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Abstract

Valence fluctuations of Fe2+ and Fe3+ were studied in a solid solution of LixFePO4 by nuclear

resonant forward scattering of synchrotron x rays while the sample was heated in a diamond-anvil

pressure cell. The spectra acquired at different temperatures and pressures were analyzed for the

frequencies of valence changes using the Blume-Tjon model of a system with a fluctuating Hamil-

tonian. These frequencies were analyzed to obtain activation energies and an activation volume

for polaron hopping. There was a large suppression of hopping frequency with pressure, giving an

anomalously large activation volume. This large, positive value is typical of ion diffusion, which

indicates correlated motions of polarons, and Li+ ions that alter the dynamics of both.

In a parallel study of NaxFePO4, the interplay between sodium ordering and electron mobility

was investigated using a combination of synchrotron x-ray diffraction and nuclear resonant scat-

tering. Conventional Mössbauer spectra were collected while the sample was heated in a resistive

furnace. An analysis of the temperature evolution of the spectral shapes was used to identify the on-

set of fast electron hopping and determine the polaron hopping rate. Synchrotron x-ray diffraction

measurements were carried out in the same temperature range. Reitveld analysis of the diffraction

patterns was used to determine the temperature of sodium redistribution on the lattice. The diffrac-

tion analysis also provides new information about the phase stability of the system. The temperature

evolution of the iron site occupancies from the Mössbauer measurements, combined with the syn-

chrotron diffraction results give strong evidence for a relationship between the onset of fast electron

dynamics and the redistribution of sodium in the lattice.

Measurements of activation barriers for polaron hopping gave fundamental insights about the

correlation between electronic carriers and mobile ions. This work established that polaron-ion

interactions can alter the local dynamics of electron and ion transport. These types of coupled

processes may be common in many materials used for battery electrodes, and new details concerning
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the influence of polaron-ion interactions on the charge dynamics are relevant to optimizing their

electrochemical performance.
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Chapter 1

Introduction

1.1 Motivation

A global transition to renewable energy sources is of vital importance for the future of our

planet. The challenge lies in finding creative ways to sustainably support a world of nine billion

people while allowing for the continued globalization of modern technology. While I have hope

that attitudes of indifference and the lack of education concerning human environmental impacts

represent trends that are shifting, it is important to recognize that the only surefire way to insti-

tute change is through the development new technologies that make the transition to sustainable

alternatives both convenient and affordable.

Energy storage remains a critical challenge in the transition to green energy. Rechargeable

batteries have emerged as a particularly promising storage choice. Batteries can be designed in

numerous shapes and sizes and are adaptable to a wide range of uses. The increasing reliance on

batteries for portable electronics, electric vehicles and even large scale grid storage necessitates

further research aimed at discovering new high-performance battery materials that are affordable,

environmentally friendly, and safe. This goal requires a fundamental understanding of the material

properties that effect electrode performance.

Transport of electrons and ions is a central issue in many energy storage materials. In particular,

battery-cathode materials require relatively facile mobility of intercalation ions as well as reason-

able mobility of electronic carriers. The electronic conduction mechanism in many transition-metal

oxide cathodes is small polaron hopping. This mode of electronic transport is characterized by
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phonon-assisted hopping of localized carriers between adjacent transition-metal ion sites. The aim

of the work presented in this thesis was to develop a more detailed picture of charge transport in

these framework oxides and better understand how the phase stability and transport properties of

these materials are affected by electron-ion interactions.

1.2 Overview

Candidate cathode materials, specifically LiFePO4 and NaFePO4, were studied using a com-

bination of synchrotron x-ray diffraction and nuclear resonant scattering for a range of tempera-

tures and pressures. Both ion diffusion and small polaron hopping can be understood as activated

processes having an Arrhenius-type temperature dependence. Consequently, measurements of the

electronic charge hopping frequency as a function of temperature allow for the determination of an

activation energy. Nuclear resonant scattering presents an ideal technique to examine the valence

fluctuations that accompany polaron hopping in iron-bearing cathode materials. These measure-

ments provide a local probe at the iron ion that is sensitive to valence switching within a frequency

range that is well suited for studies of polaron dynamics.

Extending these measurements to elevated pressure using synchrotron techniques allows for

the additional determination of an activation volume. This quantity can provide a window into the

atomic rearrangements that occur during the transient state of a hopping event. The activation energy

is the energetic barrier for the moving species to hop between adjacent sites. The activation volume

quantifies the effect of pressure on this activation barrier, as it gives the local change in volume as

the particle moves through its transition state. The important role of activation energy in setting the

temperature dependence of the transport process is well known, but the activation volume is less

well understood. The experiments in this thesis revealed new information concerning the nature of

the activation barriers for polaron hopping in mixed electron-ion conductors.

Synchrotron x-ray diffraction carried out in the same temperature range gives complementary

information concerning the structural evolution and phase stability of these materials with temper-

ature and pressure. Combined with the nuclear resonant scattering results, diffraction data provides

insight into the relationship between the development of disorder on the alkali-ion sublattice and the

enhancement of electronic mobility. Additionally, the structural information obtained from these
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Figure 1.1. Replica of Alessandro Volta’s original cell, composed of a stack of zinc and copper disks. Figure:
GuidoB- CC BY-SA 3.0

measurements gives insights into the relationship between ion ordering and electronic mobility.

1.3 Battery background

With the advent of consumer electronics, global societies are becoming increasingly reliant on

battery technology, driven by an ever-increasing demand for portable power sources. The use of

batteries as devices for electrochemical energy storage and conversion is by no means new technol-

ogy. The first modern battery dates back to the Enlightenment, when Alessandro Volta, an Italian

professor of natural philosophy, described his “voltaic pile” in an 1800 report to the London Royal

Society. Volta’s device was composed of a stack of zinc and copper disks immersed in a saltwater

brine that served as an electrolyte [4]. Fig. 1.1 shows a replica of the original cell on display at a

museum near Volta’s home in Como, Italy. While the fundamental concepts of the electrochemical

cell remain unchanged, contemporary developments in materials technology continue to make bat-

teries a viable power source for modern electronics, and battery research now represents a diverse

and vibrant field.
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Figure 1.2. Essential components of electrochemical cell.

1.4 Lithium-ion cathode materials

During the operation of a conventional rechargeable lithium battery, lithium diffuses out of the

anode material (usually graphite) and is transported through the electrolyte and through an elec-

trically insulating separator layer. The Li-ions are then intercalated into the crystal structure of

the cathode material. During this discharge process, electrons are transferred through an external

circuit, providing usable electronic energy. To recharge the cell, a voltage is applied across the

electrodes forcibly extracting lithium from the cathode material. The ions diffuse back through the

electrolyte and are reinserted into the anode.

The material properties of the anode and cathode materials establish the overall performance of

the electrochemical cell. The amount of lithium that can be reversibly extracted and reinserted into

the cathode’s crystal structure determines the cell’s overall capacity and the relative Fermi energies

of the anode and cathode set the cell voltage. An ideal material has a high energy density and

exhibits good stability on cycling. It is also essential that the cathode is a good ionic conductor and

exhibits reasonable electronic conductivity. Preferably the material is also non-toxic and affordable.

The majority of commercial batteries today contain LiCoO2 cathodes. Cobalt is not only expensive

but is also quite toxic. Consequently, there is a great deal of interest finding viable cathode materials

that contain alternate multivalent elements.
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Figure 1.3. Yearly breakdown of number of Na-ion battery manuscripts in the last fifteen years. The total
number of manuscripts in 2015 has been projected based on the number published up through July.

bers (57La, 59Pr, …). Second, the lighter 
REE are more incompatible (because they 
have larger ionic radii) and therefore more 
strongly concentrated in the continental 
crust than the heavier REE. In most rare 
earth deposits, the first four REE—La, Ce, 
Pr, and Nd—constitute 80 to 99% of the to-
tal. Therefore, deposits containing relatively 
high grades of the scarcer and more valu-
able heavy REE (HREE: Gd to Lu, Y) and 
Eu are particularly desirable.

From the discovery of the REE (during 
the period 1794–1907) through the mid-
1950s, a few of the REE were produced in 
modest amounts from monazite-bearing 
placers and veins, from pegmatites and 
carbonatites, and as minor byproducts of 
uranium and niobium extraction. During 
this time, the middle and heavy REE gen-
erally were available in pure form only in 
sub-kilogram quantities and were chiefly 
chemical curiosities.

In 1949, a carbonatite intrusion with ex-
traordinary contents of light REE (8 to 12% 
rare earth oxides [REO]), was discovered at 
Mountain Pass, in the upper Mojave Desert, 
California (fig. 5). The REE at Mountain 
Pass are hosted chiefly by bastnäsite, 
(Ce,La,Nd,…)CO3F, and related minerals. 
By 1966, this single, world-class deposit 
(owned and operated by Molycorp, Inc.) 

had become the paramount source of REE. 
Early development was supported largely 
by the sudden demand for Eu created by 
the commercialization of color television. 
Mountain Pass, with an average grade of 
9.3% and reserves of 20 million metric tons 
(Mt) REO (at 5% cutoff), remains the only 
large ore deposit mined solely for its REE 
content. Mountain Pass ore is very strongly 
dominated by the light REE (figs. 3, 6). 
Nonetheless, the large quantities of ore pro-
cessed and development of solvent-extrac-
tion techniques for large-scale separation of 
individual REE from one another allowed 
recovery of several of the middle REE. 
Increased availability led in turn to applica-
tions for these formerly exotic elements.

From 1965 through the mid-1980s, 
Mountain Pass was the dominant source 
of REE, and the United States was largely 
self-sufficient in REE. Since 1985, produc-
tion of REE in China has increased dra-
matically (fig. 1). Chinese REE production 
comes chiefly from two sources. The most 
important is the Bayan Obo iron-niobium-
REE deposit, Inner Mongolia. This deposit 
has geological affinities both to carbonatite 
REE deposits and to hydrothermal iron-ox-
ide (-Cu-Au-REE) deposits, such as Olym-
pic Dam, Australia, and Kiruna, Sweden. 
Grades at Bayan Obo are 3 to 6% REO; 
reserves are at least 40 Mt, possibly con-
siderably more. The second major source 

of Chinese REE is ion-adsorption ores in 
lateritic weathering crusts developed on 
granitic and syenitic rocks in tropical south-
ern China. These oxide ores are advanta-
geous in their relatively high proportions of 
HREE (fig. 6) and, especially, in the ease 
with which they can be mined and the REE 
extracted.

The number of workable REE deposits, 
already severely limited by the geochemi-
cal properties of the REE, has in recent 
years also been affected by environmental 
and regulatory factors. Monazite, the single 
most common REE mineral, generally con-
tains elevated levels of thorium. Although 
Th itself is only weakly radioactive, it is ac-
companied by highly radioactive intermedi-
ate daughter products, particularly radium, 
that can accumulate during processing. 
Concern about radioactivity hazards has 
now largely eliminated monazite as a sig-
nificant source of REE and focused atten-
tion on those few deposits where the REE 
occur in other, low-Th minerals, particu-
larly bastnäsite.

Over the past several years the only do-
mestic source of REE, the mine at Moun-
tain Pass, California, has operated below 
capacity and only intermittently. Following 
environmental and regulatory problems 
with the main wastewater pipeline, the 
REE separation (solvent extraction) plant 
was shut down. Mountain Pass currently 
produces only bastnäsite concentrates and 
sells separated REE only from stockpiles 
produced before the shutdown. Even after 
the regulatory situation has been resolved, 
however, the long-term viability of Moun-
tain Pass as a supplier of separated REE for 
high-technology applications is threatened 
by market factors.

>∼
Figure 1.4. Atom fraction of the chemical elements in Earth’s upper continental crust as a function of atomic
number. Major rock-forming elements are shown in green field and minor rock forming elements are in light
green field. The major industrial metals are shown in bold. Figure courtesy of the United States Geological
Survey.
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1.5 Sodium-ion cathode materials

Rechargeable sodium-ion batteries were first proposed in the same time period as early work

on lithium batteries [5–10]. Due to the overwhelming successes of Li-ion technology, research

tended to move in this direction and interest in these sodium systems dwindled. In recent years

there has been a resurgence of interest in Na-ion batteries. Figure 1.3 shows the yearly breakdown

of number of manuscripts on sodium-ion batteries in the last fifteen years. While this trend would

be dwarfed by a similar plot of lithium-ion battery studies, the figure makes it apparent there has

been an explosion of interest in the topic within the last few years. This newfound interest can be

attributed mainly to the fact that in the last twenty years our society has rapidly become dependent

on Li-ion technology. Given this rising demand, it has become apparent that lithium itself is a

limited resource. In contrast, sodium is relatively plentiful. The abundance of various elements in

the earth’s crust is illustrated in Figure 1.4. Sodium is situated in the dark green field, indicating it

is one of the major rock forming elements, as opposed to lithium that sits below the light green field

of the minor rock forming elements. Consequently, the prospect of creating sodium analogues to

lithium-ion batteries has become immensely attractive. Furthermore, in Fig. 1.4 cobalt can be found

well below even lithium, motivating the interest in cathodes containing alternative earth-abundant

transition metal redox ions, for example iron, manganese or magnesium.

Sodium-ion batteries have the potential to be significantly cheaper than their lithium-ion ana-

logues. The prospect of designing a more affordable class of batteries enhances the feasibility of

employing batteries for large scale grid applications. Much of the knowledge that has been acquired

through the investigation of lithium systems is relevant to sodium cathodes, but Na-ion chemistry

allows for additional intercalation structures, some of which may not form in their lithium coun-

terparts. Although known sodium-ion systems tend to have lower energy densities and voltages,

these details are surprisingly sensitive to the cathode’s crystallography. An in-depth understanding

of how crystal structure affects the transport properties and performance of these materials is critical

to designing competitive sodium batteries.
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1.6 Crystallography of framework oxides

1.6.1 Overview of cathode crystal structures

The performance a cathode is strongly influenced by the details of the material’s crystal struc-

ture. An important feature is the availability of diffusion channels for alkali ions. Furthermore,

the dimensionality of these diffusion pathways plays a key role in setting the overall rate capacity.

Figure 1.5 shows the crystal structures for a range of different types prospective cathode materials.

The most well established of these materials are the LiMO2 layered structures, where the transition-

metal ions (M) are generally cobalt or nickel and lithium ions are inserted between sheets of corner

sharing MO6 octahedra. Different stacking sequences of the oxygen planes give rise to different

variants of these layered-type structures. The Natrium Super Ionic CONductor (NASICON) family

(AxMM’(XO4)3, A=Na, Li) is characterized by a three-dimensional scaffolding of metal-oxygen

octahedra (MO6 and M’O6) corner-linked with phosphate or silicate tetrahedral units, XO4. This

open framework forms large interconnected channels for alkali ion mobility. The spinel family is

another popular cathode candidate, most commonly LiMn2O4. This structure is composed of a cu-

bic close pack lattice with Mn and Li cations occupying one-half and one-eighth of the octahedral

and tetrahedral sites, respectively. Spinels have the benefit of three-dimensional ion conduction

pathways, wherein alkali ions can move between tetrahedral sites via the unoccupied octahedral

sites in the structure. More recently the orthosilicates have emerged as a promising possibility. The

Li2MSiO4 family (M= Mn, Fe, Co) presents the potential for a M4+/M2+ two electron redox re-

action. The orthosilicates exhibit complex polymorphism and there is controversy over structural

changes that occur during cycling. Notwithstanding, there is consensus that the general framework

is composed of a distorted hexagonal close packing of oxygen with half of the tetrahedral sites

filled by cations such that two dimensional layers of LiO4 tetrahedra are linked by silicate tetra-

hedra. While the diffusion pathways in these structures are less well characterized, it is likely that

these LiO4 layers enable two-dimensional ion diffusion. The possibility of a Li2FeSiO4 cathode is

especially appealing as all the constituent elements are members of the major rock-forming group

at the top of Fig. 1.4.
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a)	  
b)	   c)	  

d)	  

e)	  

Figure 1.5. Crystal structures of prospective cathode materials, illustrating different dimensionalities of al-
kali ion diffusion pathways. a) Layered LiCoO2 where colbalt octahedra are shown in royal blue, Li ions
are in light blue and oxygen are in red. b) Spinel, LiMn2O4 with Mn ions in magenta. c) Olivine, LiFePO4,
with iron in light brown and phosphate tetrahedra in grey. d) Na3V2PO4 NASICON structure with Na ions
in yellow and vanadium octahedra in red.) Li2FeSiO4 with silicate tetrahedra in blue.
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1.6.2 Triphylite

The focus of this thesis is the olivine-phosphate family, MFe2+PO4 (M=Li, Na). The olivine

structure can be understood as a hexagonal close-packed array of oxygen atoms, with alkali and iron

ions occupying half of the octahedral sites and phosphate atoms occupying one-eighth of the tetra-

hedral sites. The orthorhombic Pmna structure is shown in Fig. 1.6 (a). Layers of corner-sharing

networks of canted FeO6 octahedra in the b-c plane are spaced by phosphate tetrahedra, and Li+

cations form one-dimensional chains that run between the FeO6 planes. Within typical olivine nota-

tion, iron cations sit in the M1 octahedral sites and the alkali ions occupy the M2 sites. Upon lithium

extraction, Fe3+PO4 has the same underlying structure with unfilled M1 octahedral voids, shown in

Fig. 1.6 (b). The structures are often referred to by their mineral names triphylite and heterosite, for

the lithiated and delithiated structures, respectively. In contrast to the structures discussed above,

the diffusion path in triphylite is restricted to one dimension, along the b-axis channels. Due to this

reduced dimensionality, ion mobility suffers as a result of channel blockage by defects, specifically

cation Fe-Li antisite defects [11, 12]. It has been established that the rate capacity of the material

can be improved by using nanosized cathode particles [13, 14]. The reduction in particle size will

reduce the length of any given channel, reducing the probability that it is blocked.

1.6.3 Maricite

The ground state structure of the sodium analogue of LiFePO4 is the maricite structure, shown

in Fig.1.7(b). While density functional theory calculations suggest the ground state energies of the

two structures are essentially equivalent [15], it is apparent that the maricite structure is favored

at higher temperatures where the material is synthesized. The only known way to form triphylite-

NaFePO4 is through a chemical ion-exchange process using LiFePO4 as the starting material. Once

formed, the triphylite structure is stable up to temperatures of ∼800 K, at which point it will revert

back to the maricite structure [16]. Calculations suggest a lithium analogue of the maricite structure

is unstable and it has not been observed [15].

Maricite draws little to no interest from the electrochemical community as there are no appar-

ent conduction pathways for sodium ions. Compared to the triphylite-type structure favored by

LiFePO4, the site occupancies of the alkali ion are swapped with the iron cations. The sodium
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a)	   b)	  

Figure 1.6. Orthorhombic olivine-phosphate structure. (a) Lithiated triphylite structure. (b) Delithiated het-
erosite structure. Iron octahedra are shown in brown, oxygen ions are in red, phosphate tetrahedra are in grey
and lithium ions are in blue.

cations are isolated by the phosphate groups, and the structure is electrochemically inactive. Fig-

ure 1.7 shows a comparison of the two structures. In the triphylite structure the iron ions occupy

the larger M2 octahedral sites, having corner sharing connectivity, and the alkali ions occupy the

smaller edge sharing M1 octahedra. This edge type connectivity of the M1 octahedra creates a facile

channel for ion mobility. In maricite the occupancies are switched, putting the alkali ions into the

corner sharing M1 sites where there is no good pathway for ion diffusion. Despite the larger size of

the sodium ions, the sodiated triphylite structure has reasonably good ionic conductivity and shows

noteworthy electrochemical performance compared to other sodium-ion cathode materials [17, 18].

As both polymorphs are variants of the olivine structure, they will be distinguished by using their

mineral names, triphylite and maricte.

1.7 Phase stability of olivine phosphates

LixFePO4 is known to exhibit two-phase behavior at room temperature, with minimal

Li/vacancy solubility in the end members. Despite the tendency for total phase separation, the

observed viability of the intercalation process implies there is necessarily some amount of solubil-
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Triphylite* Maricite*

Figure 1.7. A comparison of the triphylite and maricite crystal structures.The first two rows show differ-
ent views of the structures and the last row depicts the differences in the alkali ion octahedra connectivity.
Iron octahedra are shown in brown, oxygen ions are in red, phosphate tetrahedra are in grey and sodium
ions/octahedra are in yellow.
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ity. The idea that the solubility limits are enhanced with reduced particle size has been discussed,

as well as the suggestion of some sort of kinetically stabilized intercalation route [19–21]. There

has been a great deal of interest in better understanding the details of how the lithiation process

proceeds, specifically wether it occurs particle by particle though some sort of “domino cascade”

process, wherein after a nucleation event the phase boundary propagates rapidly perpendicular to

the b-axis diffusion channels, such that at any given time all particles are either fully lithiated or

delithiated [22].

For temperatures above 500 K, the LixFePO4 phase diagram exhibits a broad solid solution

with a eutectoid around x=0.6 [23, 24]. It has been suggested that the details of the two-body

coulombic interactions between the Li-ions, vacancies, electrons and holes have an influence on the

phase stability, particularly for intermediate compositions where lithium removal gives rise to mixed

valent iron ions. The attractive Li+/Fe2+ and vacancy/Fe3+ interactions contribute to a tendency

for phase separation while the repulsive Li+/Li+ and vacancy/vacancy interactions tend to stabilize

a solid solution. The electronic configurational entropy gained from disordering Fe2+ and Fe3+ on

the lattice is thought to account for the stabilization of the solid solution at high temperatures [25].

Although the phase diagram for NaxFePO4 has not been as well characterized as the lithium

system, it is clear that there are some interesting distinctions when Na+ replaces Li+ as the inter-

calation ion. While these discrepancies in phase behavior are potentially an effect of differences

between Na+ and Li+ interactions in the material or a result of differences in the ion’s electroneg-

ativity, they likely arise as a result the size discrepancy in ionic radii. The ionic radius is more than

30% larger for Na+ than Li+, and full sodiation of the FePO4 lattice results in a nearly 17% vol-

ume expansion, compared to the 7% expansion seen in LiFePO4 [16]. For Na concentrations above

x=2/3, there is a stable solid solution phase even at low temperatures. Below x=2/3 there exists an

intermediate ordered phase that only disorders above ∼500 K. The ordered phase is described by a

structure having a vacancy at every third sodium site along the Pmna b-axis [26]. Below x=2/3 the

phase diagram exhibits a two phase region between the heterosite end member and this intermediate

ordered phase.
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Chapter 2

Polaron models

2.1 Overview

The concept of polaron formation was first proposed in a 1933 manuscript by Lev Landau [27].

Landau put forward the idea that an extra electron will inevitably self-trap in an ionic lattice. In

an inversion of the Born-Oppenheimer approximation, the surrounding ions adjust their positions

in such a way as to lower the potential energy of the excess charge. If these displacements produce

a sufficiently deep potential well, the carrier becomes bound. Polaron formation is energetically

stable when the localized carrier’s binding energy exceeds the strain energy expended in displacing

the surrounding nuclei. Once trapped, the carrier can only move if the local distortion travels with it,

resulting in a slow moving particle with a large effective mass. The resulting “polaron quasiparticle”

is composed of the carrier plus this locally-induced distortion. The quasiparticle is referred to as a

“small polaron” when the spatial extent of the carrier’s wavefunction is on the order of the separation

between ions or molecules in the structure. In contrast, a “large polaron” extends over several unit

cells. The work in this thesis is confined to the study of small-polaron motion. Large polarons

exhibit many different properties than small polarons, and while not the focus of this thesis, are

themselves an active topic of research.

Small polaron theory is a large subfield of condensed matter physics. A combined effect of

narrow bands and strong electron-phonon coupling, small polarons are observed in a wide range

of materials including transition-metal oxides, molecular crystals, mantle minerals, rare gas solids,

fullerenes, high-Tc superconductors, and various glasses. At elevated temperature, small polarons
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Figure 2.1. An electron polaron localized in an iron oxide lattice. Shifts of surrounding ion cores are shown
with arrows. Image Courtesy of Pacific Northwest National Laboratory.

move by thermally-activated hopping, having a low mobility that rises with increasing temperature.

This contrasts with the behavior of conventional free carriers that have a mobility that tends to fall

off with temperature.

2.2 Holstein’s molecular crystal model

In 1959 Theodore Holstein published two seminal papers about polaron localization and mobil-

ity [1, 28]. The first introduces the general theory of his molecular crystal model, and the second

addresses the small polaron more specifically. This work provides the framework upon which much

of later polaron theory is based. Holstein’s model is essentially a tight-binding treatment of an

excess electron in a one-dimensional chain of diatomic molecules. While this molecular crystal

model pertains to an idealistically simple system, it captures the essential physics of small polaron

formation and dynamics and illustrates the presence of two distinct temperature regimes. At low

temperatures, the small polaron carriers are in band states. Because an excess carrier can self trap

at any crystallographically equivalent ion site, the polaron can occupy Bloch states. This is not

unlike semifree carriers, the difference being that the energy of the polaron band is many orders of

magnitude smaller than the band for a free electron, typically far less than 1 meV. Above a thresh-

old temperature, the energy uncertainty of these states exceeds their bandwidth, and the Bloch-type

model breaks down. Above this temperature the polaron states are best treated as localized and the
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Figure 2.2. Holstein’s Molecular Crystal Model. Here an excess electron is localized on the central diatomic
molecule, depicted in red.

carrier mobility becomes diffusive, similar to the motion of light ions in a crystal. The following

discussion will introduce the underlaying assumptions of the molecular crystal model and present

the relevant results. For a full treatment of the Holstein model, readers are referred to the original

1959 manuscripts.

In its simplest form, the molecular crystal model describes the motion of a single electron (or

hole) in a one-dimensional chain of deformable diatomic molecules, shown in Fig. 2.2. Each

molecule has a fixed orientation and center of gravity and is specified with a position Rn = na, an

internuclear distortion variable, xn, and a reduced mass M, where M−1 = N−1
∑

ionsm
−1. Here

the distortion variable represents the deviation of the internuclear separation from its equilibrium

position and a is the one-dimensional unit lattice vector. Within this model, a “lattice vibration”

consists of a breathing mode in the individual internuclear separation (xn) of the nth molecule,

which affects the electron through a molecular potential U(r − Rn, xn). Here the electron-phonon

interaction is established through the dependence of this potential of the distortion variable, xn.

2.3 Semiclassical treatment of the molecular crystal model

Allowing for one vibrational degree of freedom per molecule, the positive strain energy is

quadratic in the xn (e.g., the interatomic separation of two ions in a diatomic molecule) with

harmonic oscillator frequency, ω0, associated with the configurational coordinate of an isolated

molecule. The energy is reduced linearly with xn in proportion to the strength of an electron-

phonon interaction parameter, A, that characterizes the electron-lattice coupling strength in units of

force.

E =
1

2
Mω2

0x
2
n −A(xn − x0). (2.1)
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Figure 2.3. Energy of molecule as a function of distortion coordinate, xn. Here B ∝Mω2
0 .

Minimizing this energy gives,

E0 = Axn − Eb,

Eb =
A2

2Mω2
0

.
(2.2)

Fig. 2.3 illustrates how a combination of the electronic and strain terms can give rise to a bound

state. For Eb > Axn, a stable, self-trapped polaron will form. Once trapped, the carrier can move

by hopping to a neighboring site. To hop, the energy of the carrier must be equivalent on adjacent

sites. This condition is fulfilled when the distortions xn and xn+1 of the initial and final sites are

identical. If this distortion pattern is produced through thermal vibrations of the molecules, the

carrier has the potential to transfer. Fig. 2.4 illustrates how electron transfer might occur through

the development of a coincidence condition on a 1D chain. The transition is called adiabatic if given

the development of this coincidence condition, the carrier will always transfer. Alternatively, if the

carrier has a small chance of transfer despite the coincidence condition, the transition is termed

non-adiabatic. At elevated temperature polarons travel through the crystal via thermally activated



17

Figure 2.4. Depiction of polaron hop between adjacent sites on 1D chain illustrating the development of a
coincidence event allowing for electron transfer.

hopping transitions, giving a mobility,

Γ ∝ P exp(−Ea/kBT ), (2.3)

where P = 1 for adiabatic hopping and P < 1 for non-adiabatic hopping. The activation energy,

Ea, is on the order of half the polaron binding energy, Eb. This type of hopping conduction is

limited to elevated temperatures. Below a threshold temperature, the zero point energy allows for

band-like tunneling between pairs of molecules .

2.4 The Holstein Hamiltonian

The total Hamiltonian of the molecular crystal system is composed of an electronic component,

an electron-lattice interaction component, and a lattice component. The electron-lattice interaction,

Hint, is a function the electron coordinate as well as the lattice displacements.

H =Hel +Hint +Hlatt,

Hel +Hint = − ~2

2M
∇2 +

N∑

n=1

U(r− Rn, xn),

Hlatt =
N∑

n=1

(
− ~2

2M

∂2

∂x2
n

+
1

2
Mω2

0x
2
n +

1

2
Mω2

1xnxn+1

)
.

(2.4)

The final term (xnxn+1) couples nearest neighbors, giving rise to dispersion of the vibrational fre-

quencies. Proceeding with a typical tight-binding approach, the total wavefunction is built from a
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linear superposition of molecular wavefunctions,

Ψ =
∑

n

an(x1, x2...xn)φn(r, xn), (2.5)

where the one-electron wavefunctions, φn(r, xn), constitute an orthonormal set and individually

satisfy Schrödinger’s equation for an isolated molecule,

[
− ~2

2M
∇2 + U(r− Rn, xn)

]
φn(r, xn) = E(xn)φn(r, xn). (2.6)

The constituent wavefunctions, φn, are each localized about a particular molecular site and depend

on the internuclear distortion variable of that molecule. Holstein assumed the eigenvalues, describ-

ing the energy of an electron on an isolated molecule, depend linearly on xn,

E(xn) = −Axn. (2.7)

Equations for an(x1, x2...xn) are derived using a time-dependent Schrödinger equation, making use

of customary tight binding approximations,

i~
∂

∂t
an(x1, x2...xn) = [Hlatt−Axn]an(x1, x2...xn) +

∑

±
J(xn, xn±1)an±1(x1, x2...xn), (2.8)

where J is the two-center overlap integral,

J(xm, xn) =

∫
φ∗(r− Rm, xm)U(r− Rm, xm)φ(r− Rn, xn)dr. (2.9)

If in Eq. 2.8 the internuclear distortion variables are all fixed at single value, x, the molecular

crystal model becomes no different from the standard tight-binding solution with a degenerate set

of localized wavefunctions giving Bloch wave expansion coefficients,

an = eikn, (2.10)

and an energy band,

Ek = E(x) + (N/2)Mω2
0x

2 − 2J cos(k), (2.11)
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where J has been set equal to a negative constant.

2.5 Adiabatic electron transfer

For adiabatic electron transfer, the Hamiltonian describes a carrier traveling through nuclei

whose positions are effectively fixed. In the adiabatic case, the electronic overlap energy J exceeds

the phonon energies and electron transfer will invariably occur when the phonon displacements

bring the nuclei into a coincidence position. As a result, the terms in Eq. 2.4 involving derivatives

of the electron wavefunctions with respect to nuclear distortion coordinates, xn, are dropped and

the Hamiltonian reduces to,

H = − ~2

2M
∇2 +

N∑

n=1

U(r− Rn, xn) +
N∑

n=1

(
1

2
Mω2

0x
2
n

)
. (2.12)

Neglecting the lattice coupling terms, Eq. 2.8 can be written,

(
1

2

N∑

n=1

Mω2
0x

2
n −Axn

)
an − J(an+1 + an−1) = E(x1, x2...xn)an. (2.13)

There are two different types of solutions to Eq. 2.13. The first is the band-type solution,

an = eikn/N1/2,

E(x
(0)
1 , x

(0)
2 ...x(0)

n ) = −2J + Jk2,

(2.14)

where (x
(0)
1 , x

(0)
2 ...x

(0)
n ) are the distortion coordinates that minimize the energy. A second localized

solution to Eq. 2.13 is solved using a perturbation expansion in powers of J . To first order, it can

be shown that the polaron binding energy becomes

EP =
A2

2Mω2
0

− 2J. (2.15)

It is apparent the quantity A2/2Mω2
0 represents the maximum polaron binding energy, in the limit

of infinitely narrow polaron bandwidth (J = 0). The first term in Eq. 2.15 is half of the polaron

binding energy derived in Eq. 2.2. Furthermore, the adiabatic case results in a transition probability
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between localized states per unit time,

W =
ω0

2π
exp−(Eb/2−J)/kBT , (2.16)

where the activation barrier is half the polaron binding energy and the pre-exponential factor is a

characteristic vibrational frequency.

2.6 Non-adiabatic electron transfer

This adiabatic treatment is no longer valid for systems in which the electronic overlap J is

sufficiently small. When the electronic bandwidth (2J) is small compared to a characteristic energy,

2J <
A2

2Mω2
0

, (2.17)

it becomes appropriate to treat J as a perturbation. For the zeroth-order solution (J=0), the carrier

is localized to a site and the energies become,

E0(Nq) = εn(0) + Eb +
∑

q

~ωq
(
Nq +

1

2

)
,

Eb ∼ −
1

N

∑

q

A2

2Mω2
q

.

(2.18)

In the derivation of Eq. 2.18 the x-dependence of the electronic overlap integrals is neglected and all

Js are reduced to a single constant. The quantity εn(0) pertains to the energy of the carrier at site n

in a rigid lattice and Nq is the phonon occupation number of the qth normal mode with frequencies

given by the dispersion relation,

ω2
q = ω2

0 +
ω2

1

2

∑

n

cos(q). (2.19)

Here q = 2πj/N , the integer j taking values between ±N/2. The second term in Eq. 2.18 is

analogous to the polaron binding energy in Eq. 2.2.

Including a non-zero overlap integral gives rise to fundamental differences in the high and low

temperature behaviors. Applying first-order perturbation theory, it can be shown that as the temper-
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ature goes to zero the energies become,

E(k,Nq) = E0(Nq)− 2J cos(k) exp [−S(Nq)] ,

S(Nq) =
1

N

∑

q

(1 + 2Nq)

(
A2

2Mω2
q~ωq

)
(1− cos(q)).

(2.20)

Here S is related to the overlap between the harmonic oscillator wavefunctions on adjacent sites.

Within this limit, transitions involving changes in the phonon occupancy of the system (Nq 6= N ′q)

are negligible. This low temperature solution describes a polaron band with a bandwidth that de-

pends on the vibrational quantum numbers through S,

∆E(Nq) = 2J exp[−S(Nq)]. (2.21)

Assuming a thermal average, 〈Nq〉 = 1/(exp(ω/kBT )−1), the bandwidth is maximum at absolute

zero and shrinks exponentially with rising temperature.

Above a certain threshold, the polaron bandwidth becomes so small that this band picture

breaks down, and a localized description becomes more appropriate. At these temperatures, transi-

tions where the initial and final vibrational quantum numbers are changed become dominant. The

crossover between low temperature band conduction and high temperature hopping behavior occurs

when the inverse lifetime of the polaron band states becomes small compared to the bandwidth.

This generally occurs at a temperature, Tt ∼ ~ω0/2kB . The crossover between these two tem-

perature regimes is shown in Fig. 2.5. Above this threshold, the so called ‘diagonal’ transitions,

where Nq = N ′q, are negligible compared to transitions where Nq 6= N ′q. A full treatment of

these ‘non-diagonal’ transitions using standard perturbation theory gives the transition probability

between localized states per unit time [29]. In the high temperature limit, ~ω0/kBT << 1, this

probability reduces to,

W (p, p± 1, T ) =
J2

~

(
π

4kBTEa

)1/2

exp−Ea/kBT , (2.22)

where Ea is the activation energy for carrier hopping,

Ea =
1

2N

∑

q

A2

2Mω2
q

(1 cos(q)) ∼ 1

2N

A2

2Mω2
0

= Eb/2. (2.23)
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Figure 2.5. Depiction of crossover between low temperature, band conduction and elevated temperature
Arrhenius-type behavior. Here the dotted line illustrates an Arrhenius fit to the high temperature result. Here
θ is the characteristic temperature given by θ0 = ~ω0/kB . Figure from Holstein (1959) [1].
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The temperature dependence of 2.22 is characteristic of an activated process with an activation

barrier for polaron hopping between adjacent sites of Ea.
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Chapter 3

The activation volume

3.1 Overview

Electron transfer between adjacent sites in a crystal lattice occurs in an environment that is

macroscopically at constant pressure. Accordingly, the activation barrier is best described in terms

of an activation enthalpy that can be broken down into an energy component plus a volume depen-

dent term,

Ha = Ea + PVa. (3.1)

The activation energy, Ea, describes the energy barrier for polaron transfer between adjacent sites

and the second term quantifies the pressure effect on the activation barrier, giving the extra energy

cost due to the finite volume change in the activated state. The activation volume, Va, can be in-

terpreted physically as the local change in volume as the particle moves through its transition state.

Va can be either positive or negative, indicating a local expansion or contraction of the lattice, re-

spectively. Fig. 3.2 illustrates a possible sequence of events for a polaron hop on a one-dimensional

chain. The second frame displays the development of a transient distortion pattern that facilitates

electron transfer and illustrates the volume change in the activated state. In this case, the chain

undergoes a local dilation, indicating a positive activation volume.

Accounting for the theoretical details of the last chapter, a general expression for the polaron
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V>0 or V<0 

Figure 3.1. Illustration of the local lattice expansion or contraction that occurs during charge transfer process.
Image Courtesy of Pacific Northwest National Laboratory.

Figure 3.2. Depiction of polaron hop between adjacent sites on 1D chain, illustrating the development of a
transient distortion pattern that allows for electron transfer and shows the local volume change in the transition
state. a) Polaron localized on left site. b) Activated state during electron transfer, illustrating a local expansion
of the lattice. c) Carrier localized on right site.
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hopping rate can be expressed as,

Γ(P, T ) ∼ Γ0

Tn
exp

(
−Ea + PVa

kBT

)
, (3.2)

where n=1/2 in the nonadiabatic case and n=0 for adiabatic case of concern here. Accordingly,

measurements of the temperature dependance of the polaron hopping rate allow for the determina-

tion of the overall activation barrier. Measurements of the activation volume require the ability to

alter the pressure of the system and gauge any effect on the activation barrier. For a positive acti-

vation volume, there is local expansion in the activated state and pressure will tend to suppress the

polaron hopping rate. Conversely, a negative activation volume describes a local lattice contraction

during electron transfer, in which case applying pressure will tend to enhance the polaron hopping

rate. Activation volumes are usually reported using either cm3/mol or in Å3. As the later is more

intuitive, this convention will be used from here on out.

3.2 Previous polaron activation volume measurements

The importance of the activation energy for understanding the kinetics of hopping type mobility

is well established and there have been numerous studies looking at activation energies in polaronic

systems. Meanwhile, measuring activation volumes remains largely unexplored. Despite the wealth

of potential information these type of studies could provide, the experiments tend to be challenging.

Historically there have been a handful of high pressure conductivity studies, mostly focusing on

electrical transport measurements of minerals. These high pressure conductivity measurements are

tricky and sorting out issues that arise due to pressure effects on the electrical contacts is not trivial.

Recent improvements in tools for high pressure measurements are opening up high pressure work to

different scattering techniques and expanding the availability of sample environments. With these

advances, this topic is becoming increasingly accessible. In particular, nuclear resonant scattering

is a technique that allows for a direct measure of the polaron hopping rate and can be extended to

high pressures using synchrotron nuclear forward scattering in an externally heated diamond anvil

cell.

The majority of experimental reports of activation volumes are from the geophysical literature.

These studies generally address the high-pressure conductivty of iron-bearing mantle minerals in-
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cluding perovskite-(Mg,Fe)SiO3, olivine-(Mg,Fe)2SiO4, and magnesiowüstite-(Mg,Fe)O [30–33].

In these systems, the concentration of polarons is related to the concentration of vacancies and

to oxygen partial pressure. Geophysical models as well as magnetotelluric and geomagnetic deep

sounding methods give credence to a theory of a lower mantle layer with enhanced conductiv-

ity [34]. Consequently, understanding the electronic properties of minerals at elevated pressures

and temperatures is relevant to constraining the chemistry profile of the mantle. These measure-

ments of electrical transport properties of oxides under applied pressure gave small, negative values

for Va of a few tenths of a cubic angstrom. This is often interpreted in terms of better overlaps of

electron wavefunctions when the ions are pushed closer together. Authors have gone so far as to

suggest that a small, negative activation volume is inherent to polaron conduction [35]. This metric

has been used to distinguish between ionic conduction and polaron conduction, where it is accepted

that values of Va for ionic mobility are larger and positive by comparison [30].

3.3 Corrections to the apparent activation volume

The activation barrier sets the temperature dependence of the polaron hopping rate. The activa-

tion volume is defined in terms of the pressure dependance of this activation barrier,

Va =

(
∂Ha

∂P

)

T

. (3.3)

Activation volumes are usually determined by performing a temperature series of a measurement

that relates to the polaron hopping rate for a set number of fixed pressures in order to identify any

shift in activation barrier with pressure. Consequently, the activation barrier is commonly defined

as,

Va ≈ −kBT
∂ ln Γ(P, T )

∂P
. (3.4)

As the majority of activation volume data are from conductivity measurements, Va is often expressed

in terms of the electrical conductivity, in which case the polaron hopping rate, Γ(T, P ), in Eq. 3.4

is replaced with the conductivity, σ(P, T ).

Equation 3.4 assumes the prefactor in Eq. 3.2 does not depend on volume. While most studies

use Eq. 3.4, it is possible that both the exponential term and the prefactor could exhibit a pressure
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dependence. If this is the case, correction terms must be added to “apparent activation volume,”

defined in Eq. 3.4. It is also possible that there is an entropic contribution to the activation barrier.

As a result of the inverse temperature dependance of the exponential in Eq. 3.2, any entropic

contribution results in a constant term that is absorbed into the prefactor. The activation volume

defined in Eq. 3.4 is only rigorously correct if the pressure dependance of this entropic term is

negligible. Furthermore, depending on the experimental technique used to determine the polaron

hopping rate, other pressure dependent terms can enter the prefactor as well.

For adiabatic electron transfer, the prefactor in Eq. 3.2 reduces to a characteristic phonon fre-

quency. Recasting the expression for the adiabatic polaron hopping rate defined in Eq. 2.16 gives

an activation volume,

Va = −kBT
∂ ln Γ

∂P
+ kBT

∂ lnω0

∂P
. (3.5)

It is straightforward to show that the final term can be rewritten in terms of a Grüneisen parameter

and a compressibility,

Va = −kBT
∂ ln Γ

∂P
+ kBTγκT . (3.6)

Assuming a typical Grüneisen parameter γ ∼ 2, a bulk modulus of 150 GPa, and a temperature

of 300 K, the final term in Eq. 3.6 is on the order of 0.06 Å3. This term can be understood as an

enhancement of the polaron hopping rate due to pressure induced stiffening of the lattice, resulting

in an overall reduction of the the apparent activation volume. This correction must be added to a

volume determined using Eq. 3.4 to ascertain the true value of Va.

For nonadiabatic hopping, the prefactor depends on the square of the overlap integral, J . The

pressure dependence of the overlap integral can be estimated using an inverse localization length,

α, describing the spatial extent of the wavefunction,

J = J0 exp−αR, (3.7)

where R is the distance between two sites. Substituting Eq. 3.7 into the adiabatic polaron hopping

rate defined in Eq. 2.16 gives an activation volume,

Va = −kBT
∂ ln Γ

∂P
+ kBT (2αR0κT /3), (3.8)
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where the pressure dependence of J arises from the reduction of the inter-site distance with pressure,

R = R0(1− PκT /3), (3.9)

and the inverse localization length is assumed to be pressure independent. Taking αR0 = 2, this

correction term becomes ∼ 0.04 Å3. Similar to the nonadiabatic correction, this factor must be

added to the experimentally determined activation volume, derived from the pressure derivative of

the polaron hopping rate.

Generally, for localized electrons, α > 1/R. However, placing an upward bound on the inverse

localization length is not straightforward without resorting to electronic structure calculations. Even

in cases where calculated electronic density information is available, it is well known that density

functional theory fails to accurately model strongly localized states, where self-interaction errors

become important. Before the widespread availability of first principles calculations, predictive

estimates of wavefunction overlap were often used to explain observations related to electronic

structure.

In his “Solid State Table of the Elements,” Walter Harrison developed a suite of approximation

tools, providing parameters that allow for simple calculations of a range of material properties

[36]. Using Harrison’s method for approximating wavefunction tails, the overlap integral for d-type

wavefunctions goes as the inverse 5th power of the site separation,

J ∝ J0/R
5. (3.10)

Substituting this overlap approximation into Eq. 2.16 results in an activation volume,

Va = −kBT
∂ ln Γ

∂P
+ kBT

10kT
3− κTP

. (3.11)

For pressures of of 0−10 GPa, the final term raises the activation volume by an ∼0.09 Å3, giving a

slighter larger result than the previous overlap approximation, with Eq. 3.8. In both cases, this factor

represents an enhancement of the polaron hopping rate, due to the enlargement of the prefactor from
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increased wavefunction overlap. The result is an overall shift to a lower apparent activation volume,

− kBT
∂ ln Γ

∂P
≈ ∂HA

∂P
− kBT (2αR0κT /3) ≈ ∂HA

∂P
− kBT

10kT
3− κTP

. (3.12)

For cases where the pressure shift of the enthalpy is small, this factor can be responsible for the

observation of negative activation volumes.

Another commonly used expression for the polaron hopping rate is the Mott conductivity equa-

tion, originally developed to treat hopping conduction in transition-metal-containing glasses [37].

Given certain approximations of prefactor terms, this treatment is essentially equivalent to nona-

diabatic Holstein model. That said, as this formalism is frequently adopted for experimental data

analysis, it is treated separately here. Within this model, the expressions for the polaron hopping

rate and the activation volume become,

Γ(T, P ) = ω0 exp−2αR exp

(
Ea + PVa
kBT

)
, (3.13)

Va = −kBT
∂ ln Γ

∂P
+ kBT (2αR0κT /3) + kBTγκT . (3.14)

Applying the same approximations as above, it can be shown at 300 K that the last two terms of the

right hand side of Eq. 3.14 sum to ∼ 0.1 Å3.

Despite the aforementioned challenges associated with high pressure conductivity measure-

ments, bulk transport measurements remain the most common method to study activation volumes.

While conductivity data are clearly pertinent to the performance in an electrode material, these mea-

surements are not a direct measure of the local polaron hopping rate, Γ(P, T ). The Nernst-Einstein

equation relates the conductivity to the mobility of the moving species,

σ =
cq2

kBT
D, (3.15)

where q is the polaron charge, c is the concentration and D is the diffusivity. Furthermore, the

conductivity is related to the polaron hopping rate,

σ =
e2

kBT
c(1− c)R2Γ(T, P ), (3.16)
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accounting for dependence of the polaron diffusivity on the average number of surrounding open

sites as well as the jump distance between sites. The additional factor R2 in the prefactor of Eq.

3.16 gives rise to an additional correction factor,

− kBT
∂ lnσ

∂P
= −kBT

∂ ln Γ

∂P
+ kBT

(
2κT

3− PκT

)
. (3.17)

Again, assuming pressures of of 0−10 GPa, a temperature of 300 K, and a bulk modus of 150 GPa,

this correction factor is ∼ 0.02 Å3.

3.4 Pressure dependence of the Holstein activation barrier

While the molecular crystal model does not explicitly account for any volume dependence,

an examination of the pressure shift of the Holstein activation barrier can lead to pertinent physical

insights. As detailed in the preceding chapter, for adiabatic polaron hopping at elevated temperature,

the activation barrier in the Holstein model becomes,

Ea = Eb/2− J =
A2

4Mω2
0

− J, (3.18)

where A is an electron-phonon coupling term, M is the reduced mass of the molecule, ω0 is charac-

teristic phonon frequency, and J is the overlap integral. For nonadiabatic hopping, Eq. 3.18 reduces

to half the polaron binding energy, Eb. A pressure derivative of Eq. 3.18 gives,

∂Ea
∂P

= Eb

(
∂ lnA

∂P
− ∂ lnω0

∂P

)
− ∂J

∂P
. (3.19)

Using Harrison’s approximation for the overlap integral Eq. 3.19 can be expressed,

∂Ea
∂P

= Eb

(
1

A

∂A

∂P
− γκT

)
− 5

3
κTJ. (3.20)

Unlike the correction terms discussed in previous section that arose from pressure effects on the

prefactor, the terms in this expression are a result of the pressure dependence of the activation

barrier itself. From the first term, it can be seen that a fractional enhancement of the electron-

phonon coupling with pressure will give rise to a positive term in the activation volume. The final
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term, due to the enhancement in wavefunction overlap, is often cited as the source of negative

polaron activation volumes.

3.5 Activation volume for ion diffusion

The topic of activation volumes for ion diffusion has received more attention than the polaron

counterpart. Similar to polaron mobility, ion diffusion in solids is treated as a thermally activated

process with an Arrhenius-type mobility. The ionic activation volume is associated with a change

in material volume associated with the migration of an ion. The pressure dependence of ionic

conductivity gives information about the volume relaxation associated with the formation and mo-

tion of defects. Although there are reports of some superionic conductors having negligible or even

negative activation volumes, the vast majority of conventional ionic conductors exhibit a strong sup-

pression of ionic mobility with pressure, giving activation volumes ranging from +1to+10 Å3 [38].

Applying a simple hard-sphere model, the migration volume is roughly equivalent to the volume of

the diffusing species. However, experimentally determined activation volumes are usually signif-

icantly smaller than this model would imply. Several more sophisticated models assume the free

energy for ion migration can be attributed to the strain energy of the lattice. Treating the surrounding

crystal as a continuous medium, the activation volume scales with the lattice compressibility.
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Chapter 4

Methods

4.1 Synchrotron x-ray diffraction

X-ray diffraction (XRD) is a powerful technique for determining crystal structures. The spectral

brilliance of synchrotron x-rays allows for the study of small samples confined in a diamond-anvil

cell. In addition, the high intensity of a synchrotron beam provides sufficient resolution to resolve

weak superstructure peaks that would be difficult to observe with a typical lab-diffractometer. Using

a two-dimensional CCD detector, a full pattern can be collected in matter of seconds. Angular

dispersive XRD patterns are collected in transmission mode using a monochromatic synchrotron

beam and a MAR CCD detector. The raw data appear as a set of rings centered around the beam

Figure 4.1. Typical 2D image file collected with CCD detector.
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stop, with radii related to the crystallographic d-spacings through Bragg’s law,

λ = 2d sin(θ), (4.1)

where θ is a quarter of the diffraction-cone angle. A typical CCD image is shown in Fig. 4.1. A

diffraction pattern from a CeO2 sample calibration is collected to establish the distance between

the detector and the sample. To transform the image file into typical one-dimensional diffraction,

data in the images are integrated azimuthally using the Fit2D package [39]. The data can then be

analyzed to study the crystal structure of the material.

4.2 X-ray diffraction data analysis

Rietveld analysis of the synchrotron x-ray data was performed to obtain information on phase

fractions and thermal trends of lattice parameters. Given starting structural information, Rietveld

programs calculate a model diffraction pattern, then proceed to iteratively optimize this model by

minimizing the difference between the fit and the experimental data. The iterations refine experi-

mental parameters such as background, peak broadening and lattice constants. This type of refine-

ment requires a reasonably accurate starting structure, and while the method is powerful for honing

in on precise structural details, if the crystal structure is not known, it will not be possible to solve

for it. Given a starting structure, Rietveld refinement allows for accurate determination of unit cell

parameters, strain broadening effects, and qualitative phase analysis. The method is particularly

useful for the evaluation of powder patterns with overlapping peaks.

Rietveld analysis was performed using the General Structure Analysis System (GSAS) [40,41].

A shifted Chebyschev polynomial was used to fit the background, including between four and six

terms as needed. To capture accurate peak shapes, the fit model employed psedo-Voigt profile

functions. For all samples, both Gaussian and Lorentzian crystallite size broadening were assumed

to be negligible. As low angle data was not considered, profile terms related to axial-divergence

were not included. The angular dependence of the Gaussian variance is set by the Cagliotti Function,

σ2 = U tan2 θ + V tan θ +W. (4.2)
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It was assumed that the instrumental broadening was primarily Gaussian. As such, the Cagliotti

terms (U , V ,W ) were determined from a refinement of a CeO2 standard and fixed for all additional

refinements.

Strain broadening effects were treated as entirely Lorentzian. To reproduce accurate profiles,

anisotropic strain broadening had to be accounted for, where peak broadening varied by reflection

class. To reproduce this anisotropy, profile terms based on Stephen’s anisotropic strain model were

included [42]. Within this semi-empirical model, the strain components are restricted in terms of

the first and second order terms allowed by lattice symmetry. For an orthorhombic cell this gives

rise to six independent strain terms,

Γ2
S = S400h

4 + S040k
4 + 3(S200h

2k2 + S202h
2l2 + S022k

2l2). (4.3)

When possible, these anisotropic strain broadening terms were fixed for each phase and not allowed

to vary for patterns collected at different temperatures. In cases where this did not produce good

fits, the terms were refined with strong“damping”, such that only a small fraction of the shift is

applied. In this case, the temperature evolution of the strain terms were carefully monitored to

ensure the trends were physically reasonable. The refinement of strain terms was only necessary

when handling the precipitation of a secondary phase. At low temperature, the phase fraction of the

second phase is low and the effects of strain broadening are readily apparent. As the temperature

is raised and the fraction of the new phase increases, strains are relaxed and the magnitude of the

strain terms falls off. Having established physically reasonable and reasonably reproducible profile

terms, the phase fractions as well as the lattice parameters can be refined. This allows for a study of

the phase stability as well as the thermal expansion.

4.3 Mössbauer spectrometry

4.3.1 The Mössbauer effect

The Mössbauer effect describes the recoil-free absorption and emission of a γ-ray by atoms in a

solid. The γ-ray emission that accompanies the decay of a radioactive nuclei in an excited state has

the potential to excite other similar nuclei. For free nuclei, the efficiency of this process is severely
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limited by the nuclear recoil during both the emission and absorption processes. As a result, the

energy of the emitted γ-ray is reduced by the kinetic energy of recoil of a free nucleus ER,

ER =
E2
γ

2Mc2
∼ 2 meV, (4.4)

where Eγ is the photon energy, M is the nuclear mass, and c is the speed of light. The linewidths

of the nuclear excited states are remarkably precise, on the order of 10−9 eV. The recoil of a free

nucleus will prevent an emitted γ-ray from having an energy that falls in the tight window necessary

to excite an additional nuclei. During his doctoral work, Rudolf Mössbauer recognized that this

complication could be effectively circumvented if the recoil was absorbed by an entire crystal rather

than a single nuclei. In this case the mass in Eq. 4.4 is enhanced by a factor equal to the number

of atoms in the crystal and the recoil energy is inconsequential. This will be realized if the recoil

energy is less than the energy of the lowest quantized mode of the crystal. Within the framework

of the Debye model, the probability of a recoil free event is described by the Lamb-Mössbauer

factor [43],

f =
−6ER
kBΘD

[
1

4
+

(
T

ΘD

)2 ∫ ΘD
T

0

x

exp(x)− 1
dx

]
, (4.5)

where kB is Boltzmann’s constant and ΘD is the Debye temperature. To observe the Mössbauer

effect, the recoilless fraction, f , must be large. In general this occurs when ER << ~ωD. Since the

Lamb-Mössbauer factor depends on the γ-ray energy through, ER, the probability of a recoil-free

event is only appreciable for certain isotopes with low lying excited states. Fortunately this includes

57Fe, making the Mössbauer effect useful for a wide range of studies of iron-bearing materials. In

addition to iron, the Mössbauer effect has been observed in a wide range of isotopes, including but

not limited to 151Eu, 191Ir and 119Sn.

4.3.2 Hyperfine interactions

Recoilless γ-ray emission in 57Fe occur between a nuclear ground state having spin I=1/2 and a

14.41 keV excited state, I=3/2. Electrons in the vicinity of the resonant nuclei can break rotational

symmetry and perturb the energies of the nuclear states. Measurement of the nuclear transitions then

serves as a probe to study the electronic environment of the resonant atom and its nearest neighbors.

The isomer shift (IS) arises from a Coulomb interaction between the nuclear and electronic charge
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distributions. The s-electron wave functions have a finite overlap with the nucleus, lowering the

nuclear energy levels. The Coulomb interaction between the s-electron density and the nuclear

charge causes an energy level shift,

δE =
2

3
πZe2|Ψ(0)S |2 〈R〉2 , (4.6)

where Z is the atomic number, |Ψ(0)S | is the s-electron density, and 〈R〉 is the mean-square radius

of the nuclear charge distribution. Any difference in the s-electron density between the absorber and

the emitter will give an overall shift in the observed resonance. The measured splitting becomes,

δE =
2

3
πZe2(|Ψ(0)A|2 − |Ψ(0)S |2)(〈R〉2E − 〈R〉2G), (4.7)

where the subscripts S, A, E and G refer to the source, absorber, excited and ground states respec-

tively. Screening effects of the 3d electrons can reduce the electron density at the nucleus, thereby

increasing the IS. Consequently, a ferrous ion will show an appreciably larger IS compared to a fer-

ric ion in a similar environment. IS is a relative quantity and can only be determined in comparison

to other materials or as a difference between two crystallographically distinct Fe sites within the

same material.

The electric quadrupole splitting (QS) results from the interaction of the nuclear quadruple

moment with an inhomogeneous electric field. The quadrupole moment, Q, describes the departure

from spherical symmetry in the rest frame of the nucleus. For nuclei with spin quantum numbers

I=0 or 1/2, the nuclei will have spherical symmetry and Q=0. A nucleus with a spin number I>1/2

will have a non-spherical charge distribution where Q>0 describes an oblate nucleus with respect

to the spin axis, while Q<0 indicates a prolate nucleus. When a nonzero nuclear quadruple moment

is exposed to an asymmetric electric field resulting from an asymmetric electronic environment, an

electric quadrupole interaction results in the loss of degeneracy of the nuclear energy levels . The

asymmetry of the electronic environment of the nuclei is characterized by the electric field gradient

(EFG). The result of this interaction is a splitting of the nuclear energy levels corresponding to the

different alignments of the quadruple moment with respect to the principal axes of the EFG tensor,
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Figure 4.2. Energy diagram of isomer shift and quadrupole splitting, ∆EQ, for the 57Fe 3/2→1/2 transition
in an asymmetric EFG. Figure: UC Davis ChemWiki- CC BY-SA 3.0.

Vzz . The eigenvalues of the Hamiltonian for the quadrupole interaction are,

EQ =
eQVzz

4I(2I − 1)
[3m2

I − I(I + 1)]

(
1 +

η2

3

)1/2

,

mI = I, I − 1, ...− |I|,
(4.8)

where I is the nuclear angular momentum and η is the asymmetry parameter,

η =
Vxx − Vyy

Vzz
. (4.9)

The result for 57Fe is an excited state with two doubly degenerate sublevels corresponding to the

m =I ±3/2 and mI = ±1/2 nuclear spin states. The energy splitting is given by,

δE = ±1

4
eQVzz

(
1 +

η2

3

)1/2

. (4.10)

As the nuclear quadruple moment is fixed, Q ∼ 0.16 for the I=3/2 excited state of 57Fe [44],

the magnitude of the splitting gives information about the local electric field in the vicinity of the

Mössbauer nuclei. Variation in QS between different Fe-bearing materials is caused by distinct

EFG tensors arising from valance differences and changes in the local symmetry surrounding the
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resonant ion.

4.3.3 Mössbauer measurements

The experimental set-up for a typical Mössbauer measurement involves a radioactive source,

containing the resonant isotope in an excited state, and a sample, containing the resonant nuclei in

the ground state. For measurements involving 57Fe, the usual source is 57Co embedded in a Rh

matrix. 57Co decays to a metastable 57Fe state via electron capture which successively decays to

the ground state by emitting a 14.4 keV photon. To study the hyperfine structure, the energy of the

incident γ-ray must scan through a range that covers the spectral splittings. To modulate the energy,

the source is moved relative to the absorber using Doppler drive. The γ-ray source is mounted on a

mechanical transducer which oscillates back and forth giving a shifted energy,

E =
v

c
Eγ , (4.11)

where v is the source velocity, Eγ is the 14.4 keV photon energy and c is the speed of light. The

Mössbauer spectrum is collected by recording the transmitted photons as a function of source ve-

locity. The resonant absorptions appear as dips in the spectrum with Lorentzian linewidths. The

cross section for resonant absorption is described by the Breit-Wigner formula,

σa(E) =
σ0Γ2

a/4

(E − E0)2 + 1
4Γ2

a

, (4.12)

where σ0 is the nuclear resonant cross-section and Γa is the line width of the excited state of the ab-

sorber. Similarly the emitted γ-rays from the source have a Lorentzian distribution around 14.4 keV

with a linewidth, Γs. Given a sufficiently thin source and absorber, the observed resonance curve is

simply a convolution of the two distributions, resulting in a Lorentzian curve with linewidth Γs+Γa.

For the limiting case where both the source and observer have a natural linewidth, Γn ∼ 0.097 mm/s,

the observed resonance will have a linewidth of 2Γn, where Γn = ~/141 ns, and 141 ns is the life-

time of the first nuclear excited state for 57Fe.
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Figure 4.3. Schematic of furnace used for elevated temperature Mössbauer measurements.

4.3.4 Resistive furnace for high temperature Mössbauer measurements

To collect Mössbauer data at elevated temperature, the sample is mounted in a resistive furnace,

depicted in Fig. 4.3. The sample is contained in high temperature kapton and sandwiched between

two aluminum plates, with a window for γ-ray transmission. The temperature is controlled with two

resistors mounted on the aluminum sample holder. Three thermocouples to are affixed to different

positions around the sample to monitor the temperature. The entire assembly is aligned between the

source and the detector to optimize γ-ray transmission.

4.4 Nuclear forward scattering

The high intensity and pulsed structure of a synchrotron radiation source allows for the collec-

tion of nuclear resonant time spectra. This time domain analogue to traditional Mössbauer Spec-

trometry is known as nuclear forward scattering (NFS) or Synchrotron Mössbauer Spectrometry

(SMS). The small line width of the nuclear resonance of 57Fe, 4.66 neV, necessitates an x-ray

source with high spectral intensity to excite the nuclear transition. The low angular divergence and
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k0

E1 + E2 + E3

E1

E3

E2

sample detector

E1 + E2 + E3

Fig. 2.2. Coherent elastic NRS in forward direction. The superposition of waves
emitted from various hyperfine-split levels leads to quantum beats in the temporal
evolution of the decay. This is illustrated by overlaying three wavetrains of slightly
different frequencies, leading to a Moiré pattern that represents the quantum beats

condensed matter physics. The basic principles and applications particularly
in the field of thin-film magnetism are treated in Sect. 4.4.

2.1.2 Coherent Inelastic Nuclear Resonant Scattering

This type of scattering is illustrated in Fig. 2.3. The excited nuclear state
interacts with lattice vibrations in the sample that transfer energy to the
reemitted photon. The energetic analysis of the scattered radiation as a func-
tion of momentum transfer allows the determination of phonon dispersion
relations and the study of vibrational excitations in condensed matter. This
is typically done via (nonresonant) electronic x-ray scattering which has been
developed into a powerful method at modern synchrotron radiation sources
[1, 2, 3, 4]. Unfortunately, this scattering process is much less favorable in case
of nuclear resonant scattering. A detailed analysis was given by Sturhahn &
Kohn [5]. One reason is that the lifetimes of thermal phonons are very short
compared to the nuclear lifetime. Therefore, the coherence of the waves scat-
tered by the nuclei in the sample is preserved only during a very short time.
Then, in analogy to nuclear resonant scattering in the presence of diffusion
(see Sect. 4.6), one expects an extremely fast decay (∼10−12 s) of coherent
inelastic NRS, which would make its observation extremely difficult. A closer
inspection reveals that this type of scattering can be appreciable when a
phonon is created upon absorption while during reemission the lattice state
does not change. However, since the reemitted photon has the nuclear tran-
sition energy, it suffers strong resonant absorption.For that reason coherent

Figure 4.4. A coherent superposition of wavlets from slightly offset energy levels gives rise to quantum beats
in the temporal evolution of the nuclear decay. Figure from Röhlsberger (2004) [2].

Figure 4.5. Schematic of beamline set up for nuclear resonant scattering. Picture adapted from Zhou, et al.
(2004) [3].

high brilliance of the synchrotron beam allows for high-pressure experiments to be run in a diamond

anvil-cell.

A pre-monochromater filters and tunes the incident beam to the resonant energy, and a high-

resolution monochrometer further reduces the energy bandwidth to ∼2meV. The ensemble of 57Fe

nuclei are simultaneously excited by a synchrotron radiation pulse. The standard time structure

of the synchrotron radiation at the advanced photon source (APS) provides 24 pulses separated by

153.3 ns, each having a duration of ∼70ps. The electronic scattering occurs within femtoseconds

of the pulse arrival, while the lifetime of the nuclear resonant state is 141 ns. This allows for a clear

separation of the prompt electronic scattering from the delayed, resonant scattering of interest. The

synchrotron pulse creates a collective nuclear excitation with coherent interference between emitted

photons in the forward direction. If the degeneracy of the nuclear levels has been lifted by hyperfine

interactions, the phased de-excitation of slightly offset energy levels produces beat patterns in trans-
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mitted intensity. The delayed emisson is expressed as a sum over oscillatory terms whose arguments

are the differences in the energies of the nuclear levels superimposed on the exponential decay [45].

T (t) ∼ η2

16Ωτ2
exp(−t/τ)

∑

j,l

exp(−iωj,lt) a
∗
0WjWl a0 .

Here ~Ω is the energy bandwidth of the synchrotron pulse, W is the normalized weight of the

nuclear transition, ωj,l = ωj − ωl, a0 is the polarization unit vector of the synchrotron radiation,

and η = fσρD is the effective thickness. The effective thickness quantifies the scattering power

and the influence of sample thickness on spectra. In this expression f is the recoil free fraction, σ

is the nuclear resonant cross section, ρ is the density of 57Fe nuclei, and D is the sample thickness.

A sample with two Fe sites, each with distinct quadrupole splittings and isomer shifts, will have six

component beat frequencies in the transmitted intensity, each with a period that is inversely related

to the difference in nuclear energy levels, ~/∆EHF .

To collect an NFS spectra, timing electronics are used to block the signal for the first several

ns after the pulse arrival. After this deadtime, an avalanche photodiode detector (APD) positioned

in the forward-scattered x-ray beam measures the delayed counts as a function of time after pulse

arrival.

4.5 High pressure measurements

Elevated pressure measurements where carried out using diamond-anvil cells (DACs) to gener-

ate quasi-hydrostatic pressure. Pressure is simply the applied force divided by the area over which

this force is distributed: P=F/A. To generate a high pressure with a moderate force, the area must

be small. The flattened faces of gem quality diamonds are ideal surfaces to generate high pres-

sures because diamonds have unparalleled hardness and are optically transparent at typical x-ray

frequencies. In a conventional diamond-anvil cell, depicted in Fig. 4.6, the sample is compressed

between the culets of two gem quality diamonds. Typical culet diameters range from 100-500µm.

For the experiments in this thesis all culets were ∼ 300µm. The sample is contained in a chamber

made from a metal gasket sandwiched between the opposing diamonds. The diamonds are mounted

on tungsten carbide seats with epoxy resin and these seats are screwed into the cell, taking care to

ensure the diamonds are both centered and the culet faces are parallel. To prepare the sample cham-
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Figure 4.6. Schematic of diamond-anvil cell. Figure: Tobias 1984- CC BY-SA 3.0.

ber, a rhenium gasket is pre-compressed between the diamonds to generate a culet-size indentation

in the center of the gasket. A sample chamber is drilled in the center of the indentation using an

electric discharge milling machine. For 300µm culets the appropriate drill bit is chosen to make a

hole with an∼ 100µm diameter. After drilling, the gasket is cleaned and placed back into the DAC.

Using the tip of a needle, the sample is loaded into the chamber, along with a few small pieces of

ruby that will be used for pressure measurement. Finally the cell is closed by tightening the screws,

pushing the two sides of the cell together confining the sample between the opposing culets and the

gasket. The cell has several screws around its circumference that push the opposing sides of the

DAC together. Care is taken to maintain parallel alignment, by tightening the cell in small steps

and turning pairs of screws on either side of the cell simultaneously. This is done using a DAC

designed with a combination of right and left-handed screws. Commonly the screws are fitted with

spring-loaded washers to allow for carefully-controlled tightening.

For the measurements in this thesis, two different types of DAC designs were used, a Mao-type

symmetric DAC and a smaller Tel-Aviv DAC, shown in Figs. 4.8 and 4.7 respectively. The smaller

of the two designs is a Merill-Bassett, Tel Aviv-type cell [46]. This design has two opposing plates

that are held together with a series of pins. The symmetric cell has a piston-cylinder design, that has
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Figure 4.7. Photo of Tel Aviv-DACs, shown with stack of quarters for size comparison.

Figure 4.8. Photo of Mao-type symmetric cell.

the benefit of making it easier to ensure the diamonds remain parallel during operation. To generate

hydrostatic pressure, this sample chamber is filled with a pressure medium if possible. The pressure

medium transmits the uniaxial pressure generated by the opposing diamond culets to the sample by

creating an isotropic fluid-filled pressure chamber that is confined laterally by the gasket material.

Pressurized helium or neon gas are optimal pressure media. To fill the sample chamber with gas, the

cell is placed in a specialized chamber that is first evacuated then filled with pressurized gas. The

cell is then closed using gears within the chamber that are controlled remotely. A system designed

to gas-load symmetric DACs is maintained by the staff at sector 13 at the Advanced Photon Source.

An alternative to using the screws to increase pressure is to use a gas-membrane system. This

Figure 4.9. Pressure membranes for remote pressure control.
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configuration allows for the pressure to be adjusted remotely, which is particularly useful when con-

ducting experiments in a sample environment (i.e. a cyostat or furnace). Shown in Fig. 4.9, a dough-

nut shaped gasket that can be inflated with gas is pushed against the back of the cell and clamped in

place flush with the cell. The force that this bladder exerts on the back of the cell substitutes for the

force that would otherwise be applied by tightening the screws. The expansion/contraction of the

bladder is controlled remotely by controlling the gas pressure.

To determine the pressure in the sample chamber, a laser is used to monitor the frequency shift

of the R ruby-fluorescence lines. The behavior of this band at elevated pressure and temperature

is well known. The R1/R2 doublet shows an approximately linear shift upward with increasing

pressure, providing a good reference for pressure calibration. Using a laser/spectrometer system

that can be moved into the beam path when the x-ray shutter is closed, the pressure of the sample

can be monitored in situ. When using the gas-membrane system to control the sample pressure, this

information can be used as feedback to maintain the desired pressure. This feedback is particularly

important when heating or cooling the DAC assembly, as changing the temperature will often result

in changes in pressure in the cell.

4.6 Experimental setup for high temperature, high pressure mea-

surements

To collect synchrotron data at elevated pressure and temperature, the diamond-anvil cell is

mounted in a resistive furnace. The first iteration of experiments in this thesis where carried out

using inconel Tel-Aviv DACs and a resistive furnace, shown in Fig. 4.10. A continuous flow of

Ar/1%H2 gas was maintained with the aim of protecting the diamonds from damage at elevated

temperature. In later experiments, a symmetric cell was used. In these experiments, a copper-block

furnace was used to heat the cell, shown in Fig. 4.11 This furnace was used in conjunction with a

gas membrane pressure system, allowing for remote monitoring and adjustment of pressure in the

cell. The entire furnace assembly was contained in a vacuum chamber. To monitor the temperature,

three thermocouples were used, one was glued to the side of the diamond, a second was affixed to

the outside of the cell, and a third was attached to the Cu block. For NFS experiments at beam-

line 16ID-D at the Advanced Photon Source, the vacuum furnace was used in conjunction with a
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Figure 4.10. Schematic of furnace used for high temperature, high pressure synchrotron experiments with
Tel Aviv-DACs.

Figure 4.11. Photo of furnace used for high temperature, high pressure synchrotron experiments with sym-
metric DACs.
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Figure 4.12. Photo of setup at beamline 16-IDD, including vacuum furnace, online ruby system, CCD for
XRD, and APD for NFS.

pressure-membrane/online-ruby system. In addition, a CCD detector was used to collect in-situ

XRD using the 14.4 keV wavelength. The full experimental set-up is shown in Fig. 4.12.

4.7 Relaxation effects

4.7.1 Overview

Nuclear resonant scattering provides a particularly effective method to study the dynamics of

charge hopping processes. It is possible to observe the dynamical effects when the fluctuations in

the hyperfine field occur on the same time scale as the nuclear decay process. The quadruple in-

teraction provides a natural time window for sampling the electric field surrounding the Mössbauer

nuclei: τEFG = ~/∆EHF . If the time scale of the charge hopping processes is much slower than

this window, the observed spectrum is a coherent superposition of two static components associated

with distinct 2+ and 3+ Fe valences. If the polaron hopping frequency exceeds this sampling fre-

quency, observable distortions appear in the spectra. With further increase in hopping frequency, the

spectrum begins to resemble that of a single, time-averaged doublet. Altering the valence fluctua-

tion frequency can give rise to rich variations of the shape and symmetry of the quadrupole doublets.

The interesting behavior occurs when the valence of a 57Fe ion fluctuates between Fe2+ and Fe3+
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at a frequency between 1 and 100 MHz. In conventional Mössbauer energy spectra the quadrupole

doublets from Fe2+ and Fe3+ merge together, with asymmetric, non-Lorentzian lineshapes for these

intermediate frequencies. For nuclear forward scattering in the time domain, these effects are seen

as a distortion and washing-out of the quantum beat pattern from interference of the nuclear hyper-

fine levels. When the relaxation is most pronounced, there is a large suppression in the integrated

count rate. The fast fluctuations tend to dephase the photons emitted from separate nuclei, resulting

in a loss of coherence that is seen as an overall reduction in the probability for the excitation of

a nuclear exciton. Although the dynamical information that can be extracted from an NFS spec-

tra is essentially the same as from a conventional Mössbauer spectrum, this strong suppression of

intensity is unique to NFS.

4.7.2 Blume-Tjon model

Drawing on ideas about motional narrowing developed by Kubo and Anderson [47], Blume

and Tjon developed a stochastic theory to describe the effect of randomly fluctuating hyperfine

fields on a Mössbauer spectrum [48, 49]. Within this model, a fluctuating nuclear environment is

treated by providing multiple sets of hyperfine parameters, together with a matrix of transition rates

describing the random jumps between the different sets of hyperfine parameters. This allows for

the refinement of the hyperfine parameters specific to each site, as well as a transition frequency.

For polycrystalline samples, the problem reduces to the simplest case treated by Blume and Tjon in

which the stochastic and quantum mechanical parts of the problem are separable as there is no issue

of non-commutativity of the Hamiltonian at different times.

The nuclear Hamiltonian is written in terms of a stochastic function f(t) = ±1, describing

either the 3+ or the 2+ site at any instant,

Ĥ = Ĥo +
1

12

[
(1 + f(t))∆QS2+ + (1− f(t))∆QS3+

]
(3m2

I − I(I + 1)), (4.13)
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where Ĥ0 is the nuclear Hamiltonian in the absence of hyperfine splittings,

Ĥ0|I0m0〉 = E0|I0m0〉,

Ĥ0|I1m1〉 = E1|I1m1〉,

E1 − E0 = 14.41 keV.

(4.14)

Isolating the time dependent terms, Eq. 4.13 can be rewritten as,

Ĥ = Ĥo + [q1 + q2f(t)] (3m2
I − I(I + 1)),

q1 =
1

12
(∆QS2+ + ∆QS3+),

q2 =
1

12
(∆QS2+ −∆QS3+).

(4.15)

The probability for a transition between the excited and ground state with the emission of a

photon is Lorentzian in form,

P1,0(ω) =
| 〈I0m0|Ĥ(+)|I1m1〉 |2
(ω + E0 − E1)2 + 1

4Γ2
, (4.16)

where H(+) is interaction Hamiltonian of solid and photon and Γ is the linewidth of the excited

state. Expressing the denominator in integral form, the relationship

(
(ω + E0 − E1)2 +

1

4
Γ2

)−1

=
2

Γ
Re
∫ ∞

0
exp [i(ω + E0 − E1)t− Γt/2] dt, (4.17)

allows for a recasting of Eq. 4.16 to incorporate an explicit time dependence,

P1,0(ω) =
2

Γ
Re
∫ ∞

0
exp(iωt− 1

2
Γt)〈I0m0|Ĥ(+)|I1m1〉∗〈I0m0| expi−E0t Ĥ(+) expi−E1t |I1m1〉dt

=
2

Γ
Re
∫ ∞

0
exp(iωt− 1

2
Γt)〈I1m1|Ĥ(−)|I0m0〉〈I0m0|Û †(t)Ĥ(+)Û(t)|I1m1〉dt.

(4.18)

Here Ĥ(−) = Ĥ(+)† and Û(t) is the time evolution operator,

Û(t) = exp(−iĤt),

Ĥ(+)(t) = Û †(t)Ĥ(+)Û(t).

(4.19)
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The observed probability results from averaging Eq. 4.18 over all possible excited states |I1m1〉

and summing over the ground states |I0m0〉,

P (ω) =
∑

0,1

p1W0,1 =
2

Γ
Re
∫ ∞

0
exp(iωt− 1

2
Γt))[〈Ĥ(−)Ĥ(+)(t)〉]avdt. (4.20)

Here []av indicates an average over the Hamiltonian’s stochastic degrees of freedom. The correlation

function in Eq. 4.20 is defined as,

[〈Ĥ(−)Ĥ(+)(t)〉]av =
∑

m1m0m
′
1m
′
0

1

2I1 + 1
[〈I1m1|Ĥ(−)|I0m0〉〈I0m0| exp(i

∫ t

0
Ĥ(t′)dt′)|I0m

′
0〉

× 〈I0m
′
0|Ĥ(+)|I1m

′
1〉〈I1m

′
1| exp(−i

∫ t

0
Ĥ(t′)dt′)|I1m1〉]av.

(4.21)

Here it is assumed that the excited m1 sublevels are equally probable, i.e. p1 = 1/(2I1 + 1), and

the operator in Eq. 4.19 has been replaced with a time-ordered operator,

Û(t) = exp

[
−i
∫ t

0
Ĥ(t′)dt′

]
. (4.22)

The sum in Eq. 4.21 involves two time-ordered series. For the Hamiltonian defined in Eq. 4.13,

the first of these series is straightforward to evaluate, as the ground state in the 57Fe I= 3/2 → 1/2

transition is unspilt,

〈I0m0| exp(i

∫ t

0
Ĥ(t′)dt′)|I0m

′
0〉 = exp(iE0t)δm0m′0

. (4.23)

The second sum in Eq. 4.21 becomes,

[〈I1m
′
1| exp(−i

∫ t

0
Ĥ(t′)dt′)|I1m1〉]av = exp(−iE1t) exp(−iβt)

[
exp

(
−iα

∫ t

0
f(t′)dt′

)
δm1m1′

]

av

,

α = q2(3m2
I − 15/4),

β = q1(3m2
I − 15/4).

(4.24)

The stochastic average in Eq. 4.24 is evaluated with the use of a transition probability matrix,
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W, that describes the transition rates between the different sets of hyperfine parameters,

[
exp

(
−iα

∫ t

0
f(t′)dt′

)
δm1m1′

]

av

=
∑

ρσ

pρ(σ| exp(−iαF + W)t|ρ). (4.25)

Here F is a matrix with the possible values of the stochastic function f(t) on the diagonal,

F =




1 0

0 −1


 . (4.26)

The elements transition probability matrix, Wρσ, represent the probability per unit time that the

system experiences a transition from state ρ to state σ,

W =



−w3+→2+ w3+→2+

w2+→3+ −w2+→3+


 . (4.27)

The diagonal elements of the transition probability matrix are determined by the off diagonal ele-

ments such that,

Wρρ = −
∑

ρ

Wρσ. (4.28)

For charge hopping between Fe2+ and Fe3+ sites, in order to maintain charge balance, W is

expressed using a single frequency weighted by population of the two states,

W =



−ρ2+w ρ2+w

ρ3+w −ρ3+w


 . (4.29)

Substituting Eqs. 4.23 and 4.24 into Eq. 4.20 and integrating gives the observed profile as an

analytic expression in terms of the transition probability matrix,

P (ω) =
1

2Γ

∑

m0m1

|〈I0m0|Ĥ(+)|I1m1〉|2Re
∑

ρσ

pρ(σ|[pI + iαF−W]−1|ρ),

p =− i (ω − ω0 − β) + Γ/2,

ω0 =E1 − E0 = 14.4 keV.

(4.30)
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The matrix elements |〈I0m0|Ĥ(+)|I1m1〉| determine the polarization and intensity of the individ-

ual lines and for polycrystalline samples the first part of Eq. 4.30 can be treated as a constant.

For charge hopping in the phospho-olivines, ferric iron is introduced by removing alkali ions,

MxFe2+
x Fe3+

1−xPO4, such that ρ2+ = x and ρ2+ + ρ3+ = 1.0. The calculation of the second

part of Eq. 4.30 is now straightforward,

P (ω) ∝ Re
(

p+ 2w + iα(2x− 1)

p2 + α2 + pw + iαw(2x− 1)

)
. (4.31)

4.8 Nuclear resonant scattering data analysis

Analysis of nuclear resonant scattering data was carried out using the CONUSS package (CO-

herent NUclear resonant Scattering by Single crystals) [50]. CONUSS allows for the calculation

and refinement of nuclear resonant scattering spectra both in the time and energy domains. The pro-

gram enables the user to define a fit model, specifying the hyperfine parameters associated with a

number of iron sites and the phase fractions of these sites. CONUSS requires a starting model that is

reasonably accurate and is best suited for optimizing parameters within a known model. While the

software was originally developed for analysis of time spectra from synchrotron nuclear resonant

scattering, the program can handle conventional Mössbauer data as well. The program incorporates

a full treatment of thickness-dependent dynamical effects that can give rise to “speed-up,” as well

as complicated spectral distortions.

CONUSS offers a choice between static hyperfine interactions and randomly fluctuating hyper-

fine fields, as described by a Blume-Tjon model [48, 49]. It is also possible to set up a fit model

where certain sites experience fluctuating hyperfine fields while others are static. A static site is

characterized by its weight fraction, an isomer shift, a quadrupole splitting and a linewidth for a

lorentzian quadrupole splitting distribution. When appropriate, it is also possible to include an

asymmetry parameter as well as parameters associated with magnetism and textural effects. To

calculate thickness effects, the program input also calls for the definition of the sample thickness

and a Debye temperature to calculate the recoil free fraction. Given these parameters, the hyperfine

splittings and corresponding eigenvectors are determined by numerically diagonalizing the nuclear
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Hamiltonian,
∑

m0m1

Φj0m0Hm0m1Φm1j1 = Ejδj0j1 . (4.32)

Fluctuating hyperfine fields are treated by providing the same set of hyperfine parameters to-

gether with the matrix of transition rates, W , describing the jumps between different sets of hyper-

fine parameters. In this case, the eigenvalue problem becomes,

∑

m0m1m′0m
′
1ρσ

Lµρj0j1m0m1
Aρσ
m0m1m′0m

′
1
Rσνm′0m′1l0l1

= Ωµ
jj1
δµνδj0l0δj1l1 . (4.33)

Here L and R are the left and right eigenvectors and the eigenvalues (Ω) are now complex. The

matrix A incorporates the transition probability matrix, W , along with the matrix elements of the

Hamiltonian for the excited and ground states,

Aρσ
m0m1m′0m

′
1

= iW ρσδm0m′0
δm1m′1

+ 〈I1m1|Ĥρ|I1m
′
1〉δm0m′0

δρσ − 〈I0m0|Ĥρ|I0m
′
0〉δm1m′1

δρσ,

(4.34)

where ρ indicates a particular set of hyperfine parameters.

CONUSS uses the solutions to the eigenvalue problems of Eqs. 4.32 or 4.33 to calculate the

coherent nuclear scattering amplitudes. For nuclear forward scattering, the Fourier transformation

of the energy-dependent transmission function allows for the calculation of the time-dependent

intensity. This theoretical model is then compared to the data, and parameters are adjusted iteratively

to minimize the mean square deviation between the fit model and the experimental spectra. This

allows for the refinement of the hyperfine parameters specific to each site as well as the elements

of the transition probability matrix, W , which defines the jump rates between the different sets of

hyperfine parameters. For a typical two-site dynamical model, the ratio of these matrix elements

is proportional to the weight ratio of the two sites. Consequently, to maintain charge balance a

constant ratio must be maintained. CONUSS allows for the grouping of fit parameters such that the

matrix elements can be refined while keeping their ratio fixed.
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Chapter 5

Polaron-ion correlations in Li0.6FePO4

5.1 Introduction

Lithium-iron phosphate, LiFePO4, is a new material for cathode electrodes of rechargeable

Li-ion batteries [51]. An important issue, however, is its low electrical conductivity; at low tem-

peratures LiFePO4 is an insulator with a band gap of approximately 3.7 eV [52–54]. LiFePO4 has

the orthorhombic olivine-type structure shown in Fig. 5.1. Layers of corner-sharing networks of

canted FeO6 octahedra in the b-c plane are spaced by phosphate tetrahedra. Li+ cations form one-

dimensional chains that run between the FeO6 planes. Previous work showed that the Li+ diffusion

pathway is along these b-axis channels [12, 55]. The electronic carrier mobility is expected to be

two-dimensional, occurring within the layers of FeO6 octahedra that are separated by insulating

phosphate groups.

Experimental values of both electrical conductivity and Li+-ion diffusivity in LiFePO4 span

several orders of magnitude [56–62]. These large discrepancies have been attributed to differences

in samples and experimental technique [63]. It is generally accepted that the Li+ ion diffusivity is

highly sensitive to defects in the one-dimensional channels along the b axis. Less understood is the

scatter in reported values of electrical conductivity, however, which contributed to an early contro-

versy about whether the electronic conductivity can be improved by doping [64]. Measurements of

bulk properties on polycrystalline samples also present challenges in decoupling the intrinsic con-

ductivity from the interparticle conductivity. Nevertheless, a keen interest remains in improving the

intrinsic electrical conductivity of LiFePO4, and better understanding the transport of Li+ ions and
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Figure 5.1. Olivine-type structure of LiFePO4 with chains of Li+ ions (blue), planes of FeO6 octahedra
(brown), and phosphate tetrahedra (grey).

electrons.

As with many other transition metal oxides, the mechanism of electrical conductivity in mixed

valent LixFe2+
x Fe3+

1−xPO4 is small polaron hopping [65–67]. A small polaron quasiparticle com-

prises an electron or hole localized by atomic displacements of neighboring anions. When an elec-

tron transfers between Fe2+ and Fe3+ sites, the local configurations of the FeO6 octahedra must also

transfer. The difference between these atomic configurations in LiFePO4 is large. By removing Li+

ions from the lattice, lithiated Li1Fe2+PO4 is transformed into delithiated Fe3+PO4 with the same

olivine-type structure. As the Fe ions change from Fe2+ to Fe3+ during delithiation, the average

Fe-O bond lengths are reduced by 6% [68].

At moderate temperatures, the motion of a polaron quasiparticle is diffusive and can be under-

stood as an activated process with a jump rate [37, 69],

Γ(T, P ) ' ν exp(−2αR) exp

(
−Ea + PVa

kBT

)
, (5.1)

where T is temperature, P is pressure, kB is the Boltzmann constant, ν is a characteristic phonon
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frequency, R is the Fe-Fe distance, and α is the inverse localization length of the Fe wave functions.

The activation energy, Ea, describes the energetic barrier for the polaron quasiparticle to transfer

between adjacent iron sites. Previous measurements of bulk electronic conductivity as a function

of temperature gave a wide range of activation energies between 155 and 630 meV [64, 70–73].

Mössbauer spectrometry provides a more direct measurement of the rate of polaron hops between

iron sites, and gives an activation energy around 500 meV [65, 66].

The effect of pressure on the activation barrier is quantified with an activation volume, Va. PVa

is the extra enthalpy required from thermal fluctuations to induce a polaron hop when the material is

under the pressure P . For Va > 0, the activation barrier is effectively raised with pressure, and the

polaron hopping frequency is suppressed. Va is the difference in volume between the material with

the configuration favorable for electron transfer, and the volume in the equilibrium configuration.

It is expected to be local in origin, and is expected to reflect the local expansion or contraction

in the vicinity of the hopping polaron. In accordance with the Frank-Condon principle, these local

atomic distortions bring the electron levels of the initial and final states into coincidence, facilitating

electron transfer. An understanding of the activation volume therefore gives insight into the atom

configurations at the transient state of the polaron hop.

There have been few studies of the activation volume for polaron hopping. Previous measure-

ments of electrical conductivity in geophysically relevant oxides under applied pressure gave small,

negative values for Va of a few tenths of a cubic angstrom [30–33]. It has been suggested that the

dominant effect in these systems was the decrease of R under pressure, allowing the electron to

better sample the final state, therefore enhancing the polaron conductivity [33]. To our knowledge

there has been no measurement of the electronic conductivity of LiFePO4 under pressure.

Unlike the motion of polarons, the diffusion of Li+ ions can be understood classically. Ion jumps

into vacant neighboring sites occur by an activated process that does not sense the ion destination

until after the jump is complete. First principles simulations suggest that Li+ ions diffuse rapidly

along the [010] channels, but there is a high energy barrier to cross between channels [12]. These

calculations do not include defects or electron-ion interactions, however, and other reports suggest

the material is a slow ion conductor [56]. The one-dimensional character of the Li+ mobility results

in an ion conductivity that is highly sensitive to defects that block conduction channels, such as

Li-Fe antisite point defects [11, 12].
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Here we report new results on the charge dynamics at elevated pressure, obtained by perform-

ing measurements on LixFePO4 heated in a diamond-anvil cell. The 57Fe valence fluctuations in

LixFePO4 are strongly sensitive to pressure, giving a large and positive activation volume for po-

laron hopping that is more characteristic of ion diffusion. We show how this large effect could

result from a correlated dynamics of polarons and mobile Li+ ions. Previous density functional

theory calculations for LiFePO4 gave low activation barriers for polaron hopping compared to ex-

perimental results. This discrepancy was attributed to polaron-ion interactions [74]. The concept

of a bound polaron has also been discussed in calculations of polaron migration barriers for lithium

peroxide [75]. These studies assume a rigid lattice during electron transport, however. The authors

state, “...the electron density alone is relaxed self-consistently and atom positions remain fixed for

calculations along the migration path.” [74] In other words, this method employs a linear combi-

nation of the initial and final states without allowing for ion rearrangements in the transition state,

so Va = 0. Ion-electron correlations have also been mentioned in reports of NMR and molecular

dynamics studies on LiMn2O4 and LixNiO2 [76, 77], for example, but there has been scant exper-

imental evidence to support this concept. With a polaron-ion interaction, the activation enthalpy

for moving a polaron depends in part on the ion motion by a vacancy mechanism. Vacancy diffu-

sion is suppressed by pressure, and activation volumes for ion transport in oxides range from +1 to

+10 Å3 [38]. Because ion transport is suppressed by pressure, polaronic conductivity should also

be suppressed if the polaron-ion interaction energy, Epi, is large. In what follows, we estimate Epi

to be approximately –300 meV, which should have important consequences for the dynamics and

positions of both polarons and ions.

5.2 Experimental

A solid solution of Li+ ions in LixFePO4 is stable at temperatures above 473 K, and is easily

preserved at room temperature by quenching [23, 24]. Previous x-ray diffractometry measurements

showed that the olivine structures of FePO4, Li0.6FePO4, and Li1FePO4 are stable to pressures of

at least 30 GPa at 300 K [78]. Solid solutions of Li0.6FePO4 were prepared by a solid-state reaction

and delithiated as described previously [23, 79]. Powders were loaded into a Merrill-Bassett, Tel

Aviv-type, diamond-anvil cell [46] along with ruby chips for pressure measurement by the ruby
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florescence method [80]. The cells were prepared using rhenium gaskets and diamonds with 350µm

culets. The cell was heated in a resistive furnace with an Ar/1% H2 atmosphere and kapton windows

for x-ray transmission.

Nuclear forward scattering (NFS) measurements were performed at beamline 16ID-D at the

Advanced Photon Source at Argonne National Laboratory. An avalanche photodiode detector was

placed in the forward-scattered x-ray beam to measure transmitted intensity as a function of time.

Four sets of measurements were taken at pressures of 0, 3.5, 7.1, and 17 GPa, with temperatures be-

tween 298 and 598 K. A high-resolution monochrometer tunes the incident beam to the 14.414-keV

resonant energy and reduces the bandwidth to ∼2 meV. The synchrotron flashes had durations of

70 ps, and were separated by 153 ns. Electronic scattering occurs within femtoseconds of the pulse

arrival at the sample. The relatively long lifetime of the nuclear resonant state (τ = 141 ns) allows

for a clear separation of the prompt electronic scattering from the delayed, resonant scattering.

The 57Fe nuclei in the sample are simultaneously excited by the synchrotron x-ray pulse, giving

rise to coherent interference between emitted photons in the forward direction. When the degener-

acy of the nuclear levels is lifted by hyperfine interactions, the phased de-excitation of slightly offset

energy levels generates beat patterns in the transmitted intensity. Within the kinematical limit, the

delayed emission in the forward direction is expressed as a sum over oscillatory terms whose ar-

guments are the differences in the energies of the nuclear levels, superimposed on the exponential

decay [45],

A(t) ∼ exp(−t/τ)
∑

j,l

exp(−iωj,lt) a
∗
0WjWl a0 . (5.2)

HereW is the normalized weight of the nuclear transition, ωj,l = ωj−ωl, and a0 is the polarization

unit vector of the synchrotron radiation. A sample with two iron sites, each with a distinct value

for quadrupole splitting (QS) and isomer shift (IS), will have six component beat frequencies in the

transmitted intensity, each with a period that is inversely related to the difference in nuclear energy

levels.

Nuclear resonant scattering allows for the study of local electron dynamics at iron ions. The

measured spectra are altered when the hyperfine fields fluctuate on the same time scale as the char-

acteristic frequency of the hyperfine interaction energies, ~ω. In LixFePO4 the frequency of valence

fluctuations, and how this frequency changes with temperature, leads to rich variations of the shape
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and symmetry of the quadrupole doublets from Fe2+ and Fe3+. At low frequencies and low temper-

atures, the spectral components from Fe2+ and Fe3+ remain distinct, and at very high frequencies

the spectrum is a single doublet. The rich behavior occurs when the valence of a 57Fe ion fluctu-

ates between Fe2+ and Fe3+ at a frequency between 1 and 100 MHz. In conventional Mössbauer

energy spectra the quadrupole doublets from Fe2+ and Fe3+ merge together, with asymmetric, non-

Lorentzian lineshapes for these intermediate frequencies. For nuclear forward scattering (NFS) in

the time domain, these effects are seen as a distortion and washing-out of the quantum beat pattern

from interference of the nuclear hyperfine levels. Previous conventional Mössbauer energy spec-

trometry studies on LixFePO4 reported dramatic spectral distortions at temperatures between 373

and 513 K [65, 66].

5.3 Simulational

The hops of electron polarons are likely confined to the b-c plane, but they would tend to follow

the one-dimensional paths of ions if the interactions between polarons and ions are strong. We

performed a series of Monte Carlo (MC) simulations on a coupled pair of one-dimensional chains.

As shown in Fig. 5.2, one chain contained Li+ ions, and the other contained electron polarons. The

goal of these simulations was to estimate the strength of the polaron-ion interaction by comparing

the simulated electron dynamics under pressure to the valence fluctuations measured by nuclear

resonant scattering.

The hop of a Li+ ion requires an empty site at an adjacent position on the ion chain, so ion

diffusion was assumed to occur by a vacancy mechanism. Likewise, an electron-polaron at an Fe2+

site requires a neighboring Fe3+ on the same chain for the electron to hop, so a vacancy mechanism

was used for the electron dynamics as well. Activated state rate theory was used to calculate jump

probabilities of the ions and electrons. The activation barrier for the ion depended only on the

initial configuration, but in the adiabatic approximation the electron samples the initial and final

state energies before making a transition.

Each chain depicted in Fig. 5.2 had 3000 sites and periodic boundaries. Half of the sites on each

chain were initially populated at random, one with Li+ ions, and the other chain with electrons.

Both species moved along their respective chains by a vacancy-type mechanism. For each step in
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Figure 5.2. Schematic of randomly populated 1D coupled Li+ ion and electron chains.

Figure 5.3. Six subprocesses describing ion and electron jumps on coupled 1D chains, where the energy
barrier for each subprocess is listed below the schematic. Ep and Ei are the free polaron and ion activation
barriers respectively,Epi is the polaron-ion interaction energy, and Vi is the activation volume for ion hopping.
For Li+ ion jumps, depicted in the lower frames, the energy barrier depends only on the initial 1NN electron
site; the final 1NN site on the electron chain is not depicted.
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the simulation, every site on both chains was selected in a random sequence. If the site contained

an electron or ion, the probability that a jump will occur was calculated using Boltzmann factors,

described below, for T = 573 K. The time was obtained as a running sum of the inverse of the

Boltzmann factors of the jumps that occurred.

The energies used in the Boltzmann factors are

{Ei, Ep, Epi} , (5.3)

where the first two are activation energies for the jump of a bare (noninteracting) ion and a polaron,

respectively, and the third is the polaron-ion interaction energy. For a given event, the relevent site

occupancies of the electron or ion on a site were either 0 or 1, as set by four Kroneker δ-functions.

For a site directly opposite on the other chain the index is 0, to its left –1, or right +1,

{δ0p, δ0i, δ−1i, δ+1i} . (5.4)

The two Kroneker δ-functions for the vacancy pertain to vacancies on the same chain as the moving

species, which allow the jump to occur to the left or right (±1),

{δ−1v, δ+1v} . (5.5)

The Boltzmann factors for the four jumps to the left or right by the ion or electron-polaron are

B−1i = δ−1v exp
(
−β(Ei + PVi + δ0pEpi)

)
, (5.6)

B+1i = δ+1v exp
(
−β(Ei + PVi + δ0pEpi)

)
, (5.7)

B−1p = δ−1v exp
(
−β[Ep + (δ0i − δ−1i)Epi]

)
, (5.8)

B+1p = δ+1v exp
(
−β[Ep + (δ0i − δ+1i)Epi]

)
, (5.9)

where the ion jump is influenced by pressure, and depends on the presence of an electron-polaron

directly opposite (subscript 0), whereas the electron jump depends on the presence of an ion directly

opposite, but also opposite to its final position after the jump.

The jump probabilities were normalized by the two possibilities that could occur and the possi-
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bility of no event

Γ−1i =
B−1i

1 +B−1i +B+1i
, (5.10)

Γ+1i =
B+1i

1 +B−1i +B+1i
, (5.11)

Γ−1p =
B−1p

1 +B−1p +B+1p
, (5.12)

Γ+1p =
B+1p

1 +B−1p +B+1p
. (5.13)

At each step of the simulation, the state of the chains was used to obtain the Kroneker δ-functions

needed for Eqs. 5.6 through 5.9. The electron or ion under consideration moved left, right or

remained stationary based on a randomly generated number, Q, between 0 and 1. For a given

electron, a left jump occurred when Q < Γ−1p, a right jump when Γ−1p < Q < Γ+1p + Γ−1p, and

no jump when Q > Γ+1p + Γ−1p. Ion jumps were determined similarly. The local change after a

successful jump was used to update the state of the chains, and the inverse of the Boltzmann factor

was added to the time.

For the results shown below, activation barriers were set using previous computational results for

the “free-polaron” activation energy, Ep = 215 meV, and the activation energy for Li+ ion diffusion,

Ei = 270 meV [12, 74] (although many other values were tried). These activation barriers were

altered by a polaron-ion interaction energy, Epi, the strength of the coupling between the Li+ ion,

and the electron polaron when the two are first nearest neighbors (1NN), being at the same sites

on their respective chains. First principles calculations place Epi in the range of –370 meV to –

500 meV, depending on the degree of lithiation, and the authors suggested that the the polaron-ion

interaction could affect polaron dynamics [74]. When a Li+ ion jumps away from a 1NN electron,

the activation barrier for the jump is raised by an amount |Epi|. The quantum character of the

electrons gives an activation barrier that depends on the 1NN on the Li+ chain in both the initial

and final positions. Accordingly, the electronic activation barrier is raised by an amount |Epi| when

the electron jumps away from a Li+ 1NN, and is lowered by an amount |Epi| for a jump into a site

with a Li+ 1NN. The possible jumps are broken down into the six subprocesses shown in Fig. 5.3.

The activation barrier for ion hopping was altered by an amount PVi, where Vi is the activation

volume for ion diffusion. An activation volume of +5 Å3 was used, typical of activation volumes
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measured for ion diffusion in similar systems [38]. Assuming LiFePO4 behaves similarly to other

transition metal oxides, we expect the activation enthalpy for the hop of a bare electron polaron to

decrease with pressure [30–33]. Because this effect is expected to be an order of magnitude smaller

than the effect on ionic diffusion, for the purpose of these simulations we treated the activation

barrier for electron hopping as pressure independent.

5.4 Results

5.4.1 Experimental results

The NFS spectra are presented in Fig. 5.4. In the 0 GPa series, with increasing temperature,

especially above 400 K, the quantum beats are broadened and flattened, and the integrated count

rate decreases. This washing out of the spectral features and suppression of count rate comes from

a dephasing of the scattered intensity, consistent with the development of broad, asymmetric energy

spectra. The temperature range of the onset of these effects is consistent with the polaron dynamics

reported by conventional Mössbauer spectrometry [66]. At elevated pressures these large spectral

distortions do not occur until higher temperatures, approximately 100 K higher for 3.5 GPa. Smaller

changes can be seen at lower temperatures, however.

The spectra were evaluated using the software package CONUSS [50,81]. CONUSS allows for

the calculation and refinement of spectra using the theory of Blume and Tjon for random temporal

fluctuations of the hyperfine field [48, 49]. Drawing on the Kubo-Anderson model of motional nar-

rowing [47], Blume and Tjon used a correlation function, time averaged over the stochastic degrees

of freedom, to evaluate the lineshapes of emitted radiation from a system with a fluctuating nuclear

Hamiltonian. Depending on the relaxation time relative to the lifetime of the excited state, the effec-

tive widths of the resonance lines can either sharpen or broaden inhomogeneously and amalgamate.

While the probability for a transition between the excited state and the ground state with the emis-

sion of photon is Lorentzian in form, the observed probability results from a sum over the possible

ground states and a stochastic average over the sampled excited states. For polycrystalline samples,

the problem reduces to the simplest case treated by Blume and Tjon in which the stochastic and

quantum mechanical parts of the problem are separable as there is no issue of non-commutativity

of the Hamiltonian at different times.
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Figure 5.4. Temperature series of NFS spectra taken at 0, 3.5, 7.1 and 17 GPa. The fits (black curves) overlay
experimental data (red points). Temperatures are listed to the left of spectra in Kelvin. The x-axis is the delay
in nanoseconds after the arrival of the synchrotron pulse. The spectra have been scaled by their maximum
value and offset for comparison.



65

The fluctuations from polaron hopping require two sets of hyperfine parameters for the Fe2+

and Fe3+ sites, together with a relaxation matrix of transition rates, describing the random jumps

between the two sets of hyperfine parameters:

W =



−Γρ2+ Γρ2+

Γρ3+ −Γρ3+


 . (5.14)

The elements of the relaxation matrix are weighted by the populations, ρ, of the two sites, maintain-

ing charge balance. This allows for the refinement of a QS specific to each site, a relative IS, and a

polaron hopping frequency, Γ(T, P ).

The Blume-Tjon model was not used for the spectra at 298 K. These spectra were fit with a static

model, allowing for the refinement of the sample thickness as well as the distribution of QS that may

result from disorder in the sample and pressure gradients in the cell. The sample thickness and the

distribution of QS were then fixed for the fits at elevated temperatures, minimizing problems from

correlations between the hopping frequency and the distribution of quadrupole splittings (which

produce similar effects at low hopping frequencies). For fitting a data set at a fixed pressure, after

fixing the thickness and the distribution of the QS at their values for 298 K, four parameters were

varied to fit the spectra at elevated temperatures. The refined fits overlay experimental spectra in

Fig. 5.4. Most of the hyperfine parameters showed gradual changes with temperature and pressure

that we summarize here with linear relationships:

QS of Fe2+: [2.9− 2× 10−3(T − 298)] mm(s K)−1,

QS of Fe3+: [1.1− 2× 10−3(T − 298)] mm(s K)−1,

Relative IS: [0.8− 10−3(T − 298)] mm(s K)−1,

QS of Fe2+: [2.9 + 0.04P ] mm(s GPa)−1,

QS of Fe3+: [1.1 + 0.04P ] mm(s GPa)−1.

The relative IS (IS Fe2+ – IS Fe3+) did not show a discernible trend with pressure. These parameters

are consistent with those determined using conventional Mössbauer spectrometry for the same ma-

terial [65, 66]. The data and fits in Fig. 5.4 are plotted on a logarithmic scale. The fitting algorithm

uses a least squares criterion, so the fit discrepancies in the regions of the lowest count rate (most

notably the third minima) are smaller than they appear and do not significantly affect the quality of
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K
 

Figure 5.5. (a) Polaron hopping frequencies, Γ(T, P ), at 0, 3.5 and 7.1 GPa, as determined from the solid
curves of Fig. 5.4. Solid curves are Arrhenius-type fits using a pressure-independent prefactor. (b) Activation
enthalpies, ∆H = Ea + PVa, versus pressure, where Ea = 470 meV. Black triangles are results for fixed
prefactor and red circles are for a pressure dependent prefactor.

the fits.

Figure 5.5(a) shows the polaron hopping frequencies, Γ(T, P ), determined from the fits to the

spectra of Fig. 5.4. For frequencies below approximately 1 MHz, the spectra are fit equally well with

a static model. In this low-frequency limit, a static spectrum and a dynamic spectrum are identical,

all else held constant. For the 17 GPa series, the hopping frequencies for the entire temperature

series were below this threshold. The suppression of hopping frequencies at moderate pressures

indicates that Va is positive and large. The three data sets in Fig. 5.5(a) were fit simultaneously

with Eq. 5.1 to determine the activation enthalpies and the prefactor. From the ambient pressure

series, the activation energy was found to be 470±50 meV, where the uncertainty arises from the

weighting of the different data points in linear or logarithmic fits, and the choice a prefactor for Eq.

5.1. This is comparable to the values of 512, 550, and 570 meV for activation energies of hyperfine

parameters from the same material measured by conventional Mössbauer spectrometry [65].

The prefactor was first assumed independent of pressure. The result, ∼ 1013 Hz, is typi-

cal of optical phonon frequencies measured by inelastic neutron scattering and by Raman spec-

trometry [82, 83]. For a second set of fits, we calculated the pressure dependence of the pref-

actor, ν exp(−2αR). We extrapolated the attempt frequency to elevated pressure using a typical
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Grüneisen parameter, γ = 2, and the compressibility, κT ,

ν(P ) ' ν0(1 + γPκT ) . (5.15)

The wave function overlap was approximated assuming a pressure-independent localization length

exp[−2αR] ' exp[−2αR0(1− PκT /3)] , (5.16)

where R0 is the ambient pressure inter-cation distance. X-ray diffractometry measurements at

300 K on an olivine Li0.6FePO4 solid solution at pressures up to 32 GPa gave a bulk modulus of

120±4 GPa [78]. This is somewhat larger than for Li1FePO4, with bulk modulus measured as

106±8 GPa, and calculated as 96 GPa [84]. These additional considerations did not significantly

affect the results below for Va.

From Eqs. 5.1, 5.15 and 5.16, Va can be determined from the pressure dependence of the

activation enthalpy. For a given pressure, we determine the activation enthalpy by looking at the

linear part of ln(Γ) as a function of β, where β = 1/(kBT ) [31].

ln(Γ) = −β∆H − 2αR+ ln(ν) , (5.17)

∆H ' −
(
∂ ln(Γ)

∂β

)

P

. (5.18)

To account for any pressure dependence of the prefactor of Eq. 5.1, we consider the pressure

dependence of the last two terms in Eq. 5.17. Assuming these terms are independent of temperature,

Eqs. 5.15 and 5.16 can be used to correct the Va obtained from the jump rates, Γ(T, P ),

Va =

(
∂∆H

∂P

)
, (5.19)

Va ≈ −
∂
(
∂ ln Γ
∂β

)
P

∂P
+

2αR0 κT
3β

+
γκT
β

. (5.20)

The dominant source of error in the determination of the enthalpies lies in the choice of a prefactor

for Eq. 5.1. Constraining the prefactor to a reasonable range based on past measurements of optical

phonons [82, 83, 85] gives an error in the magnitude of the activation enthalpies of approximately
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±10%. The slope of the curve in Fig. 5.5(b) gives an activation volume of +5.8±0.7 Å3. The

second and third terms of Eq. 5.20 are an order of magnitude smaller than the first term from the

slope of Fig. 5.5(b), but will increase Va above the value of +5.8 Å3. Our Va is between one and

two orders of magnitude larger than previously reported polaron activation volumes from resistivity

measurements on oxides [30–33].

5.4.2 Simulational results

Polaron jump frequencies were calculated as a function of pressure, assuming these frequencies

were proportional to Boltzmann factors with thermal activations. The activation energies were taken

as the appropriate combination of Ep, Ei, and Epi, depending on their local configurations. The

activation energy for an ion jump was increased with pressure by PVi, where Vi was +5 Å3 and

P was 0, 3 or 7 GPa. We used values of Ep = 215 meV and Ei = 270 meV as reported in the

literature [12, 74], but we also calculated frequencies using several other activation barriers ranging

from 50% to 200% of these values.

For simulations with |Epi| greater than 100 meV, after a quick initial relaxation, more than 90%

of the electrons were paired to a Li+ across the coupled chains. By inspecting the jump probabilities

of Eqs. 5.10 – 5.13, we found that Epi = –300 meV could account for the experimental trend in the

pressure-induced suppression of the polaron jump frequency at T = 573 K. Nevertheless, values of

Epi from –200 to over –400 meV gave similar results.

In the MC simulations, we monitored the mean-squared displacement (MSD) of both species as

a function of pressure and Epi. Our interest was how the electron MSD was altered under pressure

as a result of suppressed ionic mobility. The simulations varied the ionic mobility while monitor-

ing the effect on the electronic mobility. The activation barrier for electron hopping was pressure

independent, so raising the activation barrier for ion hopping (through pressure) has no effect on

the electron MSD when the ion and electron chains are decoupled (Epi=0). When a coupling is

introduced, an indirect effect on the electron mobility is observed with increasing |Epi|. Figure 5.6

presents typical results of such a series of simulations. The electron MSD increases approximately

as t0.5. This exponent is well-known when particles cannot pass on a 1D chain and require concen-

tration fluctuations to move forward [86]. A suppression of the MSD with pressure clearly emerges

for values of Epi less than –200 meV and becomes increasingly pronounced as the magnitude of
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Epi is increased. For a polaron-ion interaction energy of –250 meV at 3 GPa the MSD is suppressed

by 45% and at 7 GPa the MSD is suppressed an additional 40%. For agreement with experiment,

it appears that Epi for LiFePO4 is between –200 and –300 meV. Larger magnitude values are not

ruled out, however. The effects of pressure on the polaron jump frequency saturated when |Epi|

was somewhat larger than Ep. It was also noted that the effects of pressure on the polaron jump

rate became larger as Ei decreased relative to Ep, consistent with a larger role of ion motion in the

overall dynamics.

5.5 Discussion

Holstein’s molecular crystal model captures the essential physics of small polaron formation

and dynamics [1, 28, 87]. A tight-binding model is used to describe an extra electron in an array

of N molecules, each with an internuclear distortion variable, xn, and a reduced mass M, where

M−1 = N−1
∑

ionsm
−1. The positive strain energy is quadratic in the xn (e.g., the interatomic

separation of two ions in a diatomic molecule) with harmonic oscillator frequency, ω0, associated

with the configurational coordinate of an isolated molecule. The electronic energy is reduced lin-

early with xn in proportion to the strength of an electron-phonon interaction parameter, A, that

characterizes the electron-lattice coupling strength in units of force.

A finite local distortion, xn, results in a reduced potential that effectively pins the electron, so

the localized polaron is favored by the binding energy, Eb, relative to an electron in an undeformed

lattice,

Eb ≈
A2

2Mω2
0

. (5.21)

In the adiabatic limit, the prefactor in Eq. 5.1 reduces to the mean optical phonon frequency and the

activation energy is lowered by an amount J , associated with the d-bandwidth [30],

Ea =
Eb
2
− J . (5.22)

The activation energy depends on pressure through the exchange integral, J , as well as any pressure

dependence of the binding energy. Taking the activation volume as the pressure derivative of the

activation energy,
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Figure 5.6. Electron MSD versus time for six series of MC simulations for a pair of coupled 1D ion and
electron chains. Units for MSD are site index squared. Time is dimensionless. Each subplot shows the results
for a different Epi. Subplots are labeled with -Epi (0, 50, 150, 250, 350 and 450 meV). In each series, the
MSD is shown for three different pressures: 0 (black), 3 (red) and 7 GPa (green).
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Va =
∂Ea
∂P
≈ Eb

(
1

A

∂A

∂P
− 1

ω0

∂ω0

∂P

)
− ∂J

∂P
, (5.23)

and using the definition of the compressibility and the Grüneisen parameter, γ, the activation volume

becomes,

Va ≈ Eb
(

1

A

∂A

∂P
− γκT

)
− ∂J

∂P
. (5.24)

The last term, from the increased wave-function overlap, is positive, and tends to destabilize the

localized polaron. This term is believed to be responsible for the negative activation volumes in other

polaronic conductors [30]. Our large, positive Va would be consistent with an effect of pressure on

the electron-phonon interaction parameter, A, if ∂A/∂P > 0, giving ∂Eb/∂P > 0 by Eq. 5.21. In

general, however, we expect destabilization of an electron polaron centered at a Fe2+ ion because

the compressibility of ferrous-oxygen bonds is greater than for ferric-oxygen bonds. First principles

calculations suggest the activation barrier is raised by ∼50 meV under 4% biaxial compression

(along the b and c axes) [88]. The authors attribute this effect to an enhancement of the electron-

phonon coupling. Frozen phonon calculations for the strained system show the electron phonon

coupling constant increases by more than 20% [88]. These effects on the activation barrier from

standard polaron models are too small, or of the wrong sign, to account for our experimental results.

The electron-phonon interaction could be affected by the electrostatic interaction between the

polaron and a nearby Li+ ion if the ion has a pressure-dependent mobility. We suggest the origin of

our large difference between the activation volume measured for LiFePO4 and previous activation

volumes determined using conductivity measurements on oxides without mobile ions is the strong

coupling between the polarons and the mobile Li+ ions, Epi.

Previous first principles calculations for polaron hopping in LiFePO4 gave activation energies

of 175 and 215 meV for electron and hole polarons, respectively [74]. These results are for free-

polaron transport. Measured activation energies, from either Mössbauer spectrometry or conductiv-

ity measurements, are two to three times higher than these calculated values. This is consistent with

a tendency for the electrons on Fe2+ sites to remain near Li+ ions.

The effect of pressure on valence fluctuations at Fe sites is indirect, but potentially large. It is

well known that pressure suppresses ionic diffusion by a vacancy mechanism [as in Eqs. 5.6 and

5.7]. The MC simulations show how polaron dynamics are suppressed if the polaron-ion interac-
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tion energy tends to attract the polaron to immobile ions. The required interaction energy, Epi, is

approximately –300 meV for the pressures and temperatures of interest.

Some discrepancies deserve further investigation. Electron jumps between two sites where both

have ion neighbors, or both have vacancies (middle processes at top of Fig. 5.3), are unaffected

by pressure, and predict a background dynamics that is not found experimentally. In the olivine

structure, electron mobility is likely confined to the b-c plane. The Fe and Li sites are staggered in a

way that each Fe site has two symmetrically positioned Li sites, but within a given FeO6 plane each

Li-site has one 1NN Fe site and one second-nearest-neighbor (2NN) Fe site. A polaron following

the path of closest approach to a given ion chain will necessarily alternate between these 1NN and

2NN-type sites where the Li-Fe bond length is 6% longer in the 2NN site [68]. When pressure im-

mobilizes the Li+ ions, there may be a tendency for electron-polarons to localize in these 1NN-type

sites in such a way that local dynamics are suppressed. Alternatively, the experimental technique

may not be sensitive to certain dynamics, for example, minority processes or dynamics that fall out-

side the window of sensitivity of frequencies sampled by Mössbauer spectrometry measurements. It

is also possible that pressure suppresses other aspects of polaron dynamics, or the ions and polarons

may form an ordered structure with reduced dynamics.

The generally good agreement between the experiment and simulated dynamics with a rea-

sonable value of Epi, together with a measured activation volume of +5.8 Å3, consistent with ion

diffusion, indicate a strong coupling between the ions and polarons in LixFePO4. A transport of

net charge requires decoupling of the ion and polaron motions, however, so the coupling is not

immutable. Nevertheless, the correlated motions of electrons and ions should suppress electrical

conductivity in LiFePO4. Furthermore, a large correlation in the motions of polarons and ions can

explain why the electrical conductivity of LiFePO4 is so sensitive to materials preparation. Because

Li+ diffusion in LiFePO4 is essentially one dimensional, Li+ ion mobility suffers as a result of

channel blockage by defects [11, 12]. Blocked channels for Li+ ions then suppress electronic con-

ductivity if polaron-ion interactions are strong. This effect may be common in materials when both

ions and electrons are mobile.

A small polaron quasiparticle comprises an electron localized by atomic contractions from

neighboring anions. Both the charge and distortion of the polaron are large enough to interact

with the charge and distortion around a Li+ ion, altering the formation energy and dynamics of the
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polaron. The quantum dynamics of small polaron hopping is likely modified by the classical dy-

namics of ion motion; likewise, the configurations of polarons and ions on the crystal lattice should

also be affected by these interactions.

5.6 Conclusions

Nuclear resonant scattering spectra of LixFePO4 were measured at elevated pressure and tem-

perature. An analysis of the spectra using the Blume–Tjon model for a system with a fluctuating

electric field gradient gave frequencies of Fe valence fluctuations that correspond to frequencies of

polaron hopping. From measurements over a range of temperatures and pressures, both the acti-

vation energy and activation volume were determined for polaron hopping. To our knowledge this

is the first measurement of an activation volume for polarons in a material with mixed ion-polaron

conductivity.

Pressure caused a large suppression of valence fluctuations in LixFePO4, giving an activation

volume for polaron hopping of +5.8 Å3. This unusually large and positive activation volume is not

typical of bare polaron hopping. It indicates a correlated motion of polarons and Li+ ions. From

model calculations and Monte Carlo simulations, the binding energy between the polaron and the

Li+ ion was found to be approximately –300 meV. This strong binding and polaron-ion correlation

should suppress the intrinsic electronic conductivity of LixFePO4. It may also affect the diffusion of

Li+ ions. Such coupled processes may be common to other materials where both ions and polarons

are mobile.
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Chapter 6

Polaron mobility and disordering of

the Na sublattice in NaxFePO4 with

the triphylite structure

6.1 Introduction

Li-ion batteries have been an active subject of research within the last two decades and are

now widely commercialized in consumer electronics and electric vehicles. The effort to design

improved batteries has motivated the investigation of a range of polyanionic framework materials.

Within this context, the phospho-olivines have emerged as particularly promising with their low

toxicity, thermal stability and high energy density. The orthorhombic olivine-type structure (Pmna)

is shown in Fig. 6.1(a). Layers of corner-sharing networks of canted FeO6 octahedra in the b-c

plane are spaced by phosphate tetrahedra, and alkali cations form one-dimensional chains that run

between these FeO6 planes. Previous work has shown that the predominant ion diffusion pathway

is along these b-axis channels [15, 55]. In comparison, the electronic carrier mobility is expected to

be two-dimensional, occurring within the layers of FeO6 octahedra that are separated by insulating

phosphate groups.

With the increasing reliance on Li-ion technology, it has become apparent that lithium itself is

a limited resource. By contrast, sodium is one of the major rock-forming elements in the Earth’s

crust, and consequently is both environmentally abundant and relatively affordable. As a result, the
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idea of designing sodium analogues to lithium cathode materials is immensely appealing, especially

for large energy-storage systems. The sodium counterpart to LiFePO4 has attracted attention as a

particularly promising sodium cathode [16–18, 26, 89–94]. The ground-state of NaFePO4 has the

maricite structure. Compared to the triphylite structure favored by LixFePO4, the site occupancies

of the alkali ion are swapped with the iron cations. The sodium cations are then isolated by the

phosphate groups, and the maricite structure is electrochemically inactive. While density functional

theory calculations suggest the energy of the two polymorphs is similar [15], the maricite structure

is apparently favored at higher temperatures where the material is formed. However, recent results

have shown that it is possible to synthesize a sodiated triphylite structure using an ion-exchange

route [89] starting with LiFePO4. The triphylite-NaFePO4 exhibits excellent electrochemical per-

formance compared to other candidate sodium-ion cathode materials [17, 18].

The phase diagram for the triphylite-MxFePO4 (M=Na, Li) framework is altered when Na+

replaces Li+ as the intercalation ion. While the LixFePO4 phase diagram shows a broad solid

solution above 473 K [23, 24], a solid solution of Na+ ions forms only above x=2/3, but is stable

at low temperatures. Below x=2/3 there exists an intermediate ordered phase, which persists to

high temperatures [16]. The proposed structure of the intermediate phase is shown in Fig. 6.1(b).

This superstructure results from a vacancy at every third sodium site along the Pmna b-axis, giving

rise to three crystallographically distinct iron sites, shown in red, green and blue in Fig. 6.1(b).

These distinctions in phase behavior are likely a result of the larger size of the sodium cation,

having a nearly 30% larger ionic radius than lithium. Full sodiation of the FePO4 lattice results

in a 17% volume expansion, compared to the 7% expansion seen in LiFePO4 [16]. This large

lattice mismatch between the end members in NaxFePO4 may play a role in the stabilization of the

intermediate ordered phase.

As with many other transition metal oxides, the mechanism of electrical conductivity in mixed

valent MxFe2+
x Fe3+

1−xPO4 is small polaron hopping [65–67]. A small polaron quasiparticle com-

prises an electron or hole localized by atomic displacements of neighboring anions. When the

carrier transfers between adjacent iron sites, this local distortion must also transfer, resulting in a

slow moving particle with a large effective mass. In contrast to semi-free carriers, polarons tend to

have a low mobility that rises with increasing temperature. At moderate temperatures, the motion
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Figure 6.1. (a) Triphylite-type structure of MFePO4 (M= Li, Na) with chains of M+ ions (yellow), planes
of FeO6 octahedra (brown) and phosphate tetrahedra (grey). (b) Ordered superstructure for x=2/3. Three
structurally distinct iron sites are shown in blue, green and red. The axes on left are for the orthorhombic
Pmna cell. Oblique axes of P21/n cell are shown in black.
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of the polaron quasiparticle can be understood as an activated process with the jump rate [37, 69],

Γ(T ) ∼ ν exp

(
− Ea
kBT

)
, (6.1)

where T is temperature, kB is the Boltzmann constant and ν is a characteristic phonon frequency.

The activation energy, Ea, describes the energetic barrier for the polaron quasiparticle to transfer

between adjacent iron sites.

Mössbauer spectrometry allows for the study of local electron dynamics at iron ions. Polaron

hopping between Fe2+ and Fe3+ results in 57Fe ions that experience a fluctuating local environment.

The measured spectra are altered when the hyperfine fields fluctuate on the same time scale as

the 57Fe nuclear decay, or near a characteristic frequency set by the spectral hyperfine energies,

νHF = ∆EHF /~. Fortuitously, typical quadrupole splittings for 57Fe fall within a range that is well

suited to the study of polaron dynamics, and the temperature evolution of the valence fluctuation

frequencies gives rise to variations of the shape and symmetry of the quadrupole doublets from

Fe2+ and Fe3+. At low frequencies and low temperatures, the spectral components from Fe2+

and Fe3+ remain distinct, and at very high frequencies the spectrum approaches a single time-

averaged doublet. More complex behavior occurs between these limits, when the valence of a 57Fe

ion fluctuates between Fe2+ and Fe3+ at a frequency between 1 and 100 MHz. Within this range,

the quadrupole doublets from Fe2+ and Fe3+ merge together, with asymmetric, non-Lorentzian

lineshapes. Previous Mössbauer spectrometry studies of the lithium analogue, LixFePO4, reported

dramatic spectral distortions for temperatures between 373 and 513 K [65, 66, 95].

The structure and stability of the intermediate phase at x=2/3 has been addressed in a handful

of recent papers, but a comprehensive understanding of the crystallographic ordering of Na-ions

and electrons is lacking. The origin of a secondary ferrous doublet in the Mössbauer spectra and

how this relates to the crystallographic ordering of Na-ions and electrons or the presence of fast

electron hopping is unsettled [16, 26]. Here we report new results on the phase stability and charge

dynamics in Na0.73FePO4 at elevated temperatures, obtained by performing measurements in a

resistive furnace. The evolution of the iron site occupancies with temperature, as determined from

Mössbauer spectrometry, gives new information that helps resolve the nature of the ordering in

the intermediate phase. Mössbauer spectrometry coupled with synchrotron x-ray diffraction shows
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that the disordering of sodium ions at above 450 K and the onset of rapid electron dynamics occur

simultaneously. We suggest that there is a polaron-ion interaction that affects the dynamics of both,

much as is the case for LixFePO4 [95].

6.2 Experimental

LiFePO4 was prepared by a solid-state reaction and chemically delithiated using K2S2O8 in an

aqueous solution [23, 79]. To chemically insert sodium into the lattice, the sample was refluxed

for 48 hours in an acetonitrile solution of excess NaI [92]. The resulting sample retained a minor

amount of ferric iron, ranging from 3-10%. The sodiated sample was subsequently oxidized with

K2S2O8 to give a final composition of Na0.73FePO4.

LiFePO4 +
1

2
K2S2O8 → FePO4 +

1

2
(Li2SO4 + K2SO4),

FePO4 +
3z

2
NaI→ NazFePO4 +

z

2
NaI3,

NaxFePO4 +
(x− z)

2
K2S2O8 → NazFePO4 +

(x− z)
2

(Li2SO4 + K2SO4).

(6.2)

X-ray diffraction of the final sample shows no evidence of residual FePO4. The concentration of the

final sample was determined using the spectral area ratios determined from Mössbauer spectrometry.

Synchrotron X-ray diffraction (XRD) measurements were performed at beamline 16ID-D at the

Advanced Photon Source at Argonne National Laboratory using a monochromatic beam with λ =

0.86 Å. Diffraction was measured in transmission geometry using a Mar CCD detector plate while

the sample was held in a resistively heated vacuum furnace.

Mössbauer spectra were collected in transmission geometry using a constant acceleration system

with a 57Co in Rh γ-ray source. Velocity and isomer shift calibrations were performed in reference

to room temperature α-iron. Elevated temperature Mössbauer spectrometry was performed with the

sample mounted in a resistive furnace for a series of temperatures between 298 K and 550 K. At each

temperature, the furnace was given four hours to equilibrate, after which the spectrum was collected

for 20 hours. After collecting the 550 K spectra, an additional 298 K spectrum was collected and

x-ray diffraction was performed on the retrieved sample.
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Figure 6.2. (a) Temperature series of XRD spectra taken between 295 K and 550 K. The Rietveld fits (black
curves) overlay experimental data (points). Black tick marks at bottom of figure indicate locations of super-
structure phase in ordered structure. (b) Enlargement of (200) peak on linear scale.

6.3 Results

6.3.1 X-ray diffractometry

Figure 6.2(a) shows the synchrotron x-ray diffraction (XRD) spectra collected at temperatures

between 298 K and 553 K. The locations of the superstructure peaks from Na+ ordering are indi-

cated with tick marks below the 298 K spectra. Based on the phase diagram by Lu, et al. [16], the

present sample (x= 0.73) should be within the solid solution phase at room temperature, but the

presence of the superstructure peaks suggests that long range order persists well above x=2/3. Upon

heating, the superstructure peaks become increasingly diffuse and are completely gone by 483 K.

This is especially clear for the superstructure peak at ∼ 15 degrees.

As the sodium disorders on the lattice, structural changes can also be seen through a closer

inspection of the fundamental peaks, particularly those peaks that are sensitive to the changes in

the Pmna b-axis. Inserting sodium into the Na2/3FePO4 superstructure results in a large expansion

of the b- and a-axes. A closeup of the Pmna (020) peak is shown in of the Figure 6.2(b). At

298 K this peak has a clear low-angle shoulder. The higher-angle component corresponds to the

expected d-spacing for the ordered structure. As the temperature increases, the relative intensity of

this shoulder increases, and above 500 K the entire weight of the (200) peak has shifted to the lower-
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Figure 6.3. Molar fraction of x=2/3 ordered phase, determined from Rietveld analysis of x-ray patterns
shown in Fig. 6.2

angle position. Similar effects can be seen in the (220) and (121) peaks with increasing temperature.

The presence of this shoulder suggests that the region above x=2/3 is actually biphasic at room

temperature, containing a solid solution phase as well as the x=2/3 ordered phase. This finding

confirms previous XRD results as a function of desodiation by Galceran, et al. [92]. Their study

showed an abrupt discontinuity in the b-axis at compositions above x=2/3, suggesting the onset of

ordering starts above a composition of x=2/3. Additionally, an inspection of the room temperature

XRD collected by Lu, et al. [16] reveals the (020) diffraction does not entirely disappear until x=

0.8. These observations, combined with our high temperature XRD, are evidence for an appreciable

two-phase region of the phase diagram between the x=2/3 intermediate phase and a solid solution

of higher concentration.

Reitveld analysis was performed with the software package GSAS, using psedo-Voigt peak pro-

files [40,41]. The fits to the spectra are shown as solid lines in Fig. 6.2. The instrumental broadening

was modeled as Gaussian, while the strain broadening was assumed to be entirely Lorentzian. For

accurate peak shapes, a Stephens model for anisotropic strain broadening was included [42]. The

data were fit with two diffraction patterns, one from a solid solution phase and the other from the or-

dered phase, using the superstructure proposed by Boucher, et al. [26]. The ordered structure can be

described by a 3x3x1 orthorhombic supercell with a Na-vacancy at every third site along the Pmna

b-axis. This unit cell is equivalently described by the monoclinic P21/n system. Both unit cells are

shown in Fig. 6.1 (b). The sodium concentration of the ordered phase was fixed at x=2/3, and the

sodium concentration of the solid solution was constrained so the total sodium concentration was
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Figure 6.4. Structural parameters determined from Rietveld fits in Fig. 6.2. (a) Volume of unit cell for
ordered and solid solution phases. Volume of ordered (P21/n) cell has been normalized by a factor of three
for comparison with orthorhombic Pmna cell. (b) Lattice parameters for orthorhombic solid solution phase.
(c) Lattice parameters for monoclinic ordered phase. The P21/n a-axis coincides with the Pmna b-axis and
the P21/n b-axis coincides with the Pmna c-axis.
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fixed at 73%.

Figure 6.3 shows the molar fraction of the x=2/3 ordered phase as a function of temperature,

as determined from the Reitveld refinements. Between 298 and 400 K the molar fraction is around

20%. Above 420 K, the fraction of ordered phase drops substantially and is totally gone at 520 K.

Fig 6.4(a) shows the thermal trend of unit cell volume for both phases. Here the volume of the

P21/n cell has been normalized by a factor of three for comparison with the orthorhombic cell.

There is a clear volume collapse between 463 and 483 K in the solid solution phase. Fig. 6.4(b)

shows the lattice parameters for the orthorhombic solid solution phase and the ordered phase, using

the monoclinic crystal system. In the solid solution, between 298 and 483 K the a-axis shows a

gradual contraction, above which it starts to expand. The other two axes exhibit thermal expansion

throughout the entire temperature range, although both axes also show a discontinuity between 443

and 483 K.

6.3.2 Mössbauer spectrometry

Mössbauer spectra, collected in the same temperature range, are presented in Fig. 6.5. The

room temperature spectrum has two distinct ferrous components with quadrupole splittings of 2.6

and 1.7 mm/s. In what follows, these are called A- and B-type sites, respectively. A fit to the

298 K spectrum gives an area ratio of the two components, B/A ∼20/80. The presence of this

secondary Fe2+ component is consistent with other recent Mössbauer studies of this system [16,26].

A spectrum of the same sample, collected prior to chemical desodiation, exhibited a single doublet

with a splitting of 2.74 mm/s, shown in Fig. 6.6 (c). This “fully sodiated” sample contained a

residual ferric concentration of∼3%. Two additional samples were prepared with concentrations of

x = 0.54 and x = 0.67. Room temperature spectra for these samples are shown in Figs. 6.6(a) and

(b), respectively. Fits to these spectra gave B/A site area ratios of ∼34/66.

The spectra were evaluated using the software package CONUSS [50, 81], which generated

the solid curves in Fig. 6.5. CONUSS allows for the calculation and refinement of spectra using

the theory of Blume and Tjon for random temporal fluctuations of the hyperfine field [48, 49].

This model uses a time average over the stochastic degrees of freedom of the fluctuating nuclear

Hamiltonian, making use of a relaxation matrix that describes the transition rates between the two

sets of hyperfine parameters associated with the Fe2+ and Fe3+ environments. Depending on the
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Figure 6.5. Temperature series of Mössbauer spectra taken between 295 K and 550 K. The fits (black curves)
overlay experimental data (points). Temperatures are listed to the left of the spectra in Kelvin.
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relaxation time relative to the lifetime of the excited state, the effective widths of the resonance

lines can either sharpen or broaden inhomogeneously and amalgamate. While the probability of a

transition between the excited state and the ground state with the emission of photon is Lorentzian

in form, the observed probability results from a sum over the possible ground states and a stochastic

average over the sampled excited states. For polycrystalline samples, the problem reduces to the

simplest case treated by Blume and Tjon in which the stochastic and quantum mechanical parts of

the problem are separable as there is no issue of non-commutativity of the Hamiltonian at different

times.

The fluctuations from polaron hopping require a set of hyperfine parameters for each iron site,

together with a relaxation matrix of transition rates,

W =



−Γρ3+ Γρ3+

Γρ2+B −Γρ2+B


 . (6.3)

To maintain charge balance, the elements of the relaxation matrix are weighted by the populations

of the sites, ρ. This allows for the refinement of the relative weight of each site and the polaron

hopping frequency, Γ(T ). The weight ratio of ferrous A/B-type iron sites was also introduced as a

fit parameter. For the fits shown in Fig. 6.5, the valence fluctuations were limited to charge hopping

between B-type ferrous sites and Fe3+ sites, while the A-type ferrous sites were treated as static.

This assumption was justified by the observation that the onset of valence fluctuations coincides

with a decrease in the fraction of the A-type ferrous site, suggesting the valence fluctuations are

largely limited to the B-type iron environment. The Blume-Tjon model was not used for the spectra

below 400 K. These spectra were fit with a static model.

Above 400 K the sample begins to show a minor impurity component as a result of oxidation.

A comparison of the initial 298 K spectrum and a final spectrum collected after cooling to room

temperature from 553 K, reveals a ∼16% decrease in the concentration of ferrous iron. This down

temperature spectrum is shown in Fig. 6.7. X-ray diffraction completed at the conclusion of the

measurement did not show any indication of a second crystalline phase. The oxidation is likely a

result of a reaction with O2 to produce amorphous Fe2O3. For temperatures above 500 K, a second

ferric site was added to the fit model to account for this oxidation. This site did not participate in the
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Figure 6.7. Down-temperature spectrum, at 298 K, acquired after cooling from 550 K.

dynamics and the hyperfine parameters of this site were fixed as IS = 0.31mm/s and QS = 0.99

mm/s. As the temperature was further increased, the spectral contribution of this site was left as a fit

parameter and allowed to drift upward with the restriction that the total weight of the ferric contri-

bution to the spectra could not exceed the observed ferric contribution from the down temperature

measurement.

All hyperfine parameters showed gradual linear trends as a function of temperature. The tem-

perature dependence of the quadruple splittings of the ferrous iron sites (high spin) are expected to

follow an Ingalls-type model [96], where the degeneracy of the t2g levels is removed owing to a

Boltzmann occupation of the different crystal field split t2g↓ electronic levels by the sixth valence

electron,

∆QS2+(T ) ∼ ∆QSv
1− exp

−∆
kBT

1 + 2 exp
−∆
kBT

+ ∆QSl. (6.4)

Here ∆QSv and ∆QSl refer to the ground state valence and lattice contributions to the quadrupole

splitting. The ground state quadrupole splittings and the t2g level splitting (∆) were deter-

mined from best fits to the temperature trends, giving ∆ = 104 meV, QSv = 2.406 mm/s,

QSAl = 0.33 mm/s, and QSBl = −0.54 mm/s. At 473 K there is an abrupt jump in the B-

sites quadrupole splitting of ∼0.09 mm/s. Following this discontinuity, the thermal trend in the

quadrupole splitting continues to follow the same Ingalls-type slope as lower temperatures.

Having one fewer valence electron, ferric sites should not exhibit the Ingalls-type crystal-field
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splitting effect. Therefore, any thermal trend in the quadrupole splitting is presumably related to an

evolution in the local bonding environment. The temperature dependence of the Fe3+ quadrupole

splitting has an approximately linear temperature trend,

∆QS3+(T ) = 1.8− 2× 10−3 × T. (6.5)

The isomer shift for all sites showed progressive reduction with temperature, following approxi-

mately linear trends:

IS2+
A (T ) = 1.6− 1.0× 10−3 × T,

IS2+
B (T ) = 1.5− 7.0× 10−4 × T,

IS3+(T ) = 1.0− 1.0× 10−3 × T.

(6.6)

This decrease is in part related to the temperature-dependent second-order Doppler shift, [43],

IS(T ) = δ0 −
9kBΘD

16Mc

[
1 + 8

(
T

ΘD

)4 ∫ ΘD
T

0

x3

exp(x)− 1
dx

]
,

IS(T ) ∼ δ0 −
3kBT

2Mc

[
1 +

Θ2
D

20T 2

]
, T > ΘD,

(6.7)

where ΘD is the Debye temperature, M is the nuclear mass, c is the speed of light and δ0 is the

intrinsic isomer shift.

An inspection of Fig. 6.5 suggests that temperatures around 420 K, there is a onset of electronic

dynamics that give rise to spectral distortions, including line broadening and a collapse of the Fe2+

and Fe3+ doublets. Figure 6.8 shows a plot for the polaron hopping frequencies, Γ(T ), determined

from the fits to the spectra shown in Fig. 6.5. Figure 6.9 shows the evolution of the iron site

occupancies as a function of temperature, as determined from these fits. Starting at 450 K there is

a rapid conversion of A-type to B-type ferrous iron sites. The data set in Fig. 6.8 was fit with Eq.

6.1 to determine the activation energy for polaron hopping. The activation energy was found to be

505±50 meV, where the uncertainty arises from the choice a prefactor for Eq. 6.1. This value is

comparable to the result obtained for LiFePO4 of 470 meV [95].
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Figure 6.10. Revised phase Diagram, including two phase region above x=2/3.

6.4 Discussion

The solid solution lattice parameters (Fig. 6.4) show a gradual contraction of the pnma a-axis

up to 483 K. As the weight ratio of the solid-solution phase grows relative to the ordered phase,

there is a concomitant drop in the sodium concentration in the solid solution. This results in a

contraction of the a-axis that dominates the thermal expansion for temperatures up to the crossover

into a single-phase region, at which point there is no longer a driving force for sodium to leave

the solid solution. The other two axes show thermal expansion throughout the entire temperature

range, although both show a kink between 443 and 483 K. This discontinuity can be identified as the

crossing of a phase boundary into a region of complete sodium disordering on the lattice. Within

this temperature range, there is a rapid drop in the sodium concentration in the solid solution as

the lower concentration ordered phase is converted to a solid solution. This corresponds to the

temperature range of the loss of superstructure peaks. While a minority ordered component does

not entirely disappear until 523 K, this is probably a result of delayed kinetics.
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Figure 6.10 shows a revised phase diagram for the NaxFePO4 system that includes a two phase

region above x=2/3. The points along the phase line separating the two phase region from the solid

solution were determined from the Rietveld analysis. The blue dashed lines in this figure are from

pervious phase diagram study by Lu et. al. [16] and the green dashed line is added to account

for some degree of solubility of vacancies in the heterosite phase. At the highest temperatures the

sample will revert to the maricite phase plus some combination of phosphate oxides depending on

the concentration.

The phase stability of the NaxFePO4 system is likely influenced by the details of the coulombic

interactions between the Na-ions, Na-vacancies, electrons, and holes. In LixFePO4, the two-body

interactions between Li+, vacancies (V), Fe2+, and Fe3+ are essential to understanding the phase

behavior. While Li+/Li+, and V/V interactions promote the formation of a solid solution, the

Li+/Fe2+ and Li+/Fe3+ interactions contribute to a tendency for phase separation. As temperature

increases, the electronic configurational entropy from the disordering of the electrons and holes on

the lattice dominates [25].

Solid solutions of LixFePO4 (stable above 473 K) are easily preserved at room temperature

by quenching. Mössbauer spectra of these quenched samples show broadened quadrupole splitting

distributions and an overall decrease in the splitting compared to the pure end members, particularly

of the minority site [65]. This results from a sampling of a range of local environments, as expected

for a solid solution. The larger shift in the splitting of the minority component arises as a result of

a large number of sites that are dissimilar to the environment seen in the end member, i.e. an Fe3+

site surrounded by Li-ions. In contrast to the broadened distributions seen in LiFePO4, the sodiated

samples show two discrete ferrous components, indicating the presence of two structurally distinct

local environments for ferrous iron. The A-type site is reminiscent of the Mössbauer spectra of the

fully sodiated structure which exhibits a single site with a quadruple splitting of 2.74 mm/s. The

abnormally low quadruple splitting of the B-site (1.7 mm/s) is suggestive of a local environment

that is quite different, consistent with a sodium-deficient local environment.

Samples prepared with sodium concentrations below x=2/3 all show ferrous components with

area ratio of B/A-type sites of∼34/66, in reasonable agreement with previous results [16,26]. In the

study by Lu, et. al., samples in the concentration range NaxFePO4 (x = 0.1−2/3) exhibited an area

ratio of approximately 40/60. This range is within a two-phase regime of FePO4 and Na2/3FePO4.
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Above this threshold, as additional sodium is inserted into the lattice, the concentration of the B-

component falls off with the concentration of ferric iron. The relative ratio of the two ferrous

components in the present sample (20/80) is consistent with these results. In another recent study by

Boucher, et al., the room temperature spectrum showed a 30/70 ferrous site ratio, but when the same

sample was cooled to liquid nitrogen temperatures the spectrum no longer contained a secondary

B-site with anomalously low splitting. Instead, the spectrum could be fit with two overlapping

Gaussians, having a 50/50 weight ratio and quadrupole splittings of 2.5 and 2.9 mm/s [26]. The

authors suggested the presence of the secondary doublet at room temperature may result from rapid

electron dynamics, similar to the dynamical effects that are observed at higher temperatures in

LixFePO4.

Because the present sample (x = 0.73) is biphasic at room temperature, it is tempting to attribute

the two doublets to ferrous iron in the two phases. A combination of previous XRD and Mössbauer

work show that the secondary component is present for concentrations below x = 2/3, where

all ferrous iron is within the ordered structure. This observation, combined with the consistent

area ratio of the two doublets for all concentrations below x=2/3, suggests the secondary ferrous

doublet is inherent to the ordered structure. At 298 K the ordered phase makes up only 20% of

the Na0.73FePO4 sample. The retention of the two sharp spectral doublets suggests that the local

structure remains much the same in the solid solution phase, at least at room temperature. It appears

that the solid solution retains much of the framework of the ordered structure, shown in Fig. 6.1(b),

with additional sodium ions distributed randomly on the Pmna (220) planes.

The ∼34/66 weight ratio of the ferrous sites in the room temperature ordered phase seems to

contradict the proposed superstructure, determined from synchrotron x-ray diffraction and transmis-

sion electron microscopy [26]. In the fully sodiated structure, each iron has three pairs of symmet-

rically positioned sodium ions, forming a distorted triangular prism. In the proposed superstructure,

shown in Fig. 6.11, every third sodium along Pmna b-axis is vacant, giving rise to three distinct iron

sites with a 1/1/1 weight ratio. The three sites correspond to sites with one, two and three vacancies

in their six-fold sodium coordination shell. In 6.11 these sites are shown in red, green and blue,

respectively. Calculation of a sodium specific effective coordination number (ECoN) gives 3.72,
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Figure 6.1. (color online). (a) Olivine-type structure of MFePO4 (M=Li, Na) with chains of M+ ions
(blue), planes of FeO6 octahedra (red) and phosphate tetrahedra (grey). (b) Iron-sodium sublattice of ordered
superstructure for x=2/3. Three structurally distinct iron sites are shown in yellow, green and red. The axes
on left is for the orthorhombic pmna cell. Oblique axes of P21/n cell are shown in orange.
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Figure 6.10. Sodium-ion sublattice of the x = 2/3 ordered phase. Sodium ions are shown in yellow and
three structurally distinct iron sites are shown in blue, green and red, corresponding to iron sites with 3, 2 and
1 vacancies in the 6-fold sodium coordination shell.

sion electron microscopy [26]. In the fully sodiated structure, each iron has three pairs of symmet-

rically positioned sodium ions, forming a distorted triangular prism. In the proposed superstructure,

shown in Fig. 6.10, every third sodium along Pmna b-axis is vacant, giving rise to three distinct iron

sites with a 1/1/1 weight ratio. The three sites correspond to sites with one, two and three vacancies

in their six-fold sodium coordination shell. In 6.10 these sites are shown in red, green and yellow,

respectively. A calculation a sodium specific effective coordination number (ECoN) gives 3.72,

3.69 and 2.990 for the red, green and yellow sites. Here ECoN is defined as [97],
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where rmin is the shortest bond in the set and the sum is made over all Fe-Na bonds below a cutoff

radius of 4 Å.

Figure 6.11 illustrates the proposed evolution of the iron and sodium site occupancies with

Figure 6.11. Sodium-ion sublattice of the x = 2/3 ordered phase. Sodium ions are shown in yellow and
three structurally distinct iron sites are shown in blue, green and red, corresponding to iron sites with three,
two and one vacancies in the six-fold sodium coordination shell. The pyramidal outline of this coordination
shell in shown in black for a red-type iron site.

3.69, and 2.990 for the red, green and blue sites. Here ECoN is defined as [97],
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where rmin is the shortest bond in the set and the sum is made over all Fe-Na bonds below a cutoff

radius of 4 Å.

Figure 6.12 illustrates the proposed evolution of the iron and sodium site occupancies with

increasing temperature. The three iron sites in the ordered structure are depicted with their Na-

coordination shells for four temperatures between 77 K and 500 K. The temperatures are listed at

the top of the figure along with the B/A site ratios of the ferrous components in the Mössbauer

spectra. In this figure sodium ions are depicted in black and sodium vacancies in white. The central
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	  	  77	  K	  (B/A	  =	  0/100)	  	  	  	  	  	  	  ~200	  K	  (B/A	  =	  15/85)	  	  	  	  	  	  	  298	  K	  (B/A	  =	  33/67)	  	  	  	  	  	  500	  K	  (B/A	  =	  100/0)	  

Na+	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Na	  vacancy	  

Fe3+	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Fe2+A	  	  	  	  	  	  	  	  	  	  	  	  	  	  Fe2+B	  	  
Fe	  sites:	  

Figure 6.12. Temperature evolution of three iron sites in Na2/3FePO4 structure. Fe3+ ions are shown in
yellow and Fe2+ in purple, where dark purple and lavender depict A- and B-type ferrous sites. Sodium ions
are shown in black and sodium vacancies are shown in white. The pyramidal outline reflects the coordination
environment of the central iron site, corresponding to the colors of the iron ions shown in Fig. 6.11. Red
represents a crystallographic iron site with five sodium neighbors, green represents an iron site with four
sodium neighbors, blue represents an iron site with three sodium neighbors and brown represents the average
coordination environment for an iron site in the disordered solid solution phase. Temperature is listed at the
top of each column along with B/A site ratio.
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iron ion is shown in yellow for Fe3+ and purple for Fe2+, where the local environment of the

ferrous iron sites is indicated with different shades of purple. The sodium-rich and sodium-deficient

environments that give rise to the A- and B-type sites in the Mössbauer spectrum are depicted with

dark purple and lavender, respectively. The color of the pyramidal frame reflects the coordination

environment of the central iron site, where the red, green and blue outlines correspond to the three

iron sites in Fig. 6.11, having one, two and three surrounding vacancies, respectively. Upon total

disordering of the Na sublattice, the three iron sites in 6.11 are no longer distinct and the outline of

the coordination shells in Fig. 6.12 are shown in brown.

Electrostatic considerations suggest that the Fe3+ holes prefer the blue sites, surrounded by va-

cancies, while the Fe2+ electrons prefer the sodium rich red or green sites. Below room temperature,

we expect charge ordering on the lattice reflecting this preference. Assuming the quadrupole split-

ting decreases with sodium coordination, the 77 K Mössbauer spectrum can be interpreted as the

divalent cations exclusively occupying the the red- and green-type sites, shown in the first column

of Fig. 6.12. Given that the red and green sites have similar effective coordination numbers, this

charge ordering gives rise to two ferrous sites with similar quadrupole splittings in a 50/50 ratio.

While the diffraction results rule out a significant rearrangement of sodium ions between 77 K

and room temperature, this type of charge localization transition below room temperature is a pos-

sibility. As the temperature is raised, a disordering of electrons and holes on the lattice results in a

partial ferrous occupancy of the blue-type sites (with three sodium neighbors). The relatively low

effective coordination number of the blue site could account for the unusually low quadruple split-

ting of the B-type component in the Mössbauer spectrum. At even higher temperatures, a random

distribution of electrons on the three iron sites results in 1/3 of the ferrous iron sites, or ∼ 22% of

the total iron sites, with an Fe2+ ion in a sodium-deficient blue-type environment (third column of

Fig. 6.12). Moreover, if the bonding environment of the red and green sites gives rise to similar

values for QS, this electronically disordered state gives a B/A weight ratio of 33/67, consistent with

the experimentally-observed ∼34/66 ratio. For concentrations above x=2/3, as additional sodium is

inserted into the lattice, blue sites are converted to red sites and trivalent green sites become divalent.

The result is a fall-off in the weight fraction of the B-type ferrous sites that tracks the concentration

of trivalent iron.

Above 450 K, x-ray diffraction shows a loss of local order on the sodium sublattice, and Möss-
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Figure 6.13. Mössbauer spectrometry of Fig. 6.5, inverted, stacked and normalized for comparison. Dotted
lines mark the A- and B-type ferrous absorptions at ∼0 mm/s.

bauer spectrometry shows that all three sites start to look like a single site with an average sodium

coordination. With this delocalization of sodium on the lattice, there is an overall reduction of

sodium coordination around the iron sites. Red and green-type sites that result from clustering of

sodium in the ordered structure are converted to sites with lower sodium coordination. This is seen

as an overall conversion of A-type sites to B-type sites as the temperature increases above 298 K.

This is particularly evident from an inspection of Fig. 6.13, where the Mössbauer spectra have been

inverted, normalized and overlaid for comparison. At low temperature the ferrous absorption lines

at ∼0 mm/s are distinct, but with increasing temperature the weight of the B-type absorption line

grows relative to the A-type line. By 473 K, it appears that the B-type environment becomes the

majority divalent component. For the absorption lines at ∼2 mm/s, this effect is obscured by the

spectral collapse of the Fe2+ and Fe3+ lines that results from the concurrent onset of fast charge

hopping. This evolution of the iron environments is also apparent from the discontinuity in the

Fe2+
B quadrupole splitting between 447 K and 473 K. This jump represents an abrupt local change

in the B-type iron site, suggestive of a moderate increase in sodium coordination, as expected upon

sodium disordering.

The temperature range of sodium delocalization on the lattice corresponds with the temperature



96

range where electronic dynamics begin to show large effects in the Mössbauer spectra. An analysis

of the data of Fig. 6.5 gave an activation energy of 505± 50 meV. This is comparable to the value

determined using nuclear resonant scattering in LixFePO4 of 470 meV [95]. In the lithium system,

the onset of clear dynamical effects in the Mössbauer spectra is seen at a temperature ∼60 K below

the onset in NaFePO4. As the ion activation barrier is expected to be higher in the sodium system,

a temperature offset for ion delocalization of this magnitude is not unexpected. The higher tem-

perature onset of electronic valence fluctuations despite the comparable polaron activation barrier

point to the central role of the ion delocalization for the onset of electronic dynamics. It appears

that sodium disordering is required before the onset of electronic mobility.

Recent work looking at the activation barrier for polaron hopping in LiFePO4 suggested that

the mobility of the electronic carriers is correlated to the Li-ion mobility [95]. It was deduced that

strong binding and polaron-ion correlation should suppress the intrinsic electronic conductivity of

LixFePO4 and may also affect the diffusion of Li+ ions. Similar to LiFePO4, simulations suggest

that Na+ ions diffuse readily along a [010] channels and there is a high energy barrier to cross

between channels [15]. While the calculated activation barrier for ion mobility in NaFePO4 is

higher than in LixFePO4, it is still below 400 meV, implying reasonably facile ionic mobility. The

delayed onset of electron dynamics in the Mössbauer spectra compared to LiFePO4 is likely a result

of a higher activation energy for ion hopping.

6.5 Conclusions

Mössbauer spectra of Na0.73FePO4 were measured for temperatures between 298 K and 553 K.

An analysis of the spectra using the Blume–Tjon model for a system with a fluctuating nuclear

Hamiltonan gave frequencies of Fe valence fluctuations that correspond to frequencies of polaron

hopping. This analysis allowed for the determination of an activation energy for polaron hopping

of 505 meV. Synchrotron x-ray diffraction measurements collected in the same temperature range

showed that the disordering of the sodium sublattice coincided with a marked enhancement in the

electronic valence fluctuations that give rise to distortions in Mössbauer spectra. Additionally, the

synchrotron x-ray diffraction data revealed the presence a two phase region between the solid solu-

tion and ordered phases.
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The combination of the diffraction and Mössbauer results gave new information concerning the

temperature evolution of the iron and sodium site occupancies. At the lowest temperatures there

is a preference for both sodium ordering and electronic charge ordering. As the temperature in-

creases, electronic disorder started to develop, giving rise to ferrous iron in sodium deficient local

environments. The site occupancies from the room temperature Mössbauer spectrum indicate total

electronic disorder. Despite this apparent loss of electronic ordering, there is no evidence of charge

dynamics in the Mössbauer spectra, implying the polaron rate hopping at 298 K is still below the

MHz range. Above 450 K, there is a complete loss of order on the sodium sublattice, giving rise to a

true solid solution phase. This is also the range where the Mössbauer spectra begin to exhibit distor-

tions constant with fast charge hopping, suggesting a relationship between the onset of fast electron

dynamics and the redistribution of sodium in the lattice. These results clarify details related to the

sodium and electronic charge ordering in the structure and suggest that electron-ion interactions

play a role in both the phase stability and the elevated temperature charge dynamics.
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Chapter 7

Conclusions and future work

The interacting transport properties of transition-metal intercalation compounds make for a fas-

cinating research topic. The interplay between electron and ion mobility and the details of how these

transport properties are influenced by crystal structure gives rise to interesting fundamental physics.

Developing a local picture of how charge moves through the lattice is a perspective that has received

little attention. The focus of this thesis was activation barrier measurements for charge hopping in

the olivine-phosphate family. Nuclear resonant scattering measurements allowed for a study of the

local dynamics of thermally-activated polaron hopping in lithium and sodium-iron phosphate. This

led to new insights into the correlation between electronic carriers and mobile ions. There is a great

deal of interest in this family of materials due to their potential use in next generation battery elec-

trodes and new details concerning the influence of polaron-ion interactions on the charge dynamics

are relevant for optimizing the electrochemical performance of these materials.

My first experiments employed synchrotron nuclear forward scattering measurements at ele-

vated temperature and pressure to determine an activation volume for the charge hopping process.

This is the first use of nuclear resonant scattering to determine an activation volume. These results

showed the valence fluctuations in LixFePO4 are strongly sensitive to pressure, giving an anoma-

lously large and positive activation volume. This large, positive value is typical of ion diffusion,

pointing to a cooperative mobility of polarons and Li-ions. My second study looked at the sodium

analogue of LixFePO4. The sodiated material shows several interesting differences in phase stabil-

ity, including an ordered intermediated phase. A combination of synchrotron XRD and conventional

Mössbauer spectrometry allowed for the study of the temperature evolution of the delocalization of
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both Na-ions and electronic carriers on the lattice. These results revealed that the loss of sodium-

ordering coincides with a marked enhancement of electronic valence fluctuations. These results

show a new relationship between the ordering of the sodium and the electronic charge, and suggest

that polaron-ion interactions may play an important role in the dynamics of NaxFePO4 at elevated

temperature.

7.1 Future work

7.1.1 Pair distribution study of LixFePO4

A pair distribution function (PDF) investigation of the local structure of LixFePO4 as a function

of temperature and pressure would provide a structural counterpart to the nuclear resonant scattering

work presented in this thesis. Nuclear resonant scattering data provides valuable information about

the local electronic state of the iron ion, but the interpretation of our results would benefit from

a better picture of the local structure. While in-situ diffraction was collected during the nuclear

forward scattering experiments, these data gave only global structural information.

Sector 11 at the Advanced Photon Source has the capability to conduct both high pressure

and high temperature PDF measurements. While PDF studies as a function of temperature are

now relatively routine, studies at elevated pressure remain a challenge. The small sample volumes

necessary for conducting diamond anvil cell experiments result in a high ratio of background to

sample scattering. Additionally, quality PDF data require access to high scattering angles so the

restricted angular opening of a typical diamond anvil cell is problematic. Despite these challenges,

ongoing development work at sector 11 has made measurements up to 15 GPa possible. This is well

within the pressure range of interest for studies of polaron dynamics in LixFePO4. Combining high

pressure and temperature capabilities would likely involve additional development work, but two

independent studies of the temperature evolution and the pressure evolution of the pair distribution

function would have the potential to provide valuable information, including chemical short-range

order and thermal broadening of nearest-neighbor separations.
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7.1.2 Mössbauer study of electron dynamics in maricite-NaFePO4

Maricite is the ground state structure of NaFePO4. The triphylite structure is obtained only

via an ion-exchange route. Figure 1.7 illustrates the structural differences between these two poly-

morphs. In maricite, the site occupancies of the mobile ion are swapped with the iron cations. Con-

sequently, the sodium ions are isolated. As the structure lacks viable diffusion channels, maricite

is electrochemically inactive. Despite the diminished ionic mobility, it is likely that polaron-ion

interactions still play a role in the electron dynamics. In the maricite structure the iron octahedra

have edge-sharing connectivity, compared to the corner sharing network in triphylite. This results

in a closer iron-iron distance. The reduction in jump distance likely lowers the activation barrier

for polaron hopping, although if polaron-ion correlations influence the dynamics it is possible that

the lack of ion mobility results in a diminished electronic mobility as well. A Mössbauer study of

the temperature dependence of the polaron hopping rate in the maricite polymorph compared to the

triphylite structure would reveal new information concerning the relevance of ion conduction path-

ways to the electronic charge dynamics. Furthermore, a study of the phase stability of this structure

as a function of sodium concentration is potentially interesting as well.

7.1.3 Nuclear resonant scattering study of activation barriers in Li2FeSiO4

Li2FeSiO4 is another interesting material to study using nuclear resonant scattering. As all its

constituent elements are earth abundant, Li2FeSiO4 is an attractive candidate cathode material. Ad-

ditionally, the Li2FeSiO4 system presents the possibility of removing two electrons for each iron

cation, theoretically resulting in a higher capacity. Shown in Fig. 1.5 (e), the structure has two-

dimensional ion conduction networks. As a result, the ion mobility is likely improved compared

to LiFePO4 and the issues related to channel blocking by defects in LiFePO4 are not present. Un-

fortunately Li2FeSiO4 has not proved successful as a battery electrode, in part for reasons of low

electronic conductivity. A study of the pressure and temperature dependence of the polaron hopping

rate in Li2FeSiO4 could give insight into the relevance of the dimensionality of the ion conduction

pathways to the electronic activation barrier.
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7.1.4 Activation volume studies

Experiments on activation volumes are a largely unexplored. The concept of an activation vol-

ume is not limited to polaron hopping and applies to a wide range of activated processes in solids.

Ongoing developments in tools for high pressure measurements are making pressure studies possi-

ble for different scattering techniques and expanding the availability of sample environments. With

these advancements, the study of activation volumes is becoming increasingly accessible. While

there are a number of additional iron-bearing polaronic systems that could be studied, in theory it

should be possible apply the same technique to determine of an activation volume for atomic diffu-

sion as well by looking at “speedup” effects in nuclear forward scattering spectra due to incoherent

motions of a diffusing species. Iron diffusion is relevant to a number of structural and geological

materials. An understanding of how this type of diffusion is affected by pressure seems particularly

relevant to geological materials.

While nuclear forward scattering studies are limited to samples with resonant isotopes, other

techniques that measure dynamical properties could be extended to high pressures to obtain acti-

vation volumes as well. One possibility is using quasielastic neutron scattering to investigate the

activation volumes for the diffusion of light elements. The recent developments in high pressure

cells for neutron experiments open up the potential for these types of experiments. Diffusion of

light atoms in host structures has many parallels to polaron mobility, and conducting an activation

volume study could provide important physical information concerning the local dynamics. This

technique could be applied to a range of different types of hydrogen storage materials.



102

Bibliography

[1] T. Holstein, Ann. Phys., vol. 8, no. 3, pp. 343 – 389, 1959.
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