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ABSTRACT 

A Riesz space with a Hausdorff, locally convex topology 

determined by Riesz seminorms is called a locally convex Riesz 

space. A sequence { xn l in a locally convex Riesz space L 

is said to converge locally to x E L if for some topologically 

bounded set B and every real r ~ 0 there exists N (r) and 

n '2:.. N (r) implies x - x ~ rB. Local Cauchy sequences are defined 
n 

analogously, and L is said to be locally complete if every local 

Cauchy sequence converges locally. Then L is locally complete if 

and only if every monotone local Cauchy sequence has a least upper 

bound. This is a somewhat more general form of the completeness 

criterion for Riesz - normed Riesz spaces given by Luxemburg and 

Zaanen. Locally complete, bound, locally convex Riesz spaces are 

barrelled . If the space is metrizable, local completeness and 

topological completeness are equivalent. 

Two measures of the non - archimedean character of a non -

A (L) 
0 

such archimedean Riesz space L are the . smallest ideal 

that quotient space is archimedean and the ideal I (L) = { x E- L: 

for some 0 f: v t: L, n I x I f:. v for n -:. 1, 2, • •• } • In gene ral 

A (L) ~I (L). If L is itself a quotient space, a nece ssary and 
0 

suff icient condition that A (L) 
0 

example where A (L) 1:- I (L). 
0 

I (L) is given. There is an 

A necessary and sufficient condition that a Riesz space L have 

every quotient space archimedean la that for every 0 ~ u, v €: L 
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there exist u = sup (inf (n v, u): n 1, 2, ••• ), 
1 

v
1 

sup (inf (nu, v): n:::. 1, 2, ..• ), and real numbers 

and m 
2 

such that m u > v 
1 1 - 1 

and m v 1 "> u • 
2 1 

If, in addition, 

L is Dedekind a - complete, then L may be represented as the 

space of all functions which vanish off finite subsets of some 

non- empty set. 
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Introduction. 

A subset S of a Rieaz apa ce L is said to be solid if x € L, 

y E S, Ix I ~ I y I implies x E S. (For the definition and basic 

properties of Riesz spaces, also called vector lattices, cf. 

'II. A. J. Luxemburg and A~ C. Zaanen (4) and H. Nakano (6-} .) 

We call a Hausdorff locally convex topology I on L a locally 

convex Riesz touology and the pair · (L,I') a locally convex Riesz 

space if there exists a neighborhood basis for zero consisting of 

solid sets. 

Locally convex topologies on partially ordered vector spaces have 

been studies by several authors; including H. Nakano [6], I. 

Namioka (7] , and I. Kawai [2] • (In particular our definition 

of a locally convex Riesz space is the arune as Kawai 1 a definition 

of a "locally convex lattice .") A aeminorm f on a Riesz space 

L is said to be a Riesz se!llinorm if x, y E L and \ x I~ / y I 

implies f (x) ~ f (y). A Riesz semi norm which is also a norm 

is called a Riesz !l2..!:E!• Riesz space s equipped with Riesz norms 

have been studied extensively by Luxemburg and Zaanen [4] 

Vie show in Chapter 1 that a Hausdorff locally convex topology 

/ on a Rieaz apace L defines a locally convex Riesz space if and 

only if there exists a family of Rieez seminorms _(\_ such that 

{ { x ~ L: {' (x) ~ 1) : f ~.fl} is a I - neighborhood basis for 

zero. In addition locally convex Riesz spaces are archimedean and 

the lattice operations are continuous. In Chapters 2 and ' we 

investigate the apace of continuous linear functionals and the apace 
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of topologically bounded linear functionals of a given locally convex 

Rieez space. We show that both these spaces are ideals in the Riesz 

space L,... of all order botmded linear functionals, and obtain a 

characterization of the weakest and strongest locally convex Riesz 

topologies with a given topological dual. 

Chapter 4 introduces the concept of relative uniform convergence. 

Let· L be a Riesz space and { x } a sequence in L. Then x 
n n 

is said to converge relatively uniformly to x € L if for some 

0 ~ v ~ L and for every real a > 0 there exists N (a) such that 

n ?! N (a) implies \ x - x I ~ a V. 
n 

For an arbitrary set S in 

denote by S' ru the set · { x <= L: for some sequence {x ) C S, 
n 

x ~ x (relatively uniformly)} • A set S is called relative1,y 
n 

uniformly closed if siru = S. In general, relative uniform 

convergence does riot define a topology and thus siru is not 

necessarily relatively uniformly closed. 

A sequence { x } in a Riesz space L is ea.id to be monotone 
n 

increasing, written x f, 
n 

if x ~ x , n = 1, 2 , • • • • A 
n n +l 

net {x;..: A.el\) 

)\, ),,' € /\ , 

is said to be monotone increasing, written 

if '/\:-').:, implies L Xr, - Xr.' • An arbitrary 

system s in L is said to be directed upwards if x, y E s 

implies that there exists z € s such that sup (x, y) ~ z.-· 

A system which is directed upwards may always be considered a 

monotone increasing net defined on s itself. Now Luxemburg and 

L 

Zaanen [4] have given a characterization of norm complete Riesz -

normed spaces. In particular their characterization shows that a 
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Riesz - normed space is topologically complete if and only if 

monotone Cauchy sequences have 11 sup 1 s. 11 In seeking to fit thla 

into the general theory of locally convex Rieez spaces we are led to 

the concept o_f local convergence (introduced by H. Gordon [ 1 J ) . 
Let (L, /) _be a locally convex ·:Riesz space. A sequence .(x } 

n 

is said to converge I - locally to x e L if for some 7'- bounded 

set B and for every a > 0 there exists N (a) such that 

n ~ N (a) implies x - xn E a B. In an analogous manner we define 

7' - local Cauchy sequence. The Riesz space L is said to be 

I - locally complete if every I - local Cauchy sequence converges 

7' - locally to an element of L. 

In Chapter 6 we show that L is T' - locally complete if and 

only if every monotone 'i - local Cauchy sequence has a least upper 

bound. Further, given tYIO locally convex Rieez topologies, i' 2 r I 

if L is T - locally complete, it ie also r 1 
- locally complete. 

Finally if L is I - locally complete, then the space of j -

bounded linear functionals equals the space of order bounded linear 

functionals. 

A locally convex space is _ bound if every convex· circled set, 

which absorbs each topologically bounded set is a neighborhood of 

z~ro. It is barrelled if closed, convex, circled sets which absorb 

every point are neighborhoods of zero. In Chapter 7 we show that 

a T - locally complete, bound, locally convex Riesz space (L, 'i) 

is barrelled and f' = m (L, L"" ) • 

For metrizable locally convex Riesz spaces, 'I- convergence and 
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T - local convergence agree. Thus a metrizable locally convex 

Riesz apace is complete if and only if every monotone Cauchy 

sequence has a least upper bound. 

The concept of relative uniform convergence may also be applied 

to the study of quotient spaces. Luxemburg [5) has shown that if 

L is a Rieaz apace and A is an ideal of L, L/A is archimedean 

if and only if A is relatively uniformly closed. In Chapter 9 we 

consider two measures of the non-archimedean cha racter of a Rieaz 

space L which is not archimedean -- A (L), 
0 

the smallest ideal such 

that the quotient space is archimedean, and I (L) = { x c L: for 

some 0 ~ v EL, · n1x1 ~ v, n-:: 1, 2, ••• }. In general 

I (L) C A (L). For spaces L which are themselves quotient spaces, 
. 0 

we give a necessary and sufficient condition that I (L) ::: A (L). 
0 

In Chapter 10 we give an example to show that I (L) is not 

always A (L). 
0 

We also use this example to show tha t, even if L 

is a rchimedean, for an ideal A of L, A1 ru is not necessarily 

relatively uniformly closed. 

Next we consider Riesz spaces such that every quotient space is 

archimedean. In Chapter 11 we show that a Rieaz space L is of 

this type if and only if for every 0 ~ u, v € L there exist 

u ::. sup (inf' (n v, u): 
1 

n -::: 1, 2, 

n=l,2, ••• ) and r eal numbers 

), 

and 

v -:: sup (inf (n u, v): 
1 

such that m u ~ v 
1 1 l 

and m v > u • In Chapter 12 we see tha t if, in addition, we 
2 1 l 

require that L be Dedekind C" - complete (or even r elative ly 

uniformly complete) then for some set X, L is isomorphic to the 
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spaco of all real - valued functions on X which vanish off finite 

sets. 

Chapter 15 characterizes locally convex Riesz spaces such that 

the positive cone has an interior point as spaces with a strong unit 

and the uniform topology. In Chapter 14 we give some special 

results for locally convex Rieez spaces such that order convergence 

implies topological convergence -- (A, ii) spaces. 
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I LOCALLY CONVEX RIESZ SPACES 

l· Definition 

Let L be a Riesz apace and 1' be a locally convex, Hausdorff 

topology on L ~ Then 1" is called a locally convex Riesz topology 

and the pair (L, 1') is called a locally convex Riesz space if 

there exists a neighborhood basis of zero for 1" composed of solid 

sets. There are several alternate forms for this definition ( I. 

Kawai in [2] calls such spaces locally convex lattices and proves 

(ii) implies (iii) in the theorem below.) 

1.1 Theorem - Let L be a Riesz space and I a linear topology 

on L. Then the following statements are equivalent: 

(i) (L, T) is a locally convex Riesz space. 

(ii) The topology I is locally convex and Hausdorff and if 

{ x" : >. e /\} and {y A : /\ € /\} are nets in L defined on the 

same directed set /\ such that ly>-1 ~ I x"'I for each A ~ /\ and 

x >--r o ( T: ) , then y;.. -r o Cr ) . 

(iii) The topology j' is Hausdorff, and there exists a family 

~ of Riesz semi norme such that x>..~ 0 (-r) if and only if 

p (x >- ) ~ 0 for each f € ./L. 

(iv) There is a neighborhood basis °U. of zero for -r consisting 

of solid, convex, I -closed sets and (\ { U: U tS: "Ll} = 0 

Proof: To show that (i) implies (ii), let U be a solid 

T -neighborhood of zero. There exists >-..
0 

E /\ such that ).. ;t A0 

implies x )\. E U. Then since 0 S: I Y).. ( ~ I x,..J and U is solid, 



- 7 -

y >- E. U. Thus y )'..---.:;.> O( T). 

To show that (ii) implies (iii), let J\- be a · family of 

seminorms (not necessarily Riesz semi norms) such that x >.. ~ O (I) 

if and only if ~ (x>- )-.i- o. Let pEJl and x e: L. If { f (u): 

0 !::. u ~ I xi , u e L} is unbounded, we may select a sequence 

0 !: ~ E: L, f (Un)> n, 0 { un ~/xi, . n = 1, 2, • • • • Then 

~ x~O ('I) and ~ Uu !:: I~ xi, but f (~ un) > l; which 

contra dicts the f'act that by (ii) un-.> 0 (T). Thus we may define 

a Rie sz seminorm f by p(x) = sup (f (u): 0 ~ u '-. jx I ), and we 

have f (x) f:: f (x+) + f (x-) ~ 2 f (x). 

Now we show that {° is also 7"-continuous. Assume, to the 

contra ry, that there exists a ne t {x)\: A€/\}such that x;;;-o (j), 
but f (x;.) ~ a) O. Then by the definition of' p, for each A E /\. 

there exists uA such that 0 ~ u>- f I x>-1 and f' (u.;\) ~ ~ . But 

by (ii) uA~ 0 (1'"'), which is a contradiction. Hence 

{ f : f E ./\.} is a family of Riesz seminorms which satisfies 

the condition of (iii). 

Finally., that (iii) implies (iv) and (iv) implies (i) is obvious. 

We now give t wo immediate consequences of the definition. 

1.2 Theorem If (L,j") is a locally convex Riesz space, L is 

archimedean. 

Proof: Suppose there exist u, v C: L such tha t 0 !:. nu ~ v for . 

every n = 1, 2, • • • • Then 0 ~ u ~ ~ v. Now ~ v-+-0 (1) and 

by the previous theorem the constant sequence u ~ 0 ( T ) • Since 
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T is Hausdorff, u =. o. 

1.:..2. Theorem If (L,'7') is a locally convex Rieaz apace, the 

lattice operations are 'r-uniformly continuous. 

Proof: Since inf (x,y)=- sup (-x, -y), it is sufficient to show 

this for the 11 sup 11 operation. Let U be a 'i -neighborhood basis 

of zero consisting of solid seis. Let V ~ U . Then there exists 

UE.tl. such that U+UC.V. Suppose x-x0 ~U andy-y0 EU. 

Then I sup (x,y) - sup (x0 ,y
0
)lflsup (x,y)- sup (x

0
, y)\-t-

+lsup (x
0

, y) - sup (x
0

, y 0 )j f \x-x
0
\+ IY-Yol • 

Now I x-x
0
f and I y-y 0\ E U, since U is solid, and thus 

Ix - x
0
1+ IY - y

0
j E V. Since V is solid, sup (x, y) -

- sup (x , y ) t V. 
0 0 

continuous. 

Thus the 11 sup 11 operation is uniformly 

We conclude this section with a fundamental lemma. It is proved 

by Luxemburg and Zaanen for Riesz normed spaces in [4] • 

1.4 Lemma Let (L,"1) be a locally convex Riesz apace. If 

{x A : A E /\ r is a net in LI x )l.t I and x A_,,.. y (I), y c. L, 

then y = sup { x )\ : )\ € /\} • 

Proof: .. /\ ),,-/ \.', < )I Fix ).. E • If 1 -. ..._ A then I x A. - inf x >-. , y = 
=I inf (x >-.. , x~) - inf (x >. ' y ) i ~ lxx-y\. By the theorem -

in 1.3 'x,x - yJ~ 0 (T), and thus by 1.1 (ii) J x>-.. = inf (x>-1 y) 

or x >- ~y for each AE A. Suppos"e z is another upper bound, 

z ~y. Then jz - x,>.l f \y - x.>-1 • Again by 1.1 (ii) 
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I z - x>-. / -=r 0 (T) or · x)\ -- z ( T ). Since I ia Hausdorff z:::. y. 
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g_. Dual Spaces 

If L is a Riesz space, let L"' be the space of all order­

bounded linear functionals (cf. [4] ). The space L""' is again a 

Riesz space unde r the ordering 0 ~ ¢ if and only if ¢ (u) ~ 0 

for every 0 ~u € L. Indeed L""" is Dedekind complete. Now if L 

pos sesses a locally convex Riesz topology T I let (L, r )* be the 

topological dual space. These two dual spaces are related as follows: 

2.1 Theorem If (L,1"') is a locally convex Riesz apace, then 

(L, I)* is an ideal of L""' , and hence (L, T )* is Dedekind complete. 

Fro of: Let ¢;> €- (L, 7' ) *. Then ¢ is bounded on a so lid 

neighborhood U of zero. To show ¢ E L,.... , we need only show that 

for any 0 ~ u € L, r/> is bounded on {x EL: Ix{ f u}. There 

exists a real number a) 0 such that u 6 aU. Since U is solid 

{x ~ L: I xi~ , u} (au and ¢ is bounded on {x G L: (x / 5. u} • 

Thus (L, T)* CL"" • 

Now we show that ¢ € (L,T)* implies l¢\E (L,j)*. Let 

<j} E (L,'/)* and U be a solid neighborhood of zero such that 

x € U implies I¢ (x) I ~ l. We know then that 1¢f ( lxl) = 
= sup(J¢(u)J: O~u ~lxl )~1. Since l1¢1(x)I ~l¢l(1x1), 

1¢1 is bounded by 1 on U and thus . 1¢1 E (L,T)*. 

Now if ¢ E (L, T )* and Y € L""', 0.fli:{f/¢1, and if 1¢ I is 

bounded on .the solid neighborhood U by 1, as above, then 

x ~U implies l'f"(x)i"- lyJ(1x1)£ 1¢l(fxl)~l and 

TE (L,/)*. Thus (L,#)* is an ideal ofL"" and, since L""'is 
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Dedekind complete, (L,f')* is Dedekind complete, 

Let L be a Riesz space and 0 ~ ¢ E L. Then we may define 

a Riesz semino:rm f ~ on L by f¢ (x):: ¢ (1xl). A collection 

of Riesz seminorms f\.. is said to generate a locally convex Riesz · 

topology if the collection of sets { .(_ x: f> (x) ~ 1 ~ : f' E .fl. } 

is a neighborhood basis for such a topology. 

In the next two theorems we characterize locally convex Rieaz 

topologies on a given Riesz space L with the same topological dual. 

Here if F is an ideal of LIV • F 0 ::{xE:L: \ ¢ <x) I~ 1 

every and O"'(F, L) is the weak topology on F 

determined by L. 

2.2 Theorem Let L be a Riesz apace and F an ideal of L"' 

such that F0 = ..( 0} • Then 

for 

(l..) { o,,,, O _L n< ~ F} t 1 11 R" 1 ~ >" ~ genera es a oca y convex ieez 

topology on L, call it to- I (L, F). 

(ii) (L, IO" J (L, F) )* = F. 

(iii) The topology of uniform convergence on O" (F, L) - compact, 

convex, solid subsets of F generates a locally convex Riesz 

topology on L, call it Im I (L, F). 

Proof: (i) To show this we note that if 0 ~ r;b 
1

, ¢ 
2 

€ L ..v then 

{x: f>1t>L(x)~1)n{x:1°9J2 (x)~i}){x:faup (¢i,¢
2

) (x)~1}. 
Also if fJ?J (x) = 0 for every fl € F, then x = 0 since F

0 ={o}. 
Thus lo-I (1, F) is a locally convex Riesz topology. 

(ii) Now if ¢ € F, then Ir/\ (x)I L ,0 (x) for every x e L 
Y.J - ,,~, 
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and </> E (L, IO"I (L,F) )*. If </> E (L, lcrl (L, F) )* then there 

exists O ~ "'i' t:. F and a. real k '7 OJ 1¢ (x)I t... kf"i' (x). For 

O~ u EL, I ¢1 (u) =sup ( 1¢ (v)I: O~ v~u) ~ k y(u). 

Thus 1¢ Is k 't a nd ¢ E F, since F is an ideal. 

(iii) Let ~ be the collection of all C1 (F, L) compact, 

convex, solid subsets of F. Now if' 0 ~ ¢ e F and 

V</> :: { x e L: ¢ ( lxl) f i)' , then (V¢ ) 0 f- is convex and compact 

by (ii) and the ~mulian compactness criterion. In addition · V¢ 

is solid. To see this l e t -r·evtp 0 
a nd xEV¢• Then 

I lyf (x)\ f l'f'"I (\xi)= sup ( I'(" (u)\ : 0 !:. u ~ x ) ~ 1, since 

v¢ is solid, and l't"I E V95 °. Now if le I f.\'1'.1 and x <: v¢' 

I e (x) I ~lei (lxl ) ~ l"t"l(lxl) L... land e € V¢· Thus V¢ is 

solid and rJ) {v¢ : O ~ ¢ E F}. 

Now a neighborhood basis of' zero for Im I (L, F) consists of 

{ s
1 

o fl s2 o (\ ••• n Sn o : S1 , s 2 , , Sn£ s.:f} • Again since 

S ! J.:/ implies S is solid, s0 
· is also solid and hence the 

neighborhood basis consists of solid, convex sets. That Im\ (L, F) 

is Hausdorff follows since it is stronger than la I (L, F). 

£:2. The orem Let L be a Riesz space and F a n ideal in L ..... 

such that F0
-:: { 0} • Then if I is a locally conve x Riesz topology 

on L, (L,"1)* = F if' and only if I <:TI (L, F) ~I~ Im\ (L, F). 

Proof: Suppose (L, j )* = F and let ./\. be a family of Riesz 

seminorms gene rating I' . Le t 0 ~ ¢ € F. Then there exists 

p E .../\_ and a. real number a. > 0 such that I¢ (x)\~af' (x), 

1 
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for every x € L. Then {x: ¢ ( x ) !:: 1} ) { x: p (x) f. i} 
and I er I (L, F) 5: I . 

Now let U be a I-closed, convex, solid neighborhood of zero. 

Then u0 is CJ (F, L) - compact, convex, and solid. Since 

U =u00
, U is an lml (L, F) neighborhood of zero and 'j.f_\ma(L, F). 

Suppose IO"/ (L, F) ~ T 6: I ml (L, F). Let ¢ € F. By (ii) 

of the previous theorem ¢ is l<rl (L, F) - continuous and hence 

j -continuous. Suppose ¢ € (L, 'I)*. Then there exists a 'I-closed, 

convex, solid 'T -neighborhood U of zero on which ¢ ie bounded. 

Since T £:: lml (L, F) there exists a O" (F,L) - compact, convex, 

solid set S such that s° C U. Then 

a.gain by ~mulia.n 1 s criterion, </J E F. 

We have the following simple corollary: 

is bounded on 0 S and, 

2.4 Corollary A Riesz apace L possesses a locally convex Rieez 

topology if and only if (L,... ) 0 {o} . 

Proof: If (1,..... )0 = { 0}, the topology· I CJ I (L, L....,) is a locally 

convex Riesz topology. 

If (L, 'T') is a locally convex ·Riesz space and 0 ":f: x c L, 

then there exists a 'T -continuous Riesz seminorm f' such that 

p (x) :f:. o. In this case Luxemburg and Zaanen [4] have shown 

that there exists 0 "- ¢ € i.- such that ¢ (x) i= O, i.e. 

(L"')
0 = { o}. 

Next we prove a useful lemma. 
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2.5 Lemma Let (L,'i) be a locally convex Riesz space. If { u~'f 

is a net, 0~ul'-1 , and uA~ u (weakly), then u)\~ u ('I) and 

u = sup u;... 

" 
Proof: Let ti be a 'i -neighborhood basis for zero composed of 

'7' -closed, solid, convex sets. Designate (L,'j"')* by L*. Suppose 

0 ~ u~ 1 and u>-. ~ u (weakly). Then if U E 'Ll , u0 is 

a (L*, L) - compact, convex, and solid. Let H{U)= { ¢ e U 
0

: ¢ ~ o}. 

Since .{¢: 0 ~tP EL*} is cr (L*, L) closed, H(U) is also 

CF (L*, L) compact. Now considering u,... and u as continuous 

functions on H (U), we have (u - u,\) Y , (u - u,\ )+ 0 

(pointwise) and thus (u - u). )-i-0 (uniformly). So there exists 

~o such that ¢ £ U0 implies, for ~ ~ }\ 0 , 

1¢(u-u)\)l !:: 1¢1 (u-u~)!:l, i.e., (u-u>..)E: u00 =U 

and thus u)I.~· u (1"'). That u: s~ u)\ follows from 1.4. 

Nov; let L be a Riesz apa ce. If ¢ E L - , ¢ is ca 11 ed an 

integral if for any sequence ~ + 0 in L, ¢ (un) ...._ O. The set 

of all integrals on L is designated by L~ and is a band 

(normal subspace) of L . If '/) € L""' and for any directed system 

u ?-. f O, inf I r/> (u )\. H = 0, then cp is called a normal integral. 
A 

The set of all normal integrals on L is designated by L..., and 
n 

is also a band of L"" • The following theorem gives a character-

ization of locally convex Riesz spaces such that every continuous 

linear functional is an integral and those such that every continuous 

linear functional is a normal integral. 
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2. 6 Theorem Let (L, 'T) be a. locally convex Riesz spa.ca. Then 

(i) (L, T )"' ( L';; if' and only if' f'or every sequence 

u t 0 in L, un+O (T); 
n 

(ii) (L, 'i)* CL- I 

n if and only if' f'or every net u,,_Y 0 in L, 

u)\..,._ O (T). 

Proof: We shall prove (ii). The proof of (i) is similar. Suppose 

that for any net u,..t 0 in L, u~~ 0 (1 ). A directed system 

u )\ Y 0 may be considered as a net under the Rieez apace ordering. 

Then u}\ ~ 0 ( 'i ) and i~f I ¢ ( u )\ ) I = 0 for any ¢ ~ (L, T ) •. 

Thus (L, I)• CL; 

Suppose (L,1')* c1;; and {u>.} is a net such that U)\t o. 

Now if ¢ ~ (L,7')•, ¢ (uA )~O and u)\-+- 0 (weakly). But then 

by 2.5, u>-. ~ o (T ). 

Paralleling the notation introduced by Luxemburg and Zaanen (4] , 

we say that a locally convex Riesz apace (L,'T) has property (A,i) 

if' (L, T )• C L; and property (A, ii) if' (L, T )* C L;-. (These 

spaces are . called o - continuous and M. s. o - continuous 

respectively by .Kav1ai [ 2].) If a locally convex Rieaz apace has 

property (A, ii), order convergence impliee topological convergence. 

For this reason many special theorems may be proved about them, (cf. 

section i;). 
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2· Topological Boundedness 

We begin this section with a lemma on topologically bounded sets. 

~ Lemma Let (L, I ) be a locally convex Riesz space. If A is 

a 'r-bounded subset of L, then there exists a solid set B such 

that A C. B and B is 1' - bounded. 

Proof: Let B = { x 'e L: for some y e A, O ~ I x I 6 \ y \)-. 

Certainly B is solid and AC. B. To show that B is 'I-bounded, 

we have only to show that B is absorbed by solid 'T-neighborhoods 

of zero. Let U be such a neighborhood. Then for some real a> O 

A C aU. If x ~ B, for some y E A~ I xi ~I yl. Since y E aU and 

aU is solid, x ~ aU, i. e., BC aU. Thus B is I-bounded. 

If (L,T) isalocallyconvexRieszspace, let (L,T)b be 

the space of linear functionals on L which are bounded on 'r-bounded 

sets. We have: 

hl. Theorem 
,.,, 

is an ideal in L • 

Proof: Since order intervals are 1" -bounded, (L,'T)b CL-'. Let 

¢ € (L,'r)b and "/'cL such that 1i'l~10 I. By ).1 to show 

that 'Y € (L, T)b it is sufficient to show thati"' is bounded on 

solid, 1" -bounded sets. Let B be such a set. If x E B 

J"o/ (x)I ~ l'Yl(lxl) L 1¢1( x )= sup(lp(u)\: O~u~x)~ 

~ sup (I ¢ (y) I : y € B) • 

y E (L, T)b. 

Thus '}-" is bounded on B and 
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Now from a given locally convex Riesz topology 'I on a Riesz space 

L, we can construct a stronger locally convex Rieez topology 'f b 

by letting a neighborhood basis of zero consist of all convex, solid 

subsets of L which absorb every 7'-bounded set. 

hl Theorem Let 'I be a locally convex Riesz topology on a Riesz 

space L. Then, designating by 

(i) 'Yb :: I ml (L, Lb)= m (L, .Lb°) where m (L,Lb) is the 

Mackey topology; · 

(ii) 
b 

L • 

Proof: We have only to show that any convex subset A of L which 

absorbs every I-bounded subset of L contains a solid, convex set 

B which absorbs every T -bounded set. Then j b: m (L ,Lb) and 

the other results follow immediately. 

Let B : { x ( A: { y: I yt 6 lxl} ( A) • By ).1 it is 

sufficient to show that B absorbs solid 1' -bounded sets. Let S 

be such a set. Then if aA JS it is easy to see that aB~ s. 

As a corollary we obtain a result of Namioka [7] • 

hl Corollary Let L be a Riesz space such that (L-)0 = { o} . 
Then m (L,L.....,) is the strongest locally convex Rieez topology 

on L. 

Proof: We have L"' = (L, lul (L, L.-) )* C (L, la I (L, L_,) )bC L~ 

( I I ( ~) )b ,J Then L, CJ' r L, L =. L and the result follows :from 3.3. 
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~. Relative Uniform Convergence 

'Ile now introduce one of the central concepts of the present work. 

A sequence { xn} of elements of a Riesz space L is said to 

converge to x e L relatively uniformly, written xri~ x (r. u.), 

if there exists 0 5:v E.L such that for every real r > 0 there 

exists a real number N (r) and n > N(r) implies 

Ix - x I L rv. If S is a subset of' L, then designate by --
n -

s I ru the set { x € L: for some sequence { xn\ in s, xn..:,-x (r. u. )}. 

A set S is said to be relatively uniformly closed if S = siru. 

In general relative uniform convergence does not correspond to 

topological convergence, . i. e., there are sets S in L such that 

S 1 ru is not relatively uniformly closed ( cf. Chapter 10). We 

do have the following: 

4.1 Theorem Let L be a Riesz space • 

. (i) The strongest locally convex topology 1' on L such that 

xn~ 0 (r. u. ) implies x ~x (T) 
n 

ie generated by all the 

Riesz seminorms on L. 

(ii) If (L""")
0 

={o}, this topology is a locally convex 

Riesz topology, m (L, L~). 

Proof: 

implies 

Certainly if t° is a Riesz aeminorm, xn ~ 0 (r .. u.) 

f (xn)~O. If ;:> is an arbitrary eeminorm such that 

x ~ 0 (r. u.) implies 
n 

eeminorm by "f (x) = sup 

f> (xn)~o, then we may define a Rieez 

( f' (u): 0 ~u ~ lxl ). If for some element 

x, Cf(u): OS:u5fxl) were not bounded, we would have a sequence 



- 19 -

{un} such that 0 ~u ~ lxl and ~ (u ) ~ n for each 
n n 

n = 1, 2, But then 1 _,_o (r. u.) and ;:> (u ) ~o. ... . - u 
n n n 

This proves (i) I and (ii) follows from :;.-4. 

We may also discuss completeness with respect to relative uniform 

convergence. A sequence { xn} in a Riesz space L is said to be 

a relative uniform Cauchy seguence if for some 0 !: v € L and every 

real r > 0 there exists N (r) and n, m > N (r) implies 

f x - x / 4- r v. The space L is said to be relatively uniformly 
n m 

complete if for every relative uniform Cauchy sequence {x '; in L 
n 

there exists x € L such that x ~ x (r. u.). 
n 
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II LOCAL COMPLETENESS 

2_. Definition 

Let (L, I') be a l ocally convex Riesz apace. Then a sequence 

{ xn} in L is said to converge 'r -locally to x E L, written 

x -;,a._ x ( 'r -local) 1 if there exists a 
n 

'I -bounded set B such 

that for every real r > 0 there exists N (r) and n 2: N (r) 

implies Ix - x J € rB. 
n 

(This concept is introduced in a somewhat 

more general setting by H. Gordon [1].) Local convergence is very 

similar to relative uniform convergence. In fact, if we replace the 

requirement that B be 'f -bounded by order bounded in the above 

definition, we obtain the definition of relative uniform convergence. 

It is convenient at this · point to extend the concept of a Riesz ·. 

- -r 
norm. Let R be the set of extended non-negative real numbers, 

i. e., { r: r is real and r ~ 0} U {oo} . Thia set is given the 

obvious ordering and the algebraic operations are extended in the 

~allowing manner: 

(i) for any real r ~ O, r -t 00 ::- 00 , ,and 00-100 = 00 

(ii ) for any real r) o, roo=oo but 000 = o. 

If L is a Rieez space and )... is a map ·from L to -+ 
R ' then 

~ is called an extended Riesz ~ if 

(i) /\ (x ) = 0 implies x :: o, 

(ii) for any real r and x E L, A. (rx) = I. r I A (x), 

(iii) f or every x, y EL, A (x+y) : A (x) + A(y), 

(iv ) if x , y E L and I x I ~ lyl, then A Cx ) ~ A(y ) . 
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If A is an extended Riesz norm on a Riesz space L, let 

L;.. = { x <: L: >. (x) < oo} Then we may easily verify that 

L )\ ia an ideal of L and A is a Riesz norm on L ).. • 

Now the T'-bounded se~ B in the definition of local convergence 

may be selected so as to be convex and solid. We call ,- -bounded, 

convex, solid sets 'r -admissible. If B is such a set we may 

define an extended Riesz norm A by 

A (x) :: inf -{ r: 0 < r is rea 1 and 1 Ix I rj B} ( :. 00 
r 

if for every real r ) O, .!: Ix I I B). Extended Rieaz norm.a defined 
r 

in this manner are called 'T -admissible extended Riesz ~· If, 

in addition, the set B is T ~closed, then A is called a 

'i-closed extended Riesz ~· 

5.1 Lemma Let (L, T) be a locally convex Riesz space. 

(i) An extended Riesz norm ~ is T -admissible if and only 

if for every 'I -continuous Riesz seminorm f' there exists a real 

number such that f (x) S af' ~ (x) for every x E L. 

(ii) A sequence xn~x (T-local) if and only if for some 

1" -closed extended Riesz norm X , A (x - x )~o. n . 

Proof: (i) Suppose )... is 1' -admissible, defined on the 

T -admissible set B. Then if f' is 'r -continuous Riesz 

seminorm there exists a) 0 such that f (x) ~ a for every 

x E B. It follows that I' (x}. ~ a A (x) for every x c L. 

If for every T -continuous Riesz seminorm f' , there exists 

such that p (x) £: a I' ).. (x), then the set B-:: { x: A (x) ~ l} 
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is a i- -admissible set .which determines ).. • Thua )\ ia 

7 -admissible. 

(ii) To see this we need only note that the 'T -closure of a 

7' -admissible set is again 'T -admissible. 

As an example we consider order intervals. Let (L,'r) be an 

arbitrary locally convex Riesz apace and 0 { u E L. Then since 

order intervals are "i- -bounded and 1" -closed, )-.. u def'ined by 

/.. u (x) = inf { r: ru ~ Ix I} , is a T' -closed extended Riesz norm. 

In this case the ideal LA~ is the principal ideal generated by 

u in L -- {x £ L: lxl ~mu for some real m}. 
Now we consider completeness with respect to 'r -local convergence. 

A sequence { xn} in (L, T) ia said to be a 'I -local Cauchy 

sequence if for some 1' -bounded eet B and every · r > 0 there 

exists N(r) and m, n > N(r) implies xm - xn E rB. The space L 

is s a id to be 1"' -locally complete if for every 'I-local Cauchy 

sequence { xn} there exists x E L such that xn~x ( 'r), 

(and thus since we may assume B ie 'r -closed, xn ~ x ( 1'" -local) ) • 
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~ T -local Completeness 

For Riesz normed Rieez spaces, local convergence and topological 

convergence agree. Now if 0 ~ un e L for n = 1, 2, •• • , and 

there exists u E L such that u : sup{£:.. uk: 1, 2;, ••• t.._, 
rJ K•J. f 

designate u by ~ Un• Using this notation we state below a 

theorem of Luxemburg and Zaanen [4] . 

6.1 Theorem Let L be a Riesz space and p be a Riesz norm on 

L. Then the following conditions are equivalent. 

(i) L is p - complete. 

(ii) If 0 <u - n E L for n = 1, 2, ... , and L: p (un) < oo 

then L Un exists and p ( L"un) ~ l: p (un). 

(iii) If O~~E L for n : 1, 2, ... , and L p (un) < O::> 

then L' u n exists. 

We generalize this to the case of local completeness in the 

following theorem. 

6.2 Theorem Let (L, 1') be a locally convex Rieez apace. Then 

the following conditions are equivalent. 

(i) L ie T -locally complete. 

(ii) For every 'I -closed extended Riesz norm A , L r. is 

A -complete. 

(iii) If 0 ~ ~ f and { un)- is a 'r -local Cauchy sequence 

then sgp ~ exists. 

(iv) If for any T'-cloeed extended Riesz norm ~ and 

' 

J 
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0 != un € L , n :. 1 , 2, • • • , I then 2: u n 

exists. 

(v) L is relatively uniformly complete; and ·if for any 

'i - closed extended Riesz norm A and 0 ~ u E L, 
- n 

n = 1, 2, ••• , 

, then there exists vc L such that 

u L v,· n = 1, 2, 
n -

Proof: ( (i) implies (ii) ) Let '/.... be a 'T -closed extended 

Rieaz norm and { xn} a A -Cauchy sequence in L >- • Then { xn} 

is a I -local Cauchy sequence in L and, by (i), for some 

x E L, x ~ x (T). Since 
n 

and x E L~. 

( (ii) implies (iii) ) 

is T-closed 

and { un} is a ';-local 

Cauchy sequence, then for some 'I-closed ~ and integer n 0 , 

is a A -Cauchy sequence in L )\. Then for some 

.A(un - ullo - v )~O and ( 'I -local). 

By 1.4 v + \.\io: sgp ~· 

( (iii) implies (iv) ) Thie is immediate since 

sequence. 

( (iv) implies 

L:. >du)< oo 
n 

implies is a 'r -local Cauchy 

(v) ) If' for some T -closed )\, 

then by (iv) 'Z:' ~ exists and 

for every n: 1, 2, •••• 

Now let { xn)- be a relative uniform Cauchy sequence. Then for 

some 0 ~ v ~ L, { xn} is a Av Cauchy sequence 1 where 

)I." (x) = inf { r: rv ~ Ix 1} • Pick a subsequence { yn r such 
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Hence L A.v (y · 
1 

- y ) < 00 • 
n+- n 

Then eince we have shown that Av ia a 1' -closed extended Riesz 
Olo 

norm, by (iv), w=L:ly 1 - y I exists. In addition, for 
l?=i n + n 

each n IYn+l - yn/+ (yn+l - yn) ~ 0 a nd 

A (J Yn +- 1 - Y I + (y 1 - y ) ) f 2 A (I y + 1 - y I ) , n = 1, 2,. • • • v n n+ n n n 

00 

Then a gain by (iv), z = f1. I yn-rl - Y~I + (yn +l - yn) exists. 

n 

Now £:. I y - y l ~ 
K:.n1t k + 1 k m 

w - L I. yk + 1 - ykj • But 
I<. = :t. 

rn rn -k -n L I y k + 1 - y k j L.. L 2 v f 2 v. Thus 
1(:171J. K:: n+L. 

1.w - f_ jy - Ykl I ~ 2-n v and . f.. IYk-t-1 - Ykl~" (r. u.). 
K: i k + 1 I<=~ 

We h ave similarly lz - [ 'f;i IYk+ 1 - Yk\ + (yk+-l - yk)J j = 
: I z - w + y 1 - y n + l - (w - i-.:1. j Yk + l - Yk I ) ~ 2n -

1 
v • 

Thus yn_.,,,,.z - w+y
1 

(r. u.) and then xn~z - w1"y
1 

(r. u.). 

Hence L is r e latively uniformly compl ete. 

( (v) implies (i) ) Let {xn"} be a 7'-loca l Cauchy sequence. 

Then for some T-closed A, {xn} is a )\-Cauchy sequence. Pick 

a subse quence {Yn"\... such that /... (y - y ) ~ n-4 , n :.1, 2, •••• 
f n+l n 

co 2 
Now L ~(n I. y - y I)<. o::> and by (iv) there e xists v 

'1=1. nt-1 n 

21 such tha t n y n + 1 - y n j ~ v, n = 1 , 2, If m ~ n 

m-1. 

jym-Yn/ ~l<~fYk+l- ykj~( 
m-.t 

~ 2-k) v • . Thus { yn} is a 

relative uniform Cauchy sequence. By (iv) there exists y E L 

such tha t y ~y (r. u. ). Then y __,... y (7") and thus 
n n 

x -.-. y (T). Renee L is T-locally compl ete. 
n 
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~ Corollary Let (L,'I) be a locally convex Riesz space such 

tha t L is 1-local ly complete. If I' is another loca.l ly convex 

Riesz topology on L such that T 1 ~ 1"", L is also 'i' 1 -locally 

complete. 

Proof: Suppose for some I 1 -closed extended Riesz norm A and 

osu e L, n: l, 2, . . . I 2: )\(u ) (.CO . Then ).. is also 
n n 

I -closed and by 6.2 (iv) L . u exists. Hence, age.in by 
n 

6.2 (iv), . L is T '-locally complete. 

We have also: 

6.4 The orem Let (L,'i) be a locally convex Riesz apace such that 

L is /-locally complete. Then (L, T) b = L - • 

Proof: Suppose there e xists 0 ~ ¢ € L"' such that 

¢ / (L, /) b. Then for some 1"'-cloee.d, /-admissible set B, 

¢ ie unbounded on B. Let ).. be the corresponding 1' -closed 

extended Rieaz n?rm. Then there exists 0 ~ u ~ L such that 
n 

~(un) 4'. 1 and ¢ (~) ~ n-' for n -:: 1, 2~ • • • • Then 

L >dn-2 
un) ( 00 and by 6.2 (v) there exists V e L 

such that 
-2 n u <. v n- for n :. 1, 2, Then ¢ (v) L, n 

n ::. 1, 2, . . . ' which is impossible. Thus and 

(L, I) b = L - • 

for 
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I· Applications to Bound and Metrizable Spaces 

We recall that a locally convex apace ie bound if every convex, 

circled set which absorbs each topologically bounded set is a 

neighborhood of zero. It is said to be barrelled if closed, convex, 

circled sets which absorb every point are neighborhoods of zero. 

Kelley and Namioka have shown that if a bound space is sequentially 

complete, it is barrelled [3]. For locally convex Riesz spaces 
' 

this may be improved. 

Ll Theorem Let (L, T) be a bounded locally convex Riesz apace. 

If L is I -locally complete, then it is a barrelled space and 

"i ::. m (L, L - ) • 

Proof: Since L is T -locally complete, by 6.4, (L, 'i )b= L-

Now fora bound space (L,T)"': (L,T)b and i":m(L, (L,'i)*). 

Thus T :. m (L, 1-). 

Now we must show that if A is a 'T-barrel (a T -closed, 

convex, circled set which absorbs every point), then A absorbs 

any T -bounded set B. We may assume that B is 'I-closed, 

convex, and solid. Let )\ be the corresponding I-closed 

extended Riesz norm. Then by 6.2 (ii), we know that L ~ ie 

)\-complete and thus of the second category in itself with respect 

to A • Further let I}.. be the topology 'i restricted to L ~. 

Then since 1' A is weaker than the A -topology, LA is of the 

second category in itself with respect to 1' >. 

If we let A'>-. = A f'I L >- , then A A is 1"" -closed and by 
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assumption U {n A>--: n: 1, 2, ••• } : L ~· Then for some 

n, n A>.. he.a e. T" interior point, and thus A>. he.a e. 1"'" 

interior point. Thus for some x e L;.. and some solid, convex, 

'i>- -neighborhood of' zero U, A).. ":) x+ U. Since A>- and U 

are both circled, A>-.""::> - x+ U. Now since AA. and u are 

AA ) .l. (x + U) -+ t ( x.,. u) ':: :}U+ ~ U u. Finally 2 

B ia T )\ bounded and A >. contains a T ,._ neighborhood of 

convex 

since 

zero, 

A ' )\ absorbs B. Thus A absorbs B and (LI j") is barrelled. 

2d 0 orolla!:Y: If (L, j') is a bound locally convex Riesz space 

such that 0 f. u 
~ 
1 {un) a T -Cauchy sequence in L, implies 

sgp Un exists, then T = m (L, L __,) and the space is barrelled. 

Proof: By 6.2 (iii), L is I -locally complete and the result 

follows from 7.1. 

We now consider metrizable locally convex Riesz · spacee. The 

following lemma shows that in this case 7' -convergence and I -local 

convergence a gree. 

L_2 Lemma If (L,1') is a metrizable locally convex Riesz space, 

then a 1"' -Cauchy sequence is also a 'T -local Cauchy sequence. 

Proof: If' 1' is metrizable there exists a countable set of' Riesz 

seminorms which generate T . Let {x } 
n 

be 

a 1"-Cauchy sequence. Then for each k, 

o('k :-· sup{ pk (xm - xn): m, n = 1, 2, ••• ,} ( 00 Let 

B:: {x: f k (x) ~ k o(k' k :1, 2, ••• ) • Then B is 
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T -bounded. Now given a real a > 0 pick an integer k such 
1 0 

that - < a. Then there exists n such that m, n > n implies 
k 0 o - o 

fk (xm - xn) ~a (ko(k), k = 1, 2, ••• , .k
0

• If k > k
0

, we have 

t° k (xm - xn) ~ o(k ~a (k o( k). Thus · m, n > n
0 

implies 

Ix - x J E aB and thus { x } is a 'I -local Cauchy sequence. 
m n n 

~ Theorem Let (L,"T) be a metrizable locally convex Riesz 

space. Then the following statements are equivalent. 

(i) L is T -complete. 

(ii) L is T-locally complete. 

(iii) If 0 !: u ~ and { u } 
n n 

is a T-Cauchy sequence, then 

u exists. 
n 

(iv) Let f 
1 

!: f 
2 

I.. • • • , be a countable family of Riesz 

seminorms generating 'j . If 

·then 

O ~u 
n 

L: u n 

EL, n: 1, 2, •.• , and 

exists. 

Proof: The equivalence of (i) and (ii) follows from 7.;. Then 

(ii) is equivalent to (iii) by 7.; and 6.2 (iii). Certainly 

(iii) implies (iv). We have only to show that (iv) implies 

(iii). 

Suppose f' 
1 
~ f 

2 
~ ••• , is a countable family of Riesz 

seminorms generating "'j and 0 ~ u .,.. 
- n 

is a T -Cauchy 

sequence. 

(v 1 n+ 

exists and 

Then we may select a subsequence 0 < v + 
- n 

such that 

- v ) 4 2-n. 
n -

- vn) = BHP 

(ii) holds. 

Hence and 

( v - v ) exists. Then sup vn-:: sup 
n 1 n n 

u 
n 
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We have the following corollary. 

J...:2 Corollaa Let (L, 1') be a metrizable locally convex Riesz 

space. If for some weaker locally conve~ Riesz topology I' 1 
1 every 

monotone 'r 1 Cauchy sequence has a least upper bound, then (L, 1") 

ia I - complete and 1" = m (L, L""" ). 

Proof: By 6.2, the condition on 1' 1 implies L is 1" 1 
- locally 

complete. Then by 6.3, L ie 1" - locally complete and, by 7.4, 

'!' - complete. Since metrizable locally convex spaces are bound, 

7.1 implies T = m (L, L ). 

We conclude this chapter with an example to show that a 'i - locally 

complete apace is not necessarily sequentially complete. 

~ Example Let L be the Riesz apace of all sequences which 

converge to zero. Let p be the "sup" norm, i.e. 

p (x) = sup { I x (k) l : k = 1, 2, ••• )' • It is well known that 

L is p-complete and (L, p)• :; .Q. 1 , where .Q
1 

is the Riesz 

apace of all absolutely convergent series. Now by 7.5, the 

p - topology is m (L, L""). Then by ).4 and 2.3 

L.-v (LI p )* = ,Q • 
1 

Let r = I a- I (1, L""" ) • Since (L,1")* C(L,l)bC::L...,, 

(L, j)b = (L, p)b = L - 1 and I and p define the same bounded 

sets and hence determine the same local Cauchy sequences. Since 

L is p-complete, L ia p-locally complete and thus 'r - locally 

complete. 



Now let 

for k #- n, 

- )1 -

en be the sequence en (n) : 1, 

n :: 1 , 2, • • • • Then { .fl- e "\.. '- m r 
"7 ::~ 

but e (k) = 0 
n 

ie a i -Cauchy 

sequence, which does not converge. Thus L is 'I-locally complete, 

but not T -sequentially complete. 



I II ARCHIMEDEAN QUOTIENT SPACES 

a. Relatively Uniformly Closed Ideals 

The concept of relative uniform convergence finds further 

application in the study of quotient spaces. If' L is a Riesz 

space, A is an ideal of L, and rr is the quotient map of L 

onto L/A, then L/A is again a Riesz space under the ordering 

7T (x) ~ 0 if and only if x -T y > 0 for some y E A. 

Ideals of a given Rieaz apace such that the quotient space is 

archimedea n have been characterized by Luxemburg (5] in the 

.following manner: 

8 .1 Theorem Let L be a Riesz space and let A be an ideal 

of L. Then the following conditions are equivalent. 

(i) L/A is archimedean. 

(ii) For all 0 ~ u, v E L, 

n = 1, 2, . . .. , then u E. A. 

1 + 
( u - - v ) E A · for n 

(iii) A is relatively uniformly closed. 

Proof: We show (i) implies (ii). Suppose L/A is archimedean 

and f'or 0 ~ u, v E L, 
1 + 

(u - - v) € n A, n~ 1, 2 , ... . Then 

each let 1 + (u 1 o), for n, Yn (u - - v) = sup n v, n 

n = 1, 2, . . . . Now if 7T is the quotient map of L onto 

u ~ y n + ~ v and 0 ~ 7T (u) ~ ~ TT ( v), n : 1, 2, 

L/A is archimedean, TT (u) = 0 and u E A. 

. . . . 
L/A, 

Since 

Now we show that (ii) implies (iii). Suppose x ~ A1 ru. 

We may assume for some sequence { xn'r in A and 0 !:. v Go L, 
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Ix - xn l .(, ~ v for n-:: 1, 2, • • • • Now 

Ix I - .! v <. \x l , 
n - n 

\xnf and since A is an 

ideal ( 1 x I - ~ v)"" ~ A, n = 1, 2, • • • • Hence by (ii )1 I x I ~ A 
n 

and also x ~ A, and A is relatively uniformly closed. 

To show that (iii) implies (i), assume A is relatively 

uniformly closed and let TT be the quotient map of L onto L/A. 

Suppose for some 0 Su, v e L, 0 ~ n 7T (u) ~ 77 (v), 

n = 1, 2, •••• Then there exists 0 <. w € A and 
- n 

1 u ~ n v + wn , for n = 1, 2, ••• • By the lemma of Riesz we have 

Then the sequence 

1 
o~~~~v 

{zn} C A and 

and 0 <:. z -'.. w , 
- n - n 

1 
lU - Z f ./.. - V n - n 

n :: 1, 2' • • • • 

or 

z ~ u (r. u. ). Thus by (iii), u E A and L/A is archimedean. 
n 
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.2· Non-archirnedean Riesz Spaces 

If a Rieaz apace L is non-archirnedean, then there exist . some 

0 < u e L and 0 5: v e L such that nu 5: v for n:l, 2, . . . . 
For an arbitrary Rieaz apace L we define I (L) ={x € L: for 

some 0 ~ v EL, n IXI <(.v, n = 1, 2, ••• }. It is easy to see 

that I (L) is an ideal and L is archimedean if and only if 

I (L) = { o} • 

Again let L be an arbitrary Rieaz apace. If A is an ideal 

of L and L/A is archirnedean, or equivalently, A is relatively 

uniformly closed, then it is obvious that A "":> I (L). Now let 

Ot.. (L) :: {A: A is an ideal of L and L/A is a.rchimedean}. 

Then certainly L ~ 0-L • Let A
0 

(L) ·-:: n {A: A € 0t (L)}. 

We have: 

2J. Theorem Let L be an arbitrary Riesz space. Then 

A
0 

(L) E Qt (L) and A
0 

(L) :> _I (L). 

Proof: Certainly A (L) J I (L). 
0 

Further, since it is obtained 

a.a an intersection of relatively uniformly closed ideals, it is 

both an ideal and relatively uniformly closed. Thus A (L) E Q'""l • 
0 

It is not true that I (L) = A (L) for all Rieaz spaces. We 
0 

shall give an example in Chapter 10. 

First we examine Rieaz spaces which are themselves obtained as 

quotient spaces. 
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2.d Theorem Let E be a Riesz space and B be an ideal in E. 

Let L:: E/B and 7T be the natural map of E onto L. If A 

is an ideal of L, then B(A) = { x E E: 17 (x) e. A} is an ideal 

of E and L/A = E/B(A). 

Proof: Certainly B(A) is an ideal. Let f\ E be the natural map 

of E onto E/B(A) and r\. 1 be the natural map of L onto L/A. 

Then the desired isomorphism /-' is given by 

f' (fl E (x) ) = fl L ( TT (x) . ) • 

2.:...2 Theorem Let E be a Rieez space and B be an ideal in E. 

Let L : E/B. Then I(L) = A (L) if and only if s•ru is relatively 
0 

uniformly closed. 

Proof: Using the notation of the previous theorem, 

B [ I (L)] - { x E E: TT (x) e I(L)} = {x - e E: for some 0 !::. v €. E, 

I TT (x) I '- ~ TT(v), n = 1, 2, ... } - . { x € E: for some v 2:.. 0 - -
and {bn} c B, Ix - b I '- 1 

n = 1, 2, ... } = 8, ru. sequence - v, n - n 

Now since by 9.1 A (L) ~ I(L), 
0 

A (L) = I(L) 
0 

if and only if 

L/I(L) is archimedean. By 9.2 this is equivalent to E/B'ru 

being archimedean. Finally by 8.1 this holds if and only if s•ru 

is relatively uniformly closed. 

~ Corollary Let E be a Riesz space with a strong unit or a 

Riesz space possessing a complete, metrizable, locally convex Riesz 

topology. Then if B is an ideal of E and L= E/B, 

I(L) = A (L). 
0 
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Proof: We have to show that B1 ru is relatively uniformly closed. 

In the case that E has a strong unit, this is obvious. 

Let 'i be a complete, metrizable topology on E and B an 

ideal in E. Then we claim 8,ru;: 
_..,.. 
B • From this it follows 

that B'ru ie relatively uniformly closed. 

Certainly B' ru C B't" . Let 
-T x E B • Then there exists a 

sequence {x} CB such that x ~ x(T). Let f1 ~ 1'2 4.. 
n n 

be a countable set of Riesz eeminorms generating 'T • Pick a 

subsequence { y } of {x } 
n n 

such that f (x - y ) ~ n- 3. 
n n 

Now 

and 

L f n (n Ix - Yn I ) < oo , and by 7.4 (iv) there exists 

L n I x - y n \ • Then I x - y n I ~ ~ v 

Y __,.__ x ( r u ) i· • e· ., x ~ B1 ru ---- . . , ~ 
n 

and 

for 

81ru = 
n - 1, 2, 

-T' 
B • 

It is not true that for any ideal B of a Riesz apace E, B1 ru 

is relatively uniformly closed. We shall give an example in the 

next chapter. 



- 37 -

10. An Example 

The following example was g iven by K. Yosida (8] . \'le use it 

first to show that I(L) is not always A
0

(L). 

00 
(i) Let F : lT E 1 where E is the space RX R ordered 

n::i n n 

lexicographically f'or n = 1, 2, . • • • • We order F by the product 

ordering. Thus elements of F are of the form 

x = [ (x
1

, y 
1
), (x2 , y 2 ), ••• J and x ~ 0 if for ea.ch i 

x.) 0 
J. 

or x = 0 
i 

and i:l,2, •••• Let L be the 

subspace of F consisting of all x e F such that' { i: xi"/: o} 

is finite. Certainly L is a. Riesz apace. 

(ii ) I (L ) = { x e L: xi = O, i :: 1, 2, and 

{ i: y i-;/:. 0} ie finite)- • 

Proof: Suppose 0 ~ x, x e L and nx f i, n = 1, 2, •••• 

If' for some i, x. > o, 
J. 

then nx ./ .-x for n - 1 2 ..... - , , . . . , 
i- i 

and this is impossible. Thus x. = o, i= 1, 2, Suppose 
J. 

) o. .-.J 
~ -for some i, Yi If x - o, then ny. Yi 

f'or -i J. 

n: 1, 2, ... , and this is impossible. Thus · 

{1: yi-:f;. o} C{1=x.?:-o } and thus { i: YiF o} is finite. 
J. 

Now let x E L such that x.: o, 
l. . 

i = 1, 2, .•• and 

.{, i: y i += 0} is finite. Define x by 

x. - 1 if y i :/: o, . 
l. -- 0 if o, x = y.= i J. 

Yi= 0 i - 1, 2, ... . -



Then nlxl .(.-_x for n = 1, 2, ... , and x E. I(L) • 

(iii) A
0

(L) = {x € L: xi= o, i 1, 2, ... } . 
Proof: Let Xe L and x -. -1 

o, i = 1,, 2,, . . . . Define 

i = 1, 2,, . . . . 
For each n 

(n) 
define x by 

(n) 
x. - 0 

1 
i=l,2, ••• 

(n) 
Yi =IY1 1 1 f i 6. n 

(n) 
Yi = 0 n .( i. 

Then x (n) € I(L) C A (L) 
0 

and Ix - x(n)I ~ !x, n-:. 1, 
- n 

Since A (L) is relatively uniformly closed, x € A (L). 
0 0 

Now suppose x E L and x. -:j:. 0 for 
1 

some i. Let 

2' • . • • 

M = { x E Ls xi:::. o}. It is easy to see that M is maximal. 

Then L/M is isomorphic to the real numbers and M E CJt • Hence 

M ~ A
0 

(L) and, since x I M, x ;i A
0 

(L). 

Thus in this case A (L) :;!:. I(L). If furthermore, for some 
0 

archimedean space E there exiata an ideal B of E such that 

L= E/B, then we also have an exa.1I1ple of an ideal B in an 

archimedean Rieaz space such that 

uniformly closed (by 9.;). 

1 ru B is not relatively 

(iv) Let T2 be the apace RX R ordered lexicographically. 

First we shall represent T2 as a quotient space of an 

archimedean space. Let E2 be the subspace of the Riesz space of 
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all sequences { s (n)} such that the following limits exist: 

(a) lim s(n) = s and 
n-.oo 0 

(b) lim n ( B (n) - B ) = Bl. n ..... oc> 0 

(v) E
2 

is a Riesz space. 

Proof: Certainly E
2 

is a linear subspace of the space of all 

sequences. 

Let 

We have only to show that if s E E2 then 

Then lim I a I (n) = lim I a (n) I = I a I • 

I el E E
2

• 

Now if 
"-00 ,,_00 0 

a = o, we .have lim n 1e1(n)= lim In e(n)I = le1 I . If 
0 n•o0 h•oo 

s -:/: O, we may assume s )' 0 since ls I = I -a I . Then 
0 0 

lim n ( I a I (n) - la I ) = lim n (s (n) a ) = sl. Thus 
n•oo ' 0 

n~o0 0 

Is I ~ E and 
2 

E2 is a Rieez space. 

(vi) Let I ={a E. E • a - el - o}. It is clear that 2· - -2 0 

I2 is an ideal of E2 . Let v and u be the sequences 

v(n) = 1, n = 1, 2, u(n) = 1 n= 1, 2, Then ... 
' ii , . .. . 

u, v E' E and for any s € E 
2' s - 8 v - 8 u € I . 

2 0 l 2 

Proof: Certainly u, v € E
2

• 

Then lim t(n) = lim ( a(n) 

If a € E2 , let t = a - s
0

v ·- s 1u . 

n-oo n-oo 
- s 0 - ~ s 1 ) = 1 im a(n) 

Also n t(n) = n (a(n) - a
0

) - s • 
l 

Thus lim n t(n): 
n~oo = lim n ( s (n) - s

0
) - s 1 :: O. 

,, ..... CX) 

6 = o. 
0 
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(vii) T - E /I 
2 2 2 

Proof: Let rr be the quotient map of E
2 

onto E2/I2 • Then 

we may define a map of E2/r2 onto Rx R by '\. (7T (a) ) : 

Certainly 'l. is 1 - l 

and preserves the linear operations. To complete the proof we need 

only show that 77 (s)~ 0 if and only if B ') 0 
0 . 

or 

Since u ~ I
2 

and v ¢ I 2 , 7T (u)f: 0 and 7'(v)'1= O. We now 

show that ·rr (u) .f: n TT (v) for n = 1, 2, 

i(n)(k):n 

For each n, 

l.
. (n) ~ I 

let ~ 
2 

be defined by for l ~ k ~ n, and 

i (n) (k) = 0 for k >n, n-= 1, 2, •••• Then we have 

nu ~v+i(n) and nrr(u) ~ ·77 (v), n = 1, 2, •••• 

Now if for some TT (s) ~ E /I
2

, s > O, then 
1a I 2 o 

0 < s ("' ( v ) - s 1 7T ( u) ) ~ s 1 7T ( u) -t- s 
0 

·TT ( v) = " ( s) • 
0 0 

If s
0 
= 0 and s

1 
> O, then 0 ~ e

1 
77 (u) = 17 (s). 

On the other hand if e < O, then 
0 

77(s)= s (rr(v) + 
8 1

77(u)) < O. If s = 0 and s1 ( o, 
O So 0 

then TT (a) = s
1 

rr (u) < O. Thus '\. is a Riesz isomorphism of 

E2/r2 onto T
2

• 

(viii) No>v let 
00 

G=7T E 
n:1. 2 

with the product ordering. Let 

be the projection into the k 1 th component, k = 1, 2, .. ' . 
If x ·.:E G, 

Let lim 
n+.oo 

pk (x) is a sequence in 

Pk (x) (n) = x and lim 
k,o n+oo 

E for k = 1, 2, •.•• 
2 

n ( pk (x) (n) - x ) = 
k,o 

pk 

x • 
k, 1. 
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Finally let E = { x € G: is finite}. Now 

E is a Riesz subspace of G and hence is archimedean. Let 

I : {xe E: xk,o = xk, 1 = o, . k = 1, 2, ... } . It is ea sy to 

see that I is an ideal of E. Let 7T be the quotient map of 

E onto E/I. We may define a map of E/I onto L by 

I\ (1T (x) ) :: [ (xl,0' xl,l), (x2 o·' x2,l), ... 1 . Now it is 
' 

clear that I"\ is an isomorphism. 

Thus since E/I -::= L, and I(L) "/:. A (L), 
0 

I'ru is not relatively 

uniformly closed. 
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IV RIESZ SPACES SUCH THAT EVERY QUOTIENT SPACE IS ARCHIMEDEAN 

l.l. A Genera l Cha r a cterization 

As we have s een, an archimedean Rieez apace has, in general, 

many quotient spaces which are not archimedean. Thus a Riesz space 

such that every quotient space is archimedean must be of a special 

type. Some examples are finite dimensional spaces and the apace of 

all sequences such that all but a finite number of terms are constant. 

Let L be a Riesz space and B be a band in L. Then B is 

said to be a proj ection band if for every 0 ~ v ~ L, there exists 

u8 ::: sup { 0 S u ~ v: u ~ B} and u 8 t B. 

11.1 Theorem Let L be a Riesz space such that for every ideal 

A the quotient space L/A is archimedean. Then for every 

0 ~ u, v € L there exists a real number m ~ 0 such that 

sup (inf (nv, u): n: 1, 2, ••• )=inf (mu,v), and thus every · 

principal ideal in L is a projection band. 

Proof: Assume, to the contrary, that the set 

{ inf ( nv, u) : n = 1, 2 , ••• } contains infinitely many distinct 

elements. Let A be the ideal generated by 

{nv - inf (nv, u): n = 1, 2, ... r ·. Then 

A= { x E L: l x I ~ k (nv - inf (nv, u) ) for some positive 

integers k and n} • 

Now v; A, since V E A' implies that for some k and n, 

v ~ k (nv - inf (nv, u) ). Then 
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(kn -1) v ~ inf (kn v, k u) ~ inf (kn v, u) and 

kn v z inf (kn v, u) + v > inf ( (kn+" 1) v, u). Indeed for 

. j:?:. kn, j v :2 inf ( (j + 1) v, u) and · 

inf ( j v, u) - inf ( (j + 1) v, u) • Thus -
sup (inf (j v, u): j = 1, 2, ••• ) = inf (kn v, u), contrary 

to our assumption. 

Let TT be the quotient map of L onto L/A. Since for every 

integer n, n v ~ u + (n v - inf (n v, u ) ), we have 

n TT ( v) S 7T (u), n - 1, 2, • • • • Thus L/A is not archimedean, 

which is a contradiction. 

Hence for some m, sup (inf (n v, u): n 1, 2, •.• )= 

=inf (m v, u). 

11.2 Lemma Let L be a Riesz space and 0 ~ u, v E. L. 

u - eup (inf (n v, u): n = 1, 2, ... ) exists in L 
1-

u = u - u 
l' 

then u ..Lu and u
2

_L v • 
2 1 2 

Proof: We have inf (u;, u
1

) = inf (u - u
1

, u
1

) = 
=inf (u, 2u

1
) - u

1
• Now inf (n v, u) 1 u

1 
implies 

2 inf (n v, u) = inf (2n v, 2u) t 2u and 
1 

If 

and 

inf (2n v, 2u, u)::: inf (2n v, u) + inf (u, 2u
1

) = u1 • Thus 

inf (u 
2' u ) = o. 

1 
Also we have inf (v, u ) -2 -

inf ( v + u
1 

, u) - u
1

• Then 

- inf ( (n 1" 1) v, u+ v) ~ v +--

inf (v, .u - u ) = 
1 

inf (n v, · u) + v = 

u1• Thus 

inf ( (n+l) v, u + v, u) =inf ( (n+l) v, u) 1 inf (v ·. -t u
1

, u):u
1

• 



- 44 -

It then follows that inf ( v, u
2

) -= O. 

lW Theorem Let L be a Riesz space. Then the following 

conditions are equivalent: 

(i) For every ideal A of L the quotient space L/A is 

archimedean. 

(ii) For every O~u, v € L there exist 

v . - sup (inf (n u, v): ' n :: 1, 2, ... ) and 
1 

ul sup (inf (n v, u): n = 1, 2, ) in L and real numbers 

ml and m such that m v '> u and m u ..,. v . 
2 1 1- 1 2 1- 1 

Proof: (i) implies (ii). By 11.1 there exist integers m and 
1 

such that u - inf (m v, u) and v - inf (m2 u, v). Let 1- 1 -1 

v - v - v Now u ~ m v: m
1 

v
1 

+ m
1 V2• By 11.2 v · J.. u - i · 2 1 - 1 2 

and hence v2 l. ul. Thus u < m v • 
1 - 1 1 

Similarly v 1 ~ ll1:z ul. 

(ii) implies (i). Let A be a.n ideal of L a.nd 7T be the 

quotient map of L onto L/A. Suppose for some 0 ~ u, v ~ L, 

0 ~ n 77 (u) f 7T ( v), n = 1, 2, . . . . We may ass ume there 

exists 0 C::. w EA 
n 

such that nu~v+w, n 
n = 1, 2, 

We are a ssuming u :: sup (inf (n v, u): 
1 

v = sup ( inf ( n u 1 v ) : 
1 

n = 1, 2, •.• ) 

n = 1, 2, •. • ) 

exist. Let 

. . . . 
and 

and v =v - v • 
2 1 

Then nu+ nu f:.v +w, n = 1, 2, •••• 
1 2 · n 

Since u
2 

J. v by 11.2, u i.. w . and u2 € A. · Now since 
2 - 1 

m 
2 

nu i.v +-w for ea ch n 1, 2, . . . . But there exists 
1 - 1 n 

an integer m such that m u
1 
~ v

1
• Then n u ~ m u + w 

1 - 1 n 

and 0 '- n n- (u
1

) ~ m Tr (u
1

) for every n-= 1 , 2, • • • • Thus 
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7T (u ) = O, u c A, and L/A is archimedean. 
1 
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12. Dedekind a - complete Case 

A Riesz space such that every ~uotient apace is archimedean is 

not neceesa.rily Dedekind a_ complete. An example is the space 

of all sequences which are constant except for a finite number of 

terms. We shall show that if a Rieaz · space has every quotient 

apace archimedean and is Dedekind CT - complete (or :·even relatively 

uniformly complete) then the apace is simply a Riesz space of all 

functions which vanish off finite sets on some non-empty set. 

12.l Theorem Let L be a Dedekind a - complete Rieez space. · 

Then L is relatively uniformly complete. 

Proof': Let {x } be a relative uniform Cauchy sequence. Then 
n 

there exists 0 ~ v € L and a subsequence {yn} such that 
n 

I Yn+l- yn I~ 2-n Vo' We have /(r;.i I Yk+l - Ykl ~E 2-k v 

n 

I Yk+ 1 - yk I Then u = sup L exists by assumption. Also n ":i. 
n 

L I Yk+ 1 - Yk/ t- (yk+ l 
/(-a :I. 

n 
y ) 1 L. 2 (2-k v) L. 2 v. Let 

k l<-::i. 

n 
w = sup L I y -y I+ (y -y ) • Now if' z : w - u + y , 

n /<=t. k i- 1 k k + 1 k l 

<. v. 

/z -yn+l/~Jw - "f;.
1 

/yk+l-ykJ-t (yk+l-yk)/+ /u- ii. /yk+1-yk11~ 
QC) 00 

~L 2 (2-k v) + L. 2-k v = ~ (2-n v). Thus y ~z (r. u.) and 
~~1 ~~~ n 
then x ~ z (r. u. ). Hence L is ··relatively uniformly complete. 

n 

We digress to discuss atomic Rieaz spaces. Let L be a Rieez 

space and a E L. Then a is called an ~ of L if the 
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principal ideal generated by a, 

I (a) = { x E L: Ix I ~ m a for some real m} , . is one-

dimensional. The space L is said to be atomic if for every 

0 < v EL there exists an atom a such that 0 ~a ~v. 

12.2 Lemma Let L be a Riesz apace. 

(i) If a is an atom of L, either a"> 0 or a~ O. 

(ii) If a and a are a.tome of L, then either 
1 2 

al = 'A a
2 

for some real /\ or al l.. a '• 
2 

Proof: (i) If a= o, I(a) = {o} , thus a-::;:.. O. Now 

a= a+- a . • If both a+ and a - are non-zero, they are linearly 

independent since they a.re orthogonal. Thus either a+ or a 

is zero. 

(ii) We may assume a1 > O, a 
2 > o. If' 

inf (al, a.2) :t: 0, then inf Ca.1, a.2) e I(a.
1

) and 

inf (al I a 2 ) E I (a.2) • Thus inf Ca
1

, a.
2

) = o( al= fi a.2 

where o( and p positive real numbers. Hence 
,0 

are a = o( a • 
1 2 

We return to the problem at hand and prove: 

lb.2. Lemma Let L be a Riesz space which is relatively 

uniformly complete and such that every quotient apace is 

archimedean. Let I be a principal ideal in L. Then I does 

not contain a. countable, orthogonal set of positive elements. 

Proof: Suppose to the contrary that we have 0 <. v E L and 

I(v) contains a countable set {o < un: n = 1, 2, ••• } such 
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that U . J_ U I i :/= j 
l. j 

i, j: 1, ?1 •••• We may also assume 

u ~ 2-n v, n : 1, 2, 
n 

Let A be the ideal in L generated 

by { un: n -:.· 1, . 2, • , • } • 

{x' 
n 

A : L: 1 xi~ m ( z:- uk) for some real m>O 
I<.: t. m 

Note that AC I. Now -£' u .L. ( ~ 2-k) v and 
k /(::117 

/l(:zh 

and integer"}. 

{~t. uk1 

is a relative uniform Cauchy sequence. Then for some u EL, 
n 

Z: u ~ u (r. u. ). The limit is unique since L is 
I<=~ k n 

archimedean and thus u= sup z:.: uk. Since u ,. A and 
n A-::/. ,. 00 -k 2-n u - 'L Uk ,(. E 2 v: v .. But this 

I< r I. k=iuL 
u ~ v I v ~ A. Now 

implies L/A is not arch imedean. Thus I doe a not contain a 

countable orthogonal set of positive elements. 

We have now: 

12.4 Theorem Let L be a Riesz space. Then the following 

conditions are equivalent: 

(i) Every quotient space of L is archimedean and L is ·· 

Dedekind a - complete. 

(ii) Every quotient spa ce of L is archimedean and 

L is relatively uniformly complete. 

(iii) Every principal ideal of L is finite dimensional. 

(iv) There exists a non-empty set X such that L . is ·· 

Riesz isomorphic to the Riesz space of all real functions on X 

which vanish off finite sets. 

Proof'i ( (i) implies (ii) ) This follows from 12.1. 

( (ii) implies (iii)) Let I:: I(v), 0 ~ v E L, be a principal 
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ideal. We may assume v;t:: O. We shall show first that I is atomic. 

Let 0 < w E I and J be the principal ideal generated by w. If 

J is one - dimensional, w is itself an atom. If not there exists 

0 ";t: x ~ J such that x .and w are linearly independent. Then 

either ..( x.,. 1 w} or { x-, w} is independent. Thus we may 

assume 0 ~ u ~ w and u and w are linearly independent. 

Finally since L is archimedean> we may assume that A.> 1 implies 

w t A.u. 

Now let w =sup 
1 n 

inf (n (w - u), w). We claim w -:f; w. 
1 

Suppose W : VI• Then by 11.l there exists m'>l such that · 
1 

w: w = inf (m (w - u), w). Thia implies inf (m (w - -u) - w, o)-:: O, 
1 

i. e., m (w - u) - w ~ 0 or w > -L u > which is a contradiction. 
- m-1 

Let 0 < z 
1 

w - w • We now repeat the above process for w • 

Either 

w • 
2 

1 

is an atom or w 
1 

After a finite number of' steps we must obtain a w 
n 

1 

which is an atom. Otherwise I contains ·a countable subset of 

. positive orthogonal elements n : l 1 2, ••• } , 

which contradicts 12.;. Thus I is atomic. 

Now we shall show that I is finite dimensional. \Ve define an 

atom of' I to be normalized if 0 ~ a f v, but )\ ) 1 impl iee 

v t A a. By the previous paragraph, I contains at least one 

normalized atom. On the other hand by 12.;, the eet of' all 

normalized atoms of I must be finite, say {al, a2, ... , ar 
n 

{al' " Let u = sup a2, , a ).- = ~ a . If' u ;t v, v - u 
n · ": t. k 

contains an atom a ) O. Then by 12.2 for some real ).. > 0 



and l ~ k ~ n, 

v = u + (v - u) 

contradiction. 

basis for I. 

a = A a • 
i 
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But then 

,.. a. + A a ~ (1 +A) ai, which is a 
1 i 

Thus v = ~ a and {a • • • a l 
11.-=.t. k l n I 

is a 

(iii) implies (iv). Since every principal ideal of L 

is finite dimensional, it follows that L is atomic. If X is a 

maximal orthogonal set of atoms of L, then it is also clear that 

L is Rieez isomorphic to the space of all functions which vanish 

off finite subsets of X. 

(iv) implies (i). Suppose for some set X, L is the 

space of all functions which vanish off finite subsets of X. Then 

it is clear that L is Dedekind er - complete. Let 

Of,f', g EL and x 
f = { x e X: · f (x) ;t: 0} and 

x = { x E X: 
g 

g (x) 1= O} • Then gl - sup 
n 

inf (n f, g) is 

function given by 

(x) - g (x) if x ~ X r"I. X and 0 otherwise, f I ! g 

and f = sup inf (n g, f) is the function 
1 n 

f (x) = f (x) if x E X () X · and 0 otherwise. 
1 f g 

It ie clear that since xfn Xg · is finite, we may select real 

numbers and such that m f > l 1 - gl 

Thue by 11.}, every quotient space of L ie archimedean. 

t(le 
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V OTHER RESULTS 

12· Spaces with Property (A, ii) 

For .locally convex Rieaz spaces with property (A, ii), one can 

give completeness results which parallel those for i - local 

completeness obtained in 6.2 and 6.:;. 

~ Theorem Let (L, 'j') be a locally convex Riesz apace with 

property (A, ii). If 0 ~ u 'A f , { u}. f a Y- Cauchy net, 

implies that for some u e L, u>.-u ('!), then L is 

I - complete. 

Proof: 'Ne show first that L is Dedekind complete. Suppose 

0 ~ u ')-.. f ~ v is an order. - bounded, directed system in L. Then, 

under the Riesz apace ordering, · { u >.. : ).. E /\)- may be considered 

a net. Let W= { w EL: 0 ~ u)I. ~ w for every )\E /\.} • 

Then w and {w - u)\: w~W,).. e /\} are monotone 

decreasing nets. · Suppose for some 0 :!: z € L, z ~ w - u.>.. for 

every w c w and A E /\. • Then if w~ w, ,{_ uA _ w - z for 

every >- ~ /\ and w - z E ~¥. Since v E- VI , it follows that 

v - n z E- W for n - 1, 2, . . . . . In particular 

for n = 1, 2, ••• , and since L ia archimedean, by 1.2, 

z = o. Thus inf { w - u w ~ W and }\ € A} ::: 0. Since 

(L, i) has property (A, ii), 

)\ c /\.} converges to zero in 

the net { w - u,._ 
T. Now if f' 

w e w and 

is a 1"' - continuous 

Riesz eeminorm and r is a positive real number, there exist 
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and w E" VI such that f (w - u ~ ) < r. If 
0 0 ,, 0 

then U,>,. - u.r.. ~ w - u~ and f (u" - u;.._
0

) < r. 
0 0 0 

So uA t is a monotone Cauchy net, and by assumption, there exists 

u EL such that uA_.,_ 0 (I). Then by 1.4, U_A f u and L 

is Dedekind complete. 

Since L is Dedekind complete, by a theorem of Nakano [6] 

for every 0 ~ u E L, {x: 0 ~ x ~ u} is 'r - complete. Now 

suppose { x >- : is a 'r - Cauchy net. By 1.) 

{x~ :A€/\} and are also I - Cauchy nets. 

If -to x°>' __,_ u
1 

('I) and x A-__,_ u 
2 

( 7 ) , then x >-. _,,... u
1 

- u:2. 

Thus we need only show that positive Cauchy nets converge. 

Let { u >.} be a positive 'I - Cauchy net. Then for each 

0 !::. v € L, {inf (uA, v )} is a I - Cauchy net and, by the above, 

for some 0 ~ u == v, inf (u >., v)~u v 
( 'T ). Now consider the 

v 

{ uv: 0 ~ v € L}. It is certainly monotone. Let f be a 

1"' - continuous Riesz seminorm and r a positive real number. 

Then there exists )\. such that 
0 

A >).,. implies 
- 0 

Let If v ~ w and then 

I u - u I L. I u - inf ( u >- , v ) I + v \"{ - v 

+ j inf Cur., v~ - inf (u>-., w)/ + J inf (u)\, w) - u,.._ / 4 

~ \uv - inf (u>., v)J + lu>- - wl + lw - u>-.1 and 

f(uv-uw)<2r. Thus {uv: O~v(;:L} iea T-Cauchy 

net a nd converges to say u € L. 

net 

Now we have only to show that u )..__,,,,. u ( 1"'). Again let f' be 

a "i- cont i nuous Riesz seminorm and r a positive real number . 
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Then there exis ts ~o such that /\ ~ ~ implies 
0 

fJ (u)\ - U,>--
0

) "< r. Pick w ,Z u )'\ 
0 

such that f (u - uw) < r. 

Then if A "> }.. 
- 0 

lu-u>- 0 / ~lu - · ul+\u -
\V w 

inf (w, .u",)j+ I inf' (w, u~) 

~lu uw I + I u - inf (w, u>-.)j + I U,\ - u )\ I and 
w 0 

f (u u ~o) < 2 r. Thus u )\._,,_ u ( j') and L is 'i- complete. 

~ Theorem Let L be a Riesz space possessing an (A, ii ) 

loca lly convex lattice topology I such that L is 1' - comple te. 

If '7"' 1 is another (A, i i) loca lly convex Riesz topology on L 

such that T 1 ~ "'( , then L is also ")"'" 1 complete. 

Proof: By 1).1 we n e ed only show that monotone T 1 
- Cauchy 

nets converge. Let 0 ~ u )\ 1 ' ..{ u>.} a 7 1
- Cauchy net on 

L. Then -{u).. }- is a T - Ca uchy net and f'or some u ~ L 

U>.-+- u (~). By 1. 4 u ::: sup u >­
;.. 

(A, ii ) , u ")-. ~ u (,.,. I ) • 

and since 'l' 1 has property 



54 -

14. Positive Cones with Interior Pointe 

In general the positive cone of a locally convex Riesz space does 

not have an interior point. Indeed we have: 

14.1 Theorem Let (L, i ) be a locally convex Riesz space. Then 

the positive cone L,. : { u E L: u ~ 0 }- has a T - interior 

point if and only if L has a strong unit v ~ 0 and the topology 

i- is generated by the Riesz norm p, where 

Pv (x) : inf { o< : o( v ~ Ix I} • 

Proof: Assume L has a I - interior point v ~ 0. Then there 

exists a I -continuous Riesz seminorm p 
0 

such that 

f 
0 

(v - x) < 1 implies x ~ O. Let x E L. Then there exists a 

real number o< > 0 such that f (o<x)<l. 
0 

Hence 

f ( v - ( v -c( I x I ) ) = n ( o<. x) < l and _v - o( I x I ~ 0 or 0 ,-0 

1 - v >. I xi. Thus v is a strong unit. 0( ,. 

Now let f be any T - continuous Riesz seminorm. Then if 

cxv ~ lxl, we have f (x) ~ o<.f (v). Thus f' (x) ~ p (x) f (v) 
v 

and the p - topology is stronger than "j • On the other hand if v 

p 
0 

(x) < 1, 

{x: f' 
0

(x) 

then f' (v - (v - I xJ) ) < 1 and v 2 Ix\. 
0 

< l} C { x: p (x) ~ 1} . This shows , that the 
v 

p -topology is weaker than 'i and hence they are the affine. 
v 

Thus 

If L has a strong unit v ~ 0 and 'f is gener ated by pv' 

then certainly 

p (v ·-x) < ~ , 
v 

v is an interior point 

then v - x"' 
1 
- v 
2 

or 

L In fact if 

1 
0 f 2 v :: x. 
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