

there is an attraction produced due to a virtual transition from the 

elastic to the inelastic channel and back again. The system oscillates 

in a resonance like configuration . By including unitarity in our 

calculations we allow such a strongly coupled inelastic channel to 

produce its effect in the elastic channel below the inelastic threshold. 

Above the i nelastic threshold unitar i ty acts to severely damp the 

elastic amplitude. 

* A good example now see ms to be available: an S-wave cusp in elastic 
rrN scattering at the ~N threshold. This can be seen in the analysis 
of P. Auvil and C . Lovelace , Nuovo Cimento 33, 473 (1964). 
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3, Virtual Bound State Resonance: (Dalitz, Sakurai)~3 ,l4, 9). Here the 

higher channel, if isolated, contains enough attraction to produce 

a bound state. But because of the existence of a lower energy channel 

the "virtual" bound state produced in the higher elastic channel . 

decays and is seen as a resonance in the lower channel, usually not 

·k) 
too far below the ine lastic threshold • For this mechanism .to operate 

a fairly weak coupling between channels seems necessary in order to 

partially isolate the higher channel. 

The question naturally arises whether the existence of higher 

channels in the NN system can produce any effects such as those listed 

above. 

In the present work we shall consider one specific higher 

channel, the 11'.NN channel, which we shall treat as a pseudo-two-particle 

* * state consisting of an N and an N , where the N is the I = 3/2, 

J = 3/2+ 1238 MeV 11'.N resonance. Via this isobar model1 ' 2 ) we consider 

only that part of the 11'.NN state in which two of the final particles 

**) •k 
are produced in a resonant state . . This model of NN production has 

been successful in explaining many of the features of pion production 

in NN collisions (e.g., momentum spectra of the pion and recoil 

nucleon, angular correlations between pious and nucleons, etc.) below 

a couple of BeVlS). In our actual dynamical calculations we shall 

partially include the true three-body nature of the state by use ~f a 

phase space factor which allows for the width(and hence instability) 

* An example of this type of resonance is the_interpretation of the 
11'.A (Y1*) resonance as a bound state of the KN channel. See, for 
example, reference 13. 

*-le We will ignore the error introduced by not anti-synunetrizing with 
respect to the two nucleons in the final state. 
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* 11) of the N Most of the formalism we shall use has been fully 

discussed in references 1 and 2. 

i~ 
Besides the fact that NN production is prominent experi-

mentally this particular inelastic channel was chosen for study for 

several other reasons. * Because of the sizable width of the N , 

approximately 125 MeV full width at half-maximum, one expects that 

"force" diagrams such as Figures l(a) and l(b) below 

N N~ N~ N 

.:rr -

N (a) 
N N 

(b) 

One Pion Exchange (OPE) Interactions in 

* * * (a) N + N ~ N + N and (b) N + N ~ N + N 

Figure 1 

* would make a large contribution due to the large coupling at the :n:NN 

vertex. (A large coupling between channels might suggest that. 

mechanism (2) discussed above could . produce an enhancement in the 

elastic NN channel.) 

Diagram l(b) also contains a cut in the physical region 

. i(2 2 2 ~'>'2 2 2 2 
[running from S = 2(M + }1) - µ to S = (M - }1) /µ , where 

* * M = nucleon mass = 938 MeV, M = N mass = 1238 MeV, µ pion mass =:= 

139 MeV] which, as noted by Peierls
16

) can sometimes produce peaks 

in elastic cross-sections*). However, such a peak is usually not 

* A more careful examination 
peaks may not be present. 
Letters 13, 143 (1964). - . 

of specific cases has shown that these 
See, for example, C. Goebel, Phys. Rev. 

______________ .._._.. ...... _,;;,;_ ___ ,_,,_ ______ -=::.....--"'~===~~~=~==-=-=-·· ~-=··=· ··------~-- - -·· 
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confined to a single J, P, I state and has a shape and an asymUtetry 

different than a resonance-like Breit-Wigner distribution. 

Experimentally, there a r e no known resonances in NN scattering. 

(There is, of course, a bound state - the deuteron.) Neither the 

total nor the differential cross-sections show any strong peaking_ 

below 1 BeV . However, several of those who have attempted to 

phenomenologically describe the data find some enhancement in the 

I = 1 state near a lab 

below, we have plotted 

energy of 600 MeV. 
2 

p d cr 

For example, in Fig. 2 

(15.c) 2 dn 
(e = n/2) vs. lab kinetic energy 

CM 

for the case of proton-proton scattering (which is pure I= 1). The 

data is t aken from Table A2 in Wilson's book on the NN interaction17). 

Although the 90° (CM) scattering does diminish the contribution from 

some odd £ states both even and odd orbital angular momenta contribute, 

and we cannot simply isolate the enhancement to a specific state of 

. ~'c) 
angular momentum and parity . The proposed enhancement occurs at an 

energy near or slightly below the threshold for the inelastic process 

•k 
N+N -7N+N (a strong reason for studying this channel). This 

* reaction only can occur in the I= 1 state (where the N is the 

I= 3/2 isobar). 

* In spinless scattering since P£(n/2) = 0 for odd £ 1s, only event 's 

are present at eCM ~ n/2. But for pp scattering, using the notation 

of reference 18, although M11 (n/2) = O, ~-l (n/2) O, M00 (n/2) = 0 

both M
10

(n/2) and M
01 

(n/2) are non zero and contain odd £ states. 
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Figure 2 

p
2 ~~ for proton-proton scattering at 90° c.m. 
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Our ideas on cusps also encourage us to look for states in 

which the n ew channel is in a low angular momentum configuration, 

preferably L = 0. 
p + 

The nucl e on has J = 1/2 ; the three -three resonanc e 

treated as an unstable particle has JP= 3/2+. Therefore, putting · 

* INN*) be the NN in a n L = 0 state r e qu i res in a P = +, total 

J = 1 or 2 state. To couple to INN) with T = 1, P +,the generalized 

Pauli principle forces the NN state to have S = O, L = 2 and thus 

J = 2. 

with LNN* = 0 the pertinent channel spin-par i ty is 

1 = 1 with the NN in a D
2 

state. Although we shall briefly 

p 
examine some of the forces in other J states by looking at the OPE 

Born ampl i tudes , we shall ultimately pe rform de tailed dynamica l 

calculations only in this one state. 

Above 400 MeV a phase shift analysis of proton-proton scattering 

i s greatly complicated by the presence of inelastic scattering which 

causes the phase shifts to become complex; i.e., not pure ly r eal. 

Most of the work done in the 600 MeV region has been performed i n 

the U.S.S . R . using· the 6-meter synchrocyclotron in Dubna. For pp , 

neglecting ine lasticity and using the requirement of un i tarity , 

•k) 
five independent experiments performed at all angles are sufficient 

* Briefly , we can l is t the k i nds of experiments from which to choose. 
1. Single scatte ring experiments to measure the unpolarized 
differential cross-section. 
2. Double scatte ring experiments to measur e the polarization P. 
3. Triple scatte ring e x p e rime nts to measure R (related to the 
rotation of the polarization vector in the plane of the s e cond 
scattering), A, D (describes the extent to which the second scatter­
ing depolarizes an initially polarize d beam) , or spin correl ation 
experiments in which one measures the polarizations o f the recoiling 
target usually in. correlation with the polarization of the outgoing 
nucleon. At one energy and angle there are nine independent 
quantities which can be measured. For more details, see refs. 17, 
18, and 19. 

-------------------- - - - - -- - --
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18) 
to determine M the scattering matrix at all angles • This however, 

is only academic interest even aside from inelasticity, for in 

practice, one takes a number of pieces of (hopefully reliable) 

experimental data and attempts to ·,. fit with several (often variable) 

parameters and then uses some goodness of fit criteria (commonl y 

chi-square) to search for acceptable solut i ons. Usually several such 

solutions are found and other types of data (e . g . ' data on 

p + p~ 1/ + d) or auxiliary requirements must be used 

to reduce the number of satisfactory solutions. 
18) · 

In the so-called modified phase shift· analysis the use of the 

one-pion exchange (OPE) contribution for high angular momentum states 

allows one to get. as good chi- squares using many fewer parameters 

( for exampl e at 310 MeV one can get the same X
2 

using nine parameters 

and OPE as using fourteen parameters with no OPE)
19

). 

In making a phase shift analysis of pp scattering at 657 MeV, 

v 20) 
Azhgirei e t al . assume one meson exchange for £ =::, 5 states. 

They assume the phase shifts are complex (~ = o + iy) and use absorp-

3 1 
tion coefficients (averaged over J) for the 3P0 , 1 , 2 , F2 , 3 ; and D2 

states which are obtained from the experimental cross-sections for 

+ + the inelas t ic processes p + p ~ n + d, p + p ~ n + n + p , 
. 0 

p + p ~ 11'. + p + p . They used 45 experimental quantities and 

determined twelve parameters, nine phase shifts ( £ ~ 4) and three 

absorption coefficients. With a X
2 

= 36 . 7 (For a good fi t X
2 

= 

number of data points - number of parameters) ·they find 

o (1
D ) 

real 2 . 

. 2 
= 11.7° ± 2.2, r

2 
= .668 (e - y = r). 
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Using new data on the parameter A they modified their values to 

5 = 8.7 ± 4.9, r
2 

= .678. 

Similar analyses (Golovin
21

), Zul'karneev and Silin
22

), 

23) ) . 
Dzhelepov also find t ha t Re 51 ~ D . . 2 
600 MeV. 

10° for lab energies near 

It thus seems reasonably safe to conclude from these analyses) 

although they are not yet completely satisfactory, that no true 

. . h lD· resonance exists in t e 
2 

pp state. The enhancement which may be 

present seems more likely to be what we have classed as a threshold 

or cusp effect. 

In this paper we shall study the coupled processes 

* ~'( * N + N --+ N + N, N 1- N H N + N , N + N --+ N + N in the isobar 

* approximation treating the N as an unstable particle. Ultimately in 

our dynamical calculations (using the determinental approximation to 

-1 
the multichannel ND method) we shall ignore all forces but those 

* due to the inelastic process N + N -+N + N. And only the longest 

range part of this interaction, the OPE diagram Fig. l(a) will be 

kept. Besides providing the longest range interaction, pion exchange 

l eads to cuts in the partial wave amplitudes lying nearest the 

physical region . Other particle exchanges were neglected for 

simplicity and because the relevant effective coupling constants 

* * * (e.g. > for the pNN, mNN, ~NN vertices) are not well known, though 

we could use the su
6 

symmetry scheme to es t imate them·. It is the 

inelastic OPE amplitudes which shall drive the system of coupled 

equations. Our work is clearly rela ted to the strip approximation 

diagram for NN scattering shown in Figure 3. This diagram would 
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N N 

_1!_ 

N N'lt 

N 

A Strip Approximation Diagram for Nucleon-Nucleon Scattering 

Figure 3 

correspond to the lowest order term in the solution to the set of coupled 

unitarity equations. 

The elastic forces from the processes N + N -7N + N (e.g., forces 

24) . * * due to exchange of n, p, m, ~' ) and N + N -7N + N (exchange of 

n, p, .•. )will be ignored in our dynami~ql calculations for several 

reasons. 

~'( * 
As we shall see in Sec. II the NN -7NN elastic forces, at least 

those given by the diagram of Fig. l(b), do not seem to contain either 

very much attraction or repulsion where this is estimated by studying 

the sign and (non zero) magnitudes of the amplitudes (with momenta 

divided out) at or near threshold. For this reason, and because of a 

* need to restrict the size and complexity of the problem these NN 

elastic forces were omitted. As will be discussed in Sec. I, to 

* "/(. 
describe elastic NN .. ; -7 NN : scattering in a state of definite J, P, 

and I requires in general, a 4 x 4 matrix (i.e., ten independent 
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amplitudes)*). Since elastic NN scattering in a state of definite 

J, P, I ·requires a 2 x 2 matrix ( i nvolving two eigenphases and a 

mixing parameter) for triplet scattering (but only a single amplitude 

ic 
for the S 0 case), the most general coupled NN, NN problem would 

involve 6 x 6 matrices. Thus, the 
II II ~'c 

two channel NN, NN system r~ally 

consists of six coupled channels. 

Besides the limit on complexity, perhaps the strongest reason for 

ignoring all elastic forces is just the desire to ·isolate and study 

the effect of a production process on an elastic channel coupled to it 

via the unitarity relations. We thus can study the mechanisms (1) 

and (2) described above in their purest form without any complications . 

25) II 
As Cook and Lee have noted it is likely in many processes 

that the "elastic" forces contribute very little to the structure of 

the elasti c amplitude near the thresholds of inelastic channels. It is 

rather the particular form of the coupling between the amplitudes; 
II 

i.e., the unitarity relations, which is responsible for the structure. 

We shall find that our coupled channel model does predict a cusp 

ic 
type enhancement near the NN threshold. However, because of the broad 

ic 
width of the N , we find that the cusp in the elastic amplitude becomes 

rounded and flattened, and diminished in height by the presence of 

sizable i nelasticity. Thus, the peaks predicted by our model would 

not be very prominent experimentally. However, our model does predict 

real phase shifts close to 90° and thus disagrees with .the experimental 

* For small J's (< 2) fewer amplitudes are required . (J = 0 requires 
1 and J = 1 requires 6). 
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data we have cited. We therefore must conclude that important 

repulsive forces have been omitted from our model. 

* The influence of the NN channel on NN s.cattering has also been 

considered by Leung26) and Coulter et al.,
27

) and we shall compare 

their work and approach with ours in Sec. VII. 

The organization of this paper is as follows: 

* In Section II we describe some general features of the NN, NN 

system; especially the restriction on the number of independent ampli-

tudes imposed by angular momentum, parity, and isotopic spin conserva-

tion and time-reversal invariance. Section III contains the 

calculation of the OPE amplitudes for the diagrams of Fig. 1. The 

* * properties of the spin 3/2 N state and the nNN vertex are reviewed. 

We then project out partial wave helicity amplitudes and form 

amplitudes of definite parity. The problem of off-mass-shell terms in 

the partial wave amplitudes is briefly discussed. The high energy 

and threshold behavior of the .amplitudes are examined. Signs and 

relative magnitudes of forces in different JP states ~re estimated. 
~'( 

The analytic structure of the NN ~NN partial wave amplitudes is 

described and the appearance of complex singularities is noted. 

In Section IV we state the unitarity relations for partial wave 

amplitudes in the isobar approximation and give the solution in the form 

-1 
of the multichannel ND equations. 

Next, (in Section V) we choose proper phase space .factors to 

eliminate kinematical singularities (at least those close to the 

physical region) and guarantee that our resultant "unitarized" 

amplitude will have the correct threshold behavior. We discuss and 
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* illustrate the modified phase space factor that we use for the NN 

state. This pseudo-three particle phase-space factor is compared 

h h . f d b N b d P · ll) · h · wit t e approximate orm suggeste y auen erg an ais in t eir 

discussion of wooly cusps. Also in this section we perform the 

* continuation of the NN ~NN Born amplitudes to the region between the 

·k 
NN and NN thresholds since this will be needed for the dynamical 

calculations. 

In Section VI, we discuss the approximations to be made in our 

determinental calculation. Detailed questions concerning the choice 

of subtraction point,the convergence of integrals, the use of a 

cutoff, and the handling of principal value integrals are explained. 

Some general properties of the solution are also discussed. 

Section VII contains the numerical results of our computer 

calculations. We examine and plot graphically the dependence of the 

NN elastic scattering amplitude on the magnitude of the coupling 

between channels (the size of the inelastic amplitude) , the width of 

~~ 

the N , the choice of subtraction point and the cutoff. The problem 

of ghosts is briefly discussed. Finally, we sunnnarize the results 

of our work. 

In Section VIII we briefly discuss some possible ·su
3 

implications 

of our coupled channel model. 

Appendix A sunnnarizes the symbols, notations and relevant kine-

matics we use, and Appendix B gives many details needed for projecting 

out the OPE partial wave helicity amplitudes. In Appendix C the 

problem of complex singularities and anomalous thresholds is examined 

further . 

· - -- -- . ·---
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•k 
II. GENERAL FEATURES OF THE NN AND NN CHANNELS 

In the center of mass the NN threshold is at 1.876 BeV and the 

* *) * NN threshold at 2.176 BeV. . (Later when including the N width we 

shall effectively be aliowing the threshold to extend· to lower 

energies.) In terms of Tlab the lab kinetic energy of the incident 

nucleon we have 

~M - 4~ 
2M 

and also 

= 

where we are using energy units (c = 1). With WCM 

* the NN threshold occurs at Tlab ~ 646 MeV. 

(II.l) 

(II.2) 

2.176 BeV we find 

The general kinematical features of nucleon-nucleon sca ttering 

are Well -known
28). A · h · d d •t t ' ssuming c arge in epen ence, pari y conserva ion 

and time reversal invariance, five independent amplitudes are required 

for a complete characterization of nucleon-nucleon (or NN) scattering. 

The NN state can have either isotopic spin 0 or 1. For a given value 

of total angular momentum J the two-nucleon system can be in an S = 0 

or S = 1 state. Because of the Pauli principle .there can be no transi-

tions b e twe en the two spin states. For the singlet state (S = 0) 

we have only L = J and one amplitude characterizes the scattering. 

* In Appendix A we have summarized the notation and conventions we 
will be using in our calculations and given a brief review of the 
kinematics of the reactions N + N*--7N + N* and N + N --7N + N*. 
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If S = 1 we have L = J or L = J ± 1. (If J = 0 clearly. L = J - 1 is 

not present.) For L = J, again one amplitude is sufficient since 

parity conservation forbids transitions to L = J ± 1. If L = J ± 1 

we need three ampl°itudes to describe the transitions L = J - 1 ~L = J - 1, 

J + 1~J+1, J - 1 ~J + 1 (which is equal to the amplitude for 

J + 1 ~J - 1 by time-reversal invariance). Hence a total of five 

independent amplitudes (for J > O) are needed. 

The generalized Pauli principle implies that for allowed 

N (-l)
I + L + S __ _ 

transitions in -N scattering 1, and thus for 

example, fixing the parity and isospin determines the allowed S. 

Using the relat:ions between amplitudes implied by P, T, and I conserva-

tion the same kind of counting procedure as above can also be carried 

. h h l" . . 28,29) out in t e e icity representation . 

* * Now consider N + N ~N + N scattering. Here, the total I 

i' 
is 1 or 2 and hence only the I = 1 part of NN can couple to an NN 

state . With a fixed J, we have either S = l . or 2, and because the N 

* and N are not identical particles, there can be transitions between 

the different spin states. And specifying I places no restrictions on 

allowed values of L or S as it did for the antisynunetrized NN state. 

With S = 1 we can have L = J, J ± 1 (assuming J > O), and for S = 2, 

L = J, J ± 1, J ± 2 (J > 1) are all possible. Hence the states 

js 1, L = J}, js = 2, L = J}, js = 2, L = J + 2), and 

js = 2, L = J - 2) all have parity (-l)J and there may be transitions 

between any of them. Using time-reversal invariance (e.g., amplitude 

for J + 2 ~ J - 2 equals amplitude for J - 2 ~ J + 2) we find we need 
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* ten independent amplitudes to describe elastic NN scattering for 

p = (-1) J. Similarly 1s = 1, L = J + 1)' is = 1, L = J - 1), 

\s = 2, L = J + 1) J 1s = 2, L = J - 1) all have parity (-1) J .:.1 and 

again ten independent amplitudes are needed to describe scattering with 

this parity. So for J > 1, a total of twenty independent amplitudes 

* would be needed for a complete characterization of elastic NN 

scattering in a given isotopic spin state. (It is easy to see that for 

J = 0 only IS= 1, L = 1) and IS= 2,·L = 2) are allowed, thus re-

quiring one amplitude for each parity; while for J = 1 there are six 

independent amplitudes for each parity.) 

Let us perform the same counting of independent amplitudes 

in terms of a helicity description of each two-particle state (we are 

* talking about . the N as if it were a stable particle). 

Define the partial wave helicity amplitudes 

J * * (A4 A3 iT (W)iAl A2 ) for the process l(N) + 2(N) ~3(N) + 4(N) by 

the relations*) 

I (2J + 1) <A4 A3 I TJ (W) I Al A2) 

J 

(II. 3) 

(II.4) 

* See Appendix Band Reference 29 -for more details . on the helicity 
formalism. 



- 18 -

and in the case of elastic scattering (1 = 4, 2 = 3) 

(II.5) 

Parity conservation implies 

(II.6) 

where ~i is the intrinsic parity of particle i and Si its intrinsic 
"/~ ~'( 

spin. Hence, for NN ~NN we have ~l = ~2 = ~ 3 = ~4 =+and 

sl = s4 = 1/2, s2 = s3 = 3/2 and thus ~g = +. 

Time-reversal invariance requires 

(II. 7) 

It is now easy to see that between the eight initial states 

1112 3/2), 1112 1/2), 1112 -1/2), 1112 -3/2), l-1/2 3/2), 1-1/2 1/2), 

l-1/2 -1/2), l-1/2 -3/2) ~nd similar eight final states (just 

replace the ket by a bra vector) only twenty independent amplitudes 

may be formed which we have defined in the following matrix. 



1112 3/2) 1112 1/2) 1112 -1/2) 1112 -3/2) l-1/2 3/2) l-1/2 1/2) 1-1/2 -1/2} 1-1/2 -3/2) 

(1/2 3/21 I TJ 
1 

TJ 
2 

TJ 
3 

TJ 
4 

TJ 
5 

TJ 
6 

TJ 
7 

TJ 
8 

(1/2 1/21 I TJ TJ J J J J J TJ 
2 9 TlO Tll Tl2 Tl3 Tl4 7 

(1/2 -1/21 

I 
TJ J J J J J J TJ 
3 TlO Tl5 Tl6 Tl7 TlS T13 6 

(1/2 -3/21 TJ J J J J J J TJ 
4 Tll Tl6 T19 T20 T17 T12 5 

(-1/2 3./21 \ TJ J J J J J J J 
5 T12 T17 T20 T19 T16 Tll T4 

(-1/2 1121 \ TJ J J J J J J TJ 
6 T13 T18 T17 T16 Tl5 TlO 3 

(-1/2 -1121 \ TJ J J J J J TJ TJ 
7 T14 Tl3 T12 Tll TlO 9 2 

(-1/2 -3/21 \ T~ TJ 
7 

TJ 
6 

TJ 
5 

TJ 
4 

TJ 
3 

TJ 
2 

TJ 
1 

\ti 
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On the sides of the matrix we have listed the initial and 

final h e licity states. 

To form helicity amplitudes with a definite parity we follow 

reference 29 and use the relation 

(II. 8) 

* 1 Thus, we construct normali z ed NN states J2 (jA.a 11,) ± 1-"-a' -11,)) 

which have parity ± (-l)J . 

* Now, we c~n form scattering matrices for elastic NN 

scattering in states of definite parity (we have used Eqs. (II.6) and 

(II.7) and the definitions in the last matrix. 



}z (!1/2 3/2) + ]z. <1112 1/2) + Jz <ll/2 -1/2) + ~ <1112 -3/2) + 
\-1/2 -3/2)) l-1/.2 -1/2)) 1-1/2 1/2)) l-1/2 3/2)) 

72<<112 3/2\ + (-1/2 -3/21) T J + T J 
1 ·. 8 

T J + T J 
2 7 . 

T J + T J 
3 6 

T J + T J 
4 5 

~2((1/2 1/2\ + (-1/2 -1/2 \) T J + T J . J J J J .J J 
2 7 T9 + Tl4 TlO + Tl3 Tll + Tl2 

/z<<112 -1/21 + (-1/2 1/21) T J + T J J J J . J J J 
3 6 T10 + T13 Tl5 + Tl8 Tl6 + Tl7 

1~<(1/2 -312 \ + (-1/2 3/2 \) T J + T J J J J J J J 
./ . 4 5 Tll + Tl2 Tl6 + Tl7 Tl9 + T20 

all of which have parity+ (-1)
3 N 

I-' 

]2<1112 3/2) - ~ q 112 1/2) -
1 fI (\1/2 -1/2) - ~ (\1/2 -3 /2) -

\-1/2 -3/2)) \-1/2 -1/2)) l-1/2 1/2)) 1-1/2 3/2)) 

~((1/2 3/2 I - (-1/2 - 3/2 I) T J - T J 
1 8 

T J - T J 
2 7 

T J - T J 
3 6 

T J - T J 
4 5 

5'2<<112 1/2 1 - (-1/2 -1/21) T J - T J J . J J J T J T .. J 
2 7 T9 - Tl4 TlO - Tl3 11 - 12' 

72«112 -1/2 I - (-1/2 1/2 I) T J - T J J . J J J J J 
3 6 TlO - Tl3 Tl5 - Tl8 Tl6 - Tl7 

Jz<(i/2 -3/2\ - (-1/2 3/21) T J - T J J J J J J J 
4 .5 Tll - Tl2 Tl6 - Tl7 Tl9 - T20 
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all of which have parity - (-l)J. 

So we verify again that there are ten independent amplitudes 

required to describe scattering in a state of given J, P, and I. 

~'( 

Now consider N + N ~ N + N scattering. Time'.""reversal invari-· 

* ance will relate this process to the reaction N + N ~N + N but 

will not affect our counting of the independent amplitudes in 

* N + N ~N + N. The channels couple only in the I= 1 state. Hence, 

the NN system must have L even (P = +) and S = 0 or L odd (P = -) 

and S = 1 to satisfy the Pauli principle. 

In an I = 1 state of given J we have the following possi-

bilities: 

-I< 
can couple to the NN states IS= 1, With P = +, IS = O, L = J)NN 

L = J), is= 2, L = J), is= 2, L = J + 2) and, IS= 2, L = J - 2) 

so four independent amplitudes are needed (assuming J > 1). Note 

that for even parity all odd J amplitudes will vanish. With P = -

I ) INN-/() 
and J odd, the NN states S = 1, L J , can couple to with 

IS= 1, L = J), 1s = 2, L = J), js = 2, L = J + 2) and js = 2, 

L = J - 2). This again requires four amplitudes (for J > 1) or 

with P = - and J even, the NN' states 1s = 1, L J - 1) and 1s = 1, 

1) * \s 1), L = J+ will couple to NN states with = 1, L = J -

1s = 1, L = J+ 1), 1s = 2, L J + 1) and ]s = 2, L = J - 1). For 

this latter case, there will be eight independent amplitudes (for J > O). 

Hence, a total of sixteen independent amplitudes is required for a 

* i< complete characterization of N + N ~ N + N (or N + N ~ N.+ N) 

scattering (for J ~ 2). 
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In terms of helicity amplitudes for the process 

~I: 
l(N) + 2(N) ~3(N) + 4(N) conservation ~f parity implies (cf Eq. (II.6) 

(II. 9) 

and we can form the matrix of scattering amplitudes 

(NN~NN) 1112 1/2) \1/2 -1/2) \-1/2 1/2) 1-1/2 -1/2) 

(1/2 3121 t2 
J 

t3 
J t J 

4 

(1/2 1/21 ts 
J 

t6 
J 

t7 
J 

t8 
J 

(1/2 -1121 t J J J J 
9 tlO tll tl2 

(1/2 -3/2 I tl3 
J 

t14 
J 

t15 
J 

tl6 
J 

(-1/2 3 /21 -t16 
J 

-tl5 
J J 

-tl4 -tl3 
J 

(-1/2 1/21 
J J J J 

-tl2 -tll -tlO -t 9 

(-1/2 -1121 
J J -t J J 

-t -t -t 
8 7 6 5 

(-1/2 -3/21 
J -t J J 

-t4 -t 
3 2 

or in terms of amplitudes of definite parity we have 
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A. For P = + (-l)J = - (-l)J-l 

'INN) . 
(NN''f' 

h-«112 3/2 I + 

(-1/2 -3/2\) 

ft-«112 1/2 I + 
( - 1/2 -1/21) 

1 ( . J2' 1/2 -1/2 + 
(-1/2 1/2 \) 

1«112 -3/2] + 
(-1/2 3/2]) 

]2<1112 1/2) - l-1/2 -1/2)) ~<1112 -1/2 - l-1/2 1/2)) 

J t J 
t6 - 7 

and B. for P = - (-l)J = + (-l)J-l 

~INN) 
(NN" i"'-

}z ((1/2 3/2 I -
(-1/2 -3/2 ]) 

~2«112 1/2 1 -

(-1/2 -1/2 \) 

}z-«112 -1121 -

(-1/2 1/2]) 

~((112 - 3/2 I -
. (-1/2 3/2\) 

~<1112 1/2) + l-1/2 -i/2)) 5z<1112 -1/2) + l-1/2 1/2)) 



- 25 -

For P = + the only allowed NN state with the proper syrrunetry is 

Fz <\ 1/2 1/2) - l-1/2 -1/2)) and the amplitudes in the second column 

of case (A) will all vanish leaving only four independent amplitudes. 

(With I = 1, P = + we must have SNN 0 and it is easy to see 

physically that l+l/2 -1/2) and l-1/2 1/2) are S = 1 states.) The-

syrrunetrization requirement for identical particles also means that for 

odd J only Al# A
2 

is allowedJO). Thus, for P = -, J odd the first 

column of case (A) vanishes and we are again left with only four 

amplitudes as we found earlier by considering allowed Land S values. 

* All of these results will be satisfied by the NN -7NN OPE amplitudes 

presented in the next section. 

~~ 

Now, we can briefly consider the coupled channel NN, NN 

problem. For each parity (and J 2:: 2) we, in general, have a 6 x 6 

scattering matrix, which contains the 2 x 2 elastic NN scatter'ing 

* submatrix and 4 x 4 submatrix for elastic NN scattering. 

For the cases P +, J even and P = -, J odd (L = J) only 

one NN state is allowed and the coupled channel scatte~ing matrix 

reduces to 5 x 5. 

To give a little more feeling for the states which couple 

between the two channels we have shown,in Table I, the angular 
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momentum states of the NN system which couple to the angular momentum 

* states of the NN system for some low lying values of the total 

angular momentum. 

Table I 

* The NN, NN Coupled Angular Momentum State s for J < 2 

JP * NN NN 

a+ ls 
0 

SD 
0 

0 - 3p 3p 
0 . 0 

l+. 3 3D 3 3 SD sl , 1 s1 , Dl, 1 

- lp s . -s 3 . 
1 

1 pl ~ Fl'. pl 

2+ 1 s s s 3D 
D2 s2 , D2' G2' 2 

2 - 3 3F s s 3 3F p2) 2 p2' F2 ' p2' 2 

As discussed i n the Introduct i on we shall ult i mately be 

specializing to scattering in the J = 2+ state and thus we in principle 

will be working with S x S matrices, containing four independent 

ine lastic (NN -7NN) scattering amplitudes. The actual input (of 

Born amplitudes) to our dynamical problem will look like 



where 

0 

JP 
ts, a-

JP 
t9,12-

tJP 
13Jl6-

- 2 7 -

JP 
t. k + 

1. J -

tJP 
5 J8-

0 

(II.10) 

* * since we will be setting all elastic (NN ~NN, NN ~NN ) forces equal 

to zero. 
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III. THE OPE AMl'LITUDES 

In this section we shall calculate the OPE amplitudes for 

the diagrams of Fig. 1: project out partial wave helicity 

amplitudes for states of definite parity, discuss the threshold and 

high-energy behavior of these amplitudes and use the threshold val_ues 

(the "scattering lengths") to estimate the strength of attraction in 

different JP states, 

I 31) · The amplitudes will be calculated using Feynman s rules . 

This will le ad to the appearance of some "off-mass-shell" pieces for 

low J's, terms which have no dynamical cuts and would not have appeared 

in a strict S-matrix derivation of the amplitude. These terms lead to 

some difficulties (for the low J states in which they appear) and one 

is not certain exactly how to handle them, There seem to be good 

arguments both for keeping and ignoring them. They make our conclusions 

for the J = 0 and J = 1 states somewhat unreliable. 

Before we can calculate the Feynman Amplitudes we must discus~ 

*32) 
the field theoretic treatment of the spin 3/2N • 

set of 

being a 

The wave functions for spin 3/2 particles will 

four four-component spinors ijrµ) µ = o, 1, 2, 3· , 

tensor index in space time. The 1jr satisfy the 
µ 

)~ (p - M ) ljr = 0 
. µ 

y t = 0 . 
µ µ 

be written as 

the index µ 

equations 

·cirt .1) 

(III.2) 

The second equation is a subsidiary condition which removes the spin 

1/2 part in 1jr • The se equations imply the Lorent z condition 
µ 

a 
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p '\jr = 0 • . µ µ (III.•,3) 

In terms of plane wave solutions of the spin 3/2 equation we have 

'\jr (x) = t) u (p,A.)e-ip ·x 
µ . µ 

with the normalization 

and 

u u = - 1 . 
µ µ 

u and u obey the equations 
µ µ 

-Jc ,,_ 
(p - M ) u (pJ 

µ 

-Jc 
{i ('{> - M ) 

µ 

0 

0 

u y = 0 . 
µ µ 

0 

(IIL4) 

(IIL5) 

(III. 6) 

(III. 7) 

(III·. 8) 

(III'. 9) 

The state vectors corresponding to different helicity states for the 

spin 3/2 particle are 

u (3/2) µ = E (1) U µ (1/2) (:{:II ~ lOa) 

u (1/2) µ =~ Eµ (0) u (1/2) +A E (1) u(-1/2) µ (IIL lOb) 

u (-1/2) µ =A Eµ(-1) u(l/2) +fi Eµ(O) u(-1/2) (III. lOc) 

u (-3/2) µ = € (-1) u(-1/2) µ (III.10d) 
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where we are considering the spin 3/2 states a direct product of spin 1 

and spin 1/2 states. Definitions and details regarding u(± 1/2) and 

€ are found in Appendix B. 
µ 

~'c 

We write the rtNN and rtNN couplings (omitting the isotopic 

spin part) as 

(III.11) 

and 

(III.12) 

respective ly, (~ =pion field, t =nucleon field). 

In momentum space these become 

g u Y5 u (III.13) 

and 

~·( 

Using this coupling we determine the effective rtNN coupling constant, 

* G, by calcu~ating the N decay rat e (into N + rt) and equating it to 

the experimental full width at half-maximum, r. We finds) 

(~)2 
3 

1 PN (~ + M) 
r = 

* 3rt 
M 

(III.15) 

where 

EN = j PN2 + ~· (III.16a) 
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p 2 
N 
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= [ (M*)2 - (M + µ)2][ (M*)2 

~~ 2 
4(M ) 

Using M = 1238 MeV, r = 125 MeV, we get. 

(~) 
or 

2 61. 7 /Bev 

2 . 
G = 54.3. 

(M 
(III.16b) 

(III.17) 

Now, we are ready to calculate the OPE a~plitudes (for Fig. 1) 
~·( 

using the nNN and nNN couplings given in (III.13) and (III.14) above 

and. the conventional rules for Feynman diagrams (as given for example, 

by Schweber, ref. 31). 

* * First, consider the process N + N ~N + N · 

* * The N + N ~N + N OPE Interaction 

Fig. 4 

In momentum space 
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- -? -? - -? -? 
u(p4,"-4) (k - P4)µ uµ(p2,A.2) uv(P3,"-3) (pl - k)V u(pl,A.l) 

2 2 
(p3 - pl) - µ 

= 4i (2n)
4 (~) 

2 

u(A.4) (p4)µ uµ(A.2) uV(A.3) (pl)V u(A.l) 

2 2 
(p3 - pl) - µ 

where we have used momentum conservation at the vertices and 

Eq. (B8) to simplify (III.18a). We also have 

(p -
2 •k2 + M2 

· 2 e pl) = M - 2E E - 2q cos 3 1 3 

(M*2 2 2 - 2E1E3 e) 2 2 2q2 
+ M - µ 

(p - p ) - µ 

2l 
- cos 

3 1 

- 2q2 (A - cos B). 

(III.18a) 

(III.18b) 

(III.19) 

(III.20) 

Using equations (III.18b), (III.20), (III.10), (Bl4,15,16), and 

(A7 - 12) we may calculate the Feynman amplitude R for any combination 

of initial and final helicities . (Using parity conservation and time 

reversal invariance only 20 amplitudes must be calculated. · See 

Section I.) 

We next form partial wave 
1 

A. jRJjA. A.)= lf R. (x,w) 
3 1 2 2 -"-4"-3i"-1"-2 

-1 

helicity amplitudes 

d~µ (e ) dx · (III. 21) 
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where x = cos e and with our conventions*) 

1 

(III.22) 

where we are temporarily omitting the isotopic spin part of the 

* - "k amplitude (Nk ojk N) (N ojt Nt ). Finally, after much tedious 

calculation, we combine the partial wave helicity amplitudes into 

amplitudes of definite parity according to the prescription given in 

Section II . We have listed the results in Appendix B. Only the 

expressions for TJP when J > 3 are listed. For smaller J's some of the 

amplitudes are not present. (We know from Section I that for J = 0 

there is only one amplitude for each parity and for J = 1 there are six 

amplitudes for each parity.) And when J < 3 those partial wave ampli-

tudes which are present contain extra terms, so called off-mass-shell 

. '"'<) 
terms • It would take us too far afield to launch into a thorough 

We may 

In the expressions (writing t 

t ---= 2 
t - m 

2 
t - m 

of Section I. 

-i 

(211:)5 

= (p3 

2 

2 
p ) ) 

1 

m 
2 + 1 

t - m 

m4 2 
2
+t+m, 

t - m 

etc. Those terms with no denominators on the right-hand side of the 
e quations will produce off-mass-shell terms in the partial wave 
amplitudes. 
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discussion of such terms but a few tentative remarks can be made on the 

basis of some examination of their properties in the present case 

(no details will be given). 

The on-shell (J 2: 3) amplitudes are found to have the 

expected threshold behavior 

2(J - 2) + 1 
q 

2 (J - 1) + 1 
q 

p 

J 
p = - (-1) 

(L =(~ - ~ are the lowest orbital momenta which can appear for fixed 

J ~ 2, P = ±(-1)
3 

and at threshold 5r,'"'"' q
2

L + 1
.) 

Thus, these on-shell amplitudes, if evaluated for J < 2, 

2L + 1 
will not have the ordinary q min threshold behavior, and can even be 

quite singular at q = O. But the off-shell amplitudes do turn out to 

have the "proper" threshold behavior (where "proper" includes the fact 

that for q
2 = O, parity and angular momentum conservation may forbid 

L = 0 in the second order diagram). Another argument in favor of keeping 

these perturbation theory terms is that they are the result of our field-

theoretic calculation (i.e., they are present in the Feynman amplitudes) 

and, in addition, they often seem.to express some physics, at least 

to second order. 

On the other hand, we may argue against keeping the off~mass-

shell terms for the following reasons: 

1. These terms frequently turn out to have quite divergent high-

energy behavior and thus must be damped out anyway before used in a 
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dynamical calculation. 

2. Single particle exchanges generally are a poor approximation fo·r 

h 1 . 1 . 11 h h . b . 33) t e ow partia waves especia y w en t ere is a sorption present . . 

3. S-matrix theory does not seem to contain such terms and in a 

dynamical calculation we want to use as our input just the 

singular part of the interaction. 

* 4. Choosing a different field theoretic coupling for the nNN vertex 

would result in different off-shell terms appearing, so they are 

ambiguous if nothing else. 

Fortunately, in our dynamical calculation we will not be 

considering a J,P state where such terms are present, but on the basis 

of the previous arguments one is inclined to favor discarding the off-

shell terms when they are present and a dynamical dispersion-theoretic-

type calculation is going to be made. In such a calculation, the proper 

threshold behavior is usually guaranteed by the choice of amplitude 

or by making suitable subtractions in the dispersion relations. 

When we estimate the signs and strengths of forces in the 

~'( 

various J, P, I NN states by calculating the theoretical values with 

momentum factors divided out we . shal l also give the results for the 

off-shell amplitudes b~t not take them too seriously. 

* Before doing this, let us consider the N + N ~N + N OPE 

amplitudes 
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- -,,,,_ 

(a) (b) 

* The N + N ~N + N OPE Interaction 

Fig. 5 

As the figure symbolically shows, we must form the difference of the 

amplitudes with particles 1 and 2 interchanged in order to properly 

* antisymmetrize the NN .~ NN amplitude. 

where 

3 ~~ 
MM 

g (~)· 

y 5 u(~,~)} 

(III.23) 

2~ 2E1E3 - 2pp' cos B 

2~ 2E1E3 + 2pp' cos B 

(III .24a) 

(III;24b) 
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and 

2 2 
(p3 - pl) - µ = 2pp 1 (z - cos e) (III.25a) 

(III. 25b) 

with 

(II!.26) 

Using Eqs. (B-21 - 24) we can calculate R for any set of initial and 

final helicities and then form partial wave helicity amplitudes 

according to equation (III.21). Finally, we combine these into 

amplitudes of definite parity following the description in Sec. I. The 

results are: 

JP a )J(J + 1) 
tl,4± = 2/2 (2J + 1) 

0 J odd. 

1 

7 
. IQCz) 
[J+l 

JP' a 1 QJ+2 [ ( z ) 

P' )<J-l)(J)(J+l)(J+l)~ (2J+3)(2J+l) tl3,16± = 212 

J-2 Q(z) ] 

+ (2J+l) (2J-l) . 
{+pl) a:) J even 

= 0 J odd. 

JP a j_Jp + 121 [ Q(z) _ Q(z) J 1 
t9,12±= - ,fb (2J + 1) J+l J-1 pp' 

J even 

(III.2 7a) 

2Q(z) 
J 

(2J+3) (2J-l) 

(III.27b) 

(III.27c) 

+ 
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r 

J even (III.27c) 

= 0 J odd • 

J even 

= 0 J odd. (III .2 7d) 

[
Q(z) _ Q(z)J . 
J+l J-1 

JP a 1 /J(J + 1) 
t6,7+ = .[b pp' 

(·2J + 1) 

. [ J even 

= 0 J odd. (III.27e) 
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tJP = .::.!!. _1_ JJ(J + 1) ( I, (z) (z)l 
6,1- .f6" pp' <2J + 1) · LQJ+1 - QJ-iJ • 

( 
- Ct21 p 

+ 5Jl J odd 

= 0 J even. 

tJP = a 1,. JQJ+l +(J + l~J-1 
{ [ 

(z) · · · (z) J 
2 ,3+ "'Zn p 2J+ 1 

+ QJ c-~2 + "2 ~ - "2 B JO} 

= 0 J odd. 

tJP = ~ 1.- JQJ+l + J + 1/<J-1 
{ [ 

(z) ( 1r.(z) J 
2,3- 2.rr p. 2J + 1 

J even 

- "2 ~ BJl + Q~z) [-a2 + ~2 ~} . J odd 

= 0 J even • 

JP 1 a j t = + -- -, (J - 1) (J + 2) • 
14,15+ 2p p 

{r~ (J+l) QJ~~ 
• [<2J-l) (2J+l) + 

3QJ(z) . · J QJ+2 (z) J 
(2J-1) (2J+3) + (2J+l) (2J+3) 

(III.27e) 

(III.27f) 

~1 
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[

-Q(z) + Q(z) J 
+ J-1 J+l 

2J + 1 
J even 

= 0 J odd. 

JP 
tl4,15-

= 1 L j(J + 2./2 p' l)(J + 2) 

{[

-(J + l)Q(z) 
J-2 

(2 J -l) (2J+ l ) + (2J- l) (2J+3) 

. [-QJ"'-1 (z) + QJ+ l ( z ) 
+ (2J + 1) 

J QJ+2(z) J 
+ (2J+ l) (2J+3) 

J odd 

a 
1 

= 0 J even~ (III.27g) 

JP a 
tlO, 11+ = + ,f6' {

. [JQ(z) +(J + -nq(z) 
1 . J+l J J-1 

pp I 2J + 1 · . J [ ( 
l _ l\P 'El) 
2 P cx2 * + 

M 

.J even 

0 J odd. 

JP 
tlO, 11-
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2 [1 alpE4] 
+ 3 5Jl Z p a2 + ~-r 

M 

+ Q}z)[ (t p a2 
_ i31p'E1) 

+z(.!.p{3 -
131 E4)]} ~'r 2 2 -:;P 

M M 
J odd 

= 0 J even • (III.27h) 

where 

(III.28a) 

2E [1 ,2 

J al,2 E1 + M ± * (E3 + M)(E4 + M) 
(III.28b) 

!31,2 2p' [± 1 
(E

1 
+ M)~ (E

4 
+ M*) J = E + M + 

3 (III.28c) 

and an i spin factor of - 2/3 ;-? has been included*) in a. 

We have chosen the phases so that our inelastic· amplitudes 

are real (which will make our Born input real and symmetric) and as 

we shall see later, the results of our dynamical calculation are inde-

pendent of the sign of the inelastic amplitudes. The · partial wave 

amplitudes listed above are valid for all J and we note that off-shell 

pieces only appear for J = 0 and 1, and thus are not present in J = 2+, 

* - -* The i spin amplitude is (N Tk N) (Nj 5jk N). 
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the state for which we make dynamical calculations*). 

,'c * 
There is another NN -7NN OPE diagram which we have omitted 

from our discussion 
iri<) 

N 

,'c * 
An N + N -7 N + N OPE Diagram which · has been Neglected 

Fig. 6 

The reasons for choosing to calculate the amplitude for the diagram 

of Fig. 4 but not that of Fig. 6 are principally practical ones with 

only limited theoretical justification. Probably most important is the 

,'( ,'c 
fact that we have almost no experimental knowledge of the ~N N vertex 

* ,'( 
though we could estimate an effective ~N N coupling constant using su

6
• 

* Our difficulty with off-shell pieces may be related to . the pheno­
menon discussed by S. Mandelstam, Nuovo Cimento 30, 1113 (1963), of 
extra terms which are present in perturbation amplitudes but which 
will not be present if sufficient Reggeization, including that of 
the external particles, is performed. 

Both Fig. 6 and Fig. 4 represent pieces, perhaps partially over­
lapping, of the complete NN~ -7 NN~ interaction. 
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On the theoretical side, since Fig. 6 contains no unstable 

vertices, there will be no force cut which runs into the physical . 

region*) as there was for Fig. 4, and thus, no opportunity for a Peierls 

type enhancement (see the Introduction). In any case, in our actual 

dynamical calculation all elastic forces are omitted so naturally 

Fig. 6 will also not be included. 

Properties of the OPE Amplitudes 

Now, let us go back to the OPE partial wave helicity ampli-

tudes we have calculated and briefly discuss their threshold and high-

energy behavior. After a great deal of tedious algebra and using the 

relation 

l tn 2 
2 x - 1 

* we find for the large W behavior of the NN 

t 

-I 
n=l 

~'( 

~NN 

1 
n 

partial 

amplitudes the results summarized in the following table, 

the energy dependence of the leading term for W ~ 00 (S = 

* The cut stops at S = (M* + M)
2 

- µ
2 

/2. 

(III.29) 

wave 

which gives 

w2). 
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Table II 

* The Energy Dependence of the Elastic NN OPE Amplitudes in the Limit 

W ~ oo (8 = if) 

I 

! J 0 J = 1 J = 2 J>2 = J = 0 J = 1 J = 2 J > 2 

T J 
1 Const Const Const 

J 
Tll s Const 

T J .f8 .fs l/.f8 
2 

J s Const Tl2 

T J 8 8 ,enS/8 
3 

J sis sf8 l/.f8 Tl3 

T J ..f8 l/..f8 
4 

J s2 s2 s2 .en8/8 Tl4 

T J ..fs .f8 
5 

J 82 82 Const Tl5 

T J s s Const 6· 
J sl'8 ..f8 Tl6 

T J 9fs &f8 11.fs 
7 

J J's l/.f8 Tl7 

T J s 8 .enS/S 
8 

J s 8 £n8/S Tl8 

T J s Const 8 ,en8/8 
9 

J 
Tl9 s 8 

J 
TlO sfs 9fs lNs J 

T20 Const ,tnS/S 

In this Table the J = O, 1, 2 columns correspond to the 

amplitudes with off-mass-shell terms included. For J > 2 there are no 

off-shell pieces. (Some of the amplitudes in the J > 2 colunm may be 

missing a factor of .en S.) 

As mentioned earlier we note that the low J off-shell ampli-
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tudes tend to violate the unitarity limit (TJ .....,. const) very badly 

while most of the on-shell (J > 2) amplitudes are reasonably behaved 

,.,) 
for large W. Before these badly divergent amplitudes could be used 

in any dynamical calculation one would have to damp them in some 

way; e.g., by use of a form factor modification at the vertices 

(although the expressions usually pr oposed do not seem theoretically 

justified since they imply the existence of low mass intermediate 

s tates which do not exist) or by some Regge-type cutoff. 

Now, let us e x amine the threshold behavior of the elastic 

* * NN ~NN amplitudes and from this make some crude estimate of the 

sign and strength of the forces in different JP states. 

Using the limit 

P,+l 

x ~ 0 
--=£..;......! - { _xl). 
(2.P, + 1) ! ! \ (III.30) 

We evaluated the amplitudes of the matrices representing elastic 

* p 2 NN scattering for definite J states in the limit q ~ O, keeping 

the l owest order term in q
2 , and then diagonalized these real 

symmetric matrice s (which are 4 x 4 for J ~ 2). Since we do not 

usually find high J resonances appear i n g i n elementary particle 

It is int eresting to n o t e that t h e J > 2 h e licity amplitudes 
t he h e u r istic rule TJ ,..._, (1/S) (.Tf0 'A + µ for large S (modulo 
possible factor of P,nS. The behavi or o f the low J off-shell 
tudes may also be predicted by determining the u de p endence 
(u = cross ed momentum transfer = (p3 - p1 )2) of the helicity 
tudes before a partial wa v e e x pansion is made. 

ob e y 
a 
ampli-

ampli-
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interactions we only examined the OPE forces in lower J states (J :S_ 4). 

The results are listed below in Table III, where the momentum 

1 JP . P 
dependence of - T is given in parentheses following the J (in this 

q 

calculation the value G
2 = 43 corresponding to rN* = 100 MeV was used). 

Table III 

"/~ 
Eigenvalue s of the Elastic NN OPE Born Amplitudes Evaluated at 

Threshold for States of Definite J, Parity, and I-Spin 

JP 
Eigenvalues 

JP 
Eigenvalues 

I = 2 I = 1 I = 2 I = 1 

+ 4 0off(q ) 1080 - 359 - 2 0off(q ) - 170 56.4 

+ 2 
64.7 - 21.6 - 2 152 - 50. 7 

1off(q ) .00612 -.00204 1off(q ) 20.7 - 6,90 
- 105 34.9 - 2.86 . 954 

145 - 48.2 .00474 -.00158 
+ 2 .00300 -.00100 - 2 .000628 -.000209 2off(q ) -.0125 .00417 2off(q ) l .osx10-7 -3.49x10-8 

- 24.8 8.27 - 79.0 26.3 

8.43. - 2 . 81 .841 -.280 
2'. ( 0) .0659 -.0220 - 2 - .0354 .0119 

on q -.00354 .00118 2on (q ) -.342 .114 
-.0380 .0127 - 79.3 · 26.4 

213 - 70.9 79.7 - 26.6 

3+ (q 4) -.866 .288 3- (q2) .56 7 -.189 
- 2. 85 .951 -.00452 .00150 
- 659 · 220 -.433 .144 

905 - 302 3750 - 1250 
4+ (q 4) 6.14 - 2 .05 4- (q6) 325 - 108 

-.0291 .00969 - 106 35.2 
- 5.24 1. 75 - 7600 2540 

The subscripts "on" and "off" refer to on- and off-shell amplitudes. · 

+ + It is interesting to note that for J = 1 and 2 the off-shell ampli-
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2 
tudes have no L = 0 terms for q = O. 

These diagonalized threshold values can b e used as a crude 

qualitative guide to the attraction and repulsion produced by the OPE 

potential in a way similar to that in which for a single channel case the 

Born approximation scattering length tells us the sign and approximate 

magnitude of the phase shift and hence the sign and strength of the 

potentia1
34

), (For this connection to be valid, the potential must 

be relatively weak, at least too weak to produce a bound state,) 

In our case where we have more than one elastic channel and 

thus can have both attractive and repulsive "scattering lengths" 

p 
for the same J , the interpretation becomes much more ambiguous and 

because of the difficulties associated with off-shell amplitµdes the 

results for low J states are somewhat in doubt, . (But note that 2 
on 

and 2:ff values are quite similar.) With all of these qualifications 

we may still try to . draw some qualitative conclusions from Table III. 

~·( 

For the coupled NN, NN problem we consider only the I = 1 colunm and 

look for states with strong attractive forces (with our definitions 

this corresponds to positive entries in the table) , For I = 1 

we find possible attraction in the states 0-, l+, 2-, 3+, 4 (note 

the alternating parities) and repulsion in o+, 1±, 2+, 3±, 4+. 

(Attraction in I = 1 corresponds to repulsion in I = 2 and vice versa 

since the signs are opposite*)) . . In those states with sizable 

* Very crudely, if all attractions indicated a bound state or resonance 
we might speculate that we have two series of rotational levels; 
I= 2: o+, 2+, 4+; I= 1: o-, 2-, 4- . 
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~~ 
attraction, the NN OPE elastic force should probably be included in 

any multichannel calculation. But in states with (mild) repulsion or 

only weak attraction we might be justified in ignoring this elastic 

force. This seems to be the case for the JP = 2+ state in which we 

are especially interested. Also, some further investigation of the 

J = 2+, I= 1 amplitudes showed that they remained rather small (i.e., 

much below their unitarity limit) and repulsive in a region above 

threshold. As discussed in the introduction we tend to concentrate our 

attention on values of JP which allow the NN* to be in an orbital 

L = 0 state .since that is when threshold and cusp effects are most 

prominent. And we look for states in which either or both the elastic 

* * . * NN -7NN force seems very attractive or the NN -7NN amplitudes rise 

quickly from threshold to a value close to their unitarity limit. 

Hence, we next examined the threshold behavior of the inelastic 

amplitude(s). We first verified that our amplitudes (including off-

shell pieces) satisfied the usu~l threshold momentum dependence 

1 JP . (L ___ ) . (LNN*) . 
t .w ( )~ min( ') min ::r;pv- p p (III.3la) 

which for J > 2 becomes 

1 

~ 
JP {(pp')J -

1 
for P = +(-l)J -

1 

t ~ • 

• p J (p I) J - 2 for p = - ( -1) J - l 
(III.3lb) 

1he only states for which the rise of the amplitudes from the 

inelastic threshold was investigated were J 

As is evident from Fig. 7 the four J 

2+andJ=2-. 

+ = 2 amplitudes rise very 

quickly to values exceeding the unitarity limit (which is .5 for 
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Figure 7 

The J = z+ N + N . ~N + N* inelastic OPE amplitudes 
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inelastic amplitudes ) while the J = 2 amplitudes (not shown on 

Figure) rise much more slowly and peak (when they do so) at much 

higher values of W. 

The steep growth of the OPE J = 2+ inelastic amplitudes suggests 

that since we seem to have all the prerequisites for a Ball-Frazer 

or cusp type enhancement, we study in detail their effect on the elastic 

* NN -7NN amplitude near the NN threshold. And many reasons including 

* the fact that the elastic NN OPE potential seems to provide very little 

attraction in this JP state plus our desire for a coupled channel 

problem of not unreasonable complexity, and finally, an interest in 

studying the mechanism of inelastic coupling in its purest form, all 

caused us to decide to ignore the elastic forces and use as our sole 

dynamical input the J = 2+ inelastic amplitudes. With this input and 

the requirements of analyticity and unitarity ( expressed via the 

multi-channel ND-l dispersion equations) we shall study the coupled NN, 

* + NN J = 2 channels. 

Now that we have decided on the dynamical problem to be 

investigated let us redefine and list the four inelastic Born ampli-

tudes. 

2+ + ~ Q(z) 1 [ (- 1 !31p'E1 ) Al3 tS,8- = 
pp' 2 p 0:2 + * $2 M 

z 
(0:1p'E1 + 131 p E4) + 

2 ( 1 
0:2 + '"1M:E4)] (III. 32a) + 

* z 2 p 
M 

Al4 
2+ a 13 

G3 (z) - Ql (z~ 1 
(131 + o:l z) (III.32b) = + tl' 4- = p' 10 
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t2+ a .J:,. [ ( a 2p 'E1 + l\P) 
Al5 = = - - (Q (z) - Q (z)) 9,12- 5 3 1 pp * 2 M 

+ 
( o;l p o;2 pE 4 ) J 

z 2 + * 
. M 

(III.32c) 

Al6 
2+ a .{3 o;2 (- Q4 ( z) 

+ 
2Q2 (z) Qo(z) ) = t13,16- = - p' . 35 21 15 (III-. 32d) 

While we have the amplitudes in front of us let us discuss some of their 

properties which we shall need later in writing dispersion relations 

-1 . 
and setting up the ND equations. 

For W -) oo we find the asymptotic behavior 

Al3 
1 tn W 
w2 

A14 
1 
w 

(III.33) 

A15 
1 
w 

. A16 const. 

In the limitW-70, all theA1/s (J= 3, 4, 5, 6) - (W)-
3/ 2 • This 

kinematical singularity will be removed by a proper choice of phase 

space factors. 

* The behavior of the NN -7NN amplitudes under W -7 - Wis rather 

interesting. We find 

(III.34a) 

A14(W) 
=+---
~ 
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Al5 (W) 
=+ 

[;;' (III.34a) . 

Al6(W) 
= -

)pp' . 

i.e., in all cases we have 

(III.34b) 

* * We also examined some of our NN -)NN OPE amplitudes and the NN -)NN 

amplitudes of Ref. 28 under the transformation W--) - W. And, for all 

of these examples of fermion-fermion scattering, we find 

= (III. 35) 

Thus, in contrast to the case of boson-fermion (e.g., ~N) scattering 

where we have the MacDowell synnnetry 

= ' ' 

for 2-fermion scattering)amplitudes of the ~ parity are related. 

. 35) *) 
This relation has been noted by Hara who gives a partial proof 

* Perhaps one may argue for a general rule by the following heuristic 
reasoning: Consider what intermediate states are allowed in the 
direct (S) channel for the different combinations of two-pa rticle 
boson (B) and fermion (F) states. For BF -)BF scattering only F 
intermediate states are allowed. Since the parity of F = - parity 
of F (anti-particle) r eversing the sense of W corresponds to changing 
the parity. But for BB-?BB, FF-)FF, BB-)FF, andFF-)FF the 
intermediate state must be a boson which has the ~ parity as the 
corresponding antiboson . Thus, the same parity amplitudes are 
related by W --)- W. Hence, our general rule would be that if the 
intermediate state can b e a fermion then opposite-parity amplitudes 
are related by changing the sign of W. 
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Analytic Structure of the Production Amplitudes 

Next, we must investigate the analytic structure of the 

* NN ---1NN partial wave amplitudes. A more general discussion of the 

singularities of production amplitudes has been given by Cook and 

1) . 2) 
Lee , and Ball, Frazer, and Nauenberg and will not be repeated here. 

As is well-known, because of the presence of an unstable vertex 

* (N N~) our amplitudes will have complex singularities which are 

d b 1 . . . . 1. 36 ) ( h f h treate . y an. ana ytic contin.uation in an externa mass t at o t e 

~" N is most convenient). Let a be the square of the variable external 

i< 
(N) mass. The branch points of our production amplitudes are found 

by setting the argument of the Q functions, z, equal to ± 1. 

(The Q.t 
I s contain .tn ( z + 1 

z - 1 ) which has these branch points.) We 

find that the branch point lying farthest to the right is given by 

1 .. 2 2 
S+(cr) = 2 (3~ + a - µ ) (III.36) 

As we increase a the point S+ moves to the right and reaches the 

elastic threshold S = (2M)
2 

at a = o1" + 2µ
2
). 

This is the value for which an anomalous threshold develops, 

since if we give a a small imaginary part and increase cr further 

2 
the branch point circles around the point (2M) and S+ moves to the 

left having gone from the second sheet through the physical cut and 

onto the physical sheet. When a = (M + µ)
2 

the branch point is at 

S+ = M(2M + µ) = S , and as a is increased further (the vertex is 

unstable for a > (M + µ)
2

) the branch point moves into the complex 
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plane. With a * 2 . 
= (M ) , the complex branch points are given by 

+ i 

With our choice for the Q functions the branch cut lies on the locus t . 

of W (or S) corresponding to a cut. in the z plane on the real axis 

between -1 and +l. We have numerically traced the cut in the W plane 

* and find for our NN ~NN amplitudes the singularity structure shown in 

Fig. 8. Because the complex cut crosses (at W = 2.033) the physical 

region for elastic NN scattering and thus intersects the elastic 

unitarity c~t, certain difficulties appear which will be discussed later. 
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Figure 8 

Singularities of the OPE production amplitudes in 

the complex W plane 
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IV. UNITARITY OF HELICITY AMPLITUDES IN THE ISOBAR MODEL 

- 1 
The unitarity relations and multi-channel ND method with 

appropriate extensions for three particle states in the isobar 

approximation have been discussed at length by many authors. Although 

the details in these treatments do not always agree and some problems 

remain, we shall not try to give a thorough presentation of the subject 

here but simply select the pertinent results we shall need from the 

work of References 1 and 2, who seem to have considered the problem most 

carefully. Based on Reference 1, Eqs. (19), (26), and (34), 

and Reference 2, Eqs. (3.8) and (3.9), we may write down the 

discontinuity equations for partial wave helicity amplitudes (of 

definite parity). As is usual when fermions are involved, to avoid 

certain kinematical branch points we choose to work in the W plane. 

Then, in terms of ,amplitudes Fij from which the kinematical singu­

larities have been removed (see the next section) the unitarity 

relations (in the isobar approximation) may be expressed for W 2: 2M by 

FJP(W )] 
22 -

FJP(W ) + FJP(W I 
22 - 33 +'a,a 

JP ( I F32 w_,a 
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1 r JP( .,) JP(W ')] . 
2i I F33 w+,cr,cr - F33 _,cr,a 

L 

where w± ::: w ± i €, e is the usual step function 

FJP (W J CJ J CJ I 
33 -

(equal to one 

(IV.l) 

where 

the argument is positive and zero otherwise) and a (CJ I) is the energy 

square of the 1tN system * (the N ) in its center-of-mass. The subscripts 

2 and 3 refer to the two- and three-particle channels, NN and NNn 

respectively, and thus for our case where each "channel" may actually 

consist of several channels (since for J fixed several L,S states 

are possible) a summation is implied. + (We recall for J == 2 there is 

* one NN state coupled to four possible NN states). These equations 

are identical in form to the partial wave unitarity relations for 

* . stable two-particle channels. The properties of the unstable N are 

entirely contained in p
3

(W) which is a generalized phase space 

integral (the integration being over er, the mass of the unstable 

particle). Explicit expressions for p
2

(W) and p3 (W) are given in the 

next section. Since in our approximation we have (pseudo) two-

particle channels)the solution to the discontinuity equations may be 

expressed in terms of the usual multi-channel ND-l method
37

) without 

the full generality to multiparticle reactions as derived by 
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38) 
Blankenbecler . Thus writing 

F .. 
l.J 

the constraint imposed by the unitarity conditions becomes 

where W. is the threshold energy for channel i. 
l. 

(IV.2) 

(IV .3) 

If F has force cuts with discontinuities disc F, then (in terms 

· of matrices) 

disc N = (disc F) D (IV.4) 

in the region of these cuts. With the matrix B(W) defined as the 

dispersion integral over the force cuts of the true F 

B(W) = _l_ J disc F(W')dW' 
2ni W' - W 

force cuts 

-1 
The basic ND equations are 

N(W} c B(W) + ~ JdW' [B(W') 

u 

D(W) = I -
w - w ofp CW') N cw') dW' 

n (W 1 
- W)(W' - W0) 

u 

p(W')N(W'.l 
W' - W 

(IV.5) 

(IV.6) 

(IV. 7) 

where the contour U is the entire real axis except for \Wj < Wi (where 

the integration for D . . begins depends on the subscript i) and I 
l. J 

is the unit matrix. We have assumed that N satisfies an unsubtracted 

dispersion relation while D requires one subtraction . (We have put 

the subtraction point at the same place for all channels although this 
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is not necessary.) 

Because the force cut (in the OPE amplitudes) intersects 

the unitarity cut (see Fig. 21) the integration contour U must be 

deformed to avoid the protruding singularities. As a result of the 

anomalous threshold and complex singularities additional integral~ 

. will appear in the N and D equations. This problem is discussed quite 

thoroughly in Referertces 1 and 2 (by performing an analytic continua­

* tion in the N mass). Although, (for reasons to be given in Section 

VI) we ignore the presence of the anomalous singularity in our 

determinental calculations, we shall make some further remarks on the 

subject in Appendix C. 

-1 
For a more complete discussion of the ND method, including 

its properties and some examples of how the calculations are performed, 

the r eader is referred to references 37 and 34, and other references 

which are given there. 
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V. REMOVAL OF KINEMATICAL SINGULARITIES AND CONTINUATION BELOW THE 

INELASTIC THRESHOLD 

We must now specify in detail the phase space factors p
2

(W) 

and p
3

(W). These factors serve several purposes and must meet certain 

h 
. 39) 

ot er requirements • Principally they are chosen to eliminate · 

"kinematical" singularities (which we have assumed are not contained 

I II **) in F) and to guarantee the 'correct threshold behavior • The 

2,t+l . 
partial wave threshold behavior (5t ~ q for spinless elastic 

scattering) will not result from unitarity and analyticity requirements, 

but does follow from the Mandelstam representation. (In non-

relativistic scattering the ordinary threshold behavior can be derived 

40) 
if the potential is suitably restricted. With our approximation for the 

left hand cut (the "potential") it would be purely accidental if the 

correct threshold behavior resulted and the amplitude vanished at 

threshold with the proper momentum dependence. Hence, we divide out 

the factors of momentum so our new amplitude will just approach a 

constant at threshold. 

We have seen that the inelastic amplitudes A
13

(W) (J = 3,4,5,6) 

behave like ...,_ J;;i p
2 

at the thresholds (p ~ O, p' ~ 0). And because 

of their W ~ - W behavior they have the same momentum dependence at 

the negative W thresholds. Using this and recalling the behavior at 

W = 0 we choose phase space factors 

** There is no a priori guarantee that a suitable phase space factor 
exists. 



- 63 -

. 5 . 

W(W + 2M) 
4 

= (W - 2M)5/2 

32W(W + 2M) 312 (V .1) 

I [w2 ,'( 
M}2]1/2[if * M/l 1/2 

P3 (W) £_ = - (M + - {M 
w 

2W
2 

(V.2) 

* where we have so far assumed the N is stable. We now define 

(V,3) 

(where t.. (S .. - o .. )/2i). 
l.J l.J l.J 

Because of a desire to have Pz (W) const and p 3 (W) ----+const so 
w ~ 00 w 

that our dispersion integrals will be convergent , we were forced to 

-2 
include a factor (W + 2M) in Pz which introduces a kinematical zero 

at the beginning of the left hand unitarity cut. The placement of 

this zero is rather arbitrary except for the feeling that it should 

be reasonably distant from the region of physical .interest 

"le 
(W ....... M+M). Since we decided to ignore the integrations over the 

negative W unitarity cut (see below) it does not matter that we have 

disturbed the threshold behavior at the W = - 2M threshold. Aside 

from this, F . . is expected to have no kinematical zeros and only 
l.J 

dynamical singularities throughout the W plane and thus satisfies the 

dispersion relations given in the previous section, 

The Born amplitudes which constitute the dynamical input to 

our coupled channel problem are thus given by 

.B (W) J = 3 4 5 6 
Jl ' ' ) . (V .4) 

Although we shall shortly discuss the appropriate modification of p
3 
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* to include the width of the N , we note that it is correct when 

* forming the BlJ to use the p3 given above, assuming a stable N , 

since the A
1

J were calculated with this assumption. 

I h d . 1 . . 41> h 1 n t e eterminenta approximation w ere we rep ace 

N . . by the corresponding Born amplitude, those D integrals beginni~g 
ij 

at the NN threshold (W ; 2M) require the evaluation of BlJ in the 

* region below the inelastic threshold (W = M + M ). The BlJ we have 

formed are . . * smooth functions at the NN threshold but they must be 

. * rewritten before one can calculate their values for W < M + M . 

Using the relations 

p'~ + i Ip' I for p •2 < 0 

2~ 2 
- 2E1E3 z' - µ 

z~ -= 
i 2pl p' I i 

and thus, 

1 
2 tn (

z + 1) -7 i t:an-1 ( 2z' ) 
z - 1 2 

2
r2 _ 

1 

[
I 

Q2 ~ i 2 ( - 3 z '2 

* we have, for W < M + M 

(V.5) 

(V.6) 
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• 

- z'2 (V~ 7a) 

= - a' fl 
(V. 7b) 

= -

(V. 7c) 

= - , (V. 7d) 

where a prime on any quantity refers to the unprimed quantity evaluated 

with p' replaced by I~' I. (a, a,~ are defined in Eq. (III . 28)). 

In Fig. 9 we have graphed the amplitudes B1J in the region 

* near the NN threshold. 

In Figs. lO(a) and lO(b) we display the continued amplitudes 

BlJ over the whole region between the elastic and inelastic thresholds 

* (2M ".S, W ".S, M + M ). The rather troubling behavior near W = 2.033 is 

a result of the fact that the branch cut joining the complex 
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Figure 9 

* The NN ~NN input Born amplitudes 
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Figure 10 

* The NN ~NN input Born amplitudes in the region 

between the elastic and inelastic thresholds 

(a) B14 (W) and B15 (W) (b) B13 (W) and B
16 

(W) 
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singularities crosses the real W axis at this point. This strong 

peaking of the Born amplitudes is reflected in a corresponding 

peaking in the elastic NN amplitudes which we calculate via the 

determinental approximation. But for several reasons we felt justified 

in ignoring such peaks. W = 2.033 corresponds to Tlab~ 330 MeV and 

thus lies essentially in the purely elastic scattering region. But 

in our calculation we center our attention on the region close to the 

inelastic threshold (Tlab~ 646 MeV) and in fact believe the results 

are only valid for ene.rgies not too far from W = 2 .176 . (When the 

dynamical calculations were repeated using B
1
J's cut flat for 

W :5_ 2.176; i.e., BlJ (W < 2.176) = B1J (2.176), the results near the 

inelastic threshold changed very little.) We also believe that a more 

exact treatment of the NN~ state and a proper continuation of the 

dynamical equations past the anomalous singularities would tend to 

eliminate any spurious behavior. 

* Now, let us include the instability of the N by modifying 

. 42) 
p

3
(W) to take into account the width of the resonant N~ state • 

To do this 

where 

we replace p' in p
3

(W) by 
(W - M)2 

~ f do c{ ..... [;;....;;cr'----_(._W_+_M..._) 2_;....:;.~-..cr_-_...(w ___ -_M=)._2 ....... ] ) __ 1_1_2 

(M + µ)2 
* 2M (r/2) 

r(cr) = ~~ (~) 
2 

3 
q (EN+ M) 

F 
* = the width of the N 

(V .8) 
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2 = [ a - (M + µ) 
2 Ha - (M - µ) 

2
] 

q 4a 

and a is again the energy square of the Nn state in the Nrc center of mass. 

To verify this replacement and understand how it is derived note that 

in the limit r ~o 

. ~ *2 r ~ O j p' (s,a)o(a - M )da (V. 9) 

* = p' (for stable N ). 

Thus, we have just a two-particle momentum distribution weighted by a 

"finite ·width delta-function"*). 

The limits on the integral for p~ are the smallest and 

largest "mass" square of an Nrc state which is part of a total NNrc 

state with c.m. energy W. 

Following the method used by Nauenberg and Paisll) and 

Bazll) we can derive an approximate expression for p' the case of 
u 

very small width (width/mass of resonance << 1). 

*) Heuristically, to understand the finite width a-function, one can 
note that since 1/ (ill - illo - i€) = P/ (m - ill

0
) + irco(m - ill

0
) as 

€ ~o, then it is r easonable to say 

Im 1/ (ill - ru
0 

- i y/2) ~re o (ill - ru
0

) or o (ru - ru
0

) ~ (y/2rc) I 

[ (ru - ru~) 2 + y2 /4] for y finite. We also used the relations 

5(a - M 2) = l* (o(Jcr - M*) + o(./Ci'+ M*)] with J(i'+ M* z 2M*. 
2M 
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With a very narrow width nearly all the contribution to the integral 

. *2 
comes from a very small region around cr = M • We thus may extend 

the limits so that the integration runs along the whole Re cr axis and 

then we can perform a contour integral by closing the contour in the 

*2 * lower-half cr plane enclosing the pole at cr = M - i M r, where r is 

*2 the constant obtained by evaluating r (cr) for cr = M . Although the 

integral is formally divergent it is to be interpreted in the sense that 

* only the contribution pf the N peak is to be included. Performing 

the contour integral using Cauchy's Residue Theorem and evaluating for 

* W ~ M + M we find 

ic 1/2 · 
~ " ~ •2 + . M Mr J Pu = p i * . 

M +M 
(V .10) 

The real part of p" gives an approximate description of three-body 
u 

phase space when two of the final three particles form a narrow width 

resonance and we are not too far from the resonance energy. The 

imaginary part . of p" results from that part of the extended integration 
u 

2 
(W - M) < cr < (W + M) 

2 
corresponding to Ja' - M < W < /CT+ M (below 

the inelastic threshold) and is a useful expression when some type of 

effective range (or K matrix) approximation is being made. 

However, for widths much larger than a few MeV graphical 

comparison shows that p 11 i s not a very good representation of the true 
u 

* p' especially if one is interested in the region close to the NN 
u 

threshold. In general, p~ is larger and flatter than p~; while even 

for rather large widths p~ rises steeply upwards i n a short range 

around the inelastic threshold. 
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At larger energies (W 2: 2.5 BeV) all expressions for p', p~, p~ give 

very similar numerical values. For this reason, and because of the 

computing time (and hence expense) of doing an integral for each 

different value of W we used p~ in our expressions for p
3

(w) when 

they occurred in integrals (viz. for Re D .. ), but used p' when no 
1] u 

integrals were involved (e.g., Im D . . ). 
. 1J 

In Fig. 11 we have graphed p
3

(W) 

,'r 

I 

Pu 

w for several different 

values of the N width. This shows clearly that the broader the width 

the slower and flatter the rise of p
3

. As we shall see later this is 

reflected in the shape and height of the peaks produced by the inelastic 

amplitudes. 
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Figure 11 

* * The NN phase space factor p
3

, for different values of the N width 
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VI. DETAILS OF THE CALCULATION AND GENERAL PROPERTIES OF THE SOLUTIONS 

In this section we shall describe the details of our 

approximate calculation. The numerical results and conclusions are 

given in the next section. 

Rather than solve the set of full ND-l equations we decided 

to employ the lowest order determinental method
37

) in which the 

integral ·equation for N, (IV.6), is simply replaced by the approximation 

N(W) = B(W) and then D is calculated from N by the dispersion relation 

Eq. (IV.7). Of course, in our calculation, as in any calculation of 

finite size, B(W) is approximated by including only that part of the 

potential due to the exchange of certain particles, usually the 

lightest mass ones (corresponding to the longest range part of the 

potential) or exchanges which have features such as form or strength 

of coupling, or singularitie s , which are of speci al interest . As 

discussed earlier , we chose to keep only the OPE force. Primarily, we 

used the determinental method because we did not want our calculation 

to become exc essive ly involved and costly(= much computer time). 

But, in fact , considering the other approximations made in the problem 

-1 
(e.g., for B), it is not clear that the full ND calculation would 

nec essarily b e superior or the results more "accurate", or at least b e 

that much better to justify the greatly increased complexity of the 

me thod. - 1 In problems which have been solved both by the ND and 

determinental methods the gen e ral features of the r e sults usua lly are 

. · 1 43) very simi ar • In a sense it is misleading to just call the 

-1 
determinental me thod an approx imation to the ND e quatione . Ra t h er 
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it should be thought of as a different method, with special properties 

of its own, which may or may not be a useful or accurate method for 

any particular problem. Several of its features are undesirable, 

especially the dependence of results on choice of subtraction point and 

the lack of symmetry (F . . # F . . ) of the solutions. The ND-l method 
1J 1J 

does not have these troubles and in that sense is superior. 

We thus have the following set of equations to solve (note 

that we are changing some of our earlier conventions) 

D . . 
.1J 

F . . 
1J 

:re 

00 

p. B . . dW 
1 1] j

~ I 

- 00 

1 1] 
(W - W0) J p. B . . dW' 

:re (W 1 
- W)(W 1 

-w. 
1 

where W. is the threshold energy for channel i. 
1 

- w ) 0 

- w ) 
0 

(VI. l) 

(VI.2) 

With our approximations (neglecting all but the inelastic 

amplitude s) Bij = 0 except for B13 = B31 , B14 = B41 , B15 = B51 and 

B
16 

= B
61

, and these are given by the OPE amplitude s of Section V. 

Writing these as BlJ' with J = 3,4,5,6 only (subscript 1 refers to 

"Ir 
NN state and subscript J = 3,4,5,6 to NN state), we have 

= -

(VI.3) 
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DJl - - (w : WO){ . !"'°+ J-r:C }-----P3 __;;;..;;__BlJ d_w' -
(W' - W - ie) (W' - W ) 

~~ -~\ 0 

(VI.4) 

where p2 and p3 are the phase space factors for the (two-particle)· NN 
"I< 

and (three-particle) NN channels, respectively, discussed in 

Section IV. 

* Allowing for the instability of the N , WNN"'~ = 2M + µ . 

The only other non-zero D .. are those for which i = j and 
l.J 

then D .. = D .. 
l.J l.l. 

the form 

D 

5 .. = 1. Thus, our matrix D may be represented in 
l. l. 

1 D13 Dl4 DlS Dl6 

D31 1 0 0 0 

D41 0 1 0 0 
(VI.5) = 

DSl 0 0 1 0 

D61 0 0 0 1 

In writing the equations for DlJ and DJl we have ignored any possible 

def ormations of the contour of integration along the unitarity cut to 

avoid intersecting the force cut crossing the physical region . (The 

intersection occurs between WNN and WNN* and thus only D1J (and D
11

) 

need be modified.) We shall try to discuss this further in 

Appendix C but we can remark here that because we are using the 

determinental method our integrands contain BlJ and thus we are 
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including some of the effects of the complex singularities. And, 

of course, with a proper treatment of the three-particle NNn state 

44) 
such anomalous cuts may not even be present • 

Before we further discuss the calculation of DlJ and DJl let 

us look at the form of the solutions for F ..• 
1.J 

The elastic NN sea ttering amplitude 

sum over J = 3,4,5,6. Using the relation 

-1 
(D ) Jl 

cof DlJ 

det D 

and the matrix for D, Eq. (VI.5), given above, we find 

(VI.6) 

(VI. 7) 

(VI.8) 

with a sum over J implied, The off-diagonal inelastic amplitudes 

turn out to be 

and 

BlJ 
det D 

= (VI. 9) 

(VI.10) 

In general, F1J ~ FJl' but it is interesting to note that if we had 

only one ine lastic channel we would have the symmetric solutions 
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As will be mentioned in the next section, our numerical results 

were not very symmetric. Of course, this could have been avoided if 

-1 
we had used the full ND. equations .. 

Several further approximations were made in calculating 
. - oo . 

DlJ and DJ
1

• The integral over the left-hand unitarity cut, j ' > 
-W. 

was neglected because for Win the region of physical interest,i 

the denominator (W' - W) remains almost constant and is never near zero 
-oo 

(as it can be for the integral on the right cut); thus the integral~ 
will show little variation with W and is considerably smaller than 

-W 
i 

the similar integral over the right-hand cut. So we are essentially 

neglecting a probably small constant piece in the integrals for DlJ 

and DJl' And of course we are neglecting much other singularity 

structure (e.g., due to other particle exchanges) so the neglect of 

this cut which is rather distant from the physical region is riot 

a further drastic approximation. 

The choice of subtraction point, w
0

, is a difficult matter. 

Usually in the determinental method (recall with the full ND-l that 

the results are independent of w
0

) the subtraction point is chosen to 

. . d f . 41) d h w . insure some approximate egree o crossing symmetry an t us 
0 

is 

placed near or at the right-hand edge of the force cut (near the place 

of maximum discontinuity) due to the exchanged particle. At the 

subtraction point, W = w
0

, we have D .. = 5 .. and hence F .. = B ..• We 
iJ iJ iJ iJ 

expect the Born approximation to be a fair representation of the true 

amplitude over that part of the force cut where the diagram being 

considered provides the only or major discontinuity. In our · case, 
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· where the right-most part of the OPE cut lies in the complex plane 

and intersects the physical region the selection of w0 is not so easy. 

The decision was largely made by considering the singularity structure 

of perhaps the next most important part of the pot·ential which we have 

omitted, that due to p~exchange (Fig. 12), 

N 

N N 

* Rho Meson Exchange Interaction in N + N ~N + N 

Fig. 12 

where we assume the p is a stable particle with 

* thus, no vertice.s a re unstable (M<M+m) and 
p 

are present. The partial wave amplitudes have 

right half plane which runs from s_ to s+ where 

4~ J 1/2 

m 
p 

mass = 763 

no complex 

a force cut 

MeV. Now 

singularities 

on the 

(VI.11) 

In the W plane the right edge of this cut lies at W ':: 1.84 BeV. 
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Since we are omitting this part of the potential, we decided 

to place our subtraction point between W = 1.84 and W = 1.88, the 

beginning of the physical region for elastic NN scattering. So we 

chose w
0 

= 1.86 as a reasonable location. In our numerical work w
0 

was varied between w
0 

= 1.60 and w
0 

= 1.86 and we found that the results 

(viz., location and height of peaks) were rather sensitive to the 

value of w
0

. This seems to be one of the most undesirable features of 

the determinental method. 

By making one subtraction in our dispersion relations for D 

all integrals are convergent since in the worst case pB
16 

,.._, const. 

as W ~ oo. Nevertheless, the calculation was made with a (variable) 

cutoff on all integrals. One may ask why use a cutoff .or make 

subtractions when they are not needed? Because we 'know that we have 

omitted much physics from our problem - e.g., other particle exchanges, 

other channels, possible Reggeistic damping of amplitudes - and by 

having some parameters which can be varied we can get some feeling 

for how our solutions depend on the physics we have left out. Using 

a cutoff, for example, gives us a way to study the possible effect 

higher energy channels and modified high energy behavior of amplitudes 

would have on our results. 

Let us now rewrite the expressions for n
13 

and n
31 

separating 

out the real and imaginary parts. 

= - Jwc P2 BlJ dW' 
~ _----=.;;___ 

(W' - W) (W' - W ) 
0 

- i 

w 
R I NN 

_ DlJ + i DlJ (VI.12) 
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(W - w0) j' p3 BlJ dW' 
= - :rr P _(_w_' - __ w_) __ ( __ w_• ___ w_

0

_) - i 

WNN:n: 

= D~l + i D~l , (VI.13) 

where P signifies that the principal value is taken when W lies in 

the range of integration and W is the cutoff energy. c I 

In the integrals for 
R p u 

approximated by DJl~P3 Wwas 
II 

Re 
Pu 

since the time for numerical integration w:> uld have been, greatly w 
increased if we had to calculate p' (which involves an integration) 

u 

for each mesh point in the Simpson sum. The value of r used in p" was 
u 

chosen in each case so that Re p" resembled as closely as possible the 
u 

actual p'. The e~ror made by this approximation is negligible since 
u 

the shape of the (cusp) peak
1
is determined primarily by the p3 in 

I ~ 
DJl and here the true p3 = -W was used. 

Numerically, the principal value integrals were performed by 

subtracting out the singular point 

pfp(W') B(W') 
(W' - W) (W' 

dW' = p J [ p (W I ) B (W I ) - p (W) B (W) ] dW I 

- w
0

) , . (W' - W)(W' - w
0

) 

+ p(W)B(W) pf dW' 
(W' - W)(W' - w0) 

+ 

' (VI.14) 

where the second integral on the RHS can be done analytically. To do 

the numerical integration, Simpson's rule was used, after a change of 

wthresh 
variable was made, W' = y 

Increased accuracy was achieved by using the Aitken convergence 

procedure
45

) in which Simpson sums for 4n, 2n, and n intervals are 
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combined according to tne formula 

SUM(4n) - j [ SUM(4n) - SUM(2n)] 
2 

} = SUM 
l ( SUM(4n) + SUM(n) - 2 SUM(2n)J . 

General Properties of the Solutions 

Let us rewrite our solution for the elastic NN J = 2+ 

amplitude and note some of its properties. We have 

ioNN 
= "e sin 5 11 = NN 

- i 

(a sum over J is always implied). 

- p2 BlJ DJl 

1 - DlJ DJl 

If we are above the threshold for inelastic scattering we must 

(VI.15a) 

(VI.15b) 

remember that 5NN' in general, will be complex and then we have 

( e2i:i- 1) 
2i5R -1) P2 Fll = = ( n e (VI.16) 
2i 

-25 
where 11 

I 
and 5 oR + i o1 . = e = 

One of the first things to note is that our result for F11 is 

independent of the sign of the inelastic amplitudes. Whether positive 

or negative the effect of the inelastic amplitudes is attractive in the 

elastic channel. Even the relative signs between the different B
1
J's 

are unimportant. 
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If there were a resonance in the elastic scattering amplitude 

we would have near the resonance energy 

(VI.17) 

where r is the total width (at half-maximum) of the supposed resonance 
~'( 

(not to be confused with the width of the N ) and r 1. is the fiartl.al 

width for decay of the resonance into channel 1. 

<r =I 
i 

Defining 

r., where the sum is over all accessible channels). 
1. 

i(D~J D~1) 

- i(D~J D~l }~ 

we can write 

= 

or 

d 2 
R 

+ d 2 
I 

(VI.18) 

(VI.19a) 

(VI.19b) 

Equation (VI.19a) is useful for comparison with the form of Eq. (VI.17) 

·and (VI.19b) is convenient if we wish to examine the real and 

imaginary parts of p2 F11 • 

Compar ing Eqs. (VI.19a) and (VI .17) we see that at resonance 
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or 

and thus using (VI . 20) 

In terms of the elements of D . . 
l.J 

(1 +· n) 
2 

Above the threshold for inelastic scattering ~ < 1 , and so 

1 + n 
2 

(VI.20a) 

(VI.20b) 

(VI.21) 

(VI.22) 

(VI.23) 

inelastic scattering will cause the elastic amplitude to decrease above 

the inelastic threshold. 

For energies below or close to the ine lastic threshold 
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Now, the resonance condition is 

Re det D = d = 0 
R 

R R 
1 - DlJ DJl = det (Re D) 

and ·the unitarity limit is 

Clearly, (VI.22) and (VI.23) reduce to 

1 

as they should for energies below the inelastic threshold. 

* 

(VI.25) 

(VI.26) 

(VI.27) 

(VI.28) 

For reasonably narrow N widths p3 is small for W < WNN* = 

* = M + M (see Fig. 11) and hence any resonances below the inelastic 

threshold are essentially given by Eq. (VI.25). 

R R ~'( 
Since the product DlJ DJl is positive, increasing the N N~ 

coupling constant, G, will bring us closer to satisfying the resonance 

condition and thus increase the height of any peaks (or cusps) present. 

R 
The factor DJl ' defined by the principal valve integral in Eq. (VI.13), 

* has a cusp (at the NN threshold) whose shape is controlled by the 

phase space factor p3 • The cusp is sharpest and most pronounced when 

p
3 

rises most steeply and quickly, and this occurs when the· width is 

* narrowest and the orbital angula r momentum of the NN state is 

lowest. + (In our case, for J = 2 , LNN* = O.) For higher angular 

momenta or broad widths p3 rises more slowly and thus shifts the 
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effects of the integral to higher energies, where its value is reduced. 

From the resonan':e condition, Eq. (VI.25), it is also easy 

to note that the effect of each inelastic channel (J = 3,4,5,6) is 

additive - each one adds to the attraction and increases the likelihood 

of a resonance, 

We can briefly observe a few other general properties of our 

solution. 

From Eq. (VI.15) we s ee that for very large coupling constant 

the 1 in de t D may be neglected and Pz F
11 

becomes independent 

R 
magnitude of G with jp2 F11 j near its unitarity limit if jD

1
Jj 

of the 

for all J. The inelastic amplitude (see Eq. (VI.9)) FJl -70 like 

1 G as G -7 oo • When such strong coupling is present there is a de-

* coupling between the NN and NN channels and the transition between 

the two- and three-particle state s will not be a permanent (asymptotic) 

one. However , we must be a little cautious in drawing simple general 

conclusions about the large G l i mit because it is well-known from 

the study of several soluble models
13

'
12

) that ghost poles will 

appear for G sufficiently large . 

In the weak coupling limit: G -7 0, and both F lJ and F Jl -7 

2 
G and F11 -7 - BlJ DJl oe G -7 0. 



- 89 -

VII. RESULTS AND CONCLUSIONS 

Our numerical results are sununarized in Figures 13 - 20. 

Usually what has been plotted is the square of the elastic NN 

2 
scattering amplitude, \p

2 
F

11
j, versus c.m. energy so that the unitarity 

limit (below the inelastic threshold) for the elastic channel is 1. 

In Figures 13, 14, 15, we show the dependence of \p
2 

F
11

\2 

* * on the N N~ coupling constant for three different values of the N 

width r = 1, 25, and 125 MeV. The quantity A is directly proportional 

to the coupling constant G. For A ~ 1 the curves become rather flat; 

we seem by then to have saturated the elastic amplitude with inelastic 

forces. The peaking seems to move to somewhat lower energies and 

there is a possibility "ghosts" have appeared in our solution (see 

further comments later in this section). From these figures we note 

the general features that increasing the coupling constant causes 

cusps to grow and become more prominent until they become rather flat, 

and near the unitarity limit below the inelastic threshold but fall 

off rather sharply above that point. For small widths the peaks 

display a definite asymmetry as .the lower energy side grows to the 

unitarity limit with increasing coupling constant but the high energy 

* side approximately maintains its shape. As the width of the N becomes 

larger the cusps become less distinct - they are "woolier" (more 

rounded). 

Also now the loss of synunetric shape with increasing coupling 

constant, though still present, is less noticeable. In comparing 

* these figures one should remember that the width of the N and the 
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Figure 13 

* The elastic NN scattering amplitude squared with an N width of 1 MeV 

* for different values of the nNN coupling constant • For these curves 

w
0 

= 1,86 BeV and Wc = 500 BeV 
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Figure 14 

* The elastic NN scattering amplitude squared with an N width of 25 MeV 

* for different values of the ~NN coupling constant. For these curves 

= 1.86 and W 
c 

= 500 

.. 
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Figure 15 

* The elastic NN scattering amplitude squared with an N width of 125 MeV 

* for different values of the ~NN coupling constant. For these curves 

= 1.86 and W = 500 
1 c 
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• 

Figure 16 

The elastic NN scattering amplitude squared with input Born amplitudes 

* assumed constant (equal to their value at the NN 
t 

threshold) for ener-

gies below the inelastic threshold. * For these curves r(N ) = 1 MeV, 

w0 = 1.86 BeV, Wc = 500 BeV. Compare with Figure 13. 
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Figure 17 

* The elastic NN scattering amplitude squared with an N width of 1 Mev 

and coupling constant A = .5 for different values of the subtraction 

point. For these curves W = 500. 
c 
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Figure 18 

* The elastic NN scattering amplitude squared with an N width of 1 MeV 

and coupling constant A= .7 for different values of the subtraction 

point. For these curves W = 500. 
c 
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Figure 19 

* The elastic NN scattering amplitude squared with an N width of 125 MeV 

and coupling constant A 

point. 

.7 for different values of the s ubtraction 

For these curves W = 500. 
c 
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Figure 20 

* The elastic NN scattering amplitude squared with an N width of 1 MeV 

for different values of the cutoff energy. For these curves w0 1.86 

and A= .7. 
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* effective N Nrr coupling are not independent quantities. From 

2 
Eq. (III.15) we see that r oe (G) so that it is not perfectly proper 

to compare curves corresponding to different widths . but the same 

A(G) . Using the experimental width r = 125, the effective G derived 

from (III.15) corresponds to A~ 1.7. For a smaller width A must be 

reduced correspondingly. 

In Section V we discussed the behavior of the Born amplitude 

near W = 2.033 where the anomalous cut crosses the physical region. 

This does produce some erratic points in the elastic scattering 

ampl i tude near this energy which we have ignored for the reasons given 

in Section V. But, in. order to get some quantitative idea of the size 

of the effects, we recalculated the elastic scattering amplitude 

* using as input Born amplitudes which are constant for W < M + M ; 

i.e., the B
13

's are cut ~lat below the inelastic threshold with 

B
13

(W < 2.176) = B1J(W = 2.176). For large widths most of the 

differences are hidden because the peaks are so broad and flat. 

But in Fig. 16 we show the results for the r = 1 MeV case. Comparing 

with Fig. 13 we see that the curves are rather similar in the neighbor­

* hood of the NN threshold for smaller coupling constants,but as A 

increases the corresponding peaks for the flat B1J input are slightly 

higher , more symmetrical,and occur at lower energies. 

For the calculations represented by Figs. 13 - 16, the sub-

traction point is at w0 = 1.86 BeV and the cutoff energy is W = 500 BeV. 
c. 

This value for W gives results essentially identical to those for 
c 

W ~ oo but for numerical reasons we could not, in practice, use 
c 



higher values for W • 
c 
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Figures 17, 18, and 19 show the sensitivity of ' our results 

to the choice of subtraction point. Again for broad widths (Fig. 19) 

* the effect is not so noticeable but for very narrow N widths (r = 1 MeV) 

the elastic scattering amplitude is clearly fairly sensitive to a 

variation in subtra~tion point. In general, the effect of reducing 

w
0 

seems to be roughly equivalent to increasing the magnitude of the 

coupling constant while keeping w
0 

constant; for example, the curves 

for w
0 

= 1.60, A = .7 and w = 
0 

1.86, A= 1.0 are rather similar. 

Reducing WO tends also to move the location of the peaks to slightly 

lower energies (see Fig. 17). As discussed in Section VI we have no 

very convincing argument for the placement of w
0

. Recall that we 

did however decide a priori that 1.84 S w
0 

S 1.88 was perhaps the 

most reasonable region. 

One feature of our results seems also to support that choice; 

* viz., with w
0 

= 1.86 the cusps in Figs. 17 and 18 occur at the NN 

. *) 
threshold and not at lower energies as they do for w

0 
= 1.60 . 

But again we must .admit that the rather strong dependence of the 

solutions on the value of w
0 

is a fairly severe weakness of the 

determinental method. 

In Fig. 20 we illustrate the fact that our results are 

essentially independent of the cutoff, This is no doubt true because 

of the rapid convergence of the integrals for D~J and D~1 • Only for 

quite low cutoffs, e .g., W S 4, do we start to see any change in the c 

* However, since lowering Wo seems to be equivalent to increasing G 
it is not surprising that peaks move to lower energies. 
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solutions and then just a small reduction in the height of the peaks. 

We can probably conclude from this that modifying the high energy 

behavior of the input amplitudes (for example, a la Reggeism) would 

have very little effect on our results. 

The inelastic amplitudes are too numerous to graph, but we 

can make a few general observations (based mainly on the r = 1 MeV 

case). With more than one inelastic amplitude as input)FJl # FlJ' 

i.e., the determinental solution is not synunetric. (It is most 

synunetric for small values of the coupling constant.) What we find 

is that j.J p2p3 F Jl I reach their maximum value ($ .4) for A R:J .5 at 

W ~ 2.20 BeV and decrease for higher energies or larger values of 

"le 
the N Nn coupling constant. They are generally well below the 

r- 'le 
unitarity limit (\~p2p3 FJll < .5) ·and show no peaking at the NN 

threshold. In contrast we find that the j~p2p3 F1J I's seem to 

steadily increase with increasing W (at least up to W = 2.32 BeV) or 

increasing coupling constant, and do eventually violate the unitarity 

limit (for A ;;:; .5) although they also do not display any peaking 

behavior. 

Based on the work of Reference 3 our results for the inelastic 

amplitudes suggest the possible presence of "ghosts" for coupling 

constant corresponding to A~ .5 (at least for very narrow widths). 

The problem of "ghosts", or spurious singularities which develop to 
. -1 

allow the ND equations to satisfy unitarity, cannot be properly 

examined without studying the properties of our solutions in a much 

larger region of the W plane (e.g., for W < w
0

) than was compu­

tationally feasible for the present problem. As a result of their 
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work with some simple models and a similar type calculation, Ball and 

Thurnauer
3

) suggest that any approximation which ignores the existence 

of complex singularities may be haunted by "ghosts". 

Our numerical results also verified the increased effective 

attraction due to there being more than one inelastic channel. 

We now may briefly summarize the conclnsions to be drawn from 

* our calculations. The NN ~NN OPE amplitudes clearly may act to 

* produce a cusp in the elastic NN scattering amplitude near the NN 

threshold. We found that the shape and features of this cusp-type 

* enhancement depend in a reasonable way on the assumed width of the N 

. * and the N Nn effective coupling constant. But for the known experi-

mental value of rN* the curves of Fig. 15 indicate that the cusp is so 

"wooly" that the resulting "peak"· is likely to be too broad and flat 

* to be experimentally prominent. The rather large width of the N 

* means that there is much inelasticity present near the N-stable N 

threshold (W = 2.176 BeV) and this necessarily reduces the height of the 

elastic peak even for resonant-like real phase shifts. Naturally, 

we would be unjustified in drawing quantitative experimental predictions 

from these approximate calculations since we have omitted so much of the 

* true complexity of the problem (including all elastic NN, NN forces, 

other channels, etc.). 

In fact, if present experimental evidence (cited in Section I) 

is confirmed, it is likely that the magnitude of the real part of the 

phase shift in this energy region near the inelastic threshold can be 

adequately explained solely by the elastic NN one-boson-exchange (OBE) 
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. *) 
forces of Scotti and Wong • Our model predicts real phase shifts close 

to 90°**) and therefore, we must conclude that we have omitted 

significant repulsive forces from our calculation, perhaps those due 

* to OPE in the elastic NN channel and forces due to particles besides 

the pion being exchanged. However, when more detailed experimental 

results are available we may find that the detailed shape of the iD
2 

* NN phase shift near the NN threshold is influenced by 

* the NN ~ NN production amplitudes. And certa.inly some inelasticity 

is needed to damp 0 the elastic amplitude at higher energies. 

The total computer time expended for this project excluding that 

wasted in programming errors was about one and a half hours. All 

calculations were done on the CIT IBM 7040-7094 computer system. 

We should briefly mention two other papers which have also 

* considered the influence of the NN channel o.n elastic NN scattering. 

The work of Leung
26

) is rather similar to our own but the following 

* 

** 

This can be seen from the dashed curve in the figures of reference 
27 which show that with the Scotti-Wong elastic NN OBE forces (ref~r­
ence 24) as sole dynamical input, r eal phase shifts on the order of 
13° (at 600 MeV lab . energy) are obtained. The author is indebted to 
Professor Scotti for a discussion of this point . 

Writing (p2 F11)in the form of Eq. (VI.16) one can .show that 
2 . 2] . 2 1 2Im(p2F11)-l 

'I) = 1 - 4[Im(p2 Fll) - IP2 F11 l and sin BR= ¥1 + T\ ] • 

Using our numerical results for Im(p2 F11) and \p2 F11 \2 we 
can thus extract values for T\ and 5R_. When this is done for values 
of A 2:: . 6 we find (even for b;oad widths) that BR exceeds 80° for 
some energies close to the NN threshold. But the present experi­
mental values of oR lie in the range 8° - 15°. 
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differences may be noted: . 

* * 1. He calculates no elastic NN ~NN forces; 

* 2. His inelastic NN ~NN OPE amplitudes do not agree with 

ours; e.g., he has B
16 

= O, and some of his amplitudes 

seem·to have incorrect threshold behavior; 

3. In performing the dynamical calculation he combines all of 

the (four) inelastic amplitudes into one "averaged" 

amplitude; 

4. His calculation consists of a modified pole approximation 

to the ND-l equations; 

* 5. He does not vary the N width; 

6. From his Fig. 6 it seems that the input averaged inelastic 

* amplitude has been cut flat for W < M + M . 

Coulter, Scotti, and Shaw
27

) use the single channel N/D 

equations modified to take into account inelastic processes by means of 
_201 the factor Tl ( = e ) • The elastic NN forces due to multi-meson 

exchanges (calculated by Scotti and Wong
24

)) are included but the 

inelasticity factor T) is taken from experiment for lab energies 

< 800 MeV with several different asymptotic forms assumed for T) at 

high energy. They find that 01D generally peaks at 400 - 500 MeV 
2 

(with 5 ...J 16°) and goes negative for Tlab ~ 1 BeV. However, we note 

that recent work by several authors46 ) indicatesthat one must be 

cautious in using the one channel N/D method with inelastic unitarity 

instead of the more correct multi-channel ND-l equations. 
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There are many obvious ways in which our calculation could be 

improved or extended. We could include elastic NN and NN* forces*) and 

interactions arising from other than pion exchange. Instead of the 

determinental method we could solve the full ND-l equations. 

Other channels (e.g., ~+D) might be added. And of course, there are 

many JP states besides z+ which could be studied
47

) • 

• 

* The model calculations of Frazer and Hendry, Ref. 12 , indicate that 
an attractive elastic NN* -7NN* force has the reasonable effect 
of increasing the strength of attraction in the elastic NN 
channel. 
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VIII. IMPLICATIONS OF su3 SYMMETRY 

The results presented in the last section indicate an 

enhancement in the I 1 * = 1, n2 NN state near the NN threshold 

( ~ 2175 MeV c .m. energy). * Because of the broad width of the N , our 

model predicts any peaking would not tend to be experimentally promi-

nent and this seems to be in agreement with the data. But aside from 

t~e detailed predictions of any particular approximate model it is 

interesting to investigate what the implications of the Eightfold Way . 

syrrunetry scheme
48

'
49

) are,assuming some such NN 
1n

2 
enhancement exists 

and corresponds to a bound or resonant state. 

In su
3 

we have the following decompositions into irreducible 

representations: 

8 x 8 = 1 + 8 + 8 + 10 + 10 + 27 

8 x 10 = 8 + 10 + 2 7 + 35 

10 x 10 = ro + 21 + 28 + 35 

* The nucleon is assumed to belong to an octet (8) and the N isobar to a 

decuplet (10). Only the 27 multiplet has a Y = 2, I 1 piece (which 

could correspond to the NN 
1n2 state) and is contained in 8 x 8, 8 x 10, 

and 10 x 105 0). 

Thus, if su3 were an exact syrrunetry, we would expect all of . the 

other members of the 27 exist in + B = 2 bound to nature as J = 2 ' or 

resonant states of mass ,.., 2J75 MeV. The 27 contains the following 

states 
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y = 2· , I = 1 

y = l; I = 1/2, 3/2 

y = O; I = 0,1,2 

y =-1; I = 1/2' 3/2 

y =-2; I = 1 

However, it is well-known that su3 is not exact and thus the masses 

will not all be equal. *) Assuming octet breaking of su3 , the masses 

will be given by the Gell-Mann - Okubo mass formula 

M =a+ bY + c[I(I + 1) - Y2 /4] 

or, for J 2 states since they are formally bosons 

M
2 =a+ py + y[I(I + 1) - y2/4] . 

In Table IV we have listed the predicted octet splitting 

for each member of the 2 7. 

* We expect octet breaking to be dominant with maybe a small amount of 
27, 64, and other representations present. 



(Y,I) 

( 2, 1) 

( 1, 3/2) 

( 1, 1/2) 

( o, 2) 

( o, 1) 

( 0' 0) 

(-1, 1/2) 

(-1, 3/2) 

(-2' 1) 

M = a + bY + c[ I(I + 1)- - y2 /4] ~ =a+ ~y + y[I(I + 1) - y2;4] 

a + 2b + c a+ 2~ + y 

a+ b + 7/2 c a+ ~ + 7 /2 y 

a + b + 1/2 c a+ ~ + 1/2 y 

a+ 6 c a+ 6 y 

a + 2 c a+2y 

a a 

a - b + 1/2 c a - ~ + 1/2 y 

a - b + 7/2 c a - ~ + 7 /2 y 

a - 2b + c a - 2~ + y 

Table IV 

Octet Breaking of the 27 

!--' 
!--' 
Ul 
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. Sl) h . h . f h 27 Gerstein as given t e expansion o t e in terms of 

baryon-baryon states for each Y, I, I state. 
z 

What is the experimental evidence concerning possible manifes-

tations of the proposed 27? 1 Except for the pp n
2 

cusp-type 

enhancement52) the experimental .data is rather meager. Besides NN 

the only two-baryon states which have been studied to any extent 

are L:N and AN. And here the best evidence seems · to be a possible Ap 

peak at 2360 Mev5
3
). There is also a possible A

0
n peak (Y = 1, I= 1/2) 

at 2098. Mev5
4
). Several other low energy Ap peaks have b een .seen but 

+ these are probably S-wave interactions and thus not J = 2 states. 

1 
On the basis of our dynamical model for NN D

2 
enhancement 

we expect other members of the 27 to also be associated with thresholds 

for the inelastic reaction 8 + 8 ~ 8 + 10. Therefore we make 

the following table: 



(Y, I) 

( 2J1) 

( 1, 3 /2) 

( 1, 1/2) 

( 0,2) 

( 0,1) 

( o, 0) 

(-1, 1/2) 

(-1 , 3/2) 

(-2J1) 

Allowed 8 + 8 states (and c,m, threshold) Coupled 8 + 10 states (c ,m, threshold) 
.. 

NN(l876) * NN (2176) 

I:N (2131) * * * NY
1 

(2323) , AN (2353) , I:N (2431) 

I:N(2131), AN (2053) * * NY
1 

(2323), .EN (2431) 

I:I:(2386) * * .'.:::N (2555), Eyl (2578) -
'.:::N (2255), A1:(2308), I:I:(2386) * * * * N:::: (2468), I:yl (25 78) , AY

1 
(2500), :::: N (2555) 

* * ::::N(2255), M(2230), I:I:(2386) N:::: (2468), I:yl (2578) 

A::: (2432), E:::: (2510) - * * * N n (2613), A::: (2645) , I::=: (2723), ::::Y
1 

(2702) 

* . * I::=: (2510) r::;;, (2723) J ::::_~l (2702) .. , ~ . . 

:=::=: (2634) - * r:n (2868), :::::=: (2847) 

Table V 

Allowed B = 2,8 + 8, 8 + 10 states in the 27 

I-' 
I-' 
-...J 
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If we make the assumption that the masses of the members of the 

27 will lie near one of the thresholds for the coupled 8 + 10 states, then 

·we can use this table to get approximate values for the constants 

(a,b,c or ex,13,y) appearing in the Gell-Mann - Oktibo (GMO) mass formula. 

Let us choose three values and then predict the others. We pick the 

three by looking for (Y,I) states where the allowed 8 + 10 thresholds 

have a narrow energy spread and then use the average of the inelastic 

threshold energies. We decided to use the following three (Y,I) 

states . . 

( 2' 1) : 

( 0,2): 

a+ 2b + c = 2176 or ex+ 213 + y 

a + 6c = 2565 or ex + 6y 

(-2,1): a - 2b + c = 2857 or ex - 213 + y 

= (2176) 2 

= (2565) 
2 

-(2857/ 

Solv.ing, we find a= 2507, b = - 170 , c = 9.7; and ex = 6.42 x 106 , 

6 6 
13 = - .857 x 10 , y = .0261 x 10 With these values the GMO formulae· 

predict the masses given in Table VI. 

(Y, I) 
M(linear GMO M(quadratic Experimental 8 + 10 threshold 

formula) GMO formula energies 

( 1, 3/2) 2372 2378 2323, 2353, 2431 

( 1, 1/2) 2342 2362 2323, 2431 

( o, 1) 2526 2544 2468, 2578, 2500' 2555 

( o, 0) 2507 2534 2468, 2578 

(-1, 1/2) 2682 2700 2613, 2645' 2723 ~ 2 702 

(-1, 3/2) 2712 2714 2723, 2702 

Table VI. 

Predicted octet mass splitting of the 27 assuming three members lie 

near to inelastic 8 + 8 -7 8 + 10 thresholds 
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It is not very surprising that the predicted masses lie close 

to the 8 + 10 inelastic thresholds since the masses M
8 

and M
10 

are 

themselves known to follow the pattern of octet splitting. 

The results of our dynamical calculation suggest that it 

might be worthwhile to do a similar calculation using other membe~s of 

the 8 and 10 multiplets; for example , if the experimental evidence for 

a 2360 Ap peak becomes convincing it would be interesting to look at 

* * the AN, NY
1 

, ~N coupled channel problem. Aside from differences in 

i-spin factors some of the amplitudes are the same as those for the 

* NN, NN problem. 

Among the other work which ha s been done on the two-baryon 

system and su
3 

is that of Gerstein51 ) on the 
1s

0 
NN virtual state 

55) --as part of a 27 and that of Oakes on the deuteron as part of a 10. 

Dyson and Xuong56) have looked at Y = 2 states in su
6 

theory. 
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Appendix A. NOTATION AND KINEMATICS 

We define the scalar product 

~ ~ 

oµV x . Y = xoyo - x . y = x Yv µ 

with metric tensor oµV = 0 forµ:/: V and 

0
00 = - 511 = - 5

22 
= ~ 033 

Then 

where 

.with 

2 
Yo = 

~ 
y = 

YµYv + YvYµ = 2oµV 

2 2 2 
- Y1 = - Y2 = - Y3 

( 
0 ct) 

-rt 0 

= xµy}l 

= 1. 

= 1 

(A. l) 

.(A. 2) 

(A.3) 

(A.4) 

(A.5) 

(A .6) 

We define ' = a y· for any four vector a . We use the following symbols µ µ µ 

and numerical values 

µ = pion mass = 139 MeV 

M = nucleon mass = 938 MeV 

* * M = N mass = 1238 MeV 
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W = total c.m. energy 

s = w2 
2 ,.J 

g nNN coupling constant (g /4n = 15.) 

* G = effective nNN coupling constant 

* q = c.m. momentum for elastic NN scattering 

* p,p' = c.m. momentum of NN, NN states, respectively, for 

* N + N ~N + N scattering. 

E. =Jp.
2 + m.

2 
=energy of particle i in 

1. 1. 1. 
c.m. 

e = c .m .. scattering angle. 

* * I. For N + N ~N + N scattering in the c.m. we have 

4 

N x. /_» < . N-t 

/Nrr 
3 

P1 = (El' o, o, q) (A. 7a) 

P2 (E2' o, o, -q) (A. 7b) 

P3 (E3' -q sin e, o, -q cos B) (A . 7c) 

P4 = (E4' +q sin e, o, +q cos e) (A. 7d) 

where 

=Jq2 + ~· w2 + ~ *2 
El E4 

- M 
(A.8) = = 

2W 



2 
q 
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(w2 - (M* + M) 2J[w2 - (M* - M) 2] 

4w2 

= [ (W + M) 2 - M*2][(W - M) 2 - M*2] 

4w2 

* II. Now consider the reaction N + N -)N + N 

3 

In the c.m. 

p = 
1 (El, o, o, p) 

P2 = (E2' o, o, -p) 

P3 = (E3' -p' sin e' o, -p' cos B) 

(E4' +p' sine, o, +p I cos B) P4 = 

(A. 9) 

(A.10) 

(A .11) 

(A.12a) 

(A .12b) 

(A .13a) 

(A .13b) 

(A .13c) 

(A .13d) 
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E . = J •2 +ii = w2 +ii - M*2 
3 p 2W 

. __ 2 *2 2 
E = J •2 + M*2 = W- + M - ~ 

4 p 2W 

p2 = (~- ~) = (W + 2Mi(W - 2M) 

p'2 = rw2 - (M* + M) 2l[w2 - (M* - M) 2] 

4w2 

* (W ± M*) 2 - ~ 
E

4 
± M = - -2W 

(A .14) 

(A.15) 

(A .16) 

. (A .17) 

(A.18) 

°(A .19) 

(A.20) 

(A.21) 

(A.22) 
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Appendix B. DESCRIPTION OF HELICITY STATES AND CALCULATION OF THE OPE 

where 

and 

with 

so 

and 

PARTIAL WAVE HELICITY AMPLITUDES 

We write for positive energy spinors 

1 

~ ~ a . p 
E+M 

d·p) E+M 

1 

"- = ± 1/2 

J + l) =!1! ( 
1 ± 112 > 

u( - 2 2M 
2 "- r I + i12 E+M -

ti< + l) + =~ ( (± f I -2f...p 
= u Yo - 2 2M E+M 

For a particle moving in the e,~ = 0 direction 

I
+ _

21 
) (cos e 12) 

sin B/2 

1 (-sin B/2) 
I- 2) = cos B/2 

(B.2) 

(B.3) 

(B.4) 

(+ l - 2 1) . 
(B.5) 

(B.6a) 

(B.6b) 
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and if moving in the direction 1( - 8' cp + 1( (cp 

I+ t > (- sin e12 

) = 
cos 8/2 

1 ( 
cos 8/2 ) I- ) = 

2 sin e12 

The spin 1 four-vectors satisfy 

Writing € 
µ 

= 0 

- 1 

(€
0

, °€), we have 

1<+ 1) = ( ~ :os ee ) 

sin 

-:co) = ( si~ e ) 
cos e 

°t(-l) (cos 8 ) 

= ~ :in e 

= O) 

(B.7a) 

(B.7b) 

(B.8) 

(B. 9) 

(B.lOa) 

(B. lOb) 

(B. lOc) 

for a particle moving in the 8, q> = 0 direction. If it is moving in 

the 11: - 8, q> = 11: direction the i's are the same with the ± 1 states 

interchanged. 

Using (B.8) and (B.9) we construct four-vectors from the three-

vectors of Eq. (B.10) 
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€ (+ 1) 
µ 

1 =-
[i 

1 
€ (0) = 
µ * M 

€ (-1) 
µ 

1 =-

J2 

0 

( 

cos e ) 

= !in e 

(B. lla) 

(B.llb) 

(B. llc) 

If we reverse the direction of motion (~ - e, ~ = ~), €µ(+ 1) and 

€ (-1) change places and the time component of € (O) changes sign. 
µ µ 

We now list some of the quantities which were used in the 

calculation of the helicity amplitudes. 

* * I. N + N ~N + N (see Appendix A for kinematical definitions and 

conventions) 

(1'4JAi> = {- sin e/2 (+ +) 

sin e/2 (- -) 

cos e/2 (+ -) = (- +) 

(B.12) 

(r..4 = + t1r..2 
1 

where (+ -) = = - 2 ), etc. 

(1'3 I 1'2 ) = { sin e/2 (+ +) 

sin e/2 (- -) 

cos 6/2 (+ -) = (- +) . 
(B.13) 

Define ii(f .. 4) u(t..2) ii ( t..3) u(t..l) = 0\4/..21..3/..1) 
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Then 

(+ + + +) = (- - - -) = -(- - + +) (+ + - -) 

* _ (El + M) ( E2 + M ) . 2 
- - 2M * sin B/2 

2M 

2 

G - (El + M) :E2 + M*)J 

(B.14a) 

(+ - + +) = (- + + +) = (- - + -) = (- - - +) 

= - (+ - - -) = - (- + - -) = - (+ + + - ) = - (+ + - +) 

* 
-- - (. E12+M M) ( E22+M*M ) sin e/2 cos e12 

. ~ -

(+ - + -) = (- + + -) = (+ - - +) = (- + - +) 

* 
= + (E\: M)( E2 +*M ) cos2 B/2 '1_ + 

2M . L 

(B.14b) 

2 . 2 . 

(El+ M)(E
2 

+ M*)J 
(B.14c) 

(B .15a) 

1 
- ---:;; (q El + q E3 cos e) 

M 
(B.15b) 

1 
= - f2 q sin e (B.15c) 

(B.16a) 
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1 
(p4)µ ~µ(O) = - -:; (q E4 + q E2 cos 8) 

M 

(p4)µ €µ(-1) = }r q sin 8. 

* II. N + N ~ N + N 

={ 

sin 8/2 
sin 8/2 
cos 8/2 

sin 8/2 
sin 8/2 
cos B/2 

cos 8/2 
sin B/2 
sin 8 /2 

(+ +) 
(- -) 
(+ -) = 

(+ +) 
(- -) 
(+ -) = 

(+ +) = 
(+ -) 
(- +) 

(- +) 

(- +) 

(- -) 

(++)=(--) 
(+ -) 
(- +) 

Define u(A
4

) u(A2) u(A3) y
5 

u(A1) - (A4A2A3A1) and 

~(A4) u(A1) u(A3) y5 u(A2) ~ ~A4A1A3A2». 

Then, omitting a common factor of . { i (El 
2
: M) 

(+ + + +) (+ + - -) = - (- - + +) = - (- - - -) 

- sin2 B/2 F G 

(B.16b) 

(B.16c) 

(B.17) 

(B .18) 

(B.19) 

(B.20) · 

(B.2la) 
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(+ - + + ) = (- + + +) = (+ - - -) = (- + - -) 

sin S/2 cos S/2 F+G- (B .2lb) . 

(+ + + - ) = (- - - +) = - (+ + - +) = ~ (- - + -) 

= - sin B/2 cos B/2 F_G+ (B.Zlc) 

(+ - + -) = (- ~ + -) = - (+ - - +) = - (- + - +) 

2 = - cos B/2 F+G+ (B.2ld) 

((+ + + +)) = ((- - + +)) = - ((+ + - -)) = - (( - - - -)) 

= cos
2 

B/2 F G (B.22a) 

((+ - + +)) = ((- + - -)) = - ((+ - - -)) - (( - + + +)) 

= sin e/2 cos B/2 F+G-

((+++ -)) = ((+ + - +)) = (( - - + -)) = (( - - - +)) 

= sin B/2 cos B/2 F_G+ 

((+ - + -)) = ((+ - - +)) = - (( - + + -)) -((- + - +)) 

where 

G : [ p ± 
± E + M 

1 

p' J 
E + M • 

3 

(B.22b) . 

(B. 22c) 

(B.22d) 

(B.23) 

(B.24) 
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Some of the relations used in maki ng the partial wave expansions 

(both for NN ~ NN * and NN* ~ NN~ are: 

a) The well-known recursion relations and symmetry properties of 

the d functions (See reference 29). 

b) Using 

1 if n 

n < J or n - J odd 

2 x Pix + 2·l·J - 1 for n - J = 2µ 
-1 

where (a;b;c) = a(a + b)(a + 2b) ... (a+ (c - l)b), and 

1 lf Pk(x)dx = 

2 B - x 

-1 
we can show that 

Pk(x)dx 
B - x = B Qk (B) - 0kO 

-1 
1 lf x2

Pk (x)dx 
2 B - x 

-1 
1 

(B.25) 

(B.26) 

(B .27a) 

(B .27b) 

1.Jx3
Pk (x)dx = 

2 B - x 
1 2 3 Bokl - s ok2 . (B.27c) 

-1 

c) (B.28) 

(t + l)Q(B) - B(2t + l)Q (B) + tQ 
1

(B) = 0 for t > 0. 
t+l t t-

(B.29) 
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* * The resultant NN ~NN partial wave amplitudes of definite parity 

(calculated according to the procedure outlined in Section II) will 

now be listed. 

Define 

JP 
T . k+ 1, -

T . J ± T J 
1 k 

(where T . J is defined in Section I) 
1 

A = 

2 
- µ 

* v = L (g_) 2 q (El + M) (E2 + M ) 

0 2n M W 

Then for J > 3 we have 

1) p = + (- l)J - 2 ,• 
/ 

(B.3.0) 

(B.31) 

I= 2 
. 
I .= ) 

(B.32b) 
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(B.32c) 

= - -2_ 
Tll,12+ 

4 
.f3 

J 

(J-l)(J+l)(J+2) 

{
. ( E +EA J 

.

• - 2R R 1 3 )-1 (R2 - R2) - ~ (R2 + R2) 
+ - M* 2 + - 2 + -

(B. 32d) 

T 1 VO {Q(A) l-(J) (1 - A2) (R2 - R2) - J(l ·- A2)A(R2 + R2) 
1 , 8+ = 8 J + 1 J l + - + -

- (1 + A
2

) (~ - R:) - 2A(R! + R=~ 

+ QJ-l ~a!+ R~) (1 + A
2

) + 2A(R! - R~~} (B . 32e) 

[ 
( E +EA) ~} + Q(A) - 2A R R l 3 + l (1 - A2) (R+2 + R2_) 

J-1 + - M* 2 
(B.32f) 

R+R- {Q~~~ [<2 _ J2 _ J) + A2(J2 + J + 2~ 
(J+l) )(J-1) (J+2) . 

+ Q§A) t A 
3 

J (J - 1) + A (!- - J - -4~} (B.32g) 
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+ t (J + 1) (1 + A
2

) (R= - R!) .- ~ (J + 1) <a! + R=)J 

. (A) [ . (El + El A) (El + E3A) 2 2 2 
+ QJ-l 2A R+R- * + * (R+ + R_) 

M M 

VO {4 Q(A) 
Tl9,2o+ = 8(J-l)(J+l)(J+2) J-1 [<R! + R)~2 (i + J + 1) 

- (J - 1) (J + 2~ 

(B.32h) 
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- 3A (R! - R:)] + Q§A)[(R! + R:) (A
3
J(J - 1)

2 
+ A(-J

3
+2J

2
-J-121 

- (R! - R:) (-A2 
(J - 1)

2 
(J + 4) + (:i2 + J - 8)(J + 1)) JJ 

(B.32j) 

2. p = - (- l)J - 2 

(B.33a) 

T = 2,7-

(B.33b) 

Tl0,13- = O (B.33c) 

T =+-1
- V . 11,12-

8
n o . J {(R

2 + R
2

) .+ A(R
2 

- R
2)l · 

(J-l)(J+l)(J+2) + - + -') 

• {2AQ§~~ - (A
2 

- A
2 

J + J + l)Q~A)} (B.33d) 

Tl' 8- = ~ V 0 ( J ~ 1 ) { - [ Q~~ + A J Q~A~ [ (1 +A 2) (R! - R:) 

. . . . . · + 2A(R2 + R2)J 
+ -

+ (J + l)Q~A) [(l + A
2

) (R! + R:) + 2A(R! - R:)]} (B.33e) 
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( J + l)Q(A)[2AR R (El+ E3A) 1 
J + - * - 2 (1 

M 

R+R- r-2AQ(A) + Q(A)l(J + 1) - A2(J - l~l 
(J+l)Jj-1)(J+2) t J-1 J L :JJ 

(B.33g) 

2 
2 2 

(
El + E3A)· 1 2 2 2 A .2 2j 

( R ) + _; (1 + A ) (R - R ) - - (R + R ) + R+ - - * 4 - + 2 + -
M 

(B.33h) 

T = - VO {Q(A) 14AR R +(El+ E3A) • 
16 ,l7- 4 /3(J+l))(J-l) (J+2) . J-l l + - M* 

+ Q~A)[- 2R+R- J(l 

(El+ E3A) 2 2 
+ * (R+ + R_ 

M 

(E +EA) 
)A(J + 2)(J - 1) + 1 3 (R2 - R2) • 

* + -. M 

(A2 
J(J - 1) + 2(J + l~J} (B.33i) 
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· v 
T = - O (4Q(A) [3A(R

2 + R2) 19,20- 8(J-l)(J+l)(J+2) J -1 + -

+ (~ - R=) ((J - 1) (J + 2) - A
2 

(J
2 

+ J + l))] 

+ QiA>[(R! + R=) ~2 (J - 1)
2

(J + 4) + p2 + J - 8)(J + 1))· 

+ (R! - R=) (A(J
3 

- 2:l + J + 12) - A
3
J(J - 1)

2
)]}. (B.33j) 

Using the obvious relation . that d~µ (B) = 0 for J < \max (A., µ) j 
J J one can determine that for J = 0 only T9 and T14 are non-zero , 

JP J J J J J J J J 
(T9 , 14±:/: O) and for J = 1: T4 ' TS ' Tll' Tl2' Tl6' Tl7' Tl9' T20 

are all zero 

J=l J=l 
(T4,5± = Tll,12± 

J=l 
= T16,17± = 

J=l 
Tl9,20± = O) 

When J 2: 2 all twenty amplitudes are present (except TJP which 
10,13-

vanishe s for all J). 
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Appendix C. THE COMPLEX SINGULARITIES 

In this section we add a few details to our discussion in 

-1 
Section IV (see also Section VI) of how the ND equations are 

modified due to the prese nce of a complex singularity intersecting 

the unitarity cut. As stated before,the question is an involved and 

difficult one and our remarks are not to be taken as either complete 

or absolutely rigorous. In addition, we shall only discuss the 

modifications appropriate to our determinental method calculation 

-1 
and not those required in the full ND equations. 

The Deformed Contour of Integration around the Unitarity Cut Beginning 

at the Elastic NN Threshold 

Fig. 21 

In Fig. 21 we have symbolically indicated how the integration 

contour around the unitarity cut beginning at WNN must be deformed to 

* avoid the protruding singularities of the NN -7NN Born amplitudes. 

(Naturally, a synnnetrical situation exists in the left hand W plane 

but we are omitting integrals over the left-hand unitarity cut.) 
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Note that for integrals beginning at the NN* threshold (viz., D~1 ) no 

modifications are r e quired since . they begin to the right of the complex 

cut. 

Let us denote the contribution of the contour (call. it C) around 

the anomalous cuts by !:::. D . . • 
l.J 

Furthermpre define 

1 
2 1.

• (disc B . . (W)) =Abs. B .. (W) =a: .. (W) 
' l.J . 1-J 1-J 

and choose the branch cuts of O: (W) and p
2

(W) such that 

* - p
2 

(W) 

* * 0: (W ) = - a: (W) • 

(C.l) 

(C.2) 

(C.3) 

Using some of the results of r e f er ence s 1 and 2, we find the lowest 

order modification in the de t erminental approximation to be 

"n(W) __ - ifp2 (W') a:1J(W') dW' 
LlJJ (C.4) . 

lJ re w' - w 
c 

where we have omitted the subtraction for brevity . Expanding (C.4) 

and using Eqs. (C.2) and (C.3)Wwe can write 
R · WR 

= - i { f Pz O:lJdW' JP2 a:lJdW'} 
L'.illlJ(W) 

re w' - w w' - w 
W_ W+ 

= - i{JWR[P2 (W') a:lJ(W') 

re w' - w 

p (W'*) a: (W'*) J } 
2 lJ .dW' 
· w'* - w 

= - ~ wf_ :~ ( P2 

re w' 
dW' (C.5) 

WR 
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where WR is the point where the anomalous cut crosses the Real W 

axis (WR= 2.033 BeV). R We note that 6. D
1

j only contributes to n
13

. 

Evaluating Eq. (C.5) for the four inelastic amplitudes would be 

a formidable undertaking. Instead we shall merely make a few observa-

tions and a crude guess at the order of magnitude of 6. n
13 

for one 

value of J. 

Using the relation 

we find for the inelastic amplitudes 

l (3z2 - 1) 
2 

2 P1) = 5/2 z(z - 1) 

(C.6) 

(C.7a) 

(C.7b) 

(C.7c) 

(C. 7d) 

Recall that the anomalous contour is the locus of points for which 

2 
-1 < z < 1 with z = 1 corresponding to the end points W± and z = 0 

the point W = WR. Then we see that a
14 

and a
15 

= 0 at the end 

points of the integrals for /::,, D14 and/::,, D15 • 

Let us now look at /::,, n16 in slightly more detail (only because 

a
16 

has a relativeiy simple form). 

(
p4 _ 2 p2 PO) 
35 21 + 15 (C.8) 



- 140 -

where p3 here refers to the stable (rNN* 

(P3 = p I /W). 

. * = O)NN phase space factor. 

After a good deal of algebra we can write 

= _ -2 ff g Q (z2 _ l) 2 . 
(16)2 M 

• (W - 2M)
2 

w 
~~ 

(M + M) 

. [P2 o;l6_l 
We then can observe that the integrand of 6 n16 , Im W' _ \{j 

(C. 9) 

, takes 

on its maximum value at or near W' = WR. This is plausible because 

2 2 
a) the factor (z - 1) has its maximum at z = 0 (W' = WR) and falls 

off quickly for larger z; (b) (W' - W) increases as we move up along 

the anomalous contour away from the real axis and, (c) at W' = WR 

[p
2 

a 16 /(W' - W)l is pure imaginary. 

Taking W ;;- 2.15 as a typical (interesting) value of the 

energy we evaluate the integrand at W' =WR= 2.033. We find 

. 3 • (C.10) 

To make a very crude e stimate for 6 n16 , replace the integral with one 

whose integrand= .3 at WR and goes linearly to 0 at IW-1 (Since 

a 16 = 0 at z = 1): Then we would have 

; . 1 • ~ (. 3) ..... - .1 (C .11) 

(Unf.ortunately) this value is comparable in magnitude to that for D~6 
at the same energy. 
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The work in this section must .be regarded as inconclusive. 

But certainly it does not seem obvious as some authors have concluded 

(Leung
26

), Meiere
7j that the anomalous contour contributions to the 

integrals are negligible. What is needed is a much more satisfactory 

* treatment of the three-particle nature of the NN state and a more 

accurate evaluation of the integrals over such complex singularities 

when they are present*). 

* Such integrals have been included in the work of Ball and 
Thurna uer, Ref. 3. 
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