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ABSTRACT

The problem of two channels, NN and NN*, cbupled through uni-
tarity, is studied to see whether sizable peaks can be producéd in
eléstic nucleon-nucleon scattering due to the opening of a strongly
coupled inelastic channel. One-pion-exchange (OPE) interactions are
calculated to estimate the NN* -—aNN* and NN -—9NN* amplitudes. The
"OPE production amplitudes are used as the sole dynamical input to
drive the multichannel ND-1 equations in the determinental approxima-
tion, and the effect on the J = 2+ (lDz) elastic NN scattering ampli-
tude is studied as the width of the unstable N* and strength of coupling
to the inelastic channel are varied. A cusp-type enhancement appears in
the NN channel near the NN* threshold but for the Rnown value of the
N width the cusp is so 'wooly" that any resulting elastic peak is
likely to be too broad and diminished in height to be experimentally
prominent. A brief survey of current experimental knowledge of the
real part of the lD2 NN phase shift near the NN* threshold is given,
and the values are found to be much smaller than the nearly 'resonant'

phase shifts predicted by the coupled channel model.




iv

TABLE OF CONTENTS

Page
ACKNOWLEDGEMENTS ii
ABSTRACT 1iL
T Introduction 1
*
11 General Features of the NN and NN Channels 15
I1I The OPE Amplitudes 28

IV  Unitarity of Helicity Amplitudes in the Isobar Model 58

V  Removal of Kinematical Singularities and Continuation

below the Inelastic Threshold 62

VI Details of the Calculation and General Properties of

the Solutions 76

VII Results and Conclusions 89

VIII Implications of'SU3 Symmetry 113
APPENDICES

A  Notation and Kinematics : 120

B Description of Helicity States and Calculation of the

OPE Partial Wave Helicity Amplitudes 124
C The Complex Singularities 137

REFERENCES 142



I. - INTRODUCTION

After much work in single channel dynamical calculations,
there has been increasing effort within the last four years to study
the effects of higher channels which are coupled through unitarity
to the lower energy elastic scattering processes. The most ambitious
attempts have been in the nN problem where the nnN channel has been
included, usually in some approximate way via a pseudo-two-particle

8)

pN or ﬂN* channell— . Although the calculations are not qﬁanti-
tatively convincing it does seem elear that inclusion of these higher
channels may help to explain the second and third pion-nucleon
resonances, From this work and other simple models which have been
studied it is evident that the existence of such inelastic channels
may act to produce an enhancement in the elastic scattering amplitudes
(and cross-section) at energies near and even beléw the threshold
where the inelastic scattering can physically occur. Experimentally,
many resonances are found to lie close to thé threshold for an inelastic
 process. Even if this association with thresholds proves accidental,
one can speculate that the succession of resonances seen in the 7N
and 7wt systems as higher energies are explored can be explained by
including more and more of the inelastic channe1s which becomes
accessible as the energy is increased.

Let us list briefly some of the ways a higher energy channel can

9.

cause an enhancement in a lower coupled channel

3,4,10,11 12)

1. Threshold Effects (Cusps,Ball-Frazer mechanism) Here
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the effect is primarily kinematical and occurs very near to the

energy where the inelastic channel opens up. If the inelastic channel
contains an unstable particle (and thus the channel is really a

three- or more-particle channel, the cusp can become rounded (a so-
called "wooly" cusp) and the enhancement smeared overra broader region.
Cusps are most prominent when the particles in the inelastic channel
are produced in a low orbital angular ﬁomentum state (viz. g = 0).

The prominence of the cusp (i.e., whether it is observable or not)

is also dependent on the strength of the coupling between the elastic
and inelastic channels. The Ball-Frazer peak is associated with tﬁe

rapid rise of an inelastic cross-section to its unitarity limit.

2. Strong Inelastic Forces (Cook-Lee Mechanism)%) If the coupling
between channels is strong enoﬁgh a resonance may appear in the lower
elastic channel below the inelastic threshold. Loosely speaking,

there is an attraction produced due to a virtual transition from the
elastic to the imelastic channél and back again. The system oscillates
in a resonance like configuration. By including unitarity in our
calculations we allow such a strongly coupled inelastic channel to
produce its effect in ﬁhe elastic channel below the inelastic threshold.
Above the inelastic threshold unitarity acts to severely damp the

elastic amplitude.

* A good example now seems to be available: an S-wave cusp in elastic
7N scattering at the nN threshold. This can be seen in the analysis
of P. Auvil and C. Lovelace, Nuovo Cimento 33, 473 (1964).
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3. Virtual Bound State Resonance: (Dalitz, Sakurai)%B’lé’g). Here the

higher channel, if isolated, coﬁtains enough attraction to produce

é bound state. But because of the existence of a lower energy channel
the "virtual' bound state produced in the higher elastic channel

decays and is seen as a resonance in thg lower chanmnel, usual;y not

too far below the inelastic threshold*). For this mechanism to oéerate
a fairly weak coupling between channels seems necessary in order to
partially isolate the higher channel.

The question naturally arises whether the existenﬁe of higher
channels in the NN system can produce any effects such as those listed
above. |

In the present work we shall consider one specific higher
channel, the wNN channel, which we shall treat as a pseudo-two-particle
state consisting of an N and an N*, where the N* ig the I = 3/2,

J = 3/2+ 1238 MeV nN resonance, Via this isobar‘modell’z) we consider
only that part of the nNN Staté in which two of the final particles

are produced in a resonant state**). This model of NN* production has
been successful in explaining many of the features of pion production
in NN collisions (e.g., momentum spectra of the pion and recoil
nucleon, angular correlations between pions and nucleons, etc.) below
a couple of BeVls). In our actual dynamical calculations we shall

partially include the true three-body nature of the state by use of a

phase space factor which allows for the width(and hence instability)

* An example of this type of resonance is the interpretation of the
TA (Yl*) resonance as a bound state of the KN channel, See, for
example, reference 13. .

- %% TWe will ignore the error introduced by not anti-symmetrizing wit

respect to the two nucleons in the final state,
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¥
of the N 11).

Most of the formalism we shall use has been fully
discussed in references 1 and 2.

Besides the fact that NN* production is prominént experi-
- mentally this particular ineiastic channel was chosen for étudy for
several other reasons. Because of the sizable width of the N*,

approximately 125 MeV full width at half-maximum, one expects that

"force" diagrams such as Figures 1(a) and 1(b) below

N N N¥ N

(a) N Mo NX

One Pion Exchange (OPE) Interactions in

% * *

(8) N+ N-o>N+N and (b) N+ N =N+ N
Figure 1

would make a large contributiog due to the large coupling at the KNN*
vertex. (A large coupling between channels might suggest that
meghanism (2) discussed above ﬁould'produce an enhancement in the
elastic NN channel.)

Diagram 1(b) also contaiﬁs a cut in the physical region‘
[ruﬁning from S = 2(M*2+ M;) - uz to S = (M*2~ Mz)zluz; where
M = nucleon mass = 938 MeV, M* = N* mass = 1238 MeV, p = pion mass =
= 139 MeVl] which, as noted by Peierlsl6) can sometimes produce peaks

)

in elastic cross-sections *. However, such a peak is usually not

* A more careful examination of specific cases has shown that these
peaks may not be present. See, for example, C. Goebel, Phys. Rev,
Letters 13, 143 (1964).
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confined to a single J, P, I state and has a shape and an asymmetry
different than a resonance-like Breit-Wigner distribution.
Experimentally, the:e are no known resonances in NN scattering.
(There is, of course, a bound state - the deuteron.) | Neither the
total nor the differential cross-sections show any strong peaking
below 1 BeV. However, several of those who have attempted to
phenomenologically describe the data find some enhancement in the

I = 1 state near a lab energy of 600 MeV. For example, in Fig. 2

2 :
below, we have plotted _E__E_QQ C = n/2) vs. lab kinetic energy
(¥ic) do cM
for the case of proton-proton scattering (which is pure I = 1). The

17)

data is taken from Table A2 in Wilson's book on the NN interaction
- Although the 90° (CM) scattering does diminish the contribution from
some odd ¢ states both even and odd orbital angular momenta contribute,
and we cannot simply isolate the enhancement to a épecific state of
angular momentum and parity*). The proposed enhancement occurs at an
energy near or slightly below.the threshold for the inelastic process
N+ N -N-+ N* (a strong reason for studying this channel). This

%*
reaction only can occur in the I = 1 state (where the N is the

I = 3/2 isobar).

* In spinless scattering since Pﬂ(n/Z) = 0 for odd £'s, only even 4's

are present at GC = /2, But for pp scattering, using the notation

M ;
of reference 18, although Mll(ﬁ/Z) =0, Ml_l(ﬁ/z) =0, MOO(ﬂIZ) =0

‘both Mlo(ﬂ/Z) and Mol(ﬂ/Z) are non zero and contain odd 4 states.



Figure 2

2 %% for proton-proton scattering at 90° c.m.
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Qur ideas on cusps also encourage us to look for states in
which the new channel is in a low angular momentum configuration,
P +
preferably L = 0. The nucleon has J = 1/2 ; the three-three resonance

¥ 3/2+. Therefore, putting

treated as an unstable particle has J
% %*

the NN in an L = 0 state requires |NN } be in a P = +, total

J =1 or 2 state. To couple to lNN) with T =.1, P = +, the generaliéed

Pauli principle forces the NN state to have S = 0, L = 2 and thus

So with LNN* = 0 the pertinent channel spin-parity is

J =2, I=1with the NN in a 1D2 state. Although we shall briefly
examine some of the forces in other JP states by looking at the OPE

Born amplitudes, we shall ultimately perform detailed dynamical
calculations only in this one state,

Above 400 MeV a phase shift analysis of proton-proton scattering
is greatly complicated by the presence of inelastic scattering which
causes the phase shifts to become complex; i.e., not purely real.

Most of the work done in the 600 MeV region has been performed in

the U.S.S.R. using the 6-meter synchrocyclotron in Dubna. For pp,
neglecting inelasticity and using the requirement of unitarity,

*)

five independent experiments performed at all angles are sufficient

% Briefly, we can list the kinds of experiments from which to choose.
1. Single scattering experiments to measure the unpolarized
differential cross-section.

2. Double scattering experiments to measure the polarization P.

3. Triple scattering experiments to measure R (related to the
rotation of the polarization vector in the plane of the second
scattering), A, D (describes the extent to which the second scatter-
ing depolarizes an initially polarized beam), or spin correlation
experiments in which one measures the polarizations of the recoiling
target usually in correlation with the polarization of the outgoing
nucleon. At one energy and angle there are nine independent
quantities which can be measured. For more details, see refs. 17,
18, and 19.
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to éetermine M the‘scattering matrix at all angleslg). This however,
is only academic interest even aside from inelasticity, for in
practice, one takes a number of pieces of (hopefully reliable)
experimental data and attempts to-fit with several (often variable)
parameters and then uses some goodness of fit criteria (commonly
chi~square) to search for acceptable solutions. Usually several such
solutions are found and other types of data (e.g., data on
p+p— ﬂ+ + d) or auxiliary requirements must be used
to reduce the number of satisfactory solutions.lg)

In the so-called modified phase shift analysis the use of the
one-pion exchange (OPE) contribution for high angular momentum states
allows one to get as good chi-squares using many fewer parameters
(for example at 310 MeV one can get the same X? using nine parameters
and OPE as using fourteen parameters with no OPE)lg).

In making a phase shift analysis of pp scattering at 657 MeV,

20)

~ ;
Azhgirei et al. assume one meson exchange for § > 5 states.

They assume the phase shifts are complex (A.é ® + iy) and use absorp-
3 1
0,1,27 Fa2,3’ 3nd Dy

states which are obtained from the experimental cross-sections for

tion coefficients (averaged over J) for the 3P

the inelastic processes p + p —9ﬂ+ +d, p+p—= ﬂ+ + n + p,

p + p.~> ﬂo + p + p. They used 45 experimental quantities and
determined twelve parameters, nine phase shifts (g < 4) and three
absorption coefficients. With a % = 86,7 (For a good fit %2 -

number of data points - number of parameters) they find

(1D2) s 1E.0° & B0, u = BEE G oT = g,

6real 2
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Using new data on the parameter A they modified their values to

& = 8.7 £ 4.9, r, = .678.

21) 22)

Similar analyses (Golovin , Zul 'karneev and Silin 3

Dzhelepov23))'also find that Re BlDzﬁs 10° for lab energies near
600 MeV.

It thus seems reasonably safe to conclude from these anal&ses,
although they are not yet completely satisfactory, that no true
resonance exists in the 1Dz pp state. The enhancement which may be
present seems more likely to be what we have classed as a threshold
or cusp effect.

In this paper we shall study the coupled processes
N+ N-—-N+ N, N+ NN+ N*, N -+ N* - N + N* in the isobar
approximation treatipg the N* as an unstable particle. Ultimately in
our dynamical calculations (using the determinental approximation to
the mul tichannel ND_1 method) we shall ignore all forces but those
due to the inelastic process N + N >N+ N*. And only the longest
range part of this interaction, the OPE diagram Fig. 1(a) will be
kept. Besides providing the longest range intéraction, pioﬁ exchange
leads to cuts in the partial wave amplitudes lying nearest the
physical region . Other particle exchanges were neglected for
simplicity and because the relevant effective coupling constants
(e.g.. for the pNN*} wNN*, nNN* vertices) are not well known, though
we could use the SU6 symmetry scheme to estimate them. It is the
inelastic OPE amplitudes which shall drive the system of coupled

equations. Our work is clearly related to the strip approximation

diagram for NN scattering shown in Figure 3. This diagram would



& AY -

Z
8

A Strip Approximation Diagram for Nucleon-Nucleon Scattering
Figure 3

correspond to the lowest order term in the solution to the set of coupled
unitarity equations.

The elastic forces from the processes N+ N - N + N (e.g., forces

24) * %
due to exchange of %, p, w, 7, Yand N+ N — N+ N (exchange of
%, ps -..) will be ignored in our dynamical calculations for several
reasons.
. % *

As we shall see in Sec. II the NN — NN elastic forces, at least
those given by the diagram of Fig. 1(b), do not seem to contain either
very much attraction or repulsion where this is estimated by studying
the sign and (non zero) magnitudes of the amplitudes (with momenta
divided out) at or near threshold. TFor this reason, and because of a

. %
need to restrict the size and complexity of the problem these NN
elastic forces were omitted. As will be discussed in Sec. I, to

* %
describe elastic NN, = NN 'scattering in a state of definite J, P,

and I requires in general, a 4 x 4 matrix (i.e., ten independent
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amplitudes)*). Since elastic NN scattgring in a state of definite
J, P, I requires a 2 x 2 matrix (involving two eigenphases and a
mixing parameter) for triplet scattering (but only a siﬁgle amplitude
for the S = 0 case), the most general coupled NN, NN* problem would
involve 6 x-6 matrices. Thus, the "two' channel NN, NN system really
consists of six c;upled channels.
Besides the limit on complexity, perhaps the strongest reason for
ignoring all elastic forces is just the desire to isolate and study
the effect of a production process on an elastic channel coupled to it
via the unitarity relations. We thus can study the mechanisms (1)
and (2) described above in their purest form without any complicationms.
As Cook and Lee have noted25 'Et is likely in many processes
that the "elastic" forces contribute very little to the structure of
the elastic amplitude mnear the thresholds of inelastic channels. It is
rather the particular form of the cou?ling between the amplitudes;
i.e., the unitarity relations, which is responsible for the structure:'
We shall find that our coupled channel model doeé predict a cusp
-type enhancement near the NN* threshold. However, because of the broad
width of the N*, we find that the cusp in the elastic amplitude becomes
rounded and flattened, and diminished in height by the presence of
sizable inelaéticity. Thus, the peaks predicted by our model would
not be ve?y prominent experimentally. However, our model does predict

real phase shifts close to 90° and thus disagrees with the experimental

% For small J's (< 2) fewer amplitudes are required. (J = 0 requires
1 and J =.1 requires 6).
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data we have cited. We therefore must conclude that important
repulsive forces have been omitted from our model.
*
The influence of the NN channel on NN scattering has also been

26) 27)

considered by Leung and Coulter et al., and we shall compare

their work and approach with ours in Sec. VII.

s

The organization of this paper is as follows:

In Section II we describe some general features of the NN, NN*
system; especially the restriction on the number of independent ampli-
tudes imposed by angular momentum, parity, and isotopic spin conserva-
tion aﬁd time-reversal invariance. Section III contains the
calculation of the OPE amplitudes for the diagrams of Fig. 1. The
properties of the spin 3/2 N* state and the ﬁNN* vertex are reviewed.
We then project out partial waﬁe helicity amplitudes and form
amplitudes of definite parity. The problem of off-mass-shell terms in
the partial wave amplitudes is briefl& discussed. The high energy
and threshold behavior of the. amplitudes are examined., Signs and
pelative magni;udes of forces in different JP states ére estimated.
The analytic structure of the I\JI\I«al\II\I"c partial wave amplitudes is
described and the appearance of complex singularities is noted.

In Section IV we state the unitarity relations for partial wave
amplitudes in the isobar approximation and give the solution in the form
of the multichanmnel ND_l equations.

Next, (in Section V) we choose proper phase space factors to
eliminate kinematical singularities (at least those close to the
physical region) and guaraﬁtee that our resultant "unitarized"

amplitude will have the correct threshold behavior. We discuss and
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*
illustrate the modified phase space factor that we use for the NN
state. This pseudo-three particle phase-space factor is compared

11)

with the approximate form suggested by Nauenberg and Pais in their
discussion of wooly cusps. Also in this section we perform the
continuation of the NN —>NN* Born amplitudes to the region between the

'NN and NN* thresholds since this will be needed for the dynamicalv
calculations. |

In Section VI, we discuss the apbroximations to be made in our
determinental calculation. Detailed questions concerning the choice
of subtraction point,the convergence of integrals, the use of a
cutoff, and the handling of principal value integrals are explained.
Séme general properties of the solution are also discussed.

Section VII contains the‘numerical results of our computer
calculations. We examine and plot graphically the dependence of the
NN elastic scattering amplitude on the magnitude of the coupling
between channels (the size of the inelastic amplitude), the width of
the N*, the choice of subtraction point and the cutoff. The problem
of ghosts is briefly discussed. Finally, we summarize the results
of our work.

In Section VIII we briefly discuss some possible SU, implications

3
of our coupled channel model.

Appendix A summarizes the symbols, notations and relevént kine=
matics we use, and Appendix B gives many details needed for projecting
out the OPE partial wave helicity amplitudes. TIn Appendix C the

problem of complex singularities and anomalous thresholds is examined

further.
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%
IT. GENERAL FEATURES OF THE NN AND NN CHANNELS

In the center of mass the NN threshold is at 1.876 BeV and the
NN* threshold at 2.176 BeV.*). (Later when including the N* width we
shall effectively be allowing the threshold to extend to lower
energies.) In terms of T the lab kinetic energy of the incident

lab

nucleon we have

e e e . o
Lab =" (I1.1)
and also
MT
2 lab
PCM = —_E—_—— (I1.2)

where we are using energy units (c = 1). With WC = 2.176 BeV we find

M

%
the NN threshold occurs at T1ab = 646 MeV.

The general kinematical features of nucleon-nucleon scattering

28)

are well-known Assuming charge independence, parity conservationl
and time reversal invariance, five independent amplitudes are required
for a complete characterization of nucleon-nucleon (or Nﬁ) scattering.
The NN state can have either isotopic spin 0 or 1. TFor a given value
of total angular momentum J the two-nucleon system can be in an S = 0
or S = 1 state. Because of the Pauli principle there can be no transi-

tions between the two spin states. For the singlet state (S = 0)

we have only L = J and one amplitude characterizes the scattering.

*# 1In Appendix A we have summarized the notation and conventions we
will be using in our calculations and givgn a brief review of the
kinematics of the reactions N + N> N + N* and N+ N >N+ N".
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If § =1 weﬁhave L=2Jor L =J+ 1.(If J=0 clearly L = J - 1 is
not present.) For L = J, again one amplitude is sufficient since
parity conservatiom forbids tramsitioms to L =J + 1, If L =J 1
we need three amplitudes to describe the transitions L =J - 1 -»L =J - 1,
J+1->J+1, J~-1-J+ 1 (wvhich is equal to the amplitude for
J+ 1 —J - 1 by time-reversal invariance). Hence a total of five
independent amplitudes (for J > 0) are needed.

The generalized Pauli principle implies that for allowed
transitions in N-N scattering (-1)I R B 1, and thus for
example, fixing the parity and isospin determines the allowed S.
Using the relations between amplitudes implied by P, T, and I conserva-
tion the same kind of counting procedure as above can also be carried
out in the helicity representationze’zg).

Now comsider N + N* - N + N* scattering. Here, the total I
is 1 or 2 and hence only the I = 1 part of NN-"'r can couple to an NN
state. With a fixed J, we have either S = l.or 2, and because the N
and N* are not identical particles, there can be transitions between
the different spin states. And specifying I places no restrictions on
allowed values of L or S as it did for the antisymmetrized NN state.

With S'= 1 we can have L = J, J £+ 1 (assuming J > 0), and for S = 2,

L=J,J+1, J*2 (J>1) are all possible. Hence the states

|s=1,L=J), |8S=2,L=2J), |S=2,L=J+2), and

lS J - 2) all have parity (—l)J and there may be transitions

I
]

2, I
between any of them. Using time-reversal invariance (e.g., amplitude

for J+ 2 - J - 2 equals amplitude for J - 2 - J + 2) we find we need
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ten independent amplitudes to describe elastic NN* scattering for
P = (-1)J. Similarly |8 =1, L=J+ 1), |§=1,L=2J- 1)},
|8s=2,L=J+1), |S=2,L=2J- 1) all have parity (-l)J_l and
again ten independent amplitudes are needed to describe scattering with
this parity. So for J> 1, a total of twenty independent amplitudes
would be needed for a complete characterization of elastic NN*
scattering in a given isotopic spin state. (It is easy to see that for
J=0only |S=1, L=1)and |S=2, L =2) are allowed, thus re-
quiring one amplitude for each parity; while for J = 1 there are six
independent amplitudés for each parity.)

Let us perform the same counting of independent amplitudes
in terms of a helicity description of each two-particlerstate (we are
talking about. the ﬂ* as if it were a stable particle).

Define the partial wave helicity amplitudes
(h4 KBlTJ(W)lkl hz) for the process 1(N) + 2(N*) —>3(N*) + 4(N) by

%)

the relations

| | 2

do = |f . ©,0)|° do (ILD

| R |

£ ©,9) = = @3 + 1){\, A lTJ(W)IK )
N, Az A A, 0PN =D 2 : 4 ™3 y g
Al s B =

. 1O-me T

e dhp(e) (I1.4)

(}\=>\1-}‘-2;}1=}\4‘?\3),

* See Appendix B and Reference 29 for more details on the helicity
formalism. ‘



- (B -
and in the case of elastic scattering (1 = 4, 2 = 3)

(v, MglST D[N Ay = B Bk * 210, Ag]TT @) (A A,). (11.5)

Parity conservation implies

N J - ' )
(P 2| T A0, =m0y ATy ) (I1.6)

Mg Ty S3 & S4 -8 -8

with n_ = (-1)

g "11 712’

where N is the intrinsic parity of particle i and Si its intrinsic

% 3
spin. Hence, for NN — NN we have My =ny =03 =1n, =+ and
8, =8, = i/2, 8, = 83 = 3/2 and thus ng =+
Time-reversal invariance requires
O, M TV N M) = O AT N, A (I1.7)
4 3 12 1“2 4 370 0 :

It is now easy to see that between the eight initial states

|1/2 3/2), |1/2 1/2}, |1/2 -1/2}, |1/2 -3/2}, |-1/2 3/2), |-1/2 1/2),
|-1/2 =172, |-1/2 -3/2) and similar eight final states (just
replace the ket by a bra vector) only twenty independent amplitudes

may be formed which we have defined in the following matrix.



|1/2 3/2) |1/2 1/2) |1/2 -1/2) |1/2 -3/2) |-1/2 3/2) |-1/2 1/2) |-1/2 -1/2) |-1/2 -3/2)

(1/2 3/2| | Tf
(1/2 1/2| e
(172 -1/2| Tg
(172 -3/2] Ti
(-1/2 3/2| T;
(-1/2 1/2| Tg
(-12 -12)  \ 1
(-1/2 -3/2| Tg

J
Tg

J
T7

-.6'[..
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On the sides of the matrix we have listed the initial and‘
final helicity states.
To form helicity amplitudes with a definite parity we follow

reference 29 and use the relation

J-S

P|IM; A xb) = 1N, (=13 a | an; N —?\b) . (I1.8)

*
Thus, we construct normalized NN statesr%f (ILa kb) % l-ha, -Kb))
which have parity =* (-l)J .
3
Now, we can form scattering matrices for elastic NN

scattering in states of definite parity (we have used Eqs. (IL.6) and

(IT.7) and the definitions in the last matrix.



%7-(|1/2 3/2) + %5 lLse 1/2] + %: (|1/2 -1/2) + }:-([1/2 -3/2) +
|-1/2 -3/2)) |-1/2 -1/2}) |-1/2 1/2)) |-1/2 3/2))
1
72=(<1/2 3/2| + (-1/2 -3/2]) | TlJ + _TSJ TZJ + T7J. TSJ + 'I.‘6J T4J + TSJ
£, g J J J J :

21 148 - J J
J.z-((l/ /2| + {-1/2 -1/2|) T &0, Ty + Ty Tip W Tpy el
L y Y i J S J J J
H(1/2 -1/2] + (-1/2 1/2)) A & O oo+ T Tod B i et OB
X
F(1/2 -3i2] + (172 372)) AR SHER T * T Ty + g

all of which have parity + (—1)J iy
1 1 1 1
72 32) - (|12 172) - g5 (L2 -1/2) - T (172 -3/2) -
|-1/2 -3/2)) |-1/2 -1/2)) |-1/2 1/2)) |-1/2 3/2))

ff{(l/z 3/2| - {-1/2 -3/2]) le . TBJ TZJ y T7J T3J . T6J T4J ; TSJ
1 T J_md J_ . 3J J J J
Bz 12| - (172 -1/2)) 5 =% To = T S Y™ g
Loin, s J J I L4 J J J
/2 12| - {172 172)) T3 - % 0 = *13 15 = Tig Ti6 =~ 17
1 i _E T ot J J d J J
T3{1/2 -3/2| - (-1/2 3/2]) | T, - T B = By B = N s~ Tog
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all of which have parity - (-1)J.

So we verify again that there are ten independent amplitudes
required to describe scattering in a state of given J, P, and I.

Now consider N+ N — N + N* scattering. Time-reversal invari-
ance will relate this process to the reaction N + N* —= N + N but
will not affect our counting of the independent amplitudes in
N+ N->N+ N*. The channels couple only in the I = 1 state., Hence,
the NN system must have L even (P =+) and S = 0 or L odd (P = =)
and S = 1 to satisfy the Pauli principle.

In an L = 1 state of given J we have the following possi-
bilities:

%
With P = +, ‘S =0, L = can couple to the NN§ states [S =1,

J)NN
L=J), |s=2,L=2J), |s=2,L=J+2)and, |S=2,L=J-2)
so four independent amplitudes are needed (assuming J > 1). Note -
that for even parity all odd J amplitudes will wvanish. With P = -

A
and J odd, the NN states |S =1, L J), can couple to lNNf) with

|s=1,L=23), |s=2,L=J),|8=2,L=J+2)and |S=2,

L =J-2). This again requires four amplitudes (for J > 1) or

with P = - and J even, the NN states IS =1, L=J-1) and |s = 1,
L=J++ 1) will couple to NN* states with ]S =L, E=d = 1),

|s =1, L=J+1), |$=2,L=J+1)and |[S=2, L=2J-1). For

this latter case, there will be eight independent amplitudes (for J > 0).
Hence, a total of sixteen inaependent amplitudes is required for a

' * . %
complete characterization of N+ N—= N+ N (or N+ N — N+ N)

scattering (for J = 2).
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In terms of helicity amplitudes for the process

o ' 5
1(N) + 2(N) »3(N) + 4(N ) conservation of parity implies (cf Eq. (II.6)
J _ Ts
O B B SPRE ¥) R (S VR L P Y (II.9)

and we can form the matrix of scattering amplitudes

N
(NNle\ |1/2 1/2) |1/2 -1/2) |-1/2 1/2) |-1/2 -1/2)

{(1/2 3/2| lJ tzJ t3J
(1/2 1/2| = ts” ‘t7J
2 LR} 5 t10° £
{1/2 -3/2] 5 t 15"
(-1/2 3/2| 16J ~t15J 't14J -t
(-1/2 1/2] 12J -tllJ ~t10J =t
(-1/2 -1/2| A -e)7 -e.” -t
(-172 -3/2) \ -¢,7 -t -t,” -t

or in terms of amplitudes of definite parity we have



- 24 -

A, For P = + (..1)J S (_1)J'1
w0 1
. 72=(|l/2 1/2) - |-1/2 -1/2)) 75(|1/2 -1/2 - |-1/2 1/2))
%§(<1/2 3/2| + tlJ ) taJ 7 -
(-1/2 -3/2|)
1 | 3 " ]
Uiz /2] + & - tg e T .
(-1/2 -1/2|)
%§\<1/2 -1/2 + ‘th ) tlZJ thJ_
(-1/2 1/2])
1 . g |
7f§<1/2 _3/Tl " ‘13 7 Y16 16~
-1/2 3/2|)
and B, for P = (1) = i £1)T 0
) |
(NN>T\\ §§(|1/2 1/2) + |-1/2 -1/2)) §?(|1/2 -1/2) + |-1/2 1/2))
Lz siz) - et ee)] T
(-1/2 -3/2))
%f((l/z /2 | - tSJ & tSJ 6J . t7J
(-1/2 -1/2])
}7((1/2 -1/2} - t9J 3 tlZJ 10J+ tllJ
(-1/2 1/2])
%f2<1/2 i t137F b s By
{-1/2 3/2])
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For P = + the only allowed NN state with the proper symmetry is

%T (|1/2 1/2) - |-1/2 -1/2)) and the amplitudes in the second column
of case (A) will all vanish leaving only four independent amplitudes.
(With I = 1, P = + we must have SNN = 0 and it is easy to see
physically that |+1/2 -1/2) and |-1/2 1/2) are S = 1 states.) The
symmetrization.requirement for identical particles also means that for
odd J only hl # kz is allowed3o). Thus, for P = -, J odd the first
column of case (A) vanishes and we are again left with only four
amplitudes as we found earlier by considering allowed L and S values.
7 All of these résults will be satisfied by the NN —aNN* OPE amplitudes
presented in the next section.

Now, we can briefly consider the coupled channel NN, NN*
problem. For each parity (and J > 2) we, in general, have a 6 x 6

scattering matrix, which contains the 2 x 2 elastic NN scattering

) %
submatrix and 4 x 4 submatrix for elastic NN scattering.

| N | |NN*)

A %
(NN | NN — NN (NN~ — NN)

& * * %
%
(NN | \ ™ >N NN NN

For the cases P = +, J even and P = -, J odd (L = J) only
one NN étate is allowed and the coupled channel scattering matrix
reduces to 5 x 5;

To give a little more feeling for the states which couple

between the two channels we have shown,in Table I, the angular
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momentum states of the NN system which couple to the angular momentum
g
states of the NN system for some low lying values of the total

angular momentum.

Table I

*
The NN, NN Coupled Angular Momentum States for J < 2

¥ NN MY

oF 150 5DO

0" 3P0 BPO

3" 351, 3D1 351, 3D1, 531

L 1P1 SPI; SFl’é?i
2t 1D2 . ¥ 502, 5Gz, 392
g 3P2, 3F2 592, 5F2, 3P2, 3F2

As discussed in the Introduction we shall ultimately be
specializing to scattering in the J = 2" state and thus we in principle
will be working with 5 x 5 matrices, containing four independent
inelastic (NN —aNNS scattering amplitudes., The actual input (of

Born amplitudes) to our dynamical problem will look like
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JP JP JP
L yhom 5,8- gy 10w

JP
13,16~

JP
1,4~

JP
5,8-

P
9,12-

tJP
19,16~

where

(IT.10)

% %*
gince we will be setting all elastic (NN — NN, NN — NN ) forces equal

to zero.
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III. THE OPE AMPLITUDES

In this section we shall calculate the OPE amplitudes for
the diagrams of Fig. 1, project out partial wave helicity
amplitudes for states of definite parity, discuss the threshold and
high-energy behavior of these amplitudes and use the threshold values
(the "scattering lengths") to estimate the strength of attraction in
different JP states,
The amplitudes will be calculated using Fejnman's rulesBl>.
This will lead to the appearance of some ''off-mass-shell" pieces for
low J's, terms which have no dynamical cuts and would not have appeared
in a strict S-matrix derivation of the amplitude. These terms lead to
some difficulties (for the low J states in which they appear) and one
is not certain exactly how to handle them. There éeem to be good
arguments both for keeping and ignoring them. They make our conclusions
for the J = 0 and J = 1 states somewhat unreliable.
" Before we can célculafe the Feynman Amplitudes we must discuss
. : . *32)
the field theoretic treatment of the spin 3/2N .
The wave functions for spin 3/2 particles will be written as a

set of four four-component spinors Wp, n=20,1, 2, 3; the index n

being a tensor index in space time. The Wu satisfy the equations

b - M) ¥, =0 | (III.1)
Y, %, =0 . (III.2)

The second equation is a subsidiary condition which removes the spin

1/2 part in Wﬁ. These equatioﬁs imply the Lorentz condition
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- g,
Py ¥

(III.3)

In terms of plane wave solutions of the spin 3/2 equation we have

¥, G = q w Gme P

with the normalization

u u = -1
B R
and
' 7
2 _1M
In|]" = vVE °
u_ and u_ obey the equations
B 2

@ - ) u G =0

= (TIT.4)

(IEEED)

(III.6)

(I11.7)

(ITI.8)

(ITT.9)

The state vectors corresponding to different helicity states for the

spin 3/2 particle are

up<3/2> = e, (1) u (1/2)

up(l/Z) =J§ 611(0) u(l/2) +J%

u#(—l/Z)

un(—3/2) ep(-l) u(-1/2)

eu(l) u(-1/2)

4£§ e, (1) u(l/2) tf% €, (0) u(-1/2)

(IIL.10a)
(III.10b)
(IIT.10c)

(I11.10d)
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where we are considering the spin 3/2 states a direct product of spin 1

and spin 1/2 states. Definitions

and details regarding u(+ 1/2) and
€y are found in Appendix B,

%
We write the nlNN and n#NN couplings (omitting the isotopic

spin part) as

gﬂrv5fpv

(LEE.11)
and
G ” =
M (P Bu Vo= au )} Wp + W€ (III.12)
respectively, (¢ = pion field, ¥ = nucleon field).
In momentum space these become N
- -
EY ¥, Y - (II1.13)
N N
and ™ |
—_—*
N ¥
€ oo p . u. (III.14)
M N p on ‘ ‘

%*
Using this coupling we determine the effective mNN coupling constant,

*
G, by calculating the N decay rate (into N + =) and equating it to

the experimental full width at half-maximum, I*. We finds)
3
2 py By + M
- L [& . - '
I = 3 (M) M? (III.15)

where

_(III.16a)
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. Lath? - e w22 - - % .

% (III.16D)
* 2 :
4(M )
%
Using M = 1238 MeV, I' = 125 MeV, we get '
(%) = 61.7/BeV> (III.17)

or _
¢ = 54.3.

Now, we are ready to calculate the OPE amplitudes (for Fig. 1)

using the NN and NN couplings given in (III.13) and (III.l4) above

and the conventional rules for Feynman diagrams (as given for example,

by Schweber, ref, 31).

* *
First, consider the process N+ N — N+ N

P4 T3

% *
The_N + N —» N+ N OPE Interaction

Fig. &

In momentum space

* 2
4 2 .M M (G
-t c? 1B E (87
4;\3,7\7\ - YE, E; \M .

Rk
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- = - - = —
u(p, M) (k - p,) u (p,,A) u,(po,Ad(p; - k), u(p;,\,)
. 4774 g R NPT YNeEZAs 1 v 1771 (TII.18a)

(P3 = Pl) - R

culy) (p4)p'uu(K2) u, (h3) (py), ulr) (III.18b)

(py - py)" - 1

where we have used momentum conservation at the vertices and

Eq. (B8) to simplify (III.18a). We also have

2 %2 2 | 2
(p3 pl) =M~ +M - 2E1E3 - 2q° cos @ (I11.19)
. :
M2 4+ - 3 - 2B B
2 Z 2 173
(pp = Py) .- 1 = 2¢q - cos @
3 1 2
2q
e 2
= 2q (A - cos 6). (I11.20)

Uéing equations (III.18b), (III.20), (III.10), (B14,15,16), and

(A7 - 12) we may calculate the Feynman amplitude R for any combination
of initial and final helicities. (Using parity conservation and time
reversal invariance only 20 amplitudes must be calculated. ‘See
Section I.)

We next form partial wave helicity amplitudes

1

! J - b (x,w) J

(h, Mg RTIA A) Zv/nRK4h3;hlh2 a5, (0) dx (III.21)
=
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%
where x = cos 6 and with our conventions )
2qE.E
T 172 i J
(n, AsTGD A, M) =8 . B L+ (n, MR N 2D
4 31 L 2 th4 K2h3 W (2ﬁ)5 4 3 T .

(III.22)

where we are temporarily omitting the isotopic spin part of the
' N-k
it £

calculation, we combine the partial wave helicity amplitudes into

amplitude (&i Sjk N) (N B p Finélly, after much tedious
amplitudes of definite parity according to the prescription given in
Section II. We have listed the results in Appendix B. Only the
expressions for TJP when J > 3 are listed. For smaller J's some of the
ampliﬁudes are not present, (We‘kﬁow from Section I that for J = 0
there is only one amplitude for each parity and for J = 1 there are six
amplitudes for each parity.) And when J < 3 those partial wave ampli-
tudes which are present contain extra terms, so called off-mass-shell

'ﬁ?)

. k
terms . It would take us too far afield to launch into a thorough

*) We may also relate RJ to the TJ of Section I.

qE. E .
J _ 172 -1i ]
Wy, g Wy Bl = =55 5 g AR )
(270) :
*%) 1In the expressions (writing t = (p3 - pl)z)
2
t2= et
E~-m t-m
2 4
t2= m2+t+m2,
t - m C =-m

etc. Those terms with no denominators on the right-hand side of the
equations will produce off-mass-shell terms in the partial wave
amplitudes.
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discussion of such terms but a few tentative remarks can be made on the
basis of some examination of their properties in the present case
(no details will be given).

The on-shéllv(J > 3) amplitudes are found to have the

expected threshold behavior

i1y

FU-2+1 P

T "o~

It

2E@-D+1 P=- R

g
€ =( _ 1) are the lowest orbital momenta which can appear for fixed
2L + 1 | |
.)

Thus, these on-shell amplitudes, if evaluated for J < 2,

d 22y P= i(-l)J and at threshold & ~ g

will not have the ordinary qZLminl threshold behavior, and can even be
quite singular at q‘= 0. But the off-shell amplitudes do turn out to
have the "proper'" threshold behavior (where "proper' includes the fact
that for q2 = 0, parity and angular momentum comnservation may forbid‘
L = 0 in the second order diagram). Another argument in favor of keeping
these perturbation theory terms is tﬁat they are the result of our field-
theoretic calculation (i.e., they are present in the Feynman amplitudes)
and, in addition, they often seem to express some physics, at least
to second order,

On the other hand, We‘may argue against‘keeﬁing the off-mass-
shell térms for the following reasomns:
1. These terms frequently turn out to have quite divergent high-

energy behavior and thus must be damped out anyway before used in a
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dynamical calculation.

2. Single particle exchanges generally are a poor approximation for
the low partial waves especially when there is absorption present?s).

3. S-matrix theory does not seem to contain such terms and in a
dynamical calculation we want to use as our input just the
singular part of the interactiomn.

4. Choosing a different field theoretic coupling for the ﬁNN* vertex
would result in different off-shell terms appearing, so they are
ambiguous if nothing else.

Fortunately, in our dynamical calculation we will not be
considering a J,P state where such‘terms are present, but on the basis
of the previous arguments one is inclined to favor discarding the off-
shell terms when they are present and a dynamical dispersion-theo;efic-
type calculation is going to be made. In such a calculation, the proper
_threshold behavior is usually guaranteed by the choice of amplitude
or by making suitable subtractions in the dispersion relations.

When we estimate the signs and strengths of forces in the
various J, P, I NN* states by calculating the theoretical wvalues with
momentum factors divided out we shall also give the results for the
off-shell amplitudes but not take them too seriously.

Before doing this, let us consider the N+ N —» N + N* OPE

amplitudes
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jﬁ+ fﬁ f% kL | —fb

’Fz. ?I | _ Tl ?’-

(a) (b)

X
The N4+ N >N+ N OPE Interaction

Fig, 5

~As the figure symbolically shows, we must form the difference of the
amplitudes with particles 1 and 2 interchanged in order to properly

ki
antisymmetrize the NN — NN amplitude.

3 * i
4 % MM c
= et p? g SRR, (__)
Baghy ih M2 EEEE ©\i
= ey —2 - > -
_{up<p4,x4> (0, + 10, w(oyny) TNy Vs ulEy,n)
2 2
(P3 = pl) - B
- i o — ;
w0 (g + 1)y ulN) B3N Y U(pz,Kz)}
- z 2
(pg = Py)" = 1
(III.23)
where
(p3 p1)2 = 2M2 - 2E1E3 - 2pp' cos @ (I1I.24a)
( P )2 = ZM2 ~ 2E.E., + 2pp' cos 6 (IIL,24b)
P3 2 173 ;



and
2 , '
(py - P{)” - W =2pp’ (z - cos 6) (I11.25a)
(p4 p2)2 -1 = -2pp' (-z - cos 6) (TII.25b)
with
'2M2 - u - 2E1E3 ‘
z ={ T x (111.26)

Using Eqs. (B-21 - 24) we can calculate R for any set of initial and
final helicities and then form partial wave helicity amplitudes
according to equation (III.Zl), Finally, we combiﬁe these into
amplitudes of definite parity following the description in Sec. I. The

results are:

JJ o a JI@+ D (2) (z)'
“,66 272 @I+ D [:QJ+1 " Y1 E"l * By z:l
: J even
o]
= 0 J odd. ' (111.275)
(Z) (z)
2Q;

JP a 1 J+2
t3,16+ = 3T o' JG-1) (@) () <J+2)< G CHD - Gy ein T

(2)

Q§ +By )
T (2J+1) (2J—1) 5 j e
- 2

=0 J odd, (III.27b)
JP__a ﬂ[:IEJ + 13 N Q(z) 1 .
9,12+ J6 (23 + 1) U1 pp " (III.27c)



L A Byp  ByPE,
W Py T3 I
M ; J even (I11.27¢)
¢, p'E B.p G.p  C,pE
(2*1+1) +z(1+2¢4)
M 2 2 M :
L J
0 J odd
o o i
p'E -
1 1P 1
F(H-zm pBZ o KR ) + ﬁ"‘(“BlP'El - Q;lPEQ.)
M pE
JP _a_ 1 (z) 211 4
5. 8. = T6 pp'<QJ 2 (2 PRy - By 9?)
B.p'E .
l 1 1 Z L
(‘2 T ) TP Byt ByPEy)
. L 84 pE
2 (% b, + %1;_4_)
. "D
-
~ E e
L. . 1 P
M
- BJO A > J even
i . 1 1 Py
= (Oltlp E1 + BIPE4) +z (TP 012 + =
M M
# J
=0 J odd. (III.27d)
JP a1 AT+ D [Q(z) Q(z):] .
- ; "
6,7+ ~ J6 pp @1+ 1) J+1 J-1
-B,p E B.p B,pE
l: 2 ; Otl) + z (-—-il-ﬂ— 2*4) Jevenr
M
=0 J odd. (I1I.27e)
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6,7-

JP
2,3+

JB o _
2,3+

JP
14,15+
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N6 pp' (23 + 1) J+1

-a _1 WJ(J + 1) < B(z)

(Z)

o.,p'E -a.p O.pE

2 L 1 : 1 274
[(‘"‘f‘c'""“'*z“”l)”( i ] |

M 2 M _

. ( 4P BPE, )
*
i\, .

R [’Bz b z__J - % %30

0 J odd.

272 p

23+ 1

2 (z) |.
et A I:Of2+1322:|

0 J even .

’f]i?

(z) (z)
s L{I:JQJil +(3 + 37

(z) : N (2)
_ 1_' JQ511 +(J + 1)QJ_1
272 p 2.3 + L

J odd

} [+ 8, 1]

J even

] oy, 2]

r J@ - D@+ 2) -

J odd

(Z3-1) (2J+1) +t @31 233)

{ -1y ) 30, (2)

o J Q. ,(2)
JE+2 .
MCETSH) (2J+3)} By

(III.27¢€)

(III.27f)
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CZ) (z)

-+ J 1 ¥ QJ-H a J even
23+ 1 1

=0 J odd.

JP

Bi4,15+ =

JP
10,11+

JP

t10,11- ~

-+

1 a
3 e - e+

(Z) _
[ SR LN LTS ] .
G- 1)(2Jr1) B 3-1) (ZaD) (23+1) (23+3) 1
-Q. (2} + Q... (z) |
J=-1 JH-1
[ it D } By Bl
0 J even, | (I11.27g)

(Z) (z) '
L2 1 33,1 +(I + g7y (l.p o - PyP E1)+
J& pp 27+ 1 . 2 2 i

B, PE
1 : 1574
ex(den -7
(04 | a
(z) 1 Lo L _1L
+Q; T PPy P ) T E{m P e PR,
‘ . pE
1 14
+SJO [Epa2+ e ] J even
M
=0 J odd




G pE
2 1 1774
7 By [2 P Q& +—% :]
M
. 'E - B
(z)| (L B P By L 1
+ QJ 5 P &2 Sy -l B ot - 5P B2 w i h E4 J odd
M . M
=0 J even, (III.27h)
Whe;e
4 2 G ; (Ei i M)ﬁB + 0E, + M)
a=" =% fe" °E- /pp ~ (III.28a)
2’ ] P|2
a1,2 = ——-E-——E =z | L2 = (III.28b)
1 (B, + M(E, + M)
3 A
1 p
B = 2p' [:i + = ]
1,2 By E M (&, + M)Z(E4 +u (III.28c)

and an i spin factor of - 2/3 fg,has been included*)in a.

We have chosen the phases so that our inelastic amplitudes
are real (which will make our Borm input real and symmetric) and as
we shall see later, the results of our dynamical calculation are inde-
pendent of the sign of the inelastic amplitudes, The partial wave
amplitudes listed above are valid for all J and we note that off-shell

pieces only appear for J = 0 and 1, and thus are mnot present in J = 2+,

o %
* The i spin amplitude is (N Ty N) (Nj Bjk N).
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‘ %
the state for which we make dynamical calculations ).

* %*
There is another NN — NN OPE diagram which we have omitted

. ] idr)
from our discussion

N N‘K

e k3
An N + N= = N+ N OPE Diagram which has been Neglected

Fig. 6

The reasons for choosing to calculate the amplitude for the diagram
of Fig. 4 but not that of Fig. 6 are principally practical ones with
only limited theoretical justification. Probably most important is the
fact that we have almost no ekperimental knowledge of the ﬁN*N* vertex

* %
though we could estimate an effective #N N coupling constant using SU6'

* Qur difficulty with off-shell pieces may be related to the pheno-
menon discussed by S. Mandelstam, Nuovo Cimento 30, 1113 (1963), of
extra terms which are present in perturbation amplitudes but which
will not be present if sufficient Reggeization, including that of
the external particles, is performed.

b Both Fig. 6 and Fig. 4 represent pieces, perhaps partially over-
lapping, of the complete NNx — NNx interaction.
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On the theoretical side,'since Fig, 6 contains no unstable
vertices, there will be no force cut which runs into the physical
regionﬂoas there was for Fig. 4, and thus, no opportunity for a Peierlé
type enhancement (see the Introduction). In any caée, in our actuai

dynamical calculation all elastic forces are omitted so naturally

Fig. 6 will also not be included.

. Properties of the OPE Amplitudes

Now, let us go back to the OPE partial wave helicity ampli-
tudes we have calculated and briefly discuss their threshold and high-
energy behavior, After a great deal of tedious algebra and using the

relation

£
1 2 1
Q& —r ST T Z -~ (I11.2%)
' n=1

* *
we find for the large W behavior of the NN - NN partial wave
amplitudes the results summarized in the following table, which gives

the energy dependence of the leading term for W = o (8 = WZ).

* 2
% The cut stops at S = M + M)~ - p2/2.
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Table II

3 ;
The Energy Dependence of the Elastic NNf OPE Amplitudes in the Limit

W o (S = WZ)
Feptdsila=g| oy FJ=0ld=1{d=2]|3>2
J J ,,
T Const | Const | Const T S Const
1 , 11
TZJ Js Js WAL Tlg s | const
TBJ | s s | gnS/s Tlg s | afs | 1pfs
T J s | 148 I g% 52 s | gns/s
4 | 1% .
T A J% J% T o S2 S2 Const
5 15
3 ' oJ s
e s s | Const e s | Ws
s s |afs | 1Afs 3 Ns | 1Ws
7 J s S s/s 7 J S s | gnS/s
g : Ans 18 n
J J
T S |cComst| S | snS/s g S | s
Tlg s | afs 1Ns ng Const | gnS/S

In this Table the J = 0, 1, 2 columns correspond to the
amplitudes with off-mass-shell terms included. For J > 2 there are no
off-shell pieces. (Some of the amplitudes in the J > 2 column may be
missing a factor of gn S.)

As mentioned earlier we note that the low J off-shell ampli-
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tudes tend to violate the unitarity limit (TJ ~ comnst) very badly
while most of the on-shell (J > 2) amplitudes are reasonably behaved

*)
for large W.

Before these badly divergent amplitudes could be used
in any dynamical calculation one would have to damp them in some
way; e.g8., by use of a form factor modification at the wvertices
(although the expressions usually proposed do not seem.theOIEticaliy
justified since they imply the existence of low mass intermediate
states which do not exist) or by some Regge-type cutoff.

Now, let us examine the threshold behavior of the elastic
NN*—aNN* amplitudes and from this make some crude estimate of the
sign and strength of the forces in different i states.

Using the limit

1

; o+
Q(X) > L -1-) (III.30)

!
2 x>0 (2f+ D7 \x
We evaluated the amplitudes of the matrices representing elastic
Y :
NN scattering for definite JP states in the limit q2 - 0, keeping
the lowest order term in q2, and then diagonalized these real
symmetric matrices (which are 4 x 4 for J > 2). Since we do not

usually find high J resonances appearing in elementary particle

% It is interesting to mote that the J > 2 helicity amplitudes obey
the heuristic rule T ~ (1/8) (4 8) M+ B for large S(modulo a
possible factor of gnS. The behavior of the low J off-shell ampli-
tudes may also be predicted by determining the u dependence
(u = crossed momentum transfer = (p3 =- pl)z) of the helicity ampli-
tudes before a partial wave expansion is made,
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The results are listed below in Table III,.where the momentum

1 F
dependence of g T

P

calculation the wvalue G-2 = 43 corresponding to PN*

Table TIII

is given in parentheses following the JP (in this

100 MeV was used).

%*
Eigenvalues of the Elastic NN OPE Born Amplitudes Evaluated at

Threshold for States of Definite J, Parity, and I-Spin

P Eigenvalues P Eigenvalues
¥ I=2 I=1 ) I=2 I=1
+ 4 - 2
) 1080 359 0 cea™) | - 170 56.4
. " 64.7 - 21.6 ) 5 152 - 50.7
I oe€a) | .00612  -.00204 ||1° (") 20.7 - 6.90
- 105 34.9 o - 2.86 .954
145 w 48 .2 .00474  -.,00158
ot g%y | -00300 -.00100 2" ()| -000628_ -.000209
off 4 -.0125 .00417 off 4 1.05x10~7 -3.49x10-8
- 24.8 8.27 - 790 26.3
8.43. = 2.B1 841 -.280
2t (% .0659  -.,0220 2™ (g2y | ~-0354 L0119
on 1 -.00354  .00118 on 4 -.342 .114
-.0380 .0127 s 79,3 26 .4
913 - 70.9 79.7 - 26.6
i f -.866 .288 _— .567 -.189
3@@) |95 Los1 36 | hoss2 00150
- 659 220 i i3 144
905 - 302 3750 - 1250
4o, & 6.14 = 2.05 o B 325 - 108
4°(q) -.0291 .00969 & (q7) ~ 106 35.2
- 5.24 1.75 | - 7600 2540

The subscripts

It is interesting to mote that for J = l+ and gt the off-shell ampli-

"“"on" and "off" refer to on-

and off-shell amplitudes.
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tudes have no L = 0 terms for q2 = 0,

These diagonalized.threshold values can be used as a crude
qualitative guide to the attraction and repulsion produced by the OPE‘
potential in a way similar to that in which for a single channel case the
Born approximation scattering length tells us the sign and approximate
magnitude of the phase shift and hence the sign and strength of thé
potentialsA). (For this connection to be valid, the potential must
be relatively weak, at least too weak to produce a bound state.)

In our case where we have more than one elastic channel and
thus can have both attractive and repulsive "scatteriﬁg lengths"
for the same JP, the interpretation becomes much more ambiguous and
because of the difficulties associated with off-shell amplitudes the
results for low J states are somewhat in doubt. (But note that Z;ﬁ

and 2; values are quite similar.) With all of these qualifications

f£
we may still try to draw some qualitative conmclusions from Table IITI.
For the coupled NN, NN* problem we consider only the I = 1 column and
look for states with strong attractive forces (with our definitions
this corresponds to positive entries in the table). For I =1

we find possible attraction in the states 0, I+, 2, 3+, 4" (note

fo 85 - RS . SR R S
the alternating parities) and repulsion in 0 , 17, 2", 37, 4 .

(Attraction in I = 1 corresponds to repulsion in I = 2 and vice versa

* &
since the signs are opposite )). In those states with sizable

* Very crudely, if all attractions indicated a bound state or resonance

we might speculate that we have two series of rotational levels;
T =2 OF, 2%, &% I = 1z 0=, 2=, &~ .
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attraction, the NN* OPE elastic force should probably be included in
any multichannel calculation. But in states with (mild) repulsion or
only weak attraction we might be justified in ignoring this elastic
force. This seems to be the case for the JP = 2+ state in which we
are especially interested. Also, some further investigation of the
J = 2+, I = 1 amplitudes showed that they remained rather small (i:e.,
much below their unitafity limit) and repulsive in a region above
threshold. As discussed in the introduction we tend to concentrate our
attention on values of JP which allow the NN* to be in an orbital

= 0 state since that is when threshold and cusp effécts are most
prominent. And we look for states in which either or both the elastic
NN —aNN* force seems very attractive or the NN haNN* amplitudes rise
quickly from threshold to a wvalue close to their unitarity limit.
Hence, we next examined the threshold behavior of the inelastic
amplitude(s). We first verified that our amplitudes (including off-

shell pieces) satisfied the usual threshold momentum dependence

S . %)
QE%;F (P)LNN min :> NN min (III.31a)
which for J > 2 becomes
j;;? SR . (III.31b)
PJ (pl)J = 2 fOr P = (-l)J .= 1

The only states for which the rise of the amplitudes from the

inelastic threshold was investigated were J = g+ and J = 2 .

As is evident from Fig. 7 the four J = 2+ amplitudes rise very

quickly to values exceeding the unitarity limit (which is .5 for
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Figure 7

*
The J = 2" N4+ NN+ N inelastic OPE amplitudes
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inelastic amplitudes ) while the J = 2" amplitudes (not shown on
Figdre) rise much more slowly and peak (when they do so) at much
higher values of W.

The steep growth of the OPE J = 2+ inelastic amplitudes suggests
that since we seem to have all the prerequisites for a Ball-Frazer
or cusp type enhancement, we study in detail their effect on the élastic
NN — NN amplitude mnear the NN* threshold, And many reasons including
the fact that the elastic NN* OPE potential seems to provide very little
attraction in this JP state plus our desire for a coupled channel
problem of not unreasonable complexity, and finally;‘an interest in
studying the mechanism of inelastic coupling in its purest form, all
caused us to decide to ignore the elastic forces and use as our sole
dynamical input the J = 2+ inelastic amplitudes., With this input and
the requirements of analyticity and unitarity ( expressed via the
multi-channel ND-l dispersion equations) we shall study the coupled NN,
NN* J =“2+ channels,

Now that we have decided on the dynamical problem to be
investigated let us rédefine and list the four inelastic Born ampli-

tudes.

B.p'E
2+ a (z) 1 1 ) i
- = 4 — e e (o4
A1 ts5,8- JG'QZ pp' l ( B ¥ )

i o, pE
+ E; (ozlp'El + Bl P EQ) + o (%-p &, + -l—;—ﬁjJ (III.32a)
M

e

2+ a J?i

1
A14 = + t1’4?= + S [§3(z) - Ql(zi] ;, (31 + alz) (III.32b)
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/o, p'E. B.p
= 2t - _4a - 1 2 1 1
Ajs = tg 15 = =5 (Q(2) - @ (=) pp"[‘( v )
| a.p ., pE : .
+ B (‘%"+ 2 4):} . (III.32¢)
. M -
e adBay o) 20,02 Q0<z>) -

-While we have the amplitudes in front of us let us discuss some of their
properties which we shall need later in writing dispersion relations

-1
and setting up the ND equations.

For W —» o we find the asymptotic behavior

1
A13 i w2 W
1
A ~ @ .
(III.33)
1
A15 ~ W
‘ A16 -~ const.

In the limit W — 0, all the A J's (J =3, 4, 5, 6) ~ (W)-Q/é. This

1
kinematical singularity will be removed by a proper choice of phase
space factors.

*
The behavior of the NN — NN amplitudes under W — - W is rather

interesting. We find

AjsCW A
Jep’ pp'

. (III.3%4a)
AW A4, W

+



AL . Aje ()
PP’ Jep' ‘ (III.34a)
o (Gl By OO

S

i.e., in all cases we have

0|4

X

We also examined some of our NN — NN OPE amplitudes and the NN — NN

(III.34b)

amplitudes of Ref. 28 under the transformation W — -~ W. And, for all

of these examples of fermion-fermion scattering, we find
[ ¢wy | = 28wl . (III.35)
Thus, in contrast to the case of boson-fermion (e.g., 7«N) scattering

where we have the MacDowell symmetry

17wy | = 7Ol s

for 2-fermion scattering)amplitudes of the same parity are related.

35) *)

This relation has been noted by Hara who gives a partial proof

% Perhaps one may argue for a general rule by the following heuristic
reasoning: Consider what intermediate states are allowed in the
direct (S) chammel for the different combinations of two-particle
boson (B) and fermion (F) states. For BF — BF scattering only F
intermediate states are allowed. Since the parity of F = - parity
of F (anti-particle) reversing the sense of W corresponds to changing
the parity. But for BB — BB, FF - FF, BB — FF, and FF — FF the
intermediate state must be a boson Wthh has the same parity as the
corresponding antiboson. Thus, the same parity amplitudes are
related by W —= - W, Hence, our general rule would be that if the
intermediate state can be a fermion then opposite-parity amplitudes
are related by changing the sign of W,
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Analytic Structure of the Production Amplitudes

Next, we must investigate the analytic structure of the
*
NN — NN partial wave amplitudes. A more general discussion of the

singularities of production amplitudes has ‘been given by Cook and

1) 2}

Lee 7 ; and Ball, Frazer, and Nauenberg ° and will not be repeated here.

As is well-known, because of the presence of an unstable vertex

)

(N?r N#t) our amplitudes will have complex singularities which are

g : : : ' 36 ;
treated by an analytic continuation in an external mass ) (that of the

ki3
N is most convenient). Let o be the square of the variable external

(NW) méss. The branch points of our production amplitudes are found

by setting the argument of the Q functions, z, equal to * 1,

z 3 1

e ) which has these branch points.) We

(The Qj's contain £n (

find that the branch point lying farthest to the right is given by

s, () =2 O + o - 1) (1II.36)

+ L \/112(112 . @42) Ej- (M#u)z}[c - (- u)2:| g

2p

As we increase ¢ the point S+ moves to the right and reaches the
elastic threshold § = (ZM)2 at g = (M2 + sz).

This is the value for which an anomalous threshold develops,
since if we give ¢ a small imaginary part and increase ¢ further
the branch point cirqles around the point (2M)2 and S+ moves to the
left having gone from the second sheet through the physical cut and
onto the physical sheet. When o = (M + p)2 the branch point is at
S, =M(2M+ ) =8 _, and as ¢ is increased further (the vertex is

+
unstable for o > (M + u)z) the branch point moves into the complex
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% :
plane. With o = (M )2, the complex branch points are given by

o
g :%-(3MZ+M2~112)

I+

34 -—1-2- Ju2~(4}12 - ;_12) M2 - 1+ u)Z][M‘*Z - 85 = @B

2n
With our choice for the Qg functions the branch cut lies on the locus
of W (or S) corresponding to a éut.in the-z plane on the real axis
between -1 and +1. We have numerically traced the cut in the W plane
and find for our NN —>NN* amplitudes the singularity structure shown in
-Fig. 8; Because the complex cut crosses (at W= 2.033) the physical
. region for elastic NN scattering and thus intersects the elastic

unitarity cut, certain difficulties appear which will be discussed later.
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Figure 8

Singularities of the OPE production amplitudes in

the complex W plane
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IV. UNITARITY OF HELICITY AMPLITUDES IN THE ISOBAR MODEL

The unitarity relations and multi-channel ND-l method with
appropriate extensions for three particle states in the isobar
approximation have been discussed at length by many authors. Although
the details in these treatments do not always agree and some probléms
remain, we shall not try to give a thorough presentation of the subject
here but simply select the pertinent results we shall need from the
work of References 1 and 2, who seem to have considered the problem most
carefully. Based on Reference 1, Egs. (19), (26); and (34),
and Reference 2, Eqs. (3.8) and (3.9), we may write down the
discontinuity equations for partial wave helicity amplitudes (of
definite parity). As is usual when fermions are involved, to avoid
certain kinematical branch points we choose to work in the W plane.
Then, in ﬁerms of amplitudes Fij from which the kinematical singu-
larities have been removed (see the next section) the unitarity

relations (in the isobar approximation) may be expressed for W > 2M by

A JP __Jp JP
21 [F22(W+) i F22<W-):] = Fap () 0y () Fop (WD)

JP *2 - JP 2
+ Fy (0, o =M )O[W - (M +p)] W) Fyu(W_, a=M ),

1 | _ap JP __JP
JP JP *2 :
CFy, (W) + Fyi(W 00" =M )py (W) o[w-(2m + |-

JP . k2
F32 (W_’G =M ).
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1 [_ap JP 1 P JP
27 | F23 (M09 - Fzs‘“-’“i} = Ty (o, (W) Ty 3 (W_,0)

L.

JP . ) JP . )
+ Fya(i 0" = M) py (W) 6 [w- @u+w) Fyr (W _,0,0" = M 0),

1_( JP . JP | _ JP JP )
21 ]F33(W+,U’C ) = F33CW_,O,O' )] - F32(W+)0)DZ(W+)F23(W“;U )

-

Jp o 2 JP G2
+ Fya (050" =M Dp (W) 0 W -4 + p)] Fy,(W_,0',0 =M ) .
(IV.1)

where Wi =W+ 1ig, @ is the usual steé function (equal to one where
the argument‘is positive and zero otherwise) and o (¢') is the energy
square of the =N system (the N*) in its center-of-mass. The subscripts
2 and 3 refer to the two- and three-parficle channels, NN and NN=n
respectively, and thus fo; our case Whefe each 'channel may actually
consist of several channels (since for J fixed several L,S states

are possible) a summation is implied. (We recall for J = 2+ there is
one NN state coupleq to four possible NN* states). These equations
are identical in form to the partial wave unitarity relations for

. stable two-particie channels, The properties of the ﬁnstabie N* are
entirely contained in DB(W) which is a generalized phase space
integral (the integration being over o, the mass of the unstable
particle). Explicit expressions fo; pZ(W) and p3(W) are given in the
next seﬁtion. Since in our approximation we have (pseudo) two-
particle channels)the solution to the discontinuity equations may be
expressed in terms of the usual multi-channel ND-l method37) without

the full generality to multiparticle reactions as derived by
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38)

Blankenbecler Thus writing

-1
Fij = Nik(D )kj (Iv.2)
the constraint imposed by the unitarity conditions becomes
Im D, (W) =-p W) N (W) O ({w] - w) (1v.3)

where Wi is the threshold energy for chanmel i.
If F has force cuts with discontinuities disc F, then (in terms

of matrices)

disc N = (disc F) D (1Iv.4)

in the region of these cuts. With the matrix B(W) defined as the

dispersion integral over the force cuts of the true F

B(W) = 21i fdis;'F-(WT;)dW' ' (1V.5)

7
force cuts

-1
The basic ND =~ equations are

W-W - 1 1
NG = B(W) + i—fdw' [:B(W') - B(W):] eBIONG)  (1v.6)
0 ¥
: J A
W-W ] 1 1
D(W) = I - - Ofpgg,)_Ng(%,dtj Ty - (IV.7)
U

where the contour U is the entire real axis except for |W| < W, (where
the integration for Dij begins depends on the subscript i) and I

is the unit matrix. We have assumed that N satisfies an unsubtracted
dispersion relation while D requires one subtraction. (We have put

the subtraction point at the same place for all channels although this
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is not mnecessary.)

- Because the force cut (in the OPE amplitudes) intersects
the unitarity cut (see Fig. 21) the integration contour U must be
deformed to avoid the protruding singularities. As a result of the
anomalous threshold and complex singularities additional integrals
will appear in thé N and D equations, This problem is discussed quite
thoroughly in Refererces 1 and 2 (by performing an analytic continua-
tion in the N* mass). Although, (for reasons to be given in Section
VI) we ignore the presence of the anomalous singularity in our
determinental calculations, we shall make some further remarks on the
subject in Appendix C.

For a more complete discussion of the ND-l method, including

its properties and some examples of how the calculations are performed,
the reader is referred to references 37 and 34, and éther references

which are given there.
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V. REMOVAL OF KINEMATICAL SINGULARITIES AND CONTINUATION BELOW THE

INELASTIC THRESHOLD

We must now specify in detail the phase space factors pz(W)
and pBCW). These factors serve several purposes and must meet certain
: 39) A e v

other requirements . Principally they are chosen to eliminate
"kinematical" singularities (which we have assumed are not contained
. " " . *‘k)

in F) and to guarantee the 'correct threshold behavior. 7. The

partial wave threshold behavior (5 = Al

for spinless elastic
scattering) will not result from unitarity and analyticity requirements,
‘but does follow from the Mandelstam representation. (In non-
relativistic scattering the ordinary threshold behavior can be derived
if the potential is suitably restrictedﬁo)With our approximation for the
left hand cut (the "potential') it would be purely accidental if the
correct threshold behavior resulted and the amplitude wvanished at
threshold with the proper mbmentum dependence. Hence, we divide out

the factors of momentum so our new amplitude Wili just approach a
constant at threshold,

We have seen that the inelastic amplitudeé AlJ(W) (J = 3,4,5,6)
behave like ~ /pp' PZ at the thresholds (p = 0, p' = 0). And because
of their W — - W behavior they have the same momentum dependence at
the negative W thresholds. Using this and recalling the behavior at

W = 0 we choose phase space factors

%% There is no a priori guarantee that a suitable phase space factor
exists.
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W(W + 2M) 32W(W + 2M)
_pt I o e MW . ol - w?)t/2
p3(W) e W Lol 2 ;

2w (V.2)

' ) *
where we have so far assumed the N is stable. We now define
Fij = tij/‘lpi pj' (V.3)

(where tij = (Sij - Sij)/2i).
Because of a desire to have pz(W)_____§const and p3(W)______$const so
W— W >

that our dispersion integrals will be convergent, we were forced to
include a factor (W -+ ZPD-z in Py which introduces a kinematical zero
at the beginning of the left hand unitarity cut. The placement of
this zero is rather arbitrary ekcept fof the feeiing fhat it should
be reasonably distant from the region of physical interest
(W~ ﬁ + M*). Since we decided to ignore the integrations over the
negative W unitarity cut (see below) it does not matter that we have
disturbed the threshold behavior at the W = - 2M threshold. Aside
from this, Fij is expected to have no kinematical zeros and only
dynamical singularities throughéut the W plane and thus satisfies the
dispersion relations given in the previous sectiomn.

The Born amplitudes which constitute the dynamical input to

our coupled channel problem are thus given by

A _(W) :
T e R L) R V.4)

Although we shall shortly discuss the appropriate modification of P
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*
to include the width of the N , we note that it is correct when

%
forming the B to use the Py given above, assuming a stable N ,

1J

since the AlJ were calculated with this assumption.

41)

In the determinental approximation where we replace

Nij by the corresponding Bofn amplitude, those D integrals beginning
at the NN threshold (W = 2M) require the evaluation of B1J in the‘
region below the inelastic threshold (W = M + M?). The BlJ we have
formed are smooth functions at the NN* ﬁhreshold but they must be
rewritten before one can calculate their values for W< M + M*.

' Using the relations

p'— + i lp'l for p'2 < 0

1 2M2 - uz - 2E.E

Z 173
and thus,

_ 1 z + 1 i -1 22" e 3

Qo(z) =5 4n (E“T-TJ — 5 tan (;Taﬂth) = 1Q00
1

Qled =2 Qgy = 1 = 0y
Q —ilL (- 32'2- 1) +§z’] = iQ (V.6)
2 2 00 " 2 = o :

5, > N
B =232 Gy -3 Yy = s

oz 3 -
Qzﬁ“[‘az Q33'4Q22] =1 Yy oo

%*
we have, for W< M + M
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1
a Q)

s /E_Jpz |es| plef| |

B

L o - B]'.lp'lE]. + 2 (al IIE + B! E
. pE,\° : :
- z'2 (%pa2+—;;—‘t)] (V.7a)

10“32,03’ IP'I

a'(Q3 - ) (%P |Ey B:'LP)

B, = - +
15 5 I 'l M* "9
’p2lp3| P|P
a_p a_ pE, \: :
- z'(‘; + ZM* 4)] (v.7¢c)

a'/3a, ( Qs 29, Qoo)
+ - 5
¢°z|°3| IP'I

35 T 21 T 15 (i)
where a prime on any quantity refers to the unprimed quantity evaluated

16

with p' replaced by lb". (a, @, B are defined in Eq. (III.28)).

In Fig. 9 we have graphed the amplitudes BlJ in the region
near the NN* threshold.

In Figs,lO(a) and 10(b) we display the continued amplitudes
BlJ over the whole region between the elastic and inelastic thresholds
CM<W<<M+ M#). The rather troubling behavior near W = 2,033 is

a result of the fact that the branch cut joining the complex
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Figure 9

. ,
The NN - NN input Born amplitudes
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Figure 10

e
The NN —9NN’ input Born amplitudes in the region

between the elastic and inelastic thresholds

(a) 314(W) and BlS(W) (b) Bl3(W) and 316(W)
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singularities crosses the real W axis at this point. This strong
peaking of the Born amplitudes is reflected in a corresponding

peaking in the elastic NN amplitudes which we calculate via the
determinental approximation. But for several reasons we felt justified

in ignoring such peaks., W = 2,033 corresponds to T 330 MeV and

1ab™*
thus lies essentially in the purely elastic scattering region. But
in our calculation we center our attention on the region close to the
inelastic threshold (Tlabcﬁ 646 MeV) and in fact believe the results
are only valid for energies not too far from W = 2.176. (When the
dynamical calculations were repeated using BlJ's cut flat for
U< 2.1783 Lia.y B W< 2.176) = B]_J (2.176), the results near the
inelastic threshold changed very little.) We also believe that a more
exact treatment of the NNz state and a proper continuation of the
dynamical equations past the anomalous singularities would tend to
eliminate any spurious behavior.

Now, let us include the instability of the N* by modifying
42)

p3(w) to take into account the width of the resonant Nnt state .

To do this we replace p' in p3(W) by

W - M2

;[ do{{[o -+ wile - @ - M)2]>1/2 .

T 2w _
a+w? (v.8)

. 2M (n/2) o
*2 2 * 2"pu
(6 - MY + (2m 121)
where

*
= the width of the N

_L(G) 2 q3(EN+M)



=T -

2 _lg - (M + u)Z]fc - Cﬁ - u)z]-
= 4o

EN /qz o M? >

and ¢ is again the energy square of the Nit state in the N« center of mass.

To verify this replacement and understand how it is derived note that

in the limit I" = 0

p! —?_-»T)fp (s,0)8(0 - M*z)dq (v.9)

: i
= p' (for stable N ),

Thus, we have just a two-particle momentum distribution weighted by a

*
"finite width delta-function" ).

The limits on the integral for p;'are the smallest and

largest '"mass' square of an Nit state which is part of a total NNx

state with c.m., energy W,

11)

Following the method used by Nauenberg and Pais and

11)

Baz we can derive an approximate expression for p& the case of

very small width (width/mass of resonance << 1).

%) Heuristically, to understand the finite width ®-function, one can
note that since 1/(w - wy - i¢) = P/ - wo) + ind - wo) as
€ = 0, then it is reasonable to say
Im 1/ (@ - ®y = 1 v/2) € x 5@ - wo) or & - wo) = (y/27)/
[@ - wg)z
=

5(c - M

+ y2/41 for y finite. We also used the relations

* s
& L* [8(dc-M) + 8T+ M*)] with Jo + M* =~ ZM*.
2M
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With a very narrow width nearly all the contribution to the integral

; . . 7 i
comes from a very small region around ¢ = M ©. We thus may extend
the limits so that the integration runs along the whole Re ¢ axis and
_ then we can perform a contour integral by closing the contour in the

*: *
lower-half o plane enclosing the pole at ¢ = M . iM I', where I' is

%
the constant obtained by evaluating I'(g) for o = M 2. Although the
integral is formally divergent it is to be interpreted in the sense that

- *
only the contribution of the N peak is to be included. Performing

the contour integral using Cauchy's Residue Theorem and evaluating for

E
W= M + M we find

k 1/2
p! =»p = Ev'z + i M*w a (V.10)
u u

M +M

The real part of pg gives an approximate description of three-body
phase space when two of the final three particles form a narrow width
resonance and we are not too far from the resonance energy. The

imaginary part. of p: results from that part of the extended integration

W - M)2 <og< (W+ PDZ corresponding to [6 - M< W< /o + M (below
the inelastic threshold) and is a useful expression when some type of
effective range (or K matrix) approximation is being made.

However, for widths much larger than a few MeV graphical

comparison shows that p& is not a very good representation of the true

%*
p& especially if one is interested in the region close to the NN

threshold. In general, Py

is larger and flatter than p&; while even
for rather large widths pd rises steeply upwards in a short range

around the inelastic threshold.
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At larger energies (W > 2.5 BeV) all expressions for p', pé, pS give
very similar numerical values. For this reason, and because of the
computing time (and hence expense) of doing an intégral for each
different value of W we used pg in our expressions for p3(W) when
they occurred in integrals (viz. for Re Dij)’ but used p& when no
integrals were involved (e.g., Im Dij)' '
In Fig. 11 we have graphed pB(W) = E%T. for several different
values of the N* width.‘ This shows clearly that the broader the width
the slower and flatter the rise of Py As we shall see later this is

reflected in the shape and height of the peaks produced by the inelastic

amplitudes.
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Figure 11

% *
The NN phase space factor Pys for different values of the N width
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VI. DETAILS OF THE CALCULATION AND GENERAL PROPERTIES OF THE SOLUTIONS

In this section we shall describe the details of our
approximate calculation. The numerical results and conclusions are
given in the next section.

Rather than solve the set of full ND-1 equations we decided

37)

to employ the lowest order determinental method in which the
iﬁtegralkequation for N, (IV.6), is simply replaced by the approximation
N(W) = B(W) and then D is calculated from N by the dispersion relation
Eq. (IV.7). Of course, in our calcﬁlation, as in any calculation of
finite size, B(W) is approximated by including only that part of the
potential due to the exchange of certain particles, usually the
lightest mass ones (corresponding to the longest range part of the
potential) or exchanges which have features such as form or.strength
of coupling, or singularities, which are of special interest., As
discussed earlier, we chose to keep only the OPE forcé. Primarily, we
used the determinental method because we did not want our calculation
to become excessively involved and costly (= much computer time).

But, in fact, considering the other approximations made in the problem
(e.g., for B), it is not clear that the full N?D_1 calculation would
necessarily be superior or the results more ''accurate", or at least be
that much better to justify the greatly increased complexity of the
method. 1In problems which have been solved both by the ND—l and
determinental methods the general features of the results usually are

43)

very similar . In a sense it is misleading to just call the

. . ’ -1 "
determinental method an approximation to the ND equations. Rather
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it should be thought of as a different method, with special properties
of ité own, which may or may not be a useful or accurate method for
any particular problem. Several of its features are undesirable,
especially the dependence of results on choice of subtraction poinf and
the lack of symmetry (Fij # Fij) of the solutiomns. The ND_l meth?d
does not have these troubles aﬁd in that sense is superior. .

We thus have the following set of equations to solve (note

that we are changing some of our earlier conventions)

_ -1
Fij = Bik(D )kj (VI.1)
(0]
™ ]
5 s ) W - WO) oy Bij dw
44 ij N W -Www' - wo)
W, (VI.2)
x
- 00
1
] W - wo) Py Bij dw
T W' -ww' - wo)
..W'
i

where Wi is the threshold energy for channel i.
With our approximations (neglecting all but the inelastic
amplitudes) Bij = 0 except for Bl3 = 31, qu 41, BlS = B51 and

B 1’ and these are given by the OPE amplitudes of Section V,

ig = B

Writing these as B 37 with J = 3,4,5,6 only (subscript 1 refers to

1
*
NN state and subscript J = 3,4,5,6 to NN state), we have

| Py By dW'
Dy ™=~ (
W' - W - ig) W' - WO)

-ZM -W

(VI.3)



. 0 -0
= 1
D =(‘f_WQ) f+[ Py By dW
Gl % W' - W - i) (W' - W)
Wi ~Won X
(VI.4)

where Py and pg are the phase space factors for the (two-particle)- NN
and (three-particle) NN* channels, respectively, discussed in
Section IV,

Allowing for the instability of the N*, WﬁN* = 2M + n.

The only other non-zero Dij are those for which i = j and

then D,, = D,, = 5,, =1, Thus, our matrix D may be represented in
ij ii ii : -
the form
L Bhg By Dy B
D31 1 0 0 0
p = i, ® L1 & R (VL.5)
DSlv 0 ’0, 1 0
D6l 0 0 0 1

In writing the equations for DlJ and DJI we have ignored any possible

deformations of the contour of integration along the unitarity cut to

avoid intersecting the force cut crossing the physical region. (The

intersection occurs between WNN and WNN* and thus only DlJ (and Dll)

need be modified.) We shall try to discuss this further in
Appendix C but we can remark here that because we are using the

determinental method our integrands contain B

13 and thus we are
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including some of the effects of the complex singularities. And,

of course, with a proper treatment of the three-particle NNt state

4ty

such anomalous cuts may not even be present ‘

Before we further discuss the calculation of DlJ and DJl let

us look at the form of the solutions for Fij'

The elastic NN scattering amplitude

B L
Fi1 " B @ g (VL.6)

sum over J = 3,4,5,6. Using the relation

cof D
i 1J -
@1 = %r D W )
and the matrix for D, Eq. (VI.5), given above, we find

-B . D._

F = ___L'T.J—l.. (VI.S)
11 1 -D D

1J 7J1

with a sum over J implied, The off-diagonal inelastic amplitudes

turn out to be

B B
Rt 1J
R T V. 9)
13 P51
and
e =
Fi53 = By + D G D ) =85 = By By (VI.10)

(sum over XK)

In general, FlJ # FJI’ but it is intéresting to note that if we had
only one inelastic channel we would have the symmetric solutions

Foqg ™ Fap-
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As will be mentioned in the next section, our numerical results
were not very symmetrié. Of course, this could have been avoided if
we had used the full ND'l equations.,
Several further approximations were made in calculat%gg
D1J and DJl' The integral over the left-hand unitarity cut, jﬂ y
was neglected because for W in the region of physical interest:?i

the denominator (W' - W) remains almost comstant and is never near zero

(as it can be for the integral on the right cut); thus the integral_[

-W.
will show little wvariation with W and is considerably smaller than =

the similar infegral over the right-hand cut. So we are essentially
neglecting a pfobably small constant piece in the integrals for D1J
and DJl' And of course we are neglecting much other singularity
structure (e.g., due to other particle exchanges) so the neglect of
this cut which is rather distant from the physical region is not
a further drastic approximation.

The choice of subtraction point, WO’ is a difficult matter.
Usually in the determinental method (recall with the full ND™© that
the results are iﬁ&ependent of Wb) the subtraction point is chosen to

41)

insure some approximate degree of crossing symmetry and thus WO is
placed near or at the right-hand edge of the force cut (near the place
of maximum discontinuity) due to the exchanged particle. At the
subtraction point, W = WO, we have D,, = &.. and hence F,. = B... We
ij ij 1] 1]
expect the Born approximation to be a fair representation of the true

amplitude over that part of the force cut where the diagram being

considered provides the only or major discontinuity. In our case,
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" where the right-most part of the OPE cut lies in the complex plane
and intersects the physical region the selection of WO is not so easy.
The decision was largely‘made by considering the singularity structure
of perhaps the next most important part of the potential which we have
omitted, that due to p-exchange (Fig. 12),

r
N N

N N

3
Rho Meson Exchange Interaction in N+ N—=N+ N
Fig. 12

where we assume the p is a stable particle with mass = 763 MeV. Now
%
no vertices are unstable (M < M + mp) and thus, no complex singularities

are present., The partial wave amplitudes have a force cut on the

right half plane which runs from S_ to S+‘where

s, = % G + M2 - mpz) + %[(mz S mpz)z . B o WG -

, g_yﬁ] L (VI.11)
m - )

o)

In the W plane the right edge of this cut lies at W < 1.84 Bev.
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Since we are omitting this part of the potential, we decided
to place our subtréction point between W = 1.84 and W = 1.88, the
beginning of the physical region for elastic NN Scéttering. So we
chose W, = 1.86 as a reasonable 1ocation; In our numerical work W

0 0
was varied between WO = 1.60 and WO = 1.86 and we found that the results
(viz., location and height of peaks) were rafher sensitive to the
value of WO. This seems to be one of the most undesirable feétures of
the determimental method.
By making one subtraction in our dispersion relations for D

all integrals are convergent since in the worst case pB const.

16 ™~
as W= o. Nevertheless, the calculation was madevwith a (variable)
cutoff on all integrals. One may ask why use a cutoff or make
subtractions when they are not needed? Because we know that we have
omitted much physics from our problem - e.g., other particle exchanges,
other chanmnels, possible Reggeistic damping of amplitudes - and by
having some parameters which can be varied we can get some feeling
for how our solutions depend on tﬁe physics we have left out. Using
a cutoff, for example, gives us a way to study the possible effect
higher energy channels and modified high energy behavior of amplitudes
would have on our results.

Let us now rewrite the expressions for D and D separating

1J Ji

out the real and imaginary parts.

W %
W - W) f © by B |
D, = - ——— P -ip, B,.O(W -W_)
1J s ' ' 2 71J NN
B ™ Wy W' - W)
NN
R I ;
=D _+ 1D (VI.12)
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W
. C
W - W) f P, B, du'
0 3 13 ;

B,z 5 i i -ip, B, O - W )

JL 7T . (-W-t - W) (W‘ - WO> 3 1J NNt
R I WNNﬂ

= Dy + 4 Dy » (VI.13)

where P signifies that the principal value is taken when W lies in

the range of integration and WC is the cutoff energy.
1

p

In the integrals for DR P, = —= was approximated by
p" JIN* 3 W
Re — since the time for numerical integration would have been greatly

W
increased if we had to calculate p; (which involves an integration)
for each mesh point in the Simpson sum. The wvalue of I" used in pg was
chosen in each case so that Re p: resembled as closely as possible the

actual p;. The error made by this approximation is negligible since

the shape of the (cusp) peak is determined primarily by the 3 in

1
pu

I i — ——
DJ1 and here the true p3 = 5 Was used,

Numerically, the principal value integrals were performed by

subtracting out the singular point

pr(w') BGH') dW' P[[o(w')B(W') - B Ia’

+
W' - W - W) W' - W@ - W)
+ p(W)B(W) P f < , (VI.14)
w' - Ww' - WO)'

where the second integral on the RHS can be done analytically. To do

the numerical integration, Simpson's rule was used, after a change of

W
variable was made, W' = _EE%EEE ¢
Increased accuracy was achieved by using the Aitken convergence
45
procedure ) in which Simpson sums for 4n, 2n, and n intervals are
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combined according to the formula

-

SUM(4n) - [ SuM(4n) - SUM(2n)]? “} = SUM .
[sM(4n) + StM(n) - 2 SUM(2n)l

General Properties of the Solutions

Let us rewrite our solution for the elastic NN J = 2+

amplitude and note some of its properties. We have

Py By By

p = e sin e S S VI.15a
2 F11 e M s 6NN" ( ks
‘ L= Pn
by, (0% + £ D7)
or p, Fll = (VI.15b)

R _R T I ., R _I I R
(1 =-Dyg Dy +D ;D) -1 DDy + D5y Dyy)

(a sum over J is'always implied).

If we are above the threshold for inelastic scattering we must

remember that BNN’ in general, will be complex and then we have

g5HH o g o« R_4 | |
A o R e GPELI8)
-25
where 1 = e and & = SR + i BI.

One of the first things to note is that our result for F11 is
independent of the sign of the inelastic amplitudes. Whether positive
‘or negative the effect of the inelastic amplitudes is attractive in the
elastic channel. Even the relative signs between the different BlJ's

are unimportant.
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If there were a resonance in the elastic scattering amplitude
we would have mear the resonance energy

§ = (Fl/Z) Al
Py Fiq ={‘ (VI.17)
(W - W) + 1T/

where I' is the total width (at half-maximum) of the supposed resonance

* :
(not to be confused with the width of the N ) and I',. is the fpartial

1

width for decay of the resonance into channel 1.

T = :E: Pi’ where the sum is over all accessible channels).

i

. Defining
I R R S | )
(DlJ DJl) + 1(DlJ DJl) % +1ap
R R I iL o R I XL R = d. 4+ i d
(A =By 05 +D ;D) « 1D Dy + D)5 Dy i &
{VI.18)
we can write
5 : 2 2
| B a_ + i a; . (aR -+ ar )
Pp F11 "4 +14a. . (VI.192)
R I (aRdR + aIdI) + l(aRdI - aIdR>
or
B (aRdR + aIdI) - 1(aRdI - aIdR)
p, Fiq = 5 s i (VI.19b)
. dR + dI

Equation (VI.19a) is useful for comparison with the form of Eq. (VI.17)
and (VI.19b) is cohvenient if we wish to examine the real and
imaginary parts of Py Fll'

Comparing Eqs. (VI.19a) and (VI.1l7) we see that at resonance
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(6R = n/2)

d_ =0 (VI.20a)

or
(VI.20b)

and thus using (VI.20)

coe () e a(B) e () - o

(pz F11)res. - i 2 )
. R
(VI.21)
In terms of the elements of Dij
Iz R R I
Tty = Ty Uy
n="7 R R T (Vvi.22)
Bpg By ¥ 3y By '
R I
D D
L T oy sictils | (VI.23)
Iy i
1J 7J1
Above the threshold for inelastic scattering 7 < 1, and so
- Lo
Py Flll < 5 < L, ldIl > laR], T > Pl. The presence of

inelastic scattering will cause the elastic amplitude to decrease above

the inelastic threshold.

For energies below or close to the inelastic threshold

(so that Py = 0), we have D§1=v 0 (aI =~ 0) and we may write

- (D%J Dﬁl)
Py F11 = @-oF 0By - 1. 8y [ (VI.24)
173 °n 1.5 D
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Now, the resonance condition is

R _R
Re det D = dR =0=1 - DlJ DJl = det (Re D) | (VI.25)

and ‘the unitarity limit is
lo, Biql < 1. (VI.26)

Clearly, (VI.22) and‘(VI.ZB) reduce to

n=1 (VI.27)

|'1

=1 | (VI.28)

as they should for energies below the inelastic threshold,

*
For reasomnably narrow N widths P is small for W < WNN* =

*
=M+ M (see Fig. 1l1) and hence any resonances below the inelastic
threshold are essentially given by Eq. (VI.25).
g R _R
Since the product DlJ DJl

coupling constant, G, will bring us closer to satisfying the resonance

*
is positive, increasing the N Nx

condition and thus increase the height of any peaks (or cusps) present,

The factor DR

517 defined by the principal valve integral in Eq. (VI.13),

has a cusp (at the NN* threshold) whose shape is controlled by the
phase space factor P3e The cusp is sharpest and most pronounced when
P3 rises most steeply and quickly, and this occurs when the width is
narrowest and the orbital angular momentum of the NN* state is
lowest. (In our case, for J = 2+, LNN* = 0.). for higher angular

momenta or broad widths Pg rises more slowly and thus shifts the
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effects of the integral to higher energies, where its wvalue is reduced.

From the resonance condition, Eq. (VI.25), it is also easy
to note that the éffect of each inelastic chammel (J = 3,4,5,6) is
additive - each one adds to the attraction and increases the likelihood
of a resonance,

We can briefly observe a few other general properties of our
solutioﬁ. |

From Eq. (VI.15) we see that for ver& large coupling constant
the 1 in det D may be neglected and Py F11 becomes independent of the
magnitude of G with |p, F))| near its unitaricy limit if 55| << o1 ]
for all J. The inelastic amplitudel(see Eq. (VI.9)) F_. =0 like

J1

% as G— o ., When such strong coupling is present there is a de-

coupling between the NN and NN* channels and the transition between
the two- and three-particle states will not be a permﬁnent (asymptotic)
one. However, we must be a little cautious in drawing simple general
conclusions about the large G limit because it is well-known from

13,12)

the study of several soluble models that ghost poles will

appear for G sufficiently large.
In the weak coupling limit: G — 0, and both F

oC G2 - 0.

and FJ -

1J 1

BlJec G and Fl1 - - BlJ DJl
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VII. RESULTS AND CONCLUSIONS

Our numerical results are summarized in Figures 13 - 20,
Usually what has been plotted is the square of the elastic NN
scattering amplitude, lpz Flllg versus c.m. energy so that the unitarity
limit (below the inelastic threshold) for the elastic channel is ll

In Figures 13, 14, 15, we show the dependence of pz F11 .
on the N*Nﬂ coupling constant for three different values of the N*
width P = 1, 25, and 125 MeV. The quantity A is directly proportional
to the coupling constani G. For A 2 1 the curves become rather flat;
we seem by then to have saturated the elastic amplitude with inelastic
forces. The peaking seems to move to somewhat lower energies and
there is a possibility "'ghosts' have appeared in our solution (see
further comments later in this section). From these figures we note
the general features that increasing the coupling constant cauées
cusps to grow and become more prominent until they become rather flat
and near the unitarity limit below the inelastic threshold but fall
. off rather sharply above that pﬁint. For small widths the peaks
display a definite asymmetry as the lower energy side grows to the
unitarity limit with increasing coupling conétant but the high energy
side approximately maintains its shape. As the width of the N* becomes
larger the cusps become less distinct - they are '"woolier" (moré
rounded) .

Also now the loss of symmetric sﬁape with incréasing coupling

constant, though still present, is less noticeable. 1In comparing

*
these figures one should remember that the width of the N and the



- 90 -

Figure 13

*
The elastic NN scattering amplitude squared with an N width of 1 MeV
* Y
for different values of the sNN coupling constant, For these curves

W, = 1.86 BeV and W_ = 500 BeV
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Figure 14

' %*
The elastic NN scattering amplitude squared with an N width of 25 MeV

& o
for different values of the NN coupling constant, For these curves

W. =1.8 and W = 500
0 c
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Figure 15 .

e .
The elastic NN scattering amplitude squared with an N width of 125 MeV

‘ * ;
for different values of the 7NN coupling constant, For these curves

W. =1.86 and W_ = 500
0 1 Cc
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Figure 16

The elastic NN scattering amplitude squared with input Born amplitudes

*
assumed constant (equal to their value at the NN threshold) for ener-

gies below the inelastic threshold, For these curves I'(N ) = 1 MeV,

Wb = 1.86 BeV, Wé = 500 BeV. Compare with Figure 13.
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Figure'17

%*
The elastic NN scattering amplitude squared with an N width of 1 Mev
and coupling constant A = .5 for different wvalues of the subtraction

point. For these curves Wc = 500.
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Figure 18

%
The elastic NN scattering amplitude squared with an N width of 1 MeV
and coupling constant A = .7 for different wvalues of the subtraction

point. For these curves Wé = 500.
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Figure 19

*
The elastic NN scattering amplitude squared with an N width of 125 MeV
and coupling constant A = .7 for different values of the subtraction

point. For these curves Wc = 500,
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Figure 20

' *
The elastic NN scattering amplitude squared with an N width of 1 MeV

for different values of the cutoff energy. For these curves WO = 1.86

‘and A = .7.
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effective N*Nﬂ coupling are not independent quantities. From

Eq. (IIL1.15) we see that T o< (G)2 so that it is not perfectly proper
to compare curves corresponding to different widths but the same
A(G). TUsing the experimental width T" = 125, the effective G derived
from (II1I.15) corresponds to A ¥ 1.7. For a smaller widfh A must be
reduced correspondingly.

In Section V we discussed the behavior of the Born amplitude
near W = 2,033 where the anomalous cut crosses the physical region.
This does produce some erratic points in the elastic scattering
amplitude near this energy which we have ignored for the reasons given
in Section V. But, in. order to get some quantitative idea of the size
of the effects, we recalculated the elastic scattering amplitude
using as input Born amplitudes which are constant for W< M + M#;
i.e., the BlJ's are cut flat below thelinelastic threshold with
BlJ(W'< 2.176) = BlJ(W = 2,176). TFor large widths most of the
differences are hidden because the peaks are so broad and flat.

But in Fig. 16 we show the results for the I' = 1 MeV case. Comparing
with Fig. 13 we see that the curves are rather similar in the neighbor-
hood of the NN* threshold for smaller coupling constants,but as A
increases the corresponding peaks for the flat BlJ input are slightly
higher, more symmetrical,and occur at lower energies.

For the calculations represented by Figs. 13 - 16, the sub-

traction point is at W, = 1,86 BeV and the cutoff energy is Wé = 500 BeV.

0

This value for Wc gives results essentially identical to those for

WC — o but for numerical reasons we could not, in practice, use
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higher values for Wc.

Figures 17, 18, and 19 show the sensitivity of our results
to the choice of subtraction point. Again for broad widths (Fig. 19)
the effect is not so noticeable but for very narrow N* widths (I' = 1 MeV)
the elastic scattering amplitude is ciearly fairly sensitive to a
variation in subtraptionrpoint. In general, the effect of reduciﬁg

WO seems to be roughly equivalent to increasing the magnitude of the

coupling constant while keeping Wb constant; for example, the curves

for W, = 1.60, A = .7 and W, = 1.86, A = 1.0 are rather similar,

0
Reducing W

0

0 tends also to move the location of the peaks to slightly

lower energies (see Fig. 17). As discussed in Section VI we have no-

very convincing argument for the placement of WO. Recall that we
did however decide a priori that 1.84 < WO < 1.88 was perhaps the

most reasonable region.
One feature of our results seems also to support that choice;

%
viz., with W, = 1.86 the cusps in Figs. 17 and 18 occur at the NN

0

. %
threshold and not at lower energies as they do for WO = 1.60 ).

But again we must.admit that the rather strong dependence of the
solutions on the wvalue of WO is a fairly severe weakness of the
determinental method,

In Fige 20 we illustrate the fact that our results are
essentially independent of the cutoff. This is no doubt true because
of the rapid convergence of the integrals for.leJ and D?l' Only for

quite low cutoffs, e.g., WE < 4, do we start to see any change in the

* However, since lowering Wy seems to be equivalent to increasing G
it is mot surprising that peaks move to lower energies.
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solutions and then just a small reduction in the height of the peaks.
We can probably conclude from this that modifying the high energy
behavior of the input amplitudes (for example, a la Reggeism) would
have very little effect on our results.

The inelastic amplitudes are.too numerous to graph, but we
can make a few general observations (based mainly on the I' = 1 Meﬁ
case). With more than one inelastic amplitude as input.JFJl # FlJ’
i.e., the determinental solution is not symmetric. (It is most
symmefric for small values of the coupling constant.) What we find
is that IJB;;; VFJll reach their maximum value (£ .4) for A ~ .5 at
W=~ 2.20 BeV and decrease'for higher energies or larger values of
the N*Nﬂ coupling constant. They are generally well below the
unitarity limit (pr;E; FJll < .5) ‘and show no peaking at the NN*
threshold. In contrast we find that the IJE;B; FlJ ]'s seem to
steadily increase with increasing W (at least up to W = 2,32 BeV) or
increasing coupling constant, and do eventually violate the unitarity
limit (for A 2 .5) although they also do not display any peaking
behavior.

Based on the work of Reference 3 our results for the inelastic
amplitudes suggest the possible presence of ''ghosts' for coupling
constant corresponding t; A > .5 (at least for very narrow widths).
The problem of 'ghosts', or spurious singularities which develop to
allow the Nﬁ"l equations to satisfy unitarity, cannot be properly
examined without studying the properties of our solutions in a much
larger region of the W plane (e.g., for W <’W0) than was compu-

tationally feasible for the present problem. As a result of their
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work with some simple models and a similar type calculation, Ball and
Thurnauer3) suggest that any approximation which ignores the existence
of complex singularities may be haunted by 'ghosts'".

Our numerical results also verified the increased effective
attraction due to there being more than one inelastic channel.

We now may briefly summarize the conclusions to be drawn.from
our calculations. The NN ~>NN* OPE amplitudes clearly may act to
produce a cusp in the elasﬁic NN scattering amplitude near the NN*-
threshold. We found that the shape and features of this cusp-type
enhancement depend in a reasonable way on the assumed width of the N*
and the N N effective coubling constant. But for the known experi-
mental value of PN* the curves of Fig. 15 indicate that the cusp is so
"wooly" that the resulting 'peak'" is likely to be too broad and flat.
to be experimentally prominent. The rather large width of the N*
means that there is much inelasticity present near the N-stable N*
threshold (W = 2.176 BeV) and this necessarily reduces the height of the
elastic peak even for resonant-like real phase shifts. Naturally,

we would be unjustified in drawing quantitative experimental predictions

from these approximate calculations since ﬁe have omitted so much of the
true complexity of the problem (including all elastic NN, NN* forces,
other channels, etc.).

In fact, if present experimental evidence (cited in Section I)
is confirmed, it is likely that the magnitude of the feal part of the
phase shift in this energy region near the inelastic threshold can be

adequately explained solely by the elastic NN one-boson-exchange (OBE)
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*)

forces of Scotti and Wong . Our model predicts real phase shifts close
to 900**) and therefore, we must éonclude that we have omitted
significant repulsive forces from our calculation, perhaps those due

to OPE in the elastic NN* channel and forces due to par%icles besides
the pion being exchanged.. However, when more detailed experimental
results are available we may find that the detailed shape of the IDZ

NN phase shift near the NN* threshold is inflﬁenced by

theiNN'—aNN* production amplitudes. And certdainly some inelasticity

is needed to damp’ the elastic amplitude at higher energies.

The total computer time expended for this project excluding that
wasted in programming errdrs was about one and a half hours., All
célculations were done on the CIT IBM 7040-7094 computer system.

We should briefly mention two other papers which have also
coﬁsidered the influence of the NN* channel on elastic NN scattering,.

26)

The work of Leung is rather similar to our own but the following

% This can be seen from the dashed curve in the figures of reference
27 which show that with the Scotti-Wong elastic NN OBE forces (refer=
ence 24) as sole dynamical input, real phase shifts on the order of
139 (at 600 MeV lab energy) are obtained. The author is indebted to
Professor Scotti for a discussion of this point.

*% Writing (p2 Fll)in the form of Eq. (VI.16) one can‘shoszh%t F)-1

2 2 D 1 miP2+717 -

=1 = 4]Im F - F ] and sin” & =
n [In(o, F11) - |y Fyy| R 5[1""2 =

Using our numerical results for Im(pp Fyj) and lpz Flll we
can thus extract values for 1 and dg. When this is done for values
of A > .6 we find (even for broad widths) that &y exceeds 80° for
some energies close to the NN* threshold. But the present experi-
mental values of SR lie in the range 8° - 159,

s
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differences may be noted:

1. He calculates no elastic NN* —9NN* forces;

2. His inelastic NN —>NN* OPE amplitudes do not agree with
ours; e.g., he has 316 = 0, and some of his amplitudes
seem*to have incorrect threshold behavior;

3. In performing the dynamical calculation he combines all of
the (four) inelastic amplitudes into one "averaged"
amplitude;

4, His calculation consists of a modified pole approximation
to the 1\TD-1 equations;

5. He does not vary the N* width;

6. From his Fig. 6 it seems that the input averaged inelastic
amplitude has been cut flat for W< M + M#.

27)

Coulter, Scotti, and Shaw use the single channel N/D

equations modified to take into account inelastic processes by means of
25;

the factor n( = e ). The elastic NN forces due to multi-meson
exchanges (calculated by Scotti and Wongza)) are included but the
inelasticity factor n is taken from experiment for lab energies

< 800 MeV with several different asymptotic forms assumed for 7 at

high energy. They find that 61D generally peaks at 400 - 500 MeV
2

> 1 BeV. However, we note

(with & ~ 160) and goes negative for T
lab ™

46)

that recent work by several authors indicates that one must be
cautious in using the one channel N/D method with inelastic unitarity

5 -1 ;
instead of the more correct multi-channel ND =~ equations,
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There are many obvious ways in which our calculétion could be
improved or extended. We coilld include elastic NN and NN* forces*) and
interactions arising from other than pion exchange. Instead of the
determinental method we could solve the full ND~1 equations.

Other channels (e.g., ﬁ+D) might be added. And of course, there are

many JP states besides 2+ which could be studied47).

% The model calculations of Frazer and Hendry, Ref. 12, indicate that
an attractive elastic NN® — NN* force has the reasonable effect
of increasing the strength of attraction in the elastic NN
channel.
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VIII. IMPLICATIONS OF SU3 SYMMETRY

The results presented in the last section indicate an
enhancement in the I = 1, 1D2 NN state near the NN* threshold
(2~ 2175 MeV c.m. energy). Because of the broad width:of the N*, our
model predicts any peaking would not tend to be experimentally promi-
nent and this seems to be in agreement with the data. But aside from
the detailed predictions of any particular approximate model it is
interesting to investigate what the implications of the Eightfold Way .
48,49)

. 1 3
are,assuming some such NN "D, enhancement exists

symmetry scheme >

and corresponds to a bound or resonant state,
In SUS we have the following decompositions into irreducible

representations:

Bx8 w14 884 10+ 104+ 27
8 x 10 = 8 + 10 + 27 + 35
10 x 10 =

10 + 27 + 28 + 35

*
The nucleon is assumed to belong to an octet (8) and the N 1isobar to a

decuplet (10). Only the 27 multiplet has a Y = 2, I = 1 piece (which

could correspond to the NN 1D
50)

, state) and is contained in 8 x 8, 8 x 10,

-and 10 x 10
Thus, if SU3 were an exact symmetry, we would expect all of the
other members of the 27 to exist in nature as oJ - 2+, B = 2 bound or

resonant states of mass ~ 2|75 MeV, The 27 contains the following

states
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¥Y=2; T =1

Y=1; I =1/2, 3/2
Y=0; I=0,1,2

Y =-1; I =1/2, 3/2
Y =-2; I =1

However, it is well~known that SU3 is not exact and thus the masses
& ‘
will not all be equal. Assuming octet breaking of SU3 ), the masses

will be given by the Gell-Mann - Okubo mass formula
M=a+bY+clI(T+1) - ¥°/4]

or, for J = 2 states since they are formally bosons
M2 = a+ BY + y[I(1 + 1) - Y2/4l .
In Table IV we have listed the predicted octet splitting

for each member of the 27.

% We expect octet breaking to be dominant with maybe a small amount of
27, 64, and other representations present. '



(Y,1) M=a+bY+ c[I(T+1) - Y/4] M2=OL+BY+Y[I(I+1) - Y]

(2,1 a+2b+c O+ 2B+ y

(1, 3/2) a+b+7/2c o+ B+ T7/2y

t 1z 1/2) a+b+1/2 c a+ g+ 1/2y

(0, 2) a+6c a+ 6y

(0, 1) a+2c - a+2y L
&

(o0, 0 ' a o |

(-1, 1/2) a-b+1/2c a-B8+1/2y

(-1, 3/2) a-b+7/2c a-p+7/2y

(-2, 1) a-2+c a-2B+vy

Table IV

Octet Breaking of the 27
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GersteinSl) has givén the expansion of the 27 in terms of
baryon-baryon states for each Y, I, Iz state.

What is the experimental evidence concerning possible manifes-
tations of the proposed 27? Except for the pp 1D2 cusp~type

52)

enhancement the experimental data is rather meager. Besides NN
the only two-baryon states which have been studied to any extent .
are ZN and AN. And here the best evidence seems to be a possible,Ap
peak at 2360 MeV53). There is also a possible A%n peak (Y = 1, I = 1/2)
. at 2098,MEV54). Several other low energy Ap peaks have been seen but
these afe probably S-wave interactions and thus not J = 2+ states,

| On tﬁe basis of our dynamical model for NN ]'D2 enhancement
we expect ot