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ABSTRACT

An experimental method combined with boundary layer theory
is given for evaluating the added mass of a sphere moving along the
axis of a circular cylinder filled with water or oil. The real fluid
effects are separated from ideal fluid effects,.

The experimental method consists essentially of a magnetic
steel sphere propelled from rest by an electromagnetic coil in which
the current is accurately confrolled so that it only supplies force for
a short time interval which is within the laminar flow regime of the
fluid. The motion of the sphere as a functrion of time is recorded on
single frame photographs using a short-arc multiple flash lamp with
accuratély controlled time intervals between flashes,

A concept of the effect of boundary layer displacement on the
fluid flow around a sphere is introduced to evaluate the real fluid
effects on the added mass. Surprisingly accurate agreement between

experiment and theory is achieved.
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ON THE ADDED MASS OF A SPHERE IN A CIRCULAR
CYLINDER CONSIDERING REAL FLUID EFFECTS

I. INTRODUCTION

Qualitatively the idea of added mass is a familiar one., For
.example, let your hand be dipped into still water and then suddeﬁly
give a rapid acceleration broadside. The resistance to acceleration
of the hand is greatly increés ed by the water around it. The
increased resistance is due to the "virtuai malss" of the hand. The
difference between the real mass and the virtual mass is called the
"added mass''.

Added mass was first given an exact mathematical inter-
pretation by Greeh and Stokes in 1833 and 1843 (l). They evaluated
the added mass of a sphere in ;'ectil_inear accelerating motion in an
ideal fluid of infinite extent and arrived at the following classical
result, The kinetic energy of the fluid is equé.l to that which would be
possessed by a particle moving with the same speed as the sphere and
whose mass m is equal to half the mass of displaced fluid, Thus a
sphere in an ideal fluid is dynamically equivalent to é heavier sphere
in a vacuum whose virtual mass M' = M+ m 1is the mass M of the
sphere plus an '"added mass' m equal to half the mass of the dis-
placed fluid, but whose moment of inertia is unchanged.

The theoretical basis for.‘cal_éulating the added mass of a

general nonsphericai body was done by Kelvin and Kirchhoff who
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applied classical Lagrangian dynamics to the problem (1), (2). They
showed that the added mass is a symmetric tensor of the second rank.
For motion of a spherically sy:mmetricl body along an axis of symmetry
this tcns‘or reduces to a pseudo scalar,

All the work des_cribed to this point has been for ideal fluids.
The purpose of the present investigation is to study experimentally
the real fluid effecAts on the added mass of a sphere with the aid of
boundary layer theory used in conjunction with the theorevtical know-
ledge of ideal fluids. In these experiments a sphere is accelerated
from resf without rotation vertically along the axis of a circular
cylinder and the motion before the onset of boundary layer separation
is studied. In this region boundary layer theory can be used to
evaluate viscous forces. Also the flow about the sphere is axially
symmetric and in this work the added mass tensor was considered to

be a simple scalar.



II. THEORETICAIL EVALUATION OF ADDED MASS
FOR AN IDEAL FLUID

In the paper entitled '"The Flow Around a Spheroid in a
Circular Tube'" by W. R. Smythe (3) is defined an equivalent
length AL. According to Smythe this equivalent length gives the
electrical resistance increase of a solid conducting cylinder due to
the presence of a coaxial non-conducting spheroid inside it in terms
of the equivalent cylinder length, The specific formula for a sphere

in a circular cylinder is given as

4R03Co y
AI-J - .._._.2_ (Eq' 1)
3a _ '
where
Ro is the radius of the sphere
a is the radius of the cylinder

R
C0 is a function of the ratio __ao_ 5

The equivalent length AL can also be used analogously in
ideal fluid flow to determine the added mass of a sphere accelerated
aloné the axis of an infinitely long circular cylinder. In this
physical situation the length AL is the increase in resistance to
acceleration of the flow in a cylinder filled with fluid due to the
presence of a coaxial immovable sphere inside it in terms of the

mass of fluid in the equivalent cylinder length. Alternatively, if the
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bulk of the fluid remains at rest, the length AL is the increase in
resistance to acceleration of the sphere in terms of the mass of
fluid in the circular cylinder of length AL. Included in the equi-
valent cylinder length is the mass of fluid displaced by the sphere
itself which does not contribute to the fluid inertia.

Thus

pAAL = m + pV (Eq. 2)

where

A is the cross sectional area of the cylinder

p is the density of the fluid

m is the added mass of the sphere in the fluid

V is the volume displaced by the sphere.

Then using Eq. 1 the L.H.S. of Eq. 2 can be written

AAL = pimaZ) o =2 m3pc = pve
P = PURONTSE ) T3 TaPte B PV
Thus Eq. 2 reduces to the following simple relationship between

the constant C0 and the added mass coefficient:

_,,._pr\? = C, -1 (Eq. 3)

R

The values of Cs for various ratios E—Cl are tabulated to eight
significant figures in Smythe's paper (3). The following table of
added mass coefficients for various ratios of sphere radius to

cylinder radius is derived from the paper,



TABLE I

Added Mass Coefficient For Various
Sphere to Cylinder Ratios

Radiue Raiio Kdded Wians
Coefficient
R
o m

N PV
' 0.5012
0.5096
0.5330
0.5806
0.6660
0.8127
1.0693
1. 5653
2.8351
4.7915

o O O O O o O O O O
O 0 N O e WY

Ne}
8]
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III. EXPERIMENTAL EVALUATION OF ADDED MASS
APPROXIMATING IDEAL FLUID CONDITIONS

A, Basic Principles Used

It is theoretically possible to evaluate the added mass of
a sphere in a cylinder by applying an electromagnetic impulse to
a steel sphere in a vacuum and applying an identical impulse to
a sphere in a dense fluid of negligible viscosity and comparing the
velocities obtained at the end of the propulsive force pulse.

For the sphere launched from rest in an ideal fluid
vertically upward in the earth's gravitational field, equating the
total impulse applied to the sphere to its corresponding momentum

change gives

T/2
IW = f (FW - GW) dt = (M + rn)UW (Eq. 4)
where
- is the electromagnetic propulsive force
- is the negative buoyancy force on the sphere in the
fluid ("'negative buoyancy' is the weight of the body
less the weight of the displaced fluid)
t is the time
T/2 is the duration of the propulsive force
U, is the velocity of the sphere at the instant the
" propulsive force pulse is over
I is the net propulsive impulse in the fluid
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Similarly, for the sphere launched in a vacuum

T/2 :
f (F - G )dt = MU, ' (Eq. 5)
0

where the symbols are defined as above, except that launchings
are made in a vacuum as indicated by the subscript a.
Assuming F | and F, are identical, combining Eq. 4 and

Eq. 5 gives

1}

m
= | Yatmw il (Eg. 6}

where

T/2 . T/2
I = f G,dt and I, = f G, dt
a 0 e 0

The velocities Ua and UW and the mass M can be

measured and the impulses IG and IG can be calculated. Then
W a

the quantity _r_Mn_ can be found by Eq. 6.
The added mass coefficient is then determined by

= &) o) (Eq. 7)

where the density p is measured and the volume V 1is calculated

using the measured value of the diameter of the sphere.



B. Experimental Equipment and Procedure

1. Fluid Medium

The added mass coefficient determined by Eqs. 6 and 7 is
based on launchings in an ideal fluid and in a vacuum. In the
experiments air was used as a substitute for a vacuum because it
permitted a simplification of the apparatus and because the effects
introduced by the air medium were negligible in comparison with
the effects to be studied. Tap water was used for the fluid medium
in which the added mass of the sphere was measured., Here the
effects of fluid viscosity were very small in comparison with the
inertial effects but were not negligible, and an analysis was made
of these effects allowing a correction to be made for them.

2. Sphere and Suspension

The specifications of the sphere used in the tests follow:

1.0040 = 0,0001 inches diameter hollow unhardened
low carbon steel

Wall thickness, 0.014" approximately

Sphericity, 0.0005"

Weight, 5.6 grams approximately

Mass concentricity best obtainable

Welded assembly

8 R.M.S. or better

No loose material inside ball

High magnetic permeability comparable to 1010 steel
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To equip the sphere for the tests it was polished to a mirror
finish with diamond dust. Then a very small hole was drilled in it
and melted beeswax was poured into it until it ‘was just dense enough
to sink in tap water. This density was chosen so that the sphere
could be suspended by hanging it on a thread with as little tensile
force as possible, and also so that the mass of the sphere was as
small as possible in comparison to its added mass to facilitate good
precision in the measurements of the latter mass,

After the beeswax had been poured in, it was remelted and
allowed to harden with the center of mass located below the center
of buoyancy of the sphere so that the hole, the center of buoyancy,
and the center of mass were in a straight line. This was done to
orient the sphere initially in its rest position so that it would not
rotate during its motion in the tests, |

Next the hole was sealed with epoxy resin and a small
indentation left in the epoxy to allow a knot in the suspension thread
to be pushed into the indentation with a pair of tweezers,

The thread suspension was only used in the tests in liquid.
For the tests in air the thread was removed and the sphere was
placed with its hole vertically upward on a 3/8 inch diameter lucite
rod. The top of the rod was made concave and vented by slots at
the sides to hold the sphere in its initial position and to eliminate
possible air suction effects when the sphere left the rod stand. The
purpose of using the rod stand instead of the thread was to elimi-

nate the elasticity effects introduced by thé thread suspension. The
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effect of gravity acting on the sphere supported initially by the rod

stand was on the other hand easily calculated.

3. Test Cylinders

The cylinders-used in the tests were made of clear cast
acrylic resin. The base of each cylinder was made of a circular
lucite plate and fastened by screws to an aluminum ring which was
cemented to the bottom of the cylinder. An O ring was used as
a seal between the base and the cylinder. The cylinders were
carefully checked for longitudinal straightness and for circularity
of cross-section and the deviations in both were found negligible.
The dimensions of the cylinders are given in Table 2.

Before a cylinder was used in a test it was carefully washed
and dried. The region of the cylinder through which light for photo-
graphs was to be passed was carefully polished with rotten stone so
that there would be no hindrance to light passage. Next the cylinder
was placed in a vertical position in a large rectangular clear lucite
tank filled with water. The tank is described in detail in Ref. 4.
Since lucite and water have nearly equal indices of refraction the
diffraction caused by the curved walls of the cylinder was reduced
to a negligible quantity because the light reflected from the light
source off the sphere to the camera travelled through the water in
the cylinder and the water surrounding the cylinder. In any case
the curvature was in a direction as to not affect axial displacement

measurements.



Cylinder Measurement

TABLE 2
Dimensions of the Test Cylinders

R
o

LB, Q, I, Mean Mean Mean Wall a Approximate

Number Location (in.) (in.)- I.D.=2a O.D. Thickness 2R=1.004" Length
10 Top 4,436' 5,004 4,450 4,994 0,272 0.226 415"
Bottom 4,463 4,988 Inches Inches Inches
5 Top 3.470 4,055 3,480 4,053 0,287 0.289 4. 51
Bottom 3.489 4,050 '
9 Top 2.456 2.988 2.459 2.996 0.269 0.409 4'.5M1
Bottom 2.462 3,004
14 Top 1.942 2.469 1.940 2.474 0. 266 0.518 4'.5"
Bottom 1,937 2.474
13 Top 1.730 2.477 1.718 2.474 0.378 0. 585 4r_5n
_ Bottom 1705 2.470
‘ 7 Top 1.482 1.991 1.477 2.000 0,262 0. 680 415"
Bottom 1.471 2.008 ‘ ‘
12 Top 1.240 1.982 1.236 1.981 0.373 0.812 4'.5"
Bottom 1.232 1.979
11 Test

Section

1.109 1.762 - - 0.327 0,9053 4'-5"
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The cylinder was then filled to a height of 40 inches with tap
water and the sphere was suspended so that its center was 20 inches
below the water surface. This depth of water was found to be
adequate for eliminating end effects. That is, the motion of the
sphere behaved as though the sphere moved through an infinitely
long cylinder. Results of experiments proving that end effects were
negligible are included in a later section.

The suspension thread of the sphere previously mentioned
. in Section B.1 was passed through a hole in the center of an elevation
adjusting screw. The thread was brought out of the side of the screw
through another hole drilled to meet the center hole and fastened
securely to the side of the screw by tape. The adjusting screw was
placed in a lucite mount on top of the test cylinder. This mount was
constructed so that lateral movement of it could be precisely con-
trolled by a three point lateral suspension consisting of thumb
screws threaded through the mount against the cylinder wall. Thus
the sphere could be accurately positioned both vertically and
laterally in the cylinder. The initial vertical position of the sphere
was located precisely by sighting across the top of two horizontal
fiducial marks consisting of black tape on both sides of the tank.

The sphere was located midway between the two pieces of
tape which were about 2-1/2 feet apart. The proper initial position
of the sphere was determined when the tangent of the top of the
sphere was in a straight line along the sighting tapes. To locate

the sphere center on the axis of the cylinder, vertical black sighting
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1ines|were drawn on a piece of yellow tape and the tape fastened to
make a horizontal ring around the cylinder about 3-3/4 inches above
the top of the sphere. The sighting lines provided two vertical
sighting planes at right angles to each other. To locate tlhe sphere
in the center of the cylinder it was only necessary to adjust the
suspension mount laterally by the thumb screws so that the sphere
suspension thread was on the interslection of both sighting planes at
the sighting ring.

Photographs of the apparatus are shown in Figs. 4A, 5A and

6A in Appendix 4.

4. The Electromagnetic Propulsion System

The source of power for launching the spheres consisted
essentially of a bank of heavy duty capacitors charged by household
power through a high voltage power supply. The capacitors were
discharged through a propulsion coil fixed above the sphere. The
current flowing produced a magnetic field which acted to accelerate
the sphere vertically upward along the axis of the coil. At maximum
coil current the approximate magnet intensity was 1200 gauss.
Current was allowed to ﬂow‘ in only one direction in the R-L-C
circuit formed by the propulsion coil and the capacitors. This was
accomplished by a General Electric Ignitron mercury switch in the
firing circuit. In this way the sphere was given a force pulse, the
time duration of which was about 4 milliseconds. A circuit diagram

of the propulsion system is shown in Fig, 3A of Appendix 4,
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The initial voltage on the capacitors was maintained constant
throughout the tests. This was done by converting the capacitor
voltage to frequency by a precision voltage to frequency converter
and re;'a.ding the frequency on a precision frequency counter, By this
method the initial voltage on the capacitor was always set to the
chosen voltage of 3500 =1, The launching. coil temperature at the
instant before firing was rnaintained at the same temperature for
all tests. In this way the energy supplied to the sphere was constant
in all the tests. The coil temperature was measured by means of
a thermistor fastened to the coil. The thermistor resistance was
measured by a Wheatstone bridge and converted to its corresponding
temperature. The temperature chosen was 30°C. This was
sufficiently above room temperature to allow the coil to cool rapidly
enough after firing so that the waiting time between tests was only
about 10 minutes,

The coil itself consisted of 108 turns of 16 gauge copper wire.
A diagram of the coil sh-owing the initial position of the sphere is

shown in Fig. 1 below.
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- 7.125" 0. D. -

-~ 5.375" I.D, —————

! \ |

0.6875" | -
|

1

0.875 - | 230"

& !

TEST SPHERE

Fig. 1 - Propulsion coil showing initial
' position of the sphere.

The time duration and magnitude of the current flowing
through the propulsion coil was observed by an oscilloscope which
was connected to the circuit by means of a pickup coil in which
current was induced by passing one of the leads from the capacitor
to the propulsion coil through its center. The oscilloscope trace
representing the current was photographed by a Polaroid camera.
These photographs were used for determining the circuit constants

which were necessary in the data analysis.
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The launching coil was located and supported as follows:

A lucite cylinder with an inside diameter just large enough to allow
the coil to fit inside it was positioned in the lucite tank by means of
two beams resting on the top of the tank and fastened to the cylinder
by brass screws. The beams were permanently located longitudi-~
nally and laterally by means of appropriate stops consisting of brass
screws in the beams and in the top of the tank, The launching coil
was fastened to the bottom end of the lucite cylinder by means of
lucite brackets fastened to the cylinder by plastic screws. The test
cylinder was located laterally inside the coil so that their two axes
coincided, This was done by means of lucite adjusting screws
threaded through the coil mount cylinder to contact the test cylinder.
The initial position of the center of the sphere below the center of
the coil was chosen to be 2.3 incheé, a distance which permitted

a convenient magnitude of magnetic force to be supplied to the
sphere. This distance was maintained throughout the tests with

a deviation of not more than 0.0l inches by sighting and adjusting
the sphere elevation by the method described in Section B. 3.

A close approximation for the electromagnetic force of the
accelerating coil on the hollow steel test sphere as a function of
space and time is given by the solution of the same problem for
a splid steei sphere on the axis of a circular current loop above

it.
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SPHERE

Fig. 2 - Co-ordinate System.

Use is made of a spherical co-ordinate system r, 9, ¢
with its center coinciding with the center of the sphere and its polar

angle 6 measured from the top of the sphere on the axis of the

loop.

The vector potential o.f the loop alone for r < b is (see
Ref. 5):
| |H'VNI = sin a r\n .1 - 1

A¢ R IR (B—) Pn (cos az)Pn (cos 8)

ne=1
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where
Ag is the vector potential which has only an azimuthal
component
Mo, is the magnetic permeability of air
B is the magnetic permeability of the sphere
N is the number of turns in the loop
I is the electric current in each turn of the loop
a is the polar angle of the loop
b is the distance from the center of the sphere to the loop

Pnl(cos a), Pnl (cos @) are associated Legendre functions

The vector potential due to the magnetization of the sphere is of the
form of Aq) but must vanish at infinity.

Q0

A 4 = __vr E Cnr_n'anl(cos a)Pni(cos e) r >R,

n=1
where Cn are constant coefficients.

Inside the sphere the vector potential is

Qo
1"

A & = %\E E DnrnPnl(cos a)Pn1 (cos @)

n =1

The boundary conditions are:

At r =R A¢ + A¢ = A % 1 (normal magnetic
induction, continuous)
a[r(A¢ +A'¢):| B(rA':P)
= 2 (tangential magnetic

d o
Pyr . BEF field intensity,

continuous)
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Note:

Curl A

I
3
ws)
1}

-

T

where
B is the magnetic induction
H is the magnetic field intensity
A is the vector potential
The components of the curl of the vector potential are

o . aA
1 o(sing A¢) o
Curl, A T sin o [ 1) L)

1 aAr 8(rA¢)
Curlph = tomg |96 -~ 50 —37 —

o(rA ) 9A
Curlq)A ll: 6 - ]

T dr 00

From boundary condition (1)

: n G
sina o n _ n W
n(n+1) ('T)") * R o+l = ByBy b (1)
o
From boundary condition (2)
] sin a (Ro )n - Cnn = D (n+l)R n 2)
[ n b R ntl |~ n'\™ o
o
1 ‘J'v 1
Multiplying (1) by (n+1)——p— - (2) gives
e & -pz) sine R_© [{n+1)p. 2+p.2n]C
v ; ( O) & v n = 0
n B ntl

R
o
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Then

2 Ze s 2n+1
W - B ) sin a R,

- n [(n+l)uv2+ptzn:| b

n

Thus the vector potential due to the magnetization of the sphere is:

(pz-pvz) sine R . nR_n+l

W NI }
' v ) ( ° ) ( 0) P " (cos a)P 1(COS 0)
2 2 b r n n
n[p. n + (n-l-l)}LV]

(0 0]
WAl

n=1

Now to get the vertical component of the force it is necessary to

1
evaluate B i *

i 1 1
B = B sina+ B _cosa
P r ‘ 0

where
B _ is the radial component of the induction in the plane
of the circular loop
B and B' are components of the induction in the spherical

r 0

co-ordinate system

1
. 9 (sin a A¢)
B sina =

r da

, cos g 9 (rA'q))
B cosa = =
G T Or

i
Considering only the variable term of A¢ -

1 1
[Tﬁ_—i-—l_ Pn (COS 9) ] 0 = a
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Note:

1
1 z dPn(cos 0)
Pn (COS 6) = (1 - COS @ ) -—a—?o-—-s-——e-—

1
z
(1 - cosze) P'n (cos @)

I

1l

g
sin @ Pn (cos @)

Thus the variable term is

f
sine P

n
e (cos a)
T .

Now
]
1 0 [sinza Pn(cos ai‘
(Brs1n a)v - I_n+.?. - da
P (cos a)
sin a 0
nt2 Tcosa [(1 - cos a) dm]
ni{nt+l) sin a Pn(cos a)
= n+a
r '
and
B - ina P IS
( gCo*8 a)V = - cosa sina n(c¢:)s 8) === f—)
: - cosasmanP (cosa)
Hence

; _ nsina !
(Br51n a + BQ cos a)V = —r—ﬂ;z— [(n+l )Pn(cos a) + cos aPn(cos a)]
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The upward force acting on the sphere is given by

Fz = ZTTCNIBP at r = b .= «
where
F_, is the component of the magnetic force in the direction
of the axis of the loop
c is the radius of the loop.
uvncNZIZSinza - pz - p.vz RS 2nt1l 1
F. = ( ) P “(cos a)
Z b 2 2 b n
g l[p' n+ (1r1+1)\.LV ]

[(n+1)Pn(cos a) + cos a P;l (cos a)]

The first term approximation of the solution is

2
3lJ~VTrCNZIzSin2a (] ‘P‘vz Rd3 ” 3 5
F, = B —7z %) () 5
T T

22 .2 2, 4,3

N 3rNTIp @ -p,) ¢ Rz

R —— 73 8

b

B+ 2p

R_5 R_3

This approximation neglects (—E—) compared with (—12—)

For the coil and sphere used in the experimental tests

R, = —I—L%‘)_‘i—inches, 2z = 2.30 inches, and ¢ = 3.03 inches.

So then



.

R 2 R 2
() = = = 0.0347 .

o

Therefore the second term of the ‘series for F, is only 3.47 percent
of the first term. This means physically that the error in the force
by assuming that all of the magnetic material of the solid sphere is
concentrated at its center is only 3.47 percent.

For a given loop and solid sphere both in air the force can

be written

P2

Fz i Kzl

{(c™ + 27)
whe re
2 2 2
i 3“N P‘v(l"' = p'V )

K = ] v = constant,

o+ Zp.v

For a hollow sphere the first term approximation for force as a
function of space and time is about as good. However, the value of
the constant K' is different..

Thus for the hoilow test sphere and the propulsion coil used

in the experiments the magnetic force is given by

Kzl2 ;
F_= > VA , K constant (Eq. 8)

= (R, +z7)"

The current flowing in the series R-L-C circuit of the

propulsion system is given by
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1= Ioe-atsin wt (Eq. 9)
where
I is the current flowing at a given time
1 is the current constant

a = 57— is the damping constant

R is the total resistance of the energizing circuit
L is the total inductance of the circuit, and
w is the natural frequency of the circuit.

Substituting Eq. 9 into Eq. 8 gives the magnetic force on the sphere

as a function of space and time.,

Kz _Zatsinz wt
F o~ = \ (Eq. 10)
Z 2 2.4
(c” + z7)

_ Equation 10 is derived on the assumption that the motion of
the sphere producing eddy currents has negligible effect on the
strength of the magnetic force. This-assumption was shown to be
valid by observing that a non-magnetic sphere placed in the initial
position of the tests did not move in the rapidly changing magnetic
field of the propulsion coil, and anotin,g that the field changed much
more rapidly here than it did due to motion of the sphere.

The current and force functions of time from Eqs. 9 and
10 respectively are plotted on the following page in Fig. 3. The

force function is plotted for z held constant, A check was made
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to show that the experimental propulsion apparatus actually obeyed

these functions. The current and force as functions of time deter-
mined experimentally are shown in Fig. 4. These functions were
taken from the oscilloscope record of the experimental tests shown
in Fig. 7A of Appendix 4,

To measure the force acting on the sphere as a function of
time, the propulsion coil was suspended by very long weak springs.
The springs were weak enough so that the dynamic spring force was
negligible in comparison to the inertial reaction force of the coil.
Also, the period of oscillatioﬁ of the spring mass system was much
longer than the time duration of the magnetic force pulse. This made
it possible to obtain approximately the magnetic force by measuring
the acceleration of the coil and using the simple relation

F = Ma = M.a
C C s 8

where

s = sphere

c = coil.
The coil acceleration was measured using the oscilloscope and
accelerometers attached to the coil.

The current in the coil‘was measured at the same time as
the force using the oscilloscope and a pickup coil through which

one of the leads to the propulsion coil was passed.
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5. The Photographic Technique for Measuring the Motion of the

Sphere

The photographic technique for measuring the motion of the
sphere is described in great detail in Ref, 6. It will only be described
briefly here. |

The method for measuring position as a function of time
consisted essentially of using photographs of the virtual image or
""high light'" produced in a sphere by a stroboscopic point-light source.
The range and number of sphere positions to be observed over the
exposure sequence were adjusted by setting the frequency and gating
the number of flashes. A time-delay generator, adjustable to one
microsecond, triggered the flash sequence at the appropriate instant
after the propulsion coil was energized. The frequency used was set
and maintained throughout all tests by a variable frequency oscillator
with a precision frequency counter readout. The frequency used was
2000 £ 1 flashes per second. The time delay used was one-half
millisecond for all tests. Using this time delay the first two dots on
the displacement-time photographs were conveniently individually
distinguishable. A displacement-time photograph is shown in
Fig. 8A of Appendix 4.

To obtain the data the spheré initial position was carefully
checked and the energizing capacitors were charged to about 3510
volts, after which the room was darkened. Then the capacitor

voltage was allowed to leak off until the precision counter . monitoring
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it read 3500 volts, at which point the camera shutter was opened and
the launching circuit and stroboscopic lamp actuated, after which the
camera shutter was closed.

The images produced on the photographs were circular and
sharp and the author's experience indicated that the cross hairs of
the precision measuring microscope described in the sequel was
centered on them with a precision of + 5 microns for good highlights
and + 2 microns for very good highlights. The position of the high-
light images was measured by means of a measuring microscope
constructed by David W. Mann, Precision Instruments, Lincoln,
Massachusetts. This instrument had a measurement capacity of
200 millimeters in the abscissa and 30 millimeters in the ordinate
directions. The readout was one micron. The stage and cross hairs
were rotatable and both were provided with circular angular scales

with verniers so that the angles were readable to one minute.

C. Results

1. Obtaining Velocity from Displacement-Time Photographs

For calculating the added mass of the sphere in the
cylinder using Egs. 6 and 7 the velocities Ua and Uw were required.
These were obtained from the displacement-time photographs as
follows. The time duration of the force pulse was determined from
photographs of the oscilloscope trace of the current in the propulsion

coil and was 4,02 £ 1 milliseconds for all the tests, The first dot
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occurred between 1/2 and 1 millisecond after current started to flow
in the coil. The exact time at which the first dot occurred was
measured with a precision frequency counter. The accuracy of the
oscilloscope time scale was checked using the fact that the time
interval between light flashes was known to be 0.5000 + 0.0005
milliseconds. The current trace on the oscilloscope was interrupted
at the time of the light flashes. The first dot after the force pulse
was over on the time-displacement photographs was then found either
by looking at the oscilloscope trace or by counting the dots after the
time of the initial dot recorded by the precision counter. The velocity
as a function of time during the coasting period after the propulsive
force stopped was then determined by dividing the distance between
adjacent dots by the time interval between them. Next a straight

line was fitted by the method of least squares through at least the
first ten velocity-time points in the coasting regime and the velocity
of the sphere at the end of the force pulse was determined by the
intercept of this straight line at the time of the end of the force pulse.
This method was found to give uniform reproducible results., The
number of points used in the velocity time line was kept small enough
so that the sphere had not travelled over 0,40 inches from its launch-
ing position. A check was made of the linearity of the velocity-time
function by means of fitting stJ-:aight lines to a larger and smaller
number of points during the coasting regime and comparing these
lines to the lines actually used. Only negligible differences in slope

and intercept were found. The velocities obtained by this method are
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shown in Table 4 of Section 7.

The mean velocity versus time during the coasting regime
for all the cylinders is shown in Figs. 10A through 17A in Appendix 4.
- This mean velocity was obtained by averaging the velocities at each
corresponding time point for all the runs made. These graphs serve
only as a means of looking at the general motion of‘the sphere during
the coasting regime, They played no direct part in the measurement

of the added mass.

2. Correction for Gravitational Force

The sphere was launched vertically upward in the earth's
gravitational field and the gravitational effect was determined as
follows.

Shots in Air

The net force acting to accelerate the sphere was
F = Fa - Mg
where g is the acceleration due to gravity,

The ball begins to move at time T, when Fa = Mg. The

1
total impulse imparting momentum to the sphere was

T/2

f (Fa - Mg) dt

3]
where T/2 was the duration of the propulsive force pulse.

The total impulse imparting momentum to the sphere in the



5] -

absence of gravity would have been

T/2
[ F_dt
a.
0

The negative impulse imparted to the sphere by gravity is found by
subtracting the first integral from the seccond. That is

T/2 T/2
G =f F_dt - f (F_ - Mg) dt
0 ;8

or

£y
_ 1
T
I, = f F_dt + Mg (5 - T;) (Eq. 11)
0

The time T, was observed experimentally to be less than

1
1/4 m.s. <<—%-— ~ 4 m.s. Then the following approximate relation-
ship between the impulse and momentum holdsfor calculating Tl:

T/2
f (F, - Mg)dt = MU, (Bg. 12)
0

Then using Eq. 10 and neglecting the spacial variation of the magnetic
field, justified by the short distance the sphere moved, Eq. 12

becomes

f (Ke—zatsinzwt - Mg)dt = MU, (Eq. 13)
0]
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Performing the integration gives '

Kw

w -at T
MUa = m [E'(l - e )] = Mg‘f (Eq. 14)

This equation can be solved for %— since all of the other constants

are known. The values of ¢, w, and T and the method for finding
them are found in Sections IV.A and IV,B. Thus

K -2

v i 79660 in.sec.

‘Since Tl is less than 1/4 millisecond the magnetic force in the time
0<t < T1 can be written as
. 2

Fangmwt 0 <t<T

so that Tl can be found from

K sinamT1 = Mg
or
: _ Mg
sin Q)Tl = T
from which T1 = 0,0833 milliseconds.

Then using Eq. 11

T
st1nwtdt+g(-z—-—T)
0

Also

Tl T
. 8 K t
0 )
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3
K(mTl) . -1
~ T = Og 005 1n. SEF.
T . - . .5
Now = = 4,02 milliseconds and g = 386.4 in.sec. .
Thus the reduction in velocity caused by gravitational force during

~the propulsive force period is

a
M

= 1.5 Gmygew, (Eq. 15)

Shots in Water

As was previously pointed out the sphere was nearly the
same density as the water and only a very small net downward force
was exerted by gravity. For this reason T1 and the effect of initial
string tension were neglected.

The downward force exerted was

F = (M- pV)g

The impulse of this force during the pulse period was

T2 T/2
.9 zf thzf(M-pV)gdt
W
0 0

Performing the integration and dividing both sides of the equation by
M for convenience later in calculating added mass there results

e
W

vV, T
-5 = 0 -Fpez
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Now
M = 9.3055 gm.
p = 0.9980 gm.cm.—3for water at 21°C
V = 8.6835 cm.3
Thus
Iey
—xr— = 0.106 in.sec. "} (Eq. 16)

3. Calculation of Added Mass and Comparison to Theoretical
Value

A sample calculation for the added mass of the sphere in the
: R
cylinder with sphere to cylinder ratio -é'i’_ = 0.226 (Table 2) follows.

1 IGa IGW
=g |Y%tw™ ™| -1
W

L
M

82.29 + 1.51 - 0.11

573 -1 = 0,5017

The values of U‘_; and UW are the mean values taken from Table 4 in

Section III. C. 7.

M _ 9.3055 gm,
pV (0.9980 gm. cm. 94 18, BA35 sua,

1.0737

=

Then

It

m m M
- (_M_.) (W = (1.0737)(0.5017)

from Eq. 8, giving
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m
— = 0.5387

The theoretical value is found using Table 1, From Table 1:

For _a_°= 0.2 pﬂv = 0.5096
R
For _52 = 0.3 pinv = 0.5330

Using linear interpolation to obtain the added mass ratio for

_E?- = 0.226, we have

" 0.026 ,
<% = 0.5096 + (0.5330 - 0.5096) (4—ygp) = 0.5157

The ratio of the experimentally determined added mass ratio
to the corresponding theoretical value is

ex 0.5387
W - D.BIgT = l-0446

The experimentally determined added mass and the corresponding
theoretical values were calculated in the same manner for all of the

cylinders and the results are tabulated in Table 5 in Section III. C. 7.

4, Statistical Significance of Results

It is also of interest to obtain for tests of statistical
significance the limits corresponding to various levels of proba-

bility for the added mass ratios. Unfortunately, small sample
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theory is unavailable for making such tests directly and it will be

necessary to use approximate theory. Let the population (universe)

average values of U and T_ be U and U respectively. Let
ac w ac W
the standard errors of the average values be ?a and ?w . Let the
experimentally obtained ratio Eac/-ﬁw = £ where
'a, ‘a,
U = U_ + i - ¥

ac a
‘and the population (universe) ratio be X\ .

Then from statistical theory for large samples (Ref. 7)

e - 2
a, [op

?Ez = T\.EZ' + —Ni-z— (Eq. 17)
U Yac

In Eq. 17 it will be necessary to make some approximations,
We do not have any a priori knowledge of the population or universe
parameters, but fortunately from Table 5 we observe that the
variation of individual (and hence average) values is small compared
to their actual values. Consequently we may use the experimental
parameters in place of the universe parameters in Eq. 17 without
introducing appreciable error. That is, we use
— 2 e &
= G . EZ Tw " “a
Ty = = o
U U
w a
to estimate 'EE . Since the samples are small, standard errors are

computed by means of the well known formula
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= B

”JZ %

=1 NN—I

where N is the number of items in the sample. Then from Eq. 6

the standard error in the added mass can be found, That is

mex ac
e = = -1= f£-1
w
SO
m
E. = g-nk
m m

where m__ is the experimentally determined added mass. Then

the standard error in mex/m is given by

U'EM V
m (Eq. 18)

M
(£+0‘£'1)‘n_1

- w-1E =

The standard errors and the confidence limits for 2 and 3 times the
standard error corresponding to probabilities of 0,9546 and 0.9973
respectively that added mass will fall within these limits are shown

in Table 5 in Section C. 7.

5. Correction Due to Magnetic Irhpulse Differences

A small correction due to differences between the net pro-
pulsive impulses imparted to the sphere in the tests in air and in
water was necessary. The impulse imparted to the sphere in the

tests in water was the lower impulse because the virtual mass of the
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sphere in water was greater by approximately the amount of its added
mass in this medium. This higher virtual mass in water prevented |
the sphere going as far into the field of the coil as it did in air. For
the distance covered ‘by the sphere during the propulsive for‘ce period
the spatial variation of the magnetic field was an increasing function of 7
~sphere displacement. Hence since the sphere did not go as far into the
field of the coil for tests in water, the net propulsive iinpulse applied
to it was less than for the tests in air. The spatial function of the
ma;gﬁetic field is shown in Fig. 5.

Instead of Eq. 6 which assumes that the impulses are equal, a

" new equation in which they are not quite equal is necessary, That is

G

IF = (M+m)Ua+IG and I EMUa +-Ia

F
w w a

as before, but since Ia and Iw are not equal the following more

complicated equatibn is obtained from the above two equations instead

of Eq. 6. o & IGa .
mo_ 1| et Sw (Eq. 19)
M T T, (IFa ) M . | . .
=2

which was evaluated by using Eq. 10 and the displacement time -
photographs.

From Eq. 10 the spatial variation of the magnetic field of
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the propulsion coil is

f(z) = Z
(c™ +z7)

Expanding this in a Taylor series about Z the initial position of the
sphere, and keeping only the first two terms, which is a good
approximation because the displacement of the sphere was small in

the field of the coil, gives

fz-2) = flz) + f(a Nz-2) +....

2 2
c - 7zo

= f(ZO) + 5 Z 5 (Z - Zo)
(c™ + zg )

In the experiments the radius of the propuléion coil was ¢ = 3,03

inches and Zy = 2.3 inches., Then

f(z ~ zo) = 5.246 - 4,3903(z - zo) x 10-5'11'1ches"7

where 2z - z, is in inches.
Let the displacement from the initial position =z - zZ, = -S(t).

Then S(t) is the displacement of the sphere in inches measured

upward from its initial position.
-5, -7
f(z - zo) = (5.246 + 4.3903S) x 10 Tinches (Eq. 20)

Substituting the approximate space function given by Eq. 20 for the

exact space function in Eq. 10 and integrating over the pulse time
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gives the impulse due to the magnetic force. That is

i T/2
-5 -2at_, 2
IF = FMdt = Kx10 (5.246 + 4.3903S)e sin wt dt
0 0
or
T /2 T/2
Ip + 1.195 K PRk db kB f S(t)e-zatsinzwt dt
0 0

1
where K is a dimensionless constant.

T2 2 -at
f e_zatsinzwt dt = £ (- ez L = 9.894 x 10-453‘3-
. 4w + a7 )a

The circuit parameters w, @, and T remained for all
practical purposes constant in all tests and the values used in the
preceding integral were measured by the method outlined in
Section IV.B. The mean values of the measurements taken from
sixteen launchings were

1

a 185 rad. sec.

781 rad.sec. o

w

T/2 = 4.02x10f3sec.

Now the impulse integral can be written

. T/2
E o n.emma s f Slk)e" 0t @k T ned, (Eq. 21)
K ;

0
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Equation 21 is a convenient form for determining the required

quantity

The integral in Eq. 21 was readily solved numerically using
Simpson's rule. The displacement. S{t) was determined using the
same time displacement photographs used for finding the velocities
at the end of the force period. The value so determined was the
mean of the time displacement values determined from all of the
seven or eight repeated trials. Curves plotted from these values
are shown in Figs. 18A, 19A and 20A of Appendix 4.

Since the first dot on the photographs occurred‘ approximately
0. 75 milliseconds after current began to flow in the propulsion coil
it was necessary to make a calculation to determine the displacement
of the sphere during this first 0.75 milliseconds of time. This dis-
placement was very small in comparison to the total distance
travelled during the pulse period and was therefore easily accounted
for by approximate methods.

Using the same approximation for the force pulse as in
Section III. C. 2, the velocity of the sphere in air at time t,

TIS t < 0.75m.s.

is given by
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t

U(t) =f K Sinzwt dt - g(t - Tl) = % [("‘)Tt _ Sanmt)
Tl 4
wly sinZle

This equation is then integrated to give the displacement S at time

t = 0.75 milliseconds. That is

wt i
K (wt)z cos 2wt le stle wt
S(t) ~ > T + 5 - | ( > - T ) wt
w wT wT
1 : 1
_ 2 2
£ =Ty - gle-T)T (Eq. 22)

Substituting the values of K, w and T1 as in Section III. B. 2, the
value of S at time t= 0.75 milliseconds is determined. This
gives S = 0.0017 inches for t = 0.75 m. s.

The evaluation of the integral in Eq. 21 was facilitated by the

following table.



Evaluation of Impulse Integral

Elapsed Time et ' s=54+0.0007 "%  For Simpson's

t m.s. e sin” wt Inches Inches Se sin” wt Rule
0.75 0.2314 0 0.0017 0.00039  y_= 0.00039
1.25 0.4318  0.0075  0,0092 0.00397 4y, = 0.01588
1.75 0.5014  0.0225  0,0242 0.01213 2y, = 0.02426
2.25 0.4196  0.0455  0,0472 0.01981 4y, = 0.07924
2.5 0.2470  0.0762  0.0779 0.01924 2y, = 0.03848
3.25 0.0967  0.1129  0.1146 0.01108 4y, = 0,04432
0.0112  0.1527  0.1546 0.00173  y, = 0.00173

w15

Z: 0.20430
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Then, using Simpson's rule

3.75 = 10“3

-2at_. 2 h
f Se sin wt dt = E (YO + 4y’1 + 2Y2+ 4y’3+. . .4Y2n_=+ an)
t

(5 x 107>)(0. 20430)

3 = 0.3405 x 10_4in.sec.

The value of the integral from t = 3,75 m.s. to the end of the pulse
period was

4,023 x 1072

" ¥ -
BB db (—26-)(%"—) e 0, 001L8 2 30 tin, sec,

3,78 % 1072

The value of the integral from the start of the force pulse to

t=0.75m.s. was

0,75 = 107> . |
f Sie Ptk db 59 (wzcl)(Z_%t.) = 0.00098 x 10™%in, sec.
0

Then adding the three integrals gives

T2
I, = f Se_zatsinzwt dt = 0.3427 x 10-4in.sec.
0

The same treatment applied to the tests in water in the largest
it
cylinder (4.45 1.D.) gave

T/2

'11 & f Se~28t5;n% Lt dt = 0,2410 x 10~ %in. sec.
2 ,

i
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Then using Eq. 21 we obtain the ratio of the impulse in air to the

impulse in water in the largest cylinder

F
a . 823 0. 342
_ 11.823 + 7 e 1.0084
F
W

The impulses for the smaller cylinders were easily calculated by
noting that the integral I1 was approximately proportional to the

total displacement S during the pulse period. That is

2)

2 S( 1} -

Il( ¥ Il( ) (Eq. 23)
S

The following table gives the impulse ratio based on Eq. 23 and

the 11 integrals for the largest cylinder. Here the displacement

i
S which neglects the very small displacement during the first

0.75 milliseconds was used instead of S for convenience.



Ratio of Propulsive Impulse for Sphere in Air to

T

Table 3

Propulsive Impulse for Sphere in Water

F
a
Cyl. 1.D. Displacement 1 11 F
Inches During Pulse Period In. Sec. a
4,450 0.1053 0.2411 x 10"4 1.0084
3.480 0.1016 0.2326 1.0091
2.459 0.1010 0,.2313 1.0093
1,940 0.0958 0.2194 0.0103
1.718 0.0916 0.2097 1.0111
1.477 0.0776 0.1777 1.0138
1. 2%6 0. 0621 0.1422 1.0168
1.109 0.0399 0.0914 1.0211

ratio,

Fig. 5.

Now Eqs., 19 and 11 are used to calculate the added mass

The results are tabulated in Table 6, Section III. C.7.

The spacial variation of the magnetic force is shown in

z_ 1is the initial position of the sphere. z, and z__ are

W

the positions of the sphere at the end of the force pulse in air and

water in the 4,45 inch I.D, cylinder respectively.
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6. Surface Effects

For the theoretical evaluation of the added mass for an ideal
fluid the cylinders were assumed to be infinitely long. For the
experimental evaluation of this added mass a column of water about
40 inches high was used with the sphere initial position near the
middle of this column. A series of tests was made to show that
the effects of the free surface above the sphere and the bottom of the
cylinder below the sphere were negligible. In other words, the
added mass measured represented the added mass for infinitely long
cylinders, |

The tests consisted of a series of measurements of added
mass for various heights of the water column above the initial
position of the sphere. The depth of the sphere center was varied
from a minimum of one inch to a maximum of 19 inches, the latter
depth corresponding to the standard test depth used for all the
cylinders, These measurements were done only in the largest
cylinder. It was discovered that the 19 inch depth used was more
than adequate, On the other cylinders a visual check for the
motion of the free surface was made, as an extra precaution. No
motion of the surface was observed during the tests.

The variation of added mass with depth is shown in Table 8,
Section III, C.7, and Fig. 8, Also shown in this section are results
of some tests for vertical motion of the sphere toward the water

surface in a large tank giving no wall effects.



Table 4

Velocity of Sphere at the End of the Acceleration Regime

for Tests in Water in Various Cylinders and Tests in Air

int, is time interval of 1/2 millisecond
At is time over which straight line was fitted

Cylinder _
I.D. (inches) 4.450 3,480 2.459 1.940 1.718 1.477 1.236 1.109
56.18 54,93 53,74 49,38 47.03 42,53 30.98 20.76
Velocity 55.58 55.04 53,85 50,17 47.56 42.57 31.51 20.07
at end of
el 55.66 54,75 52.98 49.79 47,77 42.59 31.64 19.88
regime 55.80 54,98 53.65 49.95 47.06 43.17 31.38 20.25
(in. /sec.) 55.35 54,71 53,26 49,88 46.63 42.35 30.99 20.20
55.75 54.93 53,10 50.01 47.40 42.09 31.04 20.50
55.80 54.63 52,96 50,16 46,68 41.85 31.16 20.33
' 54,75 47.03 42,36 31.15 20.20
Mean sphere velocity Uw’ Ua. (in.sec. )
55.731 54,840 53.363 49.906 47.145 42,439 31.231 20,273
*b in.sec, _lint. =1
-0.081 -0,094 -0,079 -0,064 -0,083 -0,072 -0,065 -0,180
. At m.s. 4-1/2 5 5 5-1/2 6 7 5 2-1/2
* b is mean slope of velocity-time line after force pulse

Tests
in Air

82.
82.
82.
82.
- 82.
82.
81.

82.

43
43
66
30
12
10
99

29

"L

sjnsay jo sydear) pue sajqe],

_6?_



Table 5

Effect of Cylinder Diameter On the Added Mass of a 1,004 Inch Diameter

Sphere Accelerated Axially from Rest in Water

Cylindes Theoretical Experimental

‘i'r D Added Mass Added Mass
(inches) in Mex
pv pVv
4,450 0.5157 0.5387
3.480 0.5648 0.5302
2.459 0.5883 0.6101
1.940 0.6924 0.7265
1.718 0.7907 0.8320
1.477 1.0172 1.0434
1.236 1.7177 1.8029
1.109 2.9388 3.3280

Mean for 7 largest cylinders

Ratio

m
ex

th

m

1.0446
1.0653
1.0370
1.0492
1,0522

1,0258

1.0496

1.1324

1.0462

Standard
Error in

m
ex

+0. 0063
0.0044
0.0082
0. 0060
0.0034
0.0075
0. 0055

0.0057

Confidence Limits

0.9546  0.9973
0.0126  0.0189
0.0088  0.0132
0.0164  0.0264
0.0199  0.0180
0.0069  0.0103
0.0150  0.0225
0.0110  0.0165
0.0114 0.0171



RATIO: ADDED MASS/MASS OF DISPLACED FLUID
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Fig. 6 - Added mass of a sphere accelerated along the
axis of a long circular cylinder
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Table 6

Added Mass from Table 5 Corrected for Difference

Between Impulse in Water and Air

Cylinder Experimental Ratio
1.D. Added ) o
(inches) Mass
eh
ex
PV
4,450 0. 5251 ' 1.0182
3.480 0.5499 1.0372
2.459 0. 5945 _ 1.0105
1.940 0.7084 : 1.0231
1.718 ‘ 0.8111 1.0258
1.477 1.0146 0.9974
1.236 1.7554 1.0219

1.109 5.2661 . 1.1119

Mean for 7 largest cylinders ' 1.0192
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Table 7

Added Mass of a 1,004 Inch Diameter Sphere
In a Large Tank of Water for Various Depths
of the Sphere Below the Surface

Initial Depth Added Mass Added Mass at h
of Sphere Center Coefficient Compared to Added Mass

h inches i AL o

pv my

m

@

1/2 0.3581 ' 0.7162

5/8 0,4263 7 0.8526

3/4 0.4822 . 0.9644

7/8 0.4878 0.9756

1 | 0.4993 - 0.9986

1-1/8 0.5028 : 1.0056

1-1/4 0. 5137 1.0274

1-3/8 0.5163 1.0326

*1-1/2 0.5239 1.0478

* Surface tension caused the water surface to just
touch the launching coil mount,
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Fig. 7 - Added mass of a sphere accelerated vertically
toward a free water surface in a large tank.
Depth of sphere center is expressed in diameters,




Table 8

Added Mass of a 1 Inch Diameter Sphere in a 4,45 Inch
Diameter Cylinder for Various Depths of the Sphere
Below the Free Water Surface in the Cylinder

Initial Depth of =~ Added Mass Added Mass at Mean Velocity Froude No.
Sphere Center Ratio Compared to Added at End of Pulse U
h inches m Mass at oo ‘ i S5 sed -1 S -
pV my W ) 1fgh
m
w
1 0.5239 1.0139 56. 24 2.89 .
.o Ut
1-1/4 _ 0.5559 1.0780 53, 64% 2.44 !
1-1/2 0. 5508 ' 1.0659 55, 31 2,29
2 0. 5491 1.0648 53.87* 1.94
3 0.5477 1.0621 54, 42 1,60
5 0.5384 1.0440 55,74 1.31
10 _ 0.5403 1.0477 54,90 0.88
19 0.5386 1.0444 55,73 0.67

*Experimental points done at a later date than the remainder of the points.
A corresponding set of tests in air was also done for determining the added

mass.,
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Fig. 8 - Added mass of a 1.004 inch diameter sphere accelerated vertically along
the axis of a 4,45 inch I,D, cylinder toward a free water surface,
Depth of sphere center is expressed in diameters,
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IV. EXPERIMENTAL AND THEORETICAL EVALUATION
OF THE REAL FLUID EFFECTS

A, Experimental Data

The fluid used in the experimenfal tests was No. 7 white
mineral oil of density 0.8806 gm.cm. B and viscosity 63.61 + 0.10
centipoises at ZIQC, measured with a Hoeppler Precision Viscometer.
The apparatus and techniques used for obtaining the experimental
data were the same as for the tests in water previously described.
in Section III. The one inch diameter hollow steel sphere was pulsed
vertically upward from rest along the axis of the 4.45 inch I.D. lucite
cylinder filled with the No, 7 mineral oil so that initially the top
surface of the oil and the bottom of the cylinder were both about
20 inches from the center of the sphere. The tests were run at the
temperature at which the viscosity of the oil was measured.

Eight individual runs were made to obtain the required

experimental data. The following results were obtained.



Table 9

One Inch Diameter Sphere in No. 7 Oil in 4,45" I,D. Cylinder

Test No,

550
551
552
553
554
555
556
557

Mean

U

in. se
fe')

5l. 75
51.60

51.92.

51.85
51.90
51., 41

51,89
52, 01

51.792

U
o

b

1 Rise Time to

c. - 5 in. sec. -lint. "% Max, Coil Current
| -0.418 1.6778 x 10 sec.
-0,436 1.6668
-0,503 1.6286
0,482 1.6211
-0.475 1.6683
-0.459 1.6688
-0.423 1. 6541
~0. 439 1.6817

-0.454 1. 55w 3077

- final velocity of sphere at end of force pulse

Pulse Duration

T2

4,0324 x 10*3sec.
4,0292
4,0274
4,0260
4,0285
4,0240
4,0295
4,0312

4,029

- mean slope of velocity versus time curve over the

- first 9 time intervals after the pulse in units of inches
per second per interval, The interval used here is
one-half millisecond, the time between dots on the

photographic data.

-gG-
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For the purpose of calculating added mass a similar set of

tests was conducted using air as the fluid medium. The following

table of results was obtained.

Test No.

558
559
560
561
562
563
564

565

Mean Value

U _in.sec.
oo

81.04

80. 52

79.89

79.63
19..39
79.78
72.15
79. 52

79.865

Table 10

Rise Time to
Max, Coil Current

1.7541 x 10 3sec.
1.7214
1.7341
1.7320
1.7361
1.7234
1.6992

1.7037

L. 265 10~ seis

Pulse Duration
T/2

4, 0131 % 10 2sec,
4, 0207
4,0161
4, 0254

4,0143

- 4,0256

4,0087

4,0177

4.018

B. The Force Function Used for Accelerating the Sphere

The method of propelling the sphere through the fluid was

by the electromagnetic propulsion system described in Section

III.B.4. The axial electromagnetic force as a function of time is

given by Eq.

10,
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K.ze_zaltzsim2 wt

.

F =
(c™ + z'?')4

(Eq. 10)

To use Egq. 10 to obtain the magnetic force as a function of
time it was necessary to determine experimentally the circuit
parameters ¢ and w. This was done as follows.

The current flowing in the electromagnetic coil was
I = Ie “sinat (Eq. 9)

This current was allowed to pass in one direction only by a
thyraton. Thus the coil current is cut off at half the period of

the circuit,
wT

leoy —— =T (Eq. 24)
Table 9 gives the pulse duration measured from the oscilloscope
trace of current versus time. Using Eq. 24 and the mean value

of T/2 for the eight trials gives

w = 7.798 x 10°rad. sec. ~1

The maximum current flowing in the propulsion coil is given when

dI

from which

6
tan wtm w 5= (Eq. 25)
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Table 9 gives the rise time to maximum current measured again

from the oscilloscope trace previously mentioned, Using the mean
. "
value of t from this in Eq. 25 gives
max

¢ = ¥.998x 10%rad,see, "t
Equation 10 can be written
F oy Kalbie™  sin® (Eq. 10)
where
z(t) = 2
(c™ + z7)

The initial value of z = 2.30 inches and the radius of the coil,
¢ = 3,03 inches.

The sphere moved approximately 1/8 inch while the force
pulse acted. Thus z(t) can be considered approximately constant

during this time interval and the force function can be written

F o Koo ain® it (Eq. 26)

where K is a constant of proportionality.
A graph of displacement of the sphere as a function of time

during the force pulse interval is shown in Fig. 20A of Appendix 4.

C. The Viscous Wall Shear Force

The fundamental boundary layer equations are
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du du du 1 o ‘azu
=Bt t Ykt Voy T '3'53’%“‘ "—Tay
9(ur) 9(vr)
ox ¥ 'dy 0
Vo

Co-ordinates

The wall shear stress on a sphere launched Suddeniy from
rest at velocity U __ at time t= 0 is given from the solution of

these equations, i.e.,
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a U 1" dU (A
Moy gm0 = :vt {go (0) + t[ﬁg L1 (0

2 (d 2 Ud2 U
dx

+ g—- T L% " (0) ) §2a ©0) + oz ?;gb (0)

2 2 .

U dU d u“a
P E RGO e ©
2 2 i
+ %_(%) Fae (0)] Foaw e s } (Eq. 27)

where x and y are the coordinates along the surface and

perpendicular to the surface respectively.

U

u

i

potential flow velocity at the surface of the sphere
velocity of the viscous fluid around the sphere
perpendicular distance from‘ the axis to the surface
of the sphere

dynamic viscosity of the fluid

kinematic viscosity of the fluid

1
;aﬁ (0) = the numerical coefficients of the series solution

to the boundary layer equations evaluated by

E. Boltze in his Goettingen thesis (8).

For the motion studied in the experiment it can be shown

that the first term makes the largest contribution to the viscous

drag and viscous drag impulse. The drag due to the second term

integrates to zero due to the fore and aft symmetry of the sphere
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and the third term makes a contribution which is only about 0.2
percent of the first term. The detailed calculations are shown in
Appendix 1.

The first term corresponds to the exact solution for a plate
at zero incidence (10), Since the higher order terms are negligible
in comparison with first order terms, a very good approximation of
the viscous wall drag can be found by considering only this term.

The solution to the problem of the sliding flat plate is shown
in Ref. 9. The préblem and its solution are briefly stated here for
convenience.

Let the fluid occupy the region y > 0 and let the x axis
coincide with the flat plate. Furthermore, assume that for t <0
the fluid is at rest, u = 0 and the pressure p = Pwo" At t = 0 the flat
plate starts moving parallel to itself with velocity f(t). It is easily
seen that the fluid velocity perpendicular to the plate, v, remains
zero and the pressure p remains constant so that the Navier Stokes

equations reduce to

4
]

¢ = g (Eq. 28a)
R = O Eq. 28b
" vy (Eq )
2 = -u | (Eq. 28c)

where € is the vorticity and u is the fluid velocity parallel to and
past the plate. In this case both velocity and vorticity obey the

simplest form of the heat equation.
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2
, ' g oT 0" T
The fundamental solution of the heat equation = K is
2
_ X
e 4kt

.2\[@

which represents the ohe-dimensional temperature wave resulting
from instantaneouély introducing heat of amount pc at the point x =0
at t =0 (p= Vdensity, c = specific heat). The negative x derivative
of the fundamental solution is called an instantaneous dipole or doublet.
It is known from the theory of the heat equation that the
solution may be obtained by a’ doublet distribution along the platé of

strength f(t) per unit length,  Thus

2 o
" ) y
ufy, t) =f Babes 20— T,
» 0 24]mV (t - '1')3‘ o (Eq. 29)

The vorticity may be found directly as foliows. On the plate its

normal derivative

o - azu
is prescribed to be

_ldf

T vdt

The resulting vorticity wave may then be found by a distribution of
source strength along the plate equal to twice the normal derivative

of . This gives
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t 2 | 2
" =_[ £ (r)e U - Ty " f(O)e—zYGT (Eq. 30)
0 ‘\’Tl‘v(t - T7) : ‘Jm

The skin friction at the plate Ty is directly proportional to £2:

Ty = ”é%))r:o = - p0(0, t) (Eq. 31)

Now for the problem of the sphere launched in the viscous fluid by
the electromagnetic propulsion system, a very close approximation

to the viscous shear stress may be found. From Eq. 26

t
f(t) =~ Kf o2 5080t dt
0
and
£ & Be it (Eq. 32)

Equation 32 assumes that gravitational force and viscous forces are
small in comparison with the magnetic force. The relative magnitudes
of these forces are shown later in this discussion.

Substituting Eq. 30 into Eq. 31 gives

t i 5 ‘
- = Hf f(r}dry p£(0) | (Eq. 33)
0

\[17 Vit - 7) +\l'rrvt

and substituting Eq. 32 into Eq, 33 gives
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e-za'rsinzw-_r dr '
o = qu (Eq. 34)

“0 ‘\’“V(t - 7)

The value of K in Eq. 32 can be determined from the results at the

end of the force pulse in the experimental tests, where the velocity

of the fluid is known:

T2
Uoo(-'g-) = K f R wT dr
0
Then
T
K = Ut
- T d
f e-zaTs1n wr dr
0

Thus the wall shear stress at any time t during the force pulse is

given by
(T)p\/_f s1n wrdr O0=sts<sT/2
O-xy = sz (Eq. 35)
f e_ZGTsinzw—r der
0

The total impulse due to the shearing stress during the propulsive

pulse period is



BB

T/2
T v T -2 -
T/2 ZUOO(-Z)p1’-T-I_- ./‘1’—2- - T e “Tsin wr dr
0
Xy 0 -2a 2
f e Tain“w 7 dr
0

(Eq. 36)

Equations 35 and 36 which give the wall shear stress and the wall
shear stress impulse on a flat plate will now be applied for the
determination of the wall drag and impulse on a sphere. As has
already been shown the wall shear stress is very nearly directly
proportional to the velocity outside the boundary layer. Then it is
only necessary to know the velocity distribution around the sphere
and take this into account in inteérating the wall shear stress over

the whole sphere to get the total wall shear drag.

D. The Free Stream Velocity

The free stream velocity for flow about a sphere in a circular
cylinder can be found by considering the vector potential in Ref. 3.
It is only briefly stated here. The details of the calculation are shown
in Appendix 2.

The vector potential is

1 11

Ay = A, 4 A¢" + A'¢ (Eq. 37)

The velocity of the fluid is given by
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V. = curl Aq: (Eq. 38)

The flow velocity adjacent to the sphere is

C, R, 3 R, 5
U(e) = U_sing |1+ —5 + 0.5312 (=) C_ + 0.2001 (=) C_

Ro - 2
- 1.000 (T) cos 6C0+ o % @ ] (Eq. 39)
Ro = radius of sphere
a = radius of the cylinder
R
Co = constant coefficient depending upon —.—}
For the experimental tests performed in the laboratory
Bs
— = 0.2256, C_ = 1.5157
a o
giving
U(e) = U_(1.5146 sing - 0.0009 cos”p sing) . (Eq. 40)

The drag and drag impulse for the sphere launched along the axis
of the cylinder are now found using Eqgs. 35, 36 and 40. The drag

at t = T/2 due to wall shear stress is

™ T/Z 2(1
-eaT , 2
p[l’TFf 2R Zsin®p U(e)def 8 Jsm G Oy
' (t - 7)
0 0
= o

f e_z_a'rsinzu)'r d-r

0



-70-

= 0.991 £ 0.002 x 104grr1.in.:sec.-2 (Eq. 41)

The units are mixed for convenience here. In the laboratory the
scale used for weighing was calibrated in grams and measurements
of distance were done in inches,

The drag impulse due to wall shear stress over the propulsive

pulse period is

us Pl
2p ’% f Z'rrRozsinze U(g) de f‘/% - e_zaTsinzw-r d>-r
e 0 0
D ™ T/2
f e'za'rsinzmrr dr
0 ‘
s 38,94 & 0,07 gm.dn.aee, ™ (Eq. 42)

For details of the evaluation of D and 1. using Eqs. 41 and 42,

D
see Appendix 3.

For Eqs. 41 and 42 to be valid it is necessary that separation
of the boundary layer did not occur. From Page 218 of Ref, 10 the
distance travelled before separation-starts for a sphere launched
impulsively from rest is SS = 0,392 R, . The problem at hand
was solved with high accuracy by superposition of impulses. The
- minimum distance that the sphere could travel before separation due
to the first of these impulses in absence of the other impulses which

followed was ‘SS = 0.392 Ro = 0.197 inches. From the graph in

Fig. 20A of Appendix 4 the total displacement of the sphere during



= 1]

the force pulse was 0.112 inches, well within the distance given above.

One can also consider separation by looking at the problem in
a slightly different way. The motion of the sphere can be compared
with the case of uniform acceleration which was solved by H. Blasius
(10). From this solution it is seen that separation occurs at a later
time and longer distance from the starting point for constant acceler-
ation than for motion started impulsively.

In short, motion started impulsively is the worst case. Then
for the problem at hand where the acceleration as a function of time
was a damped half sine wave, the sphere travelled a considerable

distance after the force pulse was over before separation started.

E. The Evaluation of the Added Mass of a Sphere in a Viscous Fluid

For the sphere launched in the viscous fluid, equating the

total impulse acting on the sphere to its momentum change gives

Tiz i t= T/2
f (Fo -D - Go) dt = fd(M Uoo) = [(M + m)Um]
0 t=0
(Eq. 43)
where
Fo = magnetic propulsive force
D = viscous drag force due to wall shear stress
Go = negative buoyancy force
M = mass of the sphere
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m = added mass
U, = velocity of sphere through the fluid.

For a sphere launched in air the impulse momentum

relationship is

T/2
f (F, - G,)dt = MU, (Eq. 44)
0 ;
where
Fa = magnetic propulsive force in air
Ca = gravitation force on the sphere.

Defining the impulses by

t
I :f F dt
a a
0

and using Eqs. 43 and 44, the following relationship can be deduced.

I

Ga I
m _ 1 Ua.+ M _ ID Go 1 (B 45)
M~ T I M T ™M | T kY
(o] F
L+
F
o
IF '
Here i is found using Eq. 23 and Table 3. The displacement S
Fo
IFa .
was 0.1010 inches giving T = 1.0093 .,
F

Using the values of U, and Uoo from Table 9, ID from



S

Eq. 42, and the values of remaining terms on the R, H.S.,

1 79.87 + 1,51
= oy (g - 4.186 - 0,268) - 1

<8

= 0.4709 £+ 0.0061 (Eq. 46)

The details of the calculation of the error are shown in Appendix 3.

The relative magnitudes of the various force impulses acting
on the sphere can be seen by examining the numbers in Eq. 46 and
comparing them with their countérparts in Eq. 45. The order of the
appearance of the terms in these equations is preserved for this
purpose,.

The added mass for a one-inch diameter sphere in a 4,45 inch
diameter cylinder using an ideal fluid is found from potential theory

to be (bas‘ed on Ref. 7):

v = 0.5157 , (Eq. 47)

where p is the density of the fluid, V is the volume of the fluid
displaced by the sphere, and‘ m is the added mass.

When the sphere moves in a viscous fluid its boundary layer
grows. Thus the moving body inside the potential flow increases in
size. This in turn causes the added mass of this body to increase.
Assuming thgt the sphere plus its bouﬁdary layer is still a sphere,

the added mass ratio becomes

m

PV T M,

= 0.5157 (Eq. 48)
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where MD is the mass of fluid’carried along in the boundary l:_a.yer
of the sphere due to shear force in the fluid.

The quantity My can be determined by considering the drag
impulse from Eq. 42. Equating the drag impulse ID to its corre-

sponding momentum change, we have

T2 T/2
Iy = f Ddt = f d(MpU)
0 0
. or
T/2
Iy = MpU_ I = MD(%)U(%),
0

the momentum of fluid carried along with the sphere. Since the drag
impulse ID can be found from Eq. 42 and the velocity of the sphere

Uoo is known at the end of the force pulse, the mass MD can be found.

1
B 38.94 % 0. 07 gm. in. sec. ™}
Wy ® o= B =
UOO(-Z-) 51.79 = 0,07 in. sec.

1]

0.7519 + 0.0024 gm.

so that

PV + My = 7.6988 + 0.0017 gm. + 0.7159 % 0,0024 gm.

= 8.4507 + 0.0041 gm.



.

Then
M _ 9.3035 £ 0,0001 gm. _
pV+MD - 8.4507 gm."""— 1.1009 = 0, 0005 .

Thus, using Eqgs. 46 and 48

m M

e 8 Tet] B e
PV + My T M eV + M

) = 0.5184 £1.4%
D -

Here the possible error in the impulse correction has not been
accounted for. Since the total correction is less than 3 percent
of the added mass coefficient allowing a generous error of 15 percent
in the correction would still keep the total experiment«ia.l error under
+2 percent.

Comparison of the experimentally evaluated added mass to

its corresponding theoretical value gives:

m .
experimental _ 1.0052

Miheoretical

a very close agreement, well within the estimated total experimental

error.

F. Comparison of the Viscous Drag Evaluated from Boundary Layer

Theory to Viscous Drag Evaluated Directly from Experiment

After the propulsive force pulse was over the sphere was
allowed to coast in the fluid and its motion was observed. A velocity
versus time curve for this motion is shown in Fig. 10. A similar
curve for the corresponding tests in air is shown in Fig. 9. The

points plotted are the mean values of eight runs. The deviation of
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the points from the smooth curve through them are not only due to
statistical deviations but for the most part, they are due to systematic
fluctuations of the motion. Examination of the data showed that the
velocity at a specific time in each test separately indicated that the
velocity deviated uniformly for all eight tests. From Page 218,
Ref. 10, for a sphere launched impulsively from rest separation of
the boundary layer is calculated to take place after the sphere has
travelled 0,392 R where R is the sphere radius. This point
corresponds to the time, 1-1/2 milliseconds, after the propulsive
pulse is over. Large deviation of the points from the smooth curve
in Fig. 10 appears to begin about this time.

To determine the slope of the velocity-time curve at time
ks 0, where to is the time elapsed after the propulsive force is
over, corresponding to the end of the force pulse, various methods
were employed. The tangent to the curve at t, = 0 drawn by eye
gave a slope of 1.250 x 103in. sec, _2. A straight line fitted by the
method of least squares through the first four points, i.e., between
t. = 0 and t. = 1-1/2 m.s., on each test gave a mean slope of
1,380 x 10%in. sec. "2 for eight tests. Fitting a parabola by least
squares through the mean value of each point for all points from
t,=0 to t = 9-1/2 milliseconds, i.e., all the points on the graph
in Fig. 10, gives an initial slope of 1,032 x 1070, see. ™,

The slope of the velocity curve can also be found by considering

the forces acting on the sphere. Equating force to its corresponding

momentum change gives



=T

"
_d(M u)
Bm et
or
" du d
-D-M-pV)g = M Tt Y3 (m+MD)
where
M” = m+MD+M
S0 dM
dm D
E& _ -D - (M - PV)g - uT + u—a-f-—-

Now, from Eq. 48,

Mp, )yt
m = 0.5157 (pV + Mp), Mp(t) =
i iy
2
so
[ 0.5157 M~ (<)
dm] - D'Z
-HT t=T/2 L
also
a ‘ T
dMD] _ MpG)
d(m+M ) = 141.5 gm.sec =k (M-pV)g:él‘)xlOzin sec e
af D . . . 9 . . . »
du _ -(0.9910 x 104 - 0.062 x 104)gm.in.sec._2
dt ~ 9.3035 gm. + 0.7519 gm.
: -1
-(51.79)in.sec., ~(148.3)gm.sec. - -1.239x IOBin.sec._z

+ 0.51 A + 7. gm.
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This value of %‘%’ agrees favorably with the slope of the curve

evaluated by examining the motion directly.
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Fig. 10 - Sphere in No. 7 mineral oil in 4. 45 inch I.D. cylinder

Figs. 9 and 10 - Vertical upward velocity of 1.004 inch diameter
sphere after propulsive force ended
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V. CORRECTION FOR REAL FLUID EFFECTS
IN THE TESTS IN WATER

The method used for evaluating real fluid effects in the
previous section is applied to the tests in water. The potential
flow wvelocity at the surface of the sphere is given as in the

previous section by

Co Ro 3 Ro 5 ‘
U(g) = |1+ —p +0.5312 () C_ + 0.2001 (=) C_ | U_sing
R 5 2 ‘
- 1,000 (-a--) C,U,8ine cos 9 (Eq. 39)

From this is obtained the free stream velocity required for

calculating viscous drag.



Table 11

Velocity Distribution for Flow Around a Sphere in a Circular Cylinder

Cylinder'I.D. ) Coefficient Free Stream Velocity at the Surface of
(Inches) Co the Sphere U(g)
4.450 1.5157 © (1.515 sing - 0.0009 sing cos’p) U_
3,480 1.5302 (1.531 sing - 0,0030 sing cosze) Uoo
2. 459 | 1.5883 © (1.591 sing- 0,0180 sinp cos*g) U_ &
1.940 | 1.6924 (1.701 sing - 0.0632 sing cos>9) U_ '
1.718 1.7907 (1.811 sing - 0.1230 sing cos*g) U__
1.477 2.0172 (2.037 sing - 0.292 sing cos*6) U
1.236 2.7177 (2.798 sing - 0.960 sing cos’g) U__

1.109 3.9388 (4.320 sing - 2.386 sing cos’6) U__
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The impulse due to viscous drag can now be found using

Eq. 42. For the tests in water

v = 1,007 x 10'2cm.sec.-1

3 at21°¢
p = 0.9982 gm.cm.

UOO('_ZT_) = Uw’ from Table 4,

Then using Eq. 45 the value of %— can be found and hence pr\r; .

The following table gives the results.

Table 12
Added Mass Corrected for Impulse Due to Viscous Drag

Cyl. I.D, Drag Impulse Added Mass Ratio Comparison of

2a (In.) I_D (in. _IE‘. m, Expz.nto Theory
M ‘sec.) pvV pVv ex
T
4,450 0.6383 = 0,0001 0.5128 ~ 0,5157 0.9944
3.480 0.6347 0.5376 0.5302 1.0140
2.459 0.6398 0.5816 0.5883  0.9886
1.940 0.6366 0.6947 0.6924 1.0033
1.718 0.6369 0.7907 0.7907 1.0075
1.477 0.6350 1.0172 - 1.0172 0.9818
1.236 0.6153 + 0,0008*% 1.7177 1. TETY 1.0098
1.101 0.5895 : - o - -
Mean for 7 largest cylinders 0.9999

* See Appendix 2 for details of calculation.



Table 13

Added Mass Corrected for Impulse Due to Viscous Drag

and Boundary Layer Displacement Effect

Cyl. I.D. pPV(gm.)  Mp(gm.) PV + My (gm.) FV'—+H'11\4_D :L::
4,450 8.6182 0.1066 8.7248 0.5094 0.9878
3,480 8.6182 0.1157 8.7339 0.5334 1. 0060
2.459 8.6186 0.1116 8. 7302 0.5776 0.9818
1.940 8.6184 0.1188 8. 7372 0. 6892 0. 9954 éﬁ
1.718 86184 0.1257  8.7741 0.7897 0.9987
1,477 8.6184 0.1392 8.7576 0. 9885 0.9718
1.236 8.6186 0.1833 8.8019 1.7084 0. 9946

1.101 8.6185 - - = =

Mean for 7 largest cylinders 0.9909
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VI. SUMMARY AND CONCLUSIONS

The method used for evalua.lting the real fluid effects on
added mass gave very good agreement between experiment and
theory.‘ Neglecting the effect of the boundary layer on the potential
flow around the sphere and its boundary layer, or in other words,
considering only the effect of wall shear stress on the resistance
t;o motion, the experimentally evaluated added mass for the tests
in oil wou}d be

m

s = 0.5690

The corresponding ratio of experimental to theoretical added mass is

Mex  0.5690

Ty, - 0.5157 ° 1.1033

To evaluate the effect of the boundary layer around the
sphere on the free stream flow two steps were taken.
(1) The sphe‘re plus its boundary layer was assumed to be still
a sphere., Then since it is known that added mass in a potential flow
"is independent of the history of the flow, one can conclude that the
theoretical added mass ratio in the free stream flow was unchanged.
Thus for the largest test cylinder for Whi(:h the wall effect remained

effectively unchanged by the boundary layer.
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BTT%?EZE; = 0.5157

(2) The size of the sphere plus its boundary layer at the end of
the propulsive force interval was determined by the momentum
deficiency caused by the wall shear stress. The velocity of the
sphere at the end of the force pulse was measured and the impulse
due to the wall shear stress was calculated using boundary layer
theory. From these quantities the mass deficiency was calculated
by the relationship '

Ti2

Using these ideas the ratio of experimental to theoretical

added mass for the tests in oil was

m

ex 0.5184 _
m, - 0.5157 = 1. 0052

which is well within the experimental error which was estimated to
be less than 2 percent.

The same fnethod was then applied to the tests in water where
the dynamic viscosity was about 1/64th of that of the oil. The mean
correction for real fluid effects on the tests in the seven largest
Cyiinders was 2.83 percent of the theoretical added mass, giving for
these cylinders a mean ratio of experimental to theoretical added

mass of
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m
ex

= 0.9902%

Mn

The results of the investigation show that the methods used
gave very good agreement between the experiments and corresponding
theory.

An interesting observation was made in the free surface tests,
The added mass as a function of initial depth was found to have a
maximum for an initial depth of the sphere center, h, in the neigh-
borhood of 1-1/4 inches. At maximum added mass the Froude number
based on the velocity of the sphere at the end of the propulsive force |
was 2.2. The added mass at the maximum was about 3 percent above
its deep water value, and added mass decreased very rapidly from
the depth of the maximum to smaller values of the depth h.

The experimentally evalua;ted added mass of the sphere in the
seven largest cylinders showed uniformly close agreement with theory;
however, the experimentally evaluated added mass in the smallest

cylinder was distinctly higher than its corresponding theoretical value.

R R
o

The radius ratio here was = 0.9053. At this value of ——— the

slope of the added mass versus radius ratio curve is very high and
the added mass is very sensitive to changes in effective sphere radius
due to boundary layer growth, The interaction of the boundary layer
around the sphere with the cylinder walll is very complicated and no
quantitative evaluation of its effect on the added mass was made.

However, qualitatively, it can easily be seen that the effect of the
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presence of a boundary layer is to increase the effective added mass
of the sphere. The boundary layer presence causes a greater con-
striction through wlﬁch the potential flow must pass, thereby causing
an increase in effective added mass. A smaller counteracting effect
in the boundary layer is due to the high velocity of the fluid through the
constriction between the sphere and the cylinder. The boundary layer
thickness at the greatest constriction is kept thin by the high velocity
of the flow through this region. To get some feel for the magnitude

of the distances involved a calculation was made of mean boundary
layer thickness at the end of the force pulse. The calculation based

on the momentum deficiency due to wall shear stress gave

I

- ()M
MD = (-H)—ﬁ——' = 0.2688 gm.
oo
giving
MD
g B =——pe & 0.005 inches.
p4wR
This gave
Ro* 5M _ 2(0.502 + 0.005) _ | .
a - 1.109 -

i.e., the mean‘boundary layer méménturn thickness plus the sphere
radius is actually larger than the radius of the cylinder.

The shapes of the mean velocity versus time curves in Figs.10A
to 17A indicate strong'interaction of the boundary layers with the

cylinder walls in the two smallest cylinders. These curves represent
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the velocity of the sphere as a function of time beginning at the end of
the propulsive force pulse. For the six largest cylinders these lines
are very nearly stréight; however, for the second smallest cylinder
the curve shows a slight increase in negative slope with increasing
time, and for the smallest cyliﬁder this increase is very marked.
This implies that there was a force increasing with time acting to
decelerate the sphere. The force might have been caused by the
growing boundary layer contacting both the sphere and the cylinder
wall which produced an increasing shear force to act on the sphere,.
Another possible cause might have been the contracting of the space
between the sphere and the wall caused by the growing boundary layer,
which produced a strong increase in the effective added mass due to
the high velocity required to get the fluid past the sphere,

In evaluating the velocity of the sphere, U, in the smallest
cylinder it was necessary to fit a shorter straight line to the '""coasting"
displacement-time data. Here it was found that using only six dis-
placement-time points gave a reasonably good straight line., In other
words, the velocity of the sphere during the first 2-1/2 milliseconds
after the force pulse ended was approximately linear for the purpose
of determining the velocity u,. For all the other cylinders at least
ten points were used in each velocity-time line. The straightness of
the lines was checked by fitting more points and comparing the slope
and intercept giving Uw’ to the slope and intercept of the shorter lines.
It was found that accurate results could be achieved using these

straight lines fitted by the method of least squares.
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APPENDIX 1

Details of the Calculation of Wall

Shear Drag Using Boltze's Solution

The wall shear stress on a sphere is given by:

_ uU 1" dU 1R} U d (R}
Oxy = $g0(0) * tl}tﬁt’la(o) b T (051

2 dzU U dU dr =

FE|ER) Laa (O + VS L00 ¢ T o O

=

2 2 2 2
U” d'r £ U~ dr L
B e QZ"Z(EI (0) + '1'2' (a;c‘) 2‘:"26 (0)] (Eq. 27)
where
x . x 3 ; X
0 = T 3 r(x) — Rosln —R—' s and U = -Z UCDS].n T
O o o

for a sphere in an infinite fluid,
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Fig. 1A - Co-ordinates

The derivatives in Eq. 27 for a sphere in an infinite fluid

are then given as follows,

au _ 3Umsin¢ ‘ au 2 9 Uoozco_s2¢
&= R, ‘& T 7
o
2 U _ sind 2 U sinsz
a“u 3 y 4°u 9
'g“z" = T e E 2 . a2 2
x R dx R
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dr _ oge, U 4U dr U o ain20
RE = g = o= =
dx r dx dx 4R2
O
2 . 2.
d%s sing e d% _ 90, =in"¢
o & . e = - =2
dsg” R T ax? 4R
The first term in Eq. 27 is

WU U _ sing

s & "(0) = 1.128
Z\FE i

£, (0) = 38¢.(0)

<8

The second term is

o Ut au , U dr,
— [_c’l;gla P+ = whry (0)]

2’Vt

] " U
= 9”—t-{§13(°> t iy (0>] R sind coso
o

L, (0) = 1.614

C‘lb (0) = 0,169

The third term of the series is

2 2 2
p Ut dU 1 udTu " ,
= [('d_x-) gZa (0) + E'Z— Z’Zb (0)

Zl’vt
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U dU dr Uz =

" d“r " Uz dr 2 1"
trE @ f2e O Y T 770200+ & bze O
X r

32
27 WUt

" . 2 " 3

= + ¢ (0) sing cos™ 9 + ¢ (0)sin™ @

16R2 oT [ 2a 2b
o‘\}

1" t
_gzc (0)sing cosze + §,2d (0)511139 + ?;Ze”(O)sine cosze:l

"

L, (0) = -0,248
L,y (0) = -0.068
QZC”(O) = -0.029
I;Zd”(O) = -0.022.
gze”(O) = 0.036

Substituting the above numerical values reduces the third term to

3.2
27p.UOO t

: 2
o = ——— 0.068 sing - 0.309 sing cos™ @
16 VER [

The total wall shear drag acting to decelerate the sphere is

T

i 2 . 2
D "f“xyRo sin g d@g
0

The contribution to this by the first term is



f sin39 dp = --:%-cose(sin29+ 2) = %

The contribution to the wall shear drag by the second term is

v,

o [:gla"(onc,lb”(o)] UoozRof sin>g cos¢ dg

13 4 ™
f sin39 cosg dg :[S_]%__e.] = 0
0] 0

Thus it can be seen that the second term makes no contribution to the

total wall shear drag.

The contribution to the wall shear drag by the third term of

the series is

™

32 ™
270U ¢t
p o o [0.06:3[ sin s dg - 0.309f 40" B cos g 4
16,’vt 0 0

k13 ‘ 4 ™ T
f ain’g sin%g dg = [ i?ﬂsiin_e] 3 %f sin>@ dg
0 =0 0

Then



3,2
27wU_ ¢t
o _ 20 [g.<o.068-°-_3_g_9)]

16‘fvt
Comparing the drags due to the first and third terms gives

2
(3) U ¢t
D o)
..].:)-m = 0.0031 [ = :I

o}

The largest value of this ratio during the propulsive force pulse

occurs at the end of the pulse where

5. 71 i e ™

U =

(0 0]
t = 4,028 sec.
R = 0,502

o

giving

at this time

__(.1_)..' = 0,00053
D

Thus

p3) < 0.00053 D) for 0=t s%

where % is the duration of the force pulse.

Then



<9 =

T/2 T/2
p3at £ 0.00053 f pMae
i 0

0 -

Hence the wall shear impulse due to the third term of the
shear stress series is negligible in comparison to that due to the
first term of the series.

Since the series for the shear stress is in powers of

o
R
o

the higher order terms decrease in ma;gnitude. Hence the viscous
wall shear drag and the impulse due Ito it during the propulsive force
interval are given with very Vgood accuracy by conéidering only the |
first term of Eq. 27, corresponding to the soiution for flow over

.a flat plate.
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APPENDIX 2

The Free Stream Velocity for Flow About a Sphere

~on the Axis of a Circular Cylinder

The veloéity of the fluid at the surface of the sphere can be
found from the vector potential determined by W. R. Smythe in his

paper entitled "Flow Around a Spheroid in a Circular Tube'. (3)

- 2a =

CYLINDER
/_ WALL r ______
£

SPHERE

Fig. 2A - Co-ordinates
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In this paper the vector potential is given by

where

rn

A = A°+A 1A (17)
$ ¢ ¢ ¢
1
E 8P (@)
N
Vopocn o 2n+2 1
= Y nz=:0 @n+ 37 & P2n+1(g) (5)
N
vOZ A (~> Plsz(g) (11)

2nt2
c(-l)r“’f’“(%) I(2n+2p+2)C_
= ; 7 (12)
m(2n)' (20 + 3)(2n+2pt3)@2p + 2)°

Here the number in parentheses at the end of each equation is the

equation number in Smythe's paper.

v
(o}

The

is the flow velocity far from the sphere, which is
equivalent to the velocity of the sphere in the
cylinder, Uoo’ in the viscous flow problem solved
in Section IV.

is defined in Smythe's paper as the radius of the

sphere, i.e., c = Poe

orientation of the spherical polar co-ordinate system

(r, 6, ) is shown in Fig. 2A where the radii p and a are also

shown,
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Cn are constant coefficients

P1 are associated Legendre polynomials
(2n+1)

I is an integral which is defined and

evaluated in Table 1 of Reference 3.

The velocity at any point is

V = curl A¢

The velocity at the surface of the sphere is given by

CurleA‘b B e g
Now
o 1 8Gv,rising |
CurleA b = D = + vosme
. LS v p G (2n+ 1) _ 2n+2
Curl A = Z (=)
ko) o (4n + 3)r T
n=
A @p+2) | 2ptl
Cur19A¢' Bo= Y, Z —-*"—'i;——"—'—'(a')
p el 0
Forn= 0:
1 :
b VoP CoPl (€)
CurleAq) = T
1 1
z 2
Pl1 = (1 -gz) = (1 - cosze) = sing@



-101-

- vopCOSine Covosine
Cur19A¢ = T e 3
For n= 0:
p+l,c %
L ST Iee + 2)g,

P w3 (2p+ 3)2p + 2)t

p=0
= 2
2 - -C(E-) I(Z)Co
o 9
ki & e & :
CurleA(;, 2 g (E) I(Z)Covosme
p = 13
2

c&) 14)c_
A - a (o]
1 _ 180w

2

w =) I4)C, 3

CurleA'¢ = R 2 S v Ple)

PL(£) = 3sin6(5 cos?p - 1) (10)
t o 1 c 5 : 2
Cur19A¢ = 3-0?(5) I(4)Covosine (1 - 5cos™9)



-102-

7
L 61 (6) c 1
Curl A = C v P
$ “(_23)(7)(6,_) a oo 5
Table 1 of Ref, 3 gives
1(2) = 7.5099
I(4) = 4x4,7142 .

Using only the terms for n= 0 and p = 0 and 1, the velocity at the
surface of the sphere where ¢ = r = R_ is given by

7 C0 R0 3 RO 5
U(g) = U_psing |1+ —~ + 0.5312 () C_ + 0.2001 (=) C_

Ro 5 2
- 1.000 (?) Cocos o + . .. ] (Eq. 39)

The error in neglecting terms where n > 0 depends upon the
ratio Ro/a. The error increases as the ratio of the sphere to cylinder
diameter decreases. For the largest ;ylinder used, Ro/a = 0226,
The error in neglecting terms for n > 0 is less than the error for
RO/a = 0.3, for which, from Table 3 of Ref. 7, C, = 1.53298
and C1 = -0,000870, and successive Cn are decreasing rapidly.

Thus Cllco = 0.0005 which indicates the order of magnitude of the
n = 1‘ term compared with the n = 0 term. Thus great accuracy is
achieved for the largest cylinder, the one in which the tests in oil
were conducted, by using only the n = 0 term. The values of

CIICO are shown for various R'ola in Table 1A.
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The error in neglecting terms for p >1 also depends upon

T
the ratio Ro/a. The term A f of the vector potential is an expansion

R _2p+3
involving (-—ag) . Thus the ratio of successive terms in Rola is

R 2
(—a?-) . For the cylinder in which the tests in o0il were conducted,

Ro Ra 2
— = 0.226 and (T) = 0.0511

R 5
and keeping terms up to and including the powers of (_a_o_) leaves

R 7
an error in the magnitude of U(g) on the order of (—ao—) ~ 0.00003.

R 7
The value of (—5—) for the various test cylinders is shown in Table 1A,
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Table 1A
R, R, 7T ' G
e Versus (-5-) and T-O
R R_7 R C
o (_9_) o 1
a a a i,o
0.226 0.00003 0.2 -0.00010
0.289 0.0002 0.3 -0.00087
0.409 0.0019 0.4 -0.00141
0.518 0.010 0.5 -0, 00731
0.585 0.023 0.6 -0.0183
0.680 0.067 0.7 -0.0403
0.812 0.233% 0.8 -0.0823
0.905 0.50 0.9 -0.168
RO
* For = 0,812 the exact value of the term for

C= 0 and p =2 is given from Smythe's equation 11

as follows:

R 7

" 61 (6) (—E)CUP
139}

Curl A'
Y wdmen = °
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From Table 1, Ref. 3

(31)7%1(6) = 4.556
Then

R R_ 7
For (=) = 0.812, (5) = 0.233, C_ = 2.7177

1
24P, ¢
Py () = (- 6% 3

P(g) = 5 (6367 - T0£° +15¢)

P5i(§) = s—?i (315 cos49 - 210 cosze 4+ 15)

Soforn=0, p=2

[

Gurl A, = C_U_ sing (0.0181 - 0.253 csg + U, 394 soaty)

m

The contribution of this term to the integral f U(e)sinze de
0

in Eq. 42 follows.
The required integrals are

™ ™

f sin36 de = -‘31-;. fcosze sin39 dg = -—143-
0 0 '
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™
f cor,aqce m‘.n?’() dg = -%-5-
0

Then the contribution to

m
f U(g) sin” g d
0

is 0.0046 U_ . Expressed as a percentage of the sum of the terms

for p= 0 and p = 1, this is

0. 0046 x 100% = 0,1327%

giving the percentage error of the first neglected term. The error in

ID/M in Table 12 is then

0.1327

0.6153 x 21327 - 0.0008 i B
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APPENDIX 3

Evaluation of the Shear Drag and the Impulse

Due to This Drag During the Force Pulse Period

The impulse due to the wall shear drag is given by

T/2
2p ’ f 27R Bkl eU(e)de f‘, -7 € sm wr dy
Ip = T72
f e-za"-sin2 wT dr
0
(Eq. 42)
Let
T/2
f e-zaTSinsz dr = Il
0

L= _...._2_"2*._.2.* = {1 ..e'“T)
_ 4(0” + a’) ¢

Using the values of ¢, w and T from Section IV.B

I, = 0.9670 x T

Let
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T/2
f J%— T e-ZGTS.anwT dr = -IZ
0

"This integral was evaluated numerically by Simpson's rule using the

following table of numerical values.



0x1073
0,504
1.007
1.511
2.014
2.519
3.021
3.525

4,028

-2a
o T

1
0.8220
0.6760
0.5528
0,4571

0.3759

©0.3088

0.2539

0.2092

. 2
sin wr

0.1465
0.5000
0.8536
1
0.8536
0.5000
0.1465

0

Table 2A

Table of Values for I

,T
7 == IF

6.347 x 107
5.936
5.496
5.018
4,488
3.885
3.174
2,243

0

2

2

(T -2ar . 2
7«76 sin wT

0% 10™°

0.?148
1.8576
2.0212.
2.0515
1.2584
0.4901
0.0834

0

For Simpson's

Rule

= OX].O-Z

= 2.8592
= 3,7152
= 8.0848

= 4.,1050

601~

= 5.0336
= 0.9801
= 0.3336

= 0

= 25,1095
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3
Zz

-3
_h _ 44.028x 10 -2
I2 = 3 E ] & = ( 57 )(25.11 x 10 “)sec.
3
5 =
= 4,214x 10 “sec.

Let

™

f sinze U(p) de = 13
0

c, R_ 3 R_5
U(9) = Using | 1+ — + 0.5312 (=) C_ + 0.2001 () C_

Ra 5 2
+ 1.000 (—;) Cocos 6] (Eq. 39)

The derivative of this equation is shown in Appendix 1.

For the cylinder used in the tests
R
o
a

C0 = 1.515%, = 0,226 and

U(e) = U_(1.5147 sing - 0.0009 s0a” g aing)

Then

I, = -% (1.5145)

Equation 42 can now be written
4pR & v 1,1
o 372 i

Ip = Ly Yestrd
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Using the measured values

0.8806 + 0.0002 gm.cm. -2

p —

v = 63.61 = 0,20 centipoises

U = 51,79 % 0,07 in. sec.‘z
oo

R0 = 0.5020 + 0,0001 in.

the result is

T = 38,94 +0.07 gm. in. sec. L

The error in the integrals L, L and Iy due to the experi-
mental error in the evaluation of the constants ¢ and w are very
small and hence are assumed negligible here.

The drag D at time T/2 when the force pulse was over is

given by
™ T/2
-2aT . 2
pJ%_f 2mR “sin®g U(0) do f £ 0 iy
B = 0 0 \I (t - 'T)
- T/72
f e—zaTSinsz dr
0 (Eg. 41)
Let
T2

f e-za'rsinzwr dr _ I
T T4
0 (t - 'T)-

I, was evaluated by using Simpson's rule in the same way as I, using

the following table of numerical values.



0x10°
0.504
1.007.
1.511
2.014
2.519
3. 021
3,525

4,028

6.347 x 10
5.936
5.496

5.018

4,488

3.885
3.174
2,243

0

-2

Table of Values for I

-2a7 . 2
sin“wr

0
0.1204
0.3380
0.4719

1 0.4571
0.3209
0.1544
0.0372

0

Table 3A

0x 10"'2

0.02028
0.06150
0.09404
0.10185
0.08260
0. 04865
0.01658

0

For Simpson's
Rule

0x 10-2

0.08112
0.12300
0.37616
0.20370
0,33040
0.09730
0.06632

0

Z = 1.2780 x 1072

o
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1
-3 A
h 4.028 x 10 2
Ly = % E,anyn = { T )(1.2780 x 10%)sec.

:
2

- 2.1449 x 10" %sec.

Equation 41 then reduces to

2 T
2.pR0 ™ I3I4Um(-2-)

4

D=

Substituting the measured values of p, Ro’ v and Uoo into this

equation gives

D=0.991 £+ 0,002 gm.in.sec.‘2

Here the units as well as the units in ID are mixed for convenience

in calculation.
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APPENDIX 4

Figures
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Fig. 3A - The electromagnetic propulsion system
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The propulsion coil and its

Fig., 4A - Lucite water tank with camera and highlight source.
mount are shown together with the sphere in its initial position.

~“gQL1=



WATER LEVEL IN CYLINDER—\

ACCELERATING COIL SUPPORT ~

TEST CYLINDER

SPHERE SUSPENSION FILAMENT—

\ :
ACCELERATING COIL
o / 0 |
| , WATER LEVEL -
WATER LEVEL IN TANK / N TENE ~
ONE-INCH DIAM. STEEL SPHERE/ % INCH-DIAM. LUCITE
' ' ROD SUPPORT
AN, FLOOR— _ |
i 1 1 1
' CYLINDER TESTS CALIBRATION SURFACE
LAUNCHINGS PROXIMITY TESTS

Fig, 5A - The various methods used for placing the test sphere in its initial position



TR

Fig. 6A - Sphere located in its initial position beneath propulsion coil ready for test.

Left - Sphere suspended by thread in water in a test cylinder.

Right - Sphere in air resting on lucite rod.
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Fig. 7A -

Top

Oscilloscope trace of propulsion coil
voltage and current versus time.

Bottom

Oscilloscope trace of electro-
magnetic force of propulsion coil on
test sphere versus time.
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Fig. 8A - Highlight film of 1-inch-diameter
sphere moving vertically upward
in water. Time between succes-
sive exposures 1/1000 second.
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Fig. 9A - Oscilloscope trace of current
in propulsion coil interrupted
when highlight flashes occurred.
Time interval between flashes
1/2000 second.
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Figs. 10A and 11A - Vertical upward velocity of sphere in water

along cylinder axis after propulsive force
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Figs. 12A and 13A - Vertical upward velocity of sphere in water
' along cylinder axis after propulsive force
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Figs. 14A and 15A - Vertical upward velocity of sphere in water

along cylinder axis after propulsive force
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Figs, 16A and 17A - Vertical upward velocity of sphere in water
along cylinder axis after propulsive force
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Fig. 18A - A vertical upward displacement of 1,004 inch diameter
' sphere in air versus time after start of propulsive force
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Figs. 19A and 20A - Vertical upward displacement of 1,004 inch diameter sphere along axis of 4, 45

Fig. 19A - Sphere in water
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APPENDIX 5

Nomenclature

radius of sphere
radius of cylinder :
constant coefficient depending upon Eag
added mass of sphere in fluid

density of fluid medium

cross sectional area of the circular cylinder

volume of fluid displaced by the sphere

axial magnetic force applied to the sphere in water
net propulsive impulse applied to the sphere in water

net gravitational force acting to accelerate the sphere
in water

time

time duration of propulsive force pulse

mass of sphere

velocity of the sphere in water at the end of the
propulsive force pulse

axial magnetic force applied to the sphere in air

net propulsive impulse applied to the sphere in air
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gravitational force acting on the sphere in air

velocity of the sphere in air

net impulse on sphe.re in water due to gravity during

the propulsive force period

distance from center of test sphere to center of
propulsive coil

the value of z at the initial sphere position

damping constant of the propulsion coil - capacitor circuit
natural frequency of the propulsion coil - capacitor circuit
gravitational acceleration

radius of propulsion coil

velocity of sphere in oil at the end of the propulsive

force pulse

slope of least square straight line of velocity time curve
for specified time interval after force pulse was over
current in propulsion coil

potential flow velocity at surface of the sphere

velocity of viscous fluid around the sphere

perpendicular horizontal distance from the axis of the

sphere in boundary layer theory

. dynamic viscosity of the fluid

kinematic viscosity of the fluid
numerical coefficients of the series solution to the boundary

layer equations evaluated by E. Boltze (8)
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fluid pressure

skin friction at the sphere surface

fluid vorticity |

vector potential for flow around a sphere in a circular
cylinder

magnetic propulsive force for sphere in oil

drag on sphere due to wall shear stress

impulse on sphere due to Wallh shear stress during the
time of the propulsive force pulse

buoyancy force of sphere in oil

mass of fluid carried along in the boundary layer of the
sphere due to shear force in the fluid

time elapsed after the propulsive force stopped



