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Abstract

The application of principles from evolutionary biology has long been used to gain new

insights into the progression and clinical control of both infectious diseases and neo-

plasms. This iterative evolutionary process consists of expansion, diversification and

selection within an adaptive landscape — species are subject to random genetic or epi-

genetic alterations that result in variations; genetic information is inherited through

asexual reproduction and strong selective pressures such as therapeutic intervention

can lead to the adaptation and expansion of resistant variants. These principles lie at

the center of modern evolutionary synthesis and constitute the primary reasons for

the development of resistance and therapeutic failure, but also provide a framework

that allows for more effective control.

A model system for studying the evolution of resistance and control of therapeutic

failure is the treatment of chronic HIV-1 infection by broadly neutralizing antibody

(bNAb) therapy. A relatively recent discovery is that a minority of HIV-infected

individuals can produce broadly neutralizing antibodies, that is, antibodies that in-

hibit infection by many strains of HIV. Passive transfer of human antibodies for the

prevention and treatment of HIV-1 infection is increasingly being considered as an

alternative to a conventional vaccine. However, recent evolution studies have uncov-

ered that antibody treatment can exert selective pressure on virus that results in the

rapid evolution of resistance. In certain cases, complete resistance to an antibody is

conferred with a single amino acid substitution on the viral envelope of HIV.

The challenges in uncovering resistance mechanisms and designing effective com-

bination strategies to control evolutionary processes and prevent therapeutic failure

apply more broadly. We are motivated by two questions:
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• Can we predict the evolution to resistance by characterizing genetic alterations

that contribute to modified phenotypic fitness?

• Given an evolutionary landscape and a set of candidate therapies, can we com-

putationally synthesize treatment strategies that control evolution to resistance?

To address the first question, we propose a mathematical framework to reason about

evolutionary dynamics of HIV from computationally derived Gibbs energy fitness

landscapes — expanding the theoretical concept of an evolutionary landscape orig-

inally conceived by Sewall Wright to a computable, quantifiable, multidimensional,

structurally defined fitness surface upon which to study complex HIV evolutionary

outcomes.

To design combination treatment strategies that control evolution to resistance,

we propose a methodology that solves for optimal combinations and concentrations

of candidate therapies, and allows for the ability to quantifiably explore tradeoffs in

treatment design, such as limiting the number of candidate therapies in the combi-

nation, dosage constraints and robustness to error. Our algorithm is based on the

application of recent results in optimal control to an HIV evolutionary dynamics

model and is constructed from experimentally derived antibody resistant phenotypes

and their single antibody pharmacodynamics. This method represents a first step

towards integrating principled engineering techniques with an experimentally based

mathematical model in the rational design of combination treatment strategies and

offers predictive understanding of the effects of combination therapies of evolutionary

dynamics and resistance of HIV. Preliminary in vitro studies suggest that the com-

bination antibody therapies predicted by our algorithm can neutralize heterogeneous

viral populations despite containing resistant mutations.
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Chapter 1

Introduction

“The power of Selection, whether exercised by man or brought into play under nature

through the struggle for existence and the consequent survival of the fittest, absolutely

depends on the variability of organic beings. Without variability, nothing can be ef-

fected; slight individual differences, however, suffice for the work, and are probably

the chief or sole means in the production of new species." - Charles Darwin, 1868.

1.1 Background and Motivation

The modern synthesis. The core of current evolutionary theory was forged seventy

years after Charles Darwin’s On the Origin of Species [20], when statisticians and

geneticists began laying the foundation for what is now called the ‘modern synthesis’.

This allowed the process of evolution to be described mathematically as the change

in frequencies of genetic traits in a population over time, uniting Darwin’s concept of

natural selection with a newly formed field of Mendelian genetics [30, 33, 103]. This

theoretical foundation and its corresponding quantitative methods provided support

to better understand the tenets of evolutionary theory — that variation arises through

random genetic mutation, is inherited by offspring and these together with natural

selection leads to adaptation and speciation.

Evolutionary biologists have since expanded upon the modern synthesis frame-

work, drawing concepts and methods from other fields. The discovery of DNA as

the material foundation for the encoding and the hereditary transmission of genetic
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information, became the driving force of evolutionary theory. It transformed the no-

tion that selection was associated with phenotypic trait variation to being a function

of variations driven by genetic mutations. Since then, genetic mapping for numerous

phenotypic adaptations across multiple organisms have been established — such as

the evolution of influenza virus resistance to antivirals [80], the adaptation of wing

shape in [74] and the genetic basis resistance of malaria in humans [34, 39].

Evolution and disease. More recently, the application of evolutionary concepts has

been extended to the study of both infectious and neoplastic disease, giving new in-

sights into their progression and clinical control [62, 71, 72]. The underlying processes

are equivalent to other evolutionary models — cells or virus are subject to random

genetic mutation that result in variations; genetic information is inherited through

asexual reproduction and strong selective pressures such as therapeutic intervention

can lead to the adaptation and expansion of resistant variants. Genetic instability

of neoplasms drives single base sequence changes, chromosomal rearrangements and

gene fusion, and these can confer a selective advantage when the resulting phenotype

exhibits both a proliferative advantage and a defect in DNA repair [55]. Non-genetic

adaptation and phenotypic plasticity can be induced via oncogene inhibition, enabling

the survival in cancer cells during initial therapy and thereby promoting residual dis-

ease. Recent studies in EGFR mutant lung adenocarcinoma reveal that NF-κB sig-

naling is rapidly engaged upon initial EGFR inhibitor treatment to promote tumor

cell survival [7].

The 1987 FDA approval of azidothymidine (AZT), a nucleoside analog reverse-

transcriptase inhibitor (NRTI) for the treatment of chronic HIV infection, was one of

the first signs of therapeutic promise in the treatment of chronic human immunod-

eficiency virus type 1 (HIV-1) infection — this treatment significantly reduced viral

replication in patients and led to clinical improvements [29]. However, the ability

of HIV to rapidly evolve drug resistance was soon observed in patients treated with

AZT— the genetic basis for their resistance was explained with the existence of three

amino acid substitutions in the reverse transcription gene [50]. It was not until the

1995-1996, that that the subject of resistance was addressed with the development of
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a new class of protease inhibitors (PIs) [61], that when combined with two NRTIs,

introduced the concept of highly active antiretroviral therapy (HAART). The treat-

ment of chronic HIV infection with HAART is considered one of the great successes of

modern medicine in that it radically changed clinical outcomes successfully reducing

both patient viral loads to virtually “undetectable" levels, transforming HIV from a

fatal disease to one that is a manageable chronic illness [18].

The success of antiretroviral combination therapy in controlling evolution of HIV

has provided insight into how the evolutionary processes of other disease models could

be controlled for progression and management of therapeutic resistance [4, 94, 99].

With the recent introduction of targeted therapies for the treatment of certain cancers

[36], new questions surrounding the effectiveness of tailoring treatments to an individ-

ual patient’s tumor and its implications with respect to the emergence of driver mu-

tations and resistant phenotypes are being raised. Specifically, these small molecule

inhibitors and monoclonal antibodies exploit particular genetic addictions and vulner-

abilities of cancer cells, establishing an environment in which the occurrence of mildly

drug resistant cells can develop an evolutionary advantage over those for which the

therapy is targeted [23, 27, 41, 97]. Clonal expansion of these evolutionary advan-

tageous cells is exacerbated by the presence of considerable genetic intra-tumor het-

erogeneity already present in treatment-naive patients, contributing to resistance and

the need for principled approaches to the design of combination targeted treatment

strategies.

Toward a Principled Design of Treatment Strategies. These disease models

illustrate more generally the challenges in uncovering resistance mechanisms and de-

signing effective combination strategies to control evolutionary processes that lead to

resistance. Similar evolutionary processes are involved in the context of HIV-1 and

selection of resistant mutants with respect to broadly neutralizing antibody (bNAb)

therapy. In this thesis, we focus our attention to this particular application, but

the mathematical techniques that we propose are relevant to other infectious and

non-infectious diseases where growth, mutation and selection are central.

Recent evolution studies on HIV-1 have uncovered that bNAb monotherapy can
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exert selective pressure on virus resulting in the rapid appearance and evolution of

resistant mutant viral population [22, 47, 100]. In certain cases, complete resistance

to a bNAb is conferred with a single amino acid substitution on the viral envelope

(Env). To address HIV evolution in this context, combination bNAb therapy has

been proposed and shown to effectively control infection and suppress viral loads

below detection in murine models [22, 47, 100].

Advances in the identification and engineering of anti-HIV-1 antibodies have pro-

duced a large set of detailed molecular structures and neutralization data generated

against a broad panel of HIV-1 strains. Can we computationally predict evolution

to resistance by characterizing genetic alterations that contribute to modified phe-

notypic fitness? To address this question, we propose a computational model to

reason about evolutionary dynamics of HIV from computationally derived fitness

landscapes—linking the notion of genotype to phenotype in a quantifiable manner.

The second question we ask is, given a fitness landscape and a set of candidate

therapies, can we computationally synthesize treatment strategies and control evo-

lution? The rational design of combination antibody therapies for HIV treatment

involves the exploration of a large mutational space in the context of an ever growing

number of candidate antibodies — experimentally screening their combinations and

concentrations to effectively control evolution to resistance becomes increasingly in-

feasible. To address this, we require a scalable methodology that can take into account

increasing amounts of HIV/bNAb resistance data, bNAb pharmacodynamic models

and HIV mutational dynamics. To this end we propose a scalable and computation-

ally tractable algorithm that solves for optimal combinations and concentrations of

bNAbs to neutralize virus in light of viral evolution while simultaneously allowing

the designer to tailor treatment strategies in light of viral composition, maximum

achievable doses, number of bNAbs used and ability to support pharmacodynam-

ics/pharmacokinetic fluctuations, modeling and experimental error.

We briefly discuss prior computational work in addressing this problem, and follow

with the thesis outline and contributions.
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1.2 Prior Work

Mathematical approaches. There have been numerous attempts to address evo-

lution of resistance with respect to therapeutic intervention from a mathematical

perspective within multiple disease contexts. Many computational results address

evolution to resistance by employing analytic methods and/or simulations on small

scale stochastic evolutionary dynamics models. The Michor lab [63] recently showed

the effects of different erlotinib dosing strategies in the presence of pharmacokinetic

fluctuations on the evolution of resistance of non small cell lung cancer through simu-

lations of a stochastic evolutionary dynamics model. To address tumor heterogeneity

by rational combination therapy design, Zhao et al. [105], propose a static multi-

objective optimization formulation that is agnostic to evolutionary dynamics but that

models the effectiveness of independently acting, additive drugs on different initial

tumor populations. Proposed combination treatments were confirmed experimentally

for different tumor initial conditions in a murine lymphoma model [106].

The first models describing evolutionary processes in the context of HIV, were

inspired largely in part by Manfred Eigen’s original quasi species model [26] and have

since been proposed to study evolution, antigenic drift [70, 71]. Recent results by

Rosenbloom et al. [87], show that simulations of an evolutionary dynamics model

of HIV infection subject to changes in antiretroviral dynamics due to adherence are

consistent with clinical studies.

Control theoretic approaches. The challenge of designing treatment protocols

that prevent escape is one that has been addressed by control theoretic methods. For

cancer therapy, results in this spirit apply methods from optimal and receding horizon

control [3, 16], as well as gain scheduling [2], to synthesize treatment protocols that

are robust to parameter uncertainty, an inherent issue in all biological systems. In

the context of HIV and antiretroviral therapy, Hernandez-Vargas et al. [25] propose

a discrete time formulation that allows for the design of switching therapy strategies

to delay the emergence of highly resistant mutant viruses. There have been several

attempts as well to address nonlinear HIV infection dynamics using model predic-
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tive control (MPC) to design optimal antiretroviral drug dosing strategies [56, 108].

Recent results in [84] and [8] consider a simplified bilinear model and the optimal

control problem is shown to be convex over a finite horizon for a predefined set of

initial states.

1.3 Thesis Contribution and Outline

In this thesis, we explore two questions in the evolutionary biology of disease: Can we

predict the evolution to resistance by characterizing genetic alterations that contribute

to modified phenotypic fitness? Given a fitness landscape and a set of candidate ther-

apies, can we computationally synthesize treatment strategies and control evolution?

We focus our application to the antibody treatment of chronic HIV infection, but the

mathematical techniques that we propose are relevant to other infectious and non-

infectious diseases. Many of the contributions of the following chapters are based on

a number of publications [42, 43, 44], indicated below.

Chapter 2: Evolutionary Dynamics on Computationally Derived Fitness

Landscapes. We propose a computational model to reason about evolutionary dy-

namics of HIV on computationally derived fitness landscapes. Our approach combines

well-utilized HIV dynamical systems models, incorporates infection and antibody neu-

tralization dynamics, a mutation process, and a method that uses energy minimization

calculations on structural information to quantify fitness differences between sensitive

and resistant strains. Specifically:

1. We propose and develop an extension of the least absolute shrinkage and selec-

tion operator (LASSO) to identify mutational phenotypes and uncover potential

escape mutants from neutralizing anti HIV antibodies.

2. We develop a biophysical model based on Gibbs free energy of binding derived

from energy minimization calculations on structural information to quantify

fitness differences between sensitive and resistant HIV strains.
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3. We develop an HIV evolutionary dynamics model to include infection and neu-

tralization reaction rates based on computed Gibbs energy fitness landscapes.

Chapter 3: Robust Control of Evolutionary Dynamics. Chapter 3 presents

three algorithms for the principled design of targeted combination drug treatment

strategies that explicitly account for the evolutionary dynamics of a generic disease

model, where the drugs under consideration are non-interacting and exhibit inde-

pendent additive effects. These algorithms allow the designer to quantifiably explore

tradeoffs between number of therapies used (controller sparsity), therapy concentra-

tions (magnitude of the gain) and ability to support pharmacokinetic fluctuations

(robustness to perturbations). Our contribution specifically is itemized below.

1. Our first algorithm proposes a general iterative method that uses an H∞ robust

control approach to design targeted combination therapy concentrations and is

effective in generating robustly stabilizing controllers.

2. Our second algorithm addresses large scale systems concerns lacking in the first

algorithm, presenting a scalable solution to the combination therapy problem

by reformulating it as a second order cone program (SOCP), with robustness

guarantees addressed by minimization of the induced L1 norm.

3. Our third algorithm solves the combination therapy problem subject to the

same design constraints (sparsity of the drug combination, maximum dosage and

robustness constraints) formulated as an SOCP while addressing the nonlinear

dynamics of individual drugs and of their combinations.

Chapter 4: Engineering Antibody Treatment Strategies to Control HIV.

We demonstrate our ability to control the evolution to resistance of HIV in the pres-

ence of antibody therapy, through the application of the combination therapy algo-

rithms developed in Chapter 3 as applied to experimental data derived from recent

published studies [14, 22, 47]. We also discuss a preliminary in vitro experimental

methodology and results and show that the antibody treatment strategies synthesized

with the nonlinear pharmacodynamics combination therapy algorithm described in
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EXPERIMENTAL+BIOLOGY+

Figure 1.1: Overview of the data, mathematical models and tools used in this thesis.

Section 3.5.3 controls infection despite the presence of a mixed initial population of

viruses, most of which are resistant to at least one antibody in the mix. Specifically:

1. We synthesize combination treatments and compare the respective H∞ and

the L1 combination therapy algorithms with respect to their performance and

robustness to biologically relevant uncertainty models and unmodeled dynamics.

2. We develop a high throughput in vitro experimental system to identify the repli-

cation and neutralization properties of HIV mutants and populate parameters

for our dynamical systems model, as well as test our predicted bNAb combina-

tion therapies.

3. We demonstrate successful in vitro validation of our computationally predicted

bNAb combinations on heterogeneous viral populations comprised of resistant

mutants.
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Chapter 2

Evolutionary Dynamics on
Computationally Derived Fitness
Landscapes

2.1 Introduction

In evolutionary biology, the concept of fitness landscape serves to associate geno-

type to some measure of fitness, or phenotype. With the growing number of detailed

molecular structures and recent advances in modeling and computational approaches,

genotype-phenotype relationships are now being quantified and generated in an au-

tomated way. Thus, fitness landscapes are transitioning from a concept used for

visualization of fitness distributions, to computable, quantifiable, multidimensional

fitness surfaces upon which to study complex evolutionary outcomes.

Recent pre-clinical and clinical studies recently demonstrated that HIV can escape

from antibody mono therapy, and in some cases, combination therapy [14, 37, 47, 95].

In this chapter, we develop a computational framework that explains these observa-

tions and predicts the likelihood of certain resistant mutants in the presence of anti-

body mono therapy. Our method uses energy minimization calculations on structural

information and statistical inference on antibody neutralization data to quantify fit-

ness differences between sensitive and resistant strains and incorporates this data into

an HIV dynamical systems model of infection, mutation and antibody neutralization.

We show that our evolutionary dynamics simulations on computationally generated
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HIV fitness landscapes have reasonable agreement with experimental findings. This

represents a first step in modeling and predicting HIV escape from antibody therapy

but has a broader application in evolutionary dynamics settings where a quantitative

relationship between genotype and evolutionary fitness can be established.

The chapter is organized as follows: in Section 2.2.1, we propose a statistical in-

ference method to uncover correlations between HIV-1 viral envelope (Env) sequence

data and antibody neutralization data. In Section 2.2.2, we compute HIV-1 fitness

landscapes using energy minimization techniques and argue that quantifying changes

to both infection and neutralization due to mutations are equally important aspects

in the study of HIV evolution to antibody resistance. In Sections 2.2.2 and 2.2.3, we

derive generalized Hill equations to express bound gp160/CD4 and gp160/antibody

as a function of the differences in Gibbs free energy of binding due to point mutations.

Section 2.2.4 connects preceding work by incorporating computed fitness landscapes

into a stochastic HIV evolutionary dynamical systems model of infection, mutation

and antibody neutralization and illustrates the applicability of these methods for the

prediction of resistance dynamics in light of antibody monotherapy for HIV.

2.2 Results

2.2.1 Statistical inference to uncover resistance phenotypes

We developed a statistical model and used this to uncover correlations between HIV-1

envelope (Env) sequence data and antibody neutralization data. In order to obtain a

model that could explain antibody neutralization data with a minimal set of residues

while taking into account irregularity in the experimental data set corresponding to

the limit of neutralization assays (Figure 2.1), we extended the well known least

absolute shrinkage and selection operator (Lasso) [98]. Our model, the saturated

Lasso (satlasso), returns a set of amino acid residues and their Env sequence loca-

tion that explains antibody neutralization data by minimizing error between model

and experimental data, penalizing large models, and appropriately weighing errors
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corresponding to saturated experimental data. A mathematical description of the

model can be found in Section 2.4.1. Model selection is performed with 5-fold cross

validation [79].

saturated(
data(

8ANC195(neutraliza4on(

Virus(number(

A(

lo
g(
IC
50
)(

Figure 2.1: A. An example of the satlasso estimator as applied to 8ANC195 antibody
neutralization data. Saturated data is due to the limit of the neutralization assay and
is modeled in Equation (2.6). Red points correspond to experimental data, blue points
correspond to the estimated model.

To assess the generalization of our satlasso model, we compare the first six largest

magnitude regressors to experimentally derived data sets and find that many Env

residues known to be critical to neutralization are identified (Figure 2.2). For the

gp120-gp41 bridge antibody 8ANC195, changes in glycosylation at 276, 234 and 230

sites are found to induce large changes in neutralization [91]. Specifically, the intro-

duction of a glycan at position 230 in a wild-type YU2 HIV strain, leads to a sixfold

increase in IC50, whereas removal of 234 and 276 sites leads to a more substantial

increase in IC50 [91, 101]. Our model identifies this epitope and captures the corre-

sponding changes in IC50 through the magnitude of each regressor 276++ (-2.79),

234++ (-2.77) and 230++ (1.59) (Figure 2.2).
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Figure 2.2: The first six regressors with largest magnitude contributing to neutralization
(blue) and resistance (red) for each of CD4 binding site, V2, V3, MPER and gp120-gp41
bridging antibodies in this study, solved with satlasso using 5-fold cross validation. Overlaid
boxes correspond to amino acid changes that have been validated experimentally.

For all CD4 binding site antibodies in this study, we find that the existence of a Gly

at position 459 is most important for neutralization, confirming previous evolution

studies that mutations at position 459 confer resistance in 3BNC117 and NIH-4546-

G54W [47, 22]. Our model uncovers that an Arg at position 456 is also significant for

neutralization but less so than the site at position 459. Recently, Lynch et al. show

that a Trp mutation at position 456 has a modest effect on neutralization by many

CD4-bs antibodies with the exception of VRC-PG20 [57].

Functional studies on V3 loop binding antibodies 10-996 and 10-1074 reveal an

essential dependence on the N332 associated glycan [66]. Our model identifies this
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critical site and shows that the existence of a His or Tyr at position 330 is necessary

for neutralization of 10-1074. There is some evidence that the H330Y substitution

has no effect on neutralization of either PGT121 and 10-1074 when this mutation was

tested on Simian-Human Immunodeficiency Virus, SHIVAD8 [89].

The highly conserved membrane proximal external region (MPER) of the gp41

transmembrane subunit on HIV-1 has recently been linked to epitopes of several

broadly neutralizing antibodies 2F5, 10E8 and 4E10 [38, 88, 65]. Alanine scanning,

structural and paratope analysis each indicate that 10E8 makes crucial contacts with

highly conserved residues W672, F673, W676 and K/R683 [38]. Although our model

does not recover these particular contact sites, it does identify a Thr substitution at

671 that is shown to raise IC80 values above 20 µg/ml in otherwise sensitive JR2

virus [38]. For 4E10, our model captures both one epitope site at 671 and a known

resistant substitution at 674S [9]. The 2F5 epitope is defined by a linear segment

of gp41 residues 662 - 668 with the key binding residues at N664, K665 and Y666

[6, 109]. Our model recovers the crucial binding site at position 665 and two sites on

the epitope, E662 and A667 that each confer resistance at the IC90 level with Ala

and Gly substitutions respectively [12, 109].

Our results demonstrate that satlasso recovers residues that are critical for neu-

tralization and those that contribute to resistance for a large class of anti-HIV-1

antibodies. Despite the fact that substitutions in certain positions can mediate con-

formational or other effects within Env that may be best represented by a nonlinear

model, some changes in neutralization can nonetheless be captured by this linear

regression model.

Recent studies in viral fitness costs associated with escape mutants from the class

of CD4-bs antibodies show that viral replicative fitness may be diminished with cer-

tain single mutations on the CD4 receptor binding site on gp120 [57], Chapter 4.

This suggests more broadly that evolution to resistance can be viewed as a function

of both viral replicative and antibody neutralization fitness. We elaborate this idea

in the following section and develop a method that quantifies both aspects of viral

fitness and utilizes it to study the evolutionary dynamics of HIV in the presence of
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antibody monotherapy.

2.2.2 Gibbs Energy Landscapes Correlate With Known Es-

cape Mutations

We hypothesize that a virus’ capacity to infect and be neutralized by specific neu-

tralizing antibodies (NAbs) can be approximated by differences in Gibbs free energy

of binding associated to de novo point mutations on the envelope glycoprotein (Env)

complexed with the CD4 receptor and antibody structure. To compute fitness land-

scapes relating to viral replication and antibody neutralization, we apply an empirical

force field, Fold X [93], to evaluate the effect of point mutations on the stability, fold-

ing and dynamics on detailed Env/CD4 and Env/NAb molecular structures.
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Figure 2.3: A. Gibbs binding energy differences computed between wild type and a subset of
gp120 point mutations consisting of alanine substitutions on a subset of 3BCN117 antibody
resistant mutations. Viral fitness F∆gp/NAb, is computed by Gibbs energy of binding differ-
ences between neutralization and infection reactions and normalized with respect to largest
value (Equation 2.3) (above). Gibbs energy differences for ∆gp120/3BCN117 binding reac-
tion (middle) and the ∆gp120/CD4 interaction (below). All mutations are numbered with
respect to the HXBC2 reference genome. B. Viral fitness computed as in A for CD4 binding
site antibodies 3BNC117, 4546G54W, VRC01, VRC03, and VRCCH31. C. Fraction bound
gp120/3BNC117 and CD4/gp120 as computed with Equations (2.5) using Gibbs energy
landscapes for antibody and CD4 binding.

The resulting Gibbs free energy landscape provides an equilibrium thermody-

namic representation of the fitness of each point mutant with respect to the following

simplified binding reactions for infection and neutralization:

gp + cd4 −→ gp · cd4, (2.1)

`+ gp −→ ` · gp, (2.2)
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where the HIV membrane glycoprotein gp, binds to the CD4 receptor, denoted cd4,

in reaction (2.1), and to antibody ` during neutralization in reaction (2.2).

We compute the difference in Gibbs free energy of binding between mutant and

wild type viral glycoprotein gp160,

∆∆G = ∆Gmut −∆Gwt,

for all point mutations on the solved portions of gp160 in both CD4 and antibody

complexes listed in Table 2.2, Section 2.5.

To quantify the effects of mutations on both infection and neutralization, we define

viral fitness F∆gp/NAb as a function of the cost of the mutation (∆gp) with respect to

antibody binding minus its cost with respect to CD4 binding

F∆gp/NAb = ∆∆G(∆gp/NAb)−∆∆G(∆gp/CD4). (2.3)

To illustrate this measure of viral fitness, we compute binding energy landscapes

for CD4 binding site (CD4bs) antibody 3BNC117 using gp120/3BNC117 (PDB ID:

4JPV) and gp120/CD4 (PDB ID: 1G9N) structures and find reasonable agreement

between this measure and known resistant mutations in the presence of 3BNC117

[37, 57] (Figure 2.3, A). In particular, we note that the presence of either an Asp

at position 458 or an Ala at position 367 decreases binding to both 3BNC117 and

to CD4, simultaneously affecting the virus’ ability to infect and to be neutralized by

antibody. Binding energy differences between mutations and the CD4 receptor are

similar for both G367A and G458D (3.64 kcal/mol and 3.75 kcal/mol) whereas they

differ significantly for 3BNC117 binding (3.55 kcal/mol (G367A) and 11.15 kcal/mol

(G458D)), suggesting that both mutations could exhibit compromised viral replication

but that due to the greater difference in 3BNC117 binding, the Asp mutation at

location 458 is more likely to escape 3BNC117 neutralization. This is consistent with

our viral fitness calculations and model simulations (Figure 2.5, B) as well as previous

experimental validation showing that the Asp mutation at position 458 evolves in the

presence of 3BNC117 in murine HIV infection models [37, 57].
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To extend our analysis to other CD4bs antibodies, we compute Gibbs binding en-

ergy landscapes for 3BNC117, 4546G54W, VRC01, VRC03 and VRCCH31. Our viral

fitness calculations uncover that the most resistant substitutions across all CD4bs in

the study consist of an Asp substitution at either locations 458, 280 and 459 (Figure

2.3, B). Previous studies show that both the Asp substitutions at location 458 and

at location 280 evolve in 4546G54W and 3BNC117 monotherapy experiments [22, 37]

and abrogates neutralization by VRCCH31, and VRC01 [57]. The application of our

statistical inference model from Section 2.2.1 and previous experimental validation

[22, 37, 101] shows the importance of Gly at location 459 for effective neutralization

by all CD4bs antibodies.

More subtle differences in viral fitness differences can be uncovered by computing

Gibbs energy landscapes. We note that the Trp substitution at location 456 exhibits

a more modest increase in viral fitness (0.15-0.45) than the Asp substitution at 458

(0.45-1.0) across the CD4bs antibodies in the study, confirming recent experimental

studies that show that the Trp substitution at location 456 modestly decreases but

does not completely abrogate neutralization in all CD4bs antibodies [57].

2.2.3 Hill Functions Relate Gibbs Landscapes And Dynamical

Systems Parameters

Although analysis of detailed molecular structures may elicit molecular properties

by which resistance occurs, the pharmacodynamics of associated drug resistance are

less well understood. Therapeutic effect of resistant mutations is typically measured

as a change in IC50 relative to wild type. In the case of antiretroviral therapy for

HIV, Sampah et al. argue that inhibition can only be predicted if the shape of the

dose-response curve is known [90]. This relationship takes the form of a Hill function,

an equation extensively used in pharmacology to analyze nonlinear drug-receptor

relationships.

We derive generalized Hill equations and express the fraction of bound Env/CD4

and Env/antibody complexes formed during infection and neutralization binding re-
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Figure 2.4: A. A depiction of the molecular binding model approximating the Gibbs binding
energy between viral envelope glycoprotein and the neutralizing antibody and the CD4 re-
ceptor, using simplified binding reactions (2.1) and (2.2). B. A depiction of the evolutionary
dynamics model of HIV infection, mutation and neutralization in the presence of antibody
therapy. C. (Left) Difference in Gibbs binding energy between wild type and mutations of
the viral glycoprotein and the CD4 receptor, for a clade B virus YU2, (PDB ID: 1G9N) for
a subset of point mutations. Percent infected cells on day three post secondary infection
(dark red) and simulations of the molecular binding plus infection dynamics model using
the calculated Gibbs free energy landscape (light red) for a subset of viral glycoprotein
mutations. (Right) Three day infection simulations using the calculated Gibbs energies for
selected point mutations. D. (Left) Difference in Gibbs binding energy between wild type
and mutations of the viral glycoprotein and broadly neutralizing antibody 4546G54W, (PDB
ID: 4JKP) for a subset of point mutations. Percent neutralized cells on day three in the
presence of 10 µg/ml 4546G54W (dark blue) and simulations of the molecular binding and
infection and neutralization dynamics model using both Gibbs free energy landscapes in the
presence of 10 µg/ml 4546G54W (light blue) for a subset of viral glycoprotein mutations.
(Right) Three day neutralization dynamics simulations using calculated Gibbs energies for
selected point mutations for a range of 4546G54W antibody concentrations.
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actions, as a function of the differences in Gibbs free energy due to point mutations.

We begin by noting that the dissociation constant Kd is an equilibrium value that

can be expressed in terms of the free energy of binding, and define ∆Kmut
d to be the

ratio between mutant and wild type dissociation constants:

∆Kmut
d =

Kmut
d

Kwt
d

= ∆∆G/RT , (2.4)

where R is the ideal gas constant and T is temperature. The resulting Hill equations

model the fraction bound complexes involved in both infection and neutralization

reactions:

Rmut = [gp]m

[gp]m+(Kwt
inf∆Kmut

inf )m

Nmut = [`]n

[`]n+(Kwt
neut∆K

mut
neut)

n ,

(2.5)

where the symbol [ ] indicates nanomolar concentration. ∆Kmut
inf and ∆Kmut

neut are the

difference between the dissociation constants for CD4 and antibody binding reactions

(2.1) and (2.2) between a mutationmut and the wild type viral glycoprotein as defined

by Equation (2.4).

Remark 1. We assume that binding associated with the infection and neutralization

process is noncooperative, and the corresponding Hill coefficientsm and n are approx-

imately 1. Recent experimental studies characterizing antibody neutralization across

a diverse virus panel, suggests that for CD4 binding site antibodies n ≈ 0.9 − 1.37

[92], for V2 antibodies n ≈ 0.7 and for V3 binding antibodies n ≈ 1.5. [64].

Figure 2.3 C depicts the Hill equations (2.5) associated with infection and neu-

tralization reactions for a subset of representative 3BNC117 resistant mutations and

their computed Gibbs binding energy landscapes. For highly resistant mutations most

likely to evolve in the presence of 3BNC117 like the Asp mutation at location 458, we

expect a small fraction of bound gp120/3BNC117 regardless of antibody concentration

and a moderate concentration of bound gp120/CD4, representing productive infec-

tion. More moderately resistant mutations, such as the Thr mutation at 281, requires
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two orders of magnitude increase in 3BNC117 concentration to achieve an equivalent

fraction of gp120/antibody bound complexes and neutralization as wild type virus.

This suggests that at lower concentrations of antibody, viruses with similar fitness

profiles as A281T may not be all neutralized by antibody, creating an environment

in which this moderately resistant virus can become dominant or acquire additional

mutations and achieve greater resistance [22, 37, 47, 57].

2.2.4 Evolutionary Dynamics on Quantifiable HIV-1 Fitness

Landscapes

To reason about the dynamics of HIV evolution to resistance in the presence of an-

tibody therapy, we combined computed Gibbs energy landscapes with a stochastic

evolutionary dynamical system to model infection, mutation and antibody neutral-

ization (Figure 2.4, A, B). A mathematical description of the virus dynamics and

mutation model can be found in Section 2.4.1.

In order to validate of our model, we performed simulations of HIV infection and

antibody neutralization and compared these results to replication and neutralization

assays performed on gp120 mutations subcloned into a YU2-Env/NL4.3 infectious

backbone (Materials and Methods, Section 2.4.3). Both our simulations and experi-

ments were performed under the same conditions and were found to be in agreement,

(Figure 2.4, C, D), suggesting that our proposed mathematical model of HIV infec-

tion and neutralization based on Gibbs energy landscapes can be used to reasonably

predict both infectivity and neutralization rate changes due to point mutations on

Env. Simulations of our HIV infection model (Figure 2.4, C) confirm the well-known

exponential growth dynamics of HIV infection for mutations with small changes in

CD4 binding energies. For mutations with compromised CD4 binding such as the

Lys mutation on 279 and the Tyr mutation at 280, our simulations and experiments

show significantly decreased infection rates.

To illustrate how different neutralization profiles affect the evolution of resis-

tance, we ran model simulations for a subset of Env point mutations and a range
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of 4546G54W concentrations (Figure 2.4, D). We found that certain very resistant

mutations are less likely to be affected by high doses of 4546G54W, such as the Lys

mutation on 279 and the Tyr mutation at 280, whereas the degree of neutralization

of moderately resistant mutations such as the Ser substitution at 279 is dependent

on 4546G54W concentration (Figures 2.3, C and 2.4, D). High concentrations of

4546G54W are likely to shift the evolution of viral distributions towards highly re-

sistant mutations by creating an environment in which mutations with moderate

resistance are adequately neutralized, leaving the possibility of outgrowth of highly

resistant mutants despite low infectivity. We observe this phenomenon in our evolu-

tionary dynamics simulation in the presence of another CD4bs antibody, 3BNC117

(Figure 2.5,B). Specifically, the Lys substitution at location 280 is shown to outgrow

all other mutations with lower viral fitness, despite its lower infectivity (Figures 2.4,C

and 2.5,B).

To further explore how antibody concentration could influence the composition of

viral distributions at steady state, we ran fifty stochastic simulations of our HIV evo-

lutionary dynamics model for different concentrations of 3BNC117 (Figure 2.6,A). We

observe that the shape of the stationary distributions varies as a function of antibody

concentration with broader peaks occurring at lower antibody concentrations and

higher, narrower peaks at high antibody concentrations. We use the Gini coefficient

(Materials and Methods, ss:gini) to describe the shape of the stationary viral distri-

bution, and show that it increases as a function of different antibody concentration

for multiple CD4bs antibodies (Figure 2.6,B).

To understand which mutants might evolve in the presence of CD4bs antibodies,

we ran fifty evolutionary dynamics simulations using computed CD4 and antibody

binding energy landscapes for 1664 different mutants of YU2, using constant concen-

trations of either VRC01, VRC03, 3BNC117 or NIH4546. For a starting population

of monoclonal wild type virus, we show that the evolved mutations have close agree-

ment with previously studied escape mutations (Figure 2.5, C). Specifically, our HIV

evolutionary dynamics simulations in the presence of NIH-4546 reveal the evolution

of mutations at four out of five locations uncovered in recent evolutionary studies
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on antibodies NIH-4546 and NIH-4546G54W [47, 22]. Moreover, recent experimen-

tal results show that mutations N280D, N280K, A281T, G458D, G459D evolve from

3BNC117 monotherapy [37] - our simulations demonstrate the evolution of four out

of these five specific point mutations.

A B#

Figure 2.5: A. Fitness landscapes representing the difference in Gibbs binding energy be-
tween wild type and mutations on the viral glycoprotein (∆gp120) and the CD4 receptor
(PDB ID: 1G9N) (above) and the neutralizing antibody 3BNC117 (PDB ID: 4JPV) (below)
for all amino acid substitutions on a subset of residues. Closed circles indicate binding site
locations, stars indicate residue locations for which resistant mutations have been found.
B. One simulation of the HIV evolutionary dynamics model (Equation 2.7, Materials and
Methods) on computed Gibbs energy landscapes shown in A and for a concentration of 5
µg/ml 3BNC117. The simulation is run with an initial condition 105 uninfected cells/ml,
1000 virions/ml of of wild type YU2 clade B HIV. (Below) Fitness landscape and computed
viral fitness for evolved mutations.
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Figure 2.6: A. (Left) Fifty simulations of the HIV evolutionary dynamics model (Equation
2.7, Materials and Methods) on computed CD4 and antibody fitness landscapes for differ-
ent NIH-4546 antibody concentrations. Simulations are run with an initial condition of 105

uninfected cells/ml, 1000 virions/ml of of wild type YU2 clade B HIV. (Right) Viral dis-
tributions at day 250 for all corresponding simulations, representing the percent mutation
present in the total population at steady state. B. Gini coefficient for antibodies NIH-4546,
3BNC117 and VRC03 as a function of antibody concentration, for steady state viral distri-
butions in A. C. Viral distributions at day 250 for all 50 simulations of HIV evolutionary
dynamics for (top) 2.5 µg/ml of NIH-4546 and (bottom) 3BCN117. Filled circles represent
particular mutations that are shown to evolve experimentally [22, 47] or to be resistant
[57, 101]. Empty circles represent the residue locations at which mutations either evolve or
have compromised neutralization by antibody.
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2.3 Discussion

Recent advances in the identification and engineering of anti-HIV-1 antibodies have

produced a large set of detailed molecular structures and neutralization data gen-

erated against a broad panel of HIV-1 strains. Recent computational analysis of

antibody neutralization data has been successful in categorizing antibodies with re-

spect to their neutralization activity [32], extracting the identities of Env residues that

are necessary for neutralization [101] and uncovering antibody epitopes [73]. Here,

we report a computational methodology that utilizes antibody neutralization data

and structural information to construct HIV fitness landscapes and reason about the

dynamics of resistance. It consists of the interpretation of neutralization data us-

ing statistical inference, the construction of fitness landscapes using computational

chemistry and the development of biophysical and mathematical model to capture

the dynamics of replication, mutation and selection.

Our statistical model is able to uncover critical Env residues involved in antibody

neutralization and is consistent with recent studies in antibody resistance. It does not

identify the entire structural epitope involved in the protein-protein contact. Rather,

satlasso identifies an epitope that is involved in the function of the protein-protein

interaction, in our case neutralization.

To address virus fitness in terms of its replication and neutralization capabilities,

we computed Gibbs binding energy landscapes on gp120/CD4 and gp120/NAb struc-

tures and found a good correspondence with our experimental studies. One of the

drawbacks of using force fields to compute fitness landscapes, is that they rely on ex-

perimental data and are therefore empirical. Furthermore, Xray structures are prone

to errors due in part to the non-physiological conditions under which the structure

is determined. Setting these concerns aside, tools like Fold X are geared specifically

toward screening the effect of single nucleotide polymorphisms (SNPs) on protein sta-

bility and are therefore well suited for our problem. For non-conservative mutations

(those not involving Ala or Gly scanning), a reorganization of the protein backbone is

often necessary, requiring an exploration of alternative conformations. However, for
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large structure reconfigurations such as a deletion or creation of a glycan structure, we

observe that Fold X is not always able to capture the corresponding effects on binding

energy. In the case where glycosylation changes have a large effect on neutralization

by antibody, satlasso is likely to recover these features, as illustrated by the accurate

uncovering of the glycan dependence of 8ANC195. Therefore, the combination of

data derived from satlasso and Gibbs energy landscapes offer complementary views

on viral fitness.

We present an HIV evolutionary dynamics model that is the first to our knowl-

edge to incorporate binding energy landscapes of replication and neutralization and

that accurately predicts the evolution of point mutations in the presence of anti-HIV

antibody monotherapy. Recent evolution studies uncovered the evolution of dou-

ble mutations that conferred resistance to several antibodies [22, 47, 37]. A clear

extension to our model is to incorporate double mutations in our Markov model of

mutational dynamics however a clear limitation is the accuracy of an empirical energy

minimization in the case of such double mutations.

2.4 Materials and Methods

2.4.1 Mathematical Models

satlasso. We define the saturated least absolute shrinkage and selection operator

(satlasso) and formulate it as a convex optimization problem. We consider that

the antibody neutralization data X = Xs + Xu is comprised of saturated data Xs,

corresponding to IC50s of very resistant viruses, and of unsaturated data Xu (Figure

2.1). Observe n predictor response pairs (xi, yi) where xi ∈ Rp and y ∈ R. Forming

X ∈ Rn×p, X = Xu + Xs with standardized columns, the saturated lasso, (satlasso)

is an estimator defined by the following convex optimization problem:
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minimize β∈Rp

λ1
1

m
||yu −Xuβ||2︸ ︷︷ ︸

Error unsaturated data

+λ2
1

m

n∑
i=1

wi|βi|︸ ︷︷ ︸
Sparsity

+λ3 max(ys −Xsβ, 0)︸ ︷︷ ︸
Error saturated data

, (2.6)

where wi = 1

β̂i
and β̂i = 1

ξ

∑ξ
j=1 |β̂

j
i | where β̂j is the solution to the ordinary least

squares problem for subset j.

Model selection was performed by 5 fold-cross validation. Our results exclude mu-

tations that are located in the signal peptide region, transmembrane and intracellular

regions corresponding to HXBC2-numbered residues (1-30), (685-706) and (706-end)

respectively. These locations on Env are not exposed to antibody binding and we

assume that are not subject to selective pressure by antibody.

Viral dynamics. To simulate how HIV might evolve resistance, we extended

the widely used HIV infection dynamics model [77] with a random mutation process

and included our Gibbs energy formulation to capture the effects of genomic variation

on the dynamics on infection and neutralization by antibody therapy. The stochastic

discrete time differential equation model of HIV evolution under antibody selection

is written as:

x[k + 1] = λ+ x[k]− (ηc
∑n

i Rix[k]− dxx[k])τ,

yi[k + 1] = yi[k] + (ηcRix[k] + Υi[k]− dyyi[k])τ,

vi[k + 1] = vi[k] + ((1−Ni)kvyi[k]−Nivi[k]− dvv[k])τ,

(2.7)

where x ∈ R+ is the concentration of uninfected CD4+ T cells, yi ∈ R+ is the

concentration of infected CD4+ T cells that are actively producing mutant i, vi ∈ R+

is the concentration of mutant virus i. Ri and Ni represent fraction bound ligand

associated with infection and neutralization of mutants, respectively as described in

Section 2.2.3. ηc = 104-105 is the number of CD4+ T cell receptors per uninfected

cell [51, 81]. We note that the infection binding function
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Ri =
[gp]m

[gp]m + (Kwt
inf∆K

i
inf )

m (2.8)

depends on the concentration of HIV glycoprotein for mutant i, and that is dependent

on virus state vi. The glycoprotein concentration for mutants i at time k is calculated

by

[gpi] = vi[k]ηgp120
NA

, (2.9)

where ηgp120 = 14 is the number of glycoprotein molecules per virion [17, 54] and NA

is the Avogadro constant. dx, dy, dv are degradation rates, respectively, of uninfected

CD4+ cells, infected CD4+ cells, and virus. dy and dv are assumed to be equivalent

for any mutant virus. λ is the T cell generation rate, and kv is the viral burst rate,

assumed to be equal for all mutants. Υi is the number of mutants i generated by the

mutation process. Parameter values and units are listed in Table 2.4, Section 2.5.

Mutation process. The mutation process models the effects of error prone

reverse transcription allowing the genetic variability necessary for selection. Experi-

mental results indicate that single residue point mutations can cause resistance in the

presence of even the most potent broadly neutralizing antibodies [22, 47, 101], Chapter

4. Thus, we focus our analysis on point mutations on the viral envelope glycoprotein

but assume that mutations anywhere on the HIV genome are equally probable. We

do not consider mutations based on insertions, deletions or recombinations.

We allow for any number of single nucleotide changes to occur based on the reverse

transcription rate of mutation u = 3 × 10−5 mutations/base pair/replication cycle.

However, we track viruses that have at most one residue substitution from wild type

and assume that viruses with more than one residue substitution on contact sites are

considered unfit and disappear. If a second residue change occurs outside the contact

site, we assume this has the same fitness as the virus with one contact site residue

change. Based on these criteria, any particular virus in the system can be in one of

three states: wild type, point mutant with known fitness value and mutants with two
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or more mutations. Mutation dynamics are represented by a Markov process.

Let S = {wt,m1, ...,mn, nf, uf} be the state space associated with the Markov

process, corresponding to infected cell types where wt is the wild type infected cell,

m1, ...,mn are point mutant infected cells that produce virus with known fitness, nf is

an infected cell type that produces virus with unknown fitness, and uf is an infected

cell type that produces virus considered unfit. As an approximation, we consider

infected cells that produce mutant virus where no fitness knowledge to be equivalent

in fitness to wild type, and those that produce virus with more than one residue

change are considered unfit. Let Xn be a random variable denoting the state of a

given cell at time n taking values in S, then its dynamics are given by the following

state transition probabilities P = {pij} = P{Xn+1 = j|Xn = i}:

pwt→wt = (1− u)kl

pwt→mi
= kcu(1− u)kc−1(1− u)kh

pwt→nf = khu(1− u)kh−1(1− u)kc

pwt→uf = 1− pwt→wt − pwt→mi
− pwt→nf

pmi→mi
= 1−

∑n
j 6=i pmi→mj

− pmi→uf

pmi→mj
= 2

3kc
pwt→mi

pmi→uf = pwt→nf ,

(2.10)

for i ∈ {1, ..., n} and j 6= i, and where kl is the length of the entire HIV genome, kc

is the length of the genome for which fitness information exists, nc is the number of

possible point mutants with known fitness information, kh = kl−kc, and u is the rate

of mutation of HIV reverse transcriptase. All other state transition probabilities are

not considered. This Markov process at the single cell level induces a Markov process

at the population level.

2.4.2 Model Implementation and Simulations

Measuring the shape of viral distributions. The Gini coefficient measures

statistical dispersion and is most commonly used as a measure of income inequality
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Figure 2.7: A finite state space Markov model representation of simplified mutation dy-
namics. MUTF is an abstract state that encompasses all point mutations for which fitness
information is known, MUTNF is an abstract state that defines all mutations for which
fitness information is not known. The WT state is a wild type virus state, UNFIT final
state is a state that has no infectivity and is considered unfit with respect to any selective
pressure.

in a population. We use this measure as an approximation to the shape of the virus

distribution at steady state. The Gini coefficient G is calculated as

G =
∑n

i=1

∑n
j=1 |yi−yj |

2n2µ
, (2.11)

where n is the number of all possible point mutations, yi is the percent population

of a point mutation i that occurs at steady state for all simulations and µ is their

mean.

2.4.3 Experimental Methods

Mutagenesis, Virus Production and Cells. Site directed mutagenesis and as-

sembly PCR were used to generate YU2-NL43 Env mutants. YU2-NL43 was modified

using unique restriction sites EcoRI and XhoI. Inserts were generated by PCR using

primers EcoRI-CF (5’-GCCAGCCAGAATTCTGCAACAACTGCTGTTTATCCAT

TTCAG-3’) and XhoI-CR-(5’-GCGTCGACCTCGAGATACTGCTCCCACCCCATC-

3’) and individual sense and antisense mutagenesis primers corresponding to YU2-

NL43 mutants listed in Figure 2.4. Escherichia coli One Shot STBL3 Chemically

Competent cells (Life Technologies) were used to propagate proviral plasmids during
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a 16 hour incubation at 30◦ C. Stocks were prepared using a DNA Midi kit (Zymo Re-

search). All gene constructs were verified by complete sequencing of gp160. Cell-free

virus was produced by transfection of HEK293T cells with YU2-NL43 virus coding

plasmid using BioT (Bioland Scientific). Viral supernatant was harvested at 48 h post

transfection, filtered through a 0.5 µm filter and aliquots were stored at -80◦ C. Stock

concentrations were quantified by p24 enzyme-linked immunosorbent assay (ELISA)

(Cell Biolabs). The YU2 Env/NL43 plasmid was obtained from the Nussenzweig

lab, Rockefeller University. The green fluorescent protein (GFP) reporter T-cell line

GXR-CEM is previously described in [11] was obtained through AIDS Research and

Reference Reagent Program, National Institute of Allergy and Infectious Diseases,

National Institutes of Health.

Protein Expression and Purification. Antibodies were transiently expressed

in HEK293T/17 cells or suspension HEK 293-6E cells (National Research Coun-

cil Biotechnology Research Institute, Montréal, QC, Canada) using 25-kDa linear

polyethylenimine (Polysciences) for transfection. Supernatants were passed over Mab-

Select SuRe protein A resin (GE Healthcare) or Protein G Sepharose 4 Fast Flow (GE

Healthcare) and eluted by using pH 3.0 citrate or glycine buffer, and then immedi-

ately neutralized. Antibodies were further purified by size exclusion chromatography

using a Superdex 200 or 75 10/300 GL column.

In Vitro Replication and Neutralization Assays. To initiate infection for

both replication and neutralization assays, GXR-CEM cells at 4× 105 cells/ml were

infected with 200 ng YU2-NL43 (HIV) virus stock in the absence of antibody and incu-

bated for three days at 37◦ C. Two days after infection, uninfected GXR-CEM cells at

2×105 were pre-treated with 0, 0.02,0.08, 0.4,1.6, 6.4, 20, 80 µg/ml of NIH4546G54W

antibody. Three days after initial infection with cell free virus, the infected GXR-

CEM were washed and added to a final concentration of 1 % GFP-expressing donor

cells to uninfected pre-treated GXR-CEM cells. For the neutralization assay, a con-

stant concentration of antibody was maintained for each sample for three days follow-

ing secondary infection. Infection was determined by measuring GFP reporter gene

expression in the absence of antibodies measured daily for four days following sec-
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ondary infection. Neutralization was determined by measuring the reduction in GFP

reporter gene expression in the presence of antibodies NIH4546G54W for three days.

Flow cytometry data was collected with a MACSQuant flow cytometer and trans-

formed to a python format using the FlowCytometryTools python package (Gore lab,

MIT). An automated gating and analysis software module written in python was

developed to process large sets of flow cytometry data.
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2.5 Appendix

Antibody CVE λ1 λ2 λ3

3BNC117 0.387 5.05 3.25 1.7

3BNC55 0.3 5.05 4.6 0.35

NIH45-46G54W 0.612 1.45 1.45 7.1

45-46m2 0.46 1 4.15 4.85

45-46m7 0.425 2.35 6.4 1.25

VRC01 0.227 2.8 4.15 3.05

VRC03 0.316 30 60 10

VRC02 0.322 2.35 3.7 3.95

VRC-PG04 0.382 3.0 6.0 1.05

VRC-PG04b 0.382 50 40 10

b12 0.127 3.7 5.05 1.25

12A12 0.321 20 80 0

VRC-CH31 0.382 30 50 20

PG16 0.485 2.8 5.95 1.25

10-1074 0.373 1.9 3.25 4.85

10-996 0.486 4 5 1

PGT121 0.478 3.25 3.25 3.5

8ANC195 0.274 3.25 4.6 2.15

2F5 0.132 2.8 5.95 1.25

10E8 0.33 5.05 2.8 2.15

4E10 0.159 1.925 3.35 4.725

Table 2.1: 5-fold cross validation error (CVE), optimal λ1, λ2 and λ3 for satlasso models on
antibody neutralization data.
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Antibody Bound Virus PDB accession

NIH-4546G54W 93TH057 4JKP

NIH-4546 93TH057 3U7Y

VRC-01 93TH057 3NGB

VRC-CH31 93TH057 4LSP

3BNC117 93TH057 4JPV

VRC-PG04 93TH057 3SE9

VRC-03 93TH057 3SE8

PG16 YU2 4DQ0

PGT128 HXB2 3TYG

Table 2.2: Antibody and virus molecular structures and their Protein Data Bank (PDB)
accession numbers.

Ligand Envelope molecule Kd Units Ref

CD4 Core gp120 220 nM [67]

CD4 full length gp120 22 nM [67]

12A12 YU2-gp140 0.3 nM [92]

3BNC60 YU2-gp140 6.81 nM [92]

3BNC117 YU2-gp140 6.54 nM [92]

3BNC55 YU2-gp140 57.8 nM [92]

8ANC195 YU2-gp140 34.3 nM [92]

45-46 YU2-gp140 6.75 nM [92]

VRC01 YU2-gp140 0.4 mM [92]

VRC-CH31 YU2 gp140 37.8 nM [107]

VRC-PG04 KER2018 core 11.9 nM [45]

VRC-03 YU2 gp140 16.1 nM [104]

PG16 V1-V2 complex glycan 1.26 mM [75]

Table 2.3: Ligand dissociation constants used in Equation 2.5.
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Parameter Value Units

λ 105 cells · day−1

dx 0.01 day−1

dy 0.01 day−1

kv 100 day−1

ηCD4 105 CD4 molecules per T cell

ηgp120 14 gp120 molecules per virion

τ day

T 313 K

R 1.987 kcal · mol−1· K−1

Table 2.4: HIV evolutionary dynamics parameters and units corresponding to Equation
(2.7) and Hill Equations (2.5).
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Chapter 3

Robust Control of Evolutionary
Dynamics

3.1 Introduction

A challenge inherent to the treatment of certain infectious and non-infectious diseases,

such as HIV or cancer, is the risk that the pathogen or tumor will evolve away

and become resistant to treatment methods that comprise the standard of care [35,

46, 48, 76]. Especially vulnerable to this phenomenon are treatment methods that

involve exposing the disease population (such as viruses or cancer cells) to therapies

targeting specific molecules involved in disease progression for an extended period

of time. While these targeted therapies have the benefit of allowing physicians to

tailor treatments to a patient’s tumor cell population, they nonetheless establish an

environment in which the occurrence of mildly drug resistant pathogens or tumor cells

can develop an evolutionary advantage over those for which the therapy is targeted

[23, 27, 41, 97], leading to so called “treatment-escape”.

The challenge of designing treatment protocols that prevent escape is one that

has been addressed by control theoretic methods. For cancer therapy, results in this

spirit apply methods from optimal and receding horizon control [3, 16], as well as

gain scheduling [2], to synthesize treatment protocols that are robust to parameter

uncertainty, an inherent issue in all biological systems. Zhao et al. [105] present

a static multi-objective optimization formulation to solve the combination therapy
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problem for different initial tumor populations, when the drugs under consideration

have additive, linear effects on cell viability. Proposed combination treatments were

confirmed experimentally for different tumor initial conditions in a murine lymphoma

model [106]. In the context of HIV and antiretroviral therapy, the authors in [25]

propose a discrete time formulation that allows for the design of switching therapy

strategies to delay the emergence of highly resistant mutant viruses. Recent results

in [84] and [8], consider a simplified bilinear model and the optimal control problem

is shown to be convex over a finite horizon for a predefined set of initial states.

This chapter presents three algorithms for the principled design of targeted combi-

nation drug treatment strategies that explicitly account for the evolutionary dynamics

of a generic disease model, where the drugs under consideration are non-interacting

and exhibit independent additive effects. Our first algorithm, introduced in [42], pro-

poses a general iterative method that uses an H∞ robust control approach to design

targeted combination therapy concentrations and is effective in generating robustly

stabilizing controllers. Our second algorithm addresses the lack of scalability symp-

tomatic of semidefinite programming (SDP) formulations and proposes a scalable

solution to the combination therapy problem by reformulating it as a second order

cone program (SOCP), with robustness guarantees addressed by minimization of the

induced L1 norm. We also require that the synthesized controller be not only ro-

bust to unmodeled dynamics, but also exhibit sparse structure and small feedback

gains. This is motivated by the fact that the number of therapies commonly used

in combination to treat a disease is often small while the number of potential usable

therapies is often very large [1]. Targeted therapies such as small molecule drugs or

antibodies exhibit a maximum effective concentration beyond which side effects are

likely to worsen and no additional drug benefits are seen. Our third algorithm solves

the combination therapy problem subject to the same design constraints (sparsity of

the drug combination, maximum dosage and robustness constraints) formulated as

an SOCP while addressing the nonlinear dynamics of individual drugs and of their

combinations. In particular, through the piecewise linearization of individual and

combination drug pharmacodynamics, in conjunction with a branch and bound like
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algorithm for the effective search through these linear pharmacodynamic modes, we

reduce the combination therapy problem to applying the SOCP formulation from [44]

to a set of pharmacodynamic modes.

The chapter is organized as follows: in Section 3.2, we formulate the combination

therapy control problem by introducing the evolutionary dynamics of a generic dis-

ease model with replication and mutation, subject to selective pressure from drugs.

We also give a brief introduction to control of positive systems. Sections 3.3, 3.4

and 3.5 propose respectively, 1) an H∞ robust control approach to design targeted

combination drug treatment strategies, 2) an L1 scalable solution to the combination

therapy problem, and 3) a L1 scalable solution to the combination therapy problem

for a nonlinear pharmacodynamics model. We illustrate the applicability of these

methods to antibody treatment strategies for HIV in Chapter 4.

3.2 Problem Formulation

We begin by fixing notation and introducing a simplified, general evolutionary dy-

namics model that encodes replication, mutation and drug selection. We observe that

there is an inherent feedback structure to the aforementioned dynamics that forces

us to consider structured controller synthesis. By showing that our dynamics are in-

ternally positive, we are able to leverage recent results in control of positive systems,

that allow us to greatly simplify stability analysis and controller optimization with

structure constraints.

3.2.1 Notation

R+ denotes the set of nonnegative real numbers. The inequality X > 0, (X ≥ 0)

means that all elements of the matrix or vector X are positive (nonnegative). X � 0

means that X is a symmetric and positive definite matrix. The matrix A ∈ Rn×n is

said to be Hurwitz if all eigenvalues have negative real part. Finally, the matrix is

said to be Metzler if all off-diagonal elements are nonnegative. Define 1n to be the

vector of all ones of dimension n. The induced matrix norm for a matrix M ∈ Rr×m
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is ‖M‖p−ind = supw∈Rm
|Mw|p
|w|p where |w|p = (|w1|p + ... + |wm|p)1/p. Let G(s) =

C(sI − A)−1B + D be a r ×m matrix transfer function. The induced norms of the

corresponding impulse response g(t) = CeAtB +Dδ(t) are ‖g‖p−ind = supw
‖g∗w‖p
‖w‖p for

w ∈ Lpm[0,∞), given that g ∗ w ∈ Lrp[0,∞) is the convolution of g and w. Finally we

refer to the ∞-induced robust controller as the L1 controller as is customary in the

robust control literature [19].

3.2.2 Evolutionary dynamics model

The quasispecies model [26] was originally developed to describe the dynamics of

populations of self replicating macromolecules undergoing mutation and selection.

We choose this model for its relative simplicity and its ability to capture the salient

features of the evolutionary dynamics of a simplified generic disease model. In this

thesis, we incorporate the effects of potential therapies into the basic quasispecies

model, by defining a drug binding reaction, ` + ρ
KA−−→ ` · ρ - drug ` binds to self

replicating macromolecule ρ with association rate KA, giving a neutralized complex

` · ρ. The extended quasispecies model for n mutants and m drugs, is written as

ẋi = (riqii − di)xi +
n∑
k 6=i

riqikxk − ψi(`)xi, (3.1)

where xi ∈ R+ is the concentration of mutant i, ` = (`k) ∈ Rm
+ is the drug concen-

tration (assumed to remain at constant concentrations throughout), ri and di are the

replication and degradation rates, respectively, of mutant i, and qik is the probability

that mutant k mutates to mutant i (note that qii is the probability of no mutation

occurring). The rates ri can be viewed as the replication fitnesses of mutant i with-

out the effect of the drug. When `k = 0, for all k ∈ {1, ...,m}, the quasispecies

dynamics are unstable. Finally, the function ψi(`) represents the pharmacodynamics

of individual drugs `k and their combinations with respect to the i-th mutant species.

The map ψi(`) is a function defined as the sum of nonlinear functions representing

additive drug effects, represented by Hill equations and described in the next section.
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3.2.3 The Hill equation

The Hill equation has been used in pharmacology to model nonlinear drug dose-

responses, such as the concentration dependent effects of drugs on cell viability or

virus neutralization. More generally it serves to quantify drug-receptor relationships,

the fraction of bound receptors ρ (e.g. cell receptors, virus proteins) as a function of

ligand `k (e.g. drug, antibody) concentrations for the binding reaction

`k + ρ
KA−−→ `k · ρ,

ψρ(`k) = [`k]nk

[`k]nk+K
nk
k

,
(3.2)

where ψρ(`k) ∈ [0, 1] is the fraction of bound receptors, `k ∈ R+ is the concentration

of ligands, Kk = 1
KA
∈ R+ is the dissociation constant associated with the binding

reaction (3.14), nk ∈ R+ is the Hill coefficient that represents the degree of coopera-

tivity, i.e. the degree to which binding of a ligand molecule modulates the probability

of another ligand molecule binding.

We notice that the Hill function is a biological analog to actuator saturation, in

that there is a law of diminishing returns in terms of the effect of ever increasing drug

concentrations on the system. In particular, the Hill functions ψρ(`k) that appear in

most pharmacodynamic models look approximately linear for small to moderate `k,

and nearly constant for large `k. The application of algorithms developed in previous

Sections 3.3 and 3.4 assume that the Hill equation can be approximated by a linear

function and inequality constraints. In Section 3.5, we provide a finer approximation

of the Hill function by using piecewise linear approximations to solve the combination

therapy problem subject to nonlinear pharmacodynamics. For all algorithms devel-

oped in this chapter, we consider combinations of independently acting drugs that

exhibit an additive effect.
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3.2.4 State space representation

The following state space representation of equation (4.6) emphasizes the inherent

feedback structure that arises from drug binding reactions:

ẋ = (A−Ψ(`))x+ w

z = Cx
(3.3)

with A ∈ Rn×n, with Aij = riqij ≥ 0 ∀ i 6= j and Aii = riqii − di, that encodes the

mutation and replication dynamics; Ψ(`) ∈ Rn×n, a diagonal matrix, with diagonal

elements ψi(`) representing additive drug effects for each mutant i; ` = (`k) ∈ Rm, a

vector of individual drug concentrations; C = 1Tn ∈ R1×n; and w ∈ Rn
+ an arbitrary

positive disturbance. We set the regulated output z = 1Tnx to be the total mutant

population, so as to ensure that the resulting treatment plan is one that robustly

drives the total mutant population to zero.

If we approximate drug effects for each mutant ψi(`) be a linear function of `,

then we can construct an appropriately defined block diagonal matrix Ψ such that

Ψ(`) = ΨL where L = I⊗ ` ∈ Rmn×n. In this particular case, the closed loop transfer

function from input to output system is given by

G(s) = C(sI − (A−ΨL)−1B +D. (3.4)

The control task then becomes to engineer drug concentrations ` by finding a “con-

troller” L = I ⊗ ` ∈ Rmn×n that leads to a stable G satisfying ||G||∞−ind < γ, for

some desired robustness level γ > 0.

3.2.5 Control of positive systems

Recent results on the synthesis of controllers for positive systems show that the design

of structured static state feedback controllers for internally positive systems can be

reformulated as a convex problem with methods that scale linearly with the number

of non zero elements in the feedback matrix [82, 83].
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Briefly, we recall definitions from positive systems theory [96]. We will then expand

the background on control of positive systems as needed in Section 3.3.1 and Section

3.4.1.

Definition 2. The LTI system

ẋ = Ax+Bw

z = Cx+Dw
(3.5)

with A ∈ Rn×n, B ∈ Rn×q, C ∈ Rp×n and D ∈ Rp×q is called internally positive if

for every x0 ∈ Rn
+ and all inputs such that w(t) ∈ Rq

+ for all t ≥ 0, the state vector

x(t) belongs to Rn
+ and the output vector z(t) belongs to Rp

+ for all t ≥ 0.

The internal positivity of a system is easily determined by a simple condition on

its system matrices:

Lemma 3. System (3.5) is internally positive if and only if

1. A is Metzler, and

2. B,C,D ≥ 0, i.e. matrices B, C, and D are entry-wise non-negative.

We observe that in the state space system (3.3), A is a Metzler matrix with

off-diagonal entries that are several orders of magnitude smaller than the diagonal

entries. This is due to the biological fact that mutation rates range from 10−5 - 10−8

mutations per base pair per replication cycle for reverse transcriptase [58] to DNA

replication [68].

In light of this result, it is straightforward to show that system (3.3) is internally

positive:

Lemma 4. System (3.3) is internally positive.

Proof. Condition 2) of Lemma 3 is easily seen to be satisfied by noting that in equa-

tion (3.3), B = I, C = 1T and D = 0. To see that A − Ψ(`) is Metzler, it suffices

to notice that since Ψ(`) is strictly diagonal, it cannot affect the Metzler property of

A.
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3.3 Static state feedback strategies for combination

therapy using H∞ control

We introduce a general algorithm for the systematic design of feedback strategies

to stabilize the evolutionary dynamics of a generic disease model using an H∞ ap-

proach. We show that designing therapy concentrations can be cast as an H∞ state

feedback synthesis problem, where the feedback gain is constrained to not only be

strictly diagonal, but also that its diagonal elements satisfy an overdetermined set of

linear equations. Leveraging recent results in positive systems [82, 96], we develop an

algorithm that always yields a stabilizing controller.

We recall recent results on the synthesis of structured static state feedback con-

trollers for positive systems in Section 3.3.1, and propose an algorithm to solve for a

stabilizing H∞ sub optimal controller in Section 3.3.3.

3.3.1 The bounded real lemma for internally positive systems

Recent results by Tanaka and Langbort [96] and Rantzer [82] on the synthesis of

H∞ controllers for positive systems show that the design of structured static state

feedback controllers for internally positive systems can be reformulated as a convex

problem. In this section we provide a brief survey of the relevant definitions and

results from [96].

In Section 3.2.5, we showed that our system (3.3) is internally positive. Systems

that are internally positive enjoy the significant advantage that the storage function

matrix used in the bounded real lemma to characterize the H∞ norm of a system via

a semi-definite program (SDP), can be taken without loss to be diagonal, as outlined

in the following theorem, slightly modifed from [96].

Theorem 5. Let the system (3.5) be internally positive with (A,B) stabilizable and

(C,A) detectable. Let the corresponding transfer function be given by G(s) := C(sI−

A)−1B +D. Then the following statements are equivalent:

1. ‖G‖∞ < γ and A is Hurwitz;
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2. There exists a diagonal matrix X > 0 such that ATX +XA+ CTC XB + CTD

BTX +DTC DTD − γ2I

 ≺ 0. (3.6)

The fact that X can be restricted to be diagonal is very useful in synthesizing

structured feedback controllers, when this structure is defined by sparsity in the feed-

back gain. Our setting, however, requires not only sparsity, but a type of algebraic

consistency — the controller structure L = I ⊗ ` implies that each block diagonal

element of L must be equal. Unfortunately, there is no known way of enforcing this

additional coupling in a convex manner.

In the following sections, we deal with the aforementioned non-convexity of the

optimal control problem by formulating an iterative algorithm for finding effective

drug concentrations, exploiting the internal positivity of the system to show that it

always yields a stabilizing controller.

3.3.2 Initializing stabilizing controller

We begin by synthesizing a stabilizing controller to use as an initial controller in our

iterative algorithm, as noted, which admits a particularly simple formulation in light

of the Metzler nature of A and the diagonal structure of ΨL.

Lemma 6. There exists ε > 0 such that the solution to the convex program

minimize `∈Rm
+
||`||∞

subject to

Ad + εI −ΨL ≺ 0

L = I ⊗ `

(3.7)

is a stabilizing controller for system (3.3), where Ad is a diagonal matrix comprised

of the diagonal elements of A.

Proof. Rewrite A = Ad + M where Ad is diagonal and M = {mij} ∈ Rn×n, mij =

0 for i = j and mij > 0 for i 6= j. By the Perron-Frobenius theorem, there exists

r > 0 such that the spectral radius ρ(M) = r ≤ maxi
∑
mij. Let ε = maxi

∑
mij
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and rewrite M = εI − (εI −M). We note that −(εI −M) ≺ 0. The closed loop

dynamics are then given by A−ΨL = Ad + εI − (εI −M)−ΨL ≺ Ad + εI −ΨL ≺ 0,

yielding the desired stability.

Remark 7. The stabilization problem can be solved independently of a storage func-

tion because it can be reduced to satisfying element wise inequalities.

3.3.3 An H∞ combination therapy controller

Observe that through a straightforward application of inequality (3.6) to system (3.3),

the antibody concentrations ` yielding an optimal H∞ closed loop norm can be found

by solving the following non-convex program:

minimize γ

subject to ATclX +XAcl + (ΨL)T (ΨL) X

X −γ2I

 ≺ 0

Acl = (A−ΨL)

L = I ⊗ `

X � 0, X diagonal

(3.8)

Applying a Schur complement to ATclX + XAcl + (ΨL)T (ΨL) yields the more

amenable form

minimize γ

subject to
ATclX +XAcl X (ΨL)T

X −γI 0

ΨL 0 −γI

 ≺ 0

Acl = (A−ΨL)

X � 0, X diagonal

(3.9)
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Remark 8. We can impose an additional constraint limiting the concentrations of can-

didate therapies. This is necessary with certain drugs that have maximum tolerated

doses dictated by clinical trials.

Thus the only non-convexity remaining are the product terms between the storage

function matrix X and the controller gain ` in ATclX + XAcl. As mentioned earlier,

there are no known convex reformulations of this problem due to the additional struc-

ture on `. As such, we suggest the following iterative algorithm, based on the convex

programs (3.7) and (3.9), to find a stabilizing controller.

For ease of notation, let PX′(`, γ) denote that we solve (3.9) with X = X ′ fixed,

and that we optimize over ` and γ. Similarly, let P`′(X, γ) denote that we solve (3.9)

with ` = `′ fixed, and that we optimize over X and γ. Additionally, let (Z, γ) =

PZ′(Z, γ) denote the solutions to the respective programs, for Z,Z ′ ∈ {X, `}. We are

now in a position to present our algorithm:

Algorithm 1 H∞ Combination Therapy

1. Set ε > 0

2. Solve (3.7) to obtain an initial stabilizing controller `′.

3. while γ′ − γ > ε :

(a) Set (X ′, γ) = P`′(X, γ).

(b) Set (`′, γ) = PX′(`, γ).

(c) Set γ′ = γ.

Proposition 9. Algorithm 1 always converges to a feasible γ and generates a stabi-

lizing controller for (3.3).

Proof. By Lemma 6, an initial stabilizing controller can always be found, and thus the

algorithm can always be initialized. The sequence of γs then defined by the iterative

process in Algorithm 1 is non-increasing by construction, and bounded below by 0,

thus implying convergence. We therefore have that our algorithm always converges
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to a local minimum value of γ, and yields a set of gains which, by the bounded real

lemma, robustly stabilizes system (3.3).

3.4 Static state feedback strategies for combination

therapy for large-scale systems

In Section 3.3, we introduced a general algorithm that used an H∞ approach for the

principled design of targeted combination therapy concentrations that explicitly ac-

count for the evolutionary dynamics of a generic disease model. This algorithm was

effective in generating robustly stabilizing controllers, however it suffered from an

inherent lack of scalability symptomatic of semidefinite programming formulations.

Here,we propose a scalable solution to the combination therapy problem by refor-

mulating it as a second order cone program (SOCP). We simultaneously address the

requirement that the synthesized controller be not only robust to unmodeled dynam-

ics but also exhibit sparse structure and small feedback gains, and allow the designer

to explore respective tradeoffs. In particular, through `1 and `2 regularization, we in-

duce sparse structure in the feedback controller while bounding the magnitude of the

feedback gains, leading to a SOCP formulation of the combination therapy synthesis

problem. In this section, we propose a scalable algorithm for the systematic design

of sparse, small gain feedback strategies to stabilize the evolutionary dynamics of a

generic disease model.

3.4.1 Controller synthesis by linear programming

In this section, we provide a brief survey of the relevant definitions and results from

design of structured static state feedback controllers for positive systems, [83].

Theorem 10. For the system

ẋ = (A+ ELF )x+Bw

z = (C +GLF )x+Dw
(3.10)
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let D be the set of m×m diagonal matrices with entries in [0,1]. Suppose that A+ELF

is Metzler and C +GLF ≥ 0 for all L ∈ D. Let g(t) be the impulse response of

G(s) = (C +GLF )[sI − (A+ ELF )]−1B +D

If the matrices B,D and F have non-negative coefficients, then the following two

conditions are equivalent:

1. There exists an L ∈ D with A+ ELF Hurwitz and ‖g‖∞−ind < γ.

2. There exists a ξ ∈ Rn
+, µ ∈ Rm

+ with

Aξ + Eµ+B1 < 0

Cξ +Gµ+D1 < γ1

µ ≤ Fξ

If ξ, µ satisfy the linear constraints 2) then the stability and norm guarantees of 1)

hold for every L such that µ = LFξ.

Input-output performance is characterized using induced norms, which are deter-

mined by the closed loop system’s static gain:

Theorem 11. For an r ×m transfer matrix G(s) = C(sI − A)−1B + D, let g(t) =

CeAtB + Dδ(t) be the corresponding impulse response, where CeAtB ≥ 0 for t ≥ 0

and D ≥ 0, with A Hurwitz. Then ‖g‖p−ind = ‖G(0)‖p−ind for p = 1, p = 2 and

p =∞.

The positive nature of the system allows us to restrict ourselves to linear storage

functions, which in turn allows for sparse structure to be imposed on the feedback

gain [82]. Our feedback gain L = I ⊗ ` is not only structurally constrained to be

block diagonal, but algebraically constrained as well, in that all block diagonal com-

ponents must be equal. Unfortunately, there is no known convex reformulation for

this additional constraint.
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3.4.2 Regularization for structured controller synthesis

The biomedical justification for wanting a simple controller structure with small gains

is twofold: first, the number of therapies that can be used simultaneously to treat

a disease is often limited, and second to minimize side effects, it is desirable to

keep the magnitude of drug concentrations small while being robust to pharmaco-

dynamic perturbations. These design specifications can be expressed with the use of

regularization, a common technique used in machine learning and inverse problems

for model identification [13, 24, 85, 15] and increasingly used for controller design

[60, 53, 21, 28, 59]. As such, we introduce `1 and `2 penalties in our design objective

to promote controller sparsity and minimize controller gains.

We combine these regularization techniques with controller synthesis results for

positive systems and present an iterative algorithm that yields a suboptimal L1 con-

troller. This formulation of the combination therapy problem allows the designer

to explore explicit trade offs between closed loop performance, sparsity in controller

structure and gain minimization.

In the following sections, we address the aforementioned non-convexity of the

optimal control problem by formulating an iterative algorithm for finding effective

drug concentrations. Our main result addresses the issue of synthesizing a stabilizing

controller subject to the constraints imposed by the quasispecies model (3.3), with

acceptable robustness properties characterized in terms of its ∞-induced closed loop

norm.

3.4.3 A scalable L1 combination therapy controller

Observe that through a straightforward application of Theorem 11, with B = I, C =

1T , D = 0, E = −Ψ, F = I to system (4.6), solving the following non-convex

program:
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minimize
`∈Rm

+ ,x∈Rn
+

‖Cx‖∞ + λ1‖`‖1 + λ2‖`‖2

subject to

Ax+Kx+ 1 ≤ 0

K = ΨL

L = I ⊗ `

x ≥ 0

(3.11)

will yield a sparse combination of drug concentrations `, yielding an optimal ∞-

induced closed loop norm for appropriately chosen regularizers λ1 ≥ 0, λ2 ≥ 0 ∈ R.

Remark 12. We can impose an additional constraint limiting the concentrations of

candidate therapies. This is necessary with certain drugs that have maximum toler-

ated doses dictated by clinical trials.

As mentioned earlier, there are no known convex reformulations of this problem

due to the additional structure on L. As such, we suggest the following iterative

algorithm, based on the convex programs (3.9) and (3.23), to find a stabilizing con-

troller. For notation, let Y = PZ(x, γ) denote an optimization problem P in which

we optimize over x and γ leaving Z fixed and with solution Y .

Program 1. P1`(x, γ) :

minimize
γ,x∈Rn

+

γ

subject to

Ax+ ΨLx+ 1 ≤ 0

L = I ⊗ `, C = 1T

x ≥ 0

γ ≥ ‖Cx‖∞

(3.12)

Program 2. P2(x,λ1,λ2)(`, γ)
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minimize
γ,`∈Rm

+

γ + λ1‖`‖1 + λ2‖`‖2

subject to

Ax+ ΨLx+ 1 < 0

L = I ⊗ `, C = 1T

γ ≥ ‖Cx‖∞

(3.13)

We now present our algorithm:

Algorithm 2 Scalable Combination Therapy

1. Set ε > 0.

2. Solve for initial stabilizing controller `′:

Solve convex program (3.7) to obtain controller `0.

Set (x′, γ) = P1`0(x, γ).

Set (`′, γ) = P2(x′,0,0)(`, γ).

3. Find (λ′1, λ
′
2, `) that minimize γ:

∀(λ1, λ2) ∈ Λ1 × Λ2,Λ1,Λ2 ∈ Rk
+,

while γ′ − γ > ε :
Set (x′, γ) = P1`′(x, γ).
Set (`′, γ) = P2(x′,λ1,λ2)(`, γ).
Set γ′ = γ.

Remark 13. The sequence of γ’s defined by the iterative process in Algorithm 1 is non increasing by construction, and bounded below by 0, thus implying convergence. An initial stabilizing controller can always be found as shown in ??, and thus the algorithm can always be initialized. We therefore have that our algorithm always converges to a feasible, local minimum robustness value γ, generating a stabilizing controller for (2).

Remark 14. In practice, we note that the L1 controller suffers from dependence on ini-

tial conditions and converges to local optima quickly, yielding a stabilizing controller

with robustness properties that are not significantly different from the nominal con-

troller. A solution to this is to iterate once through P1 and P2, with λ1 = λ2 = 0

and initialize the algorithm with the resulting controller.

Remark 15. Due to the presence of the `2 regularizer, P2 and (5) are SOCPs and

not linear programs. As it will be clearly demonstrated in an example in the next

chapter, this is still more efficient than the SDP combination therapy algorithm from
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Section 3.3.3 [42]. In addition, the second order cone constraint is only on the drug

concentrations so has a minimal effect on performance [].

3.5 Feedback strategies for combination therapy for

large scale systems with nonlinear pharmacody-

namics

In Section 3.4, we introduced a scalable, iterative algorithm for the principled de-

sign of targeted combination therapy concentrations that explicitly accounts for the

evolutionary dynamics of a generic disease model. This algorithm was effective in

generating robustly stabilizing controllers, while simultaneously allowing the designer

to explore explicit trade offs between closed loop performance, sparsity in controller

structure and gain minimization. Leveraging recent results from positive systems

[83], we formulated this algorithm as a second order cone program (SOCP), which

made the controller synthesis scalable. However it could not take into account a) the

pharmacodynamics of the input, potentially suffering from over or underestimating

gains, and b) the effects of synergistic or antagonistic drug combinations that can be

modeled with additional nonlinear pharmacodynamic terms [102].

In this section, we propose an algorithm that solves the combination therapy prob-

lem subject to the same design constraints (sparsity of the drug combination, max-

imum dosage and robustness constraints) formulated as an SOCP while addressing

the nonlinear dynamics of individual drugs and of their combinations. In particular,

through the piecewise linearization of individual and combination drug pharmacody-

namics, in conjunction with a branch and bound like algorithm for the effective search

through these linear pharmacodynamic modes, we reduce the combination therapy

problem to applying the SOCP formulation from [44] to a set of pharmacodynamic

modes.

The main contribution of this section is an algorithm for the systematic design

of sparse, small gain feedback strategies to stabilize the evolutionary dynamics of a
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generic disease model and general nonlinear pharmacodynamics models, which sup-

port synthesis of feedback strategies in light of highly nonlinear drug dynamics.

3.5.1 Pharmacodynamic models

Pharmacodynamic models are used to quantitatively describe nonlinear drug dose-

responses and model drug-receptor relationships. These models are often described

using combinations of nonlinear Hill functions, and allow for the modeling of drug

saturation effects [86, 90, 78]. These pharmacodynamic nonlinearities are further in-

creased with the fact that drugs administered in combination can have independent

additive effects or can otherwise exhibit synergistic or antagonistic dose dependent

behavior, further complicating the design of suitable combination therapies [102].

There have been several attempts to deal with nonlinear HIV infection dynamics

using model predictive control (MPC) to design optimal antiretroviral drug dosing

strategies [56, 108]. With MPC and other linear control synthesis methods, an es-

sential feature of the system, that of nonlinearities associated with drug binding, is

linearized away. In particular, such an approach can lead to a model that underesti-

mates the efficacy of a drug at lower concentrations, and over estimates its efficacy at

high dosages unless a sufficiently small update time is taken. This latter restriction

may then lead to strategies that are no longer realistic in a biomedical application,

where it may be difficult to update the administered therapies at the frequency dic-

tated by the MPC controller. In this section, we take an alternative approach and

attempt to design constant drug therapies by taking input nonlinearities into account

more explicitly. In particular, through the piecewise linearization of individual and

combination drug pharmacodynamics, in conjunction with a branch and bound like

algorithm for the effective search through these linear pharmacodynamic modes, we

reduce the combination therapy problem to applying the SOCP formulation from [44]

to a set of pharmacodynamic modes.

When combined, drugs can have additive, synergistic or antagonistic effects that

need to be explicitly accounted for when designing combination therapies. When the
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presence of one drug modulates the effect of another, the combined drug effects are

no longer additive, and in particular, the phamacodynamics of the drug interaction

now incorporate additional terms that represent this interaction.

We use the Hill equation introduced in Section 3.2.3 to model the nonlinear phar-

macodynamics of independently acting drugs, in which the effect of each drug on

the system is additive. Consider the system of m drug binding reactions to different

receptors on a particular cell or virus x:

`1 + ρ1
K1←− `1 · ρ1, ..., `m + ρm

Km←−− `m · ρm (3.14)

where `k is the drug k and ρk is a receptor. If these receptors comprise different drug

binding targets on a cell or virus x, then we can describe the total effect of these

independently acting drugs `1, ..., `m on x as

Ψx(`) =
∑m

k=1 ψρk(`k). (3.15)

Remark 16. Although we focus on this drug interaction model, we note that our

approach applies nearly verbatim to a synergistic/antagonistic drug binding model

– it suffices to use a suitable expression for Ψx(`) to take these interactions into

account. We do note however that this may lead to a more involved piecewise linear

approximation procedure.

In the following sections, we formulate the task of designing suitable combination

therapies as an optimal control problem. The inherent nonlinearities of the system

make this a challenging task — in [42, 44], we worked with a simplified problem in

which we assumed the Ψx(`) were linear functions – in this section we relax that

assumption, and show that at the expense of some additional modeling complexity,

we are able to reduce the problem to that considered in [44]. Our main result is based

around the use of piecewise linear approximations, and relating the robustness levels

of the approximate system to that of the true underlying system.
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3.5.2 Piecewise linear mode approximations and mode reduc-

tion

In the following sections, we assume that each (Ψ(`))ii = Ψxi(`) has the form given

by Equation (3.14). To take into account nonlinear pharmacodynamics, we pro-

pose a piecewise linear approximation algorithm and a mode reduction algorithm

for problems where there is a large number of non interacting or synergistic drug

combinations.

We assume that the pharmacodynamics for every individual drug and combination

are defined over the same drug concentration domain D ∈ R. Let P = {p1, ..., pk} be

a partitioning of this domain into k intervals.

Definition 17. A pharmacodynamic mode ω = (ω1, ..., ωm) is an m-tuple in Pm.

The total number of pharmacodynamic modes is |P|m where m is the number of drugs

under consideration. For ` ∈ Rm, we define ` ∈ ω ⇐⇒ `i ∈ ωi, for all i =

{1, 2, ...,m}.

We let ψiω : Rm → R be the affine approximation of the pharmacodynamics for

each mutant i for ` ∈ ω, i.e. the sum of the individual and combination drug effects

on mutant i while operating within mode ω. We can then construct a linear approx-

imation to Ψ(`) via an appropriately defined block diagonal matrix Ψω, constructed

from the ψiω (c.f. [44]), and write Ψ(`) = ΨωLω, where Lω = (I ⊗ `ω) ∈ Rmn×n
+ is

the block diagonal matrix, with identical block diagonal elements given by the drug

concentrations ` ∈ ω. The resulting dynamics, for a fixed concentration ` ∈ ω, are

then described by the transfer function

G`ω(s) = C(sI − (A−ΨωLω)−1B +D. (3.16)

We consider the problem of finding a suitably sparse therapy combination that

achieves a certain closed loop performance level γ. As such, our initial goal becomes

to reduce the search space to the set of sparse modes that achieve the desired level of

robustness, where a sparse mode ω is one that allows at least one drug concentration
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to be zero, in other words, 0 ∈ ωi for at least one ωi ∈ ω.

In order to do so, we require two lemmas. The first provides sufficient condi-

tions on the linear approximation terms ψiw that guarantee that the robustness of

the piecewise linear approximation is an upper bound on that of the true system.

The second is the simple observation that for non-interacting or synergistic additive

drug interactions, the robustness of the closed loop dynamics increases as drug con-

centrations are uniformly increased (this statement will be made precise). This result

allows us to subsequently develop a branch and bound like method that significantly

reduces the search space of the algorithm.

We begin with a result on the input-output performance of a positive system,

taken from [83].

Lemma 18. Let G(s) = C(sI−A)−1B+D be a positive system. Then ‖G‖∞−ind ≤ γ

if and only if there exits x ≥ 0 such that

Ax+B1n < 0

Cx ≤ γ
(3.17)

Lemma 19. Let Ψ(`) be the nonlinear pharmacodynamics function, ψ(`) the vector of

its diagonal elements, and denote by Ψω(`) its piecewise linear approximation within

mode ω, and by ψω(`) the vector of its diagonal elements. If for every mode ω we have

ψω(`) ≤ ψ(`) for all ` ∈ ω then the L1 norm γ of the piecewise linear approximation

(3.16) is an upper bound on that of the true system (3.3).

Proof. Note that for a fixed `, both the full and piecewise linear approximation sys-

tems are linear in x. Therefore, by Lemma 18, the L1 norm of (3.16) is upper bounded

by γ if and only if there exists an x > 0 such that

(A−Ψω(`))x+ 1n < 0

1Tnx ≤ γ
(3.18)

Thus it suffices to show that this same x yields (A−Ψ(`))x+1n ≤ 0 and the desired
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conclusion follows immediately. To that end, rewrite the first inequality of (3.18) as

(A−Ψ(`))x+ 1n < (Ψω(`)−Ψ(`))x, (3.19)

and notice that the right hand side is less than or equal to 0 by the assumptions of

the lemma.

This lemma essentially states that if our piecewise linear approximation is conser-

vative, then the norm of the approximate system serves as a certificate for the norm

of the true system.

Next we formalize the observation that increasing the concentrations of non or

synergistically interacting therapies present in the system will improve robustness.

Lemma 20. Let `1 and `2 be therapy combinations such that `1 ≥ `2. Then if the

piecewise linear approximation Ψω(`) is non-decreasing, ||G1||∞−ind ≤ ||G2||∞−ind,

where

Gi = C(sI − (A−Ψω(`i))−1I.

Proof. By assumption, the piecewise linear function Ψω(`) is non-decreasing. Thus if

`1 ≥ `2, then Ψω(`1) ≥ Ψω(`2). Let γi = ||Gi||∞−ind. By Lemma 18, γi is the solution

to the following optimization:

minimize
γ,x≥0

γ

subject to

(A−Ψω(`))x+ 1 < 0

Cx ≤ γ

(3.20)

Let γ2 and x be the optimal solutions of the above program for i = 2. Then we

have that

(A−Ψω(`1))x+ 1 ≤ (A−Ψω(`2))x+ 1 ≤ 0. (3.21)

Hence (γ2, x) is a feasible solution for optimization (3.20) with i = 1, implying that

γ1 ≤ γ2.
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Thus we see that by constraining the piecewise linear approximations to be under

approximations of the effects of the drugs, we are able to bound the performance of

the true system.

Remark 21. We note that these results typically will not hold for antagonistic drug

interactions — however, many settings in which such models are required (such as

cancer therapy design) do not have a large set of therapies or mutants, thus mitigating

the computational cost of the sequential search across modes.

We exploit this result to reduce the modes that need to be searched over — in

particular, we use the partial order implied by the previous two results to upper and

lower bound the uniform concentration treatments required to achieve a prescribed

performance level γ. We also exploit the fact that we are searching for sparse treat-

ment strategies to further eliminate modes.

This approach is formalized in the following algorithm. Let `ωmax ∈ Rm, be the

maximum possible drug concentrations.

Algorithm 3 Sparse mode reduction algorithm

Set `ωi
← `ωmax , γ > 0.

while ¬(`ωi
== 0n ∧ ε) :

if ||G`ωi
|| < γ,

S = S ∪ ωi
else

U = U ∪ ωi.
Set `ωi+1

=
`ωi

2
.

Set ε = (ωi ∈ S || ωi ∈ U)

The sparse mode reduction algorithm will generate a set of modes that are guar-

anteed to be stable and achieve a desired robustness level γ, and “sparse”, i.e. allowing

modes such that at least one drug concentration is allowed to be zero, significantly

reducing the number of the modes over which to apply the combination therapy

algorithm. In the example described in Chapter 4, we synthesize controllers with
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robustness level γ = 14. We start with |P|m = 10000 possible modes to search over,

and reduce this number to 397 sparse modes.

3.5.3 A static state feedback combination therapy algorithm

for nonlinear pharmacodynamics

As discussed in [42, 44] there are no known convex reformulations for the robust

combination therapy problem due to the additional structure on L. As such we use

the iterative approach developed in [44], as formalized in the previous section, based

on the convex programs (3.12) and (3.13), to find a stabilizing controller, given a

desired robustness level γ. For notation, let Y ′ = PZ′(x, s) denote an optimization

problem P in which we optimize over x and s leaving Z ′ fixed and with solution

Y ′. These optimization programs, taken from [83], are a synthesis variant of the

conditions stated in Lemma 18.

Program 1. P1`,ω(x, s) :

minimize
x∈Rn

+,s
s

subject to

Aωx+ ΨωLx+ 1 ≤ s

L = I ⊗ `, ` ∈ ω

1Tnx ≤ γ

s < 0, x ≥ 0

(3.22)

Program 2. P2(x,λ1,λ2,ω)(`)

minimize
`∈Rm

+

λ1‖`‖1 + λ2‖`‖2

subject to

Aωx+ ΨωLx+ 1 < 0

L = I ⊗ `, ` ∈ ω

1Tnx ≤ γ

(3.23)
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Algorithm 4 Scalable Combination Therapy For Nonlinear Pharmacodynamics

1. Set `0 = `ωmax .

2. Check if P1`0,ω(x, s) is feasible. If feasible

Set (x′, s′) = P1`0,ω(x, s).

Set (`′) = P2(x′,0,0,ω)(`).

else, move to next mode and return to Step 1.

3. Find (λ′1, λ
′
2, `ω) for mode ω:

∀(λ1, λ2) ∈ Λ1 × Λ2,Λ1,Λ2 ∈ Rk
+,

Set s = 1.
while ¬(s′ == s) :

Set s = s′.
Set (x′, s′) = P1`′,ω(x, s).
Set (`′) = P2(x′,λ1,λ2,ω)(`).

Remark 22. Note the introduction of a slack variable s into Program 1, to help

prevent immediate convergence to a local minimum. Minimizing s has the effect of

maximizing the slack in the first constraint, allowing for more freedom in the design

of the concentration vector ` in Program 2.
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Chapter 4

Engineering Antibody Treatment
Strategies to Control HIV

4.1 Introduction

A relatively recent discovery is that a minority of HIV-infected individuals can pro-

duce broadly neutralizing antibodies (bNAbs), that is, antibodies that inhibit infec-

tion by many strains of HIV [52]. These have been shown to inhibit infection by a

broad range of viral isolates in vitro but also protect non-human primates against

infection [5, 22, 52]. Passive transfer of human antibodies for the prevention and

treatment of HIV-1 infection is increasingly being considered as an alternative to a

conventional vaccine [14]. Only the most potent bNAbs are likely to be successful

therapeutics, thus it is desirable from efficacy and monetary perspectives to deliver the

best bNAb combinations. These bNAb combination treatment strategies aim to re-

produce the success that resulted in combining antiretroviral drugs for the treatment

of chronic HIV infection, and in addition have the potential of offering complete,

long term viraemic control by enhancing host immunity [10, 69]. However, as the

number of potential bNAbs grows, experimentally screening their combinations and

concentrations for effectively controlling the evolution of HIV becomes increasingly

infeasible. To address this, we require a scalable methodology that can take into

account increasing amounts of HIV/bNAb resistance data, bNAb pharmacodynamic

models and HIV mutational dynamics.
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In Sections 3.4 and 3.5, we proposed a new scalable and computationally tractable

algorithm that solves for optimal combinations and concentrations of bNAbs to neu-

tralize virus in light of viral evolution while simultaneously allowing the designer to

tailor treatment strategies in light of viral composition, maximum achievable doses,

number of bNAbs used and ability to support pharmacodynamics/pharmacokinetic

fluctuations, modeling and experimental error [43, 44]. Preliminary in vitro exper-

imental data shows that our combination therapy algorithm predicts combinations

and concentrations of bNAbs that can neutralize heterogeneous viral populations in-

cluding those that include resistant mutants for one or more in the antibody mix

(Figure 4.5).

The chapter is organized as follows: in Section 4.2, we demonstrate our ability to

model control of the evolution to resistance of HIV in the presence of antibody therapy,

through the application of the combination therapy algorithms developed in Chapter

3 as applied to experimental data derived from recent published studies [14, 22, 47].

We compare the H∞ and the L1 combination therapy algorithms from Sections 3.3.3

and 3.4 with respect to their performance and robustness to biologically relevant

uncertainty models and unmodeled dynamics. In Section 4.3, we discuss preliminary

in vitro experimental methodology and results and show that the antibody treatment

strategies synthesized with the nonlinear pharmacodynamics combination therapy

algorithm described in Section 3.5.3 controls infection despite the presence of a mixed

initial population of viruses, most of which are resistant to at least one antibody in

the mix.

4.2 Mathematical Simulations

4.2.1 Model parameters

We consider a system of twenty eight HIV mutations with five potential antibodies

to use in combination. Table 4.4 lists the mutations that evolved from monotherapy

experiments with their corresponding half maximal inhibitory antibody concentra-
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tion (IC50) in µg/ml, as measured in [47]. Antibodies 3BC176, PG16, 45-46G54W,

PGT128 and 10-1074 are potential combination therapy candidates.

Infected cell replication rates. Although virus replication rates can vary con-

siderably depending on the nature of the mutations a virus may undergo, we choose

replication rates to be 0.5 (ml·day)−1 for all mutants. We justify this selection by not-

ing that escape mutants grew to be dominant mutants during selection experiments

in [47] and assume that replication rate variability due to mutations were negligible.

Neutralization parameters. The fitness function associated with the neutral-

ization of a virus i with respect to an antibody j is a Hill function

ψij =
`nj

`nj +Kn
ij

, (4.1)

where n is the Hill coefficient, `j is the concentration of a given antibody j,

Kij =
kon
koff

=
[xi`j]

[xi][`j]
(4.2)

is the association constant for the virus/antibody binding reaction `j + xi
kon−−→ `j · xi,

and kon and koff are the on and off reaction rate constants. Note that the association

constant represents the fraction bound of antibody/virus complexes in solution and

that

Kij =
3 · IC50ij

3ri + ln(2)− IC50ij
, (4.3)

is found by solving Equation (4.6) for one virus/antibody pair for the duration

[t0, tf ] = [0, 3]. Results [22] show that Hill coefficients for CD4 binding site anti-

bodies range from n = 0.9 to n = 1.3, and therefore we justify our simplification by

setting the Hill coefficient n = 1. Our algorithm yields antibody concentrations near

zero and this yields the linear approximation

ψij =
1

Kij

`ij. (4.4)

In addition, the antibodies we consider in our example do not target the same epitope,
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in other words, do not bind competitively to the same sites on the virus, thereby

reducing any coupling between antibody concentrations.

Mutation process. The mutation rate for HIV reverse transcriptase is u =

3 × 10−5 mutations/nucleotide base pair/replication cycle, and the HIV replication

cycle is approximately 2.6 days. We approximate the rate of mutation for a particular

amino acid mutation at a particular location to be 1
na
u(1 − u)k = 1.443 × 10−6 per

replication cycle, where k ≈ 3000 is the size of the genome in residues and na = 19

is the number of amino acids that can be mutated to. Our model supports forward

point mutations and two point mutations. We do not consider back mutations, as the

probability of mutation is negligible. Units of concentration in number of viruses/ml

or number of antibodies/ml are used for states, and time is measured in days. The

standard volume is 1 ml.

4.2.2 Controller synthesis

4.2.2.1 L1 controller synthesis

We synthesize a nominal stabilizing controller using Equation (3.7) comprised of an

antibody pentamix (0.4687,0.7815, 0.6129, 0.6279, 0.8831) µg/ml of (3BC176, PG16,

45-46G54W, PGT128, 10-1074) using the convex program 6 and a robust controller us-

ing (3.8) that consisted of antibody trimix (0.6891,0.6712,1.0706) µg/ml of (3BC176,

4546-G54W, PGT128) using the L1 combination therapy algorithm. These were

generated for the evolutionary dynamics with twenty eight HIV mutants listed in

Table 4.4, Section 4.3.5.

Both antibody pentamix (stabilizing) and trimix (robustly stabilizing) controllers

have similar gains and based on a cursory first glance, one might be believe these have

comparable robustness properties. Indeed, for some simulations of the closed loop

dynamics subjected to random time invariant perturbations in replication and neu-

tralization dynamics, the nominal controller is stabilizing as seen in Figure 4.1. This

is qualitatively consistent with the experimental results [47]. It was shown that with

weekly injections of equal concentrations of the antibody pentamix described above,
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viral loads remained below the limit of detection during an entire treatment course in

mice. Moreover in [47], the presence of N160K-A281T-N332K, T162I-N280Y-N332K

and T162I-N279K-N332K triple mutants were found after continuous antibody pen-

tamix treatment in mice. Our simulation results show that these triple mutants

dominate on the tenth day when the dynamics are destabilized by noise in the case of

the nominally stabilizing controller. In particular, these triple mutants are resistant

to all but one antibody 3BC176 in the pentamix, highlighting the importance of this

antibody in the design of a robustly stabilizing controller. The robustly stabilizing

antibody combination trimix synthesized by our algorithm addresses this particular

dependence — a sparse combination is found that includes 3BC176 at a higher con-

centration and this trimix stabilizes HIV dynamics despite the presence of random

perturbations in the dynamics.

In [47], an antibody trimix of equal concentrations of 3BC176, PG16 and 45-

46G54W was suggested and experimentally shown to produce a decline in the initial

viral load. However, a majority of mice in the experimental study had a viral rebound

to pre-treatment levels, suggesting that in these cases, the virus had evolved mutations

that were resistant to the trimix treatment. To compare the performance of our L1

synthesized controller with gains of (0.6891,0.6712,1.0706) µg/ml of (3BC176, 4546-

G54W, PGT128) to the experimentally studied trimix, we chose equal concentrations

of (3BC176, PG16, 45-46G54W), namely (1, 1, 1) µg/ml to mimic the experimen-

tally derived trimix. We found that even though total antibody concentrations were

larger in our version of the experimental trimix, the robustly stabilizing controller

synthesized by the L1 algorithm nonetheless performed overall better; the closed

loop induced 2-norm was ‖G‖∞ = 0.2941 and induced infinity norm was ‖G‖∞−ind=

0.6533 for the L1 controller versus ‖G‖∞=0.26433 and ‖G‖∞−ind=0.74572 for the

experimental trimix.

4.2.2.2 Performance comparisons between H∞ and L1 controllers

We seek to provide a qualitative comparison between controllers synthesized using the

scalable L1 and the H∞ algorithms. To do this, we adapt the formulation in Section
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Figure 4.1: A. Sum of infected cell populations subject to random time invariant per-
turbations in the replication dynamics for 30 different simulations for (left) a stabiliz-
ing closed loop controller comprised of antibody pentamix (0.4687,0.7815, 0.6129, 0.6279,
0.8831) µg/ml of (3BC176, PG16, 45-46G54W, PGT128, 10-1074) synthesized using pro-
gram (6) and (right) a robustly stabilizing closed loop controller comprised of antibody
trimix (0.6891,0.6712,1.0706) µg/ml of (3BC176, 4546-G54W, PGT128) synthesized using
the L1 combination therapy algorithm. B. (Left) Fraction of mutant infected cell popula-
tions remaining on day 10 for unstable simulations of HIV dynamics subject to noise, after
the application of the antibody pentamix shown in A. (Right) Half maximal inhibitory con-
centrations of antibodies (IC50) with respect to HIV mutants, experimentally found in [47].
IC50 values are proportional to the degree of resistant for each mutant strain.
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3.3.3 to include `1 and `2 regularization terms and solve the following non-convex

problem using our iterative algorithm:

minimize γ + λ1‖`‖1 + λ2‖`‖2

subject to ATclX +XAcl + CTC X

X −γ2I

 ≺ 0

Acl = (A−Ψ(`))

C = 1T

X � 0, X diagonal.

(4.5)

We synthesized a nominal stabilizing controller using (3.7), a robust controller

that minimizes the H∞ closed loop norm using (3.8), and a robust controller using

(3.23) that minimizes the L1 closed loop norm for the evolutionary dynamics of the

eighteen HIV point mutants listed in Table 4.4. We found similar gains and robustness

properties for both sparse and full controllers using either algorithm with the notable

difference seen in computational time. Not surprisingly, the L1 algorithm has far

superior performance, beating the runtime for the H∞ synthesis algorithm by four

orders of magnitude (Table 4.1).

We averaged thirty simulations of closed loop evolutionary dynamics subject to

5.5% random time invariant perturbations in the plant dynamics using both sparse

and full support H∞ and L1 controllers. The sparse controller found by the L1 algo-

rithm performed better than the one found by H∞ algorithm, whereas the situation

was reversed for the respective synthesized full support controllers. As previously

mentioned, the motivation for generating sparse controllers for combination therapy

is that number of therapies commonly used in combination to treat a disease is often

limited for clinical reasons. Therefore, the potential for the L1 algorithm to synthesize

controllers that are not only sparse but more robustly stable than H∞ algorithm with

respect to parameter uncertainty and unmodeled dynamics is a desirable feature.

Figure 4.2 shows the relationship between gain sparsity and magnitude of (left)

H∞-induced norm and (right) ∞-induced norm in the synthesis of H∞ and L1 con-
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Controller Gains µg/ml ‖G‖∞ ‖G‖∞−ind Time

3BC176 PG16 45-46G54W PGT128 10-1074
Nominal Stabilizing 0.0125 0.0125 0.0125 0.0125 0.0125 2.7543 8.9786 1.53 s

Full H∞ 0.0550 0.0398 0.1587 0.1767 0.0629 0.1723 0.5988 > 8 hours
Full L1 0.0424 0.0038 0.1125 0.2635 0.0548 0.1786 0.6722 35.803 s

Sparse H∞ 0 0 0.1485 0.1987 0 0.1917 0.6592 > 8 hours
Sparse L1 0 0 0.1175 0.2971 0 0.1766 0.6616 35.803 s

Nominal Stabilizing (28 mutants) 0.4687 0.7815 0.6129 0.6279 0.8831 0.334 0.805 3.76 s
Sparse L1 (28 mutants) 0.6891 0 0.6712 1.0706 0 0.2941 0.6533 30.05 s

Table 4.1: Stabilizing gains found for nominal stabilizing controller, a robust controller
using (3.8) that minimizes the H∞ closed loop norm and a robust controller using (6) that
minimizes the L1 norm of the closed loop system for evolutionary dynamics systems of the
first eighteen HIV point mutants listed in Table 4.4, Appendix.

trollers. Although closed loop H∞ norms remain constant with respect to sparsity

for both types of controller synthesis, the closed loop∞-induced norm decreases with

sparsity for the L1 synthesized controller and increases with sparsity for the H∞
synthesized controllers. This suggests that as expected, the L1 combination therapy

algorithm finds better performing sparse controllers with respect to the ∞-induced

norm than the H∞ controller synthesis. Furthermore, performance guarantees with

respect to the H∞-induced norm are equivalent for both types of controller synthesis.

As a result of computational limitations due to an SDP implementation of the H∞
algorithm, we were were limited to synthesizingH∞ and L1 controllers and comparing

performance for a subset of eighteen mutants from Table 4.4.

These simulations demonstrate that although many stabilizing solutions to the

combination therapy problem exist, the best ones are found when design parame-

ters such as a sparsity, limits on the magnitude of gains, and robustness guarantees

are simultaneously considered. Experimentally searching for these combinations is

infeasible as the number of potential therapies and possible concentrations to con-

sider is experimentally intractable. We propose to guide these experimental activities

with our ability to design and synthesize combination therapy controllers. As such,

one could generate a family of controllers based on “design specifications” tailored not

only the (viral or cellular) composition of the disease, but to explore tradeoffs between

number of therapies used (sparsity), therapy concentrations (magnitude of the gain)

and ability to support pharmacokinetic fluctuations (robustness to perturbations) and
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Figure 4.2: The graph depicts the average H∞ (left) norm and ∞− ind norm as a function
of the sparsity of stabilizing controllers found using either the H∞ or L1 combination ther-
apy algorithms. The graphs depict the average of thirty simulations subject to random time
invariant perturbations of 5.5 % in the plant dynamics found with the H∞ and L1 combi-
nation therapy algorithms for evolutionary dynamics of the first 18 point mutants in Table
4.4, Appendix. (Left) Full support controllers synthesized with the pentamix of antibodies
available: 3BC176, PG16, 45-46G54W, PGT128 and 10-1074 and (Right) Sparse controllers
synthesized with only two antibodies 45-46G54W and PGT128.
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subsequently verify these experimentally.

4.3 Preliminary Experimental Results

4.3.1 Abstract

Recent studies in HIV-1 immunotherapy have revealed that HIV can escape from the

most potent broadly neutralizing antibody (bNAb) monotherapy and combination

therapy. These data suggest a need to develop a methodology that directly addresses

viral heterogeneity and that controls the evolutionary process leading to resistance

in the design of effective bNAb treatment strategies. We developed a computational

model and design tool that solves for candidate combinations and concentrations of

bNAbs while allowing the exploration of trade offs in treatment design, such as lim-

iting the number of bNAbs in the combination, dosage constraints and robustness

to error. We demonstrate successful in vitro validation of our computationally pre-

dicted bNab combinations on heterogeneous viral populations comprised of resistant

mutants. This study provides the first example of how combination anti-HIV bNAb

treatment regimens can be rationally designed to maximize virus neutralization while

minimizing the outgrowth of resistant populations.

4.3.2 Introduction

A challenge inherent to the treatment of chronic HIV infection is the risk that the virus

will evolve to become resistant to treatment methods that comprise the standard of

care. Recent pre-clinical and clinical data in the context of HIV immunotherapy have

shown that HIV can escape from the most potent anti-HIV-1 broadly neutralizing

antibody (bNAb) monotherapies and polytherapies [14, 37, 47, 95]. Heterogeneity

in patient viral populations and the dynamics of evolutionary selection are issues

that need to be explicitly addressed in the design of effective antibody combination

regimens.

The challenge of designing treatment strategies that prevent resistance is one that
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has been studied in both theoretical and experimental contexts. In the case of HIV

and antiretroviral therapy, control theoretic methods have been proposed to delay

the emergence of resistant mutant viruses, with the design of optimal drug scheduling

and dosing strategies [25, 56, 108]. Other computational approaches integrate exper-

imental data and modeling of antiretroviral pharmacodynamics [90], simulation and

analysis of evolutionary dynamics models [31, 40, 87]. A computationally tractable

method for the analysis and design of combination treatment strategies that is based

on an experimental foundation and that allows for the principled exploration of design

tradeoffs is missing.

Our proposed methodology for the rational design of combination therapy ad-

dresses these aforementioned issues, and in addition allows for the ability to quan-

tifiably explore tradeoffs between number of drugs in therapy used in combination,

their concentrations and the robustness of these treatment strategies to pharmaco-

dynamic fluctuations and error. Our algorithm is based on the application of recent

results in optimal control [82, 83] to an HIV evolutionary dynamics model and is con-

structed from experimentally derived antibody resistant phenotypes and their single

antibody pharmacodynamics. This model assumes that individual antibodies when

used in combination have independent, additive neutralization effects on single HIV

mutants, which have been shown to hold for antibodies that bind at orthogonal bind-

ing sites [49], and is applicable in this study. This method represents a first step

towards integrating principled engineering techniques with an experimentally-based

mathematical model to design combination treatment strategies that offer predictive

understanding of evolutionary dynamics and resistance of HIV with in vitro valida-

tion.

4.3.3 Results

Optimization of Combination Antibody Treatment Strategies

Our combination therapy algorithm identifies the smallest number of antibodies

to combine and solves for the concentrations that robustly neutralizes HIV infection
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Figure 4.3: A. Experimentally derived infection timecourse for point mutants YU2-HIV.
B. Experimentally derived neutralization curves for mutants of YU2-HIV with respect to
antibodies 4546-G54W, PGT128. Results of evolutionary dynamics simulations run for
3 days, starting with 1 % infection of monoclonal YU2-WT, for different concentrations
of antibodies 4546-G54W and PGT128, reproducing experimental conditions. C. Degree
of resistance calculated as IC50×maximum neutralization. Replication rates for YU2-HIV
mutants. D. Simulations of evolutionary dynamics for single antibody therapies. Percentage
of virus subpopulations at day 30 for simulations shown.
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subject to the evolutionary dynamics of mutation and selection. The goal is to design

treatment strategies that stop the evolution to resistance or outgrowth of any pop-

ulation of resistant viruses, whether these viruses are pre-existing or occur as part

of a selection process. Another feature of our methodology is that our combination

therapies can quantifiably account for uncertainty and processes that are not a priori

considered, such as experimental error, unmodeled resistance mechanisms [14] and

changes in antibody pharmacokinetics [37]. Mathematical details of our evolutionary

dynamics model and combination therapy algorithm can be found in Section 4.3.4.

In order to apply our algorithm, we first constructed our evolutionary dynamics

model of replication, mutation and selection based on single antibody pharmacody-

namics data derived for eighteen YU2-NL43 HIV-1 clade B Env mutants and five

antibodies NIH4546G54W, PGT128, 8ANC195, PG9 and 10E8. We performed sim-

ulations and validated our experimentally derived evolutionary dynamics model both

for consistency in replicating our own neutralization assays and also in predicting

evolution to resistance (Figure 4.3B). For an initial population of monoclonal wild

type YU2 exposed to a constant dose of a single antibody, we showed that mutants

that evolved after 30 days from our simulations (Figure 4.3D) were consistent with

previous evolution studies in humanized mice [14, 37, 47].

We then applied our design method to our experimentally derived evolutionary

dynamics model to solve for the smallest set of antibody combinations and concen-

trations to neutralize infection. Our algorithm allows for the specification of hard

constraints such as maximum allowable individual or total antibody concentrations,

and soft constraints such as trade offs between robustness to uncertainty and dose

minimization. Our methodology, which is based on the application of robust con-

trol theory, guarantees that if a combination therapy is found, it will be effective

in neutralizing infection and controlling evolution to resistance for any mixture of

viruses, given some knowledge of each of viruses in the mix. We specified that the

total antibody concentration be less than 5 µg/ml and found two equivalently robust

quadruple combinations that consisted of (1, 0, 1.5, 1.25, 1) µg/ml and (1, 1, 0, 1.5,

1) µg/ml of (45-46G54W, PGT128, 8ANC195, 10E8, PG9). Simulations of our evolu-
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Figure 4.4: A. Schematic of growth, mutation and drug selection with respect to a population
dynamics model. B. A deterministic differential equation model representing the population
dynamics of replication, mutation of infectious units and their neutralization by antibodies.
C. A schematic of the control system representing the combination therapy design problem,
with examples of design constraints that can be specified. HIV replication and mutation
dynamics are the unstable evolutionary process that we wish to control by finding effective
combinations and concentrations of antibodies given particular treatment design constraints.

tionary dynamics model show that when our system is subjected to uncertainty, these

combinations are still able to neutralize infection of a mixed population of resistant

viruses (Figure 4.5). This particular example highlights that the best combinations

are not necessarily the ones that include all antibodies, but ones that are designed

with evolutionary dynamics and robustness in mind.

In Vitro Validation of Predicted Antibody Combinations.

To experimentally validate our predictions, we used an in vitro fluorescence based

assay that exposed a mixture of wild type and mutant HIV infected cells to our

predicted combination antibody therapies, where each mutant was resistant to at

least one of the antibodies in the combination (Figure 4.5). Testing the combination

antibody therapies predicted by our algorithm on heterogeneous viral populations

allows us to verify that these regimens are agnostic to initial conditions consisting of

resistant viral populations, as long as there is prior knowledge on their replication
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fitness and single antibody response.

4.3.4 Materials and Methods

Mutagenesis, Virus Production and Cells. Site directed mutagenesis and as-

sembly PCR were used to generate YU2-NL43 Env mutants. YU2-NL43 was modified

using unique restriction sites EcoRI and XhoI. Inserts were generated by PCR using

primers EcoRI-CF (5’-GCCAGCCAGAATTCTGCAACAACTGCTGTTTATCCAT

TTCAG-3’) and XhoI-CR-(5’-GCGTCGACCTCGAGATACTGCTCCCACCCCATC-

3’) and individual sense and antisense mutagenesis primers corresponding to YU2-

NL43 mutants listed in the table below (Appendix). Escherichia coli One Shot STBL3

Chemically Competent cells (Life Technologies) were used to propagate proviral plas-

mids during a 16 hour incubation at 30◦ C. Stocks were prepared using a DNAMidi kit

(Zymo Research). All gene constructs were verified by complete sequencing of gp160.

Cell-free virus was produced by transfection of HEK293T cells with YU2-NL43 virus

coding plasmid using BioT (Bioland Scientific). Viral supernatant was harvested at

48 h post transfection, filtered through a 0.5 µm filter and aliquots were stored at

-80◦ C. Stock concentrations were quantified by p24 enzyme-linked immunosorbent

assay (ELISA) (Cell Biolabs). The YU2 Env/NL43 plasmid was obtained from the

Nussenzweig lab, Rockefeller University. The green fluorescent protein (GFP) re-

porter T-cell line GXR-CEM is previously described in [11] was obtained through

AIDS Research and Reference Reagent Program, National Institute of Allergy and

Infectious Diseases, National Institutes of Health.

Protein Expression and Purification. Antibodies were transiently expressed

in HEK293T/17 cells or suspension HEK 293-6E cells (National Research Coun-

cil Biotechnology Research Institute, Montréal, QC, Canada) using 25-kDa linear

polyethylenimine (Polysciences) for transfection. Supernatants were passed over Mab-

Select SuRe protein A resin (GE Healthcare) or Protein G Sepharose 4 Fast Flow (GE

Healthcare) and eluted by using pH 3.0 citrate or glycine buffer, and then immedi-

ately neutralized. Antibodies were further purified by size exclusion chromatography
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Figure 4.5: A. Combination therapy experiment showing the timecourse of infection after
administering two different antibody combinations that were solved with the combination
therapy algorithm, for two different initial conditions: YU2-WT and a mix of YU2-WT and
of YU2-(N160T,N276S, N279K, S334N, T278A, T278I) each one resistant to one or more
of (45-46G54W, PGT128, 10E8, 8ANC195, PG9). Infection timecourse shown for both
initial conditions. B. Thirty simulations of evolutionary dynamics subject to random time
invariant perturbations of 8% in the system dynamics, given robust combination therapy 1
(CT1) (Blue), a robust combination therapy 2 (CT2). The magenta line corresponds to the
evolutionary dynamics of the unperturbed system.
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using a Superdex 200 or 75 10/300 GL column.

In Vitro Replication and Neutralization Assays. To initiate infection for

both replication and neutralization assays, GXR-CEM cells at 4× 105 cells/ml were

infected with 200 ng YU2-NL43 (HIV) virus stock in the absence of antibody and

incubated for three days at 37◦ C. Two days after infection, uninfected GXR-CEM

cells at 2 × 105 were pre-treated with 0, 0.02,0.08, 0.4,1.6, 6.4, 20, 80 µg/ml of sin-

gle PGT128, NIH45-46G54W , 8ANC195, PG9 and 10E8 antibodies. Three days after

initial infection with cell free virus, the infected GXR-CEM were washed and added

to a final concentration of 1 % GFP-expressing donor cells to uninfected pre-treated

GXR-CEM cells. For the neutralization assay, a constant concentration of antibody

was maintained for each sample for three days following secondary infection. Infec-

tion was determined by measuring GFP reporter gene expression in the absence of

antibodies measured daily for four days following secondary infection. Neutralization

was determined by measuring the reduction in GFP reporter gene expression in the

presence of antibodies PGT128, NIH4546G54W, 8ANC195, PG9 and 10E8 daily for

three days. Nonlinear regression analysis was used to calculate the concentrations

at which half-maximal inhibition was observed (IC50 values) by fitting the observed

neutralization to the expression γ`n/(`n+IC50n), where γ is the maximum achievable

neutralization, ` is the antibody concentration and n is the Hill coefficient.

In Vitro Combination Therapy Assays. To initiate infection for the mixed

mutant initial condition, GXR-CEM cells at 4 × 105 cells/ml were infected with

(80, 20, 20, 20, 20, 20) ng with each of YU2-NL43-(WT, S334N, N279K, N276S,

T278I,N160T,T278A) virus stock in the absence of antibody and incubated for three

days. Three days after initial infection with cell free virus, the infected GXR-CEM

were washed and added to a final concentration of 1 % GFP-expressing donor cells to

uninfected pre-treated GXR-CEM cells. On each day after infected donor addition,

cell aggregates were broken up by gentle repeated pipetting and measured by FACS

for four days. Infection conditions were calibrated so that the number of uninfected

target cells would not be limiting and infection would not interfere with proliferation

of uninfected cells.



77

Flow cytometry and Dynamical System Parameter Estimation. Flow

cytometry data was collected with a MACSQuant flow cytometer and transformed to

a python format using the FlowCytometryTools python package (Gore lab, MIT). An

automated gating and analysis software module written in python was developed to

process large sets of flow cytometry data. All parameter estimation was done using

the python scipy.optimize module. Dynamical system replication rates for YU2-NL43

mutants were calculated by fitting an exponential growth function x(t) = x(0)ert.

Neutralization rates were calculated by fitting a Hill equation γ `n

`n+IC50n , where ` is

antibody concentration, γ is the maximum neutralization, n is the Hill coefficient, and

IC50 is half maximal inhibitory concentration curves. Mutation rates were calculated

using the mutation rate for HIV reverse transcriptase µ = 3 × 10−5 mutations/base

pair/replication cycle [] for the specific YU2-NL43 mutants that were constructed.

Model of HIV evolutionary dynamics. We use a deterministic model of HIV

evolutionary dynamics to model replication, mutation and neutralization:

ẋi = riqiixi +
n∑
k 6=i

riqikxk −
m∑
j=1

γij
`
nij

j

`
nij

j + IC50nij
xi, (4.6)

where xi ∈ R+ is the concentration of infectious mutant i, `j ∈ R is the antibody

concentration in µg/ml (assumed to remain at constant concentrations throughout),

ri is the replication rate of mutant i, and qik is the probability that mutant k mutates

to mutant i (note that qii is the probability of no mutation occurring). The rates ri

can be viewed as the infection rates of mutant i without the effect of the antibody.

γij and nij are the maximum achievable neutralization and the Hill coefficient for

the neutralization of mutant i by antibody j. This model assumes that individual

antibodies when used in combination have independent, additive neutralization ef-

fects. This does not overly constrain our problem as we generally consider antibodies

that bind at orthogonal binding sites which have been shown to have independent,

additive effects when used in combination.

Combination Therapy Algorithm. We applied the combination therapy algo-

rithm for nonlinear pharmacodynamics described in Section 3.5.3, using the model of
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evolutionary dynamics described above, with parameters listed in Tables 4.2 and 4.3,

Appendix. We first generated a set of 10000 pharmacodynamic modes that represent

piecewise linearizations of the neutralization curves. Using our sparse mode reduction

algorithm (3), we reduced this number to 397 modes and used these as input to the

combination therapy algorithm. Several design constraints were defined prior to run-

ning the combination therapy algorithm: 1) the total antibody concentration be less

than 5 µg/ml, 2) the combination therapy must be robust to perturbations. Given

these constraints, the algorithm solved for two quadruple antibody combinations with

equivalent robustness levels.

4.3.5 Appendix

R 45-46G54W PGT128
max IC50 n max IC50 n

YU2-WT 0.646 0.94234 0.06636 1.3945 0.94924 0.12469 1.4692
YU2-N160K 0.619 0.91966 0.14658 2.9826 0.98216 0.12977 0.65651
YU2-N160S 0.704 0.94892 0.055377 0.99516 0.90636 0.29987 1.4888
YU2-N160T 0.637 1 0.030035 4.3297 0.85211 0.19524 2.5482
YU2-N160Y 0.66 0.94412 0.13862 4.0697 0.95484 0.14137 3.4386
YU2-N276S 0.724 0.74572 0.27784 1.4011 0.87891 0.45284 1.4061
YU2-N279H 0.426 0.8932 0.027408 7.9821 1 0.020018 10.947
YU2-N279K 0.362 0.18648 13.084 6.4848 0.88866 0.079372 1.0901
YU2-N332S 0.503 0.97656 0.031375 4.5121 0.73823 19.925 10.703
YU2-N332T 0.689 0.94674 0.13681 2.7212 0.1366 0.18446 4.7561
YU2-S334N 0.562 0.90953 0.13689 2.1111 0 7.0653 0.93399
YU2-S334Y 0.42 1 0.25627 0.84276 0.37354 19.99 9.7835
YU2-T162A 0.734 1 0.12631 1.7346 0.97392 0.1324 1.4749
YU2-T162I 0.643 0.96232 0.032941 3.1854 0.96036 0.20933 1.618
YU2-T162P 0.655 0.91681 0.13396 2.2804 1 0.16072 1.1002
YU2-T278A 0.72 0.96287 0.030657 5.2389 0.94765 0.54778 1.9417
YU2-N301T 0.542 0.91602 0.037664 5.6922 0 1.2506 0.82346
YU2-T278I 0.713 0.95487 0.052562 1.558 0.96781 0.17467 1.0706

Table 4.2: Replication rates per day and neutralization curve parameters for the indicated
antibodies on YU2-NL43 mutant viruses.
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10E8 8ANC195 PG9
max IC50 n max IC50 n max IC50

YU2-WT 0.94486 0.060457 0.47707 0.9347 0.12696 1.7026 0.45589 0.49713 0.70523
YU2-N160K 0.96615 0.022256 0.559 0.49399 1.5986 9.8458 0.3395 0.091707 0.30884
YU2-N160S 0.84544 0.60074 0.37193 0.98259 0.074471 0.64653 0.59807 0.074839 0.41778
YU2-N160T 0.92565 0.013653 0.77443 0.91221 1.5885 11.62 0.59807 0.074839 0.41778
YU2-N160Y 0.95313 0.0073578 1.0627 1 0.051382 0.31669 0.68767 1.4407 1.375
YU2-N276S 0.94657 0.70223 0.51266 0.80248 0.14602 7.3062 0.70541 0.67781 0.86789
YU2-N279H 0.97946 0.0057117 2.3761 0.97464 0.14855 7.9667 0.9263 0.057702 0.92412
YU2-N279K 0.90362 0.011933 0.69676 0.81632 0.22242 0.60999 0.9263 0.057702 0.92412
YU2-N332S 0.95397 0.22654 0.49865 0.94235 0.03849 1.1722 0.76037 0.30023 0.57322
YU2-N332T 0.96289 0.050848 0.43029 0.90555 0.16991 1.0793 0.71449 4.2677 0.9406
YU2-S334N 0.85623 0.10818 1.0919 0.85539 0.65643 1.9121 0.59587 11.837 7.5342
YU2-S334Y 0.87005 0.065392 1.0087 0.84908 0.12062 0.92592 0.6376 12.24 1.4706
YU2-T162A 0.95998 0.24036 0.51997 0.89124 0.15116 0.82269 0.58197 0.25439 0.55699
YU2-T162I 0.93713 0.24137 0.58461 0.82959 0.11562 0.79189 0.45277 0.075214 0.4691
YU2-T162P 0.9602 0.013527 0.54256 0.83843 0.11323 0.88195 0.55945 19.838 11.047
YU2-T278A 0.89614 0.16974 0.43169 0.64413 0.074199 0.50969 0.84999 9.6801 7.6016
YU2-N301T 0.90295 0.025051 0.62866 0.75917 0.86499 7.1084 0.69971 20.099 11.154
YU2-T278I 0.83407 6.4431 4.9855 0 2.6138 0.049654 0.86148 0.46376 0.42271

Table 4.3: Neutralization curve parameters for the indicated antibodies on YU2-NL43 mu-
tant viruses.
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Antibody associated Mutation 3BC176 PG16 45-46G54W PGT128 10-1074
escape mutants IC50 µg/ml IC50 µg/ml IC50 µg/ml IC50 µg/ml IC50 µg/ml

WT 0.319 0.612 0.024 0.169 0.312
3BC176 G471R 0.159 0.154 0.008 0.02 0.091

PG16 N160K 0.145 50 0.007 0.086 0.155
T162N 0.154 50 0.013 0.166 0.175

45-46G54W N279H 0.209 0.294 50 0.064 0.177
N280Y 0.276 0.145 50 0.031 0.126

PGT128 or 10-1074
N332K 0.232 0.988 0.017 50 50
N332Y 0.269 0.632 0.01 50 13.596
S334N 0.218 0.615 0.02 50 7.308

Passenger mutations

Y61H 0.243 0.285 0.015 0.098 0.26
E102K 0.173 0.341 0.023 0.11 0.207
N295S 0.347 0.5 0.017 0.145 0.159
I311M 0.23 2.67 0.013 0.248 0.253
S365L 0.26 0.273 0.009 0.045 0.153
G366E 0.187 0.167 0.001 0.021 0.074
I371M 0.2 0.303 0.013 0.064 0.164
N413K 0.188 0.557 0.014 0.032 0.109
E429K 0.146 0.503 0.017 0.082 0.167

N295S-G366E-N413K 0.222 0.131 0.001 0.012 0.021

tri-mix T162I-G458D 0.275 50 14.33 0.012 0.047
T162N-N280Y 0.138 50 50 0.027 0.079

penta-mix

N160K-N280Y-N332K 0.146 50 50 50 50
N160K-A281T-N332K 0.1 50 50 50 50
T162I-N280Y-N332K 0.13 50 50 50 50
T162I-N279K-N332K 0.149 50 50 50 50

Signature + Passenger

T162I-Y61H 0.156 50 0.014 0.088 0.115
T162N-V430E 0.167 50 0.003 0.037 0.106
N280Y-A174T 0.064 0.138 50 0.01 0.021
N332S-N413K 0.181 0.526 0.017 50 50

Estimated Mutations

N160K-N280Y 0.276 50 50 0.086 0.155
N160K-N332K 0.232 50 0.017 50 50
N280Y-N332K 0.276 0.988 50 50 50
N295S-G366E 0.347 0.5 0.017 0.145 0.159
N295S-N413K 0.347 0.557 0.017 0.145 0.159
G366E-N413K 0.188 0.557 0.014 0.032 0.109

Table 4.4: IC50 values for the indicated antibodies on YU2 mutant viruses found in contin-
uous antibody mono therapy experiments conducted by the Nussenzweig lab at Rockefeller
University [47]. The trimix of antibodies is : 3BC176,PG16,45-46G54W, the penta-mix is
3BC176, PG16, 45-46G54W , PGT128 and 10-1074. Estimated two point mutations repre-
sent intermediary mutations needed for our model but not included in experimental results
in [47]. The IC50 values were taken to be the maximum IC50 of both mutations.
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Chapter 5

Summary and Future Directions

This thesis describes the development, analysis and implementation of novel math-

ematical models and control theoretic algorithms for the prediction and control of

evolutionary dynamics disease models. In particular, we apply these methods to

study the evolution of HIV resistance in the presence of broadly neutralizing anti-

body therapy and to synthesize effective combination treatment strategies for effective

control. We show that our models and techniques are validated with our own exper-

imental studies as well as in agreement with previous studies. The contributions of

this thesis are summarized below.

Evolutionary Dynamics on Computationally Derived Fitness

Landscapes

We develop two computational models to reason about HIV resistance to antibody

therapy. Our first method is an extension of the least absolute shrinkage and selection

operator (LASSO) that serves to identify potential escape mutations from neutraliza-

tion data. Our model is applied to HIV and antibody neutralization data and uncovers

key residue locations and substitutions that are at the basis of neutralization, that

are verified by previous or our own experimental studies.

Our second computational model allows us to reason about the dynamics of evolu-

tion on computationally generated fitness landscapes. It is developed from biophysi-

cal first principles that link differences in binding energies with changes in replication



82

and the effect of selective pressure. We apply our approach to an HIV evolutionary

dynamics model that incorporates infection and antibody neutralization dynamics,

a mutation process, and a method that uses energy minimization calculations on

structural information to quantify fitness differences between sensitive and resistant

strains. We show that there is agreement between our model and previous murine

studies of HIV evolution in the presence of antibody therapy. A useful extension is

to include a mutational model that captures the dynamics of two mutations or more

to provide further predictive power.

Robust Control of Evolutionary Dynamics

We present three algorithms for the principled design of targeted combination drug

treatment strategies that explicitly account for the evolutionary dynamics of a generic

disease model, where the drugs under consideration are non-interacting and exhibit

independent additive effects. These algorithms allow the designer to quantifiably ex-

plore tradeoffs between number of therapies used (controller sparsity), therapy concen-

trations (magnitude of the gain) and ability to support pharmacokinetic fluctuations

(robustness to perturbations).

Our first algorithm proposes a general iterative method that uses an H∞ robust

control approach to design targeted combination therapy concentrations and is effec-

tive in generating robustly stabilizing controllers. Our second algorithm addresses

large scale systems concerns lacking in the first algorithm, presenting a scalable solu-

tion to the combination therapy problem by reformulating it as a second order cone

program (SOCP), with robustness guarantees addressed by minimization of the in-

duced L1 norm. Our third algorithm solves the combination therapy problem subject

to the same design constraints (sparsity of the drug combination, maximum dosage

and robustness constraints) formulated as an SOCP while addressing the nonlinear

dynamics of individual drugs and of their combinations.
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Engineering Antibody Treatment Strategies to Control HIV

We demonstrate our ability to control the evolution to resistance of HIV in the pres-

ence of antibody therapy, through the application of the combination therapy algo-

rithms developed in Chapter 3 as applied to experimental data derived from recent

published studies [14, 22, 47]. Specifically, we synthesize combination treatments and

compare the respective H∞ and the L1 combination therapy algorithms with respect

to their performance and robustness to biologically relevant uncertainty models and

unmodeled dynamics.

We also develop an in vitro experimental methodology and demonstrate that

the antibody treatment strategies synthesized with the nonlinear pharmacodynamics

combination therapy algorithm described in Section 3.5.3 controls infection despite

the presence of a mixed initial population of viruses, most of which are resistant to at

least one antibody in the mix. Additional work is in progress to further experimentally

validate other combination strategies synthesized by our algorithm.

Implications

With the expansion of molecular data associated with human disease and the rapid

discovery of new targeted therapies, the application of individualized medicine is

becoming a more tangible prospect. The ability to do this not only requires that

health care providers have access to large sets of disease-related data but that they

are also equipped to use it to engineer effective treatments for their patients.

The research in this thesis centers around the idea that precision medicine is

ultimately the combination of multiple disciplines: the understanding of biomolecular

foundations and dynamics of disease, the consolidation and analysis of large sets of

molecular and clinical data, and the ability to incorporate these complementary views

on disease to engineer treatment strategies tailored to a patient’s disease population,

pharmacokinetic limitations all while being robust to evolution to resistance. Our

goal was to provide a theoretical and computational foundation for a set of predictive

tools to help reason about the nature of genetic alterations that lead to resistance, the
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disease dynamics leading to escape from targeted therapy and to synthesize treatment

strategies to control evolution of disease. The methods presented here are applied to

the prediction and control of HIV resistance in the presence of antibody therapy, but

are currently being extended to address tumor heterogeneity and control evolution in

cancer.
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