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ABSTRACT

An experimental method combined with boundary layer theory
is given for evaluating the added mass of a sphere moving along the
axis of a circular cylinder filled with water or oil. The real fluid
effects are separated from ideal fluid effects,.

The experimental method consists essentially of a magnetic
steel sphere propelled from rest by an electromagnetic coil in which
the current is accurately confrolled so that it only supplies force for
a short time interval which is within the laminar flow regime of the
fluid. The motion of the sphere as a functrion of time is recorded on
single frame photographs using a short-arc multiple flash lamp with
accuratély controlled time intervals between flashes,

A concept of the effect of boundary layer displacement on the
fluid flow around a sphere is introduced to evaluate the real fluid
effects on the added mass. Surprisingly accurate agreement between

experiment and theory is achieved.
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ON THE ADDED MASS OF A SPHERE IN A CIRCULAR
CYLINDER CONSIDERING REAL FLUID EFFECTS

I. INTRODUCTION

Qualitatively the idea of added mass is a familiar one., For
.example, let your hand be dipped into still water and then suddeﬁly
give a rapid acceleration broadside. The resistance to acceleration
of the hand is greatly increés ed by the water around it. The
increased resistance is due to the "virtuai malss" of the hand. The
difference between the real mass and the virtual mass is called the
"added mass''.

Added mass was first given an exact mathematical inter-
pretation by Greeh and Stokes in 1833 and 1843 (l). They evaluated
the added mass of a sphere in ;'ectil_inear accelerating motion in an
ideal fluid of infinite extent and arrived at the following classical
result, The kinetic energy of the fluid is equé.l to that which would be
possessed by a particle moving with the same speed as the sphere and
whose mass m is equal to half the mass of displaced fluid, Thus a
sphere in an ideal fluid is dynamically equivalent to é heavier sphere
in a vacuum whose virtual mass M' = M+ m 1is the mass M of the
sphere plus an '"added mass' m equal to half the mass of the dis-
placed fluid, but whose moment of inertia is unchanged.

The theoretical basis for.‘cal_éulating the added mass of a

general nonsphericai body was done by Kelvin and Kirchhoff who
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applied classical Lagrangian dynamics to the problem (1), (2). They
showed that the added mass is a symmetric tensor of the second rank.
For motion of a spherically sy:mmetricl body along an axis of symmetry
this tcns‘or reduces to a pseudo scalar,

All the work des_cribed to this point has been for ideal fluids.
The purpose of the present investigation is to study experimentally
the real fluid effecAts on the added mass of a sphere with the aid of
boundary layer theory used in conjunction with the theorevtical know-
ledge of ideal fluids. In these experiments a sphere is accelerated
from resf without rotation vertically along the axis of a circular
cylinder and the motion before the onset of boundary layer separation
is studied. In this region boundary layer theory can be used to
evaluate viscous forces. Also the flow about the sphere is axially
symmetric and in this work the added mass tensor was considered to

be a simple scalar.



II. THEORETICAIL EVALUATION OF ADDED MASS
FOR AN IDEAL FLUID

In the paper entitled '"The Flow Around a Spheroid in a
Circular Tube'" by W. R. Smythe (3) is defined an equivalent
length AL. According to Smythe this equivalent length gives the
electrical resistance increase of a solid conducting cylinder due to
the presence of a coaxial non-conducting spheroid inside it in terms
of the equivalent cylinder length, The specific formula for a sphere

in a circular cylinder is given as

4R03Co y
AI-J - .._._.2_ (Eq' 1)
3a _ '
where
Ro is the radius of the sphere
a is the radius of the cylinder

R
C0 is a function of the ratio __ao_ 5

The equivalent length AL can also be used analogously in
ideal fluid flow to determine the added mass of a sphere accelerated
aloné the axis of an infinitely long circular cylinder. In this
physical situation the length AL is the increase in resistance to
acceleration of the flow in a cylinder filled with fluid due to the
presence of a coaxial immovable sphere inside it in terms of the

mass of fluid in the equivalent cylinder length. Alternatively, if the
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bulk of the fluid remains at rest, the length AL is the increase in
resistance to acceleration of the sphere in terms of the mass of
fluid in the circular cylinder of length AL. Included in the equi-
valent cylinder length is the mass of fluid displaced by the sphere
itself which does not contribute to the fluid inertia.

Thus

pAAL = m + pV (Eq. 2)

where

A is the cross sectional area of the cylinder

p is the density of the fluid

m is the added mass of the sphere in the fluid

V is the volume displaced by the sphere.

Then using Eq. 1 the L.H.S. of Eq. 2 can be written

AAL = pimaZ) o =2 m3pc = pve
P = PURONTSE ) T3 TaPte B PV
Thus Eq. 2 reduces to the following simple relationship between

the constant C0 and the added mass coefficient:

_,,._pr\? = C, -1 (Eq. 3)

R

The values of Cs for various ratios E—Cl are tabulated to eight
significant figures in Smythe's paper (3). The following table of
added mass coefficients for various ratios of sphere radius to

cylinder radius is derived from the paper,



TABLE I

Added Mass Coefficient For Various
Sphere to Cylinder Ratios

Radiue Raiio Kdded Wians
Coefficient
R
o m

N PV
' 0.5012
0.5096
0.5330
0.5806
0.6660
0.8127
1.0693
1. 5653
2.8351
4.7915

o O O O O o O O O O
O 0 N O e WY

Ne}
8]
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III. EXPERIMENTAL EVALUATION OF ADDED MASS
APPROXIMATING IDEAL FLUID CONDITIONS

A, Basic Principles Used

It is theoretically possible to evaluate the added mass of
a sphere in a cylinder by applying an electromagnetic impulse to
a steel sphere in a vacuum and applying an identical impulse to
a sphere in a dense fluid of negligible viscosity and comparing the
velocities obtained at the end of the propulsive force pulse.

For the sphere launched from rest in an ideal fluid
vertically upward in the earth's gravitational field, equating the
total impulse applied to the sphere to its corresponding momentum

change gives

T/2
IW = f (FW - GW) dt = (M + rn)UW (Eq. 4)
where
- is the electromagnetic propulsive force
- is the negative buoyancy force on the sphere in the
fluid ("'negative buoyancy' is the weight of the body
less the weight of the displaced fluid)
t is the time
T/2 is the duration of the propulsive force
U, is the velocity of the sphere at the instant the
" propulsive force pulse is over
I is the net propulsive impulse in the fluid
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Similarly, for the sphere launched in a vacuum

T/2 :
f (F - G )dt = MU, ' (Eq. 5)
0

where the symbols are defined as above, except that launchings
are made in a vacuum as indicated by the subscript a.
Assuming F | and F, are identical, combining Eq. 4 and

Eq. 5 gives

1}

m
= | Yatmw il (Eg. 6}

where

T/2 . T/2
I = f G,dt and I, = f G, dt
a 0 e 0

The velocities Ua and UW and the mass M can be

measured and the impulses IG and IG can be calculated. Then
W a

the quantity _r_Mn_ can be found by Eq. 6.
The added mass coefficient is then determined by

= &) o) (Eq. 7)

where the density p is measured and the volume V 1is calculated

using the measured value of the diameter of the sphere.



B. Experimental Equipment and Procedure

1. Fluid Medium

The added mass coefficient determined by Eqs. 6 and 7 is
based on launchings in an ideal fluid and in a vacuum. In the
experiments air was used as a substitute for a vacuum because it
permitted a simplification of the apparatus and because the effects
introduced by the air medium were negligible in comparison with
the effects to be studied. Tap water was used for the fluid medium
in which the added mass of the sphere was measured., Here the
effects of fluid viscosity were very small in comparison with the
inertial effects but were not negligible, and an analysis was made
of these effects allowing a correction to be made for them.

2. Sphere and Suspension

The specifications of the sphere used in the tests follow:

1.0040 = 0,0001 inches diameter hollow unhardened
low carbon steel

Wall thickness, 0.014" approximately

Sphericity, 0.0005"

Weight, 5.6 grams approximately

Mass concentricity best obtainable

Welded assembly

8 R.M.S. or better

No loose material inside ball

High magnetic permeability comparable to 1010 steel
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To equip the sphere for the tests it was polished to a mirror
finish with diamond dust. Then a very small hole was drilled in it
and melted beeswax was poured into it until it ‘was just dense enough
to sink in tap water. This density was chosen so that the sphere
could be suspended by hanging it on a thread with as little tensile
force as possible, and also so that the mass of the sphere was as
small as possible in comparison to its added mass to facilitate good
precision in the measurements of the latter mass,

After the beeswax had been poured in, it was remelted and
allowed to harden with the center of mass located below the center
of buoyancy of the sphere so that the hole, the center of buoyancy,
and the center of mass were in a straight line. This was done to
orient the sphere initially in its rest position so that it would not
rotate during its motion in the tests, |

Next the hole was sealed with epoxy resin and a small
indentation left in the epoxy to allow a knot in the suspension thread
to be pushed into the indentation with a pair of tweezers,

The thread suspension was only used in the tests in liquid.
For the tests in air the thread was removed and the sphere was
placed with its hole vertically upward on a 3/8 inch diameter lucite
rod. The top of the rod was made concave and vented by slots at
the sides to hold the sphere in its initial position and to eliminate
possible air suction effects when the sphere left the rod stand. The
purpose of using the rod stand instead of the thread was to elimi-

nate the elasticity effects introduced by thé thread suspension. The
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effect of gravity acting on the sphere supported initially by the rod

stand was on the other hand easily calculated.

3. Test Cylinders

The cylinders-used in the tests were made of clear cast
acrylic resin. The base of each cylinder was made of a circular
lucite plate and fastened by screws to an aluminum ring which was
cemented to the bottom of the cylinder. An O ring was used as
a seal between the base and the cylinder. The cylinders were
carefully checked for longitudinal straightness and for circularity
of cross-section and the deviations in both were found negligible.
The dimensions of the cylinders are given in Table 2.

Before a cylinder was used in a test it was carefully washed
and dried. The region of the cylinder through which light for photo-
graphs was to be passed was carefully polished with rotten stone so
that there would be no hindrance to light passage. Next the cylinder
was placed in a vertical position in a large rectangular clear lucite
tank filled with water. The tank is described in detail in Ref. 4.
Since lucite and water have nearly equal indices of refraction the
diffraction caused by the curved walls of the cylinder was reduced
to a negligible quantity because the light reflected from the light
source off the sphere to the camera travelled through the water in
the cylinder and the water surrounding the cylinder. In any case
the curvature was in a direction as to not affect axial displacement

measurements.



Cylinder Measurement

TABLE 2
Dimensions of the Test Cylinders

R
o

LB, Q, I, Mean Mean Mean Wall a Approximate

Number Location (in.) (in.)- I.D.=2a O.D. Thickness 2R=1.004" Length
10 Top 4,436' 5,004 4,450 4,994 0,272 0.226 415"
Bottom 4,463 4,988 Inches Inches Inches
5 Top 3.470 4,055 3,480 4,053 0,287 0.289 4. 51
Bottom 3.489 4,050 '
9 Top 2.456 2.988 2.459 2.996 0.269 0.409 4'.5M1
Bottom 2.462 3,004
14 Top 1.942 2.469 1.940 2.474 0. 266 0.518 4'.5"
Bottom 1,937 2.474
13 Top 1.730 2.477 1.718 2.474 0.378 0. 585 4r_5n
_ Bottom 1705 2.470
‘ 7 Top 1.482 1.991 1.477 2.000 0,262 0. 680 415"
Bottom 1.471 2.008 ‘ ‘
12 Top 1.240 1.982 1.236 1.981 0.373 0.812 4'.5"
Bottom 1.232 1.979
11 Test

Section

1.109 1.762 - - 0.327 0,9053 4'-5"
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The cylinder was then filled to a height of 40 inches with tap
water and the sphere was suspended so that its center was 20 inches
below the water surface. This depth of water was found to be
adequate for eliminating end effects. That is, the motion of the
sphere behaved as though the sphere moved through an infinitely
long cylinder. Results of experiments proving that end effects were
negligible are included in a later section.

The suspension thread of the sphere previously mentioned
. in Section B.1 was passed through a hole in the center of an elevation
adjusting screw. The thread was brought out of the side of the screw
through another hole drilled to meet the center hole and fastened
securely to the side of the screw by tape. The adjusting screw was
placed in a lucite mount on top of the test cylinder. This mount was
constructed so that lateral movement of it could be precisely con-
trolled by a three point lateral suspension consisting of thumb
screws threaded through the mount against the cylinder wall. Thus
the sphere could be accurately positioned both vertically and
laterally in the cylinder. The initial vertical position of the sphere
was located precisely by sighting across the top of two horizontal
fiducial marks consisting of black tape on both sides of the tank.

The sphere was located midway between the two pieces of
tape which were about 2-1/2 feet apart. The proper initial position
of the sphere was determined when the tangent of the top of the
sphere was in a straight line along the sighting tapes. To locate

the sphere center on the axis of the cylinder, vertical black sighting
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1ines|were drawn on a piece of yellow tape and the tape fastened to
make a horizontal ring around the cylinder about 3-3/4 inches above
the top of the sphere. The sighting lines provided two vertical
sighting planes at right angles to each other. To locate tlhe sphere
in the center of the cylinder it was only necessary to adjust the
suspension mount laterally by the thumb screws so that the sphere
suspension thread was on the interslection of both sighting planes at
the sighting ring.

Photographs of the apparatus are shown in Figs. 4A, 5A and

6A in Appendix 4.

4. The Electromagnetic Propulsion System

The source of power for launching the spheres consisted
essentially of a bank of heavy duty capacitors charged by household
power through a high voltage power supply. The capacitors were
discharged through a propulsion coil fixed above the sphere. The
current flowing produced a magnetic field which acted to accelerate
the sphere vertically upward along the axis of the coil. At maximum
coil current the approximate magnet intensity was 1200 gauss.
Current was allowed to ﬂow‘ in only one direction in the R-L-C
circuit formed by the propulsion coil and the capacitors. This was
accomplished by a General Electric Ignitron mercury switch in the
firing circuit. In this way the sphere was given a force pulse, the
time duration of which was about 4 milliseconds. A circuit diagram

of the propulsion system is shown in Fig, 3A of Appendix 4,
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The initial voltage on the capacitors was maintained constant
throughout the tests. This was done by converting the capacitor
voltage to frequency by a precision voltage to frequency converter
and re;'a.ding the frequency on a precision frequency counter, By this
method the initial voltage on the capacitor was always set to the
chosen voltage of 3500 =1, The launching. coil temperature at the
instant before firing was rnaintained at the same temperature for
all tests. In this way the energy supplied to the sphere was constant
in all the tests. The coil temperature was measured by means of
a thermistor fastened to the coil. The thermistor resistance was
measured by a Wheatstone bridge and converted to its corresponding
temperature. The temperature chosen was 30°C. This was
sufficiently above room temperature to allow the coil to cool rapidly
enough after firing so that the waiting time between tests was only
about 10 minutes,

The coil itself consisted of 108 turns of 16 gauge copper wire.
A diagram of the coil sh-owing the initial position of the sphere is

shown in Fig. 1 below.
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- 7.125" 0. D. -

-~ 5.375" I.D, —————

! \ |

0.6875" | -
|

1

0.875 - | 230"

& !

TEST SPHERE

Fig. 1 - Propulsion coil showing initial
' position of the sphere.

The time duration and magnitude of the current flowing
through the propulsion coil was observed by an oscilloscope which
was connected to the circuit by means of a pickup coil in which
current was induced by passing one of the leads from the capacitor
to the propulsion coil through its center. The oscilloscope trace
representing the current was photographed by a Polaroid camera.
These photographs were used for determining the circuit constants

which were necessary in the data analysis.
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The launching coil was located and supported as follows:

A lucite cylinder with an inside diameter just large enough to allow
the coil to fit inside it was positioned in the lucite tank by means of
two beams resting on the top of the tank and fastened to the cylinder
by brass screws. The beams were permanently located longitudi-~
nally and laterally by means of appropriate stops consisting of brass
screws in the beams and in the top of the tank, The launching coil
was fastened to the bottom end of the lucite cylinder by means of
lucite brackets fastened to the cylinder by plastic screws. The test
cylinder was located laterally inside the coil so that their two axes
coincided, This was done by means of lucite adjusting screws
threaded through the coil mount cylinder to contact the test cylinder.
The initial position of the center of the sphere below the center of
the coil was chosen to be 2.3 incheé, a distance which permitted

a convenient magnitude of magnetic force to be supplied to the
sphere. This distance was maintained throughout the tests with

a deviation of not more than 0.0l inches by sighting and adjusting
the sphere elevation by the method described in Section B. 3.

A close approximation for the electromagnetic force of the
accelerating coil on the hollow steel test sphere as a function of
space and time is given by the solution of the same problem for
a splid steei sphere on the axis of a circular current loop above

it.
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SPHERE

Fig. 2 - Co-ordinate System.

Use is made of a spherical co-ordinate system r, 9, ¢
with its center coinciding with the center of the sphere and its polar

angle 6 measured from the top of the sphere on the axis of the

loop.

The vector potential o.f the loop alone for r < b is (see
Ref. 5):
| |H'VNI = sin a r\n .1 - 1

A¢ R IR (B—) Pn (cos az)Pn (cos 8)

ne=1
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where
Ag is the vector potential which has only an azimuthal
component
Mo, is the magnetic permeability of air
B is the magnetic permeability of the sphere
N is the number of turns in the loop
I is the electric current in each turn of the loop
a is the polar angle of the loop
b is the distance from the center of the sphere to the loop

Pnl(cos a), Pnl (cos @) are associated Legendre functions

The vector potential due to the magnetization of the sphere is of the
form of Aq) but must vanish at infinity.

Q0

A 4 = __vr E Cnr_n'anl(cos a)Pni(cos e) r >R,

n=1
where Cn are constant coefficients.

Inside the sphere the vector potential is

Qo
1"

A & = %\E E DnrnPnl(cos a)Pn1 (cos @)

n =1

The boundary conditions are:

At r =R A¢ + A¢ = A % 1 (normal magnetic
induction, continuous)
a[r(A¢ +A'¢):| B(rA':P)
= 2 (tangential magnetic

d o
Pyr . BEF field intensity,

continuous)
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Note:

Curl A

I
3
ws)
1}

-

T

where
B is the magnetic induction
H is the magnetic field intensity
A is the vector potential
The components of the curl of the vector potential are

o . aA
1 o(sing A¢) o
Curl, A T sin o [ 1) L)

1 aAr 8(rA¢)
Curlph = tomg |96 -~ 50 —37 —

o(rA ) 9A
Curlq)A ll: 6 - ]

T dr 00

From boundary condition (1)

: n G
sina o n _ n W
n(n+1) ('T)") * R o+l = ByBy b (1)
o
From boundary condition (2)
] sin a (Ro )n - Cnn = D (n+l)R n 2)
[ n b R ntl |~ n'\™ o
o
1 ‘J'v 1
Multiplying (1) by (n+1)——p— - (2) gives
e & -pz) sine R_© [{n+1)p. 2+p.2n]C
v ; ( O) & v n = 0
n B ntl

R
o
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Then

2 Ze s 2n+1
W - B ) sin a R,

- n [(n+l)uv2+ptzn:| b

n

Thus the vector potential due to the magnetization of the sphere is:

(pz-pvz) sine R . nR_n+l

W NI }
' v ) ( ° ) ( 0) P " (cos a)P 1(COS 0)
2 2 b r n n
n[p. n + (n-l-l)}LV]

(0 0]
WAl

n=1

Now to get the vertical component of the force it is necessary to

1
evaluate B i *

i 1 1
B = B sina+ B _cosa
P r ‘ 0

where
B _ is the radial component of the induction in the plane
of the circular loop
B and B' are components of the induction in the spherical

r 0

co-ordinate system

1
. 9 (sin a A¢)
B sina =

r da

, cos g 9 (rA'q))
B cosa = =
G T Or

i
Considering only the variable term of A¢ -

1 1
[Tﬁ_—i-—l_ Pn (COS 9) ] 0 = a
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Note:

1
1 z dPn(cos 0)
Pn (COS 6) = (1 - COS @ ) -—a—?o-—-s-——e-—

1
z
(1 - cosze) P'n (cos @)

I

1l

g
sin @ Pn (cos @)

Thus the variable term is

f
sine P

n
e (cos a)
T .

Now
]
1 0 [sinza Pn(cos ai‘
(Brs1n a)v - I_n+.?. - da
P (cos a)
sin a 0
nt2 Tcosa [(1 - cos a) dm]
ni{nt+l) sin a Pn(cos a)
= n+a
r '
and
B - ina P IS
( gCo*8 a)V = - cosa sina n(c¢:)s 8) === f—)
: - cosasmanP (cosa)
Hence

; _ nsina !
(Br51n a + BQ cos a)V = —r—ﬂ;z— [(n+l )Pn(cos a) + cos aPn(cos a)]



SO

The upward force acting on the sphere is given by

Fz = ZTTCNIBP at r = b .= «
where
F_, is the component of the magnetic force in the direction
of the axis of the loop
c is the radius of the loop.
uvncNZIZSinza - pz - p.vz RS 2nt1l 1
F. = ( ) P “(cos a)
Z b 2 2 b n
g l[p' n+ (1r1+1)\.LV ]

[(n+1)Pn(cos a) + cos a P;l (cos a)]

The first term approximation of the solution is

2
3lJ~VTrCNZIzSin2a (] ‘P‘vz Rd3 ” 3 5
F, = B —7z %) () 5
T T

22 .2 2, 4,3

N 3rNTIp @ -p,) ¢ Rz

R —— 73 8

b

B+ 2p

R_5 R_3

This approximation neglects (—E—) compared with (—12—)

For the coil and sphere used in the experimental tests

R, = —I—L%‘)_‘i—inches, 2z = 2.30 inches, and ¢ = 3.03 inches.

So then



.

R 2 R 2
() = = = 0.0347 .

o

Therefore the second term of the ‘series for F, is only 3.47 percent
of the first term. This means physically that the error in the force
by assuming that all of the magnetic material of the solid sphere is
concentrated at its center is only 3.47 percent.

For a given loop and solid sphere both in air the force can

be written

P2

Fz i Kzl

{(c™ + 27)
whe re
2 2 2
i 3“N P‘v(l"' = p'V )

K = ] v = constant,

o+ Zp.v

For a hollow sphere the first term approximation for force as a
function of space and time is about as good. However, the value of
the constant K' is different..

Thus for the hoilow test sphere and the propulsion coil used

in the experiments the magnetic force is given by

Kzl2 ;
F_= > VA , K constant (Eq. 8)

= (R, +z7)"

The current flowing in the series R-L-C circuit of the

propulsion system is given by
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1= Ioe-atsin wt (Eq. 9)
where
I is the current flowing at a given time
1 is the current constant

a = 57— is the damping constant

R is the total resistance of the energizing circuit
L is the total inductance of the circuit, and
w is the natural frequency of the circuit.

Substituting Eq. 9 into Eq. 8 gives the magnetic force on the sphere

as a function of space and time.,

Kz _Zatsinz wt
F o~ = \ (Eq. 10)
Z 2 2.4
(c” + z7)

_ Equation 10 is derived on the assumption that the motion of
the sphere producing eddy currents has negligible effect on the
strength of the magnetic force. This-assumption was shown to be
valid by observing that a non-magnetic sphere placed in the initial
position of the tests did not move in the rapidly changing magnetic
field of the propulsion coil, and anotin,g that the field changed much
more rapidly here than it did due to motion of the sphere.

The current and force functions of time from Eqs. 9 and
10 respectively are plotted on the following page in Fig. 3. The

force function is plotted for z held constant, A check was made
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to show that the experimental propulsion apparatus actually obeyed

these functions. The current and force as functions of time deter-
mined experimentally are shown in Fig. 4. These functions were
taken from the oscilloscope record of the experimental tests shown
in Fig. 7A of Appendix 4,

To measure the force acting on the sphere as a function of
time, the propulsion coil was suspended by very long weak springs.
The springs were weak enough so that the dynamic spring force was
negligible in comparison to the inertial reaction force of the coil.
Also, the period of oscillatioﬁ of the spring mass system was much
longer than the time duration of the magnetic force pulse. This made
it possible to obtain approximately the magnetic force by measuring
the acceleration of the coil and using the simple relation

F = Ma = M.a
C C s 8

where

s = sphere

c = coil.
The coil acceleration was measured using the oscilloscope and
accelerometers attached to the coil.

The current in the coil‘was measured at the same time as
the force using the oscilloscope and a pickup coil through which

one of the leads to the propulsion coil was passed.
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5. The Photographic Technique for Measuring the Motion of the

Sphere

The photographic technique for measuring the motion of the
sphere is described in great detail in Ref, 6. It will only be described
briefly here. |

The method for measuring position as a function of time
consisted essentially of using photographs of the virtual image or
""high light'" produced in a sphere by a stroboscopic point-light source.
The range and number of sphere positions to be observed over the
exposure sequence were adjusted by setting the frequency and gating
the number of flashes. A time-delay generator, adjustable to one
microsecond, triggered the flash sequence at the appropriate instant
after the propulsion coil was energized. The frequency used was set
and maintained throughout all tests by a variable frequency oscillator
with a precision frequency counter readout. The frequency used was
2000 £ 1 flashes per second. The time delay used was one-half
millisecond for all tests. Using this time delay the first two dots on
the displacement-time photographs were conveniently individually
distinguishable. A displacement-time photograph is shown in
Fig. 8A of Appendix 4.

To obtain the data the spheré initial position was carefully
checked and the energizing capacitors were charged to about 3510
volts, after which the room was darkened. Then the capacitor

voltage was allowed to leak off until the precision counter . monitoring
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it read 3500 volts, at which point the camera shutter was opened and
the launching circuit and stroboscopic lamp actuated, after which the
camera shutter was closed.

The images produced on the photographs were circular and
sharp and the author's experience indicated that the cross hairs of
the precision measuring microscope described in the sequel was
centered on them with a precision of + 5 microns for good highlights
and + 2 microns for very good highlights. The position of the high-
light images was measured by means of a measuring microscope
constructed by David W. Mann, Precision Instruments, Lincoln,
Massachusetts. This instrument had a measurement capacity of
200 millimeters in the abscissa and 30 millimeters in the ordinate
directions. The readout was one micron. The stage and cross hairs
were rotatable and both were provided with circular angular scales

with verniers so that the angles were readable to one minute.

C. Results

1. Obtaining Velocity from Displacement-Time Photographs

For calculating the added mass of the sphere in the
cylinder using Egs. 6 and 7 the velocities Ua and Uw were required.
These were obtained from the displacement-time photographs as
follows. The time duration of the force pulse was determined from
photographs of the oscilloscope trace of the current in the propulsion

coil and was 4,02 £ 1 milliseconds for all the tests, The first dot
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occurred between 1/2 and 1 millisecond after current started to flow
in the coil. The exact time at which the first dot occurred was
measured with a precision frequency counter. The accuracy of the
oscilloscope time scale was checked using the fact that the time
interval between light flashes was known to be 0.5000 + 0.0005
milliseconds. The current trace on the oscilloscope was interrupted
at the time of the light flashes. The first dot after the force pulse
was over on the time-displacement photographs was then found either
by looking at the oscilloscope trace or by counting the dots after the
time of the initial dot recorded by the precision counter. The velocity
as a function of time during the coasting period after the propulsive
force stopped was then determined by dividing the distance between
adjacent dots by the time interval between them. Next a straight

line was fitted by the method of least squares through at least the
first ten velocity-time points in the coasting regime and the velocity
of the sphere at the end of the force pulse was determined by the
intercept of this straight line at the time of the end of the force pulse.
This method was found to give uniform reproducible results., The
number of points used in the velocity time line was kept small enough
so that the sphere had not travelled over 0,40 inches from its launch-
ing position. A check was made of the linearity of the velocity-time
function by means of fitting stJ-:aight lines to a larger and smaller
number of points during the coasting regime and comparing these
lines to the lines actually used. Only negligible differences in slope

and intercept were found. The velocities obtained by this method are
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shown in Table 4 of Section 7.

The mean velocity versus time during the coasting regime
for all the cylinders is shown in Figs. 10A through 17A in Appendix 4.
- This mean velocity was obtained by averaging the velocities at each
corresponding time point for all the runs made. These graphs serve
only as a means of looking at the general motion of‘the sphere during
the coasting regime, They played no direct part in the measurement

of the added mass.

2. Correction for Gravitational Force

The sphere was launched vertically upward in the earth's
gravitational field and the gravitational effect was determined as
follows.

Shots in Air

The net force acting to accelerate the sphere was
F = Fa - Mg
where g is the acceleration due to gravity,

The ball begins to move at time T, when Fa = Mg. The

1
total impulse imparting momentum to the sphere was

T/2

f (Fa - Mg) dt

3]
where T/2 was the duration of the propulsive force pulse.

The total impulse imparting momentum to the sphere in the
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absence of gravity would have been

T/2
[ F_dt
a.
0

The negative impulse imparted to the sphere by gravity is found by
subtracting the first integral from the seccond. That is

T/2 T/2
G =f F_dt - f (F_ - Mg) dt
0 ;8

or

£y
_ 1
T
I, = f F_dt + Mg (5 - T;) (Eq. 11)
0

The time T, was observed experimentally to be less than

1
1/4 m.s. <<—%-— ~ 4 m.s. Then the following approximate relation-
ship between the impulse and momentum holdsfor calculating Tl:

T/2
f (F, - Mg)dt = MU, (Bg. 12)
0

Then using Eq. 10 and neglecting the spacial variation of the magnetic
field, justified by the short distance the sphere moved, Eq. 12

becomes

f (Ke—zatsinzwt - Mg)dt = MU, (Eq. 13)
0]
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Performing the integration gives '

Kw

w -at T
MUa = m [E'(l - e )] = Mg‘f (Eq. 14)

This equation can be solved for %— since all of the other constants

are known. The values of ¢, w, and T and the method for finding
them are found in Sections IV.A and IV,B. Thus

K -2

v i 79660 in.sec.

‘Since Tl is less than 1/4 millisecond the magnetic force in the time
0<t < T1 can be written as
. 2

Fangmwt 0 <t<T

so that Tl can be found from

K sinamT1 = Mg
or
: _ Mg
sin Q)Tl = T
from which T1 = 0,0833 milliseconds.

Then using Eq. 11

T
st1nwtdt+g(-z—-—T)
0

Also

Tl T
. 8 K t
0 )
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3
K(mTl) . -1
~ T = Og 005 1n. SEF.
T . - . .5
Now = = 4,02 milliseconds and g = 386.4 in.sec. .
Thus the reduction in velocity caused by gravitational force during

~the propulsive force period is

a
M

= 1.5 Gmygew, (Eq. 15)

Shots in Water

As was previously pointed out the sphere was nearly the
same density as the water and only a very small net downward force
was exerted by gravity. For this reason T1 and the effect of initial
string tension were neglected.

The downward force exerted was

F = (M- pV)g

The impulse of this force during the pulse period was

T2 T/2
.9 zf thzf(M-pV)gdt
W
0 0

Performing the integration and dividing both sides of the equation by
M for convenience later in calculating added mass there results

e
W

vV, T
-5 = 0 -Fpez
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Now
M = 9.3055 gm.
p = 0.9980 gm.cm.—3for water at 21°C
V = 8.6835 cm.3
Thus
Iey
—xr— = 0.106 in.sec. "} (Eq. 16)

3. Calculation of Added Mass and Comparison to Theoretical
Value

A sample calculation for the added mass of the sphere in the
: R
cylinder with sphere to cylinder ratio -é'i’_ = 0.226 (Table 2) follows.

1 IGa IGW
=g |Y%tw™ ™| -1
W

L
M

82.29 + 1.51 - 0.11

573 -1 = 0,5017

The values of U‘_; and UW are the mean values taken from Table 4 in

Section III. C. 7.

M _ 9.3055 gm,
pV (0.9980 gm. cm. 94 18, BA35 sua,

1.0737

=

Then

It

m m M
- (_M_.) (W = (1.0737)(0.5017)

from Eq. 8, giving
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m
— = 0.5387

The theoretical value is found using Table 1, From Table 1:

For _a_°= 0.2 pﬂv = 0.5096
R
For _52 = 0.3 pinv = 0.5330

Using linear interpolation to obtain the added mass ratio for

_E?- = 0.226, we have

" 0.026 ,
<% = 0.5096 + (0.5330 - 0.5096) (4—ygp) = 0.5157

The ratio of the experimentally determined added mass ratio
to the corresponding theoretical value is

ex 0.5387
W - D.BIgT = l-0446

The experimentally determined added mass and the corresponding
theoretical values were calculated in the same manner for all of the

cylinders and the results are tabulated in Table 5 in Section III. C. 7.

4, Statistical Significance of Results

It is also of interest to obtain for tests of statistical
significance the limits corresponding to various levels of proba-

bility for the added mass ratios. Unfortunately, small sample
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theory is unavailable for making such tests directly and it will be

necessary to use approximate theory. Let the population (universe)

average values of U and T_ be U and U respectively. Let
ac w ac W
the standard errors of the average values be ?a and ?w . Let the
experimentally obtained ratio Eac/-ﬁw = £ where
'a, ‘a,
U = U_ + i - ¥

ac a
‘and the population (universe) ratio be X\ .

Then from statistical theory for large samples (Ref. 7)

e - 2
a, [op

?Ez = T\.EZ' + —Ni-z— (Eq. 17)
U Yac

In Eq. 17 it will be necessary to make some approximations,
We do not have any a priori knowledge of the population or universe
parameters, but fortunately from Table 5 we observe that the
variation of individual (and hence average) values is small compared
to their actual values. Consequently we may use the experimental
parameters in place of the universe parameters in Eq. 17 without
introducing appreciable error. That is, we use
— 2 e &
= G . EZ Tw " “a
Ty = = o
U U
w a
to estimate 'EE . Since the samples are small, standard errors are

computed by means of the well known formula
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= B

”JZ %

=1 NN—I

where N is the number of items in the sample. Then from Eq. 6

the standard error in the added mass can be found, That is

mex ac
e = = -1= f£-1
w
SO
m
E. = g-nk
m m

where m__ is the experimentally determined added mass. Then

the standard error in mex/m is given by

U'EM V
m (Eq. 18)

M
(£+0‘£'1)‘n_1

- w-1E =

The standard errors and the confidence limits for 2 and 3 times the
standard error corresponding to probabilities of 0,9546 and 0.9973
respectively that added mass will fall within these limits are shown

in Table 5 in Section C. 7.

5. Correction Due to Magnetic Irhpulse Differences

A small correction due to differences between the net pro-
pulsive impulses imparted to the sphere in the tests in air and in
water was necessary. The impulse imparted to the sphere in the

tests in water was the lower impulse because the virtual mass of the
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sphere in water was greater by approximately the amount of its added
mass in this medium. This higher virtual mass in water prevented |
the sphere going as far into the field of the coil as it did in air. For
the distance covered ‘by the sphere during the propulsive for‘ce period
the spatial variation of the magnetic field was an increasing function of 7
~sphere displacement.