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ABSTRACT

A Riesz space with a Hausdorff, locally convex topology

determined by Riesz seminorms is called a locally convex Riesz

space. A sequence «{xn}- in a locally convex Riesz space L

is said to converge locally to x € L if for some topologically

bounded set B and every real r > O theres exists N (r) and-
n2N (r) implies x - x € rB. Local Cauchy sequences are defined
analogously, and L 1is sald to be locally complets if every local
Cauchy sequence converges locally. Then L is locally complete if
and only if every monotone local Cauchy sequence has a least upper
bound. This is a somewhat more general form of the completeness
criterion for Riesz - normed Riesz spaces given by Luxemburg and
Zaanen. Locally complete, bound, locally convex Riesz spaces are
barrelled. If the space is metrizable, local completeness and
topological completeness are equivalent.

Two measures of the non - archimedean character of a non -
archimedean Riesz space L are the smallest ideal Ao (L) such
that quotient space is archimedean and the ideal I (L)= { x & Ls
for some 04 v eLl, nix|{«v for n=1, 2, -} . In general
Ao (L) DI (L), I L is itself a quotient space, a necessary and
sufficient condition that A (L) = I (L) 4is given. There is an
example where Ao (L) #£1 (L).

A necessary and sufficient condition that a Riesz space L have

every quotient space archimedean is that for every O < u, v € L
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there exist ul = sup (dnf (v, u): n =1, 2, ... ),

Y = sup (inf (nuwu, v): n= 1,2, ... ), and real numbers

m_ and m such that m u > v and m_ v,z u. If, in addition,
1 2 1 17 1 2

L 1is Dedekind O - complete, then L may be represented as the

space of all functions which vanish off finite subsets of some

non- empty set.
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Introduction.

A subset S of a Riesz space L is said to be golid if x€ L,
y€ S, |xl £]yl implies x € S. (For the definition and basic
properties of Riesz spaces, also called vector lattices, cf.

W. A, J. Luxemburg and A. C. Zaanen [4] and H. Nakano |6} .)
We call a Hausdorff locally convex topology T on L a locally

convex Riesz topology and the pair (L,'T) a locally convex Riesz

gpace if there exists a neighborhood basis for zero consisting of
solid sets.

Locally convex topologies on partially ordered vector spaces have
been studies by several authors; including H. Nakano [6i], L,
Namiocka [7] , and I. Kawai [2] . (In particular our definition
of a locally convex Riesz space is the same as Kaw§i's definition
of a "locally convex lattice.") A seminorm f) on a Riesz space

L 1is said to be a Riesz seminorm if x, y €L and |xl& [y]

implies (x) 2P (y). A Riesz seminorm which is also a norm
is called a Riesz norm. Riesz spaces equipped with Riesz norms
have been studied extensively by Luxemburg and Zaanen Cal

We show in Chapter 1 +that a Hausdorff locally convex topology
T on a Riesz space L defines a 1pca11y convex Riesz space if and
only if there exists a family of Riesz seminorms I\ such that
{ { x € Ls P (x) & 1}: ‘,o 5ﬂ_} s & | = neighborhood basis for
zero. In addition locally convex Riesz spaces are archimedean and
the lattice operations are continuous. In Chapters 2 and 3 we

investigate the space of continuous linear functionals and the space



-2 -

of topologically bounded linear functionals of a given locally convex
Riesz space. We show that both these spaces are ideals in the Riesz
space L7 of all order bounded linesr functionale, and obtain a
characterization of the weakest and strongest locally convex Riesz:
topologies with A given topological dual.

Chapter 4 introduces the concept of relative uniform convergence.
Let L be a Riesz space and -(xn}- a sequence in L. Then x

n
is said to converge relstively uniformiy to x € L if for some

O £v €L and for'every real a > O there exists N (a) such that

n=N (a) implies {x = x |4 a V. For an arbitrary set S in L
n

denote by S'"" the set {x € L: for some sequence {x } C S,
n

x —s x (relatively uniformly)‘} . Aset S 1is called relatively
n

uniformly closed if 8'TY = 8. In general, relative uniform

'™ is not

convergence does not define a topology and thus
necessarily relatively‘uniformly closed.

A sequence -{x } in a Riesz space L 1is said to be monotone

n [

n= ly 24 wes o A

inereasing, written =x 4, if x £ x s
n n n+1

net { Xy 8 N € /\} is said to be monotone incressing, written x%4 %

if N, AN € /N, NEN, implies x, & X, . An arbitrary

system S5 in L is said to be directed upwards if x, y € 8

implies that there exists =z € S such that sup (x, y) £ =z

A system which is directed upwards may-alwaya be considered a
monotone increasing net defined on 5 itself. Now Luxemburg and
Zaanen [4] have given a characterization of norm complete Riesz -

normed spaces., - In particular their characterization shows that a
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Riesz - normed space is topologically complete if and only if
monotone Cauchy sequences have "sup's." In seeking to fit this

into the general theory of locally convex Riesz spaces we are led to-
the concept of local convergence (introduced by H, Gordon [1] s

Let (L,T) be a 1oca113f convex Riesz space. A sequence {xn}
is said to converge T = locally to x € L 4if for some T - bounded
set B and for every a > 0 there exists N (a) such tﬁat
n >N (a)  implies x - x € 8 B. 1In an analogous manner we define
T = local Cauchy sesquence. The Riesz space L ie said to be
T = locally complete if every T - local Cauchy sequence converges
T - locally to an element of L. |

In Chapter 6 we show that L is T -« locally complete if and
only if every monotone T - local Cauchy sequence has a least upper
bound. Further, given two locally convex Riesz topologies, 7"2 1';
if L is T = locally complete, it is also T ' = locally complete.
Finally 4f L is T - locally complete, then the space of T
bounded linear functionals equals the space of order bounded linear
functionals.

A locally convex space is bound if every convex circled set,
which absorbs each topologically bounded set is a neighborhood of
zero. It is barrelled if closed, convex, circled sets which absorb
every point are neighborhoods of zero. In Chapter 7 ' we show that
a T - locally complete, bound, locally convex Riesz space (L, T)
is barrelled and = m (L, L™).

For metrizable locally convex Riesz spaces, T = convergence and
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T - Ioéal convergence agree. Thus a metrizable locally convex

Riesz space 1is complete if and only if every monotons Cauchy
sequence has a least upper bound.

The concept of relative uniform convergence may also be applied
to the study of quotient spaces. Luxemburg [5] has shown that if
L is a Riesz space and A is an ideal of L, L/A is archimedean
if and only if A is relatively uniformly closed. In Chapter 9 we
consider two measures of the non-archimedean character of a Riesz
space L which is not archimedean —- Ao (L), the smallest ideal such
that the quotient space is archimedesn, and I (L) = {:x € L: for
gome O0<%<v €L, nixl4v, n=21,2, ...}. In géneral
I‘(L)C: AO(L). For spaces L which are themselves quotient spaces,
we give a necessary and sufficient condition that I L) = AO(L).

In Chapter 10 we give an example to show thet I (L) is not
always AO(L). We also use this example to show that, even if L
is archimedean, for an ideal A of L, Afr“ is not necessarily
relatively uniformly closed.

Next we consider Riesz spaces such that every quotient space ise
archimedeen. In Chapter 11 we show that a Riesz space L 1is of
this type if and only if for every O < u, v € L there exist

u; = sup (inf (nv, u): n=1,2, ... ), v_ = sup (inf (n u, v):

1
n= 1, 2, ... ) and real numbers m_ and m such that m u 2 v
1 2 1 1 1
and m2 v]'Z,u . In Chapter 12 we see that if, in addition, we
1

require that L be Dedekind O - complete (or even relatively

uniformly complete) then for some set X, L 4is isomorphic to the
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space of all real - valued functions on X which vanish off finite
sets.

Chapter 13 characterizes locally convex Riesz spaces such that
the positive cone has an interior point as spaces with a strong unit
and the uniform topology. In Ghapﬁer 14 we give some special
results for locally convex Riesz spaces such that order convergence

implies topological convergence -- (&, 11) 'spacee.
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I LOCALLY CONVEX RIESZ SPACES
l. Definition

Let L be a Riesz space and 7T be a locally convex, Hausdorff

topology on L. Then 7T is called a locally convex Riesz topology

and the pair (L, T) 4is called a locally convex Riesz space if

there exists a neighborhood basis of zero for 17 composed of solid
sets. There are several alternate forms for this definition ( I.
Kawai in [2] calls such spaces locally convex lattices and proves

(1i) implies (ii1) in the theorem below.)

1.1 Theorem- Let L be a Riesz space and ¥ a linear topology

on L, Then the following statements are equivalent:

(1) (L,7T) 1is a locally convex Riesz space.

(11) The topology T ie locally convex and Hausdorff and if
{x/\ :h € AT  and Ly N G }\e‘/\\f are nets in L defined on the
same directed set /\ such that lyal £ | x,| for each X € /\ and
xy—> .0 (‘T), then y)‘—% 0T )s -

(iii) The topology T 1is Hausdorff, and there exists a family
£\, of Riesz seminorms such that x,— 0 (T ) if and only if
P (x,)—> 0 foreach pe /L .

(iv) There is a neighborhood basis U of zero for T consisting

of solid, convex, T -closed sets and [ ) {U: ve Ur= o .

Proof: To show that (i) 4implies (ii), let U be a solid
T -neighborhood of zero., There exists XA € /\ such that AZ A,

implies x , € U. Then since 0 £ Lyl £ Ix and U is solid,



€ U. Thus y.,—» 0(T).

P
To show that (ii) implies (iii), let T be a femily of

LN

seminorms (not necessarily Riesz seminorms) such that X ) —> ol1)
if and only if P (x, )= 0. Let p€/ L and xe L. Ir { P (u):
C<Lu Lixl, ue L}' is unbounded, we may select a sequence
Oé%GL,PWQZn,0£un$hh.n:L2,u..TMn
%x—)—O (T) and % u, £ i%xl’ but ,o(% u,) > 1; which
contradicts the fact that by (ii) u,~ 0 (T"). Thus we may define
a Riesz seminorm # by F(x) = sup ([O(u): 0<£u £ix| ), and we
have P (x) £ /0 (2*) + f) ™) £2 ﬁ (x).

Now we show that 75 is alsoc T =continuous. Assume, to the
contrary, that there exists a net {x)\ t AE /\} such that xg=0 T I
but 13 (XA) > a > 0. Then by the definition of P , for each A€ /\
there exists wu, such that O < u < 'xA[ and P (uA) > % . But
by (ii) u > 0 (7), which is a contradiction. Hence

{P P pPE _/\_} is a family of Riesz seminorms which satisfies

the condition of (iii).

Finally, that (iii) implies (iv) and (iv) implies (i) is obvious.
We now give two immediate consequences of the definition.

1.2 Theorem If (L,T) is a locally convex Riesz space, L is

archimedesn.

Prooft Suppose there exist u, v € L such that O £ nu <v for
every n =1, 2, ... « Then O _é_u-_(_-]ﬁv. Now % v—>=0 (T) and

by the previous theorem the constant sequence u->0 (T ). Since



T is Hausdorff, wu= O.

1.3 Theorem If (L,T) ie a locally convex Riesz space, the

lattice operations are T-uniformly continuous.

Proof': Since inf (x,y):-— sup (-x, -y), it is sufficient to show
this for the "sup" operation. Let 1A be a 7T -neighborhood basis
of zero consisting of‘ solid's.ets. Let Ve ., Then there exists
Ue{l such thet U+UCV. Suppose x-x, € U and j-—yo e U.
Then {sup (x,y) - sup (xo.,yo)iél sup (x,y) = sup (x,, Il +
tloup Gy 3) = sup (xs yodl € (xexgl + Iy-vd) -
Now lx-xol and |y-y,| € U, since U is solid, and thus
|x - x°|+ ly -yl € V. BSince V is solid, sup (%, y) -
- sup (xo’ yo) € V. Thus the "sup" operation is uniformly

continuous.

We conclude this section with a fundamental lemma. It is proved

by Luxemburg and Zaanen for Riesz normed spaces in [1—}-_‘ .

1.4 Lemma Let (L,T) be a locally convex Riesz space. If

{x)\:)\e /\\’ is a net in L, xx’l‘ y and  Xy—= ¥ () velk;
then y = aup-{x)\: >\€/\}-

Proof: Fix he /\ . If %éx,‘then I x, = inf (x,, v)l=

= |inf (xp o xx) = inf (x5, ¥ ) < | x5 - y\ . By the theorem
in1.3 |xy =yl—= 0 (T), and thus by 1.1 (i1), x, = inf (xyv)
or X, £ y for each NE /\.l Suppose 2z 1is another upper bound,

z £ y. Then !z—x)‘lé_ ly—-x)\[. Again by 1.1 (ii)
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|z - x)\[—>'0 (T) or S {(T). Since 7T is Hausdorff z=1y.



2. Dual Spaces

If L is a Riesz space, let L~ be the space of all order-
bounded linear functionals (cf. [4] ). The space L™ is again a
Riesz space under the ordering 0 £ @ if and only if @ (u) 2 0
for every O S u € L. Indeed L~ is Dedekind complete. Now if L
possesses a locally convex Riesz topology T, let (L,T)* be the

topological dual space. These two dual spaces are related as follows:

2.1 Theorem If (L,T) is a locally convex Riesz space, then

(L, T)* 4is an ideal of L~ , and hence (L,T )* is Dedekind complete.

Proof: Let ® €(L,T)*. Then ¢' is bounded on a solid
neighborhood U of zero. To show @ € L™ , we need only show that
for any 0 4Lu € L, ¢ is bounded on {xeL: x| £ u} . There
exists a real number a > 0 such that u € alU. BSince U is solid
-{x € L: [xl4 u}CaU and ¢ 1is bounded on -{x ¢ L: [x]& u} r
Thus (L, 7)* cL” .,

Now we show that ¢ €(L,T)* implies I@le(L,T)*. Let

@ €(L,7)* and U be a solid neighborhood of zero such that

x € U implies |® (x)] € 1. We know then that 1Dl (ixi) =
zsup(J@P (Wl :0<u £Ixl ) £1. Since Fglx) | €481 (1x1),
I@l is bounded by 1 on U and thus @l e (L, T)*.

Now if & €(L,T)* snd ¥ €1, 'osﬁ.'lf_-leﬁl, and if @]l is
bounded on the solid neighborhood U by 1, as above, then
x € U implies [V & [V Ux1 )L 1D ([x1) £1 and

e (L, T)*. Thus (L,T)* 4ie an ideal of L and, since L™ is
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Dedekind complete, (L, )* is Dedekind complete.

Let L be a Riesz space and 0 % @ €L, Then we may define
a Riesz seminorm /0¢ on L by 'ﬂw (x) = @ (1x1). A collection
of Riesz seminorms /. is said to generate a locally convex Riesz-
topology if the collection of sets { -(_x: P x) < 1}: P € ﬂ}
is a neighborhood basis for such a topology.

In the next two theorems we characterize locally convéx Riesz
topologies on a given Riesz space L with the same topological dual.
Here if F is an ideal of LV, F°= J{x€l: |@B (x)|41 for
every @ € F‘} and O (F, L) 4is the weak topology on F

determined by L.

2,2 Theorem Let L be a Riesz space and F an ideal of L™

such that F° = {O} . Then

(1) {Fﬂ : 04 € F} generates a lpcally convex Riesz
topology on L, call it (|o/ (L, F).

(31) s lojil, ¥) P =7,

(1ii) The topology of uniform convergence on ¢ (F, L) - compact,
convex, solid subsets of I generates a locally convex Riesz

topology on L, call it |m| (L, F).

Proof: (i) To show this we note that if O < ¢ 1’ ¢ o € i then

: < ‘( : < } { : < y
{m g, €N 3, @) EYDAm Loy (9, 8,) W £ 1)
Also if ,og (x) = 0 for every ¢ €F, then x= 0 seince i {0}',
Thus |o | (L, F) is a locally convex Riesz topology.

(i1) Now if P E€F, then | (x)| & /?551 (x) for every x € L
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and @ € (L, lol (L,F) )*, 1If @ e (L,lol (L, F) )* +then there
oxists O £ Y €F and a real k > 0, |® ()] & k/o-.r (x). For
04Lue€el, I¢I(u):sup(l¢(V)|= 04 v4u) £ x ¥ (u).
Thus |@)1 < kxY and @ €F, since F is an ideal.
(1i1) Let P be the collection of all & (F, L) compact,
convex, solid subsets of F. Now if 0 £ P € F and
Vgs = {x e L: ¢ (x1) £ 1} s, then (V¢ }°F is convex and compact
by (ii) and the Smulian compactness criterion. In addition Vg
is solid. To see this let Y €V ® and x € Vy. Then
L e Il Gxl) = eup ([ (u)] : 04 usx )41, since
Vi, is solid, and V| e vy °. Now if {6l £{¥] and x € Vi
le )l £lef (x1)£1¥I(Ixl )£ 1 and © € Vg, Thus Vg is
solid and J){Vb : 04 @D e F}'.
Now a neighborhood basis of zero for (mi (L, F) consists of
{Slof\ 3200 ---f\snof 815 80y eee o Snésj}. Again since
S €3 implies S 1is solid, $° is also solid and hence the
. neighborhood basis consists of solid, convex sets. That (m| (L, F)

is Hausdorff follows since it is stronger than (O | (L, F),

2.% Theorem Let L be a Riesz space and F an ideal in i

such that FO= {0} « Then if T is a locally convex Riesz topology

on L, (L,7)*=F 4if and only if lo (L, F) LT < iui (L, F).

Proof: Suppose (Ly,7T)* = F and let L be a family of Riesz
seminorms generating T . Let O & @ € F. Then there exists

P €\ and a real number a > O such that | @ (x)\:_(_a/o (x),
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for every x € L. Then '{xz @ (x) 4 1}' ) '{x: P (x)éé-}»
and [oj(L, F) £T .
Now let U be a T-closed, convex, eollid neighborhood of zero.
Then U® is O (F, L) - compact, c§nvex, and solid. Since
U=U%, Uisan Iml (L, F) neighborhood of zero and T &imi(L, F).
Suppose |ol(L, F)4 T 4 mi (L, F), Let P € F, By (ii
of the previous theorem ¢ is !O’f (L, F) - continuous and hence
T -continuous. Suppose P € (L, T)*. Then there exists a ‘T -closed,
convex, solid T -neighborhood U of zero on which ¢ is bounded.
Since T 4im} (L, F) +4there exists a ¢ (F,L) - compact, convex,
solid set & such that 8° € U. Then @ is bounded on 5° and,

again by ¥mulian's criterion, @ € F.

We have the following simple corollary:

2.4 Corollary A Riesz space L possesses e locally convex Riesz

topology if and‘only ™= {O} »

Proof: If (L™)°= {o}, the topology Jo ! (L, L™) 1is a locally
convex Rieéz topology.
Ir (L,‘T) is a locally cohvex 'Riesz space and Oz x € L,
then there exists a T ;continuous Riesz seminorm ,O such that
P (x)£A0. In this case Luxemburg. and Zeanen [-’-ﬂ have shown

that there exists 0L @ € L7 such that @ (x) £ 0, i.e.
0
w~)°= {o}.

Next we prove a useful lemms.
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2.5 Lemma Let (L,7T) be a locally convex Riesz space. If {uh}
is a net, Oﬁu,\‘}, and w,-»=u (weakly), then Uy== U (7) and

H = 81l u .
N A

Proof: Let %L be a T -neighborhood basis for zero composed of
T -closed, solid, convex sets. Designate (L,7 )* by L*. Suppose
0% uy4 and uy~= u (veakly). Then if UeUU , U® is
o .(L*, L) - compact, convex, and solid. Let H’(U)={¢ eu%: g2 0-}'.
Since -{¢ 0&P € L) is & (L*, L) closed, H(U) 1is also
T (L*, L) compact. Now considering u), and u as continuous
functions on H (U), we have (u - u;\)‘l’ s (u=up)=+o0
(pointwise) and thus (u - uy )+~ 0 (uniformly). So there exists

)\o such that ¢ g i implies, for A > No s

|¢(u-u7\)i .‘.’-.|¢}(u-u}'),‘_~1, Lo By (u-—uh)éUoo:U

and thus Uy == u (7). That u= Bl;\p uy follows from 1.4.

Now let L be a Riesz space. If @€L™ , ¢ 1is called an
integral if for any sequence un‘}’ 0 in L, @ (un)-» 0. The set

of all integrals on L 1is designated by L: and is a band

(normal subspace) of L~ . If p€L™ and for any directed system

uh‘v‘f o, ir;\f | ¢ (u;\ )"': 0, theng& is called a normal integral.
The set of all norﬁal integrals on L 18 designated by L: and

is also a band of L™ ., The following theorem gives a character=
ization of locally convex Riesz spaces such that every continuous
linear functional is an integral and those such that every continuous

linear functional is & normal integral.
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2.6 Theorem Let (L,7T) be a locally convex Riesz space. Then
(1) (L, T)»*C L';' if and only if for every sequence
un+ 0 in L, un->-0 (T);
(11) (@, 7)* CL: if and only if for every net u,Y¥O in L,
U g > o (T).

Proof: We shall prove {33}, The proof of (i) 1is similar. Suppose
that for anyr net uAWi'O in L, uy» 0 (7). A directed system
u}\\‘ 0 may be considered as a net under the Riesz space ordering.
Then u}\—b-O (T ) and igf l¢ (uh)l-’-‘ 0 for any ¢ e (L, T)*.
Thus (L, T )* C L.

Suppose (L, T)* CL: and -{u}} is a net such that u;\+ 0.
Now if ¢ € (L, T)*, ¢ (uk )= 0 and un—> 0 (weakly). But then

Paralleling the notation introduced by Luxemburg and Zaanen [4] 3

we say that e locally convex Riesz space (L, T) nas property (A,i)
if (L, T)* CL7 end property (A, 11) if (L,T)* CL7. (These
spaces are called o - continuous and M. S. o - continuous
respectively by Kawai [2].) If & locally convex Riesz space hes
property (A, ii), order convergence implies topological convergence.

For this reason many speciasl theorems may be proved about them, (cf.

section 13),
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3. Topological Boundedness

We begin this section with a lemma on topologically bounded sets.

3,1 Lemma Let (L,T) be a locally convex Riesz space. If A is
a T -bounded subset of L, then there exists a solid set B such

that A CB and B is T -bounded.

M: Let B = '{X'E‘LZ for some y € A, O_él}dé\y\\r.

Cert,ainly B is solid and A C B, To show that B is T -bounded,
we have only to show that B is absorbed by solid T -neighborhoods
of zero. Let U be such a neighborhood. Then for some real a3 0
A Cal., Irf xeé, for some y € A, Ixl £lyl. Since y € alU and

aU 1is solid, x € aU, i. e., B CalU. Thus B 1is T ~bounded.

Ir (L,7) is a locally convex Riesz space, let (L, T)b be

the space of linear functionals on L which are bounded on T -bounded

sets. We haves
b ~
3.2 Theorem (L, T ) is an ideal in L .

Proof: Since order intervals are T -bounded, (L,T)°C L™ Let
@ € (L,'T')b and V€L such that IVI&I1B0|. By 3.1 to show

that ¥ E(L,’T')b it is sufficient to show that ¥ is bounded on

solid, T -bounded sets. Let B be such a set. If x € B

IV x) £ |1y Gxi) L 1P1(x)= sup(l1 @ (u)l: 04 u€x) <
ZLsup (I P (y)| = y€ B)., Thus V¥ is bounded on B and

+ € (L, T)P.
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Now from a given locally convex Riesz topology T on a Riesz space
L, we can construct a stronger locally convex Riesz topology ’rb_
by letting a neighborhocod basis of zero consist of all convex, solid

subsets of L which absorb every T -bounded set.

3.3 Theorem Let T be a locally convex Riesz topology on a Riesz
space L. Then, designating (L,T)b by Lb,

(1) Ty = Imi (L,va): m (L,.Lb:) where n (L,Lb) is the
Mackey topologys; -

(11) @, T )*= 5,
Prooft We have only to show that any convex subset A of L which
absorbs every T ~bounded subset of L contains a solid, convex set
B which absérba every T -bounded set. Then T = m (L,Lb) and
the other results follow immediately.

Let B= {x €A {y: 1yt £ ix/y C AY. By 3.1 it is
sufficient to show that B absorbs solid T -bounded sets. Let S

be such a set. Then if eaA D S it is easy to see that aB S,
As a corollary we obtain a result of Neamioka [7] .

3.4 Corollary Let L be a Riesz space such that (L”)OZ-{O} .

Then m (L,L™") is the strongest locally convex Riesz topology

on L,

Proof: We have' L1~ = (L,lol (L, L™) )* C (1, 1ol (L, 1™) P

Then (L, lo 1 (L, L™) )b:: L™ and the result follows from 3.3, -
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4, Relative Uniform Convergence

We now introduce one of the central concepts of the present work.

A sequence {xn} of elements of a Riesz space L is said to

converge to x €L relatively uniformly, written xrr—b-x (r. u.),
if there exists O04£ve€lL such that for every real r > 0 there
exists a real number N (r) and n > N(r) implies
Ix = x| 4 rv. If 5 1is a subset of L, then designate by
gt 4re set {x € L: for some sequence -(xn\- in S8, xn—v-x (r.u. )}'
A set S 1is said to be relatively uniformly closed if S = 8'TY,

In general relative uniform convergence does not correspond to
topological convergence, i, e., there are sets S in L such that
s*T™%  is not relatively uniformly closed ( ¢f. Chapter 10). We

do have the following:

4.1 Theorem Let L be a Riesz space.

(1) The strongest locally convex topology T on L such that
x,—>= 0 (r. u. ) iuplies X, = X (T) 4is generated by all the
Riesz seminorms on L.

~ O .
(11) 12 (UL7) = -{O} , ‘this topology is a locally convex

Riesz topology, m (L, L77).

Proof: Certainly if / is a Riesz seminorm, x,—>0 (r. u.)
implies ,0 (xn)-%'o. Ir /O is an arbitrary seminorm such that
xn-a—- 0 (r. u.) implies P (xn)-?-o, then we may define a Riesz
seminorm by 75 (x) =sup (P(u): 04us<lxl). If for some element

X, (’O(u)z 0%u £|x|) were not bounded, we would have a sequence
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{u lf such that 0 L u £ Ixl and P (u)>2n for each
n n n
n=1; 2, esx « Bul then - un--"-O (r. u.) and /0 (un) 7 0.

This proves (i), end (ii) follows from 3.4.

We may also discuss completeness with respect to relative uniform

convergence. A sequence {xn} in a Riesz space L 1is said to be

a relative uniform Cauchy sequence if for some O £v € L and every

real r > O there exists N (r) and n, m 2 N (r) implies

| xn - x | < rv. The space L is said to be relatively uniformly
m

complete if for every relative uniform Cauchy sequence {x ‘3- in L
n

there exists x € L such that xn—-i-x (r. u.).
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ITI LOCAL COMPLETENESS
5. Definition

Let (L,T) be a locally convex Riesz space. Then a sequence

{xn} in L 1is saild to converge T—locallg to x € L, written
x - X (T -1local), if there exists a ‘T -bounded set B such
that for every real ¥ > 0O +there exists N (r) and n2 N (r)
implies jx - xnl € rB. (This concept is introduced in & somewhat
more general setting by H., Gordon [1]) Local convergence is very
similar'to relative uniform convergence. In fact, if we replace the
requirement that B be T -bounded by order bdunded. in the above
definition, we obtain the definition of relative uniform convergence.
It is convenient at this point to extend the concept of a Riesz:
norm. Let R * be the set of extended non-negative real numbers,
f. ey {rt ris real and r2 o}U{OO} . This set ie given the
obvious ordering and the algebraic operations are extended in the
following menner:
(i) for eny real r2 0, r + 00=00 , and QO+co= CO ,
(1i) for any real r > O, roco=co , but 000 = 0.
I L 4is a Riesz space and A is a map from L to RT, then

A is called an extended Riesz norm if

(1) )\ (x) = 0 implies x = O,
(1i) for any real r and x € L, >\(rx)= lrl A (x),
(i11) for every x, y €L, A (x+y)E N (x)+ Ay),

(iv) if x, y €L end Ix/ £|yl, then Ax) £ Ay).
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If A is an extended Riesz norm on a Riesz space L, let
La= {xeL: X(x)<00) . Then we may easily verify that
Ly is an ideal of L and A 1is a Riesz norm on L.
Now the T -bounded set B 1in the definition of local convergence
may be selected so as to be convex and solid. We call T ~bounded,

convex, solid sets T -admissible. If B is such a set we may

define an extended Riesz norm A by
Alx) = inf-‘(r: 0<r is real and %' 1xl ¢ B} (=00 ,
if for every real r > 0, }- ixi i.{ B). Extended Riesz norms defined
r

in this manner are calléd T -admissible extended Riesz norms. If,

in addition, the set B is T -closed, then A 1is called a

T —closed extended Riesz norm.

5.1 Lemma Let (L,T) be a locally convex Riesz space,

(1) An extended Riesz norm A is T -admissible if and only
if for every T -continuous Riesz seminorm P there exists a réal
number & such that P (x) £ a0 A (x) for every x € L.

(ii) A sequence X =X (T -local) if and only if for some

T —closed extended Riesz norm A , A (x - xn)—ﬁ'O.

Proof: (i) Suppose A is T -admissible, defined on the
T -admissible set B. Then if @ is T -continuous Riesz
seminorm there exists a » O such that P (x) &a for every
x € B. It follows that 2 (x) %4 a A (x) for every x € L.

If for every T -continuous Riesz seminorm P » ‘there existe

ap such that p(x) £ e, X (x), then the set B-‘-{x: Ax) 41y
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is a T -admiseible set which determines A . Thus A\ is

T —admissible.

(1i) To see this we need only note that the T -closure of a

T -admissible set is again T -admissible.

As an example we consider order intervals. Let (L,T ) be an
arbitrary locally convex Riesz space and O { u € L. Then since
order intervals are ‘T -bounded and T -closed, A y defined by
>\u (x) = inf '{r: rua 2 lxl}- , is a T -closed extended Riesz norm.
In this case the ideal L)y is the principal ideal generated by
uin L -- {x € L: Ix) £ mu for some real m}.

Now we consider completeness with respect to ‘T -local convergence.

A sequence {xn} in (L,T) 1is said to be a T -local Cauchy

sequence if for some T -bounded set B and every ' r » O there
exists N(r) and m, n 2 N(r) implies X = X, € rB. The space L

is said to be T -locally complete if for every 7T -local Cauchy

sequence b'q there exists x € L guch that x_~wx ('r),'
n n

(and thus since we may essume B is T eclosed, X, X (T -local) ).
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6. T ~local Completeness

For Riesz normed Riesz spaces, local convergence and topological
convergence sagree, Now if O ﬁun €L for n=1l, 2, «.. , and
L :
there exists u € L such that u = sgp{%;‘uk: Ls 25 s .},
designate u by 2 u,. Using this notation we state below a

theorem of Luxemburg and Zasnen [4] .

6.1 Theorem Let L be a Riesz space and p be a Riesz norm on

L. Then the following conditions are equivalent.

(i) L 41is p - complete.

(ii) 1Ir o§uneL for n=1, 2, ... , and 2_ p (u ) <o ,
then 2 u exists and »p (zun) < Z p (un).

(441) If 0<&u €L for n=1, 2, «uv , 8nd L p ()< > ,

then 2_ u, exists.

We generalize this to the case of local completeness in the

following theorem.

6.2 Theorem Let (L,T) be a locally convex Riesz space. Then

the following conditions are equivalent.

(1) L is T -locally complete.

(1i) For every T -closed extended Riesz norm A , L » is
A -complete.

(111) If o0& w4 and {un'} is a T -~local Cauchy sequence
then BUP W, exists, '

(iv) if for any T ~closed extended Riesz norm A and
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O_éun€ by 023, 85 wim g Z >\(un)<cx3 , then u
exists.
(v) L is relatively uniformly complete; and if for any
T - closed extended Riesz norm X\ eand O _:’:un €L, n=1; 2, sss ,
> >\(un) £ 00 , then there exists v €& L such that

un_é_v,' Ly By wew »

Proof: ( (i) implies (ii) ) Let N be a T =closed extended
Riesz norm and {xn} a /\-Cauchy sequence in L, . Then -{xn}
is a T -local Cauchy sequence in L and, by (i), for some
x € L, X —>=X (T). Since A is T-closed A (x - x,)—»0
and X € L) .

( (ii) implies (iii) ) 1If o_l:un+ and {un} is a ‘T -local
Cauchy sequence, then for some T =-closed A end integer ng,
{un - una} ié a A ~Cauchy sequence in Ly . Then for scme
veELy, }\(un - U, - v)=»0 and Uy ==Vt (T ~local).
By 1.4 v+un° = sup . |

( (14i) implies (iv) ) This is immediate since
» B )\(un) £ o0 implies {u1+ e +un} is a T =local Cauchy
sequence.

( (iv) implies (v) ) If for some T -closed A,

7 )\(un) {00 , then by (iv) T w, exists and u, < Z u,
for every n =1, 2, ... «

Now let {xn.}. be a relative uniform Cauchy sequence. Then for
some 0 £v €L, {xn} is a >‘v Cauchy sequence, where

Ay (x) = inf {rz v 2 IxI} . Pick a subsequence {yn.}- such
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-n
that >\v (yn+1 - yn) £ 277, Hence Z )\v (yﬁ+1 - yn)<00 .

Then since we have shown that )\v is a T =-closed extended Riesz
oo

norm, by (iv), w=1ly -yl exists. In addition, for
=1 n+1 n

each n lyn+1 - yn)wl' (y - yn) >0 and

n+1
)\v Uype1 - y |+ (yn+1 -y,) Y& 2 )\(Iyn-l-l -y 1), n=1, 2,... .

(==}
Then again by (iv), =z= nZ:i |yn+1 - yﬁi+ (yn+1 - yn) exists.

i n
Nowx:nzvi (qu-l“yk‘i W—K:L:lyk_‘_l-yk[ . But

m ST -n
5 lyk'f-l-yk] £ Zz v £2 " vy, Thus

K=nrd K= met
| EHZ [, 1! £ 2™ a il 1 ( )
} =3 k+1 k Per k+1 k

n
e have similarly lz - [ ;I |yk+ 1 - ykl + (yki-l - Yk):“ =
n
= - - - = - & =k e
| 2-mvy -y, - G Z ey ) £ 2 Y
Thus Yy o=z = Wky, (r. u.) and then X, =2z - w-ryl (Fe e s
Hence L 1is relatively uniformly complete.

( (v) implies (i) ) Let A{xn-} be a T-local Cauchy sequence.
Then for some T -closed A » {xn.\( is a )\-Cauchy sequence. Pick
a subsicgjencez{yn} such that )\(yn+1 - yn) < n"l", nel; 25 sus &
Now Z >\(n f_y

n=Z ntl

- yn|)<°° and by (iv) there exists v
2
such that n 'yn+1—yn)§ VY, B =1,2, ¢es s« If m2nmn

m-4 m-A -k
| vy = ¥4l 5/{; 1% 4y - 720 %, 27) vo Thus {yn}.ls a

relative uniform Cauchy sequence. By (iv) there exists y € L
such that y —s=y (r. u.). Then Y-y (T°) and thue
n

x ==y (T). Hence L is T-locally complete.
n
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6.3 Corollary Let (L,T) be a locally convex Riesz space such
that L 4is T-locally complete. If T ' 1is another locally convex
Riesz topology on L such thet T '> T, L is also T '-locally

complete.

Proof: Suppose for some T '=closed extended Riesz norm A and
0 _éuné D B o3 & a3 . )\(un) oo . Then A\ is also
T -closed and by 6.2 (iv) Z u ~exists. Hence, again by

6.2 (iv), L ie T '~locally complete.

We have also:

6.4 Theorem Let (L,T) be a locally convex Riesz space such that

b ~
L is T -locally complete. Then (L,T) =1L

Proof: Suppose there exists 0< @ € L™ such that

@ ,&((L,’i‘)b. Then for some T =-closed, T -admissible set B,
® is unbounded on B. Let A be the corresponding T =closed
extended Riesz norm. Then there exists 0 < u, € L such that
>\(un) £1 and @ (un) > n’ for n= 1; 2, aes « Then

P )\(n'z u,)< o and by 6.2 (v) there exists W €L
such that n - u &v for n=1,2, ... . Then $ (v)2n for
n=1, 2, ... , which is impossible. Thus @ € (L, T)? and

L d

G, = B,
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7. Applications to Bound and Metrizable Spaces

e recall that a locally convex space 1s bound if every convex,
circled set which absorbs each topologically bounded set is a
neighborhood of zero. It is said to be barrelled if closed, convex,
circled sets which absorb every point are neighborhoods of zero.
Kelley and Namioka have shown that if a bound space is sequentially
complete, it is barrelled {(3]. For locally convex Riesz spaces

this may be improved.

7.1 Theorem Let (L, T) be a bounded locally convex Riesz space.

If L is T -locally complete, then it is a barrelled space and
T =2m (L, L77).

o~

Prooft Since L is T =locally complete, by 6.4, (L,'r)b= L .
Now for a bound space (L, T)* = (L, TP and T=m (L, (L,T)*).
Thua: 7T =m (L, e

Now we must show that if A is a T -barrel (a T -closed,
convex, circled set which absorbe every point), then A absorbs
any T ~bounded set B. We may assume that B is T =closed,
convex, and solid. Let AN be the corresponding T -closed
extended Riesz norm. Then by 6.2 (ii), we know that L x is
>\-complete and thus of the second category in itself with respect
to A . Further let T, be the t.dpology T restricted to L.
Then since 1’A is weaker than the A ~topology, L ) is of the
second category in itself with reepecf to 1'% .

If we let A, = A/\L,, then A, 1is T =-closed and by
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assumption U{n Ax: n=1, 2, ... } = Ly« Then for some
n, nA) hasa T, interior point, and thus A) has a Ty
interior point. Thus for some x € L, and some solid, convex,
T\ -neighborhood of zero U, A;\D x+ U, Since Ay and U
are both circled, Aj) D - x+U. Now since An and U are convex
A}\D%«(x-ﬁU) + $(~-x+U) = $U+1U = U, Finally since
B is T, bounded and A , contains a T, neighborhood of zero,

A absorbs B. Thus A absorbs B and (L, T) 4is barrelled.

7.2 Corollary Ir (L,'T') is a bound locally convex Riesz space

such that Oﬁun/’ 3 {un\' a T =Cauchy sequence in L, implies

sup u exists, then T = n (L, L™) and the space is barrelled.

n

Proof: By 6.2 (iii), L is T -locally complete and the result

follows from 7.1.

e now consider metrizable locally convex Riesz spaces. The
following lemma shows that in this case 7T ~convergence snd T -local

convergence agroe.

7.3 Lemma If (L,7T) is a metrizable locally convex Riesz space,

then a T ~Cauchy sequence is also a T -local Cauchy sequence.

Proof: If T is metrizable there exists a countable set of Riesz
seminorms F 1 5'02 4 ... , which generate T . Let {xn} be

a T =Cauchy sequence. Then for each k,

°<k"" aup{ Iok (xm - xn)z my M2 T2 ais ,} {0 . Let

Bz {x Py &) & ke, k=1,2, ...% . Then B is
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T -bounded. Now given a real a » 0 pick an integer k  such
o
1 !
that = < a. Then there exists n_ euch that m, n2n_ implies
g
P (x, = x) La (kO(k), k=1, 2, «oo , k. If k> k_, we have
Pk (xm - xn) _{o(k {a (ko(k). Thus m, n 2 ng implies

[xm - xn) € aB and thus -{xn} ie a ‘T -local Cauchy sequence.

7.4 Theorem Let (L,T) be a metrizable locally convex Riesz
space. Then the following statements are equivalent.

(1) L is T -complete.

(ii) L is T =locally complete.

(ii1) If O Lu 4 and -{un'} is a T -Cauchy sequence, then
sup u_ exists.

(iv) Let £ £ ..., be a countable family of Riesz
g = g™ ¥

seminorms generating T . If 0 4&u €L, n=1,2, ... , and
n

Zf?n (un) {00 , then Z u  exists.

Proof: The equivalence of (i) and (ii) follows from 7.3. Then
(41) is equivalent to (iii) by 7.3 and 6.2 (iii). Certainly
(1i1) 4mplies (iv). We have only to show that (iv) implies
(111).
<
Suppose /01 = Pa € ..., is a countable family of Riesz
seminorms generating g and O f_un4 where {un-} is a T =Cauchy
sequence. Then we may select a subsequence O < VT1 4 such that
" £ 2N ' -
Fn (vn+1 vn) € 27, Hence 2 Pa (vn-l-l vy) <00  and
z (vn+1 - vn) = BYp (vx'1 - vl) existe. Then sup VnEsup

exists and (ii) holds.
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We have the following corollary.

7.5 Corollary Let (L,7T) be a metrizable locally convex Riesz
space. If for some weaker locally convex Riesz topology T ', every
monotone T ' Cauchy sequence has a least upper bound, then (L,T)

ie T - complete and T =m (L, L™).

Proof: By 6.2, the condition on T' implies L is T ' - locally
complete. Then by 6.3, L is T - locally complete and, by 7.4,
T - complete., Since metrizable locally convex spaces are bound,

7.1 implies T =m (L, L ).

We conclude this chapter with an example to show that a T - locally

complete space is not necessarily sequentially complete.

7.6 Example Let L be the Riesz space of all sequences which
converge to zero, Let p be the "sup" norm, 1i.e.
p (x) = sup {Ix ()l 2 k=1, 2, ...}. It is well kﬂown that
L 4is p-complete and (L, p)* = Jll’ where 21 is the Riesz:
space of all absolutely convergent series. Now by 7.5, the
p - topology is m (L, L™ ). Then by 3.4 and 2.3
1™~ = (L, p)* = 21,

Let T = lol(, L™~). Sinee L™ = (L,7)* C L, TP CL”,
(L,T)b = (L, p)b =LY, and T and p define the same bounded
sets and hence determine the same local Cauchy sequences. Since

L is p-complets, L is p-locally complete and thus T - locally

complete.
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Now let e, be the sequence e (n) =1, bput e (k)= ©

M
for k#n, n=l, 2, ... « Then ‘{Z‘;em}- is a T -Cauchy
”m =z

sequence, which does not converge. Thus L 1is T =-locally complet.e;

but not T -sequentially complete.
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IIT ARCHIMEDEAN QUOTIENT SPACES

8. Relatively Uniformly Closed Ideals

The concept of relative uniform convergence finde further
application in the study of quotient spaces, If L is a Riesz
space, A 1is an idesl of L, and 77 1is the quotient map of L
onto L/A, +then L/A 1is again a Riesz space under the ordering --

77 (x) 20 if and only if x+ y 20 for some y € A,

Ideals of a given Riesz space such that the quotient space is

archimedean have been characterized by Luxemburg [5] in the

following mamner:

8.1 Theorem Let L be a Riesz space and let A be an ideal

of L. Then the following conditions are equivalent.
(1) L/A is archimedean.
(11) Forall 0<u,vel, (u-2v)"e aror
n=1,2, ... , then u € A,
(iii) A is relatively uniformly closed.
Proof: We show (i) implies (ii). Suppose L/A is archimedean
and for 0 €u, vE€ L, (u—év)-‘-é A,n=1, 2, ... . Then

tv, o),

for each n, let - = lu % v)+:' sup (u -
n=1l,2, ... « Now if 77 is the quotient map of L onto L/A,
uéyn-l—%v and O,‘.?T(u)é%ﬁ'(v), n=1, 2, «vs » BSince
L/A is archimedean, 77 (u) = O and uwueé€ A,

Now we show that (ii) implies (iii). Suppose x € A'TY,

We may assume for some sequence -{xn‘; in A and 04£v €L,
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lx-xnl;_’-_ %v Por nuly®, swm » How

: 1 1
< - £ - - Y L
1x| Ix X }+lxl_ V+‘X.n| and Ix| \x ‘ ’

n=1, 2, «e. » Thus ( IxI -%v)*_g \x.{ =nd sinos & 1s sn

|
ideal ( 1x1 - % v)+é A,n=1, 2, ... . Hence by (ii), Ixl & A
and also x € A, and A is relatively uniformly c¢losed.

To show that (1ii) implies (i), assume A is relatively
uniformly closed and let 77 be the quotient map of L onto L/A.

Suppose for some O0<u, velL, 04$n7(u)swm(v),

n=1, 2, «sse « Then there exists 0_<_wne A and
uﬁ%v-l-wn,for n=1, 2, .. «» By the lemms of Riesz we have

1
u:un+zn,where Oﬁunﬁ;lv and Of—_znéwn, e Ly By sis

le or

Then the sequence {zn} C A and lu=-z,{%°=

z —>u (r. u.). Thus by (iii), u € A and L/A is archimedean.
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9. DNon-archimedean Riesz Spaces

If a Riesz space L is non-archimedean, then there exist some
0€uéel eand 0£vel such that nu v for n=1, 2, ... »
For an arbitrary Riesz space L we define I (L) =‘{x € L: for
some O<vel, nixi v, n=1, 2, ...} . It is easy to see
that I (L) is an ideal and L is archimedean if and only if
1(u)={o}.

Again let L De an arbitrary Riesz space. If A is an ideal
of L and L/A is archimedean, or equivalently, A is relatively

uniformly closed, then it is obvious that A D I (L). DNow let
| C71-(L) = -{A: A is an ideal of L and L/A is archimedean}'.
Then corteinly L€ OL . Let A ) =(){A: 4 € OL@)}.

We have:

9.1 Theorem Let L Dbe an arbitrary Riesz space. Then

A, (L) € OL@) and 4, (@) D I (L)

Proof: Certainly A (L) 2 I (L). Further, since it is obtained
as an intersection of relatively uniformly closed ideals, it is

both an ideal and relatively uniformly closed. Thus Ao (L) € oC

It is not true that I (L) = Ao‘(L) for all Riesz spaces. We
shall give an example in Chapter 10.
First we examine Riesz spaces which are themselves obtained as

quotient spaces.
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9.2 Theorem Let E be a Riesz space and B be an ideal in E.

Let L= E/B and 77 be the natural map of E onto L. If A
is an ideal of L, then B(A) :{x € E: 77 (x) e Ay is an ideal

of E and L/A T E/B(4A).

Proof: Certainly B(A) is an ideal. Let N i be the natural map
of _E onto E/B(A) and N L be the natural map of L onto L/A.

Then the desired isomorphism M is given by

PGS BEN W JBY

9.5 Theorem Let E be a Riesz space and B be an ideal in E,.

Let L = E/B, Then I(L) = Ao (L) if end only if B'™™ 4is relatively

uniformly closed.

Proof: Ueing the notation of the previous theorem,
B[I(L)] :{xEE:rr(x)é I(L)}:-{xEE: for some 0 &£ v £ E,

| 7 (x)! < -%77'(11), n=1 ,}' ) '{er= for some vZ O
and sequence {b}- C B, lx = b ] £ %, a2i; 8 scapm B

Now since by 9.1 AO(L) 2 (L), AO(L) = I(L) 4if and only if

S

L/I(L) is archimedean. By 9.2 this is equivalent to E/B' Y
being archimedean. Finally by 8.1 this holds if and only if B'TY

is relatively uniformly closed.

9.4 Corollary Let E ©be a Riesz space with a strong unit or a
Riesz space possessing a complete, metrizable, locally convex Riesz
topology. Then if B is an ideal of E and L= E/B,

I(L) = A (1).
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Prooft We have to show that B'"Y is relatively uniformly closed.
In the case that E has a strong unit, this is obvious.

Let T ©be a complete, metrizable topology on E and B an
ideal in E. Then we claim B'™ = BT, From this it follows
that B'*™ is relatively uniformly closed.

Certainly BTUC BT, Let x € BT . Then there exists &
sequence -{xn} C B such that X - x(T). Let P15 /P2 % ...
be a countable set of Riesz seminorms generating T . Pick a
subsequence {yn} of {xn}- such that /Dn (x - yn} < n- 3,

Now > /On nix - Vol J)<oo , and by 7.4 (iv) there exists

v 3 nlx-yn\. Then Ix-ynlf_ %v for n=1, 2, ...

-rv

B'TU gng B'TY - B,

and yn—>- x (r. e )y X €.9 X €

It is not true that for any ideal B of a Riesz space E, gt

is relatively uniformly closed. We shall give an example in the

next chapter.
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10. An Example

The following example was given by K. Yosida [8] + ¥Ye use it
Pirst to show that I(L) is not always AO(L).

(i) Let F =n7?2" E_, where En is the space RXR ordered
lexicographically f-or n=1,2, ... « %e order F by the product
ordering. Thus elements of F are of the form
z = [(xl, yl), (xz, yz), ...J end x> O if for each i
xi) ¢ or xi: 0 and in_ 0, i=1, 2, ... « Let L Dbe the
subspace of F consisting of all x & F such that’ -{i: xi;': 0}

is finite. Certainly L is a Riesz space.

(12) B}z {xe Lt =x
{it y,# 0} 1is rinite}.

i: 0, 1i=1, 25 «us and

Proof: Suppose 0 < x, X€L and nx¢%, n=1, 2,

If for some i, xi>0, then nxi‘SE for n=E 1y %5 ses 3
i

and this is impossible. Thus X = 0, i=1, 2, ... « Suppose

for some ‘i, yi)o. If x. = 0, then ny, £ v, for

n=1l, 2, ««. , and this is impossible. Thus
{1y, # 0¥ C {1+ ¥ # 0} eand tws {i: y, £ 0} is finite.
Now let x € L such that X, = 0, i=1, 2, ... and
{ity £ 0} is finite. Define X by
*y

xi= 0 if yyi= o,

~

yi'-'.‘o i : 1, 2’ e .

S % 1T
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Then nixl £X for n=1, 2, ... , and x € I(L).

{311) AO(L) = -{x €L x, =0, i=1, 2, }.

Proof: Let x€ L and x, O, 1i=1, 2, e«e o« Define

. i
X by ‘;‘Ei: §; 151, 25 wis 5 BWA ";;i: iy 4, 151, 2, ...
For each n define x(n) by
(n)
x. =-0 Izly @3 sww
3
y ™oy 1414n
i i

y,(n) z 0 n £ 1i.
i
Then x (n)é L) AO(L) and |x - x(n)l < Lpf, nE 1; 25 «oa
n
Since AO(L) is relatively uniformly closed, x € AO(L).
Now suppose x € L and xi:¢ 0 for some i. Let
M= { x € Lz x; = O}. It is easy to see that M is maximal,
Then L/M is isomorphic to the real numbers and M € at . Hence

M'DAO(L) and, since x g i, xﬂAo(L).

Thus in this case AO(L) =% I(L), If furthermore, for some
archimedean space E +there exists an ideal B of E such that
L= E/B, then we also have an example of an ideal B in an

1]
archimedean Riesz space such that B ™ is not relatively

uniformly closed (by 9.3).

(iv) Let T, be the space RXR ordered lexicographically.
First we shall represent T2 as a quotient space of an

archimedean space. Let E2 be the subspace of the Riesz space of
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all sequences {B(n)} such that the following limits exist!

() 1lim a(n)z 8 and
n - o0 o

(b) n_l&xi n (sln) - so) = 8.

(v) E, 1is a Riesz space.

Proofs Certainly E2 is a linear subspace of the space of all

gsequences., We have only to show that if s € E2

Let s € E, Then lim isi(n) = lim [(s(n)l = Is_| . Now if
2 7 -» QD M 0o ©

then 18l € E .,
2

8 = 0, we have 1lim n lsl(n): lim |n a(n)l = IB]_I e If
e} n-a.oo f + 6o

8 # 0, we may assume 5070 since 1Is| = |~s] . Then

o}

lim n (lsli(n) -jsi)= 1im n (s{n) =8 ) = s8,. Thus
N+™on o n =00 o 1

isi ¢ E2 and E2 is a Riesz space.

(vi) Let 12 = {s & E2= 8 = 8. = O-}'. It ie clear that

Lo} 1
12 is an ideal of E2. Let v and u Dbe the sequences
vin) = lyn=l; 5 see 3 u(n):%, n=l, 2, «se « Then -

‘u, v € E and for an s € E g8=8v-8uécl.
’ 5 y 5? 5 1 5

Proof: Certainly u, v € E2. If s € Ey, let t =8 - BV - B u.
Then 1lim t(n) = lim ( s(n) - 8, - ¥ 91): lim s8{(n) - s, = O.
£ =00 N > co +

Also n t(n) = n (s(n) - 85) = 8 . Thus lim n t(n)=
1 M oo
= lim n(s(n)-s)-—s = 0.
N0 Q 1
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in

i E /I
(vii) T2 2/ 4

Proof: Let 77 be the quotient map of E_ onto E2/12. Then

2
we may define a map of E‘.2/I2 onto RXR by N (7(s) )=

=N [77' (so v+ o8 u)] i (so, 51). Certainly 7 is 1-1
and preserves the linear operations. To complete the proof we need
only show that 77 (8) > O if and only if 8,7 0 or

8, % 0 and 312_0.

Since u¢12 and v & I, 77 (uW)# 0 and 77(v)# 0. We now

show that w7 (u) 4 n77(v) for n=1, 2, ... . For each n,

(n) |
let i "€ I, be defined by 1(n) (k)= n for 14k £n, and

i(n) (k) =0 for X>n, n=1,2, ... . Then we have

nu$v+i(n) and a7 ()€ 7 v), A= 1, 25 van s
Now if for sorsae 77 (8) € EE/IQ, 8 > 0, then

0<e, (7 (v) -|-§§,77'(u) ) £ 8, 7 (u) + 8,77 (v) =77 (s).

If 8 =0 and s, 20, then ogelrr(u): 77 (s).

On the other hand if 8, < 0, then
8
77 (a)=8 (7H)+ <7 @) )< 0. If 5. = 0 and s, £ O,
o 8o o 1
then 77 (8) = 31 7 (u) < 0. Thus n is a Riesz isomorphism of

E2/12 onto T2.

xQ
(viii) DNow let G=77‘1 E, with the product ordering. Let p
h=

be the projection into the k'th component, k = 1, 2, ... .
If x € G, P (x) 1is a sequence in Ea for k=1, 2, «..

Let 1lim p, (x) (n)= x end 1im n (p, (x) (n) = x )= x _.
N <= o0 % k,0 h-woo k k,o k,1
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Finally let E = {x € G: {k: X O;b O} is finite} . Now
»

E is a Riesz subspace of G and hence is archimedean. Let
I:{er: Xg,0= Xe,1 = 0;,.k = 1, 2, ...}. It is easy to
see that I is an ideal of E. Let 77 be the quotient map of
E onto E/I. We may define a map of E/I onto L by

I = ; ew 1 » i
N )= LGy o0 %10 Gy goxy 0o oen]e Now it ts

clear that N is an isomorphism.

Thus eince E/IT L, and I(L) #4a (L), I'™ is not relatively

uniformly closed.
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IV RIESZ SPACES SUCH THAT EVERY QUOTIENT SPACE IS ARCHIMEDEAN

1l. A General Characterization

As we have seen, an archimedean Riesz space has, in general,
many quotient spaces which are not archimedean, Thus a Riesz space
such that every quotient space is archimedean must be of a special
type. Some examfles are finite dimensional spaces and the space of
all sequences such that all but a finite number of terms are constant.
Let L be a Riesaz space and B be a band in L. Then B is

said to be & projection band if for every 0 <& v &€ L, there exists

uB:sup{OS u <v:u €B} and uBé B.

11.1 Theorem Let L ©be a Riesz space such that for every ideal

A  the quotient space L/A is archimedean. Then for every
0 £u, v €L there exists a real number m > O such that
sup ( inf (nv, u): n=1, 2, ...) = inf (mu,v), and thus every

prineipal ideal in L 1is a projection band.

Proof: Assume, to the contrary, that the set
-{inf (v, u): n=1, 2, ...} contains infinitely many distinct
elements. Let A be the ideal generated by
-{nv = InF Covs )t 11 = 15 By ssuF s« Then
AT { x € L: tx1 4 k (nv - inf (nv, u) ) for some positive
integers k end nY.

Now v ¢ A, since v € A implies that for some k and n,

v <k (nv = inf (nv, u) ). Then
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(kn =1) v 2 inf (kn v, kX u) 2 inf (kn v, u) and
kn v 2 inf (kn v, u)+ v 2 inf ( (kn+*1) v, u). Indeed for
‘32 kn, jv z inf ( {3+ 1) v, u) and
inf (§v, u) = inf ( (3+ 1) v, u). Thus
pip (3P L3 v, QY8 52 1, 2, e §= Inf (kn v, u), contrary
to our assumption.

Let 77 be the quotient map of L onto L/A. Since for every
integer n, nv<4u+(nv -inf (av, u) ), we have
n 77 (v) £7 (), n= 1, 2, «ee « Thus L/A is not archimedean,
which is a contradiction.

Hence for some m, sup (inf (av, u): n =1, 2, ... )=

= inf (m v, u).

11.2 Lemma Let L be a Riesz space and 0 < u, v € L, If

u, = sup (inf (nv, w)t n= 1, 2, ... ) exists in L and

U =u=-u, then u Jlu and u—Lv.
2 1 1 2. 2
Proof: We have _inf‘ (u2’, ul) = inf (u - u

1’ “1) -

= inf (u, 2u1) - . Now inf (n v, u)+ u implies
2 inf (n v, u) = inf (2n v, 2u)+ 2u1 and

Thus

inf (2n v, 2u, u)= inf (2n v, u) 4 inf (u, 2u1)':. Uy .

inf (w , u )= o.
2’ 1
Also we have inf (v,_.uz) = inf (v, A - ul) =

= inf (v-rul, W] = ul. Then inf (n v,'u) + v =
= inf ( (n-l-l) v, u+ v) * v + ul. Thus

inf ( (a+1l) v, u+v,u)= inf ( (n+1) v, u) 4 inf (v + u,, u):ul.
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It then follows that inf (v, u2) = b.

11.3 Theorem Let L ©be a Riesz space. Then the following

conditions are equivalent:

(i) For every ideal A of L the quotient space L/A is
archimedean.

(i1) For every Oéu; v € L there exist

v = sup (inf (anu, v)1"'n = 1, 2, .o ) and

u1 = B8up (inf (n Ty BIE W E Ly By ses ) in L and real numbers

m. and m such that m v » u and m u_ 2z v .
2 15 1k 2 1 1

Proof: (i) implies (ii). By 11.1 there exist integers o, and m,
such that u, = inf (m1 v, u) and v, = inf (mg u, v). Let

v2: L Now w < m vVEm Vo+om Vo By 11.2 v; L u

and hence vy 1. ul. Thus ul < m, V. Similarly v, £, u, .

(ii) implies (i). Let A be an ideal of L and 77 be the
quotient map of L onto L/A'. Suppose for some O < u, v €L,
0¢n7W) £7m({v), n=1, 2, ... . We may assume there

exists Of_wnEA such that nué_v_—l-wn, H B Ly By ssi
We are assuming u, = sup (inf {(nv, u)s n=1, 2, ... ) and

v, = sup (inf (nu, v)r n=1,2, ¢.o ) exist. Let U= u s u |
and v2:v-— vl. Then n u1+ n u2‘;4_ v +wn, B2 Ly 25 e »

Since u2_L v by 11l.2, u, _-L_wl end u, € A, Now since

vy Lu, n ul £ v1 + wn for each n = 1, 2, ... « But there exists

en integer m such that mu > v.. Then nu £ mu + w
1 1 1 1 n

and 0 4&n ﬂ‘(ul)_é-mﬂ'(ul) for every n=1, 2, ... . Thue
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7T(ul) = 0, u€Ah, and L/A is archimedean.
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12. Dedekind 9 - complete Case

A Riesz space such that every quotient space is archimedean is
not necessarily Dedekind @ - complete. An example is the space
of all sequences which are constant except for a finite number of
terms. WYe shall show that if a Riesz space has every quotient
epace archimedean and is Dedekind @ - complete (or-even relatively
uniformly complete) then the space is simply a Riesz space of all

functions which vanish off finite sets on some non-empty set.

12,1 Theorem Let L be a Dedekind o - complete Riesz space.

Then L 1is rélatively uniformly complete.

Proof: Let {xn} be a relative uniform Cauchy sequence. Then
there exists 0% v €L and a subsequence {yn]r such that

"n
Iyn+1- vy |€ 27" vi We have J_ | £ £ 27k y <y,
= |

" K:-z_‘yk'i'l-yk
Then wu = sup }:1 ka_'_1 - yk] exists by assumption. Also
K=

n ' 'f{__ "
y -yl + & ~y 3t L 2@ Fv)Lev, Let
K%ka-l kl k+ 1 k o

] ' ¢
w = su - +( - ). Now if 2z= w - u +
up Ez A LR A | v
n M
= -, <] L 1y nd * ey g ,Ei (¥4 ykllé

o oo
-k - o
£2 20w+ 2 2kV'=3(2HV). Thus y —s=2z (r, u.) and
- k=mit K=ned n i

then x -w= z (r. u.). Hence L is relatively uniformly complete.
n

We digress to discuss atomic Riesz spaces. Let L be a Riesz:

space and a2 € L. Then a is called an atom of L if the
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principal ideal generated by a,
I{a) = {xé L: ixidma for some real m.}, is one-
dimensional. The space L is said to be atomic if for every

0< v €L there exists an atom a such that O < g <v,

12,2 Lemma Let L be a Riesz spacs.
(i) If a 4s an atom of L, either a> 0 or a & 0.
(11) 1Ir al and a2 are atoms of L, +then either

a, = ‘A a, for some real A or a, 4L B

Proof: (i) Ir aw= O, I(a): {O} », %thus a 7% 0. Now
a=a*t-a . If both at and a~ are non-zero, they are linearly
independent since they are orthogonal. Thus either a% or a~
is zero.

(i1) We may assume al> 0, 9.2 > 0. If
inf (al, az);to, then inf (a, az)‘e I(a,) and

inf (al, a2) € I(az). Thus inf (al, a2)= < a =@ a

2

where o{ and ,@ are positive real numbers. Hence al =
We return to the problem at hand and prove:

12,3 Lemma Let L be a Riesz space which is relatively
uniformly complete and such that every quotient space is
archimedean. Let I be a principal ideal in L. Then I does

not contain a countable, orthogonal set of positive elements.

Proof't Suppose to the contrary that we have 0 v € L and

I(v) contains a countable set {0 <us: n = 1,2, ...} such
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that u_.Lu s i#j i, =1, 2, «vs « Ve may also assume
i j i
u €£2"v, n=1, 2, .... Let A be the ideal in L generated

n =
by -{un: nE s e ewe }.
1]

Az {xel: I1xté&n (X u, ) for some real m > 0 and integer m .

=Z
L
w2 (B {£ )
Note that AC I. Now &5~ g % ( /?::a 27%) v and Zou
K= K=
is a relative uniform Cauchy sequence., Then for some u €L,

n

4, W ey (r. u.). The limit is unique since L is
k= (8

n
archimedean and thus u = sup 2_ u, . Since ug A and
| - n k= o & X 5
udv, v€A, Now u-Z u_ £ 5 2 v= 2" v, But this
kr il ke - snel

implies’ L/A is not archimedean. Thus I does not contain a
countable orthogonal set of positive elements.

We have nowt

12.4 Theorem Let L be a Riesz space. Then the following

conditions are equiv.alen'b:
(1) Every quotient space of L 1is archimedean and L is:
Dedekind O -~ complete.
(ii) Every quotient space of L is archimedean and
L is relatively uniformly complete.
(i11) Every principal ideal of L is finite dimensional.
(iv) There exists a non-empty set X such that L is
Riesz isomorphic to the Riesz space of all real functions on X

which vanish off finite ‘aets.

Proof: ( (i) 4implies (ii) ) This follows from 12.1.

( (i1) implies (iii)) Let I=I(v), 0 4 v € L, be a principal
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ideal. We may assume v z= O, We shall show first that I 1is atomic.
Let 0w e€l and J be the principal ideal generated by w. If
J 1is one - dimensional, w is itself an atom. If not there exists
O# x €J such that x and W are linearly independent. Then
either {x" , Wy or {x", w}- is independent. Thus we may
assume O € u £w and u and w are linearly independent.
Finally since L is archimedean, we may assume that A > 1 implies
W #}\u.

Now let wl".: shxp inf (n (w - u), w). We clain w1¢ W.
Suppose wl-.': w. Then by 11.1 +there existe m > 1 such that
W= oW, = inf (m (w = u), w), This implies inf (m (w --u) - w, 0)=0,
i. e., m (w.- u) =w 2 0 or wa;f-i u, which is a contradiction.
Let 0< z1 = W~ wl. We now repeat the above process for wl.
Either W, is an atom or w, = zg-'- W 0L z,s O < W s
z, L w2. After a finite number of.ateps we must obtain a L "
which is an atom. Otherwise I contains a countable subset of
' _positive orthogonal elements —= { zn: nsl, 2, }-,
which contradicts 12.3. Thus I is atomic.

Now we shall show that I is finite dimensional. We define an
atom of I +to be normalized if 0 €a <v, but A > 1 implies
v z A a. By the previous paragraph, 1 contains at least one

normalized atom. On the other hand by 12.3, the set of all

R

n
Let u = su a a g a = a . If u v v - u
P '{ 1* %o ’ n\' gi K £,

contains an atom & » O. Then by 12.2 for some real A > 0O

normalized atoms of I must be finite, say -{a
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end 1<k £n, a = P\ai. But then

v u+ (v-u)z &, # )\ati > (Q+A) 8. which is a
n

contradiction. Thus v= X a and {a o a} is a
k=L k 1 n

basis for I.

(1ii) implies (iv). Since every principal ideal of L
is finite dimensional, it follows that L is atomic. If X is a
maximai orthogonal set of atoms of L, +then it is also c¢lear that
L 1is Riesz isomorphic to the space of all functions which vanish

off finite subsets of X.

(iv) implies (i). Suppose for some set X, L is the
space of all functions which vanish off finite subsets of X. Then
it is clear that L is Dedekind O - complete. Let
0<4f, gel and xf—__-{xem f(x);to} and
Xg: | { xeX: g (x)+ O} . Then g, = sup inf (n £, g) is the
function given by | | |

g, (x) =g (x) if x¢ Xf N Xg and O otherwise,
and fl = sup inf (a g, £f) is the function

fl (x)= £ (x) ir xe Xfﬂ xg; and O otherwise,

It is clear that since Xfﬂ Xg " is finite, we may select real
numbers m. and m, such that m, f‘lz_, g:}t and m, & z fl.

1
Thus by 11.3%, every quotient space of L is archimedean.
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V OTHER RESULTS

13. Spaces with Property (A, ii)

For locally convex Riesz spaces with property (A, ii), one can
give completeness results which parallel those for T - local

completeness obtained in 6.2 and 6.53.

13,1 Theorem Let (L,7T) be a locally convex Riesz space with
property (A, ii). If 0 % u { " {u)\} a T- Cauchy net,
implies that for some u €L, uj—wu (7°), then L is

T - complete.

Proof': We show first that L 1is Dedekind complete. Suppose

0 < Uy f <v 1is an order - bounded, directed system in L. Then,
under the Riesz space ordering, '{uk 3 E/\}‘ may be considered
'8 net. Let W= {wéL: CEuy ¥ forevery)\é/\.}" .

" Then W and {w -u,t welW, xe /\-}' .are monotone
decreasing nets.: Suppose for some 0 £z €L, z < w = u, for
every w€ W and A€ /\ . Then if we W, u)\{_-,w-z for
every Ne/\ and w -z €%, Since ve W, it follows that
v-nzé€W for nz=1, 2, ...I -. In particular 04 nz £ v
for nz1l, 2, ... , &and since L .is archimedean, by 1.2,

2= 0. Thus inf { w-u : weW and N € A}z 0, Since
(L, T) has property (A, ii), +the net {w -up?t weé€W and

X € A} converges to zero in T . Now if P is a T - continuous

Riesz seminorm and r 1is a positive real number, there exist
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N € /\ and woe W such that /p (wo - u’\o) < r. 1If
UA 2 UA s them ux = ua < wo-ux_ end £ (un- u)\o) {r.
So u)‘f is a monotone Cauchy net, and by assumption, there exists
w € L such that up,—= 0 (7). Then by 1.4, u)\"‘ u and L

is Dedekind complete.

Since L is Dedekind complete, by a +theorem of Nakano [s] >
for every O €u€ L, {x: 04x%uy is T- complete. Now
suppose -{xh= A e/\} is a T - Cauchy net. By 1.3
{x; st A€ /\} and {xf: N E /\} are also T = Cauchy nets.
Ir x;——»— u (T) and x)\—_—>- u2 (T), then B gy e ul - U,
Thus we need only show that positive Cauchy nets converge.

Let ' {u A}' be a positive T - Cauchy net. Then for each
04vel, {inf’ (u)\ - v)}' is & ‘T = Cauchy net and, by the above,
for some O £ uv £ v, inf (u)\, v)—--ra--uv (7). Now consider the net
{uv: 0%veE L}' . It is certainly monotone. Let f’ be a
T = continuous Riesz seminorm and r a positive real number.

Then there exists >\° such that A 2}\0 implies
P (uy - u)\o)( r. Let w=z Un e If v>w and A 2).0 then
Iuv = uwl £ | uv - inf (u%, v)l+

+ | inf (u)\, v) - inf (u, , w)| + | inf (uy, w) =unl &

£ \u"r - inf (u‘\, v)’ -+ lu)\ -wl+ lw -u)\l and
P (uv - uw)< 2r. Thus -(uvz 0<veELYy isa T - Cauchy
net and converges to say u € L.

Now we have only to show that wu,—= u (T). Again let /0 be

a T - continuous Riesz seminorm and r a positive real number.
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Then there exists >\o such that /\?_)\o implies
- ' = < r.
P (uy u)‘o)< r. Pick w2 Un, such that /o (u uw) r
Then if A > Ne
ju-un l&lu=—u+ \uw - inf (w,.uy )|+ | inf (w, uy ) - uho\ﬁ
£lu -~ uwl 2 Iuw - inf (w, uh)l + |u,\ —ukol and

P Cu = u,\o) {2r. Thus uy—=u (7) and L is T - complete.

13.2 Theorem Let L be a Riesz space possessing an (A, ii )
locally convex lattice topology T such that L is 7T =~ complete.
If 7' 4s another (A, ii) locally convex Riesz topology on L

such that T'> T , then L is also T ' complete.

Proof: By 13.1 we need only show that monotone T '- Cauchy
nets converge. Let 0<u, % , -{u,\} a T '- Cauchy net on
L. Then -{u)\} is a T - Cauchy net and for some u € L

uy — u (7). By 1.4 u= el/ip u, and since 7' has property

(hy 35), Uy == u .
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14. Positive Cones with Interior Points

In general the positive cone of a locally convex Riesz space does

not have an interior point. Indeed we have:

14.1 Theorem Let (L,T) be =a locally convex Riesz space. Then

the positive cone B’ s -{ u€L: uz2 0}' has a T - interior
point if and only if L has a strong unit v 2 0 and the topology
T 4is generated by the Riesz norm p, where

pv(x): inf {o( t X v _>_gx|} .

Proof: Assume L has a T - interior point v 2= O. Then there

exists a T -continuous Riesz seminorm ,0 such that
o

Po (v «x) <1 implies x2 0. Let x € L. Then there exists a

real number o > O such that £ - (¢ x) < 1. Hence

Po (v = (v =xX1x1) )= /00(0( x) {1 and v - 1x|> 0 or
1

~v > ix|l. Thus v 1is a strong unit.
°< el
Now let /O be any T = continuous Riesz seminorm. Then if
> £ & ). <
v 2 ix|, we have IO(x) < ,O(V) Thus 2 (x) £ P, (x) IO (+)
and the p_- topology is stronger than T . ©On the other hand if
,Oo (x)< 1, then ,00 (v = (v=1x1) )€1 and v 2\ix\. Thus
{x: P o(x) < 1} C -{x: P, (x) £ 1} . Tnis shows that the
p ~topology is weaker than T and hence they are the same.

v

If L has a strong unit v 20 and T is generated by p_,

then certainly v 1is an interior point L . In fact if

1 1
pY (v-x)<§, then v - x £ 1§v or 04 5V £x.
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