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ABSTRACT

The problem of a semi-infinite slender cone which starts
impulsively from rest so that it suddenly has a constant supersonic
velocity is considered. It is treated by using the acoustic wave
equation for the air at rest at infinity. The problem is reduced to
that of dealing with the radial velocity in two conical variables in
space~time.

It is shown that there are three fundamental regions from
the physical or mathematical standpoint. The boundary conditions
and equations for each of these regions are developed so that a
numerical solution of the problem may be obtained for a given Mach
number and cone angle. From the solution of the radial velocity
the potential and thence the pressure on the cone are obtained.

An approximation to the pressure far back on the cone where
the curvature is small is obtained as an improvement on the piston
value for zero curvature. This is done by suppressing variations
in the axial direction and solving the resulting equation by Riemann's
integration method.

An attempt to solve the problem by distributing sources on

the axis with resulting difficulties is discussed.
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I. INTRODUCTION

Recently a number of problems in non-stationary, or
time dependent, supersonic flow have been considered and solved.,
A minor number of these have dealt with motion which is non-
stationary in the streamwise direction, that is, acceleration and
deceleration., Biot (Reference 1) has presented a method for find-
ing the pressure or drag on an accelerating two-dimensional
planar body at the speed of sound. He works out the pressure and
drag for a wedge. Gardner and Ludloff (Reference 2) have worked
out the drag for a decelerating double wedge airfoil at supersonic
and transonic Mach numbers. In addition to these the problem of
an axially symmetric body having a non-steady motion in the axial
direction is one which still requires study. A preliminary treat-
ment of this problem was made by Frankl (Reference 3), but this
was merely an order of magnitude investigation of drag forces.

A more complete solution appears to be difficult, -

Thus the simplified problem of a semi-infinite cone
starting impulsively from rest has been chosen to give some in-
sight into the more general problem. This form of the problem
is convenient since it allows the use of conical flow methods first

introduced in aerodynamics by Busemann (References 4 and 5).
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II. ACOUSTIC EQUATIONS

If assumptions are made about the compression of the air
being small due to a body moving through it, the basic equations
of the non-stationary air flow can be derived as acoustic equations
as is done, for example, by Baker and Copson (Reference 6),

Consider the air is initially at rest everywhere with pres-
sure and density of P, and Por respectively. Any disturbance
which arises is described by a velocity vector §(x,y,z,t). Also
at the point (x,y,z,t) the condition of the air is described by a
density p which can be written in terms of the initial density p

and a condensation s.

P2 1+3) (1)

This equation defines s. It is assumed that disturbances are small
enough so that the square of s is negligible with respect to unity.

To describe the motion of the fluid at a point the equations
of conftinuity anci momentum, respectively, can be written in the

forms
/% -/-a/iy//Oi') =0 (2)

Pg = gred p ©)

if there is no external applied force, In the continuity equation the
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the divergence term can be expanded as

O/I‘V//Oi’) =/%(/+\5) drv é. * c;“/’-’grez//q, (1+35)
Then further inserting the assumptions that s << 1 and grad s =0,

the continuity equation is written as

/A +/q, a//y?’ =0 (4)

or
51_ 't"J/'V? =0 (5)

If it is further assumed that pressure is a function of density only

the momentum equation can be written

d,
/OOZ = —/j}o '7/’3//0

or

Z = -/§/§Z jra/.s (6)

i/ )
Since (;,//g') has the dimensions of velocity squared, let P ‘7/§0
where ¢ is a velocity, then

7 = -c* gral s
= a

AN

If heat conduction is neglected because of the assumed
small values of s and because the movement is rapid, the adia-

batic equation

,
2 la
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can be used for the pressure-density relation of the gas at a point.

In differential form this is

pope L 4

or using the definitions of ¢ and s
L o (8)
/o
Since the fluid is originally irrotational it will remain frro-
tational if no mechanism exists to produce rotation, This is the
case since viscous forces and external forces are neglected., The
assumption concerning external forces only requires a conserva-
tive field. With irrotationality a velocity potential, @ , exists
defined by
i/ﬂ;/,z,z‘) = grad Blry 2, ) (9)

From Equations (5), (6), and (8) the following acoustical

equations can now be written

¢ :—-C25 (10)
t

s, +divg =0 (11)
L/;’b" =c’s (12)

Now using Equation (9) the above equations can be combined to

give the wave equation

vVg-L, <0 (13)
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III. THE PROBLEM OF THE IMPULSIVELY STARTING CONE
3.1 In Physical Coordinates

For the problem of a semi-infinite slender cone starting
impulsively from rest the previously derived acoustic equations
or wave equation can be specialized., The coordinate system is
fixed with respect to the air at time t <0 and remains fixed with
respect to the air infinitely far ahead of the cone for time t > 0.
The cone starts impulsively at the time t = 0 and has an axial velocity
V for all time t 0. The x-axis extends along the axis of the cone
with the positive direction being toward the rear.of the cone. The
radial coordinate r is measured perpendicular to the x-axis. The

angle which the generatrix of the cone makes with the x-axis is £,

L—Vt-—

t£0 t>0
The velocities of the air at any point in this coordinate sys~
tem are
Ulxrt) = 92 (x,r, )
V(x,r t) =@ (x,r.8)

and by rotational symmetry all derivatives with respect to W, the
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angle of rotation about the x-axis, are zero. In particular

@, =0

at all times,

The wave equation in cylindrical coordinates has the form

Dx,r;{-¢=¢rr +7’L¢r+¢2m—_cé‘ e =0 (14)

If this is differentiated with respect to x, r, and t the following

equations are obtained:

O ,u=0 (15)
Xt t
=X
a,,v-4 (16)
= 17
Dx,r)f ¢‘t 0 ( )

3.2 Reduction to Conical Coordinates

It can be argued that the flow of the problem is conical, or

. X r . .

that u, v, and % are functions only of 77 and ¢z which will
be called X and R, respectively. The argument is similar to that
made in the case of stationary conical flow, for example by Lager-
strom (Reference 7). There is no characteristic length in the
problem. The only characteristic values are V, p,, and c. Thus

r A

73 2 ) X
7 and V must be expressed as functions of ;7 , 77, and ¢
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or M. It may be assumed then that for any given V the potential

¢ can be given by

@ (x,r,t) = ct- W(XR) (18)

In connection with the discussion of the conical property of the
problem it is interesting to consider Figure 1 which pictures the
problem by suppressing one space dimension to allow the time var-
iation to be shown.

Now following the same procedure as was used by Lager-
strom a dependent variable w(x,r,t) is considered where w is
either u, v, or ¢t . Letting the coordinates (x,r,t) be denoted
(x15 %, x3), it is easily seen that the above equations ((15,), (16),
and (17)) are invariant under the transformation x; = Kx;, where
X is any constant., To say that w is invariant under this trans-
formation is the same as saying that w is homogeneous of order
zero in x, r, and t.

Now a new set of coordinates (p, 6, t) is introduced where

P e
6= tan % (19)
t=t
The coordinates p and 8 are homogeneous of order one and zero,

respectively, in x and r, Euler's theorem for homogeneous func-

tions states that if w(X,, X,, X, ) is a homogeneous function of order



n, then

Mo

n-w = (1: Wx)

I's

i
N

Since w is homogeneous of order zero,

i W, = ‘/ZX,-WI‘. = '/)Zz(x;%&. # X 14,6, )

giving

z‘~wt = ~/o W

By a repeated application of the theorem

tltw), = 2lP e,

These can be combined in the following form:

2

. = _ . 20
tw, = 2lpw.). + pw, (20)
The terms W, + l,, of the wave operator become

under the transformation (19).

=L(p- Za 21
o e = F(PW), * 7 W, (21)
and the remaining term of the operator becomes

)~
.;{

i
v~
X
Y

»
@

If w is conical, that is, if it can be expressed in the variables ch

r
and ¢Z , then it is sufficient to solve for the case where ct = 1,
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In this case then, the operator U%t can be written in conical coor-

dinates

EZHtW=(PL—/°)//9- w, #w), *‘715’»/ +/a Wy = @ Y

and the Equations (15), (16), and (17) for the velocities and ¢t become

@fo u=0 (23)
Y
0,7 = s (24)

6,4 =0 (25)

Yel’s

The coordinates (p, 8) are now in the {c‘xz)fé) , or (X,R), coordin-
ate plane since ct = 1.

Since the problem is conical it may, as stated before, be
solved in the plane ct = 1. This means that the (p,8) coordinates
can be considered in this plane or in the XR plane at any time. For
any time t> 0 the following figure shows the position of the cone with

respect to the XR-axes., The figure is drawn for the case when M,

R

/.CO/VE AT £=0
8

Cone att >0, M~ 1
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the Mach number at which the cone is travelling, is greater than

one.,

3.3 The Three Fundamental Regions
Some interesting aspects of the problem can be considered
on the basis of this figure., It is redrawn for this purpose. The

circle of unit radius R

&

is the signal from the apex of the cone att = 0. This will from
time to time be called the Mach circle because of its close analogy
to the Mach circle in stationary conical problems. It serves to
separate three fundamental regions of the problem,

Region I is bounded by the cone, the circle, and the wave
front originating from the apex at time t> 0. Within this region
it can be said that the air doesn't know that the cone was at rest
at time t £ 0, The solution within and on the boundary of this re-
gion is the same as that for the stationary cone problem and can be
considered already solved,

Region III is bounded by the cone, the circle, and the wave
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front or signal front of the cone at time t = 0. This region ex-
tends to infinity out along the infinite cone. Within this region
the air doesn't know that there is an apex on the cone, but it does
know that the cone started att = 0,

Region II is bounded by the cone and the circle. The air
within this region knows both that there is an apex on the cone and
that the cone started att = 0,

3.31 The Characteristics in Region III

Equations (23}, (24), and (25) are hyperbolic in Region III
and elliptic in Region II. In Region III then it is of interest to
consider the characteristics, This can be done with the original
equation for the velocity potential as well as with the velocity equa-

tions. This equation is

¢rr—7é¢r +¢x;t —F/Z tt’=0 (14)

With the potential being of the form

Qi) =ct- YR (18)

the equation becomes

Uy, (R =2RX Yy + Y XD+ 3 Uy =0 (27)

The slopes of the characteristics of this equation in the XR plane are

R RK ¢ T

dX /-X (28)
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Thus the characteristics in Region IIl are straight lines tangent
to the Mach circle. This is the same situation as Busemann

showed (Reference 4) for stationary conical flow.

3.32 The Boundary Conditions for Each Region

The problem will be solved by solving for the radial ve-
locity v and integrating it to get the potential. This is done be-
cause the boundary condition can be given in terms of v. To solve
the problem in Region III it is neéessary to have the value of v
given along the cone and along the wave front. On the cone the
approximation is used that v = V tané& . In the calculations this is
normalized so that v =1,

For the value of v on the wave front it is necessary to
make an approximation. For this purpose a result due to G. N.
Ward (Reference 8) is used. If air is flowing past a circular tube
in the direction of the axis of the tube there is no disturbance in
the air until at some point in the direction of flow there is a change
in the shape of the tube. Suppose the tube suddenly begins to ex-
pand in the streamwise direction so that the rate of increase in
the radius is constant. Then the radial velocity of the fluid at a
point oﬁ the wave front varies as the square root of the radius
of the tube at the point where the wave originated and inversely
as the square root of the radial distance to the point.

It is now argued that an analogous situation exists in the

problem of the impulsively starting cone. At the time t = 0 the
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radius of curvature of the surface of the cone at point p in the plane

perpendicular to the generatrix through 4 is & . This corresponds

A
PR

to the radius of the cylindrical tube in the above stationary problem.
At t = 0 the radius at p which was & suddenly starts to increase.,
Also at t = 0 a wave front starts which at some time later is at p'.
This point p' corresponds to any point on the wave front in the above
stationary problem. Arguing physically the point p' can only know
that a surface of radius 4 started to expand att = 0 just as the
point on the wave front in the stationary problem only knows that
the cylinder started to expand. The above argument includes a
slight approximation since in the cone problem there is a small
rate of change of g in the x direction,

Writing the boundary condition analytically with reference

to the figure
—Y = &
Vfan & 03 (29)

Using the normalized value of v, and at the time c¢ct = 1

v ={A (30)
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To solve the problem in Region II where Equation (24) is
elliptic it is sufficient to have the value of v around the boundary
of the region, As in Region III the approximation is made that
v=Vtane on the cone. On the common boundary with Region
III the value is obtained from the solution ‘for Region III. On the
portion of the circle p = 1 which is not a boundary of either Region
I or Region III the value of v is zero, On the common boundary
with Region I the value is taken from the solution of Region I.

As previously stated, the solution to the problem in Region
I is the same as that for a cone in stationary supersonic flow., In
the linearized solution to this problem the radial velocity can be

written as

v 4B -1 (31)

where s is the distance in the x direction from the apex of the
cone and B = VMZ—I. The approximation is then made that on the
surface of the cone

v =Vfan6

This is consistent with the boundary condition on the cone used in

Regions II and III. It gives

4o Viane
Vcof :E "Ba

Thus the normalized value for v to be used in calculations is

y = V_@_:é: | (32)

Vcot‘é' "Bz
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3.4 Solution of v in Region III
3.41 Transformation to Normal Form
It is now convenient to transform the differential Equation
(24) for v into more convenient form for obtaining a solution in
Region III. Consider the Chaplygin transformation in the form

used by Goldstein and Ward (Reference 9) where

i

-

séc",o
6 =6

(33)

This form is used because its analogy is readily written for the case

where the equation is elliptic. Equation (24) for v then becomes

+ca/a-' L{r + col & Va - =0 (34)

Voo Vre 56

Under the transformation (33) Region III in the XR, or p6, plane
becomes that shown in the figure in the 0@ plane. The directions

of the

(o &

AcH CIRCLE

characteristics are shown by the dashed lines. These are evident
from the form of Equation (34). The point at an infinite distance

back along the cone is transformed to the point ( &% ). This is also

the limit of all points in the region as X becomes infinite. Thus it
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is the point at which all points on the cone, except the apex,

started at t = 0. The equations of the wave front and cone are,

respectively

T+o =Z tE
e 56C~/ M\S/ﬂf
$/inl(6-€)

The boundary condition on the wave front from Equation

(30) can be written in terms of the new coordinates (0, 8). From

the geometry

a =z‘anf/)(.5ece +fan a)

and using X = p cos 6, and since on the boundary ¢+¢ =2E +r€,
{

/1+ cof

@050 Cscl6-EDF Sing

As mentioned before the normalized value of v on the cone is unity.
3.42 Transformation to Characteristic Coordinates
Equation (34) can now be transformed to normal form

where the independent variables are the characteristic coordinates.

Let the characteristic coordinates be
§ = ?('9,0')
(35)
7 = y/ﬂ,'ﬁ

Then Equation (34) becomes
4 Al * 2, Qlpp) * 1, Qlp.p)
+ l/;[%, ‘"gﬂw + col & 509 # c‘ol/v~¢p_]

i [l W rectofy redo fo] -t =0 (36)
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To get the normal form it is necessary that

Qp.0) - Qyp) =0
that is,

QRlpg) =@ - @ =

C?(y,yh%’—% =0

AR

and (37)

Voo

Choosing gﬂg S g_, then % =“%,. From Equation (35) these con-

These give

ditions are satisfied by

E=07+8 and 7=o‘—9 (38)
or

re£27

Vd and

L £-7
e 2
With this change of variables, Equation (36) becomes

- ‘ cos 7— cos; [co:;— cong * i (1_7) =0 (39)

This equation is now in characteristic coordinates. In this form it
can be changed to a difference equation for the purpose of numerical
solution of the problem.

With this in view it is convenient to make a further trans-
formation involving a rotation, translation and a contraction, The

rotation and translation is given by
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(A
§/=—§+—2_7£+£

as shown in the figure, Then the contraction

g

7 z <
h £/ )(\ 4
\\ | /<
/

X

/

This finally puts the equation in the form

coslyz " - €)
Vf'?” 1-\/%1 Sin(/f?”v‘é‘)" Sin (/E_f”‘f) Vfl

/4

-1 cos /?éi"f £)
Yz 5/'7[/27/"’1-6) *’5in(a/2f"‘ £)

Region III is now as shown in the figure.

7/{

Nin
|

e ¥ T B

-0

(41)



-19-
3.43 Formation of Difference Equation

The region can be covered by a mesh of characteristics.,
Considering a sample rectangle in this mesh, as in the figure,

the terms in the difference equation can be constructed.

174. ”
2 7%
7 z 7
£ £

The following difference forms are used as approximations for

the derivatives:

A a4 R 72 £}
V; [7,) iz’ ; ;;/72) s
Vi-Va— 1 *Y,
f/7/ 4;147’/
P A A/l
4 245"
P A 72l
V7’/ 24’7”

Letting

A [ cosff2y" )
1/— !:/;6f—7 fé)—-wn{/_f £U

A =
_/__ co.;//z"f’—g) "
5 /Z [5"/7//5 7're)~ :,»//F;'—ﬂ (42)

_[ ! ]
/Z- Z.f,',,‘f?/g—’f-"+s)7
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the equation becomes

v. +By ~Av, +Cv =0
% 7

£’

The difference equation which approximates this equation is then

Vi-Va-Yaty # BlNth Tl fazith -k (‘M*‘é

rhe Y o 43
Aafar" 22%" 247’ 4 g (43)

Solving for V,,
_ /
/ -/ A S N _c:]
A;"u7' 24" 249 4

s Cvoned o plionrd e mms] + ELyng)

(44)

With this equation it is then possible to solve for the value of v at
each point of the characteristics mesh by working a step at a time
from the boundaries on which the boundary conditions are given.
The division of the region is shown in Figure 2. The mesh size is
taken smaller for the original steps since the variation in v is more
rapid. Thissis of course done to make the approximation of the dif-
ferential equation by the difference equation more uniform over the
whole region,

The numerical example shown in the figures is for a cone

half angle € of ten degrees and for a Mach number of s/.?..

3.5 Solution of v in Region II
3.51 Transformation to Normal Form

For the purpose of solving Equation (24) in Region II, where
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it is elliptic, it is transformed by a transformation which is

analogous to the transformation (33) which is

~/
ou = sech Vad
(45)
&=
Equation (24) then becomes .
~ R A——— 46
L//«/u coth u v, *coth -y # Vg oI 0 (46)
Under the transformation (45) Region II in the XR, or p6, plane
becomes that shown in the figure in the /wQ plane. The equation
- CownE
4
. o4
I
2
Macw CirciLE
of the circle and the cone bounding Region II are, respectively,
M0
(47)

The boundary conditions are now used as they were discussed in
) . z > > ',

Section 3,32, On the 0 axis for 2 *& = G 2 ¢+sin //V:/nf)

the value of v is that obtained from the solution of Region III,

T /L T 1L
For 2 ~cos [//7)3952[*5 , v=0., For 6141-,,"/1/,,-“);19%%-@//79‘}
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the value of v is obtained from the solution in Region I.

3.52 Formation of Difference Equation

The boundary conditions on Region II now having been de-
termined, it is possible to solve Equation (46) throughout the region
by using the relaxation method. Let the region in the & 0 plane be
divided by a mesh of lines parallel to the axes and a distance h
apart. A sample set of points at the intersections of this mesh is

shown in the figure, Finite difference approximations to the

“A

2
t 3 0 /
h
1 ’ ¢
—] A et rm

derivatives at the point 0 are

- V( - V3
iy

= Ya~ V4
Vo= 7%

= Vlf‘ Vé -2 % (48)
L A

Thus the difference equation approximating the differential equation

(46) at the point 0 is

VarVy-2Ve o~ Ve - o+ Vs ~2 Vo Yo
Sal W LV . oof . T £ A 7%l 29 L * Ve _ =
/71 o 6u° 57 + cﬂfﬁ, Z/) + /’,_. 5//7‘50 0
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which can be written

Y,

/

[+ $eotg)t v, (- b cotnp)r v 1 -4 cotg) + %&*?(ﬁ&/"’)—):(y+%% =0 (49)

or

S/ = 90

%%+Agrwggr{@*ﬁ+i—Jn=0 (50)

3.53 Relaxation Procedure

Briefly,then, the relaxation method proceeds as follows
(Reference 10). Initial values of v are chosen for each point, or
intersection,of the mesh, These values are substituted in Equation
(50) and an error or residual is found for the point 0. Let this be
Ey. If the equation were satisfied this residual would be zero.
For carrying out this calculation of residuals each point on the
mesh can be considered to have a residual operator which, for

the point 0, can be diagrammed as

|
ﬁ’ 2

L3 - o«

Residual Operator

To reduce these residuals to zero the values of v at each point
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are altered or relaxed one at a time, If the value of v at point 0
is altered, then its residual and the residuals of the adjacent
points are altered according to the Equation (50) for each point.
These changes in the residuals at each point for a unit change in

v at the point 0 can be diagrammed as a relaxation operator,

l
2(;:.

0
3d3 (‘/ T nR A) ! x/‘

Relaxation Operator

The diagram shows the relaxation operator for the point 0.

For points adjacent to the boundary of the region, where
the boundary does not pass through intersections of the mesh,
the above equations and operators must be modified., The most
general case involved in the problem was that where two adjacent

sides of the star were truncated as shown in the figure. If the

—1——«/7———-

“\

yp
(

=
]——J~ ——e
s
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approximation of using two terms of a Taylor expansion is em-
ployed about the point 0, then the approximations to the deriva-

tives at the point 0 are

/22 ALy, ~Vo) +F Vs~ Vo)
58~ hh (h+5,)

’/ = izlk”{:) “A/Z/VB'K:)
¢ bty (hrh)

(51)

2'_,2&/":.”}{,) fﬁz{};"‘ya)
/14% hhy (b +hy)

y = B l) =4 ve)
H b, (hth.)

These, when substituted in the differential equation, give the

difference equation

dolvl +élvl * Y;IVB * J”‘lyﬁ‘ ~[—§; T%z_ _é[%/ai’{%)) +/[CD/£ %—7‘) 7-51'6”4'90‘]1/0 = 0 (5 2)

2 s
G =gy T <o, A1#)
A= 2 — heolls /

° );(/f)z) /u" /‘z(/f’);)

(53)

X;/,—_ /fA e A 59/5‘7, A

- {
y /* A,

in which }\, = hl/h and )\L: hp/h. If the boundary truncates

sides 2 and 3 of the star instead of 1 and 2, the difference equation is

L4 ’

X”V/ +A’/’VL+K"‘/’ )‘Ci’l};, _[-’Azl—-f'g);"ﬁ(a/ﬁ/(.(l%)—/?c‘afﬁp(‘%—l")’/‘ ;ﬁ Vo = 0 (54)
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where

v A,
o = 75y +ﬁc02‘(9,, 75y

n

.2 L
B = NGy T et NN

i 2 _ / 55

ORNTY <ot b 3 ©2)
2 e

4, N + 66021/,(0 Ty

In this case hy is the length of the truncated side to point 3.

Residual and relaxation operators are now available for
all points of the mesh. The numerical values for the residual
operators used are shown in Figure 3. The values for the re-
laxation operators are easily obtained therefrom, and are shown
in Figure 4.

The mesh size is also shown by Figure 3. The accuracy
of the value of v at each point in the mesh is dependent on the
mesh size because of the approximations made in going from the
differential equation to the difference equation. In this particular
problem the accuracy of the boundary condition on the boundary
with Region III is already limited by the mesh size of the char-
acteristic mesh used in that region. It is considered that the
mesh size chosen for Region II is commensurate with this con-
sideration and yet sufficiently small to show the essential char-

acteristics of the desired results,
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The resulting values of v are shown in Figure 5 together

with the boundary conditions.,

3,6 Potential and Pressure on the Cone

The value of v having now been determined everywhere
in the XR plane it is possible by integration to find the potential
at any point. These values of v are shown in Figure 6. Use is
made of the fact that the potential is zero everywhere outside
the region influenced by signals from the cone., In the

XR plane the value of a function F(X,R) is obtained by
R

FOXR) = /vdR (56)

o

where v is the normalized value obtained in the calculations,

Then the potential at any time is

Dxit) = ct Vs e FOR) =< Y UR) (57)

and the time derivative is

@0{,/}75} :CVZL””“[ZZ/?{*Z(/‘;& 1_/[‘]

or

fl?&,f,f) = chaﬂf[—Iﬁ -KF +F] (58)

The values of F which are calculated and given in Figure 7

are the values on the cone, that is,
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/?=6Y+ﬁﬁ Lan e (59)

If this is substituted in Equation (58)

B =Vitw |- N (KR onel L1 ) +F 0] (¢0)

If Z is the distance along the surface of the cone measured from

the apex in the XR plane, then

@ = Ve[ -Xowce ECLRD-Mive £ O + FOUR) (6D

On the plot of F(X,R(X)) as a function of X the slope of the curve

is SeC £ /;z—. Since F_ is always unity on the cone, it is now pos-

R

sible to calculate Q‘ and thus the pressure from Figure 7,

A plot of — jﬁ‘—-—— as a function of X is shown in Figures
cVizne
8 and 9, This is essentially a plot of pressure since L/;ﬁ’— = ——}é .
[

With the scale of pressure used the pi;ton value is unity.
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IV. AN APPROXIMATE SCLUTION FAR BACK ON THE'CONE

It seems from a consideration of the physical problem of
the cone starting impulsively that an approximation could be made
for the rear portion of the cone, The first approximation is to
consider the case of being so far back that the surface of the cone
is flat with respect to the thickness of the wave sent out since
time t = 0. This is merely the one dimensional piston problem.,

A next approximation is to take into account the curvature of the
surface. This is the purpose of the approximation presently being
made, A more exact statement of what can be considered the
rear portion of the cone will be arrived at in the subsequent de-
velopment of the problem.

Suppose a coordinate system (y,z) is placed so that the
z-axis is along the surface of the cone and the y-axis is perpen-
dicular to the surface, The yz plane contains the axis of the cone,
and the yz origin is at the vertex of the cone. The relation be-

tween the (y,z) coordinates and the (x,r) coordinates are as shown

Y

x

in the figure,

The acoustic wave equation was written before as

@'r +7L@ +¢M<~EL’" Q[ =0 (14)
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Using the transformation according to the above figure of
=XC0SE +Fsipe
)/ S ~X3ing + FrosE

the equation becomes in the (y,z) coordinates

¢),CD\S € f¢z 3/ E / -
gy /5 c? sééuo (62)

Zsing + Y cosE

The assumption is now made that the derivatives with respect to

z are negligible compared to the other quantities, This means that
gradients along the cone are small compared to those perpendicular
to the surface, This seems physically reasonable, The equation

can now be written

é’/‘le‘ane +)/— C—/‘%tzo (63)

The condition is now imposed that y << z tane . This con-
—~
dition states that the problem is being solved for a point at a dis-
tance from the surface of the cone which is small compared to the
radius of the cone. This is of course always true on the surface
of the cone, but it is also true at a point in the wave {rom the cone
if it is far enough back on the cone. It may be noted that z tane =

r secéf , if r is the radius of the cone, Let z tané = z, and the

equation becomes

45O .
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The quantity § may be thought of as the radius of a cylinder fit-
ting the surface of the cone at the point considered. It is thus a
parameter i}n the problem determined by the distance back on the
cone at which the problem is being solved.
For the cone starting impulsively the problem may now be

written formally as

b+f — 2 f=0
g =0 +£*20
g -1 ; ¢0

90 oty ot £ 40

/
where @ is normalized by a factor v . To eliminate the
/17 £

at y=0 (65)

first derivative term let

- X
25

Py =€ = Pyt ©e)

then

and aty =0

/:'”z’?*%

The equation then becomes

gp.’/ “F i f (67)
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This hyperbolic equation can be put in norr]na} form with the char-
/
acteristic coordinates as independent variables by the transform-

ation £=t+yand 7=t-y. Lettingc = 1, this gives

%27[5,7) +/27:1 Pl = 0 (68)

This is the telegraph equation and can be treated with Riemann's
integration method,

Consider the point 7—[?; 7) in the }"7 plane.

7

//Z‘
C TG D)
p
\ s
S £
NS
PARERN A

4

For the above telegraph equation the Riemann function is (Reference

11)

ple232,5) = [ EF 7 (©9)

Since the equation is homogeneous, Green's formula can be written

for the contour TCBA as

0 =/45P/7 -4 0%

P-zlpg,~9p,)
Q=2lrg ~pp)

where
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More explicitly, this becomes

o= /f%‘? Lopdts 4 e + 290045

AT+cB TCrCB+E4 TTrc8+ 84
Since p=1on AT and TC some of these integrals are easily in-

tegrated. Also the integrals along CB involving derivatives of ?

can be combined to form a line integral. Rewriting then

0=;p/7)‘é¢/f)*é//»/@/5+%/jﬂ/s,/;——é/¢/97/7 (70)

where Y is the outward normal and s is taken along the line CB.

The derivatives of p are

.,
A= TaE 9G-71 ‘/[fJ@ H5°7) -

= =

Using the fact that =% on CB the equation becomes

0= pir)-% ¢(C)+z’//n/@ 2 +f/ﬂ%ﬁ/__%_;5 Sz 2] (72
<8 s .
This is an equation giving ?[/)z‘) as a function of ?(O,t). Actu-
ally to find the pressure on the cone it is only necessary to find
¢ (O,’g) . This is done by solving an integral equation.
If the point T is taken on CB, then f—= ’? , and the last
integral vanishes. Also the points T and C coincide. This gives

the integral equation

0 =/(0/7) *IPD, s (73)

g
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Because of the coordinate transformatiop, ﬁﬂ == and Is =42 I+

As stated before, aty =0,

Q=B tz P =17

Thus the integral equation becomes, aty = 0,

¢ ¢
0= o)+ G5 )de + E/E/WO,Z//‘,/E_?T}/? (74)

Assuming that §0 (0,t) is of the form

;ﬂ[ﬂ,f) :4UZL +4/f/,£}f411‘(2-§)2-/.“'

the coefficients come out to give the series

_ z *
Qo) = ~+ + 5 +(E) ~ A t(E) + (75)
Relaxing the condition that ¢ = 1, the potential at y = 0 is then
- — Z 2 £y?
¢/d,z‘/- c? +# c/ég/—/—éd‘ §;—)+ (76)

If the velocity perpendicular to the surface of the cone is
not normalized to unity but is taken as q = V siné¢ , then the poten-

tial is

. ¢[0/f} :Vﬁl‘nf [‘(f +2£(Zl(§;é —-/:—2/— cfz_gg)z-/---] (77)

and

$60) = I ne -1 - )-F () ] (75
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This gives the pressure as

Lo =pcC Vi 2 [/“/ZC?} * 7//5;{(/: ] (79)

The first term of this series is the one dimensional piston value
where the piston is considered moving perpendicular to the surface
of the cone,

It is of course necessary to consider the matter of conver-
gence of the above series, Because of the complication of the pro-
cess of evaluating coefficiem:s it doesn't appear possible to evaluate
the coefficient of the general term. Therefore no rigorous argu-
ment on convergence can be made. However, from an engineering
standpoint, if zc—;é is sufficiently small the second two terms can
be considered as corrections on the piston value of the pressure to
account for the curvature of the cone, Since ;’g is the ratio of
the thickness of the wave to the diameter of the cylinder fitting the
cone, the condition that % be small is the condition that says

this solution is only good far back on the cone, Figure 9 gives a

plot of the pressure.
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V. DISCUSSION GF RESI/JLTS

By combining the resulting pressures of Section III for
the front part of the cone and of Section IV for the rear part of
the cone a picture of the pressure distribution for the entire cone
at any time is obtained. This is shown in Figure 9 for the exam-
ple worked out of a cone with a half angle of ten degrees starting
at a Mach number of V2.

The pressure curve for the rear of the cone when plotted
with /9—/%,//,0 Viine as a function of éc_;_f is good for any
cone and any Mach number, When plotted as a function of X as
in Figure 9 it is dependent on the values in the particular prob-
lem,

The pressure curve for the front portion of the cone re-
sulting from the calculations of Section III is not so general., It
is for the particular cone angle and Mach number used in the cal-
culations,

However, for cases where the Mach number is greater |
than one the constant pressure value on the very tip of the cone
is obtained from the results of the stationary problem. With this
as a starting point and the general curve at the rear of the cone
determined, the example worked out should serve as a guide as

to how they should be joined for an engineering approximation,
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VI. SOLUTICN BY INTEGRAIL,EQUATION

The most direct way of solving the problem of the impul-
sively starting cone would seem to be to integrate the fundamental
solution of the wave equation, which can be considered as sources
on the axis of the cone, over the proper range of the variables,
An integral equation for the source strength is obtained through
the known radial velocity on the surface of the cone. Knowing the
source strength it is then possible to obtain the potential and pres-
sure. However, except for Region I, the kernel of the integral
equation becomes so complicated that even numerical methods
seem impracticable,

The problem can be stated as
¢”+7'L¢ *ﬁx_fzgét N/ (14)
p’ﬂ for £ 20
%:0 for ¥ < ~— Vf
¢f = Vfix;f for # =(x+Vt) Lore L, 220

where the last condition is an approximation to the physical problem.

The potential. ¢ . can be written as

£ T
; Ay e,
¢(/t’,/;z‘/ :_;//J{f Z/—L?C}LS/;; }/}'4/2’ (80)




-38~

where

J(ZL“T"}/_—S') :J whern Z‘sz“é‘z

0 hen FATFE

R={-rr = (-7

and S[f/ 7) is a source strength to be determined. Then

L0608
__ 1 5(5 2"/3‘)2
Plxrz) = w/ 2 IE (81)
YA
where 7/¢) =/ —g/—\//x-;)**r" . Thus the integration is made for

values of S(£7) along a hyperbola in the £2° plane, or xt plane,
For the point (x,r,t) in Region I the limits of integration, §, and
€. , are the intersections of the hyperbola and the line x = - Vt,

For Region II % <0 and £>0, and for Region III £20 and

(=-72)

X £

% > 0. Now solving for the limits in Region I

M z
Y=
[‘52_2—%2—% V/"'/{Z

Br

2 -M%1, and A= 5

where s =x + Vt, B
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With reference to the distribution of sources on the axis for
the case of the cone in stationary supersonic flow, it is assumed

that for Region I

Slsr) =e(s+V7) (82)
where e is a constant to be determined. This gives

.
o [lerre-8eer]
¢/mz‘) = Tyr Jr-er +r- £

. . 5.
which upon integration is

— /PR NP =) =BT
¢[X/’;f}:_§7fizf/oy [+ A 7"\/?/ }7"

/=PI PN+ + 5737 ©3)

’“BL‘MW%A’ )T B - /\/WFA“?/)T*BE*'—ZMZJ/“‘*—A]}
To evaluate e it is now necessary to find ¢, which is found by dif-

ferentiating where =) . Takin A<< 1 and neglectin

squares of it with respect to unity, the simple form is obtained
/@r _eB (84)

Thus the boundary condition is closely approximated by letting

e=z7eV
If now the condition that  A<4l is used again in Equation (83), and

the value of e is substituted, then

Pryrt) == Vs lfog 5 ~1) (85)
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Recalling that s = x + Vt and differentiating with respect to t

¢ = —e ) g (86)

which gives
(/,, =2s° /oy f{ (87)

and on the cone

C,=2¢" fog b (88)

This is the value obtained in the linearized stationary cone problem
when the same approximating assumptions are made,

In proceeding on to Regions II and III there is no reason
for assuming that 5(5,2} changes linearly(with £+V7 so it must
be held in the integral as S(;j 7 ). By dimensional arguments made
earlier S(¥,z )d¢ can be written as Sé_g;c') d/E%) . If ¢ is dif=-
ferentiated with respect to r and ¢r is evaluated at the surface of
the cone, an integral equation for S [C—EZ) is obtained. The kernels
of these integral equations are unfortunately complicated and it /
doesn't seem practicable to solve the equations even by numerical

methods. It was for this reason that the problem was attacked

more indirectly through the differential equation.
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NOTATION
defined on page 13
IM2-1
velocity of sound
defined in Equation (56)
mesh spacing defined on page 22
Mach number
pressure,; also used for Riemann function
defined on page 32
vector velocity
radial coordinate measured perpe/ndicular to x-axis
E% , also used briefly as W
defined on page 13

condensation, also distance in x-direction from apex
of cone

time

velocities in x- and v-directions, respectively
ve locity of cone in negative x-direction
general notation for either u, v, or ¢,

coordinate in direction of cone axis at rest in fluid

A

coordinate defined on page 29

distance along surface of cone, defined on page 28
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a,8, ¥y d coefficients as defined in Equation (50)

Y ratio of specific heats
€ half-angle of cone
5 z tan &
}’,7 characteristic coordinates as defined in Equation (38)
;’,7 defined in Equation (40)
517 defined on page 18
8 conical coordinate defined by Equation (19)
@/‘,/9 operator defined on page 9
A Br
S
Vs transformed coordinate defined in Equation (45)
T transformed coordinate defined in Equation (33)
T time
SD briefly used as defined in Equation (35),
also used as defined in Equation (66)
¢ velocity potential
%’ defined by Equation (18), also briefly used as
defined in Equation (35)
w angle of rotation about x-axis
: Dmt wave operator defined by Equation (14)

0,1,2,3,4 used as subscripts to designate mesh points
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Figure 1
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