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ABSTRACT 

Let P~ 1-(N) be tne number of unordered partitions of a positive 
f\.) 

integer N into K or fewer positive integer parts, each part not ex-

ceeciing L. A distribution of the form 

\ P- -(N) L K,L 
N~x 

is considered first. For any fixed K, tnis distribution approaches a 

piecewise polynomial function as L increases to infinity. As both K 

and L approach infinity, this distribution is asymptotically normal. 

These results are proved by studying the convergence of the character-

istic function. 

The main result is the asymptotic behavior of PK,K(N) itself, for 

certain large K and N. This is obtained by studying a contour inte-

gral of the generating funct ion taken along the unit circle. The 

bulk of the estimate comes from integrating along a small arc near the 

point 1. Diophantine approximation is used to show that the integral 

along the rest of the circle is much smaller. 



1. INTRODUCTION 

We shall consider four pa:i;-tition enumerating functions. If K, 

L, and N are positive integers, the function PK,L(N) is define d to be 

the number of unordered partitions of N into K parts, the largest of 

which is L. For example, 22 has 11 partitions into 5 parts with 6 as 

a largest part. These are 

6 + 6 + 6 + 3 + 1 , 6 + 6 + 6 + 2 + 2, 

6 + 6 + 5 + 4 + 1 , 6 + 6 + 5 + 3 + 2, 

6 + 6 + 4 + 4 + 2, 6 + 6 + 4+ 3 + 3, 
6 + 5 + 5 + 5 + 1 , 6 + 5 + 5 + 4 + 2, 

6 + 5 + 5 + 3 + 3, 6 + 5 + 4 + 4 + 3, 
6 + 4 + 4 + 4 + 4. 

Therefore P~ 6(22) = 11 • 
.,/' 

The function PK,L(N) is similar to PK,L(N) except that the 

number of parts of each enumerated partition is K or less. Thus, 

we have 

K 

PK,L(N) = I Pr,L(N). 
r=1 

The function PK,L(N) differs from PK,L(N) in another way. 

Each enumerated partition has exactly K parts, but the largest part 

may be equal to L or any smaller integer . Hence we have 

L 

PK,L(N) = I PK,s(N) • 
S=l 
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The function PK,L(N) represents both of these modifications 

jointly, enumerating partitions with not more than K parts, each 

part not being greater than L. Vie may write 

P- -(N) K,L 

K L 

l l Pr,s(N). 
r=1 S=1 

These functions are natural refinements of the more familiar 

functions 

PK(N) = lim PK,L(N) and 
L .... eo 

P(N) = lim P- -(N) 
K .... oo 

K,L 
L .... oo 

which enumerate simply restricted and unrestricted partitions 

respectively. 

Most of the classical lore of these functions can be found in 

accessible introductions to combinatorial analysis or number theory. 

In particular, a comprehensive treatment of nineteenth century alge-

braic methods can be found in MacMahon ( [ 5], Volume II, Section VII). 

Hardy and Wright ([4], pp. 273-96) give a more concise treatment, as 

does Riordan ([8], pp. 107-62). 

In the next section we shall cite the elementary properties we 

need. One of these, Lerruna 2-5, is a relationship connecting the 

functions PK,L(N), PK,L(N), PK,L(N) and PK,L(N). Consequently it 

will suffice to discuss PR,L(N) only. 

It will be convenient to define PK,L(N) = 0 for all negative 



integers N. We set P- -(0) K,L 

3 

= 1. 

Before stating Theorem 1, we introduce some more notation. 

Let g1(x) = 1 if 0 ~ x ~ 1 and let g 1(x) = 0 elsewhere. For the 

integers K 2 2, gK(x) is defined recursively by the formula 

The function gK(x) is the K-fold convolution of g
1
(x), and it can be 

written in the form 

[x] 

gK(x) = 1 \ (Ku)(-1 )u(x-u )K-1. 
(K-1)! L 

We shall be interested in the following normalization of gK(x): 

\'le now state the simplest result of this dissertation. 

Theorem 1. Let K be a constant and Land B increase to infinity in 

such a way that B/L approaches a limit a, and let b = ./i27K(a - K/2). 

Then vie have 

- 1 B 
( K+L) \' P- -(N) ~ 

K L K,L 
N=O 

This result was suggested heuristically in 1928 by Tricomi [ 10], who 

noticed a correspondence between the partitions of an integer S into n 

unequal parts not exceeding N and the ways that a sum equal to S could 
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result when n balls are dravm from an urn containing a set of N balls 

numbered from 1 to N. He assumed that as S, n and N grew large the 

inequality r e striction for the parts viould become relatively insigni-

ficant, so that the probability density for S would approximate the 

convolution of identically distributed random processes. The actual 

number of such partitions is equal to P- ~(s - !ll!i.±1.l) ([8], p. 113), n,N-n 2 

so Tricomi's result would be a special case of Theorem 1. 

The proof of Theorem 1 appears in Section 4 and uses a general 

theorem of Levy and Cramer on probability distributions. The next 

result is similarly proved: 

Theorem 2 . If K, L and B increase to infinity in such a way that 
KL 1 

li2(B-2HKL(K+L+1 ))2" approaches a limit b, then 

1 B 

(
K+L\ - \ P- -(N) 
K} L K,L 

N=O 

, 1 I b -x212 
~ ~- e dx. 

'i2rr -00 

Tricomi (11] and Castelnuovo (1] have proved similar r esults for 

ordered partitions. Their methods deal with identically ·distributed 

independent random variables, and these appear to be applicable only 

to ordered partitions or to partitions with unequal parts. 

In 1941 Erd8s and Lehner [3] obtained a similar result for 

simply restricted partitions: 

If, for some fixed x, Kand N approach infinity in 

such a way that K = [/N(x+(log n)/C)], where C = ~' 
then 
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PK(N) 
lim P(N) = exp[-(2/C)exp(-Cx/2)]. 

Their proof uses an inclusion-exclusion process and the asymptotic 

formula P(N) = eCYN/(4N/3). 

The next theorem is the principal result in this dissertation: 

Theorem 3. If K and N approach infinity in such a way that 

Ji5(N - ~)K-3/2 approaches a limit b, then we have 

l K3/2(2K)-lP- -(N) ~ 
6 K K,K 

The proof of this theorem is based on contour integration of the gen

erating function FK,K(z) = l PK,K(N)zN along a path surrounding the 

N 

origin. In the usual treatments of the partition function P(N), which 

is the limiting case as K increases to infinity, it is necessary to 

confine the contour of integration to the interior of the unit circle. 

A case in point is the recent approach by Nevnnan [6] in which the con

tour is a circle of radius 1 - (n/./6r'i.). He isolates a short segment 

close to 1 which contributes the bulk of his estimate. He then shows 

that the generating function is of a smaller exponential order on the 

remainder of the circle . Since our function FK,K(z) is a polynomial, 

it is possible to use the unit circle itself. The major part of the 

estimate is done on an arc centered on the point z = 1. Diophantine 

approximation is used to obtain a bound on the polynomial elsewhere on 

the circle. 
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ELEMENTARY PROPERTIES OF P- -(N) K,L 

Unless stated otherwise, each of the following lerrunas is a direct 

consequence of the definitions. 

Lemma 2-1. If either N < 0 or N >KL holds, then we have 

P- -(N) = O. K,L 

Lemma 2-2. For all positive K and L we have 

P- -(N) = K, 1 
if 0 ~ N ~ K, and 

P- -(N) = 1,L if 0 ~ N ~ L. 

Lemma 2-3. For K ~ 2 , L ~ 2 and all N we have 

Lemma 2-4. P- -(N) = P- -(N). K,L L,K 

This is best proven with a Ferrer's graph, as in [4], pp. 273-74, or 

in [ 8], pp. 113-1 4. 

Lemma 2-5. P- -(N) K,L PK+l,L(N+L) = PK,L+l"(N+K) 

PK+l ,L+l (N+K+L+l ). 

This follows from Lerronas 2-3 and 2-4 and the formulas appearing with 

the definitions. 

We now introduce the generating function 



FK,L(z) 
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KL 
\ P- -(N)zN. L K,L 

N=O 

Lemma 2-6. Except wherever the denominator vanishes we have 

K+L n ( 1-zr) 

K L 
'Ti' r n' r / I ( 1 -z ) ( 1 -z ) 

r=l r=1 

This can be deduced from Lemmas 2-1, 2-2 and 2-3. Other derivations 

of this formula appear in [5], p. 5, and in [8], p. 153, problem 5. 

This lenuna shows that the polynomial FK,L(z) has all its zeroes on 

the circle \z\ = 1. 

Lemma 2-7. 
KL 

\ P- -(N) = L K,L 
N=O 
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3. THE DISTRIBUTION °'K,L (x) AND ITS CHARACTERISTIC FUNCTION qK,L ( t) 

The weak asymptotic behavior of PR,:L(N) is easily investigated 

in terms of the following function: 

where the sum is taken over all integers N :S (KL/2) + cK,Lx and where 

cK,L is defined to be fKL(K+L+l)/12. (Whenever there is no danger of 

ambiguity, the subscripts K and L are omitted.) Since we have 

Q(x) = 0 for x < -KL/(2C), and Q(x) = 1 for x > KL/(2C), and since Q 

is a nondecreasing step function for intermediate values of x, we can ·. 

treat Q as a distribution. It can be shown easily, using Lerrunas 3-3 

and 3-4, that Q has mean 0 and variance 1. 

We now introduce its characteristic function 

S 
00 

ixt 
q(t) = qK L(t) = e d°'K L(x), 

' -co ' 

which is defined for every real value oft. A simple calculation 

yields the following: 

1 
KL 

Lerrana 3-1. q(t) = (K~L r I PR,E(N)exp( ( (N-(KL/2) )/C)it) 
N=O 

This can be carried further with Lerruna 2-6 and the exponential formula 

for the sine. 
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Lerruna 3-2. Wherever the denominator does not vanish we have 

K+L 

n siCr~J~&)C) 
r=1 q(t) = --------------K L 

71' sin (rt/2Ql 71' sin (rt/2C) 
11 (rt/2C) 11 (rt/2C) 

r=1 r=l 

The following lenunas are needed only for the proofs of Theorems 

2 and 3. 

Lerruna 3-3. Within the interval {It I < (2n:C/(K+L))}, q(t) has an 

analytic logaxithm with a power series expansion of the form 

where 

Proof. 

00 

\ ' 2n 
log q(t) = L a2nt , 

n=1 

{;(2n) 
- 2n 
n(2rcC) 

For any complex z such that lzl < 1, the quotient sin n:z is 
n:z 

nonzero and analytic. It has a logarithm which can be found from 

the Weierstrass product for the sine: 
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(X) (X) (X) 

log si~zltZ = I1og(1-(z/s)
2

) =-I I (z/s)2n/n 

S=l S=l n=l 

For \t\ < (21tC/(K+L)), Lemma 3-2 gives us 

K+L K L 

q(t) = \ log sin (rt/2C) 
log L (rt/2C) 

\ 1 sin (rt/2C) \ i 
- L og (rt/2C) - L og 

r=l r=l r=l 

sin :n:z Now, using the expansion of log ltZ , we have 

log q(t) 

and the lem~a is proved. 

Lemma 3-4. In the previous lerruna, a2 is equal to -1/2. 

?roof. Since we have 

K+L 
\ 2 Lr -

r=l 

K 
\ 2 Lr -

sin (rt/2C) 
(rt/2C) 
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= i { (K+L)(K+L+1 )(2K+2L+l )- K(K+l )(2K+l) - L(L+1 )(2L+1) } 

it is easy to show that 

a2 = -C(2)(2:1tC)-2KL(K+L+1) = -1/2. 

Lemma 3-5! Within the interval {ltl = (2:1tC/(K+L))} we have 

2 
q(t) :S e-t /2 • 

Proof. Lemmas 3-3 and 3-4 imply that 

-t
2
/2 log e - log q(t) = 

00 

which is nonnegative since all the a2n's are negative. 

;Lema 3-6. Within the interval {\t\ :S (rrC/(K+L))} we have 

-t2 /2 . 4 1 1 
log e - log q(t) :S (2t /15)(K- +L- ). 

Proof. As above, we have 

t
2
/2 log e- - log q(t) 
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where the integration is taken in the interval 

2 2 [-((r+L)t/(2nC)) ,-(rt/2rtC) ]. 

Since l t I < ( nC/K+L), we have ( 1+u)-1 < 1 - 4u/3 in the integrand. 

Using this estimate, integrating and summing we find 

t
2
/2 log e- - log q(t) 

:S (2/15)rt4(t/(2rtC)) 4KL~K+L+l)(~+L2+KL+K+L) 

= (2t 4/15)(K-1+L- 1-(K+L+1)-1). 

and the lenuna is proved. 

Lerna 3-7. For all t satisfying ltl :S (nC/K+L) we have 
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Proof. The leftmost inequality comes from Lemma 3-5. Lerrana 3-6 

gives us 

Hence we have 

-u since 1 - e ~ u if u ~ O. 
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4. THE PROOF OF THEOREM 1 

Since CK,L is defined to be IKL(K+L+l)/12, we see at once that 

if K is fixed as L increases to infinity then C also increases to 

infinity and that 

For any finite t and r, S r S K, it is possible to take L so 

large that 

sin (rt/2C) 
(rt/2c) 

is then nonzero and increasing to 1 as L increases to infinity. From 

Lemma 3-2 we have immediately that lim qK 1 (t) exists and equals 
L ... oo ' 

which is the Fourier transform of hK(x). 
, 

We now refer to the following theorem of Levy and Cramer: 

Given a sequence of distributions F
1
(x),F2(x), ... and the 

characteristic £'unctions ~ 1 (t),~2(t), .... A necessary and 

sufficient condition for the convergence of the sequence 

F (x) to a distribution function F*(x) is that, for every t, 
n 

the sequence ~ (t) converges to a limit ~(t), which is con
n 

tinuous for the special value t = o. 
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When this condition is satisfied, the limit ~(t) is 

identical with the characteristic function of the limiting 

distribution F*(x). ([2), p. 96) 

We shall take the distribution functions to be FL{x) = °'K,L(x). 

Since the characteristic function is identical to the Fourier trans-

form, we also have ~1(t) = qK,L(t) and 

~(t) = (sin -67Kt)K· 
-13/Kt 

c 
This L"Il!1lediately yields °'K,L(c) ~ J hK(x)dx for any real value 

-co 

Of c. 

Now for any € > 0 the hypothesis of Theorem 1 implies that 

there is an L such that if L > L then we have 
€ - € 

IB-(KL/2)+(1/2) ! 
-. b < €. 

CK,L 

Since Q. is nondecreasing, we have 

Q(b-€) :S Q(B-(KL&2)+(1/2}\:S Q.(b+€) 
K,L ) 

for all L ~ L €. . As this L increases to infinity, we see that 

sb-\K(x)dx ~ lim inf Q(B-(KL22)+(1/2)) 
-oo L -+ oo . K,L 

:5,. lim sup Q (B-(KL&2)+(l/2l\:s. Jb+\K(x)dx. 
L -+ oo . K,L ) -co 
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The continuity of the integral implies that the extreille right and left 

b 
members of this inequality will approach J hK(x)dx as € ... O. Thus 

-oo 

lim Q (B-(KL&2)+( 1/2)) 
L .... oo K,L 

b 
exists and equals J hK(x)dx. The definition of .Q shows that this is 

-oo 

equivalent to Theorem 1. 



5 . THE PROOF OF THEOREM 2 

As K and L both increase to infinity, it is apparent that 

CK L/(K+L) does also. Thus Lemma 3-7 implies that qK,L(t) converges 
' 2 

pointwise to e-t 12 The rest of the proof of Theorem 2 follows 

from this fact in the same way that the proof of Theorem 1 followed 

from the convergence of qK,L(t) in Section 4. 
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6. THE PROOF OF THEOREM 3 

The Cauchy residue theorem gives us 

( ) ( )-1s -(N+1) ( ) PK,K N = 2r.i z FK,K z dz, 

where the contour is the circle lzl = 1, traversed counterclockwise. 

F is the generating function introduced in Section 2. 

2ni9 1 1 
If we write z = e , -2 5, e 5, 2' this becomes 

. '1 

J·2(2K) 2 - · 
= 2 O K cos(2n((K /2)-N)9 )qK,K(2nCK,K9 )de, 

( 2rrie) (2K) K
2 nie < since F K, K e = K e qK, K 2nCK, Ke), and since q is an 

even real function. 

Now we write 

(
2K) r::::-- -1 . 2 2 2 PK,K(N) - K (v2nC) exp(((Ir/2)-N) /2C ) 

_1 ' 

(2K)J 2K _2 , = 2 K 
0 

cos(2n( (K-/2)-N)e )qK,K(2nCK,Ke )ae 
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1 

+ 2J ~e{e2niN9FK,K(e2ni9)}de 
2K 

- 2(2KK)J ~cos(2n((~/2)-N)9)e-(2nce)2/2ae. 
2K 

1 

S 2(~K)J04Kcos(2n((~/2)-N)e)\q(2nC9)-e-( 2nce)
212 \ae 
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_1 2 

+ 2(~K)J~Kcos(2n((~/2)-N)9lq(2nC9)-e-( 2nce) 12\ae 

4K 

1 

+ 2 J 2jF(e2ni9)\d6 
1 

2K 

+ 2(2~)J 
00

cos(2n((~/2)-N)6)e-( 2nCB)
2

/2ae 
1 

2K 

say. As a consequence of Theorem 3-7, we can write 

( 6-1) . 

(6-2) 
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From Lerruna 3- 5 we deduce that 

Thus vie have 

_1 2 

s 2 (2;)J~Ke-c2~ce) /209 . 
4K 

I2 + I4 ~ 2(iK)J ~e-(2.ce)2/2aa 
4K 

(6-3) 

The estimation of 1
3 

is made possible by the following lemma, which 

i s proved in Section 7. 

Lemma 6-1. For 2~ S 9 S ~' we nave 
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This yields irrunediately that 

(6-4) 

The estimates expressed in inequalities (6-2), (6-3) and (6-4) are 

all of smaller order than 

(2K)/c 
K K,K 

as K increases to infinity. Theorem 3 now follows from inequality 

(6-1). 
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7. ESTTh1ATING F( z) ON AN ARC OF THE CilWLE I z l -1 

The proof of Lemma 6-1 will be worked out in terms of the 

funct~on GK(e) = lFK,K(e
2
niS)l. We shall derive an upper bound for 

G on the interval 2~ S, 9 S, ~· For large K, this bound will be much 

smaller than the maximum for G, ( 2KK), attained at 9 = o. 

We begin with the following well-knovm lemma from the theory of 

Diophantine approximation. 

Lerruna 7-1. If K is a positive integer and if e is a real number on 

the interval [0,1], then there are relatively prime integers, p and q, 

which satisfy 

o s p s_ q s_ 2K, and je - p/qj < q( 2~+l). 

Vie have taken n 2K in Niven's statement and proof of this result 

( [ 7] , pp. 3- 4) . 

We shall choose any particular e
1 

in the interval [ 2~,~J. 
For this e1 each fraction p/q d_etermined by Lemma 7-1 must have q 2: 2. 

For any such choice of p/q we shall obtain an estimate for G(9) for 

all e in the interval I e - p/q I < q ( 2~+ 1 )" This_ bound} which depends 

only on K, is given by the following lemma: 

Lemma 7-2. If 2
1
K S, e S, ~'and if D = (2n)3123-9n exp(tg

2 
+ 5), we have 

~ 
GK(e) < Di1(K+l )32K < 55K 2 (K+1 )32-K(~K). 

Lemma 7-2 directly implies Lerrana 6-1. It is easily verified for the 
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case K = 1. We shall give the proof for K 2: 2 by mathematical in-

ductiop on K. Given K, we assume that the lenuna is true for all 

small er integers. The proof splits naturally into two cases: 

( 1) K < q $_2K, and (2) q ~ K. 

CASE 1 : 2 ~ K < q S 2K 

i'/ithin the interval \6 - p/q \ < q( 2~+l ) ' the only factor of 

2K 

n l 1-e2rrir8 l 

G(8 ) r=K+1 
= 

K 

rr \ l-e2nir 6 \ 

r=l 

which vanishes at al l is 

l1-e2niqel = 2lsin qn6 l = 2 sin qnl6- p/qJ < n/K. ( 7-1) 

The following result will be convenient in estimating the rest of 

the quotient above . 

Lenuna 7-3 . For any 6 in the interval [o,~], and for any n > 1, we have 

n 

lT \sin sne \ < /2nn32-n/2 (7-2) 
S= l 

Equivalently, when x 2ni6 e is considered, we have 

n 
ff \ 1-xs j < -l2;n32-n/ 2 ( 7- 3) 

S=l 

P-£oof . If n = 1, the lemma may be verified by inspection. I f n ~ 2, 

we have, if 0 < e < 1/n, 
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25 
n 

rr Sin sn9 

S= 1 = log 

n 

TT 
sin s118 

sn9 

n 

(nn6)n 
S=l 

00 n 
\ ' 

= l l log(l-(s9/u)
2

) +log n~ 
S=l U=l 

n 

n oo oo 

< - l l l {s9/u)2t/t + log{&e-nnn+l/2(1+(1 /4n))/nn} 

S=l U=l t=l 

n co 

< log{../2nne-n(1+(1/4n))} l (se)2 l (1 /u2 ) 

S=l U=l 

Thus log l sin srce is bounded above by 

S=l 

which attains its maximum, 

n(log 3-3/2) + log{l2rcn(l+(l/4n))}, 

when e is equal to 3/nn. Since log 3 - 3/2 < -(log 2)/2, the lemma 

follows for the case 0 < e < 1/n. 

For the remaining case, e ~ 1/n, it is sufficient to cite a 

lemma in a recent paper by Sudler, ([9], pp. 4-7). The proof of 

Lemma 7-3 is then complete. 
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Now we can bound 

q-1 2K 2K q-1 n f(rp/q). n f(rp/q) n f(rp/q) rr f(rp/q) 2 

r=l r=q+l r=g+l G*(p/q) = -------- = 
r=K-..+"'-1 __ _ 

K q-1 n f(rp/q)2 
,...,, 
11 r(rp/q) 

r=1 r=1 

2K-q q-1-K 

rr f(rp/ci) n f(rp/q)2 

q-1 ' n f(rp/q) 

r-1 

where f(v) = j 1-e2rdvl. 

The previous lemma implies that the numerator is less than 

(-r2';~)3(2K-q)3( q-l-K)62( q/2 )-l , if K + 1 < q < 2K. Since we have 

(2K-q)(q-1-K)2 < 4K3/27, this bound becomes ("t2°;)3(26;39)K92K- 1• 

If q = K + 1, the numerator is less than .f2;K32K/2 • If q = 2K, 

the numerator is less than 2n(K-1) 62K-l. Since the denominator of 

G* is equal to q, we can ·write 

G*(p/q) < ( 2~)3/2K82K+53-9 

G*(p/q) < /2;.~2K/2 

G*(p/q) < (rt/2K)(K-1)62K 

if K + 1 < q < 2K, 

if q = K + 1,_ and 

if q = 2K. 

From these inequalities, along with the fact that we are con-
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sidering K 2: 2, we obtain, for K < q :S 2K, 

Now we estimate 

2K 2 . ,.,_ 
. l 1 :rciro 

1 n 1~:2nirp/q 
r=K+1 

~ = r~g ll 2:rcir9 l 
JT 1 =:2:rcirp/q 

r=l 

1 l l 2rrirG 

1 
for 0 < \G-p/qj < q( 2K+l ). A typical factor -e2 . / 

1...:e nrp q 

is close to 1. Hence we consider 

sin nr9 
sin(:rcrp/q) - 1 = cot(1TI'p/q)sin 1TI'U +cos :rcru - 1, 

where u = e - p/q. 

For the numerator of G*( e )/G*(p/q) we have 

log 

2K 
\ sin 1Cre 
L sin( )'(rp/q) 

r=K+1 
r_;i'q 

2K 

< l I cos :rcru-1 \ + \cot (1TI'p/q) \ l sin :rcru \ 

r=K+1 
r_;i'q 

( 7-4) 

!sin nr9 l 
sin(:rcrp/q) 
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2K 

< I ( ( Jrru )2/2+nrIu11 cot ( rrrp/q) j ) 

< 

r=K+l 
rJq 

2K 
\' 2 2 . 
f_, · r (rm) /2 + 

r=K+1 
rJq 

2K 

I rrr\ul \cot(rrrp/q)I 

r=K+1 
r/q 

2K 

< '.)n
2
u

2
K3 /4 + 2nKI u l l l cot ( rcrp/q) l 

r=K+l 
r,fq 

2K 

< 5rc
2
/(16q) + (rc/q) I' \cot(rcrp/q)I, 

r=K+1 
r/q 

because \uj < 2~q· 
Since K < q, no more than one value of r, K + 1 ~ r ~ 2K, can 

fall in any residue class modulo q, and we have 

2K [K/2] [K/2] 

TT lcot(1trp/q)\ ~ 2 TT cot(nrl/q) = 2 n q/(nr) 

r=K+l 
rJq 

< (2q/rr)(l+log (K/2)). 

We can then write 

2K 

TT l sin 1're l 2 log J sin(rrrp/q) = 5n / (1 6q) + 2 + 2 log K - 2 log 2. 
r=K+l 
r/q 

(7-5) 
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We now show that each of the factors of the denominator i s 

bounded away from O. Since r :5 K here, we have r\u] < 2~, and 

l sin rtre _] > 1 - I 1-cos nru 1 - 1 cot ( rcrp/q) 11 sin nru I 
sin( 1U'p/q) -

= 1 - ( rrKu)
2
/2 - nKlu]cot(n/q) 

2 2 > 1/2 - J"( /(8q ) > 1/3. 

Since log v 2: (v-1 )/v for 0 < v :5 1, we have 

-log ~ \sin rrre j < · ~ (lsin rrre j 
II sin(nrp/q~ 3 L. sin(n:rp/ci) 

r=l · r=l 

K K 

< (3r.
2
u

2
)/2 l r

2 
+ 3 l nr\u\ \~ot(;crp/q) 1 

r=l r=l 

K 

< n
2
u2J2 + <3n\u\K l \cot(r.rp/q)j 

r=1 

[K+1/2] 

< i/(liq) + 31t/q I cot(1U'1/q) 

r=l 

< n2/(liq) + 3 + 3 log(K+1) - 3 log 2 . 

Combining this inequality with inequality (7-5), we have 



30 

log G*(e)/G*(p/q) ~ 9~2/(16q) + 5 - 5 log 2 + 2 log K + 3 log(K+l). 

From inequalities ( 7-1) and ( 7-4) we obtain 

GK(e) = l1-e2niq
9

j(G*(9)/G*(p/q))G*(p/q) 

< (n/K)exp{9n2/(16q)+5-5 log 2}~CK+1) 3 (2n) 3/2253-9KS2K. 

And we obtain 

GK(e) ~ DK9(K+1)32K, ( 7-6) 

where D =Jtexp{9n2/48+5}(2n) 3123-9 > 2. 

Stirling's formula for factorials yields 

Since D(9/8)2
./; < 55, both formulas in Lemma 7-2 hold for Case 1. 

CASE 2: q < K 

There are unique integers K1 and K2 which satisfy 

In connection with this decompos ition, a very interesting relation 

hol ds: 

Lerruna 7-4. If l 9-p/q\ < q(~+l )' then we have 
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if K2 O, and 

if 0 < ~ < q. 

Proof. · For any e ./. p/q vie can write 

2K n \sin nre l 
r=2K2+1 
~--"~~~~~ = 

K n sin
2

rcre 

r=JS+ 1 

2K
1
-1 

q+2K2 Tf 1 sin n( (pt/q)+( t+sq)u) \ 

rr _S=_O~~~~~~~ 
K

1
-1 

t=1+2~ 11' 2 
JI sin rc((pt/q)+(t+sq)u) 

where u = 9 - p/q. This product represents GK(6) if K
2 

= 0 and 

GK(e)/GK (9) if K2 > O. 
2 

(7-7) 

The index t in this product assumes q consecutive integer values, 

exactly one of which, say t
0

, is divisible by q. 

If ~ < q/2, we have t
0 

= q. The corresponding part of the pro

duct is 

2K1-1 2K1 

TT \sin ;r(p+( s+ 1 )qu) l TT l sin rcsqu 1 
S=0 S=1 

__,,;;..---"-~~~~~~~~- = ~"--~~~-
K, - 1 K1 

Tf sin27t(p+(s+1 )qu) Tf sin21(squ 

S=O 
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2K, I 2K, 
:::: (2K1) 1T sin nsqu n (sin nsou)2 

K, nsqu :;rsqu ' 
S=1 S=l 

which is bounded away from both infinity and zero in the given interval. 

As in the proof of Lemma 3-3, we have 

{

2Kl I 2K, ) 
loo- n sin :r.:sgu 1T (sin nsgu)

2 
0 n:squ nsqu 

S=l S=l 

co 

=-I :s .o. 
m=1 

If ~ 2: q/2, we have t
0 

= 2q. The corresponding part of the 

product has the sane bound as above, as can be shmm in the same way. 

Thus to complete the proof of Lemma 7-4 it is sufficient to show 

that the rest of (7-7), 

2K
1

-1 

q+2~ H l sin 1!((pt/q)+(t+sq)u I 
f(u) = n S=O 

K
1
-1 

t=1+2~ n 2 
qft sin n((pt/q)+(t+sq)u) 

' 

S=O 

is not greater than 1 in absolute value. All factors of f(u) are non-
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vanishing in the given interval. As u approaches o, f(u) approaches 1. 

Thus it suffices to show that the logarithmic derivative below is non-

positive for positive u. (It follows in the same way that this deriv

ative is nonnegative for negative u.) We have 

q+2K2 (2K1 -1 

d~(log f(u)) = l l (t+sq)1( cot 

t=1+2~ . S=O 

1(((pt/q)+(t+sq)u) 

= 

= 

q~t 

K
1
-1 

- 2 l ( t+sq)1( cot 

S=O 

q+2K2 K1-1 

•( (pt/q)+(t+sq)u~ 

l l ((t+(s+K1 )q)rtcot1(((pt/q)+(t+(s+Kl)q_)u) 

t=l+21S s:O 

'· qft'· 

- (t+sq)it cot it((pt/q)+( t+sq)u)) 

q+2K
2 

K
1

-1 

l l (t+sq)it(cot n((pt/q)+(t+(s+K
1 
)q)u) 

- cot rr((pt/q)+(t+s q)u)) 

+ L, •K1 q l cot •( (j,t /q)+( t+(s+K1 ) q )u) • 
K 1-1 ( q+2JS ) 

S=O t=l+2~ 

qft 
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In the first swnmat ion term of the last expansion, the "cotangent minus . 

cotangent" factors are nonpositive, because the cotangent is monotoni-

cally decreasing on each open interval between multiples of ~. Since 

both arguments are on the same such interval, and since u is non-

negative, the whole term is nonnegative . In the other surrunation term 

we have 

q+2~ q.+2~ 

l cot n((pt/q)+(t+(s+K1)q)u) < l cot n(pt/q) o, 
t=l+2~ t=1+2~ 

qtt q-!'t 

and the proof of Lerruna 7-4 is complete. 

The proof of Lerruna 7-2 for Case 2 now subdivides into the follow-

ing cases: (a) ~ = O;. (b) K2 > O and 1/(2~+1) < e :5 1/2; (c) K2 = 1 

and e < 1/(2~+1); (d) 1 < ~ :5 q/2 and e :5 1/(2~+1); and q/2 < ~ < q 

and e < 1 /(2~+1). 

CASE 2a: K2 = 0 

St · 1. ' · t · · ld ( 2nn ) < 22n. ir ing s approx:una ion yie s Lemma 7-4 now yields 

and the second formula in Lemma 7-2 follows from this in the same way 

it did from relation (7-6). 

CASE 2b : 0 < ~and 1/(2K2+1) < e :5 1/2 

Recalling that Lemma 7-2 is assumed for i ntegers less than K, 

including ~ in particular, we have 
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CASE 2c: ~ = 1 and es 1/(2~+1) 
It is sufficient to write 

CASE 2d : 1 < K2 = q/2 and 9 < 1/(2K2+1) 

Since K1 2: 1 and ~ 2: 2, we have 2K1 + 2K2 S 2K1K2 + K2 • Our 

estimate is then 

)( ) 

2K +2K 
G ( e ) = ( 2Kl ) G ( e ) = ( 2K, 2~ < 2 1 2 s 2K. 

K ~ K2 ~ ~ 

CASE 2e: q/2 < K2 < q and e < 1/(2~+1) 

Lemma 3-5 tells us that when jej < 1/(2~+1) we have 

since 4 < ~2/(3 log 2). The hypothesis of Lemma 7-2 yields 

8 < (p/q ) - 1/ (2K+l) 2:. 1/q - 1/(q(2K+l )) = 2K/(q(2K+1 )), 

so that we now have 
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. 3 2 
_ ( 2K )(2K )' -4K2(2K/( q(2K+ 1))) 

GK(e) - K 1 K 2 2 
1 2 

2K1 + 2~ - 4K2(2K)2(2K+1)-2q-2((q/2) + (1/2))2 
< 2 

Thus the discussion for Case 2 is completed, and--with it--the proof 

of Lemma 7-2 • 
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